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Abstract

Inflation is currently among the most debated topics at both a political and economical level, given

its direct consequences on people’s lives. Therefore, both estimating its current and estimating its

future values is a task of fundamental importance to set a correct monetary policy and achieve the

desired targets. In particular, multiple measures are used to forecast inflation, but none seems to

outperform all others over different time periods, as described in Meyer and Pasaogullari (2010).

In order to provide an estimate of future expected inflation, in this thesis we will use the Jarrow-

Yildirim (2003) model, which we will first analyze from a theoretic point of view. Despite this

model was proposed to price TIPS, a security issued by the US Treasury and linked to an inflation

index to return a constant real amount to its holders, it can be adopted to measure the difference

between market’s expected future real and nominal rates, thus providing an estimate of market’s

expected inflation by Fisher law.
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Introduction

After the end of the Covid-19 pandemic, inflation has been in all the headlines and one of major

concerns for policymakers at every level, causing the fastest interest rate increase the Western world

has seen since the 1970s. Everybody has already experienced its effects on purchasing power,

causing almost anywhere tensions between different social and economic classes.

In order to take educated decisions, it is important that policymakers and investors alike have ef-

fective ways to estimate inflation and make guesses on how it is going to evolve in the future, on a

short-, mid- and long-term basis. In order to do so, using only macro-economic variables and past

relations among them may be misleading in light of Lucas critique (Lucas, 1976). This thesis there-

fore will use market data from inflation-linked bonds and nominal bonds to avoid this problem and

have a direct insight into market participants’ expectations of future inflation. In particular, as ex-

plained in Wojtowicz (2023), inflation-linked bonds, known also as linkers or ILBs, have the same

credit quality of nominal bonds issued by the same country, but, differently, from them, provide an

hedge against inflation by indexing the cash flows to investors to an inflation index. Threrefore, if

inflation is positive, the amounts received by investors will be higher.

Indeed, when the first inflation-linked bonds were issued during the American Revolutionary War

(Shiller, 2005), they were seen as an extraordinary measure and were rarely issued after the end

of the war for 200 years, despite an abundant stream of economic literature. It was in the 1980s

that the UK and other countries started to issue regularly inflation-linked bonds out of a deliberate

political choice, thus contributing to the creation of a flourishing market (Garcia and van Rixtel,

2007).

In particular, inflation-linked bonds have been, at this point, issued by many countries for a couple

of decades. We will focus on the US market for two main reasons:

1. It has the biggest and most liquid market for inflation linked bonds, thus providing more

data for the estimation process. Indeed, the size of the market for inflation-linked bonds has

been increasing steadily to a value of USD 2.82 trillion compared to USD 1.72 trillion of

one decade ago, measured by the value of bonds outstanding as of April 2023, with the US

counting for USD 1.29 trillion (Wojtowicz, 2023);

2. The FED has been increasing the rates more quickly and has moved earlier than the ECB.

The inflation-linked bonds that we will use in our estimation process are TIPS - Treasury Inflation
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Protected Securities - which the US Treasury has been issuing since January 1997. In order to

estimate the expected inflation, we will adopt the method outlined in Jarrow and Yildirim (2022):

1. Select the period to be studied, which in our case will be from January 3rd, 2022 to August

31st, 2023;

2. Estimate either the forward rate curve or the yield curve by finding the curve that minimizes

the squared difference between the bonds’ theoretical prices calculated by discounting each

payoff and the actual market prices;

3. Assume an evolution for the term structure, which in our case will be given by the Hull-

White model, and estimate the relative parameters. In particular, the Hull-White model is

a continuous-time stochastic and mean reverting model, with Gaussian dynamics and expo-

nentially affine formulas for bond prices;

4. Adjust for possible liquidity premium, given the difference liquidity between TIPS and Trea-

suries.

Repeating this process both for TIPS and Treasuries will allow us to exploit the Fisher equation to

estimate the expected inflation, by subtracting the estimated real forward rates from the estimated

nominal forward rates. This process shows clearly the implementation of the Heath-Jarrow-Merton

(HJM) foreign currency analogy (Jarrow and Turnbull, 1998) and adopts the modeling technology

of Amin and Jarrow (1991).

Even though new models have been presented in the literature to estimate the variables of interest,

such as the ones described in Chen, Liu and Cheng (2010), Brace, Gatarek, and Musiela (2010),

and Ho, Huang, and Yildirim (2014), the original model by Jarrow and Yildirim in still used in

the industry, and it is the one we will adopt given its relative simplicity. Furthermore, for a more

detailed review of the current literature, the reader can be referred to Kupfer (2018), which presents

an analysis of different term structure models and a discussion of regression based approaches.

The work is organized as follows. Chapter 1 presents some theoretical preliminaries that are fun-

damental for the following chapters and focuses mainly on the definition of interest rates and of

incomplete markets. Chapter 2 defines the probabilistic models used in the estimation process, the

Hull-White model and the Jarrow-Yildirim model. Chapter 3 describes the data and the methodol-

ogy used in the estimation process. Chapter 4 presents the results of the analysis and the estimates

for the variables involved. Chapter 5 concludes.
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1 Theoretical preliminaries

In this section we will focus on defining the fundamental concepts we will need in the following

chapters. In particular, we will focus on defining different types of interest rates and we will

introduce the concept of incomplete markets.

1.1 Interest rates

There are two basic types of bonds: zero coupon bonds (ZCB) and coupon bonds (CB). The dif-

ference between these two types of bonds is that, while CB have intermediate payments between

the date of issuance and the maturity date, ZCB have just one payment at the maturity date. Both

these instruments are known as fixed income instruments, since the lender theoretically knows in

advance when and how much the borrower will repay its debt (differently for example from equity,

where the firm does not have any obligation of issuing dividends). In this section, we will focus on

ZCB and we will simply provide the pricing formula for CB.

As mentioned previously, the repayment of ZCB occurs in only one moment: at the maturity time

T , when the principal is paid back to the lender. According to the interest rate of the bond and the

main interest rates, the price at time t of the ZCB p(t, T ) can be lower or higher than the face value

of the bond itself during the lifetime of the bond, given the stochastic nature of interest rates.

1.1.1 Definitions

For the following discussion and the modelling framework, we will follow Björk (2020, Chapter

19). Further references can be Musiela and Rutkowski (1995, Chapters 9.1 and 9.2), Brigo and

Mercurio (2007, Chapter 1), Filipović (2009), and Hull (2018, Chapter 4).

In order to guarantee the existence of a sufficiently rich and regular bond market, we will introduce

the following assumptions:

• There exists a (frictionless) market for T-bonds for every T > 0;

• The relation p(t, t) = 1 holds for all t1;

• For each fixed t, the bond price p(t, T ) is differentiable w.r.t. time of maturity T .

1This relation is necessary in order to avoid arbitrage
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Multiple interest rates can be defined on this market and of particular interest is the concept of

forward rate, which allows us to lock in advance a given interest rate for an investment that will

start in the future for a given period. In particular, if we consider the three points in time t < S < T ,

we are able to have a deterministic rate of return at the contract time t over the interval period [S, T ].

In the following definitions, we define spot rates as forward rate with t = S and instantaneous rate

the limit of the continuously compounded forward rate when S → T . Although our theoretical

discussion will focus on continuous time, we provide the definition for forward and spot rates in

discrete time, since we will need them in our empirical analysis.

Definition 1.1.

1. The simple forward rate for [S, T ] is defined as

L(t;S, T ) = −p(t, T )− p(t, S)

(T − S)p(t, T )
; (1.1)

2. The simple spot rate for [S, T ] is defined as

L(S, T ) = − p(S, T )− 1

(T − S)p(S, T )
; (1.2)

3. The continuously compounded forward rate for the period [S, T ] is defined as

R(t;S, T ) = − log p(t, T )− log p(t, S)

T − S
; (1.3)

4. The continuously compounded spot rate for the period [S, T ] is defined as

R(S, T ) = − log p(S, T )

T − S
; (1.4)

5. The instantaneous forward rate with maturity T is defined as

f(t, T ) = −∂ log p(t, T )

∂T
; (1.5)

6. The instantaneous short rate at time t is defined as

rt = f(t, t). (1.6)
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Another definition is necessary in this introductory setting, the one for the bank account process B.

Definition 1.2.

The bank account process is defined by

Bt = e
∫ t
0 rsds, (1.7)

or, equivalently, dBt = rt ·Btdt,

Bt = 1.

(1.8)

From the previous definitions, we can derive the following lemma.

Lemma 1.3.

For t ≤ s ≤ T we have

p(t, T ) = p(t, s) · exp
{
−
∫ T

s

f(t, u)du

}
, (1.9)

and for t = s

p(t, T ) = exp

{
−
∫ T

t

f(t, s)ds

}
. (1.10)

In order to make a model for the bond market, we can proceed in multiple ways by considering

dynamics of different forms:

• Short rate dynamics

drt = a(t)dt+ b(t)dWt. (1.11)

• Bond price dynamics

dp(t, T ) = p(t, T )m(t, T )dt+ p(t, T )v(t, T )dW (t). (1.12)

• Forward rate dynamics

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t). (1.13)
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All these different dynamics are related, but before getting to know how they are connected, we

need to introduce some technical assumptions.

Assumption 1.4.

1. For each fixed ω, t all the objects m(t, T ), v(t, T ), α(t, T )andσ(t, T ) are assumed to be con-

tinuously differentiable in the T-variable. This partial T-derivative will be denoted by a T

subscript.

2. All processes are assumed to be regular enough to allow us to differentiate under the integral

sign as well as to interchange the order of integration.

From this, the next proposition follows, which holds without assuming that markets are free of

arbitrage.

Proposition 1.5.

If f(t, T ) satisfies equation (1.13) then p(t, T ) satisfies

dp(t, T ) = p(t, T )

{
rt + A(t, T ) +

1

2
||S(t, T )||2

}
dt+ p(t, T )S(t, T )dWt,

where || · || denotes the Euclidean norm, and

A(t, T ) = −
∫ T

t
α(t, s)ds,

S(t, T ) = −
∫ T

t
σ(t, s)ds.

(1.14)

Proof For a proof see Björk (2020, Chapter 19)

1.1.2 Coupon bonds

As mentioned in the previous section, it is possible to price CB in terms of ZCB, independently of

whether the coupon is fixed or floating. Since the fixed coupon bond is the simplest CB, we will

first describe this type and we will then move to the floating one.

Indeed, it is easy to show that it is possible to replicate the payoff of a fixed coupon bond through

a portfolio of ZCB, and that therefore the price p(t) at a time t < T1, of the CB is

p(t) = K · p(t, Tn) +
n∑

i=1

ci · p(t, Ti). (1.15)
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where K is the face value, ci is the deterministic coupon and Tn is the maturity.

Regarding floating rate bonds, it is possible to show that the cash flows they generate are possible

to replicate using a self-financing bond strategy, to the initial cost p(t, Ti−1) and that the valuation

formula for the floating rate bond is

p(t) = p(t, Tn) +
n∑

i=1

[p(t, Ti−1 − p(t, Ti)] = p(t, T0). (1.16)

For the proof of this equation, we refer to Björk (2020, Chapter 19)

1.2 Incomplete markets

Differently from the Black-Scholes (1973) case for stock markets, it is not possible to find a unique

martingale measure for the pricing of bonds. In this section, we will simply provide a definition of

complete markets and state a meta-theorem to identify if a market is complete, free or arbitrage or

both. In this discussion, we will closely follow (Björk, 2020, Chapter 9).

Definition 1.6.

We say that a contingent T-claim X can be replicated, alternatively that it is reachable or hedgeable,

if there exists a self-financing portfolio h such that its value V at time T V h
T respects the equality

V h
T = X, P − a.s. (1.17)

In this case we say that h is a hedge against X. Alternatively, h is called a replicating or hedging

portfolio. If every contingent claim is reachable, we say that the market is complete.

Meta-theorem 1.7.

Let N denote the number of underlying traded assets in the model excluding the risk free asset,

and let R denote the number of sources of randomness. Generically we then have the following

relations:

1. The model is arbitrage free if and only if N ≤ R.

2. The model is complete if and only if N ≥ R.

3. The model is complete and arbitrage free if and only if N = R.

7



It is therefore clear that the standard Black-Scholes model is complete and arbitrage free since there

is one source of randomness and one traded asset (excluding the risk-free asset). On the other hand,

the bond markets are not complete, since there is one source of randomness, but no traded assets.

Indeed, we cannot consider the interest rate as a traded asset and it would be nonsensical to say

that we are buying or selling it. It has to be stated that in some models ZCBs are assumed to be

primitive assets, instead of derivatives written on the interest rate, and in this case even the bond

market would be complete, given that we would have a source of randomness and a traded asset.

However, going forward, we will not consider these models and we will keep assuming the bond

market to be incomplete.
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2 Models

In this chapter we will use the tools developed in the previous one to analyse the different models

we will need in our empirical analysis. In particular, the short rate models and the HJM frame-

work (Heath, Jarrow and Morton, 1992) were introduced to analyse bond prices, while the Jarrow-

Yildirim model (2003) uses a HJM framework to study the pricing of TIPS.

2.1 Short rate models

In this section, we will analyze the problem of modelling an arbitrage free family of zero coupon

bond price processes {p(·, T );T ≥ 0}. In particular, we will focus on the Hull-White model after

a general introduction. We will closely follow the analysis made in (Björk 2020, Chapters 20 and

21).

Since the price p(t, T ) of a bond depends on the behavior of the short rate r over the interval [t, T ],

we will start the discussion by modeling the short rate, under the objective probability measure P ,

as the solution of an SDE of the form

drt = µ(t, rt)dt+ σ(t, rt)dWt. (2.1)

The short rate r is the only object given a priori, so the only exogenously given asset is the money

account, whose price process B is defined like in the previous chapter as

dBt = rtBtdt. (2.2)

As we mentioned in the previous chapter, this market is incomplete since, as described by meta-

theorem 1.7 the number of random sources is bigger than the number of underlying traded assets.

Indeed, it can be noted that there is one random source in the short rate SDE and no underlying

traded asset (since we do not count the risk-free rate). However, since there must still be some

internal consistency rules to avoid arbitrage, we can achieve the following result, where λ indicates

the market price of risk, defined as the ratio between an asset’s expected excess return and its

volatility.

Proposition 2.1.

In an arbitrage free bond market, there will exist a process λ(t, rt) such that, for every maturity T ,

9



the bond pricing function F T will satisfy the term structure equation
F T
t + {µ− λσ}Fr +

1

2
σ2Frr − rF T = 0,

F T (T, r) = 1.
(2.3)

where Ft indicates the first partial derivative of F w.r.t t, Fr the the first partial derivative of F

w.r.t t and Frr the function F derived twice w.r.t r.

Proof For a proof see Björk (2020, Chapters 9 and 20)

Furthermore, we can enunciate the following stochastic representation formula.

Proposition 2.2.

Bond prices are given by the formula p(t, T ) = F (r, rt;T ) where

F (t, r;T ) = EQ
t,r

[
e−

∫ T
t rsds

]
. (2.4)

The Q-dynamics of r are given by

drt = {µ(t, rt)− λ(t, rt)σ(t, rt)}ds+ σ(t, rt)dW
Q
t , (2.5)

where WQ is a Q-Wiener.

Proof For a proof see Björk (2020, Chapter 20)

It can be pointed out that equation (2.4) has the standard economic interpretation: the bond price

is given as the expected value of the final payoff discounted. Furthermore, it has to be noticed that

the expectation is to be taken under the martingale measure Q. Since the market is not complete,

there is not a unique martingale measure, but we have to infer it directly through market data. The

way to do it will be explained at a later stage, while for now we will limit ourselves to state that for

analytical tractability and computational efficiency, the models must have an affine term structure

to allow an easy analytical analysis.

Before moving to it, we will present a list with some of the most popular short rate models. If

a parameter is time dependent, this is written out explicitly, otherwise all parameters are positive

constants:
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1. Vasiček (1977)

drt = (b− art)dt+ σdWt, (2.6)

2. Cox-Ingersoll-Ross (CIR) (1985)

drt = (b− art)dt+ σ
√
rtdWt, (2.7)

3. Dothan (1978)

drt = ardt+ σrtdWt, (2.8)

4. Black-Derman-Toy (1990)

drt = θ(t)rtdt+ σ(t)rtdWt, (2.9)

5. Ho-Lee (1986)

drt = θ(t)dt+ σdWt, (2.10)

6. Hull-White (extended Vasiček) (1990)

drt = [θ(t)− art]dt+ σdWt, (2.11)

7. Hull-White (extended CIR) (1990)

drt = [θ(t)− art]dt+ σ
√
rtdWt. (2.12)

In the following chapter, we will use the Hull-White model for our estimation process and we

will see more in detail how this is achieved. However, we can already note that, once we have

chosen the model we will work with, we will have to choose the parameter vector in a way that

the theoretical curve, the curve produced as output by the model, fits the empirical curve, the curve

11



actually observed in the market, or the bond prices we will calculate will not be correct.

2.1.1 Affine Term Structures (ATS)

Definition 2.3.

If the term structure {p(t, T ); 0 ≤ t ≤ T, T > 0} has the form

p(t, T ) = F (t, rt;T ), (2.13)

where F has the form

F (t, r;T ) = eA(t,T )−B(t,T )r, (2.14)

and where A and B are deterministic functions, then the model is said to possess an ATS.

Since the existence of an ATS facilitates importantly the analytical and computational task, it is

important to understand for which choices of µ and σ in the Q-dynamics for r we get an ATS. We

will proceed formulating the following proposition.

Proposition 2.4.

Assume that µ and σ are of the formµ(t, r) = α(t)r + β(t),

σ(t, r) =
√

γ(t)r + δ(t).

(2.15)

Then the model admits an ATS of the form (2.14) where A and B satisfy the system
Bt(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T ) = −1,

B(T, T ) = 0.
(2.16)


At(t, T ) = β(t)B(t, T )− 1

2
δ(t)B2(t, T ),

A(T, T ) = 0.
(2.17)

Given the high importance of this proposition, we will provide the proof below.
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Proof

We will assume that we have the Q-dynamics

drt = µ(t, rt)dt+ σ(t, rt)dWt, (2.18)

and that the bond prices have the form (2.14). This allows us to compute easily the partial deriva-

tives of F , and since F must solve the term structure equation (2.3), we obtain

At(t, T )− {1 +Bt(t, T )}r − µ(t, r)B(t, T ) +
1

2
σ2(t, r)B2(t, T ) = 0 (2.19)

The boundary value F (T, r;T ) ≡ 1 implies

A(T, T ) = 0,

B(T, T ) = 0.

(2.20)

We can notice that if µ and σ2 are both affine functions of r, with possibly time-dependent coef-

ficients, then equation (2.19) become a separable differential for the unknown functions A and B.

Assume that µ and σ have the formµ(t, r) = α(t)r + β(t),

σ(t, r) =
√

γ(t)r + δ(t).

(2.21)

After collecting terms, (2.19) transforms into

At(t, T )− β(t)B(t, T ) +
1

2
γ(t)B2(t, T )

−
{
1 +Bt(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T )

}
r = 0.

(2.22)

Since the equation holds for all values of r, the coefficient of r must be equal to zero. Thus we

have the equation

Bt(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T ) = −1. (2.23)
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This implies that also the other term in (2.22) must be equal to zero and therefore we obtain

At(t, T ) = β(t)B(t, T )− 1

2
δ(t)B2(t, T ). (2.24)

We note that equation (2.16) is a Riccati equation for the determination of B which does not involve

A. Having solved equation (2.16), we may then insert the solution B into equation (2.17) and

simply integrate in order to obtain A. □

2.1.2 Hull-White model

As mentioned before, it is important to have a perfect fit between the theoretical and the observed

bond prices. In order to obtain a perfect fit, we have to use a model with an infinite dimensional

parameter vector by letting some or all parameters be time dependent. This will allow us to find an

unique solution to the infinite dimensional system of equations (one equation for each T ). In this

section we will analyze the Hull-White (extended Vasiček) model, which uses that method to solve

that issue, while in the following one we will discuss the HJM framework.

Since the model has an ATS, as we can see from the stochastic differential equation defining the

short rate

drt = [θ(t)− art]dt+ σdWt,

we can use the previous discussion to find the formula for bond pricing. In particular, A and B

solve Bt(t, T ) = aB(t, T )− 1,

B(T, T ) = 0.
At(t, T ) = θ(t)B(t, T )− 1

2
σ2B2(t, T ),

A(T, T ) = 0.

The solutions to these equations are given by

B(t, T ) =
1

a

{
1− e−a(T−t)

}
,
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A(t, T ) =

∫ T

t

{
1

2
σ2B2(s, T )− θ(s)B(s, T )

}
ds.

In order to fit the theoretical prices to the observed ones, we will use the forward rate, given the

one-to-one correspondence. In any affine model the forward rates are given by

f(0, T ) = BT (0, T )r0 − AT (0, T ),

which, after inserting the previous two equations into it, becomes

f(0, T ) = e−aT r0 +

∫ T

0

e−a(T−s)θ(s)ds− σ2

2a2
(1− e−aT )2

Given an observed forward rate structure f ⋆ our problem is to find a function θ that solves the

previous equation ∀T > 0. This can be done by writing it as

f ⋆(0, T ) = x(T )− g(T )

where x and g are defined by  ẋ = −ax(t) + θ(t),

x(0) = r(0),

g(t) =
σ2

2a2
(1− e−at)2 =

σ2

2
B2(0, t).

We now have
θ(t) = ẋ(T ) + ax(T ) = f ⋆

T (0, T ) + ġ(T ) + ax(T )

= f ⋆
T (0, T ) + ġ(T ) + a{f ⋆(0, T ) + g(t)},

(2.25)

and have therefore proved the following result.

Lemma 2.5.

Fix an arbitrary bond curve {p⋆(0, T );T > 0}, subject only to the condition that p⋆(0, T ) is

twice differentiable w.r.t T. Choosing θ according to (2.25) will then produce a term structure

{p⋆(0, T );T > 0} such that p(0, T ) = p⋆(0, T )∀T > 0.

By choosing θ according to (2.25) we have determined our martingale measure for a fixed choice

of a and σ and it is now possible to state the following.
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Proposition 2.6.

Consider the Hull-White model with a and σ fixed. Having inverted the yield curve by choosing θ

according to (2.25) we obtain the bond prices as

p(t, T ) =
p⋆(0, T )

p⋆(0, t)
exp

{
B(t, T )f ⋆(0, t)− σ2

4a
B2(t, T )(1− e−2at)−B(t, T )rt

}
, (2.26)

where B is given in the previous page.

Proof

If we substitute the equations for B and θ in the one for A, we can express it as

A(t, T ) =
σ2

2a2

∫ T

t

(1− e−a(T−s))2ds−
∫ T

t

1

a
(1− e−a(T−s))2(f ⋆

T (0, s) + ġ(s) + a{f ⋆(0, s) + g(s)})ds.

If we integrate by parts and solve the first integral, we obtain

=
σ2

2a2

{
T − t− 2

a
+

2e−a(T−t)

a
+

1

2a
− e−2a(T−t)

2a

}
+ f ⋆(0, t)B(t, T )−

−
∫ T

t

f ⋆(0, s)e−a(T−s)ds+ g(t)B(t, T )−
∫ T

t

g(s)e−a(T−s)ds− logP ⋆(0, t)(1− e−a(T−t))+

+

∫ T

t

a logP ⋆(0, s)e−a(T−s)ds−
∫ T

t

g(s)ds+

∫ T

t

g(s)e−a(T−s)ds.

After some arithmetic simplifications, we get to the following form

= f ⋆(0, t)B(t, T )− σ2

4a
B2(t, T )(1− e−2at) + log

P ⋆(0, T )

P ⋆(0, t)
,

and after substituting the value for A in (2.14), we have proved the proposition. □

2.2 HJM framework

As mentioned before, the HJM framework is a popular method to fit the observed prices with the

theoretical ones. Differently from the short rate models that we saw before, the HJM framework

does not use a single explanatory variable, but instead uses the entire forward curve as the infinite

dimensional framework. It is important to remark that the HJM method does not offer a specific

model, but rather a framework. It is indeed possible to formulate any short rate model in forward
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rate terms (and we will indeed show below how this can be done for the Hull-White model analyzed

before). We will follow the discussion made in (Björk, 2020, Chapter 22) and we will start stating

the following assumption.

Assumption 2.7.

We assume that, for every fixed T > 0, the forward rate f(·, T ) has a stochastic differential which

under the objective measure P is given by

df(t, T ) = α(t, T )dt+ σ(t, T )dW P
t , (2.27)

f(0, T ) = f ⋆(0, T ), (2.28)

where W P is a d-dimensional P-Wiener process whereas α(·, T ) and σ(·, T ) are adapted processes.

The following has to be noted:

• Once we have specified α, σ and {f ⋆(0, T ); T ≥ 0}, we have specified the entire term

structure {p(t, T ); T > 0, 0 ≤ t ≤ T};

• Since we have d sources of randomness and an infinite number of traded assets, we need to

understand how the processes α and σ are related to avoid arbitrage possibilities.

Before stating the HJM drift condition, which solves the problem raised in the second point, we

have to state two theorems, the First Fundamental Theorem of Asset Pricing (FTAP) and the Gir-

sanov Theorem, which we will need in the proof of the HJM drift condition.

Theorem 2.8 (The First Fundamental Theorem of Asset Pricing). The market model is free of

arbitrage if and only if there exists a martingale measure, i.e. a measure Q ∼ P such that the

processes

S0
t

S0
t

,
S1
t

S0
t

, · · · , S
N
t

S0
t

are (local) martingales measures under Q.

Proof For a proof see Björk (2020, Chapter 11)

Theorem 2.9 (The Girsanov Theorem).

Let W be a d-dimensional standard P-Wiener process on (Ω, F , P, F) and let φ be any d-dimensional
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adapted column vector process. Choose a fixed T and definie the process L on [0,T]

dLt = φ⋆
tLtdWt,

L0 = 1,

i.e.

Lt = e
∫ t
0 φ⋆

sdWs− 1
2

∫ t
0 ||φs||2ds.

Assume that

EP [LT ] = 1,

and define the new probability measure Q on FT by

LT =
dQ

dP
, on FT .

Then

dWt = φtdt+ dWQ
t ,

where WQ is a Q-Wiener process.

Proof For a proof see Björk (2020, Chapter 12)

The process φ is referred to as the Girsanov kernel of the measure transformation and it is given by

φ = −λ, where λ is the market price of risk.

It is now possible to state and prove the following HJM drift condition.

Theorem 2.10.

Assume that the family of forward rates is given by (2.27) and that the induced bond market is

arbitrage free. Then there exists a d-dimensional column-vector process

λ(t) = [λ1(t), . . . , λd(t)]
′
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with the property that for all T ≥ 0 and for all t ≤ T , we have

α(t, T ) = σ(t, T )

∫ T

t

σ(t, s)′ds− σ(t, T )λ(t). (2.29)

In these formulas ′ denotes transpose.

Proof

From Proposition (1.5) we have the bond dynamics

dp(t, T ) = p(t, T )

{
rt + A(t, T ) +

1

2
||S(t, T )||2

}
dt+ p(t, T )S(t, T )dWt,

where A(t, T ) = −
∫ T

t
α(t, s)ds,

S(t, T ) = −
∫ T

t
σ(t, s)ds.

Based on the First Fundamental Theorem, there must be a martingale measure Q to obtain an

arbitrage free model. We have therefore to convert the P-dynamics to Q-dynamics and this is

achieved through the Girsanov Theorem. Indeed we can write that

rt + A(t, T ) +
1

2
||S(t, T )||2 +

d∑
i=1

Si(t, T )φi(t) = rt,

A(t, T ) +
1

2
||S(t, T )||2 −

d∑
i=1

Si(t, T )λi(t) = 0.

Eventually, taking the T-derivative of the last equation gives us equation (2.29). □

This result shows us that once we have specified the forward rate dynamics under Q and the volatil-

ity structure, the drift parameter will be uniquely determined and we are able to compute bond

prices.

We will show now how this can be achieved by taking into consideration a volatility structure, that

will eventually return the Hull-White model that we have studied in the previous section. We will

specify σ as follows

σ(t, T ) = σe−a(T−t)
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and, by the HJM drift condition, we have that

α(t, T ) =
σ2

a
e−a(T−t)(1− e−a(T−t))

We can restate assumption (1.5) in integral form and we have

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

∫ t

0

σ(s, T )dWs

We notice that, considering equation 1.5 and equation 2.14, we can write that

f(0, T ) =

∫ T

0

θ(s)
∂B(s, T )

∂T
ds+

σ2

2a2

(
∂B(0, T )

∂T
− 1

)
+

σ2

2a
B(0, T )

∂B(0, T )

∂T
+

∂B(0, T )

∂T
r0

=

∫ T

0

θ(s)e−a(t−s)ds+
σ2

2a2
(
e−aT − 1

)
+

σ2

2a2
(
e−aT − e−2aT

)
+ e−aT r0

=

∫ T

0

θ(s)e−a(t−s)ds− σ2

2a2
(
e−aT − 1

)2
+ e−aT r0.

Furthermore we notice that

∫ t

0

α(s, T )ds =
σ2

a

∫ t

0

e−a(T−s)(1− e−a(T−s))ds

=
σ2

2a2

[(
e−a(T−t) − 1

)2 − (e−aT − 1
)2]

Combining the three pieces together and recalling that rt = f(t, t), we have

rt = e−at

∫ t

0

θ(s)easds+ e−atr0 + e−at

∫ t

0

σeasdWs

and, taking the derivative of it, we get

drt = −artdt+ θ(t)dt+ σdWt

= [θ(t)− art]dt+ σdWt,

which corresponds to the short rate Hull-White model as we have defined it in equation (2.11).
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2.3 Jarrow-Yildirim model

The Jarrow-Yildirim model (2003) was among the first models developed to price TIPS. In particu-

lar, it uses an HJM model to consistently price TIPS and the Hull-White model as specification for

the term structure during the estimation process. In this section, we will focus on the theoretical

framework, while leaving the estimation process to a later chapter. Furthermore, before begin-

ning with the analysis, it is important to acknowledge that the HJM foreign currency analogy (as

developed in Jarrow and Turnbull, 1998) is used to implement the methodology, where the two

currencies are the nominal and the real rates (with the real rate being the foreign currency), and the

index for measuring the inflation rate is the spot exchange rate. As indicated in Brigo and Mercurio

(2007), this analogy is perfectly motivated because, denoting by I(t) the CPI value at time t, it is

possible to switch from real to nominal values simply by multiplying the price of a basket in real

terms by I(t)/I(0) to obtain the price in nominal terms. Since I(0) is constant, this is quite similar

to converting amounts from one currency to another.

Notation

• r: real;

• n: nominal;

• Pn(t, T ): time t price of a nominal ZCB maturing at time T in dollars;

• I(t): time t inflation index;

• Pr(t, T ): time t price of a real ZCB maturing at time T in inflation index units;

• fk(t, T ): time t forward rates for date T , where k ∈ {r, n};

• rk(t) = fk(t, t): the time t spot rate where k ∈ {r, n};

• Bk(t) = exp{
∫ t

0
rk(s)ds}: time t money market account value for k ∈ {r, n};

• PTIPS(t, T ) = I(t)Pr(t, T ): time t price of a real ZCB maturing at time T in dollars;

Uncertainty is introduced in the economy through three P-Wiener processes (Wn(t),Wr(t),WI(t)).

These Wiener processes have correlations given by dWn(t)dWr(t) = ρnrdt, dWn(t)dWI(t) =

ρnIdt and dWr(t)dWI(t) = ρrIdt, thus generating a three-factor model.
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Assumption 2.11.

We assume that the initial nominal forward rate curve fn(0, T ), the initial real forward rate curve

fr(0, T ) and the inflation index I(t) evolve according to the following processes

dfn(t, T ) = αn(t, T )dt+ σn(t, T )dWn(t), (2.30)

dfr(t, T ) = αr(t, T )dt+ σr(t, T )dWr(t), (2.31)

dI(t)

I(t)
= µI(t)dt+ σI(t)dWI(t). (2.32)

These processes are arbitrage free if and only if the following process are Q-martingales (Amin and

Jarrow, 1991)

η(t) =
Pn(t, T )

Bn(t)
, ζ(t) =

I(t)Pr(t, T )

Bn(t)
and ξ(t) =

I(t)Br(t)

Bn(t)
,

and this implies that the following conditions must hold

αn(t, T ) = σn(t, T )

∫ T

t

σn(t, s)ds, (2.33)

αr(t, T ) = σr(t, T )

(∫ T

t

σt(t, s)ds− σI(t)ρrI

)
, (2.34)

µI(t) = rn(t)− rr(t). (2.35)

Proof

In the following proofs, we will use Itô’s product and quotient rules and the approximations

dtdWt ≈ 0, dt2 ≈ 0 and dW 2(t) ≈ dt, but it has to be noted that the same results can be achieved

in a completely rigorous mathematical method, with a similar proof to the one provided in Amin

and Jarrow (1991).

1. dη(t) = dPn(t,T )
Bn(t)

− Pn(t,T )
B2

n(t)
dBn(t).

By substituting in the values for the two price processes and using Proposition (1.5) we get

dη(t)

η(t)
= [rn(t) + An(t, T ) +

1

2
||Sn(t, T )||2]dt+ Sn(t, T )dWn(t)− rn(t)dt

= [An(t, T ) +
1

2
||Sn(t, T )||2]dt+ Sn(t, T )dWn(t).
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In order to be a martingale, η must have null drift, so we set the dt term to zero and derive

the result w.r.t T :

An(t, T ) = −1

2
||Sn(t, T )||2

αn(t, T ) = σn(t, T )

∫ T

t

σn(t, u)du

2. dζ = d(I(t)Pr(t,T ))
Bn(t)

− I(t)Pr(t,T )
B2

n(t)
dBn(t)

By applying Itô product rule and using Proposition (1.5) we get

dζ(t)

ζ(t)
= (rr(t) + Ar(t, T ) +

1

2
||Sr(t, T )||2)dt+ Sr(t, T )dWr(t) + µI(t)dt+ σI(t)dWI(t)+

+ σISr(t, T )ρrIdt− rn(t)dt

= (rr(t) + Ar(t, T ) +
1

2
||Sr(t, T )||2 + µI(t) + σISr(t, T )ρrI − rn(t))dt+

+ Sr(t, T )dWr(t) + σI(t)dWI(t).

As before, in order to be a martingale, ζ must have null drift. Therefore, we set the dt term

to zero and derive w.r.t. T to obtain

−αr(t, T ) + σr(t, T )

∫ T

t

σr(t, s)ds− σr(t, T )σIρrI = 0

that we can easily see corresponding to the second condition.

3. dξ = d(I(t)Br(t)
Bn(t)

− I(t)Br(t)
B2

n(t)
dBn(t).

By applying Itô product rule and after some arithmetical semplifications we get

dξ(t) =
dI(t)Br(t) + I(t)dBr(t)

Bn(t)
− rn(t)dtξ(t)

=
(I(t)µI(t)dt+ I(t)σIdWI(t))Br(t) + I(t)rr(t)Br(t)dt

Bn(t)
− rn(t)dtξ(t)

= ξ(t)[µId(t) + σIdWI(t) + rrd(t)− rn(t)]

dξ(t)

ξ(t)
= (µI(t) + rr(t)− rn(t))dt+ σIdWI(t).

By setting the dt term equal to zero in order for ξ to be a martingale, we have proved the third
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and last condition. □

From equations (2.33) and (2.34), together with Proposition (1.5), we can easily see that nominal

and real ZCB must have the following price processes:

dPn(t, T )

Pn(t, T )
= rn(t)dt−

∫ T

t

σn(t, s)dsdWn(t) (2.36)

dPr(t, T )

Pr(t, T )
=

[
rr(t) + ρrIσI

∫ T

t

σr(t, s)ds

]
dt−

∫ T

t

σr(s)dsdWr(t) (2.37)

Finally, we can show that

dPTIPS(t,T )

PTIPS(t,T )

= rn(t)dt+ σIdWI(t)−
∫ T

t

σr(t, s)dsdWr(t) (2.38)

Proof Equation (2.38)

We recall that PTIPS(t, T ) = I(t)Pr(t, T ). Therefore, by Itô product rule, we have

dPTIPS(t,T ) = I(t)dPr(t, T ) + Pr(t, T )dI(t) + dI(t)dPr(t, T )

dPTIPS(t,T )

PTIPS(t,T )

=

[
rr(t) + ρrIσI

∫ T

t

σr(t, s)ds

]
dt−

∫ T

t

σr(s)dsdWr(t)+

+ [rn(t)− rr(t)]dt+ σIdWI(t)− σIρrI

∫ T

t

σr(t, s)dsdt

= rn(t)dt+ σIdWI(t)−
∫ T

t

σr(t, s)dsdWr(t)

which completes the proof. □
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3 Empirical analysis

In this chapter, we will use the Hull-White and Jarrow-Yildirim models described in the previous

chapter to analyze TIPS and Treasuries data in order to deduce the market expectation on future

inflation implied in market data. We will first briefly describe the different types of securities issued

by the US Treasury, then present the data, describe the methodology adopted and finally analyze

the results. The Python code used can be found in Appendix A.

3.1 US Treasury Debt Survey

The US Treasury issues six different securities, but only five of which are marketable. The only

non-marketable security, US Saving Bonds2, cannot indeed be sold or transferred to someone else

since each is registered to one person’s social security number. The five marketable securities are:

1. Treasury Bills have maturities ranging from 4 week to 52 weeks. They are sold at a discount

or at par and when it matures, the face value is paid;

2. Treasury Notes have maturities of 2, 3, 5, 7, or 10 years and pay a fixed rate of interest every

six months until they mature;

3. Treasury Bonds have maturities of either 20 or 30 years and pay a fixed rate of interest every

six months until they mature;

4. Treasury Inflation-Protected Securities (TIPS) have maturities of 5, 10, or 30 years. They

are indexed to the CPI-U. Coupons and principal are adjusted on the basis of the the indexa-

tion coefficient for the relevant date and cannot be less than their nominal value.

5. Floating Rate Notes (FRNs) mature in two years and pay interest four times each year. The

interest rate is the sum of an index rate and a spread. The index rate is tied to the highest

accepted discount rate of the most recent 13-week Treasury Bill and therefore is reset every

week, while the spread is constant and is determined at the auction when the FRN is first

offered.

It is possible to view the debt outstanding per marketable security in Figure 1.

2More information on US Saving Bonds can be found on the US Treasury’s website at the link https:
//treasurydirect.gov/savings-bonds/
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Figure 1: Outstanding Debt by Marketable Security as of June 2023.
Source Peter G. Peterson Foundation

3.2 Data

Our analysis employs daily prices of Treasury Notes, Treasury Bonds and TIPS. Securities’ prices

and characteristics were retrieved from CapIQ on September 2nd, 2023 for a 20-months window,

spanning from January 3rd, 2022 to August 31st, 2023. The time window consists of 414 daily

observations. At the day of retrieval 51 TIPS and 1474 nominal securities were outstanding.

To minimize the possible misspecification that the frictionless market assumption may have on the

estimation, we exclude from the analysis the securities that mature either in 2023 or in 2024 given

the marginal trader’s tax treatment for coupons and capital gains income that may differ for these

bonds as compared to the remaining ones. Furthermore, we remove all securities that have been

issued after the begin of the time window. Finally, as Kupfer (2018) notes, when calculating the

difference between nominal and real return to estimate the break-even inflation rate (BEIR), there

is the possibility of biased estimates due to difference in liquidity between Treasuries and TIPS.
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Therefore, we remove all the securities issued after before January 1st, 2020, and we are left with

13 TIPS and 91 Treasuries. In Table 1 it is possible to see the list of TIPS used in the analysis.

Table 1: TIPS Data

CUSIP Coupon % Issue Date Maturity Date

91282CDC2 0.125 10/29/2021 10/15/2026

91282CCM1 0.125 07/30/2021 07/15/2031

91282CCA7 0.125 04/30/2021 04/15/2026

912810SV1 0.125 02/26/2021 02/15/2051

91282CBF7 0.125 01/29/2021 01/15/2031

91282CAQ4 0.125 10/30/2020 10/15/2025

912828ZZ6 0.125 07/31/2020 07/15/2030

912828ZJ2 0.125 04/30/2020 04/15/2025

912810SM1 0.125 02/28/2020 02/15/2050

912828Z37 0.125 01/31/2020 01/15/2030

9128287D6 0.250 07/31/2019 07/15/2029

912810SG4 1.000 02/28/2019 02/15/2049

9128285W6 0.875 01/31/2019 01/15/2029

3.2.1 Treasuries

Because of the selection rules described above, our analysis deals only with Treasury Notes and

Treasury Bonds, since Treasury Bills do not have a maturity of at least 20 months. Treasury Notes

are issued with maturities of 2, 3, 5, 7, or 10 years, while Treasury Bonds are issued with maturities

of either 20 or 30 years. Both securities are auctioned and bids can be presented both in a non-
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competitive or competitive way3. Coupons are paid twice a year and their rate is never lower

than 0.125%. Treasuries are then redeemed at maturity with a single payment. Treasuries are a

fundamental in global finance and are generally considered the risk-free investment. In Figure

2 we have plotted the clean price of three representative Treasuries for the time window period,

therefore not including accrued interest to the quoted price, because those are the prices which will

be later used in the analysis.

Figure 2: Clean Daily Prices of Three Representative Treasuries,
January 3rd, 2022 to August 31st, 2023

3.2.2 TIPS

TIPS are issued with maturities of 5, 10, or 30 years. Similarly to Treasuries, TIPS are auctioned,

bids can be presented both in a non-competitive or competitive way, coupons are paid twice a year,

their rate is never lower than 0.125%, and are then redeemed at maturity with a single payment.

3For a description of the difference between non-competitive and competitive bids, we refer to Treasury website at
https://www.treasurydirect.gov/auctions/how-auctions-work/
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However, differently from Treasuries, TIPS coupon payments are not constant throughout the life

of the security, but are indexed to the CPI-U, an inflation index discussed below. In particular, the

Treasury publishes on a monthly basis daily indexation coefficient ICy,m,d calculated as

ICy,m,d =
RIy,m,d

IB

where IB is the inflation base, which is set at the dated date and represents the inflation at the

time of issuance, and RIy,m,d is the reference inflation for the day d, month m and year y4. As

indicated both in Barone and Castagna (1998) and in Gürkaynak, Sack and Wright (2010), RIy,m,d

is an interpolation of the CPI-U values three and two months previous to the date of interest. The

formula to calculate it is

RIy,m,d = ΩM +
g − 1

n
· (ΩM+1 − ΩM)

where g is the calendar day of the day of interest, n is the number of days in the month in which

the day of interest falls and ΩM is the CPI-U reported as of the third month previous to that of the

day of interest.

Another important TIPS characteristic to be aware of is that there is an embedded option on the

coupon payments. Indeed TIPS never pay less than the original principal, but the greater between

the inflation-adjusted price or the original principal. Therefore each coupon payments is calculated

as

max
( c
2
· RIy,m,d ,

c
2

)
Finally, in Figure 3 the prices of three TIPS have been plotted. We have used clean prices in this

case as well. We can see that, similarly to Treasuries prices plotted in Figure 2, the increase in

inflation and consequent increase in interest rates brings to a sharp reduction in securities prices.

4Both the IB and RIy,m,d are publicly available at the page https://www.treasurydirect.gov/
auctions/announcements-data-results/tips-cpi-data/ by selecting any TIPS
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Figure 3: Clean Daily Prices of Three Representative TIPS,
January 3rd, 2022 to August 31st, 2023

3.2.3 CPI-U

There are multiple price indexes available for the US, and TIPS are indexed to the Consumer Price

Index for All Urban Consumers (CPI-U), which covers approximately 93% of the total population.

The CPI represents changes in prices of all goods and services purchased for consumption by urban

households, including user fees and sales and excise taxes. The CPI-U includes expenditures by

urban wage earners and clerical workers, professional, managerial, and technical workers, the self-

employed, short-term workers, the unemployed, retirees and others not in the labor force.

Because of data collection and computation issues, the index is always reported with a two-month

lag, which causes TIPS not to provide an exact real return, but only an approximate one.

CPI-U is available monthly from January 1913 to September 20235. In order to use the index for

daily securities prices, a daily linear interpolation is calculated as described previously. Finally,

5The time series can be downloaded from the Bureau of Labor Statistics’ website at https://data.bls.gov/
pdq/SurveyOutputServlet
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it can be noted from Figure 4 that the only moment in the last 20 years when the CPI-U index

has decreased is during the 2008 financial crisis, therefore giving little value to the aforementioned

TIPS embedded option, which can safely not be calculated during the securities’ pricing process.

Figure 4: Daily and Monthly CPI-U Index Levels

3.3 Methodology

As we have seen with formula (1.15), the price of a nominal coupon bond is equal to the sum of

the present value of its cash flows. In order to estimate the market’s discount factors for Trea-

suries by stripping nominal and real zero-coupon bond prices from the observed market prices of

the coupon-bearing securities, we use the quadratic programming estimation method described in

Jarrow (2020) to minimize the sum of squared error differences between market and model prices.

This can be done by defining the following problem
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minp(0,t)

m∑
j=1

[
p⋆j(0)−

(
K · p(0, Tj) +

j∑
i=1

cj · p(0, Ti)

)]2
(3.1)

where p⋆j(0) denotes the market price of the j-Treasury at time 0, m the number of Treasuries in our

data set, K the face value of each Treasury (assumed to be constant at 100 for all Treasury), cj the

coupon payment of the j-Treasury and p(0, Ti) the discount factor for maturity Ti at time 0.

A similar formula can be used for TIPS, taking into account the indexation coefficient, and is

defined as

minp(0,t)

m∑
j=1

[
p⋆j(0)−

I(0)

I(t0,j)

(
K · p(0, Tj) +

j∑
i=1

cj · p(0, Ti)

)]2
(3.2)

where p⋆j(0) denotes the market price of the j-TIPS, I(t0,j) the REF CPI on the issue date and m

the number of TIPS in our data set.

This procedures generates a vector of zero-coupon bond prices that have maturities with discrete

spacing. It is therefore impossible to determine unequivocally the continuously compounded for-

ward rates of all maturities, which is a continuous curve. The simplest approach to solve this issue

is assuming constant forward rates over the missing maturities, therefore enabling us to parame-

terize a continuous curve with a finite number of parameters. Furthermore, Bliss (1996) provides

evidence that piecewise constant forms work well. Therefore, as seen in equation 1.5, it is possible

to calculate the forward rate with the formula

p(t, T )

p(t, T +∆)
= exp

(∫ T+∆

T

f(t, s)ds

)
(3.3)

which, given the piecewise constant forward rate hypothesis, simplifies to

p(t, T )

p(t, T +∆)
= exp (f(t, T )∆) (3.4)

It has to be noted that this process cannot be applied directly to the securities we have described
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previously. Indeed, in order to estimate the discount factors through expression (3.1) we need a

zero-coupon bond price to be estimated for each coupon payment date for each of the coupon bonds

under consideration. Given that there Treasuries with still approximately 30 years left in their life,

it means that for each of them about 60 zero-coupon bond prices will need to be estimated. This

would be possible for Treasuries, given the high number of them available, but it would not be the

case for TIPS, which would not have a unique solution to the minimization problem.

In order to overcome this difficulty and obtain a unique solution, the zero-coupon bond price strip-

ping procedure and the forward rate estimation procedure can be combined into one operation

by substituting the forward rate expression 3.4 into the minimization problems 3.1 and 3.2, thus

generating the new minimization problems

minfn(0,t)

m∑
j=0

[
p⋆j(0)−

(
K · exp

−
Tj∑
k=1

fn(0, k)


+

Tj∑
i=1

cj · exp

(
−

i∑
k=1

fn(0, k)

))]2 (3.5)

for Treasuries and

minfr(0,t)

m∑
j=0

[
p⋆j(0)−

I(0)

I(t0,j)

(
K · exp

−
Tj∑
k=1

fr(0, k)


+

n∑
i=1

cj · exp

(
−

i∑
k=1

fr(0, k)

))]2 (3.6)

for TIPS.

As mentioned before, it would not have been strictly necessary to implement the same piecewise

constant forward rate curve procedure for both types of securities, but we decided to do so for com-

parative purposes. In order to highlight short-, medium-, and long-term expectations, we decided

to assume forward rates are constant over four different intervals, specifically zero-three years,

three-five years, five-ten years and ten-thirty years, as it was done in Jarrow-Yildirim (2003) as

well.

This procedure is repeated for every day of the time window and generates a daily series for each

maturity of real and nominal rates. This allows us to estimate the volatility functions used in the

three-factor HJM model described in the previous chapter. In particular, two ways to estimate the

volatility functions in an HJM model could be implemented:
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1. Principal Component Analysis, a method to reduce the dimension of the dataset by preserving

as much variability as possible to focus on the most important underlying factors (Rencher,

2003);

2. Functional form.

Here we will implement the second method and we consider a one-factor model with an exponen-

tially declining volatility, the Hull-White model, which has the form

σi(t, T ) = σi exp
−ai(T−t) (3.7)

with i ∈ {n, r}, where r denotes the real factors and n the nominal ones, and where σi and ai are

constants.

Using equation 2.37 and this volatility function, it can be easily shown that bond returns evolve

according to the following normal distribution

dPr(t, T )

Pr(t, T )
−
[
rr(t) + ρrIσI

∫ T

t

σr(t, s)ds

]
∆t

∼ N

[
0,

(∫ T

t

σr(t, s)ds

)2

∆t

] (3.8)

with ∆t being equal to 1/360 since we are using daily observations. Thanks to this, the ex-

pected return on the bond (rr(t) + ρrIσI

∫ T

t
σr(t, s)ds)∆t is small relative to its standard deviation

(
∫ T

t
σr(t, s)ds)

√
∆t and can be neglected in estimation procedure. Although that being an approxi-

mation, it allows us to estimate the sample variance of the real spot rate without the need of initially

estimating either the correlation of the index with the real spot rate or the volatility of the inflation

index.

Therefore, we can conclude that, based on equations 3.7 and 3.8, the variance of the real zero-

coupon bond prices satisfies the equation

var
(
∆Pr(t+∆, T )

Pr(t, T )

)
=

σ2(e−ar(T−t) − 1)2∆

a2r
(3.9)
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Using equation 3.4 we can compute the left side of 3.9 and then run a cross-sectional nonlinear

regression across the different maturity zero-coupon bond prices to estimate the parameters σr and

ar. An analogous process can be used to estimate the nominal forward rate parameters.

Finally, from equations 2.37 and 2.38, we see that the volatility of the inflation rate σI , and the

correlations between the inflation index and the real spot rate ρrI , the inflation index and the nom-

inal spot rate ρnI , and the real and nominal spot rate ρrn are crucial parameters to estimate the

price dynamics. Using the sample moments, we can derive the following formulas to be used for

computing estimates of these parameters

σI =

{
1

∆
var
(
∆I(t)

I(t)

)}1/2

(3.10)

ρrI = cor
(
∆rr(t),

∆I(t)

I(t)

)
(3.11)

ρnI = cor
(
∆rn(t),

∆I(t)

I(t)

)
(3.12)

ρrn = cor (∆rr(t),∆rn(t)) , (3.13)

using the historical CPI-U data, and the real and nominal interest rates calculated through the

stripping procedure.

For this last part, we have to use monthly data and therefore have ∆ = 1/12 because we cannot use

the linearly interpolated daily CPI-U values. Indeed, if we did, we would misspecify an estimate of

a daily inflation rate’s volatility because the linear interpolation procedure for creating daily index

values is deterministic. We are therefore left with only 21 monthly observations.

3.4 Results

In this section we can finally present the results of our analysis.

In Figure 5 the forward rates for the 4 different maturities have been plotted. It can be immediately

noted that, although the nominal rates behave as expected and remain into reasonable ranges, this

is not the case for the real ones. In particular, the minimization process for the 0-3 year spot

rates returns value that steadily increase until they reach values higher than 8%, which is clearly

unrealistic. Multiple steps have been taken to solve this issue, but since no outliers were detected,

increasing the number of estimated rates would not have been feasible for computing reasons, and
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Figure 5: 3-, 5-, 10-, and 30-Year Real and Nominal Forward Rates
(January 3, 2022 - August 31, 2023)
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the algorithm written to test that the code was actually returning the minimum values was working

as expected, we have decided to present the current results, and to leave for future research the

understanding of the reasons for these results.

Figure 6: Nominal vs. Real Forward Spreads
(January 3, 2022 - June 28, 2022)

For the calculation of the expected inflation we have therefore used only the first 120 observations,

reducing the time window to the period January 3rd, 2022 to June 21st, 2022. As explained in Barro

(1998) and Blanchard (2016), the Fisher equation provides an approximation for inflation by the

formula

π(t) = n(t)− r(t)

where π(t) is the forward inflation rate and can be interpreted as the rate of inflation expected over

a given period which begins at some future date. Similarly, n(t) indicates the nominal forward rate

and r(t) the real forward rate.

In Figures 7 and 6 the spread for the reduced time-window has been plotted. It can be seen that the
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Figure 7: Nominal vs. Real Forward Spreads
(January 3, 2022 - June 28, 2022)
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5-, 10- and 30-Year spread are either constant at 2% or move towards that value, thus indicating

market confidence in the FED ability to bring inflation back to the target level. Instead, the 3-Year

spread starts from extremely low values, as result of the extremely low interest environment that

characterized the economy after the Covid-19 pandemic, and then increases until the beginning of

April 2022, before moving back to low values. Since the FED has been raising rates since April

2022, this behavior is quite unexpected and probably relates to the minimization puzzle described

earlier.

Despite these results, we have proceeded with the calibration of the model. The results are dis-

played in Table 2.

Table 2: Calibration parameters

Parameters Estimate

σn 0.01656

an 0.02293

σr 0.01652

ar 0.02830

σI 0.01303

ρrI 0.03558

ρnI -0.00347

ρrn 0.73530

Finally, in Figure 8 we have plotted histograms with the daily absolute change in real forward rates

and the monthly relative change in inflation. The daily absolute change in nominal rates is similar

to the one for real ones and has therefore not been displayed. Furthermore, it has to be noted

that, given the low number of monthly CPI-U observations both in the full and in the reduced time

window, we have used all the monthly values from January 1998 to produce the inflation plot.

It can be noted that the real and nominal rates and the inflation volatility are quite similar, the
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nominal and real rates are barely correlated with the inflation index, and the correlation between

the real and nominal rates is extremely strong, as can be seen from the above plots as well.

Finally, in Figure 9 the plot of the two volatility functions has been displayed for the 4 different

maturities. Given the similarity between the real and nominal parameters, the two graphs looks

really similar to each other and, as expected, decline exponentially in the forward rate’s maturity.
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Figure 8: Normality Assumption on Real Rates and Inflation
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Figure 9: Real and Nominal Hull-White Volatility Functions
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4 Conclusion

This thesis has been built on three deeply interrelated pillars, where each has constituted a chapter

of the present work. The first one is the introductory and definitional part, which provided the basis

for the remaining parts by introducing the most relevant concepts of different interest rates and

incomplete market. The second one is the modeling part, where both the Hull-White model and

the Jarrow-Yildirim model were introduced and discussed from a theoretical standpoint. Finally

the last part is the empirical one and applies the concepts developed in the previous chapter to

securities’ data.

When planning the work at the beginning of this project, the goal was to estimate the market’s ex-

pected inflation through 2022 and 2023, two years that have been marked by public interest in the

topic and an interest environment that cut clearly from the one experienced after the 2008 financial

crisis and during the Covid-19 pandemics, as the coupon rates of the different securities can show.

Unfortunately, this project has been hampered by the difficulties that arose during the estimation

process of the real forward interest rates and that, at this point, are still missing a solution. This

caused the analysis to be limited to a 6-months time window, where the results still seemed reason-

able. Indeed, if all the initial time-window had been plotted, it would have resulted in an increasing

expected deflation in the short-term, which obviously is not compatible with the current market

situation. This issue aside, all the other parts of the empirical analysis produce the expected results

including, among others, the normality hypothesis for the change in real and nominal interest rates.

After 2003, other models for the estimation of TIPS prices, and derivatives written on them, have

been published, such as Mercurio (2005), Jacoby and Shiller (2008), Hinnerich (2008), Chen, Liu

and Cheng (2010), Singor, Grzelak,van Bragt, and Oosterlee (2013), Ho, Huang, and Yildirim

(2014), D’Amico, Kim and Wei (2018), and Dam, Macrina, Skovmand and Sloth (2020), whose

estimates could be more precise and provide a solution to the estimation issue. Furthermore, dif-

ferent interpolation methods, different from the piecewise constant one, could be implemented. A

list of the methods available and currently used in the industry can be found in Rebonato (1998).

Another direction this thesis can be expanded is by estimating the real forward rates from securities

different from TIPS. As Jarrow and Yildirim (2022) show, the traded notional volume of inflation

swaps in 2021 hit a record $1.67 trillion, steadily increasing from the previous years, with inflation

cap and floors following a similar trend, as indicated in Chipeniuk and Walker (2021).

To conclude, it is important to highlight that the estimating precisely market’s inflation expectation
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is fundamental to governmental institutions, such as central banks, to plan effectively the monetary

policy and the effects that it has on the economy more in general.
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Appendix A: Python Code

A.1 TIPS Stripping

1 import pandas as pd

2 import numpy as np

3 import calendar

4 import os

5 from scipy.optimize import minimize

6 import matplotlib.pyplot as plt

7

8 os.chdir("C:/Users/FreePC/Desktop/Universit /Facolt /Magistrale/Tesi/TIPS/

Parte empirica/Database/CapIQ")

9

10

11 # CPI_U inflation data

12 inflation_df = pd.read_excel("Data thesis.xlsx", sheet_name="CPI - U")

13 CPI_U = inflation_df.iloc[:, 1]

14 DateINF = inflation_df.iloc[:, 0]

15 DateINF = pd.to_datetime(DateINF, format="%d-%m-%Y")

16 CPI_U = pd.DataFrame({"CPI_U": CPI_U})

17 CPI_U["Time"] = DateINF

18 CPI_U = CPI_U[["Time", "CPI_U"]]

19

20

21 # TIPS traded

22 Price = pd.read_excel("Data thesis.xlsx", sheet_name="TIPS - Daily Prices",

header=None)

23 CUSIP_TIPS = Price.iloc[0, 1:]

24 Coupon_TIPS = pd.to_numeric(Price.iloc[1, 1:])

25 Issue_TIPS = pd.to_datetime(Price.iloc[3, 1:])

26 Maturity_TIPS = pd.to_datetime(Price.iloc[4, 1:])

27 TIPS = Price.iloc[5:, 1:]

28 Time = pd.to_datetime(Price.iloc[5:, 0])

29 TIPS.columns = CUSIP_TIPS

30

31

32 fig, (ax1, ax2, ax3) = plt.subplots(3, 1)
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33 fig.set_size_inches(420/25.4, 297/25.4)

34 ax1.plot(Time, TIPS.iloc[:,0])

35 ax2.plot(Time, TIPS.iloc[:,1])

36 ax3.plot(Time, TIPS.iloc[:,3])

37 ax1.title.set_text(’91282CDC2 Market Prices (5 Year Maturity)’)

38 ax2.title.set_text(’91282CCM1 Market Prices (10 Year Maturity)’)

39 ax3.title.set_text(’912810SV1 Market Prices (30 Year Maturity)’)

40 fig.autofmt_xdate()

41

42

43 # Indexation Coefficient

44 A = CPI_U["CPI_U"].values

45 IB = np.zeros(len(TIPS.columns))

46 IE2 = np.zeros(len(Time))

47 IE3 = np.zeros(len(Time))

48 IR = np.zeros(len(Time))

49 CR = np.zeros((len(Time), len(TIPS.columns)))

50 yy = np.zeros(len(TIPS.columns))

51 mm = np.zeros(len(TIPS.columns))

52 dd = np.zeros(len(TIPS.columns))

53 y = np.zeros(len(TIPS.index))

54 m = np.zeros(len(TIPS.index))

55 d = np.zeros(len(TIPS.index))

56 R = np.zeros(len(TIPS.index))

57

58 for i in range(len(TIPS.columns)):

59 for j in range(len(Time)):

60 yy[i] = Issue_TIPS.iloc[i].year

61 mm[i] = Issue_TIPS.iloc[i].month

62 dd[i] = Issue_TIPS.iloc[i].day

63

64 if mm[i] < 4:

65 if mm[i] == 3:

66 IB[i] = A[np.where((CPI_U["Time"].dt.month == 9 + mm[i]) & (

CPI_U["Time"].dt.year == yy[i] - 1))] + \

67 14 / (calendar.monthrange(Issue_TIPS.iloc[i].year,

Issue_TIPS.iloc[i].month))[1] * (

68 A[np.where((CPI_U["Time"].dt.month == mm[i] - 2)
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& (CPI_U["Time"].dt.year == yy[i]))] - \

69 A[np.where((CPI_U["Time"].dt.month == 9 + mm[i])

& (CPI_U["Time"].dt.year == yy[i] - 1))])

70 else:

71 IB[i] = A[np.where((CPI_U["Time"].dt.month == 9 + mm[i]) & (

CPI_U["Time"].dt.year == yy[i] - 1))] + \

72 14 / (calendar.monthrange(Issue_TIPS.iloc[i].year,

Issue_TIPS.iloc[i].month))[1] * (

73 A[np.where((CPI_U["Time"].dt.month == 10 + mm[i])

& (CPI_U["Time"].dt.year == yy[i] - 1))] - \

74 A[np.where((CPI_U["Time"].dt.month == 9 + mm[i])

& (CPI_U["Time"].dt.year == yy[i] - 1))])

75

76

77

78 else:

79 IB[i] = A[np.where((CPI_U["Time"].dt.month == mm[i] - 3) & (CPI_U

["Time"].dt.year == yy[i]))] + \

80 14 / (calendar.monthrange(Issue_TIPS.iloc[i].year,

Issue_TIPS.iloc[i].month))[1] * (

81 A[np.where((CPI_U["Time"].dt.month == mm[i] - 2)

& (CPI_U["Time"].dt.year == yy[i]))] - \

82 A[np.where((CPI_U["Time"].dt.month == mm[i] - 3)

& (CPI_U["Time"].dt.year == yy[i]))])

83

84

85 y[j] = Time.iloc[j].year

86 m[j] = Time.iloc[j].month

87 d[j] = Time.iloc[j].day

88 R[j] = (d[j] - 1) / (calendar.monthrange(Time.iloc[j].year, Time.iloc

[j].month)[1])

89

90 if m[j] < 3:

91 IE2[j] = A[np.where((CPI_U["Time"].dt.month == 10 + m[j]) & (

CPI_U["Time"].dt.year == y[j] - 1))]

92 else:

93 IE2[j] = A[np.where((CPI_U["Time"].dt.month == m[j] - 2) & (CPI_U

["Time"].dt.year == y[j]))]
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94

95 if m[j] < 4:

96 IE3[j] = A[np.where((CPI_U["Time"].dt.month == 9 + m[j]) & (CPI_U

["Time"].dt.year == y[j] - 1))]

97 else:

98 IE3[j] = A[np.where((CPI_U["Time"].dt.month == m[j] - 3) & (CPI_U

["Time"].dt.year == y[j]))]

99

100 IR[j] = IE3[j] + R[j] * (IE2[j] - IE3[j])

101 CR[j, i] = IR[j] / IB[i]

102

103 # Lower Bound IC = 1

104 CR[CR >= 1] = CR[CR >= 1]

105 CR[CR < 1] = 1

106

107

108

109 fig, (ax1, ax2) = plt.subplots(2, 1)

110 #fig.suptitle(’Time Series Graphs of the 3-, 5-, 10-, and 30-Year Real

Forward Rates \n(January 3, 2022 - August 31, 2023)’)

111 fig.set_size_inches(420/25.4, 297/25.4)

112 ax1.plot(DateINF, CPI_U.iloc[:, 1])

113 ax2.plot(Time, IR)

114 ax1.title.set_text(’Time Series of CPI Values 01/01/1998 to 07/01/2023 (

Monthly)’)

115 ax2.title.set_text(’Time Series of CPI-U Values, 01/03/2022 to 08/31/2023 (

Daily)’)

116

117

118 # Coupon Date

119 CD_TIPS = []

120 for i in range(len(TIPS.columns)):

121 cd = pd.date_range(start=Issue_TIPS.iloc[i], end=Maturity_TIPS.iloc[i],

freq=’6M’)

122 cd = cd[cd <= Maturity_TIPS.iloc[i]]

123 CD_TIPS.append(cd)

124

125 maximum = [len(cd) for cd in CD_TIPS]
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126

127 Dist_C_TIPS = np.zeros((len(Time), max(maximum), len(TIPS.columns)))

128

129 for i in range(len(TIPS.columns)):

130 for z in range(len(Time)):

131 for j in range(len(CD_TIPS[i])):

132 Dist_C_TIPS[z, j, i] = (CD_TIPS[i][j] - Time.iloc[z]).days / 365

133 if Dist_C_TIPS[z, j, i] < 0 or pd.isna(Dist_C_TIPS[z, j, i]):

134 Dist_C_TIPS[z, j, i] = 0

135

136

137 # Distance day from Maturity payment

138 Dist_M_TIPS = np.zeros((len(Time), len(TIPS.columns)))

139

140 for i in range(len(TIPS.columns)):

141 for z in range(len(Time)):

142 Dist_M_TIPS[z, i] = (Maturity_TIPS.iloc[i] - Time.iloc[z]).days / 365

143

144

145

146

147 #Function with 4 intervals

148

149 x0 = np.random.uniform(low=0.02, high=0.06, size=(4))

150 TIPS_ifull = TIPS.values

151 RealFWD = np.zeros((len(Time),4))

152

153

154 for z in range(150):

155

156 def RealStripfun(f):

157

158 # Initialize variables

159 PV_C_TIPS = np.zeros((Dist_C_TIPS.shape[1], TIPS.shape[1]))

160 PV_M_TIPS = np.zeros((len(Time), TIPS.shape[1]))

161 TheoricPrice = np.zeros((len(Time), TIPS.shape[1]))

162 Scarto = np.zeros((len(Time), TIPS.shape[1]))

163
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164

165 for i in range(len(TIPS.columns)):

166 for j in range(PV_C_TIPS.shape[0]):

167 PV_C_TIPS[j,i] = Coupon_TIPS.iloc[i]/2 * (0 < Dist_C_TIPS[z,

j, i] <=3) * np.exp(-(Dist_C_TIPS[z, j, i]*f[0])) + \

168 Coupon_TIPS.iloc[i]/2 * (3 < Dist_C_TIPS[z, j, i] <= 5) *

np.exp(-(f[0]*3 + (Dist_C_TIPS[z, j, i] - 3)*f[1])) + \

169 Coupon_TIPS.iloc[i]/2 * (5 < Dist_C_TIPS[z, j, i] <= 10)

* np.exp(-(f[0]*3 + f[1]*2 + (Dist_C_TIPS[z, j, i] - 5)*f[2])) + \

170 Coupon_TIPS.iloc[i]/2 * (Dist_C_TIPS[z, j, i] > 10) * np.

exp(-(f[0]*3 + f[1]*2 + f[2]*5 + f[3] * (Dist_C_TIPS[z, j, i] - 10)))

171

172

173 # Face Value Present Value

174 for i in range(len(TIPS.columns)):

175 PV_M_TIPS[z, i] = (0 < Dist_M_TIPS[z, i] <= 3) * np.exp(-(f[0] *

Dist_M_TIPS[z, i])) + \

176 (3 < Dist_M_TIPS[z, i] <= 5) * np.exp(-(f[0]*3 + f[1] * (

Dist_M_TIPS[z, i] - 3))) + \

177 (5 < Dist_M_TIPS[z, i] <= 10) * np.exp(-(f[0]*3 + f[1]*2 + f

[2]* (Dist_M_TIPS[z, i] - 5))) + \

178 (Dist_M_TIPS[z, i] > 10) * np.exp(-(f[0]*3 + f[1]*2 + f[2]*5

+ f[3]* (Dist_M_TIPS[z, i] - 10)))

179

180 # Theoretical Price

181 for i in range(len(TIPS.columns)):

182 TheoricPrice[z,i] = CR[z,i] * 100 * (np.sum(PV_C_TIPS[:,i])+

PV_M_TIPS[z,i])

183

184 for i in range(len(TIPS.columns)):

185 Scarto[z,i] = (TIPS_ifull[z,i] - TheoricPrice[z,i]) ** 2

186

187 return np.sum(Scarto)

188

189 result = minimize(RealStripfun, x0)

190 RealFWD[z, :] = result.x

191

192
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193

194 fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex = True)

195 #fig.suptitle(’Time Series Graphs of the 3-, 5-, 10-, and 30-Year Real

Forward Rates \n(January 3, 2022 - August 31, 2023)’)

196 fig.set_size_inches(420/25.4, 297/25.4)

197 ax1.plot(Time, RealFWD[:,0])

198 ax2.plot(Time, RealFWD[:,1])

199 ax3.plot(Time, RealFWD[:,2])

200 ax4.plot(Time, RealFWD[:,3])

201 ax1.title.set_text(’Real Spot Rate, 3Year Forwards’)

202 ax2.title.set_text(’Real Forward Rate 3-5Year Forwards’)

203 ax3.title.set_text(’Real Forward Rate 5-10Year Forwards’)

204 ax4.title.set_text(’Real Forward Rate 10-30Year Forwards’)

205 fig.autofmt_xdate()

206

207 for ax in fig.get_axes():

208 ax.label_outer()

209 ax.axis[’left’].set_visible(True)
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A.2 Treasuries Stripping

1

2 import pandas as pd

3 import numpy as np

4 import os

5 from scipy.optimize import minimize

6 import matplotlib.pyplot as plt

7

8 os.chdir("C:/Users/FreePC/Desktop/Universit /Facolt /Magistrale/Tesi/TIPS/

Parte empirica/Database/CapIQ")

9

10

11 # Treasuries traded

12 Price = pd.read_excel("Data Thesis.xlsx", sheet_name="Notes and Bonds - Daily

Prices", header=None)

13 CUSIP_Treasuries = Price.iloc[0, 1:]

14 Coupon_Treasuries = pd.to_numeric(Price.iloc[1, 1:])

15 Issue_Treasuries = pd.to_datetime(Price.iloc[3, 1:])

16 Maturity_Treasuries = pd.to_datetime(Price.iloc[4, 1:])

17 Treasuries = Price.iloc[5:, 1:]

18 Time = pd.to_datetime(Price.iloc[5:, 0])

19 Treasuries.columns = CUSIP_Treasuries

20

21 fig, (ax1, ax2, ax3) = plt.subplots(3, 1)

22 fig.set_size_inches(420/25.4, 297/25.4)

23 ax1.plot(Time, Treasuries.iloc[:,1])

24 ax2.plot(Time, Treasuries.iloc[:,6])

25 ax3.plot(Time, Treasuries.iloc[:,5])

26 ax1.title.set_text(’91282CDQ1 Market Prices (5 Year Maturity)’)

27 ax2.title.set_text(’91282CDJ7 Market Prices (10 Year Maturity)’)

28 ax3.title.set_text(’912810TB4 Market Prices (30 Year Maturity)’)

29 fig.autofmt_xdate()

30

31

32 # Coupon Date

33 CD_Treasuries = []

34 for i in range(len(Treasuries.columns)):
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35 cd = pd.date_range(start=Issue_Treasuries.iloc[i], end=

Maturity_Treasuries.iloc[i], freq=’6M’)

36 cd = cd[cd <= Maturity_Treasuries.iloc[i]]

37 CD_Treasuries.append(cd)

38

39 maximum = [len(cd) for cd in CD_Treasuries]

40

41 Dist_C_Treasuries = np.zeros((len(Time), max(maximum), len(Treasuries.columns

)))

42

43 for i in range(len(Treasuries.columns)):

44 for z in range(len(Time)):

45 for j in range(len(CD_Treasuries[i])):

46 Dist_C_Treasuries[z, j, i] = (CD_Treasuries[i][j] - Time.iloc[z])

.days / 365

47 if Dist_C_Treasuries[z, j, i] < 0 or pd.isna(Dist_C_Treasuries[z,

j, i]):

48 Dist_C_Treasuries[z, j, i] = 0

49

50 # Distance day from Maturity payment

51 Dist_M_Treasuries = np.zeros((len(Time), len(Treasuries.columns)))

52

53 for i in range(len(Treasuries.columns)):

54 for z in range(len(Time)):

55 Dist_M_Treasuries[z, i] = (Maturity_Treasuries.iloc[i] - Time.iloc[z

]).days / 365

56

57

58 #4 rates

59

60 x0 = np.random.uniform(low=0.03, high=0.05, size=(4))

61 NomFWD = np.zeros((len(Time), 4))

62 Treasuries_ifull = Treasuries.values

63

64 for z in range(len(Treasuries)):

65

66 def NomStripfun(f):

67 # Initialize variables
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68 PV_C_Treasuries = np.zeros((Dist_C_Treasuries.shape[1], Treasuries.

shape[1]))

69 PV_M_Treasuries = np.zeros((len(Time), Treasuries.shape[1]))

70 TheoricPrice = np.zeros((len(Time), Treasuries.shape[1]))

71 Scarto = np.zeros((len(Time), Treasuries.shape[1]))

72

73 for i in range(len(Treasuries.columns)):

74 for j in range(PV_C_Treasuries.shape[0]):

75 PV_C_Treasuries[j,i] = 100 * Coupon_Treasuries.iloc[i]/2 *

(0 < Dist_C_Treasuries[z, j, i] <=3) * np.exp(-(Dist_C_Treasuries[z, j, i

]*f[0])) + \

76 100 * Coupon_Treasuries.iloc[i]/2 * (3 <

Dist_C_Treasuries[z, j, i] <= 5) * np.exp(-(f[0]*3 + (Dist_C_Treasuries[z

, j, i] - 3)*f[1])) + \

77 100 * Coupon_Treasuries.iloc[i]/2 * (5 <

Dist_C_Treasuries[z, j, i] <= 10) * np.exp(-(f[0]*3 + f[1]*2 + (

Dist_C_Treasuries[z, j, i] - 5)*f[2])) + \

78 100 * Coupon_Treasuries.iloc[i]/2 * (10 <

Dist_C_Treasuries[z, j, i]) * np.exp(-(f[0]*3 + f[1]*2 + f[2]*5 + f[3] *

(Dist_C_Treasuries[z, j, i] - 10)))

79

80

81 # Face Value Present Value

82 for i in range(len(Treasuries.columns)):

83 PV_M_Treasuries[z, i] = 100 * (0 < Dist_M_Treasuries[z, i] <= 3)

* np.exp(-(f[0] * Dist_M_Treasuries[z, i])) + \

84 100 * (3 < Dist_M_Treasuries[z, i] <= 5) * np.exp(-(f[0]*3 +

f[1] * (Dist_M_Treasuries[z, i] - 3))) + \

85 100 * (5 < Dist_M_Treasuries[z, i] <= 10) * np.exp(-(f[0]*3 +

f[1]*2 + f[2]* (Dist_M_Treasuries[z, i] - 5))) + \

86 100 * (10 < Dist_M_Treasuries[z, i]) * np.exp(-(f[0]*3 + f

[1]*2 + f[2]*5 + f[3]* (Dist_M_Treasuries[z, i] - 10)))

87

88

89 # Theoretical Price

90 for i in range(len(Treasuries.columns)):

91 TheoricPrice[z,i] = np.sum(PV_C_Treasuries[:,i])+PV_M_Treasuries[

z,i]
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92

93 for i in range(len(Treasuries.columns)):

94 Scarto[z,i] = (Treasuries_ifull[z,i] - TheoricPrice[z,i]) ** 2

95

96 return np.sum(Scarto)

97

98 result = minimize(NomStripfun, x0)

99 NomFWD[z, :] = result.x

100

101

102

103 fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex = True)

104 #fig.suptitle(’Time Series Graphs of the 3-, 5-, 10-, and 30-Year Nominal

Forward Rates \n(January 3, 2022 - August 31, 2023)’)

105 fig.set_size_inches(420/25.4, 297/25.4)

106 ax1.plot(Time, NomFWD[:,0])

107 ax2.plot(Time, NomFWD[:,1])

108 ax3.plot(Time, NomFWD[:,2])

109 ax4.plot(Time, NomFWD[:,3])

110 ax1.title.set_text(’Nominal Spot Rate, 3Year Forwards’)

111 ax2.title.set_text(’Nominal Forward Rate 3-5Year Forwards’)

112 ax3.title.set_text(’Nominal Forward Rate 5-10Year Forwards’)

113 ax4.title.set_text(’Nominal Forward Rate 10-30Year Forwards’)

114 fig.autofmt_xdate()

115

116 for ax in fig.get_axes():

117 ax.label_outer()

118 ax.axis[’left’].set_visible(True)
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A.3 Calibration

1

2 import numpy as np

3 import pandas as pd

4 import scipy.stats as stats

5 from scipy.optimize import curve_fit

6 import matplotlib.pyplot as plt

7 import os

8

9

10 os.chdir("C:/Users/FreePC/Desktop/Universit /Facolt /Magistrale/Tesi/TIPS/

Parte empirica/Database/CapIQ")

11

12 Time = Time.reset_index()

13 Time.drop(columns = [’index’], inplace = True)

14

15 # Real Calibration

16 RealFWD = np.load(’RealFWD_definitive.npy’)

17 MaturityZCB = np.array([3, 5, 10, 30])

18

19 ZCBprice = np.zeros((len(Time), 4))

20

21 for z in range(len(Time)) :

22 ZCBprice[z,0] = np.exp(-RealFWD[z,0] * MaturityZCB[0])

23 ZCBprice[z,1] = np.exp(-(RealFWD[z,0] * MaturityZCB[0] + RealFWD[z,1] * (

MaturityZCB[1] - MaturityZCB[0])))

24 ZCBprice[z,2] = np.exp(-(RealFWD[z,0] * MaturityZCB[0] + RealFWD[z,1] * (

MaturityZCB[1] - MaturityZCB[0]) + RealFWD[z,2] * (MaturityZCB[2] -

MaturityZCB[1])))

25 ZCBprice[z,3] = np.exp(-(RealFWD[z,0] * MaturityZCB[0] + RealFWD[z,1] * (

MaturityZCB[1] - MaturityZCB[0]) + RealFWD[z,2] * (MaturityZCB[2] -

MaturityZCB[1]) + RealFWD[z,3] * (MaturityZCB[3] - MaturityZCB[2])))

26

27

28 Delta_r = np.diff(RealFWD, axis=0)

29

30 # Sigma_r and a_r
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31 ZCBchange = np.diff(ZCBprice, axis=0) / ZCBprice[:-1, :]

32 VarZCBchange = np.var(ZCBchange, axis=0)

33

34

35 # Define the function to fit

36 def Realfunc(x, a, sigma):

37 return (sigma**2 * (np.exp(-a * x) - 1)**2 * (1/365)) / (a**2)

38

39 # Perform the curve fitting

40

41 params, covariance = curve_fit(Realfunc, MaturityZCB, VarZCBchange, p0=np.

random.uniform(low=0, high=0.05, size=(2)))

42

43 # Extract the parameters

44 aR, SigmaR = params

45

46 Delta_r_df = pd.DataFrame(Delta_r)

47 Delta_r_df[’Time’] = Time

48

49 filtered_Delta_r = Delta_r_df.groupby(Delta_r_df[’Time’].dt.to_period(’M’)).

first().reset_index(drop=True)

50

51

52 # Sigma_I

53

54 #All data in the dataset

55 DeltaI = np.diff(CPI_U.CPI_U, axis=0) / CPI_U.iloc[:-1, 1]

56

57 #Data after 01/01/2022

58 filtered_CPI_U = CPI_U.CPI_U[CPI_U["Time"] >= np.datetime64(’2022-01-01’)]

59 filtered_DeltaI = np.diff(filtered_CPI_U) / filtered_CPI_U[:-1]

60

61 VarI = np.var(DeltaI)

62 SigmaI = np.sqrt(VarI * 12)

63

64

65

66 # Nominal Calibration
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67 NomFWD = np.load(’NomFWD.npy’)

68

69 for z in range(len(Time)) :

70 ZCBprice[z,0] = np.exp(-NomFWD[z,0] * MaturityZCB[0])

71 ZCBprice[z,1] = np.exp(-(NomFWD[z,0] * MaturityZCB[0] + NomFWD[z,1] * (

MaturityZCB[1] - MaturityZCB[0])))

72 ZCBprice[z,2] = np.exp(-(NomFWD[z,0] * MaturityZCB[0] + NomFWD[z,1] * (

MaturityZCB[1] - MaturityZCB[0]) + NomFWD[z,2] * (MaturityZCB[2] -

MaturityZCB[1])))

73 ZCBprice[z,3] = np.exp(-(NomFWD[z,0] * MaturityZCB[0] + NomFWD[z,1] * (

MaturityZCB[1] - MaturityZCB[0]) + NomFWD[z,2] * (MaturityZCB[2] -

MaturityZCB[1]) + NomFWD[z,3] * (MaturityZCB[3] - MaturityZCB[2])))

74

75

76 Delta_n = np.diff(NomFWD, axis=0)

77

78 # Sigma_n and a_n

79 ZCBchange = np.diff(ZCBprice, axis=0) / ZCBprice[:-1, :]

80 VarZCBchange = np.var(ZCBchange, axis=0)

81

82

83 # Define the function to fit

84 def Nomfunc(x, a, sigma):

85 return (sigma**2 * (np.exp(-a * x) - 1)**2 * (1/365)) / (a**2)

86

87 # Perform the curve fitting

88

89 params, covariance = curve_fit(Nomfunc, MaturityZCB, VarZCBchange, p0=np.

random.uniform(low=0, high=0.05, size=(2)))

90

91 # Extract the parameters

92 aN, SigmaN = params

93

94

95 Delta_n_df = pd.DataFrame(Delta_n)

96 Delta_n_df[’Time’] = Time

97

98 filtered_Delta_n = Delta_n_df.groupby(Delta_n_df[’Time’].dt.to_period(’M’)).
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first().reset_index(drop=True)

99

100

101

102 # Correlation r-I

103 Rho_rI = stats.pearsonr(filtered_Delta_r.iloc[:,0], filtered_DeltaI)

104

105 # Correlation n-I

106 Rho_nI = stats.pearsonr(filtered_Delta_n.iloc[:,0], filtered_DeltaI)

107

108 # Correlation r-n

109

110 Rho_rn = stats.pearsonr(Delta_r[:,0], Delta_n[:,0])

111

112

113

114

115 # Normality Plot real

116 # Create a 2x2 grid of subplots

117 fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 8))

118 fig.set_size_inches(420/25.4, 297/25.4)

119

120 # Iterate over the subplots and plot your data

121 for i, ax in enumerate(axes.flat):

122 row = i // 2

123 col = i % 2

124

125 ax.hist(Delta_r[:, i], bins=30, density=False, alpha=0.6, color=’g’)

126 ax.set_title(f’{MaturityZCB[i]} year Real FWD rate’)

127 ax.set_xlabel(’ f ’)

128 ax.set_ylabel(’Frequency’)

129 mu, std = stats.norm.fit(Delta_r[:, i])

130 xmin, xmax = ax.get_xlim()

131 x = np.linspace(xmin, xmax, 100)

132 hist, bins = np.histogram(Delta_r[:,i], bins=30, density=False)

133 bin_width = bins[1] - bins[0]

134 scaling_factor = len(Delta_r[:,i]) * bin_width

135 p = stats.norm.pdf(x, mu, std) * scaling_factor
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136 ax.plot(x, p, ’k’, linewidth=2)

137

138

139

140 # Normality Plot nominal

141 # Create a 2x2 grid of subplots

142 fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 8))

143 fig.set_size_inches(420/25.4, 297/25.4)

144

145 # Iterate over the subplots and plot your data

146 for i, ax in enumerate(axes.flat):

147 row = i // 2

148 col = i % 2

149

150 ax.hist(Delta_n[:, i], bins=30, density=False, alpha=0.6, color=’g’)

151 ax.set_title(f’{MaturityZCB[i]} year Nominal FWD rate’)

152 ax.set_xlabel(’ f ’)

153 ax.set_ylabel(’Frequency’)

154 mu, std = stats.norm.fit(Delta_n[:, i])

155 xmin, xmax = ax.get_xlim()

156 x = np.linspace(xmin, xmax, 100)

157 hist, bins = np.histogram(Delta_n[:,i], bins=30, density=False)

158 bin_width = bins[1] - bins[0]

159 scaling_factor = len(Delta_n[:,i]) * bin_width

160 p = stats.norm.pdf(x, mu, std) * scaling_factor

161 ax.plot(x, p, ’k’, linewidth=2)

162

163

164 # Normality Plot inflation index

165 plt.subplot()

166 fig = plt.figure()

167 fig.set_size_inches(420/25.4, 297/25.4)

168 plt.hist(DeltaI, bins=30, density=False, alpha=0.6, color=’g’)

169 #plt.title(’Inflation Rate of Change’)

170 plt.xlabel(’ I /I’)

171 plt.ylabel(’Frequency’)

172 mu, std = stats.norm.fit(DeltaI)

173 xmin, xmax = plt.xlim()

60



174 x = np.linspace(xmin, xmax, 100)

175 hist, bins = np.histogram(DeltaI, bins=30, density=False)

176 bin_width = bins[1] - bins[0]

177 scaling_factor = len(DeltaI) * bin_width

178 p = stats.norm.pdf(x, mu, std) * scaling_factor

179 plt.plot(x, p, ’k’, linewidth=2)

180 plt.show()

181

182 Volatility_HW_r = np.zeros(4)

183 Volatility_HW_n = np.zeros(4)

184

185 def HWfunc(x, a, sigma):

186 return (sigma * (np.exp(-a * x)))

187

188 for i in range(len(MaturityZCB)):

189 Volatility_HW_r[i] = HWfunc(MaturityZCB[i], aR, SigmaR)

190

191

192 for i in range(len(MaturityZCB)):

193 Volatility_HW_n[i] = HWfunc(MaturityZCB[i], aN, SigmaN)

194

195

196 fig, (ax1, ax2) = plt.subplots(2, 1)

197 fig.set_size_inches(420/25.4, 297/25.4)

198 ax1.plot(MaturityZCB, Volatility_HW_r)

199 ax2.plot(MaturityZCB, Volatility_HW_n)

200 ax1.title.set_text(’Real Hull-White Volatility Function’)

201 ax2.title.set_text(’Nominal Hull-White Volatility Function’)
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A.4 Inflation Graph

1

2 import matplotlib.pyplot as plt

3 from mpl_toolkits.mplot3d.art3d import Poly3DCollection

4 import numpy as np

5 import matplotlib.dates as mdates

6

7

8 # Real Calibration

9 RealFWD = np.load(’RealFWD_definitive.npy’)

10 Maturity = np.array([3, 5, 10, 30])

11

12 RealFWD = np.load(’RealFWD_definitive.npy’)

13 NomFWD = np.load(’NomFWD.npy’)

14

15

16 Time = pd.to_datetime(Price.iloc[5:, 0])

17 Inflation = NomFWD[0:120] - RealFWD[0:120]

18 Time = Time[0:120]

19

20

21

22 # Convert datetime values to numeric values for the y-axis

23 numeric_time = mdates.date2num(Time)

24

25 # Create a 3D plot

26 fig = plt.figure()

27 fig.set_size_inches(420/25.4, 297/25.4)

28 ax = fig.add_subplot(111, projection=’3d’)

29

30 # Plot the series with fixed y-coordinate after converting Time to numeric

values

31 ax.plot(numeric_time, np.full_like(Inflation[:, 0], Maturity[0]), zs=

Inflation[:, 0], label=’Series 1’, zdir=’z’, color = ’red’)

32 ax.plot(numeric_time, np.full_like(Inflation[:, 1], Maturity[1]), zs=

Inflation[:, 1], label=’Series 2’, zdir=’z’, color = ’red’)

33 ax.plot(numeric_time, np.full_like(Inflation[:, 2], Maturity[2]), zs=
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Inflation[:, 2], label=’Series 3’, zdir=’z’, color = ’red’)

34 ax.plot(numeric_time, np.full_like(Inflation[:, 3], Maturity[3]), zs=

Inflation[:, 3], label=’Series 4’, zdir=’z’, color = ’red’)

35

36 # Create polygons between the lines to fill the space

37 polygon1_points = []

38 polygon2_points = []

39 polygon3_points = []

40 for i in range(len(numeric_time)):

41 x = numeric_time[i]

42 y_bottom1 = Maturity[0]

43 y_top1 = Maturity[1]

44 z_bottom1 = Inflation[i, 0]

45 z_top1 = Inflation[i, 1]

46 polygon1_points.append([(x, y_bottom1, z_bottom1), (x, y_top1, z_top1)])

47

48 y_bottom2 = Maturity[1]

49 y_top2 = Maturity[2]

50 z_bottom2 = Inflation[i, 1]

51 z_top2 = Inflation[i, 2]

52 polygon2_points.append([(x, y_bottom2, z_bottom2), (x, y_top2, z_top2)])

53

54 y_bottom3 = Maturity[2]

55 y_top3 = Maturity[3]

56 z_bottom3 = Inflation[i, 2]

57 z_top3 = Inflation[i, 3]

58 polygon3_points.append([(x, y_bottom3, z_bottom3), (x, y_top3, z_top3)])

59

60 # Create Poly3DCollections to fill the space between lines

61 poly3d1 = Poly3DCollection(polygon1_points, alpha=0.2, color=’blue’)

62 poly3d2 = Poly3DCollection(polygon2_points, alpha=0.2, color=’blue’)

63 poly3d3 = Poly3DCollection(polygon3_points, alpha=0.2, color=’blue’)

64 ax.add_collection3d(poly3d1)

65 ax.add_collection3d(poly3d2)

66 ax.add_collection3d(poly3d3)

67

68 # Set labels for axes

69 ax.set_xlabel(’Time’)
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70 ax.set_ylabel(’Time to Maturity’)

71 ax.set_zlabel(’Spread’)

72 plt.title(’Nominal vs. Real Forward Spreads \n(January 3, 2022 - June 28,

2022)’)

73

74 ax.xaxis.set_major_locator(mdates.DayLocator(interval=45))

75 ax.xaxis.set_major_formatter(mdates.DateFormatter(’%Y-%m-%d’))

76

77 # Fix the y-axis position

78 ax.set_yticks(Maturity)

79

80

81 # Show the 3D plot

82 plt.show()

83

84

85 #4 subplots

86

87 fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex = True)

88 #fig.suptitle(’Time Series Graphs of the 3-, 5-, 10-, and 30-Year Real

Forward Rates \n(January 3, 2022 - August 31, 2023)’)

89 fig.set_size_inches(420/25.4, 297/25.4)

90 ax1.plot(Time, Inflation[:,0])

91 ax2.plot(Time, Inflation[:,1])

92 ax3.plot(Time, Inflation[:,2])

93 ax4.plot(Time, Inflation[:,3])

94 ax1.title.set_text(’Spread, 0-3Year Forwards’)

95 ax2.title.set_text(’Spread 3-5Year Forwards’)

96 ax3.title.set_text(’Spread 5-10Year Forwards’)

97 ax4.title.set_text(’Spread 10-30Year Forwards’)

98 fig.autofmt_xdate()

99

100 for ax in fig.get_axes():

101 ax.label_outer()

102 ax.axis[’left’].set_visible(True)
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