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SUMMARY 
 

 
The evaluation of the seismic vulnerability of historical buildings is important in 

order to develop prevention strategies and to protect the existing cultural heritage. 

The vulnerability analysis gives a preliminary assessment of the possible damages 

that a building or an aggregate can develop during a seismic event. 

The adopted methodology provides an immediate tool to evaluate the seismic 

vulnerability of an entire city centre, starting from easily detectable geometrical 

features.  

In this thesis the vulnerability analysis of the historical city center of Timisoara is 

discussed. The city is situated in the Banat region in western part of Romania, 

which is  considered as the second most important seismic zone of Romania, 

being subjected to shallow earthquakes of crustal type.  

The buildings of the historical centre are organized in rectangular blocks 

composed by clustered buildings. 36 blocks of the city center and 4 blocks of the 

district of Iosefin are analyzed, for a total of 245 analyzed structural units. 

The proposed methodology begins with a preliminary knowledge phase, in which 

an urban and historical research is performed. This analysis aims to define 

architectural and urban characteristics, urban evolution and recurrent constructive 

techniques, which are indeed essential to address the analysis and to choose the 

aspects to investigate. 

The second phase consisted in the on-site activity, in which important data about 

the building geometry, organization and structure are collected. The data are 

organized  filling  forms which are suitable for the rapid survey of masonry 

buildings. The collected data are analyzed in order to identify the most common 

geometrical and structural characteristics. 

The study continues with the typological analysis of the on-site data: for each 

building the most important characteristics have been analyzed and 8 macro-

typologies have been defined. Each macro-typology has been subdivided in 

typologies according to the stories number and so defining a total of 33 

typologies. Likewise each typology is divided in micro-typologies, in accordance 

with the wall thickness of the ground floor. Thanks to a map of the ground floor 

internal organization of the city center buildings, dated back approximately to the 



 

1980, the analysis of the plan modules is possible. The combination of the on-site 

data and the plan modules analysis allow a complete knowledge of the main 

building characteristics that are relevant for the seismic behavior. 

A seismic vulnerability assessment is performed with the software Vulnus, which 

evaluates the vulnerability of out of plane and in plane local mechanisms of 

collapse. The software is used in two different applications: the first one regards 

the study of three  blocks of the historical center,  with the purpose of defining the 

vulnerability level of the three aggregate building; the second application regards 

the study of four singular structural units, to compare the results obtained for two 

different level of information, which are the real case, obtained by detailed plans 

and sections, and the survey case, obtained using the city plan of 1980 and 

information collected on-site. 

The final aim of this thesis is to define, for each typology, the vulnerability 

assessment for the out of plane mechanisms of simple overturning and vertical 

bending and consequently to provide a global vulnerability assessment of the 

entire historical center, with the possibility to extend the results to similar 

buildings and urban centers. Therefore the methodology goes through the analysis 

and the verification of these local mechanisms, up to define the capacity curve of 

each typology. The analysis is made considering a set of varying parameters 

which takes into account the uncertainty of information caused by a rapid and 

external survey. The validity of the entire process is checked comparing the 

results of four singular structural units, analyzed using three different levels of 

information: the real case, the rapid survey case and the typological case. 

Finally for each typology the fragility curves are defined, reporting the probability 

of exceeding defined levels of damage for specific peak ground accelerations. 

The typological analysis defines a preliminary vulnerability assessment starting 

from a rapid survey on large scale. The results can be extended to constructions 

with the same structural and geometrical characteristics of the analyzed ones, 

widen the assessment to an urban scale.  
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CHAPTER 1: TIMISOARA 

 

 
1 TIMISOARA 

1.1  GEOGRAPHICAL LOCATION 

Timisoara (45°45′35″N, 21°13′48″E) is the capital city of Timis County and  is 

considered the informal capital city of the historical region of Banat, in western 

Romania. It is considered  the main social, economic and cultural center in the 

western part of Romania; it is located at a distance of 550 km from Bucharest, the 

capital city of Romania, and respectively 300 km and 170 km from Budapest, the 

capital city of Hungary, and from Belgrade, the capital city of Serbia-Montenegro.  

Timisoara is one of the largest Romanian cities  with an area of 130.5 km2 and a 

population of 319279 inhabitants (2446.58/km²)1.  Population is divided into 

ethnic groups of: 86.79% Romanians, while 5.12% were Hungarians, 1.37% 

Germans, 1.3% Serbs, 0.69% ethnic Romani, 0.18% Ukrainians, 0.17% Slovaks, 

0.11% Jews and 0.76% others.2  
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Fig. 1.1.1: Demographic trends graphic from 1787 to 2011 

REFERENCE: Comunicat de presă - privind rezultatele provizorii ale Recensământului Populaţiei 
şi Locuinţelor – 2011 ( Comisia judeţeanǎ pentru recensământul populaţiei şi al locuinţelor, judeţul 

timiş, 2012) 

1 Comunicat de presă - privind rezultatele provizorii ale Recensământului Populaţiei şi 
Locuinţelor – 2011( Comisia judeţeanǎ pentru recensământul populaţiei şi al locuinţelor, judeţul 
timiş, 2012) 
2 Structura Etno-demografică a României (Centrul de resurse pentru diversitate etnoculturală, 
2002) 
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The north-east part of the city is the highest one, with an altitude of 95 m, and the 

west part is the lower, with 84 m of altitude3. 

 Timisoara is situated on the southeast edge of the Banat plain, part of the 

Pannonian Plain near the Timis and  Bega rivers, where the swamps could be 

crossed. With time the rivers of the area were drained, dammed and diverted. Due 

to these hydrographical projects of the 18th century, the city no longer lies on the 

Timis River, but just on the Bega canal, started in 1728, and all the surrounding 

marshes  were drained of. However, the land across the city lies above a water 

table at a depth of only 0.5 to 5 m, a factor which does not allow the construction 

of tall buildings. The rich black soil and relatively high water table make this a 

fertile agricultural region4. 

 

 

Fig. 1.1.2: Geographical location of Timisoara 

REFERENCE: (Google Earth 2014) 

3 Date geografic-Relieful (Primaria municipiului Timişoara) 
4 Premiere ale orașului Timișoara  (Timişoara-info.ro, 2009) 
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Fig. 1.1.3: Region of Banat 

REFERENCE: Banat (Ropenet.ro, 2008) 

 

 

Fig. 1.1.4: Administrative division of Romania 
REFERENCE:, History of Romania ( Pop and Bolovan, 2006,  p.841) 
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1.2  GEOMORPHOLOGY  

The geological structure of Romania is determined by the position of the country 

between the structural zones of the Pannonian Depression, the Moldavian 

Platform, Scythian Platform and Moesian Platform. It is articulated around the 

Carpathian Mountains, formed during the alpine orogeny. The county of Vrancea 

is the most active seismic area of the country because is located in the connection 

of these structures5.  

Fig. 1.2.1: Geological map of Romania and division of the major structural units 

REFERENCE: Geology of Romania: potential co2 storage sites characterization. (Decarboni.se) 
 

Alps, Carpathians and Dinarides are part of the system of Circum-Mediterranean 

orogeny and form a continuous and highly curved orogenic belt, that encircles the 

Pannonian Basin. The Alpine-Carpathian-Pannonian (ALCAPA) Mega-Unit 

slides to west against the Tisza-Dacia Mega-Unit, along the Mid-Hungarian Fault 

zone. The Tisza-Dacia Mega-Unit rotates anticlockwise against the Dinarides and 

the European Plate alongside respectively the Split-Karlovac Fault and the Timok 

5 Geology of Romania  (Burchfiel et al., 2014) 
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and Cerna Jiu Faults. This rotational movement caused modifications of the 

Alpine-Carpathian-Dinaridic orogenic system.6  

 

Fig. 1.2.2: Within the orogen: the Alps/Carpatian- Pannonian Basin System. Recent stress and 
strain pattern in the central Mediterranean. 

REFERENCE: Intensity seismic hazard map of Romania by probabilistic and (neo)deterministic 
approaches, linear and nonlinear analyses  

(Mărmureanu , Cioflan and Mărmureanu, 2011, p. 227) 

 6A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene. 
(Ustaszewski et al.,2008, p.1) 
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Fig. 1.2.3:  Interpretative block diagram showing present-day lithospheric structures in the 
Eastern Alps, Carpathians and northern Dinarides. 

REFERENCE: A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early 
Miocene. (Ustaszewski et al.,2008, p.18) 
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Fig. 1.2.4:  Tectonic map of the Alps, Carpathians and Dinarides (simplified after Schmid et al. 
2008), serving as a base for the Early Miocene restoration. 

REFERENCE: A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early 
Miocene. (Ustaszewski et al.,2008, p.3) 

 

11 

  



CHAPTER 1: TIMISOARA 

 

 
1.2.1   Morphology 

Two major morphological units are identified in the territory surrounding 

Timisoara: the area of the hills and the area of terraces and plain.  Two hilly areas, 

constituted by crystalline schists, stand at the south-east of Timisoara plain: the 

banatic massifs of Borsa and Ocna de Fier – Bocsa Montana, and the northern 

extremity of the island of crystalline schists between Oraviţa et Bocşa Montana. 

These hilly area present a slightly accentuated slope and their height varies from 

350 to 600 m. The main rivers, Timis, Berzava and Beregsau, dug a system of 

several terraces that, according to their relative altitude, determinate different 

levels; Timisoara is located in the so called “high terrace”, with a relative altitude 

between 80 and 100 m. 

1.2.2   Geological framework 

Most of the territory near Timisoara is coated by recent deposits of Quaternary 

era, covering the formations of Pannonian Basin, where the crust has a thickness 

of 26–28 km and the transition limit between the upper to lower crust is at 15–20 

km. In the south-east of the territory appear the crystal, eruptive and sedimentary 

formation of the western extremity of the Banat’s mountains together with 

Neogene deposit of the Lugoj and Caransebes basins. These sedimentary 

formations and Quaternary ages cover unconformable a Proterozoic-Paleozoic 

crystalline basement and have thicknesses of about 1750 m in Timisoara area7. 

The bedrock of the land near Timisoara is formed by crystalline schists and by 

eruptive masses whose establishing, metamorphism and tectonic occurred during 

the Pre-alpine folds; later  they were affected by the Alpine folds. During 

Quaternary new movements of subsidence occurred. They are especially visible in 

the territory at western part of the territory near Timisoara where a series of rivers 

such as Pogonis, Cerna, Bega, Timiş etc. converge; in the oriental zone rivers 

keep the diverging character of terraces. Finally, the recent tectonic causes the 

establishing of basalts, during the Quaternary, at north and south of Timisoara8.  

7 Site effects investigation in the city of Timisoara using spectral ratio methods. (Oros, 2009, 
p.350) 
8 Harta Geologica  Scara 1:200,000, 24 Timisoara (Dragulescu, Hinculov and Mihaila, 1968) 
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Fig. 1.2.5:  Geological map, scale 1:100000 of Timisoara area 

REFERENCE: Harta Geologica  Scara 1:200,000, 24 Timisoara L-34-XXII (Comitetul de Stat al 
Geologiei – Istitutul Geologic, 1968) 
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Fig. 1.2.6:  Stratigraphic column  

REFERENCE: Harta Geologica  Scara 
1:200000, 24 Timisoara L-34-XXII 

(Comitetul de Stat al Geologiei – Istitutul 
Geologic, 1968) 
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The Banat region is spread over the geotectonic units of Inner Dacides, 

Transylvanides and Middle Decides, until the unit of South Carpathians. The units 

are divided between them and on their internal by several faults and by the 

tectonic limits of nappes. Timisoara is located in the geotectonic unit of 

Transylvanides, is divided from the Inner Dacides at north by the tectonic limits 

of a nappe and from the Middle Decides at south by various fault lines.  

 
Fig. 1.2.7: Distribution of epicenters of earthquakes with I0≥VI on MSK scale produced in the 

seismic zome of Banat and surroundings areas 

REFERENCE: Seismele din zona Banat – Timişoara  ( Marin, Roman and Roman, 2011, p.25) 
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1.2.4   Geotechnical setting 

Bega River, crossing the city from east to west, affected the soil composition of 

the city territory. The geotechnical map of Timisoara shows, indeed, that clays 

and silty clays were mainly in the northern part of the city, while the dominant 

soil type in the southern part was a mixture of clay and sand, with a reduced 

compaction index in many areas. The southern part of city is also characterized by 

a high level of underground water, (until 1-2 m under the ground level), while in 

the northern part the level is considerately lower. Between a depth of 10 to 20 m it 

is possible to find the superior soil strata sedimented during the Quaternary 

period, composed by gravels, sands and clays, mainly sandy and silty soils, of 

alluvial derivation. 

The soil layer between 120 and 150 m of depth is the one used to evaluate the 

dynamic characteristics of the soil in different sites of the city. 

As it is possible to see in Figure 1.2.8, the yellow areas, concentrated in the south 

of the city, are composed by fine silty sands and fine and medium sands with a 

minimum thickness of 6 m. The combination of sand and high levels of 

underground water can provoke, in case of strong earthquakes, liquefaction 

phenomena with serious effects on the constructions.  The north and west part of 

the city are dominated by very homogenous silty clays and a thickness higher than 

10 m. The transition between these two areas is made by isles of clay and sand, 

organized in overlapping layers (Figure 1.2.9). 

In the area around the walls of the citadel some old swamps and the Bega river 

bed have been drained and later filled for a thickness between 3 and 6 m. The 

nonhomogenity and the compaction degree cause a high seismic hazard. 

The geotechnical map represents also the  positioning of the inactive seismic fault 

lines in the west part of the city9.  

9 Seismic risk of buildings with RC frames and masonry infills from Timisoara, Banat region, 
Roman” (Mosoarca et al., 2014,  p. 4); 
The influence of the local soil conditions on the seismic response of the buildings in Timisoara 
area. ( Marin and Boldurean, pp.1-4) 
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Fig. 1.2.8: Geotechnical map of Timisoara and location of seismic fault line 

REFERENCE: Seismic risk of buildings with RC frames and masonry infills from Timisoara, 
Banat region, Romania (Mosoarca et al., 2014,  p. 4) 

The two corings in Figure 1.2.9 were pulled put from two deep wells for the 

geological exploration and geotechnical drilling in the city. The one on the left 

represents the northern part of Timisoara (Torontal Way-Arad Way- Lipova Way) 

with a profile mainly clayely (86% of clay and 14% of sand), while the one on the 

right represent the southern part of the Bega Canal, characterized by sandy profile 

(32% of clay and 68% of sand). 

These studies underline the following characteristics: 

• the first 50-60 m of underground soils define the behavior of the soil at 

dynamic loads; 

• the average density of the soil is ρ= 1,9-2,0 g/cm3; 

• the speed of the seismic waves is Vp = 350 m/s and Vs ≈ 200 m/s; 
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• the fraction of the critical damping is D = 12% for sands and 8% for clays 

and in the case of Banat area earthquakes M = 10-2 -10-1 %.10 

 
Fig. 1.2.9: Characteristic geotechnical profiles for Timisoara 

REFERENCE: The influence of the local soil conditions on the 
seismic response of the buildings in Timisoara area. ( Marin and Boldurean, p.4) 

 
 

 
 

 

10 The influence of the local soil conditions on the seismic response of the buildings in Timisoara 
area. ( Marin and Boldurean, p.4) 
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1.3  SEISMICITY 

The lithosphere, the external part of the planet, is composed by plates moving, 

colliding and pressing against each other. This movements caused deep conditions 

of effort and energy storage that, when the rocks exceeded the limit of their 

strength, can form deep cracks called faults and provoke the release of energy in 

the form of earthquakes. The strength of an earthquake can be define using two 

different measures scales: the magnitude, that transform the energy released into  

a numeric value of the Richer scale, and the macroseismic intensity, that measures 

the effects and express them in degrees of Mercalli scales. 

Seismicity is a physical characteristic of the territory and considerates the 

frequency and force of earthquakes. It depends on three factors: 

• The seismic- hazard “measures the probability that in a given area and in 

a certain time interval occurs an earthquake that exceeds a certain 

threshold of intensity, magnitude or peak acceleration (PGA). It depends 

on the type of earthquake, distance from the epicenter and 

geomorphological conditions. It’s not possible to prevent the earthquakes 

or to modify their intensity or frequency. The knowledge of the hazard is 

useful in order to calibrate the interventions. The seismic classification 

determines the hazard and quantifies the reference actions in every area” 

11. 

• The vulnerability “expresses the probability  that a certain type structure 

may suffer a certain level of damage as a result of an earthquake of certain 

intensity. The measure depends on the definition of damage, linked to the 

loss or reduction of functionality. The expected damage can be reduced by 

an improvement of the structural and non-structural characteristics of the 

buildings. The interventions are calibrated regarding to the hazard and to 

the expected performances”12. 

• The exposure “measures the presence of assets in risk and therefore the 

possibility of suffering a damage (economic, human life, cultural heritage, 

11 Il rischio sismico (Protezione civile nazionale) 
12 Ibidem 
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etc.…). Before the event it measures the quantity and quality of assets 

exposed, after the event it values losses caused by the earthquake. 

Exposition can be reduced by designing the territory, acting on the 

building distribution and density, on infrastructures, on the use 

destinations”13. 

1.3.1   In Romania 

From seismic point of view, Romania is considered as a country having a large 

seismic risk. The seismicity of the country is focused in several epicentral areas: 

Vrancea, Fagaras-Campulung, Banat, Crisana, Maramures and Dobrogea de sud. 

Other epicentral zones of local importance can be found in Transylvania, in the 

area of Jibou and Tarnava river, in northern and western part of Oltenia, in 

northern Moldova and in the Romanian Plain, in particular for the west part of the 

country also the Hungarian areas of Szeged and Bekes and the Serbian areas of 

Alibunar, Srbsky Ittebej, Kikinda, Becej14. 

 

13 Ibidem 
14 Seismicity of Romania ( National Institute for Earth Physics, 2013) 
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Fig. 1.3.1: Seismic hazard map in terms of peak ground acceleration (m/s2) with 10% probability 
of exceedance in 50 years 

REFERENCE: Romania-Seismic Hazard Map ( USGS, 2005) 

 

1.3.2   In Banat region 

The western part of Romania is characterized by the contact between the 

Pannonian Depression and the Carpathian Orogen. In this part of Romania two 

distinct seismic areas can be defined on the basis of the seismicity distribution: 

Banat zone at south, and Crisana-Maramures zone at north15. In Timisoara, 

located in the Banat Seismic Region (RSB), the local earthquakes are perceived 

more intensely than the Vrancea ones.  

15 Seismicity of Romania ( National Institute for Earth Physics, 2013) 
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Fig. 1.3.2:  Earthquakes in and around the Carpathian basin between 456 and 2006. Symbols are 
proportional to Richter magnitude, the triangle defines the Banat Seismic Region (RSB) and the 

dashed line represents the approximate limit of the Pannonian Basin (BP) 

REFERENCE: Seismicity and seismic hazard in Hungary (Kovesligethy radò szeizmologai 
obszerbatorium, 2013) 

 

 
Considering the energy and the number of seismic events, the Banat region is 

considered as the second most important seismic zone, being subjected to shallow 

earthquakes of crustal type. The earthquakes of this area are characterized by a 

small depth of the seismic source, between 5 and 15 km, however less than 30 km 

with a reduced surface of the epicenter area where the effects are greatest16. 

Earthquakes in Banat can be cataloged as monokinetic earthquakes, considering 

the division in two categories made by Prof. I. Atanasiu about seismic shocks. 

They are characterized by a relative small number of pre-shocks, followed by a 

large number of after-shocks17.  

The main faults have different orientations and depths, but  the reverse and strike-

slip faulting are predominant. Moreover the earthquakes of the region are 

16 Seismic risk of buildings with RC frames and masonry infills from Timisoara, Banat region, 
Romania (Mosoarca et  al, 2014,  p. 2) 
17 Romanian seismology – historical, scientific and human landmarks (Rădulescu, 2008,  p. 6) 
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characterized by a strong directionality of the source, that is manifested by the 

elongated shape of isoseismals in the direction of the causative fault. 

 

 

Fig. 1.3.3:  Elongated isosmeismals in the direction of the seismic fault line (in red). 

REFERENCE: Seismicitatea, seismotectonica şi hazardul seismic din zona Timişoara. (Oros, 
2012, p.19) 

 

The greatest earthquakes from this region have a seismic sources usually located 

at the intersection of seismic faults or near geological faults of different ages. The 

distribution of epicenters of the region recorded earthquakes shows that they can 

be clustered in three major areas, called “clusters”, defined by important seismic 

events having M≥5.0: the first one near Timisoara in correspondence of Sag 

(M=5.4 on 27 May 1959) and Timisoara-Sacalaz (on 5 June 1443 and on 19 

November 1879), the other two located at a critical distance from Timisoara, 

causing minimal effects on the buildings, one in Volteg-Barloc (M=5.6 on 12 July 

1991 and M=5.5 on 2 December 1991) and the other between Lovrin and Vinga 

(M=5.3 on 30 August 1941 and M=5.2 on 8 July 1938). These clusters are 

concentrated on fault intersections, which had different principal directionalities:  

northeast-southwest, east-west and northnorthwest-southsoutheast18. 

 

18 Seismicitatea, seismotectonica şi hazardul seismic din zona Timişoara (Oros, 2012, p.17) 

23 

  

                                                 



CHAPTER 1: TIMISOARA 

 

 

 

Fig. 1.3.4:  Schematic representation of the seismotectonic of the area and relatives fault lines. 

REFERENCE: Seismicitatea, seismotectonica şi hazardul seismic din zona Timişoara. (Oros, 
2012, p.18) 

 

Regarding the intensity on MSK scale, Timis County includes zones having the 

mean earthquakes recurrence interval of 50 and 100 years, which can be evaluated 

in terms of peak ground acceleration, between ag=0.10g and ag=0.25g. As a 

result, a lot of existing buildings were not designed for seismic actions, or were 

designed for much smaller values of ground acceleration19. 

 

19 Seismic risk of buildings with RC frames and masonry infills from Timisoara, Banat region, 
Romania  (Mosoarca et al.,  2014, p. 3) 
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Fig. 1.3.5: Macro-seismic characteristics of most important cities from the Banat region in the 
year 2009 

REFERENCE: Seismic risk of buildings with RC frames and masonry infills from Timisoara, 
Banat region, Romani” (Mosoarca et al.,  2014, p. 4) 

 

In the following table (Figure 1.3.6) the maximum  intensities perceived in 

Timisoara are represented, as a result of Banat and Vrancea major seismic events.  

The detection station is situated  in the street Calea Buziaşului, nr. 3-5, 3 km far 

from the center of Timisoara (in the south east direction). It is possible for Banat 

region to reach a maximum magnitude of M=6-6.5, corresponding to an intensity 

of I0≥IX  MSK. The crustal character of the region earthquakes and the rapid 

attenuation of the seismic energy  limit the maximum effects of a big earthquake 

in a small area20. 

Date Deph 
(km) 

Epicentral 
distance 

(km) 

Magnitudo 
Ms 

Intensity in 
Timisoara 

(MSK) 

Epicentral 
Intensity 
(MSK) 

Vrancea earthquakes 

26/10/1802 150 415 7.5 5 9 

10/11/1940 133 423 7.8 4 9 

04/03/1977 109 396 7.2 5 8-9 

30/08/1986 133 407 7 3 8 

30/05/1990 89 438 6.7 3 8 

20 Seismele din zona Banat – Timişoara. (Marin, Roman L. and Roman  O., 2011, p. 26) 
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31/05/1990 79 437 6.1 2 7 

Local earthquakes 

10/10/1879 10 121 5.3 3 8 

17/07/1991 11 45 5.7 6 8 

02/12/1991 9 36 5.6 5-6 8 

24/03/1996 23 23 4.8 6.6 7.1 
Fig. 1.3.6:  Intensity observed in Timisoara, street Calea Buziaşului, nr. 3-5, based on 

macroseismic maps. 

REFERENCE: Seismele din zona Banat – Timişoara.  
(Marin, Roman L. and Roman O., 2011, p. 25) 

 

Banat is monitored by three accelerograms: two of them are situated in Timisoara 

(Tram Factory and IAEM) and the other one in Barloc (Central Station). These 

stations are property of the National Seismic Network of the National Institute for 

Earth Physics in Bucharest and they record earthquakes until M<1. Records and 

response spectra indicates a low seismic activity during last years. 
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1.4  HISTORICAL EARTHQUAKES 

1.4.1   In Romania 

One to five shocks with a magnitude higher than 7 occur in the country each 

century and are felt over a very large territory, from the Greek Islands to 

Scandinavia, and from Central Europe to Moscow21.  

Remarks on damages and human victims produced in Romania were mentioned in 

many medieval chronicles of the XVIII century. The oldest estimated seismic 

event occurred in Vrancea on 29 August 1471, with an evaluated magnitude of 

7.3. Other strong shocks of M=7.3 occurred on 9 August  1679 and they produced 

great damages and many churches and houses collapsed. On XVIII century the 

major earthquakes occurred on 11 June  1738 (M= 7.5), causing very wide extent 

heavy damage at Iasi and Bucharest; 5 April  1740, with M=7.3 in epicentral area; 

6 April 1790 with M=6.8. The XIX century opens with “The Big Earthquake of 

God’s Friday” on 26 October 1802, that was considered the strongest earthquake 

of Romania with M=7.7. 

The 1802 earthquake in Vrancea region lasted 2 minutes and 30 seconds and 

produced great damages, especially in Bucharest, where was demolished the 

Tower of Coltea and numerous churches, and major destructions were also 

produced in Transylvania and in Moldavia. It was followed by the one on 26  

November 1829,  characterized by  M=7.3 in epicentral area and felt over a very 

large area from Tisa to Bug and from Mureş to the Danube, with heavy damages 

in Bucharest. Other major earthquakes were registered on 23 January 1838, felt 

over a wide area, in Romania, Hungary, Ukraine and Balkan Peninsula: they 

caused very heavy damages in Wallachia and southern Moldavia with a 

magnitude of 7.322, on 17 August 1893, 31 August  1894 and 6 October 1908, all 

in Vrancea with a magnitude of 7.1.  

One of the most important earthquakes of XX century occurred on 10 November 

1940 in Vrancea region, at 03.39: it lasted 45 seconds, with M= 7.4 on the Richter 

21 Seismic Hazard of Romania: Deterministic Approach  (Radulian et al., 2000,  p. 221) 
22 Romanian seismology – historical, scientific and human landmarks (Rădulescu, 2008, p. 1) 
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scale. The death toll was estimated at 1000 dead and 4000 wounded, mostly in 

Moldova, but the exact number of victims was not known because of the war 

context in which it was produced. The earthquake was felt on more than two 

million square kilometers and it devastated Wallachia  and part of Moldavia.  

Shocks were felt up to the east of Odessa, Krakow, Poltava, Kiev and Moscow 

where it caused some damages (estimated intensity V-VI). Northwards the 

macroseismic area spread up to Leningrad, to East it spread over the Tissa river 

and to south-southwest in Yugoslavia, throughout Bulgaria and further to Istanbul. 

In Romania two areas of maximum intensity have been identified: the region 

between Panciu, Focsani and Beresti and the region in the Romanian Plain 

between Campina and Bucarest. It is believed that in the two regions the level of 

intensity of the earthquake exceeded everywhere VIII grade on Mercalli-Sieberg 

scale, approaching more the IX grade, which apparently has been exceeded for 

numerous villages in these regions. In Panciu the maximum value was recorded, 

with an intensity estimated on X grade. In Vrancea however, the intensity was 

lower, between grade VI and VII-VIII23.  

Another important earthquake occurred at 21:22 on 4 March 1977. It had a 

magnitude of 7.2 on the Richter scale and a duration of about 56 seconds, causing 

about 1570 of victims, of which almost 1400 only in Bucharest. It was felt 

throughout the Balkans, with the epicenter in Vrancea  region at a depth of 94 

kilometers. About 35000 buildings were damaged, and the total damage was 

estimated on more than two billion dollars. Most of the damage was concentrated 

in Bucharest, where about 33 large buildings collapsed, so after the earthquake, 

the Romanian government imposed tougher construction standards. The shock 

wave was felt in almost all countries in the Balkan Peninsula, as well 

as Soviet republics of Ukraine and Moldavia, even if having a lower intensity. 

The seismic event was followed by aftershocks of lower magnitude, of which the 

strongest occurred on the morning of 5 March 1977, at 02:00, at a depth of 

109 km, with a magnitude of 4.9 on the Richter scale, while the others did not 

exceed M=4.3 or M=4.524
 

25. The earthquakes caused damages to many 

23 Cutremul din 10 noiembre 1940 – date sintetice (Inforix 
24 Cutremurul din 4 martie 1977 - 55 de secunde de cosmar  (Ilie) 
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architectural monuments and the Ceausescu’s regime used this pretext to demolish 

a series of buildings. Once begin, the intention to eliminate the biggest number of 

architectural monuments and churches possible has been extended to art 

collections, with the pretext of safety of the works26. 

In the latest years of XX century two major earthquakes occurred: the first one on 

30 August 1986 at 21:28 in Vrancea region, and the second one between 30 and 

31 May of 1990, in Vrancea region too.  

The 1986 earthquake  killed more than 150 people, injured over 500, and 

damaged over 50000 homes, with M=6.5 on the Richter scale27. The seismic 

source was located at a depth between 131 and 148 km, as revealed by the 

location of aftershock hypocenters. The strongest aftershock occurred in the 

morning of 2 September 1986, at 5:00, at 143 km depth, with M=5, and was felt in 

Bucharest with an intensity of about III-IV degrees on the Mercalli scale. In total, 

77 aftershocks were recorded with M≥3.2 on the Richter scale, of which 19 

exceeded the value of 4.028. The 1990 earthquakes were on 30 and 31 May 1990 

measuring 6.7, 6.2 and 6.1 on Richter scale, on two consecutive days, at a depth 

of 89 km. Severe damages in the Bucharest-Braila-Brasov area and dozens of 

casualties in Romania, Moldova, Ukraine and Bulgaria were reported. The last 

two quakes occurred about 2.3 seconds apart and were followed by a series of 

weaker replicas: during the first 17 hours from the main shock about 80 replicas 

were recorded. Analysis of seismograms showed that the strongest replica 

occurred on 31 May, at 3:18, measuring 6.1 on Richter scale. It was felt in the 

epicentral area with an intensity of about VI degrees on the Mercalli scale, and 

in Bucharest with an intensity of about V degrees on the Mercalli scale. Just three 

seconds apart, another replica of M=6.2 struck the Vrancea County. 

Since then, just one earthquake in 2004 touched M=6, while all the other major 

events measure from 5 to 5.5 degrees29. 

25 Significant Earthquakes of the World – 1977 ( USGS, 2005) 
26 La triste sorte delle chiese di Bucarest negli anni del comunismo (Cultura romena, 2008)   
27 Significant Earthquakes of the World – 1986 ( USGS, 2005) 
28 Seismicity of Romania  (National Institute for Earth Physics, 2013) 
29 Significant Earthquakes of the World – 1990 ( USGS, 2005) 
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Fig. 1.4.1: Epicenters of the earthquakes occurred on the Romanian territory between 984 and 
2013. 

REFERENCE: Seismicity of Romania (National Institute for Earth Physics, 2013) 

1.4.2   In Banat  

From  984 until today in the wart part of Romania occurred 65 earthquakes with 

Imax0≥6 MSK. From 1776 to 2000 occurred a large number of earthquakes with a 

I0>VI, in particular 35 events with I0>VI, 23 with I0>VII and 7 with I0>VIII. 

During the XX century the seismic activity focused on the center of Timis region: 

in 1991 the earthquake of Baile Herculane occurred with an intensity of  I0>VIII 

and M=5.6, followed by the events in Banloc –Voiteg on 12 July and 2 December 

of the same year, both with I0=VIII and magnitude respectively of M=5.7 and 

M=5.6. These seismic events caused a revaluation of these areas, considered 

before  with a  maximum intensity of VI, and an updating of the normative values 

for this specific region30. 

Earthquakes of VI and VII intensity on the MSK scale of 1802, 1838, 1940, 1977, 

1986 and 1990 recorded in Vrancea region, the most important seismic region 

30 Seismele din zona Banat – Timişoara (Marin, Roman and Roman, 2011, p.25) 
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from Romania, were also felt in the Banat region. Being close to the border, 

earthquakes from Serbia can also affect Timis County and the city of Timisoara31.  

 
Fig. 1.4.2: Earthquakes from Banat region 

REFERENCE: Seismic risk of buildings with RC frames and masonry infills from Timisoara, 
Banat region, Romania (Mosoarcaet al.,  2014,  p. 2) 

In the Table 1.4.1 data regarding strong earthquakes which occurred in the Banat 

region during the XVIII and XIX centuries there are given32. 

Epicentre zone Maximum recorder 
intensity Magnitude Year 

Periam – Varias VII  1859 

Sanicolaul Mare VII  1879 

Moldova Noua VIII  1879 

Timisoara (Mehala) VII  1879 

Carpinis V  1889 

Recas V  1896 

31Seismic risk of buildings with RC frames and masonry infills from Timisoara, Banat region,   
Romania (Mosoarcaet al.,  2014,  p. 3) 
32 Seismic risk of buildings with RC frames and masonry infills from Timisoara, Banat region, 
Romania”(Mosoarcaet al.,  2014,  p. 3) 
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Barateaz VII  1900 

Recas V  1902 

Rudna – Ciacova V  1907 

Banloc – Ofsenita VII - VIII  1915 

Jimbolia – Bulgarus VII  1941 

Sanandrei – Hodoni V  1950 

Sag – Parta VII  1959 

Sanmihai – Sacalaz VI  1973 

Ortisoara  5.6 17 April 1974 

Liebling – Voiteg VIII 5.7 12 July1991 

Baile  Herculane- 

Mehadia VIII 5.6 18 July 1991 

Liebling – Voiteg VIII 5.6 2 December 1991 

Comeat  4.6 2 March 1992 

Ivanda  4.6 19 December 1992 

Rudna-Crai Nou  4.7 14 October 1994 

Dinias-Peciu Nou  4.8 24 March 1996 
 

Tab. 1.4.1: Zones with most important earthquakes, intensities, magnitude(when known) and year 
of occurrence. 

REFERENCE: Vulnerabilitatea seismică a zonelor de locuit din Timişoara. (Budău, 2014); 
Earthquakes Archive Search (USGS, 2005). 

 

The most important seismic events are: earthquakes occurred between October 

1879 and April 1880 in Moldova Noua area; an earthquake occurred at a depth of 

5 km near Timisoara city, on 27 May 1959, M=5.6, followed by two shocks 

occurred in 1960; earthquakes in Banloc, 12 July 1991, M=5.6, with a depth of 11 
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km, and Voiteg, 2 December 1991, M = 5.6, depth of 9 km, followed by a large 

number of aftershocks33.  

33 Seismicity of Romania (National Institute for Earth Physics, 2013) 
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1.5  HISTORY OF TIMIȘOARA 

1.5.1  Etymology34 

History of Timisoara is documented from more than 730 years. All the variants of 

its name derive from Timis River, which flows into the Danube near Belgrade. 

In the 101-103 and 105 B.C., the Romans under the Trajan Emperor conquered 

Dacia with two bloody wars and Banat was called "Dacia Ripensis".  

It is still believed that the actual location of Timisoara corresponds to the Dacian 

village called “Zambara”.   

The Historiographer Ptolemy, mentioned this name during the second century 

B.C. It is not possible to know exactly the place where Romans founded a city 

called “Tibiscum”, but it is probable that this city, named in another document as 

“Municipiu”, was the ancent Timisoara.  

During the barbarian invasions, especially by the Avars, "castrum Zambara" 

ruined and on its place grew up "Beguey”, (the name is taken from the near river 

Beghei).  

The place became an important military center, it was chosen for strategic reasons 

and it is situated at the confluence of Timis and Beghei rivers.  

In 1212 "The city of Timis" (Castrum Temesiensis) is mentioned in a document of 

King Andrew II. He fortified Timişoara and the town became a "Castrum".  

1.5.2  Antiquity35 

Although the first document about the existence of Timisoara is dated on the XII 

century, the first traces of the human presence in the city dated back to the 

Neolithic Age. The region near the rivers of Mures, Tisa and Danube, was very 

fertile and offered perfect conditions for food and human settlement yet in 4000 

BC. Archaeological remains attested the presence of a population of farmers, 

hunters, artisans, whose existence was favored by mild climate, fertile soil, 

34 Timişoara multiculturale, tra sviluppo storico e articolazione etnica (Cionchin, 2014) 
35 Istoria Timişoare (Munteanu and Leşcu ); 
   Istoria Timisoarei (Enciclopedia Romaniei , 2014) 
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abundant water and forests. The discovery of tombs and vessels supported the 

hypothesis that, in the Bronze Age, there was a stable settlement. 

1.5.3  Dacian and Roman period 36 

During Dacian period there was a demographic and economic progress, a 

specialization of crafts and expanded trade relations. Certainly, the city was 

inhabited during the Roman period, as in the following centuries, confirmed by 

the presence of late Roman Era, discovered after an explosion in 1854 in Mehala. 

Based on these materials some historians identified the  correspondence between 

Timisoara and Zambara city, mentioned in the Tabula Peuntingeriana, but there 

were not inscriptions or other Roman monuments attesting the existence of the 

Zambara camp in the current territory of Timisoara.  

Bronze coins and other physical evidences found in cemeteries and rural 

constructions indicated a continuity in dwelling, maintaining contacts with Roman 

and Byzantine civilizations. 

 

Fig 1.5.1 Roman Dacia  

REFERENCE: History of Romani (Pop and Bolovan, 2006, p.822) 

36 Istoria Timişoare (Munteanu and Leşcu );  
  Istoria Timisoarei (Enciclopedia Romaniei , 2014); 
 Evolutia istorica a aorasului  (E-Patrimonium Timiensis, 2005) 

35 

  

                                                 



CHAPTER 1: TIMISOARA 

 

 
1.5.4  Committee of Timiş37 

It was possible to find direct and indirect medieval evidences about the existence 

of the Thymes Castrensis or Castrum regium Themes in documents from 1177 to 

1266; in 1175 the "Committee of Timis” was mentioned, which was a territorial 

administrative division of the Kingdom of Hungary, but the sources did not 

specify what was the economic and administrative center. During this period, the 

city occupied a rectangular area, the fortifications were surrounded by a moat fed 

by the river. Around the year 1030 the Magyars conquered the territory, later 

called Banat, the Kingdom finished in 1301 after the death of the last Arpadian 

King. During this period, there was many conflicts between Tatars, Byzantines 

and Ottomans.  

In 1307 King Carlo Roberto D’ Angiò ascended the throne and decided to build a 

stone fortress, much stronger than the old one and in the period between 1315-

1323 the town became the royal residence. The royal palace was built by Italian 

craftsmen, and was organized around a rectangular court having a main body 

provided with a dungeon and a tower. 

Timisoara remained the capital until 1325, then moved to Visegrad and finally to 

Buda.  

Timisoara lost its political and administrative court but gained military 

importance; it was considered as one of the most important resistance outbreacks 

against the Turks.  

In 1394, the Turks were defeated by the Wallachian in the Battle of Ruins. Later 

Turks defeated Christians in Nicopolis battle and then they devastated Timisoara 

and Banat region.  

In 1440 John Hunyadi, who was considered the defender of Christianity, arrived 

in Timisoara and transformed the city into a permanent military encampment and 

moved there with his family. In 1443 an earthquake destroyed part of palace and 

of fortifications and many buildings.  

37 Istoria Timişoare (Munteanu and Leşcu );   
   Istoria Timisoarei (Enciclopedia Romaniei , 2014); 
   Evolutia istorica a aorasului  (E-Patrimonium Timiensis, 2005) 
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In 24 January 1458 Matthias Corvinus, the younger son of John Corvin who died 

in clashes against Turks, was elected king of Hungary. 

An important event in Timisoara history was the Gheorghe Doja revolution. On 

10 August 1514 he tried to change the course of Bega river to be able to enter 

more easily into the city, but he was defeated by attacks from both inside and 

outside the city.  

The fall of Belgrade in 1521 and the defeat at Mohacs in 1526, caused the division 

of the Hungarian kingdom in three parts and the Banat became the object of 

contention between imperial and Turkish Hungarian nobility. After the death of 

Zápolya, Habsburgs obtained Transylvania and Banat, with Timisoara. This 

situation caused the Turks attack.  

On 13 October 1551 an Ottoman army besieged Timisoara but on 27 October 

1551 withdrew in Belgrade. Timisoara had to negotiate the surrender of the city. 

After several battles against Turks, Timisoara fell into their hands and on 26 July 

1552 164 years of Ottoman domination started. The city acquired not only an 

oriental character, but also hold an important place in Ottoman campaigns in 

Central Europe. 

1.5.5  Ottoman domination38 

After the conquest by the Turks Banat was organized as vilayet39. It included six 

sanjaks40: Timisoara, Lipova Cenad, Gyula, Moldova Veche and Orsova. In 1552 

Timisoara became the new capital of the Ottoman province and, for more than 

150 years, togheter with Belgrado, became a real military center. 

Due to the strategic importance of the city, yet protected by marshes and natural 

fortifications, the Turks dig deep trenches around Timisoara to improve 

reinforcements.  

38 Istoria Timişoare (Munteanu and Leşcu );  
   Istoria Timisoarei (Enciclopedia Romaniei , 2014); 
   Evolutia istorica a aorasului  (E-Patrimonium Timiensis, 2005); 
   Cultura otomană a vilayetului Timişoara (1552-1716 ) (Feneşan, 2004, pp. 25- 73) 
39 The first-order administrative division of the Ottoman Empire. (Enciclopedia Treccani) 
40 Interior divisions of a valayet. (Enciclopedia Treccani) 
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For more than a century Timisoara was no longer the target of attacks or battles, 

but it had an important role to maintain under control Hungary, Transylvania and 

Romania. 

Turks arrival did not transform the city into a Muslim center and the urban 

structure of the city remained the same: two distinct parts, the fortress and the 

city, with its suburbs.  

 The population was composed mostly of Christian people, most Romanian, 

Serbian, craftsmen and merchants Armenians, Greeks, Macedonians, Hebrew, 

while Muslims formed generally the privileged stratum.  

In 1594 a Christian uprising interested Banat against the Ottoman power. 

Followed a strong offensive in Transylvania, the Christian army conquered Bocsa, 

Cenad, Nadlac, Pancota, Arad, Faget, Lipova and Vrsac, but Timisoara remained 

untouched. 

Another attempt to retake the city took place in 1596, when an army of Sigismund 

Bathory, began the siege of the city. After 40 days of fruitless efforts, the 

besiegers retired.  

Austrians knew the importance of Timisoara, that was attacked in 1695 and 1696. 

On the other hand also Turks understood the centrality of Timisoara and the 

fortifications reconstruction in 1703 operated by new sultan Ahmed II, 

demonstrated the importance of the city in Ottoman plans.  

After 17 years there was the Austrian-Turkish war. On the 5 August 1716 Prince 

Eugene of Savoy conquered Timisoara. After a siege of 48 days, accompanied by 

repeated bombings, which destroyed much of the buildings of the city, the 

Ottoman garrison surrendered. On 12 October 1716 Turks surrendered and left the 

town. On  October 1716, Prince Eugene of Savoy made his triumphal entry into a 

city hardly hit by a violent  siege, "Gate of Prince Eugen" remembered that day.  
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Fig 1.5.1 Castle and the city of Timişoara as they appear in a lithograph from Turkish period 

REFERENCE: Istoria Timisoarei (Enciclopedia Romaniei , 2014) 

1.5.6  Habsburg rule41 

The Peace of Passarovitz of 1718 enshrined that the Turks lost Banat, Oltenia and 

part of Serbia. Finally, on 28 June 1719, the King signed a decree that recognized 

Banat administration and established its headquarters in Timisoara, which became 

the capital of an important province of the Habsburg Monarchy and the residence 

of the main administrative structures.  

Count Mercy has a strong impact on the organization and future development of 

the city; he created a large administration and imposed a new mentality for the 

city life. At the end of the XVIII century, Timisoara was considered one of the 

most beautiful and clean cities in Europe. 

For more than 130 years, until the 1848 revolution, Timisoara experienced a quiet 

period without military action or serious upheaval and unrest. A modern city with 

architectural structure and economic life grew up: cultural, religious, healthcare 

institutions and a rapid population growth. 

41 Istoria Timişoare (Munteanu and Leşcu ); 
   Istoria Timisoarei (Enciclopedia Romaniei , 2014) 
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From 1738 to 1739, the old district of Palanca Mare was devastating by a fire  that 

made also a large number of victims. The city needed a new cemetery because of 

cholera and plague outbreaks.  

In 1781 the Emperor Joseph II proclaimed Timisoara as "free royal city". King 

Leopold II renewed it in 1790. After Banat conquest, Viennese authorities started 

a long process of colonization. Inhospitable climate caused the death of many 

immigrants for malaria, and only the immigration process ensured the population 

growth. As a result, the share of German Catholics came to a point of  the 50% of 

the total population.  

The need to ensure good living conditions led to the reorganization of all the 

villages in the Banat, and the construction of new ones.  

From the beginning, the administration showed a clear interest in urban 

development, the first action taken by the authorities after the conquest, was to 

repair walls and buildings, partly destroyed during the siege. Initially water played 

an important role in the development of the settlement, but in the XVIII century, 

the marshes were considered the main source of pestilence. Between 1728 and 

1732, Bega river was regulated, creating a navigable channel between Timisoara 

and the lower part of Romania. Thus, the city was connected to Tisza and Danube 

Rivers and the transport by water with Central Europe became possible, before the 

advent of the railway. 

1.5.7  Revolution of 1848-184942  

The Timisoara attack, held from 11 June to 9 August 1849, was one of the most 

important battle of the Hungarian Revolution.  

On 18 March the mayor Johan Preyer proclaimed a popular assembly in front of 

the City Hall (Old City Hall today); it was a massive participation of strong 

freedom manifestation but the next day some local leaders tried to transform it in 

a revolution manifestation. Hungarians raised the banner of rebellion and 

separation from Austria, but the Citadel remained faithful to Vienna. 

42 Timişoara sub asediu în timpul Revoluţiei Maghiare din 1848-49 (Both); 
    Istoria Timişoare (Munteanu and Leşcu )   
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The intensification of clashes between Hungarian revolutionaries and central 

authorities in Vienna generated tensions in Timisoara and on 3 October 1848 the 

Court of Vienna published an imperial rescript ordering the dissolution of the 

Hungarian Diet and cancelled virtually all previous concessions made to 

Hungarians. 

The official rupture between officials in Vienna and Pest, generated complications 

in Timisoara and, on 10 October, General Rukavina introduced the curfew. In 

1848, there was 3000 people living Timisoara and 14000 in the periphery (Fabric, 

Prince Charles Maier Mehala). 

Due to this tense situation, the War Council and the Political - Administrative 

Committee were constituted in Timisoara, consisting of 14 members, between 

Germans, Serbians and Romanians (including Andrei Mocioni). From October 

1848 Timisoara became the main coordination center against Hungarian 

revolutionaries in the Banat region. 

On April 25, 1849 Hungarians besieged Timisoara, gradually occupying Fabric, 

Mehala, Freidorf, and they cut off the water to the Citadel. Inside the fortifications 

there were almost 15000 people (military and civilian); the City was bombarded 

with violence and the situation was desperate. There was no water, scant food and 

a typhus epidemic broke out. The siege went on for 114 days, until 9 August 

1849; Timisoara lived the most dramatic days in the entire modern history and the 

revolution concluded with over 3500 victims and hundreds of buildings destroyed. 

1.5.8  Voivodeship of Serbia and Banat of Temeschwar43  

The Serbian Voivodeship together with the Banat of Temeschwar became 

a province of the Austrian Empire existed between 1849 and 1860. 

The Habsburg Monarchy recognized to Serbs the right of territorial autonomy and 

Timisoara was designated as the residence of the province governor. The province 

is composed by Banat and Backa regions and northern Syrmian municipalities 

of Ilok and Ruma. 

43 Evolutia istorica a aorasului  (E-Patrimonium Timiensis, 2005) 
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The city, as the capital of an imperial province, took advantage on economic 

privileges and regulations: the empire accelerated the rebuilding of the city after 

the  partial destruction during the revolution.  

The Empire developed thanks to the removing trade barriers to trade and the 

abolition of internal customs; the economical development was felt in Banat.  

During that period in Timisoara many manufactories grew up and from 1845 to 

1858 a prerequisites for broader economic development was introduced.  

The administrative framework Banat of Timisoara was reincorporated in 

Hungarian kingdom in 1860. 

1.5.9  The Kingdom of Hungary from 1860 to 191844  

On 1859 there was the unification of the Romanian Principalities and the end of 

the war between Austro-Franco-Piedmonts, with the defeat of Austria. Austria and 

Hungary were negotiating the control of the Banat territory, with the intention to 

place it under Hungarian administration. Andrei Mocioni, a Romanian leader, 

asked audience to the king to know the motivations about this choice, as the 

population was predominantly of Romanian nationality.  

On the 27 December 1860, Emperor Franz Joseph I decided the annexation of 

Banat to Hungary. 

Now cities were not military communities, they became frontier municipalities 

with mayors and municipal councilors. Firs, the city adopted a Magyarization 

policy; in this period, Timisoara had a fast economic and demographic 

development. Institutions invested significant sums for the local industry growth. 

Timisoara, thanks to Bega channel, was connected to Tisza and Danube river 

system, and was connected with important cities in Western Europe using the 

railways. In this period horse tram, telephone, public lighting were introduced and 

roads were paved. Timisoara lost its military importance and needed space for 

expansion so the old city and the suburbs were connected.  

 

44 Istoria Timisoarei (Enciclopedia Romaniei , 2014); 
   Ibidem 
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1.5.10  World War the First (1914-1920) 45 

From 1914 to 1918, 12832 people left Timisoara for barbarian fronts, many didn’t 

returned.  

In September 1916 the curfew was introduced, rights and freedoms were 

suppressed and existing factories were used to weapons production. Life became 

difficult because of the massive increase of prices, the lack of food caused 

insufficient rationing for families. On 2 December 1917 over 4000 people 

gathered the streets asking the immediate conclusion of war. 

The monarchy collapse caused social unrest and in the autumn of 1918 

Hungarians, Swains, Romanians, Serbs and Jews created their own military 

advice in Timisoara. 

Local political leaders and Hungarian officers formed “Sfatul poporului din 

Banat” ("Counsil of Banat people") and then, on the 31 October Otto Roth 

proclaimed the independence of the Republic of Banat, while the counsel of the 

Romanian officers tried to make the union of Romania with the Banat.  

Serbs occupied the entire region; causing the intervention of French Army units, 

arrived in Timisoara on February 1919; Serbs lived Timisoara on July 1919.  

On 28 July Aurel Cosma, designated Timis prefect, instituted Romanian 

administration in Banat, and on 3 August 1919 entered in Timisoara.  

Swabians and Banat asked Romanians to maintain the old boundaries, but Banat 

was divided in three parts durign the peace conference in Trianon on the 4 June 

1920. Two thirds of the territory of Banat took part of Romania and one third of 

the territory entered into the Serb-Croat-Slovene Kingdom; a small part remained 

in the composition of Hungary. 

45 Istoria Timisoarei (Enciclopedia Romaniei , 2014); 
  Evolutia istorica a aorasulu. (E-Patrimonium Timiensis , 2005) 
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Fig 1.5.2 Romania during World War I 

REFERENCE: History of Romani (Pop and Bolovan, 2006, p.837) 

1.5.11  Interwar Period (1919 -1947) 46  

After the increase of territory, Romania became a multiethnic state and Timisoara 

itself developed a unique character. 

In the years following the unification, Timisoara became an economic, financial 

and administrative center and it permitted Germans, Hungarians, Serbs to join 

social and political structures of Romanian system.  

The 1923 Constitution represented an example of freedom and Timisoara was the 

model of non-discriminatory and effective participation of people in town 

activities. 

During the period between the two World Wars, industries, trades, born schools 

and cultural associations developed,  confirming the cultural values of Banat.  

The city population defended integrity, values and democratic institutions  of 

Romanian national state, indeed thousands of people participated to the antifascist 

meeting on 24 May 1936.  

46 Istoria Timisoarei (Enciclopedia Romaniei , 2014); 
   Evolutia istorica a aorasului  (E-Patrimonium Timiensis, 2005) 
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The dictatorial regime, settled in 1938, annihilated the politic freedom of the city 

and in 1940 a totalitarian state of the extreme right took the lead. This occurrence 

had disastrous consequences and caused the deportation of a large number of 

Hebrew in Transnistria camps. 

 

Fig 1.5.3 Interwar Romania  

REFERENCE: History of Romani (Pop and Bolovan, 2006, p.838) 

1.5.12  Second World War47 

In the Second World War Romania entered alongside Germany, participating in 

the Reich campaign against the Soviet Union.  

Timisoara was one of the cities that hosted refugees from Bessarabia, Bukovina 

and Moldova. Meanwhile the allied forces bombed Romania, in Timisoara Anglo-

American bombing occurred between June 16 to July 3, 1944, causing great 

destructions in the districts of Iosefin and Mehela.  

47 Istoria Timisoarei (Enciclopedia Romaniei , 2014); 
   Evolutia istorica a aorasului  (E-Patrimonium Timiensis, 2005) 
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After the coup of 23  August 1944, Timisoara lived difficult times; due to its roads 

and rail hub, with significant industrial potential, the city had strategic value for 

Hitler's military forces. 

On 26 August 1944, the German Command in Timisoara was surprised by a 

Romanian soldiers attack and they surrendered without resistance. Hostilities 

continued on September of the same year, Wehrmacht units tried to take 

possession of Timisoara. On September 16, German tanks entered a lot of cities 

like Mehala, Freidorf and Fratelia, surrounding Timisoara. Romanian defenders 

resisted the enemy, the battles continued in the following days but on September 

1944, Soviet troops entered the city. 

 

Fig 1.5.4 Romania during World War II 

REFERENCE: History of Romani (Pop and Bolovan, 2006, p.839) 

1.5.13   Timisoara under socialist 48 

Entered into the sphere of influence of the USSR, Romania did not receive funds 

for reconstruction and was forced to pay reparations to the USSR, due to its 

position behind the “Iron Curtain”. This situation affected the population, giving 

48 Istoria Timisoarei (Enciclopedia Romaniei , 2014) 
Evolutia istorica a aorasului  (E-Patrimonium Timiensis, 2005; 
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rise to crisis. Romania was isolated for four decades, in particular Timisoara, a 

city having rich traditions: this isolation was deeply felt. This feeling bring the 

city to became a center of anti-communist manifestation 

Since January 1945, 75000 Germans from Transylvania and Banat were sent to 

forced labor in the USSR. In Romania labor camps were established and Germans 

were deported there from 1946 to 1948. 

Many Timisoara factories were obliged to product weapons for the Soviet Union 

and this situation caused the decline of Timisoara industry during the second half 

of the decade. 

In 1950 Timisoara was losing its city status, under an alien regime that caused 

resistance movement. There were many insurrections attempts in the main cities 

of Banat, but the Soviet Regime suppressed them. 

1.5.14  Student revolt of 195649  

The first anticommunist resistance movement were made by small groups of 

students and started on 23 October 1956. Their claims were the withdrawal of 

Soviet troops, the return to democratic freedoms, the abolition of Marxism-

Leninism studies and the removal of Russian language from university curricula. 

The movement ended when authorities arrested 2000 students and  expelled them 

from University, sending their leaders to prison. Cluj, Bucureşti and Iaşi students 

followed Timişoara example but on 5 November, the Russian army crushed the 

revolution in Hungary. 

1.5.15  1989 Revolution50 

After Gheorghe Georghiu-Dej’s death, Nicolae Ceauşeascu became the General 

Secretary of the Romania’s Comunist party. As first, he proclaimed the 

Romania’s Socialist Republic and in 1967 he was appointed Chairman of the 

Council of State. He became popular for his policy of independence from URSS 

and during that period Romania had a rapid economic growth and improved living 

49 Istoria Timisoarei (Enciclopedia Romaniei , 2014) 
50 Primii paşi ai României după 1989 către o integrare europeană şi euroatlantică (Victor); 
   Evolutia istorica a aorasului  (E-Patrimonium Timiensis, 2005); 
   Istoria Timişoare (Munteanu and Leşcu ); 
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standard. Unfortunately, this liberalization period finished in the late Seventies 

when Ceausescu's personality cult started, Romania was isolated and the living 

standard drops significantly. At the end of the eighties, the regime was collapsing; 

the arbitrary eviction of pastor Laszlo Tokes from the Reformed Church of 

Timisoara planned for 15 December 1989 became a pretext for a popular uprising, 

which then became a revolution. 

On 15 December  many parishioners gathered in front of the church to prevent the 

eviction of the Shepherd. The crowd attracted a large number of people, students 

cried for the first time “Down Ceausescu!” “Down communism!” the Chairman 

sent police to disperse the crowd, the police arrested 930 people. In the afternoon 

of 17 December, the first martyrs of the Revolution of Timisoara dropped. In the 

following days, the resistance continued and authorities try to cover up the 

number of victims burning and burying the bodies. 

On 20 December Timisoara revolutionary leaders asked Ceausescu and 

Government resignations, free elections, clarifing the oppression of Timisoara; 

criminal responsibility for those who gave the order to shoot people; immediate 

release of political prisoners.  

On December 21, Ceausescu organized a big manifestation in Bucharest, against 

the "Hungarian hooligans" of Timisoara; the meeting turned into an anti- 

Ceausescu and anti-communist movement and in the same day revolution broke 

out in the largest cities of the country. 

Few hours later, on 22 December 1989, at noon, Ceausescu took refuge in 

Bucharest. The situation was confused, several groups wanted to take power; in 

the evening of December 22 a group led by Ion Iliescu and Petre Roman, who 

organized the National Salvation Front, took the responsibility to lead Romania 

towards democratization. 

December 22 was declared Romanian Revolution Victory Day, with a total 1104 

dead and 3352 injured.  
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1.5.16   Romania today51 

On 22 December an identified force declared as counter-revolutionary opened fire 

on civilians and military units in several cities, creating panic and confusion; this 

justified the summary judgment and execution of  Ceausescu. 

Thanks to political confusion, Iliescu and the NSF won the 1990 parliamentary 

elections, and two years later, the presidential election. NSF decided to dismantle 

public enterprises and they arrested more than 600 people, with the suspicion of 

terrorist attacks. When Iliescu privatized the first state enterprises and pushed 

through drastic austerity measures, he encountered violent resistance. In 1993, the 

government cut the subsidies for goods and services and thereby provoked a 

major strike movement.  

In 1996, an opposition alliance of Christian Democrats, Social Democrats and 

National Liberals took over the government under the leadership of Emil 

Constantinescu and this was seen as  a “real change”. At the same time, ultra-right 

figures increase their political influence, attempting to stoke up ethnic and racial 

tensions. There were violent clashes between the two camps. Romania stood on 

the brink of an ethnic civil war. 

Since the fall of Ceausescu, right-wing and Socialist alternated in the government 

of the country. With the intention to enter in the European Union, rigorous 

austerity measures have been carried out and the last state-owned enterprises were 

privatized. 

Romania have lived a prolonged economic crisis; the promises of prosperity and 

democracy have not been fulfilled and the perception of corruption in the policy 

system of the country is increased.  

Today the Romanian people believes that the events of 1989 were a mistake. 

51 Romania: Twenty years after the overthrow of Ceausescu (Toma  and Salzmann, 2009); 
   History of Romani (Pop and Bolovan, 2006, pp. 667-696) 
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1.6  URBAN EVOLUTION 

1.6.1   From XII to XIV century – Committee of Timis52 

The first documentation about city organization dates back to XII century, when 

Timisoara belonged to the Kingdom of Hungary. The city developed on the top of 

one of the dry islands that emerged from the marshes that strongly characterized 

the territory and was organized around two principal areas: the “royal fort”, 

strengthened with palisades, and the civil area, composed by rural wood 

construction.  

 
Fig. 1.6.1: Planimetric evolution of urban structure during XII and XIII century, until 1300. 

REFERENCE: Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. 
(Primaria Municipiului Timişoara, Plansa 1) 

1.6.2  During XIV and XV century – Committee of Timis53 

After having been royal residence from 1315 to 1323, Timisoara obtained the 
state of “city”. It was composed by four units:  

52 Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent (Primaria  
Municipiului Timişoara, Plansa 1) 
53 Ivi (Plansa 2) 
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• the castle, that after king’s departure became the administrative, politics 

and military center of Timis County; 

• the original city, that together with the civil area formed the “proper city”, 
hosting the principal urban functions; 

• the east island, suburban area; 

• the south island, that probably hosted functions and services related with 
the castle. 

 

Fig. 1.6.2: Planimetric evolution of urban structure during XIV and XV century. 

REFERENCE: Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. 
(Primaria Municipiului Timişoara, Plansa 2) 

1.6.3  During XVI and XVII century – Ottoman Empire  

After the conquer by the Turks in 1552, Timisoara became the capital of Ottoman 
vilayet and an important military center. 
The urban structure remained similar to the previous one and it is composed by 
four units: 

• the castle, which is the political and military headquarter; 

• the proper city, which is the center of principal city functions; 

• the district of Palanca Mare, so-called at the end of XVII century when it 
was fortified; 
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• the district of Palanca Mica, so-called at the end of XVII century when it 

was fortified too.54 

The perimeter wall (5-6 km), having a thickness of 50-60 cm and five big 

openings, was equipped with battlements and small openings used for the 200 

defensive cannons. Inside the city walls there were 1200 houses made of wood 

and mud, four mosques, four monasteries, seven schools, three inns, two 

bathrooms, four hundred shops and a bazaar. The town outside the city was 

composed of ten slums, included 1500 homes, each one having a yard and a 

garden, with separate entrances for carts and people. There were 10 places of 

worship, shops, but the bazaar lacked. The streets were all paved with planks. 

Timisoara was a beautiful city, well organized and fortified55.  

 

 
Fig. 1.6.3: Planimetric evolution of urban structure during XVI and XVII century. 

REFERENCE: Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. 
(Primaria Municipiului Timişoara, Plansa 3) 

 

54 Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. (Primaria 
Municipiului Timişoara, Plansa 3) 
55 Istoria Timişoare (Munteanu and Leşcu)   
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1.6.4  First half of XVIII century – Habsburg Empire 

After the peace of 1718, Timisoara became the capital city of Banat, under 

Habsburg domination. Prince Eugene of Savoy thought that Timisoara needed to 

be transformed in a modern city and considering this aim, Count Mercy on 12 

July 1717 submitted to the Aulic Chamber in Vienna a "Project of organization in 

Banat". 

The project was approved and they created a “organizing committee of the 

Country Banat" which will operate under the leadership of Count Mercy. 

Count Mercy had a strong impact on the organization and future development of 

the city; he created a large administration and imposed a new mentality for the 

city life. Besides repairing walls and buildings partially destroyed during the 

siege, he issued the “Building Regulation” for the town, ordering the demolition 

of all the existing buildings, their reconstruction obligatorily in bricks and their 

organization within a new rectangular street network. The continuous front of the 

buildings to the streets constitutes rectangular sections called “squares. Usually a 

“square” is occupied by an aggregate, but it can be also free of buildings and 

became a proper square: Union Square (old Dome Square) and Liberty Square 

(old Parade Square) occupied respectively two and one block of this net, focusing 

in them the city life. The buildings that overlook the first square were a church, 

the government palace and some private houses, while in the second one the 

buildings were reserved for military purposes. Besides representative buildings 

were built in the city: the Dome of the Roman Catholic and Episcopal Palace, the 

Orthodox Church in Union Square, the City Hall, and the Barrack Transylvania. 

After the new plan of 1723 the works focused on the development of the Fortress 

and on draining marshes. In the following forty years this improvement brings to 

the construction of several bridges, many public buildings and to the water 

network betterment 56. 

The existing fortress no longer corresponded to the new technologies of war so 

they built a new system of defense from 1723 to 1765. The new area that had to 

be included within the walls was twice larger than the one of the medieval city. 

Small fragments of the fortifications are still visible today in Timisoara. The 

56 Timisoara 2020 overall vision: a case study (Tadi, 2007)   
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organization of the buildings, organized in perpendicular streets, reflected a 

military reason. The lack of space inside the fortifications, caused the 

displacement of the functions of productions out to the new district of Fabric, that 

raised at east of the actual Dacilor Street. in the north and in the east of the city 

new districts were born, abandoned few years later. Meanwhile, the regularization 

of Bega and Timis course and the draining of the marshes were changing the city's 

image57. 

 
Fig. 1.6.4: Plan of Timisoara in 1734. 

REFERENCE: Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. 
(Primaria Municipiului Timişoara, Plansa 9) 

1.6.5  City in 1750 - Habsburg Empire58  

The surface of the fortified city was not enough to accommodate all the functions 

the city needed, so new suburbs were designed and constructed starting from 

1744: 

57 Istoria Timisoarei (Enciclopedia Romaniei, 2014);  
Istoria Timişoare (Munteanu and Leşcu );  
Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. (Primaria     
Municipiului Timişoara, Plansa 9). 
58 Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. (Primaria 
Municipiului Timişoara, Plansa 11) 
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• the suburb of “Fabric Rascian”, for Orthodox, Serbs and Romanian 

residents; 

• the suburb of “Fabric German”, for catholic residents, with residential, 
commercial and craft functions; 

• the suburb of “Maierele Germane”, for German residents and having 
residential and agricultural functions; 

• the suburb of Mihala, for Orthodox residents and having residential and 
agricultural functions too. 

In the actual district of Elisabetin there were just four scattered constructions, 
called after 1750 “Mahiarele Vechi”. 

 
Fig. 1.6.5: Plan of Timisoara in 1750. 

REFERENCE: Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. 
(Primaria Municipiului Timişoara, Plansa 11) 

1.6.6  Second half of XVIII century - Habsburg Empire59 

Between 1778 and 1779 Banat had been divided into three committees, 

incorporated into the administrative Kingdom of Hungary, excepted for the south 

of the region, still under Vienna control. Timisoara was no more the capital of a 

vilayet, it became the headquarter of the Committee of Timis but kept its 

59 Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. (Primaria 
Municipiului Timişoara, Plansa 16) 
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autonomy thanks to the status of royal town. During the second half of XVIII 

century, the suburbs developed: 

• in 1780-1781 the districts of Rascian and German Fabric united and they 
expanded to east; 

• in 1773, in occasion of Emperor Joseph II’s visit, “Maiere Germane” was 
called Iodefin; 

• the district of Mehala expanded to north-east; 

• a new district raised around Maiere Vechi, inhabited by Romanians in the 
east and by Germans in the west. 

At the end of the eighteenth century, Timisoara is considered one of the most 

beautiful and clean cities in Europe. The need to ensure good living conditions 

led to the reorganization of all the villages in the Banat, and the construction 

of new ones.  

 
Fig. 1.6.6: Plan of Timisoara in 1784. 

REFERENCE: Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. 
(Primaria Municipiului Timişoara, Plansa 16) 
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1.6.7  First half of XIX century – Voievodina Sarbeasca si Banatul 

Timisan60 

In 1884 Timisoara, with the Committee of Timis, became part of the Austrian 

Empire. Between 1780 and 1848, the urban structure did not have such a large 

development, particularly the central district, which was limited by the 

fortifications around it. The district of Fabric extended to east and north  of the 

two Bega canals, while the districts of Maierele and Iosefin united and the district 

of Mehala expanded to west and southwest. With the Revolution of 1848-1849, 

139 buildings were destroyed by bombing. During the “Voievodina  Sarbeasca si 

Banatul Timisan” in Timisoara many manufactures grew up, like brewery, soap 

manufacturing, carpet manufacturing and agriculture and the city became the 

place of some administrative centers, like a branch of the Austrian National Bank 

and the Chamber of Commerce and Industry. Many important technical 

innovations were introduced: on 1853 the telegraph line connected Timisoara to 

Budapest, in 1857 the first gas street lighting of Romania shone and Timisoara 

was connected to the railway network of the empire, finally in 1858 Timisoara is 

linked through railways to Danube port.  

60 Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. (Primaria 
Municipiului Timişoara, Plansa 18); 

Evolutia istorica a aorasului  (E-Patrimonium Timiensis, 2005). 
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Fig. 1.6.7: Plan of Timisoara in 1853. 

REFERENCE: Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. 
(Primaria Municipiului Timişoara, Plansa 18) 

 

1.6.8  End of XIX century  and beginning of XX century – Kingdom 
of Hungary61 

In 1866, after the war against Prussia, the Austrian Empire split up in Austria and 

in Hungarian Kingdoms, and Timisoara was included in the second one. In 1868 

the esplanade around the fortifications was reduced from 948 m to 569 m  and the 

districts of Fabric and Iosefin approached this new limit. Timisoara lost its 

military importance and needed space for expansion, so from 1899 to 1910 the 

Council decided to demolish the old city gates and the fortification walls.From 

1893 there were many projects and proposals aimed at the reunification of the 

urban setting and in 1899 the first electric tram of Romania crossed Timisoara. 

From 1904 to 1913 the districts of Iosefin and Fabric were connected to Cetate 

area through two boulevards, respectively Blvd 3 August 1919 and Blvd 16 

December 1989, where monumental buildings were constructed.  Although there 

61 Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. (Primaria 
Municipiului Timişoara, Plansa 20); 
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was a great growth in that period, large areas around the central quarter remained 

free and undeveloped.  

 
Fig. 1.6.8: Plan of Timisoara in 1876. 

REFERENCE: Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. 
(Primaria Municipiului Timişoara, Plansa 20) 

 

After the World War I the Austro-Hungarian Kingdom collapsed and Banat was 

incorporated in Romanian Kingdom. The architecture of that period was similar to 

the previous one, but the construction of a lot of villas in the free space between 

the districts conferred to Timisoara the aspect of a “Garden City”. New 

boulevards were constructed, like Blvd of 1989 Revolution, Blvd Take Ionescu or 

Blvd Bogdanestilor62.  

62 Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. (Primaria 
Municipiului Timişoara, Plansa 28) 
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Fig. 1.6.9: Plan of Timisoara in 1936. 

REFERENCE: Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. 
(Primaria Municipiului Timişoara, Plansa 28) 

1.6.9   Second half of XX century – Soviet Period63 

After the occupation by the Soviet troops in 1944 the Communist Regime was 

established in Romania. The construction activity was interrupted during the war; 

after that period it recovered slowly, mainly with the edification of residence 

filling the empty spaces between the ancient districts. In the first 23 years after the 

end of the war in the whole city were built 300 buildings. Since 1950, the central 

institution of Bucharest disposed plans of arrangement and in 1964 in Timisoara 

the "schema for the systematization" was promulgated, from the following year 

apartment blocks (1205 in 1965) began to be built occupying the interstitial spaces 

between the historic districts. in 1979 5927 flats of poor workmanship were built.  

63 Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. (Primaria 
Municipiului Timişoara, Plansa 30) 
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Marginally to the residential zone, a large industrial area stretched between Buzias 

way, the west area of the railway station and Sagul way. The Communist Party of 

Bucharest controlled urban development through a paper guide and in 1986-1989 

it proposed the demolition of the historical buildings of the previous historical 

ages and replace them with residential "socialist" blocks.  

 

 

Fig. 1.6.9: Planul comunei urbane Timisoara in 1936. 

REFERENCE: Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. 
(Primaria Municipiului Timişoara, Plansa 29) 
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1.6.10  End of XX century until today64 

With the defeat of Ceausescu in 1989 Revolution grew up a new govern based on 

parliamentary democracy that reintroduced the concept of an urban development 

based on citizens requests. Economy influenced urban evolution. The positive 

aspect was the introduction of new commercial units in both historical and new 

areas. The negative aspect was the not authorized changes to historical buildings 

that leaded to the their degradation. 

 

Fig. 1.6.10: Municipiul  Timisoara plan urbanistic general  in 1998. 

REFERENCE: Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. 
(Primaria Municipiului Timişoara, Plansa 38) 

 

The following image shows the evolution of the districts from 1750 until today, 

strongly influenced in their development by the fortified walls of Cetate and by 

the distance from the original suburbs. The regulation of Bega river and the 

drainage of the marshes led the satellites suburbs to expand toward the citadel. 

The demolition of the fortifications brought to the progressive union of Cetate 

64 Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. (Primaria 
Municipiului Timişoara, Plansa 38) 
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with the districts of Fabric, Iosefin and Mehala, with the filling of the spaces 

between them. 

 

Fig. 1.6.10: Evolutionary scheme of Timisoara from 1750 to 1998. 

REFERENCE: Planuri prezentând evoluţia timişoarei din secolul al xii-lea până în prezent. 
(Primaria Municipiului Timişoara, Plansa 40) 
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1.7   BLOCKS IDENTIFICATION 

The majority of analyzed blocks are collocated in the historical city center, in the 

district of Cetate, while few of them are located in the district of Iosefin, at south-

west of the city center.  

 
Fig. 1.7.1: Localization of analyzed blocks in Cetate and Iosefin districts 

REFERENCE: (Google Earth 2014) 

 

The center district occupies an area of 39 hectars. It was in past delimitated by the 

Habsburg fortification and the square implant of XVIII century still rules the area 

organization. Now it is delimitated from Gheorghe Dima Street at west, from 

Oituz Street at north and from Ion C. Bratiuanu Street at south-east. It is organized 

in 36 blocks, that usually coincide with the Habsburg square, for a total of about 
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two-hundred buildings. A block can be composed by one building, like blocks C2, 

C13, C19, C29 or C32, by more isolated buildings, like blocks C20 or C28, or by 

an aggregate. Some blocks can contain churches or RC buildings that are not 

included in the present analysis, but they are numerated as structural unit as well 

(for example block C8). The district is a very active area of the city and almost all 

the buildings are occupied and used as residences, offices, shops or public 

services.  

 

 
Fig. 1.7.2: Blocks and structural units identification in the district of Cetate 
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The objects of this thesis are masonry buildings organized in aggregates, so 

blocks composed by one building are not considered in the vulnerability study. 

This isolated buildings, usually characterized by big plan dimensions and a 

particular structural typology, are called “monumental blocks”.  They do not 

constitute an aggregate  and their typological characteristics are different from 

the common buildings of the city center. They are:  

- block C2: composed by a singular building of C shape, is constituted by an 

abandoned military barrack; 

- block C13: the block occupies an area of two squares; one building hosts 

the military hospital of the city, organized around three squared internal 

courts; 

- block C19: composed by one building, organized around two rectangular 

and one squared internal courts, which houses the law court; 

- block C20: composed by two rectangular buildings with an internal court, 

it was occupied in the past by the city prisons ;nowadays the block has 

many shops and offices; 

- block C29: composed by one building with an internal court; it is 

prevalently a residential structure; 

- block C32: one building with an internal court occupies the entire block, 

shops and restaurants are located on the ground floor and there are 

residential spaces on the upper floors. 

The district of Iosefin is located in the south-western part of the city center, on 

the other side of Bega river. It is a residential district, but there are some shops 

and restaurants in the area. In this part of the city the analyzed buildings are 

45, organized in 4 blocks: I41, I42, I43 and I44. All the analyzed units are 

masonry buildings, except for US 214, and they are all organized in aggregate. 
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Fig. 1.7.3: Blocks and structural units identification in the district of Iosefin 
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1.8  TYPOLOGICAL, ARCHITECTURAL AND  URBAN 
CHARACTERISTICS 

1.8.1   District of Cetate 

The blocks are regulated by a grid of streets perpendicular to each other. The 

streets are rotated of 7° to east-west horizontal. Usually blocks have a rectangular 

shape and their dimensions may range from 50 to 100 m, but if they are located 

near the center delimitation they can have a triangular or polygonal shape. The 

distance between buildings is usually about 10 m, but can reach 30 m along the 

street tramway, that cuts the center in two parts: the northern one, is composed by 

25 blocks. This part is characterized by the major square Piata Unirii. The 

southern part is composed by 11 blocks and there is an other importan square 

called Piata Libertatii. The aggregates follow the rigid grid of streets, forming a 

continuous façade throughout all the block sides, and they are characterized by a 

strong presence of internal courtyard. These courtyards can be formed by a 

singular building, developed around the internal empty space, or by the 

assembling of more buildings around a common space. In the second case it is 

possible to find very high masonry walls between internal courtyards, sometimes 

as high as the building itself,  dividing different properties. Five building shapes 

are recognizable in plan:  

- the “O shape”, in which the building is organized around one internal 

courtyard in continuity for all its sides; 

- the “C shape”, that is similar to the “O shape” but one side, or part of it, is 

missing and so there is no continuity for all the building; 

- the “A shape”, that interests the buildings located in the vertex of a 

triangular block; 

- the “L shape”, that contains building composed by two corps 

perpendicular to each other; 

- the “H shape”, that contains rectangular buildings. 

The biggest buildings, in particular “monumental buildings”, have a O or C shape, 

while the smaller ones have usually a rectangular shape.  
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Fig. 1.8.1: Plan shape of Cetate buildings 

 

The oldest buildings in town date back to the first half of XVIII century, when 

Count Mercy imposed the reconstruction in bricks of all the city center 

constructions, following the new grid of streets. Buildings dated in the first half of 

the century occupy the inner part of the center, while the constructions dated 

between the half of XVIII century and the half of XIX century occupy  more 

external spaces, until the old fortifications. During the Revolution of 1848-1849 

many buildings where partially destroyed by bombing, so between the end of the 

XIX century and the beginning of the XX century these constructions were 
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rebuilt, often keeping the old structure until the ground floor and  intervening on 

the upper floors. RC buildings are the only constructions in this area dated after 

1945 and they are usually placed at the extremes of the center area. 65  

 
Fig. 1.8.2: Masonry buildings age in Cetate 

 

Masonry buildings in the city center are usually from 2 to 4 stories high, but it is 

possible to find few cases of 1 or 5 stories. There are the basement or the 

65 Cartierul "Cetatea Timişoarei", Index alfabetic al străzilor.. (Primaria Municipiului Timişoara) 
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underground floor in almost the totality of buildings, while a practicable attic is 

often the result of recent interventions on wooden roofs. The major part of the 

buildings are regular in elevation and a good part of them are regular also in plan. 

Elevation irregularity is often caused by later intervention on upper floors or by 

complex roof shapes.  

The prevalent vertical structure is composed by solid brick masonry and walls 

thickness usually decrements from the underground to the upper floors. It can 

oscillate from 90 or 105 cm of basement to 45 or 60 cm of upper floors, with steps 

of 15 cm. Just few buildings, usually built around 1920-1930, have a bearing 

structure of metal reticular columns on the ground floor and masonry walls on the 

upper floors. The vertical connection between perpendicular walls is usually bad 

and two adjacent structural units can share the same common wall or can have 

two approached but separate walls. Other vertical structure in the area are metal 

column and local interventions in RC. 

The horizontal structures are not the same for each floor, so in the same building it 

is possible to find even three different type of horizontal structure. The basements 

and the underground floors are characterized by brick vaults and just in few cases 

by iron beams and little brick vaults. On the ground floor it is possible to find 

brick vaults, if the building dates back to the XVIII century, iron beams and little 

brick vaults, if the building is dated in the second part of XIX century, or iron 

beams and very low brick vaults if the building dates back to the beginning of XX 

century. The last type of horizontal structure is often combined with masonry 

pillars or metal reticular column on ground floor, creating large windows and high 

ceilings on this floor. Almost the totality of upper floors and roofs have wooden 

structure, but a recurrent intervention on historical buildings in the latest years is 

the substitution of timber horizontal structure with concrete slab and roof 

reconstruction with a mixed wood and concrete structure. In this case the 

Romanian normative orders the inserting of a curb on the top of the bearing walls. 

In the same building it is  possible to find a combination of both rigid and 

deformable horizontal structures, well or badly connected with the vertical 

structure.  
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Other elements diffused in the district are arcade and loggias, usually around 

internal courtyards, and external stairs and added corps, typically in the back of 

the buildings. In some constructions it is possible to find also overhanging 

elements, both on the main façade or on the back of the building, and they are 

built not with regular solid bricks, but with largely holed bricks. Towering and 

standing out elements are very common  too, particularly around major squares, 

where frontons were added later on the top of buildings.  A very characteristic 

element, due to the plan shape of building, is the passage to the internal courtyard. 

This can be about 3 or 4 m large and vaulted, or just 1 or 2 m large but two stories 

high, but in both cases it is usually in strict relation with the stairs system. 

The façade has usually a big number of windows and openings, so the open 

surface usually exceeds the 30% of the total surface, and this is the reason why 

soft story due to many and/or of large dimension holes is present in almost the 

totality of buildings. 

 

     
Fig. 1.8.3: Arcades and loggias(US 42 and US 77) 
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Fig. 1.8.4: Overhanging elements and holed bricks(US 5) 

   
Fig. 1.8.5: Towering elements and frontons (Blocks C4 and C3) 

   
Fig. 1.8.6: Vaulted passage and double high passage (US 125 and US 3) 
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Fig. 1.8.7: Widely holed facades(Blocks C9 and C16) 

 

The majority of buildings is in good condition or with widespread damage on  

non-structural elements, but there are anyway many buildings in bad condition or 

with very serious damage. In these constructions the damage of plasters, 

coverings,  tiles and chimneys is quite spread, but also in few cases very deep 

cracks and evident structural subsidence interest the construction. Even if the 

building from the outside seems in good conditions, it is not sure that has the same 

characteristics inside. It is very common indeed to restore just the outer part of the 

façade and leave the inner parts as they were.  

 

   
Fig. 1.8.8: Non-structural and structural damage (US 133 and US 71) 

1.8.2   District of Iosefin 

The district blocks follow a sort of grid, but not as rigid as the Cetate one. Some 

of them have a rectangular shape, but more often  they assume a polygonal or 

triangular shape. A block can reach almost 250 m of side dimension, with 20 or 
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more buildings in it. The urban texture is not as thick as the city center and even  

in the narrower streets buildings stay at  more or less 15 m from each other, while 

the principal boulevard reach a width of almost 40 m. Blocks form a continuous 

façade in all their sides, but inside them there is more empty space then in Cetate. 

In this district the most common building shapes are the “C”, “L” and “H” ones, 

and  usually  constructions are developed following the limits of the property. 

That is the cause of the fragmented organization of the internal spaces of the 

block.  

 

Fig. 1.8.9: Plan shape of Iosefin buildings 

The district of Iosefin begins to grow at the end of XVIII century as an  answer to 

the limited space of the city center, but the analyzed blocks can be dated in the 

second half of the XIX century.  
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Fig. 1.8.10: Masonry buildings age in Iosefin 

In the analyzed blocks, buildings are 1, 2 or 3 stories high and in the major part of 

them there is also a basement. They are all regular in elevation and many of them 

are also regular in plan. 

just one of the observed buildings is in RC, the others have a solid brick masonry 

vertical structure and walls thickness is the same of  Cetate. Due to the tricky 

condition of the survey in this area, the informations about the horizontal 

structures are less secure, but it is possible to identify the most common structures 

as timber or iron beams and very low brick vaults at the ground floor, brick vaults 

or iron beams and little brick vaults for the basement and timber for the upper 

floors. The roof is usually a timber structure, but as in the historical center many 

interventions of substitution of wooden structure with concrete structure have 

been made in the latest years.  

Due to the internal organization of  these blocks, the majority of buildings has 

added bodies on their back side and, as in the city center, almost all the 

constructions have a passage to the internal courtyard or garden. Just few 
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buildings have towering elements and there are frontons just in the most noble 

constructions, like ones near the central square or along the boulevard. 

Most of the buildings are in good or medium conditions, but there are some that 

are in bad conditions or with a medium structural damage. These units often 

shows deep cracks and evident deformations in the façade. 

 

   
Fig. 1.8.11: Passage to the internal courtyard (US 210) Fig. 1.8.12: Frontons(US 206) 

 

   
Fig. 1.8.13: Non-structural and structural damage (US 208) 
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1.9 RECURRENT CONSTRUCTIVE TECHNIQUES  

The constructive techniques in Timisoara were very influenced  by the Habsburg 

presence in the territory. All the buildings built in the same period show recurring 

elements and a certain homogeneity, not only for the Habsburg period, but also 

for Hungarian period and the first part of XX century. The difference between 

each period is expressed principally through horizontal structures.  

1.9.1  Vertical structure 

The historical buildings vertical structure is solid brick masonry. Bricks 

dimensions are 7x15x30 cm and their length characterize the walls thickness. Two 

bricks arranged in length one in front to the other form a 60 cm thick wall, three 

bricks form a 90 cm thick wall and so on. The thickness step is 15 cm, so half 

brick length, and the most common wall thickness are 45 cm, 60 cm, 75 cm, 90 

cm. In some undergrounds or in monumental buildings is possible to reach a 

thickness of 105 cm. The wall dimension can stay the same for the entire building 

high, but more often it decrease with stories high. 

 

 
Fig. 1.9.1: Masonry sections for each wall thickness  

 

In few cases of recent upraising it was possible to observe that the new wall has a 

very bad mortar distribution that does not cover the entire space between each 

brick. Besides, bricks are not regularly arranged and with aligned joints.  Some 

buildings built between 1877 and 1915 have overhanging elements on the façade. 

These elements are made by holed bricks, having the same dimension of  solid 
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ones but on the front face they present three holes. The holes occupied more or 

less 1/3 of the short side and 1/7 of the long one.  

In few cases it is possible to see under the plaster layer that many bricks of 

different dimensions are used in the same wall. It is not known the nature or the 

motivation of this technique, but it is evident that it creates a wall of bad  

mechanical characteristics.  

   
Fig. 1.9.2: Upraising masonry (US 100 and US 85) 

 

   

Fig. 1.9.3: Holed bricks and irregular masonry (US 5 and US167) 

In case of raising, the new stories can be built in concrete blocks. Just in one case 

it is possible to observe this vertical structure under the plaster layer, and it was in 

a heavily reworked building, so it is not clear if this intervention is diffused.  

Another vertical element seen just in one building is an RC septum that  interests 

all the building height. It is collocated parallel to the main façade and it is 

colligated to the concrete slab under the attic, forming an unique concrete object 

with a “T” shape.  
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Fig. 1.9.4: Concrete bricks(US 48) 

 

A vertical element that is common to find in the city center is the metal column. 

There are two types of it: the first one is cylindrical and solid and it is usually 

collocated in the internal courtyard to support loggias or balconies, and the second 

one is reticular and it is the bearing structure of the entire ground floor. The 

reticular metal column is typical for buildings dated back between the end of the 

XIX century and the beginning of XX century and the principal examples are 

concentrated at the corner of Episcop Augustin Pacha Street and Eugeniu de 

Savoya Street. This vertical structure is usually combined with iron beams and 

very low brick vaults, creating a ground floor characterized by many and wide 

windows. Reticular columns are usually 60x60 cm and they distance 3 or 4 m 

from each other. 

   

Fig. 1.9.5: Solid metal columns(US 8 and US 28) 
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1.9.2   Horizontal structures66 

In Timisoara there are six types of horizontal structures. While ground floor and 

basement structures are often visible even from the outside of the building, the 

recognition of upper floors horizontal diaphragms is more complicated. The six 

typologies are: 

- Timber horizontal structure: this typology usually interests upper floors, 

but in case of one storey building can be found also at the ground floor. 

There are two principal types of timber structures, one with adjoining 

wooden beams posed side by side, and one with distance between each 

beams, filled with soil and shards. In some cases the second typology was 

modified with new wooden beams insertion in the spaces between the 

original beams, to stiffen the horizontal structure. This intervention makes 

this typology very similar to the adjoining one. Due to this similarity we 

will consider the heaviest  and probably the most common one, that is the 

adjoining beams typology.  

 

Fig. 1.9.6: Timber horizontal structure detail, distanced beams typology 

 

66 Illustrated dictionary of historic load-bearing structures (Szabo’, 2005) 
   Verein "Der Bauconstructeur" an der k. k. technischen Hochschule in Wien ( Prokop, 1899) 
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Fig. 1.9.7: Timber horizontal structure detail, adjoining typology  

 

 

Fig. 1.9.8: Timber horizontal structure detail, distanced beams typology in which new beams were 

added in the spaces between old beams 

 

   
Fig. 1.9.9: Timber horizontal structure examples(US 130 and US 124) 

- Concrete slab: historical buildings originally did not have this structure, 

but it comes from the substitution of wooden structure in latest restoration 

or renovation interventions. There are not many information about layers 
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and dimension of the structure, but it is possible to speculate about a 15 

cm thickness of the concrete slab and between 5 and 10 cm of mortar bed 

and finishing. 

 

Fig. 1.9.10: Concrete slab detail 

 

- Brick vault: this is the most common typology for basements and 

underground floors, but it is also very diffuse for ground floor of historical 

buildings from half of XVIII century. It is possible to find barrel vaults, 

usually for corridors or very long rooms, or groin vaults. It is possible that 

the same building has both vaults typology. Due to plan irregularity, vaults 

are usually asymmetrical. Over the brick vault there are 50-60 cm of soil 

and shards filling and on the top of it there are wooden boards of 6x6 cm 

and a wooden floor layer.  

 

Fig. 1.9.11: Brick vault detail 
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Fig. 1.9.12: Brick vault example and soil and shard filling (US 192 and US 130) 

 

- Brick vaults and horizontal concrete diaphragms: like concrete slab, this 

horizontal structure is not original, but it is  a result of latest interventions. 

The substitution of the wooden layers with a concrete slab causes the 

discharge of the brick vault and the consequent stiffening of the horizontal 

structure. The filling is not known, but it is reasonable to suppose soil 

filling, similar to the previous one tipology. As in the case of the concrete 

slab, dimensions and layers are not certain for this kind of horizontal 

structure. The brick vault from below looks exactly like an original one, so 

the presence of this structure is supposed in relation with other horizontal 

structure typology and  visible interventions. 

 

Fig. 1.9.13: Brick vault and horizontal concrete diaphragms detail 
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- Iron beams and little brick vaults: this horizontal structure is typical for 

basements and ground floors of buildings dated back to the second half of 

XIX century. Sometimes it is possible to find it also on the upper floors, 

but in very few cases. Usually the warping of this structure is 

perpendicular to the main façade, but it can be found also parallel to it. 

The exact dimension of the iron beam is not known, but it is similar to a 

IPE 200. 

 

Fig. 1.9.14: Iron beams and little brick vaults detail 

   

Fig. 1.9.15: Iron beams and little brick vaults examples(US 100 and US 3) 

 

- Iron beams and very low brick vaults: the only difference between  this 

structure and the previous one is the vaults arch. This arch is so low that 

from below can look almost plan. This structure is typical of buildings of 

the beginning of XX century, particularly combined with  masonry pillars 

or metal reticular columns.  
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Fig. 1.9.16: Iron beams and very low brick vaults detail 

for these structures, concrete slabs and brick vaults with horizontal concrete 

diaphragms are considered as rigid structures and well connected to vertical walls. 

brick vaults are considered as deformable but well connected and timber 

structures and iron beams with little brick vaults as deformable and badly 

connected. 

1.9.3  Roofs 

In Timisoara there are historically non–thrusting timber roofs  with a slope of 

about 34°. There are different dispositions of wooden beams, but the attic is 

always impracticable. The top horizontal structure is usually independent from the 

roof structure and it separates the top storey from  the attic. The roof covering is 

usually constituted by ceramic tiles posed over secondary wooden beams, 

disposed perpendicularly to the principal beams. The timber trusses roof has been 

drawn referring to the material provided by Arch. Bogdan Demetrescu. 
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Fig. 1.9.17: Non –thrusting timber roof  detail  

REFERENCE: Verein "Der Bauconstructeur" an der k. k. technischen Hochschule in Wien  
( Prokop, 1899) 

 

   

   

Fig. 1.9.18: Non –thrusting timber roof  examples (US 100 and US 124) 

In the latest years roof reconstruction became a common intervention on historical 

buildings. The substitution of the horizontal timber structure of the attic with a 
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concrete slab makes this space fit for use, adding a floor on the building total 

count. The new roof has a mixed non-thrusting structure, in which the bearing 

function is accomplished by  concrete beams while new wooden beams and 

ceramic tiles are used for the covering. The insertion of a concrete ring beam all 

over the perimeter walls is obliged by Romanian normative. This intervention 

increases loads over the historical masonry walls, that often are left in the original 

condition (no intervention). It was not possible to collect more information about 

this intervention except for on-site observations and experts indications, so the 

details of this new type of roof are hypothesized, as well as elements measures. 

 

Fig. 1.9.19: Non –thrusting mixed roof  detail (hypothesizes) 

   

Fig. 1.9.20: Non –thrusting mixed roof  examples (US 82) 
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1.10   REINFORCING ELEMENTS 

 

Reinforcing elements are those structural elements or devices that improve the 

seismic response of the structure. Some of them are easily recognizable, such as 

buttresses and contrast elements, but some of them are hidden inside the building, 

like tie rods  and their anchor plates or reinforced plasters. Due to the rapid and 

external surveys, it was difficult to recognize the second above mentioned group. 

Anyway, reinforcing elements in Timisoara are: 

- Buttresses and/or spurs: just 3 buildings present this kind of reinforcement. 

They are collocated where there are not adjacent buildings to contrast the 

out of plan force, and they usually interest just the first storey. 

   

Fig. 1.10.1: Spurs  examples(US 194 and US 95) 

- Contrast elements:  the only example of this typology is a series of contrast 

arches between two walls of the same building. Masonry arches are 

collocated in correspondence of each storey, except the last one.  
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Fig. 1.10.2: Contrast elements examples(US 5) 

- Tie rods: they are metallic elements that improve connections between 

masonry walls and horizontal structures, preventing the out of plan 

overturning. The presence of these elements do not assure automatically a 

reinforcing function, cause they can be ineffective in many ways. The 

wrong position or the wrong action direction are examples of their 

inefficiency. Tie rods in Timisoara are usually parallel to the main façade 

and are visible in the latest floors wall. The eventual presence of tie rods 

on the main façade is hidden by decorative elements and considering this 

condition it is not possible to tell for sure the efficiency of observed tie 

rods and for this reason they are considered ineffective. 

   

Fig. 1.10.3: Tie rods  examples(US 79 and US 237) 

- Reinforced plaster: this intervention it is very difficult to recognize at 

finished work, cause the metal elements will be covered by the plaster 

layer. There is only one case in which the metal grid is visible, in a work 

in progress building. 
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Fig. 1.10.43: Reinforced plaster  examples(US 17
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2 TYPOLOGICAL ANALYSIS 

 

The analysis carried out in the previous chapter about history, geology and the 

recurrent elements that characterized the center of Timisoara represent a 

comprehensive initial study of the blocks. These preliminary studies are a good 

starting point to develop the typological analysis that will be deepened in this 

chapter. 

2.1  ON-SITE ACTIVITY 

The activities in the center of Timisoara and in the district of Iosefin took place 

from 4th to 18th of November. This phase was essential for a global knowledge of 

all the blocks and for the development of vulnerability analysis. The general 

reconnaissance of the block, helped by historical informations and a satellite map, 

allow the definition of different structural units. The structural unit is usually 

delimitated by open spaces, structural joints or adjacent buildings with a different 

structural typology. In the same structural unit the flow of vertical loads must 

have continuity from sky to earth.1 

 Measurements has been carried out for each building, and a complete 

photographic survey has been made; all the data have been collected in 

appropriate forms. 

The presence of Romanian students helped the data collection, allowing the 

entrance in internal courtyard and collecting more information about buildings. 

Despite this, just few buildings were completely visited. 

This fact caused the inability to set the typology of the horizontal structures for all 

the structural units and sometimes the walls thickness ; due to this, all the 

uncertain data have been marked by two different colors: green if the information 

was probable but unsure and red if it was only a hypothesis.  

1 §8.7.1 Costruzioni in muratura (NTC 2008, p. 332) 
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2.2  SURVEY FORMS 

The data collected during the on-site activity were included in specific forms, 

drawn up by the Construction Technologies Institute, an organism part of the 

Italian National Research Council. These forms have been adapted to the specific 

case study of the city of Timisoara, omitting or adding some parts. All forms has 

been translated from Italian to English and the parts about Italian normative and 

cartography has been modified referring to the available material. Average 

interstorey height column has been subdivided in four columns, respectively for 

ground floor, upper floors, attic and underground. Information  about wall 

thickness has been introduced and it has been divided for ground floor, upper 

floors and attic. Holes in façade column has been divided for the principal façade 

and the general façade. Prevalent vertical and horizontal structures columns have 

been subdivided for ground floor, upper floors, attic and basement or 

underground. Modifications have been made also in forms legenda, adding 

characteristics typical of Timisoara and omitting options that were not 

representative of the city, in particular for vertical and horizontal structures 

typologies, interventions and other elements. 

The form consists in a first part about geometrical-typological and vulnerability 

information (this part is different between masonry buildings and reinforced 

concrete buildings) and a second part concerning exposure and damage. For each 

structural unit both forms had been filled and the completed ones are in annex A. 

The contents of the forms and their legends will be explained in the following 

paragraphs. 

2.2.1  Masonry buildings: geometrical-typological data and         
vulnerability information 

This form (Fig 2.2.1, Tab 2.2.1) organizes all the general information about the 

single structural unit: 

• General information about buildings location (street, number, other 

information), age and previous interventions; 
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• Geometrical data such as the number of stories, plan area, heights, 

percentage of holes in façade; 

• Typological data about vertical structures, horizontal structures, roof and 

joints; 

• Buildings regularity and vulnerability factors; 

• Inspection accuracy. 

Below the form2 and the relative legend3 are shown. 

 

2 Scheda per il rilevamento speditivo degli edifici in muratura (Consiglio Nazionale delle 
Ricerche, Istituto per le Tecnologie della Costruzione, 2003) 
3Scheda per il rilevamento speditivo degli edifici in muratura. Istruzioni (Consiglio Nazionale 
delle Ricerche, Istituto per le Tecnologie della Costruzione, 2003) 
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Fig. 2.2.1 Masonry buildings: geometric typological data and vulnerability information form 

REFERENCE: Scheda per il rilevamento speditivo degli edifici in muratura (Consiglio Nazionale 
delle Ricerche, Istituto per le Tecnologie della Costruzione) 
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BUILDING IN 

THE 

AGGREGATE 

(multiple choice) 

1 isolated    

2 head     

3 corner      

4 inside      

5 backward    

6 protruding  

 

A same height    

B higher    

C lower    

D higher and smaller    

E towering    

F staggered slabs (at different levels) 

 

AGE 

A < 1747  

B 1747-1758      

C 1759-1812     

D 1813-1876     

E 1877-1945 

F 1946-1977    

G 1978-1992     

H 1993-2006     

I >2006      

INTERVENTIONS 

A enlargement   

B raising    

C renewal  

D restoration   

E maintenance  

F facade restoration   

G  partially demolished 
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H  bombed and partially reconstructed 

I  possible demolition and reconstruction 

R  no intervention 

S  substitution (if the unit is replaced with an r.c. one, 
 complete r.c. form) 

T  work in progress 

TOTAL  
STORIES 
NUMBER 

Fill out the total number of stories of the building, 

including underground floors. Attic should be excluded 

unless its average height is less than 20% of the avarege 

interstorey height of the building. 

OUT OF 

GROUND 

STORIES 

NUMBER 

Fill out the stories number of the building, considering the 

lower part around it and including the attic if its average 

height is less than 20% of the average interstorey height of 

the building. 

A attic      

U underground       

B basement 

STORIES 
NUMBER  OF 

THE MAIN 
FACADE 

Fill out the storey number on the main facade. 

A attic      

U underground       

B basement 

FLOOR AREA 

The plan area of the building can be estimated through the 

use of the cartography, with maximum approximation of 

10%. 

AVERAGE 

FLOOR AREA 

Fill out the average gross floor area of each storey of the 

building. 

AVERAGE 

INTERSTOREY 

HEIGHT 

Fill out the average  height of each storey of the building, 
approximated to 0,5 m. 

GF  ground floor   

F+ upper stories   
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FA attic 

FU underground 

MAXIMUM 

INTERSTOREY 

HEIGHT 

Fill out the maximum interstorey height measured for each 

storey, approximated to 0,5 m. 

MAXIMUM/ 

MINIMUM 

BUILDING 

HEIGHT 

Fill out the maximum/minimum height of the building, 

estimated from the eaves. 

MAIN FACADE 

HEIGHT 

Fill out the average height of the main facade, estimated 

from the eaves. 

HOLES IN 

FACADE 

The evaluation takes into consideration both the main 

façade and the average percentage for the other visible 

facades: 

PF principal façade 

GF other visible façades 

A < 10%      

B 10%-20%  

C 20%-30% 

D > 30%  

STRUCTURAL 

TYPOLOGY 

1 only perimeter walls    

2 interior walls 

3 reinforced concrete above masonry  

4 masonry above r.c 

5 masonry and r.c. on the same floor 

6  reinforced masonry 

7  confined masonry 

8  masonry and Rc septum 

9  masonry above the ground floor with metal  

 reticular column 

10 masonry pillars at the ground floor 
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VERTICAL 

STRUCTURES 

TYPOLOGY 

 

A Single leaf walls      
B double leaf with inner core    
C brick masonry(solid or multi-hole)   
D brick masonry(holed)   
E mixed structures    
F hewn stone  
G  rounded stone 
H  tufa blocks, square stone 
I  concrete blocks (heavy) 
L  concrete blocks (light) 
M  RC septum   
N metal column 
O  concrete 
P  metal reticular column     

HORIZONTAL 

STRUCTURES 

TYPOLOGY 

A timber      

B timber with tie rods     

C metal beams with vaults or tiles    

D metal beams with vaults or tiles and tie rods  

E concrete and masonry or concrete slab   

F vaults without tie rods     

G vaults with tie rods 

H vaults and horizontal diaphragm   

I vaults and horizontal diaphragm with tie rods  

L metal beams with concrete slab    

M iron beams and brick tiles  

N iron beams and little brick vaults 

O iron beams and very low brick vaults 

P metal and glass 

ROOF 

A thrusting timber roof  

B limited thrust timber roof     

C contrasted thrust or horizontal timber beams 

D concrete and masonry or concrete slab  

E thrusting steel      

F non-thrusting steel     

G thrusting mixed roof    
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H non-thrusting mixed roof 

 

1 flat   

2 one flap 

3 more flaps  

VERTICAL 

STRUCTURES 

CONNECTION 

1 tie rods and/or tie beams for each level   

2 good connections between walls    

3 no ring beams and bad connections  

4 ___________________________ 

HORIZONTAL 

STRUCTURES 

CONNECTION 

 

1 rigid and well connected diaphragm   

2 deformable and well connected diaphragm   

3 rigid and poorly connected diaphragm   

4 deformable and poorly connected diaphragm 

REGULARITY 

A regularity in plan and in elevation     

B regularity in elevation     

C regular plan      

D none 

OTHER 

ELEMETS 

A arcade    

B loggia  

C external stairs      

D added bodies      

E isolated pillars   

F false walls      

G overhanging   

H  heavy roof 

I  demolition of structural elements 

L  non-aligned holes 

L*  non-aligned horizontal diaphragms 

M  irregular strengthening 

N  overhanging and towering/ standing out elements 
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O  vaulted passage  to the court 

P passage to the court 

Q  fronton 

R  loft at the ground floor 

SOFT STOREY 

STOREY GROUNDFLOOR UPPERFLOOR 

many holes and/or of 
large dimension 

considerable reduction 
of floor dimensions 

reduced or absence of 
interior walls 

Store with worst 
mechanical 

characteristics of the 
masonry 

A 

 

B 

 

C 

 

D 

E 

 

F 

 

G 

 

H 

 

REINFORCED 

ELEMENTS 

A buttresses and/or spurs     

B contrast elements      

C* tie rods     

D confined openings      

E reinforced masonry with injections or non-

reinforced plaster  

F reinforced masonry or with reinforced plaster  

G masonry with other or no identified reinforcement  

H  diaphragm in RC  

I  substitution of wood horizontal structures with RC 

ones 

L  RC curb 

M  introduction of metal beams in the horizontal 

diaphragm 

NON-

STRUCTURAL 

ELEMENTS 

A absence of non-structural elements    

B well connected non-structural elements  

  

C poorly connected small elements   
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D poorly connected big elements 

PRESENT STATE 

 

A good conditions      

B medium conditions or widespread damage    

C bad conditions or medium damage    

D worst conditions or serious damage 

ACCURACY OF 

THE 

INSPECTION 

A from the outside inspection     

B partially inside inspection     

C complete inspection 

 

Tab. 2.2.1: Legend of the masonry building form: geometrical-typological data and vulnerability 
information 

REFERENCE: Scheda per il rilevamento speditivo degli edifici in muratura. Istruzioni (Consiglio 
Nazionale delle ricerche, istituto per le Tecnologie della Costruzione) 

 

 

2.2.2 Masonry buildings: exposition and damage 

 
the second part of this form (Fig 2.2.2, Tab 2.2.2) defines all the general 

information about exposition and level of damage for each structural unit, such as: 

• Actual use and number of occupants; 

• Level and extension of damage according to European Macroseismic 

Scale, for every single element category such as vertical and horizontal 

structures, roof, stairs and infills and partitions. 

• global evaluation and damage of non-structural elements 

Below the form4 and the relative legend5 are shown 

4 Scheda per il rilevamento speditivo degli edifici in muratura (Consiglio Nazionale delle 
Ricerche, Istituto per le Tecnologie della Costruzione) 
5 Scheda per il rilevamento speditivo degli edifici in muratura. Istruzioni (Consiglio Nazionale 
delle Ricerche, Istituto per le Tecnologie della Costruzione) 
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Fig. 2.2.2 Masonry buildings: exposition and damage 

REFERENCE: Scheda per il rilevamento speditivo degli edifici in muratura (Consiglio Nazionale 
delle Ricerche, Istituto per le Tecnologie della Costruzione) 
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EXPOSITION 

- 

UTILIZATION 

A > 65%   
B 30% - 65%  
C < 30%   
D not used 
E under construction 
F not finished  
G neglected  

EXPOSITION 

- USE 

A residential   
B productive  
C crafts     
D commercial    
E office  
F public services and religious buildings 
G warehouse 
H strategic  
I tourism - accommodation facilities   
L _____________________  

DAMAGE - 

LEVEL/EXTE

NSION 

 >2/3 1/3-2/3 <1/3 

D4-D5 

D2-D3 

D1 

A 

D 

G 

B 

E 

H 

C 

F 

I 

DAMAGE - 

EMS/GLOBAL 

LEVEL 

 

CODE 0 1 2 3 4 5 

Structural 

 

Non-
structural 

Null 

 

null 

Null 

 

low 

Low 

 

severe 

Mean-
severe 

/ 

Partial 
collapse 

/ 

Total 
collapse 

/ 

DAMAGE - 

NON-

STRUCTURA

L ELEMENTS 

1 plasters, coverings and false ceilings    
2 tiles, chimneys  …      
3 ledge,  parapets  …      
4 other internal or external objects     
5 other damage   

 

Tab. 2.2.1: Legend of the masonry building form: exposition and damage 

REFERENCE: Scheda per il rilevamento speditivo degli edifici in muratura. Istruzioni (Consiglio 
Nazionale delle ricerche, istituto per le Tecnologie della Costruzione) 
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2.2.3 Reinforced concrete buildings 

This form (Fig 2.2.3, Tab 2.2.3) organizes the general information about 

reinforced concrete buildings, such as: 

• Geometrical data like number of stories, plan area, height,; 

• Typological data about structural system, joints and building regularity; 

Below the form6 and its legend7 are shown. 

 

6 Informazioni preliminari al censimento di vulnerabilità(cemento armato) (Consiglio Nazionale 
delle Ricerche, Istituto per le Tecnologie della Costruzione) 
7Istruzioni per la compilazione delle schede per il censimento speditivo di vulnerabilità (Consiglio 
Nazionale delle Ricerche, Istituto per le Tecnologie della Costruzione) 
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Fig. 2.2.3 Reinforced concrete building form 

REFERENCE: Scheda per il rilevamento speditivo degli edifici in cemento armato (Consiglio 
Nazionale delle Ricerche, Istituto per le Tecnologie della Costruzione) 
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TOTAL 

NUMBER OF 

STORIES 

Fill out the total number of the building stories, including 

underground floors. Attic should be excluded unless its 

average height is less than 20% of the average interstorey 

height of the building  

FIRST FLOOR 

H 

Fill out the height of the ground floor 

H MAX/MIN Fill out the maximum/minimum height of the building, 

estimated from the ground to the eaves 

USE residential 1=yes 2=no  

productive 1=yes 2=no  

public services 1=yes 2=no 

AGE A < 1919   

B 1919-1945   

C 1946-1960   

D 1961-1971   

E 1972-1981   

F > 1981   

G ________ 

FLOOR AREA The plan area of the building can be estimated through the 

use of the cartography, with maximum approximation of 

10%  

NUMBER OF 

STORIES OF 

THE MAIN 

FACADE 

Fill out the number of the storey on the main facade.  Attic 

should be excluded if its average height is less than 20% of 

the average interstorey height of the building.  

  

MAIN 

FACADE 

HEIGHT 

Fill out the average height of the main facade, estimated 

from the ground to the eaves. 

JOINT 1 isolated   
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2 according to law   

3 not according to law 

STRUCTURAL 
SYSTEM  

 

A prevalence of walls or frames with stiff masonry 
infills     (without  large holes and with resistant 
materials)  

B prevalence of frames with beams that are higher than 
the  thickness of the horizontal diaphragms and bad 
quality  infills  

C prevalence of frames with beams that have the same 
 thickness of  the horizontal diaphragms and bad 
quality  or absent infills  

D frames with high beams on the perimeter with bad 
quality  infills  and beams that has the same thickness 
of the  horizontal  diaphragms  

E presence of frames with beams that are higher than 
the  thickness  of the horizontal diaphragms and r.c. 
walls 

F prevalence of r.c. walls 

FIRST LEVEL 

PILLARS 

DIMENSION 

A average dimension < 25 cm   

B average dimension > 25 cm and < 40 cm   

C average dimension > 40 cm 

PLAN 

REGULARITY 

1 compact and regular   

2 compact and regular on the average   

3 not compact and irregular  

SOFT STOREY 

 

1 absent   

2 pilotis   

3 absent or inadequate infills   

4 overhanging infills 

FIRST LEVEL 
INFILLS 

 

A on 4 perimeter walls   

B on 3 perimeter walls   

C on 2 perimeter walls   

D on 1 perimeter wall 
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SQUAT 

ELEMENTS 

A absent   

B for beams in stair system or different level floors  

C ribbon windows   

D other 

STRUCTURAL 

BOW-

WINDOWS 

1 absent   

2 < 1,5 m   

3 > 1,5 m  

USE 1 neglected   

2 not used (<10%)   

3 partially used (10%-70%)   

4 used (>70%)  

MONTHS OF 

USE 

Write the number of months of use  

OCCUPANTS A 1 family   

B 2 families   

C 3-4 families   

D 5-8 families   

E 9-15 families   

F 16-30 families   

G > 30 families 

ACCURACY 

OF 

INSPECTION 

A from the outside inspection   

B partially internal inspection   

C complete inspection 

Tab. 2.2.3: Legend of the reinforced concrete buildings form 

REFERENCE: Istruzioni per la compilazione della scheda per il censimento speditivo di 
vulnerabilità, edifici in cemento armato (Consiglio Nazionale delle ricerche, istituto per le 

Tecnologie della Costruzione) 
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2.3  DATA ANALYSIS 

 

The data collected  in situ are reorganized and statistically analyzed in order to 

identify the most prevalent characteristics of the center and the suburbs; they are 

graphically represented by the tables in ANNEX X and in the following 

paragraphs by histograms and pie charts. 

The analyzed data represents all the collected data (both the center of Timisoara 

and the district of Iosefin) . On the other hand, the typologies recognized only in 

Iosefin have been divided from the others. 

Histograms represent the number of buildings that show the analyzed  

characteristic, emphasizing the more frequent feature, while in the pie-carts the 

percentage of building on the total number of buildings is specified. 

The identification of the most frequent characteristics is the starting point to create 

typologies models that represent, in a schematic way, the majority of the buildings 

of Timisoara. The second step of typologies identification is explained in 

paragraph 2.4. 
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2.3.1   Building typology 

The analyzed structural units are 243 and the biggest part of them (87%) are 

masonry buildings of which 10 are monumental buildings (4%). Reinforced 

concrete buildings represent 9%  of the total (Fig 2.3.1, Fig 2.3.2). 

 

 
Fig. 2.3.1 Number of buildings for each building typology 

 

 
Fig. 2.3.2 Percentage of buildings for each building typology 
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2.3.2  Inspection accuracy 

The biggest part of the buildings in the historical center is  actually used for 

several functions and there are few abandoned units. Many buildings present 

shops or public offices at the ground floor and apartments at the upper floors.  

A partially inside inspection was possible usually for offices or  shops (36%). 

Only for 28 structural units (13%), like libraries and museums, a complete 

inspection was possible but for the substantial part of cases (51%) it was possible 

to carry out just a limited inspection from the outside or from the courtyard (Fig 

2.3.3, Fig 2.3.4). This fact greatly limited the level of knowledge of the analyzed 

structures. 

 
Fig. 2.3.3 Number of buildings for each level of inspection accuracy 

 
Fig. 2.3.4 Percentage of buildings for each level of inspection accuracy 
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2.3.3   Ages 

Most of the buildings of Timisoara had been destroyed and re-constructed during 

the Hasburg period, so only 48 structural units (22%) are prior to 1747. The 28% 

of the buildings were built between 1747 and 1812, while only 20 buildings were 

constructed from 1812 to 1876. The biggest part of the units was built between 

1877- 1945, after the 1848 Revolution that destroyed a big part of the city. Only 

the 2% are recent construction, realized after 1946 (Fig 2.3.5, Fig 2.3.6). 

 

 

Fig. 2.3.5 Number of buildings for each age range 

 

Fig. 2.3.6 Percentage of buildings for each age range 
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2.3.4   Interventions 

The most common interventions are renewal (22%), restoration (22%), façade 

restoration (8%), and maintenance (21%), that includes more than the 50% of the 

buildings. For 33 structural units interventions were not recognized and there were 

ongoing works on 17 buildings. A little percentage considers enlargement and 

possible demolition/bombing and later reconstruction (Fig 2.3.7, Fig 2.3.8). 

 

Fig. 2.3.7 Number of buildings for each intervention 
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Fig. 2.3.8 Percentage of buildings for each intervention 

2.3.5   Stories number 

The biggest part of buildings is two or three stories high, in fact 166 buildings 

represent respectively the 35% and the 40% of the total. Afterward there is a 14% 

of building with only one story and a 10% with four stories. Finally, there are only 

2 structural units with five stories and one with six (Fig 2.3.9, Fig 2.3.10). 

 

 

Fig. 2.3.9 Number of buildings for each number of stories 

115 

  



CHAPTER 2: TYPOLOGICAL ANALYSIS 

 

 
 

 

Fig. 2.3.10 Percentage of buildings for each number of stories 

 

As can be seen in Fig 2.3.11 and Fig 2.3.12 there are 55 buildings (29%) with a 

basement and 40 (20%) with an underground. There are then 27% of building 

with basement and attic and 24% with underground and attic. 

 

 

Fig. 2.3.11 Number of buildings with attics, basements and underground stories 
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Fig. 2.3.12 Percentage of buildings with attics, basements and underground stories 

 

The following histogram (Fig 2.3.13, Fig 2.3.14) shows that there is an equal 

division between buildings with basement (29%), with basement and attic (27%), 

with underground (20%) or with underground and attic (24%). 

 

 

Fig. 2.3.13 Number of buildings with basement, basement and attic, underground and 

underground and attic 
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Fig. 2.3.14 Percentage of buildings with basement, basement and attic, underground and 

underground and attic 

 

The following histogram represented the number of out of ground stories related 

with basement and underground. As can be seen the biggest part of buildings is 

two or three stories high with basement or underground (Fig 2.3.15, Fig 2.3.16). 

 

 

Fig. 2.3.15 Number of buildings for each number of out of ground stories 
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Fig. 2.3.16 Percentage of buildings for each number of out of ground stories 

 

 

2.3.6   Floor area 

Due to the large number of buildings, it was decided to consider twelve area 

ranges, from less than 100 mq to more than 2000 mq with a step of 100 mq until 

1000 mq, that considers all the biggest units (Fig 2.3.17, Fig 2.3.18). The majority 

of buildings has an area included between 300-400 mq (24%) and also the steps 

before and after this one have a large number of units, with 33 (15%) and 31 

(15%) structural units. Other two relevant groups are 100-200 mq (9%) and 1000-

2000 mq (9%); the others have a percentage smaller than 9% (Fig 2.3.17, Fig 

2.3.18). 
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Fig. 2.3.17 Number of buildings for each range of area 

 

 

Fig. 2.3.18 Percentage of buildings for each range of area 

 

2.3.7   Interstorey height 

Referring to buildings interstorey height, data are quite diversified: there are 

several buildings between 3,5 and 4,5 meters and some between 4,5 and 5,4 

meters. Only 4 buildings are included between 3-3,4 meters, while the 44% of the 

units have an interstorey height between 3,5-3,9 meters. Another important range 

is from 4 to 4,4 meters with 65 building (32%) and the other two ranges describe 
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the higher interstorey, between 5- 5,4, 5,5-6 and more than 6, with 22 total 

buildings (Fig 2.3.19, Fig 2.3.20). 

 

 

Fig. 2.3.19 Number of buildings for each range of interstorey height 

 

 

 

Fig. 2.3.20 Percentage of buildings for each range of interstorey height 
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2.3.8   Building height 

In the city of Timisoara there are not really high building and the biggest part has 

an highness between 10-15 meters (48%), 61 units are between 5 and 10 meters 

(28%), and 5% are units with only one floor, lower than 5 meters. 32 units  have a 

height ranging between 15-20 meters (15%) and the 4% is higher than 20 meters 

(Fig 2.3.21, Fig 2.3.22). 

 

 

Fig. 2.3.21 Number of buildings for each range of building height 

 

 

Fig. 2.3.22 Percentage of buildings for each range of building height 
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2.3.9   Holes in façade 

The buildings in Timisoara are characterized by a regular façade pattern of 

windows and openings. Most of the buildings in the city of Timisoara have a high 

percentage of openings, referred to the principal and the other visible facades, in 

fact one 199 buildings have more than 30% of holes in the total surface and only 

25 between 20% and 30% (Fig 2.3.23, Fig 2.3.24, Fig 2.3.25, Fig 2.3.26). 

 

Fig. 2.3.23 Number of buildings for each percentage of holes in principal facade 

 

Fig. 2.3.24 Percentage of buildings for each percentage of holes in principal facade 
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Fig. 2.3.25 Number of buildings for each percentage of holes in the other facades 

 

 

Fig. 2.3.26 Perceentage of buildings for each percentage of holes in the other facades 

 

 

2.3.10   Structural typology 

The city is composed in prevalence by masonry buildings among which it is 

possible to note the predominance of structural units characterized by interior 

bearing walls (90%), detected in 195 buildings (Fig 2.3.27, Fig 2.3.28). 10 cases 

present intervention with reinforced concrete while 5 buildings have reticular 
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metal column at the ground floor and masonry walls at upper floors and other 5 

have a masonry pillars structure. 

 

 

Fig. 2.3.27 Number of buildings for each structural typology  

 

 

Fig. 2.3.28 Pecentage of buildings for each structural typology 

 

2.3.11   Vertical structures 

During the survey just few buildings had been inspected inside to list the presence 

of different vertical structures.  
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Regarding prevalent typologies, they have been detected mainly from the outside 

and the most frequent technique is brick masonry (89%), which is identified in 

213 buildings. Only one structural unit presents a mixed structure with a RC wall 

inside and masonry perimeter bearing walls, while 5 buildings are characterized 

by the presence at the ground floor of metal reticular columns that describe big 

openings. The presence of other vertical structures is not significant, but in 9 

cases, in the courtyard, metal columns were detected (Fig 2.3.29, Fig 2.3.30). 

 

 

Fig. 2.3.29 Number of buildings for each prevalent vertical structures 

 

Fig. 2.3.30 Percentage of buildings for each prevalent vertical structures 

2.3.12   Horizontal structures 
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During the survey of horizontal structures, the typology of underground, ground 

floor, and upper floors horizontal structures were identified.  

Regarding the underground floor, the prevalent one is masonry vaults, detected in 

137 structural units (72%). Only 25 buildings have a concrete slab, while another 

important percentage (globally 25%) is represented by vaults or very low vaults 

and iron beams (Fig 2.3.31, Fig 2.3.32). 

 

Fig. 2.3.31 Number of buildings for each prevalent horizontal structures, Underground 

 

Fig. 2.3.31 Percentage of buildings for each prevalent horizontal structures, Underground 
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Likewise, the ground floor prevalent horizontal structure is masonry vaults, 

detected in 103 units (47%), but an important part is composed by timber (17%) 

and concrete slab (12%). In 45 buildings little brick vaults or very low vaults 

(21%)were detected (Fig 2.3.33, Fig 2.3.34). 

 

 

Fig. 2.3.33 Number of buildings for each prevalent horizontal structures, Ground floor 

 

 

Fig. 2.3.34 Percentage of buildings for each prevalent horizontal structures, Ground floor 
Differently, the predominant horizontal structures of upper floors is timber (83%). 

21 units present concrete slabs  (11%) and a little part is composed by the 
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combination of timber, concrete slab and little vaults. The determination of the 

horizontal structures of the upper floors was difficult and a lot of times it is only a 

hypothesis, caused by the impossibility to enter the buildings. 

As a result of the analysis, vaults without tie rods and timber structures are the 

most characteristic horizontal structure typologies in Timisoara, but also little 

brick vault with iron beams and the concrete slab are widely used for horizontal 

structures (Fig 2.3.35, Fig 2.3.36). 

 

Fig. 2.3.35 Number of buildings for each prevalent horizontal structures, Upper floors 

 

 

Fig. 2.3.6 Percentage of buildings for each prevalent horizontal structures, Upper floors 

2.3.13   Roofs 

129 

  



CHAPTER 2: TYPOLOGICAL ANALYSIS 

 

 
The determination of roof typologies was based only on external evaluation and 

on the literature analysis. In Timisoara roofs appear very high and in many cases 

they have been transformed into attics. 175 buildings have a contrasted thrust 

timber roof (81%), characterized by the structure described in chapter 1.9.3. This 

technology was used until the XX’s century, but the recent renewal or restoration 

interventions, with the introduction of walkable attics, caused sometimes the re-

construction of the roof with the same shape but using reinforced concrete; this is 

the reason why in 40 units (40%) a non-thrusting mixed roof was found (Fig 

2.3.37, Fig 2.3.38). Due to the big dimension of the units, the number of flaps is 

usually more than three. 

 

Fig. 2.3.37 Number of buildings for each type of roof 

 

Fig. 2.3.38 Percentage  of buildings for each type of roof 

2.3.14   Joints 
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For most of the buildings, it was not possible to verify the quality of vertical 

structure joints. However, the experience of local architects showed a bad 

connection between perpendicular walls and the presence of juxtaposed walls to 

delimit two different units. In few cases the detachment of the façade was noted 

and it was difficult to establish the presence of active tie rods so in uncertain cases 

bad connections and absence of tie rods have been chosen, in order to represent 

the worst option. 

The connection of the horizontal structures is based on literature and on 

experience of local architects because just in few cases  it was possible to verify 

them. The definition of joint typology depends on detected horizontal structures. 

Vaults are considered deformable and well connected; timber and little vaults with 

iron beams are considered deformable and bad connected structures because of the 

connection detail with the vertical structure, as explained in the chapter 1.9.2. 

Concrete slab is considered a rigid and good connected structure, thanks to the 

presence of the reinforced concrete curb; there are no cases of rigid and bad 

connected horizontal structures. More than half of the buildings (57%) presents 

both bricks vaults and timber structure, so the identified connection are 

“deformable and good connected” for the fist and “deformable and bad 

connected” for the second. 3 units present only vaults, so are characterized by 

deformable and good connected horizontal structures (1%), seventeen structural 

units presents only concrete slabs (rigid and well connected structures - 8%) and 

other nine has both rigid and well connected and deformable and bad connected 

structures. Fifty-two units have only deformable and bad connected horizontal 

diaphragms (24%) and finally twelve buildings  have both vaults and concrete 

slabs, so rigid and deformable horizontal elements,both good connected (6%) (Fig 

2.3.39, Fig 2.3.40). 
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Fig. 2.3.39 Number of buildings for each type of horizontal structures joints 

 

 

 

Fig. 2.3.40 Percentage of buildings for each type of horizontal structures joints 
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2.3.15   Regularity 

Buildings were defined regular in plan or in elevation according to the definition 

given by Eurocode 8.8 A building plan is classified as regular, if it fulfill the 

following conditions: the structure of the building plan must be approximately 

symmetrical respect to two orthogonal axes and it must be compact, so the 

protruding bodies does not exceed more than 5% the plan area9. Due to the 

impossibility of detecting all the parameters of the definition, it was considered 

regular  if all vertical resistant systems extend for the entire height of the building 

and there was no towering elements or super elevations.  

A lot of buildings of the historical center were destroyed and reconstructed during 

the Hasburg period and they present a regular composition. 67 of them are regular 

both in plan and in elevation (31%), while 105 are regular only in elevation (48%) 

and only 10 are regular just in elevation (5%). Finally 36 are shown no regularity 

at all (16%) (Fig 2.3.41, Fig 2.3.42). 

 

 

Fig. 2.3.41 Number of buildings for each type of regularity 

 

8 §4.2.3 Criteri di regolarità strutturale (Eurocode 8 – ENV 1998-1) 
9 §4.2.3.2 Design of structures for earthquake resistance (Eurocode 8 – ENV 1998-1) 
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Fig. 2.3.42 Percentage  of buildings for each type of regularity 

 

 

2.3.16   Other regularity and vulnerability information 

In the city of Timisoara almost all the buildings present one or more vulnerability 

elements, only ten of them have no relevant elements. The most common element 

is the vaulted passage, that together with the simple passage to the internal court, 

(both described in chapter 1.8.1) is present in 187 units (21%; 12%) and in 97 

buildings added bodies were recognized (17%). All the mixed RC and timber 

roofs were catalogued as heavy roofs (8%) and in 51 structural units there were 

standing out elements. Another element recognized also by literature as one of the 

most dangerous during an earthquake is the fronton, an element that was added 

later during the building life. It usually has a bad connection to the original 

structure (9%).  less frequent elements are loggias in the courtyard (4%) or 

external stairs (4%), and in 17 structural units there are not aligned holes, from the 

ground floor to the upper floors (Fig 2.3.43, Fig 2.3.44). 
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Fig. 2.3.43 Number of buildings in which each elements is present 

 

Fig. 2.3.44 Percentage of buildings in which each elements is present 
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Only 46 units are not characterized by soft storey, while the prevalence (88%) 

presents many holes or holes of large dimension at the ground floor and at the 

upper floors. 2% of buildings presents also the reduction of floor dimension in the 

upper floors. 14 units present large holes only at the ground floor (8%) and only 

few units present the combination of the vulnerability elements previously 

mentioned (Fig 2.3.45, Fig 2.3.46). 

 

 

Fig. 2.3.45 Number of buildings for each type of soft storey 
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Fig. 2.3.46 Percentage  of buildings for each type of soft storey 

 

2.3.17   Reinforcing elements 

Regarding reinforcing elements, 99 units have none (Fig 2.3.47, Fig 2.3.48), while 

the other may present one or more. 44 units present tie rods (activation uncertain) 

(30%), and in 38 cases there were signs of renovations or other ongoing 

interventions that has been catalogued as not identified reinforced masonry 

technique (26%). In 31 units the introduction of RC curbs was recognizable 

(21%). Other interventions, like the presence of buttresses, contrast elements, or 

confined openings, are noticed just in few cases. 
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Fig. 2.3.47 Number of buildings for each reinforcing elements 

 

 

Fig. 2.3.48 Percentage of buildings for each reinforcing elements 
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2.3.18  Non-structural elements  

In the city of Timisoara almost every building presents chimneys in bad 

conditions and frontons with bad connection so the 34% of buildings presents 

poorly connected big elements  and the 41 % has crumbling decoration or 

signboard, considered as small and bad connected elements. Big or small well 

connected elements represents respectively the 15% and 10% (Fig 2.3.49, Fig 

2.3.50). 

 

Fig. 2.3.49 Number of buildings for each case of non-structural elements 

 

 

 

Fig. 2.3.50 Percentage of buildings for each case of non-structural elements 
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2.3.19   Status quo 

Buildings with important serious damage are only 8 and they represent the 3% of 

the total. The 21% presents capillary cracks and initials structural problems, while 

for the 35% the detachment of plaster and little lesions were observed. Finally 

ninety-five units do not present any damage or structural problem (Fig 2.3.51, Fig 

2.3.52). 

 

Fig. 2.3.51 Number of buildings for each status quo range 

 

Fig. 2.3.52 Percentage of buildings for each status quo range 
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2.4 TYPOLOGIES IDENTIFICATION 

 

The in situ survey aimed to identify the main characteristics of the buildings, such 

as horizontal and vertical structures, wall thickness, roof structure and interstorey 

high, to spot which ones are the most common in the city. The collected data were 

organized and statistically analyzed to group units with similar characteristics and 

structures. This process brought to typologies definition.  

The study of the seismic behavior of a building typology brings to the definition 

of its vulnerability assessment. When the typology study is completed, it would be 

possible to define the vulnerability of a singular building in other parts of the city, 

identifying its most representative structural typology. Plus, the same results can 

be applied to other historical centers that show the same architectural and 

structural characteristics. The vulnerability assessment for building typologies is 

helpful in case of a rapid survey on large scale, when just an external or partially 

inside inspection is possible.  

The final definition of eight macro typologies is the result of a three-step 

reduction. This subdivision was adopted to simplify the classification procedure, 

reducing building information to the main elements, especially regarding the 

prevalent vertical and horizontal structures and the roof typology. In some cases 

the lack of data makes the identification of the building typology quite difficult; 

for structural units in which data were missing,  missing information have been 

assumed on the basis of statistical analysis and comparison with similar cases. 

Three typologies are called “unicum” because they included just few buildings, 

but are still considered in the analysis to have a complete vision on the studied 

area. Monumental buildings, such as Hospital, Castle, barracks and Court,  were 

not included in the typological division and RC buildings are not considered.  

2.4.1   First step 

The first step defines 78 typologies, of which 11 are located in Iosefin. In the first 

phase the considered parameters are: 

- vertical structures 
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- horizontal structures 

- roof 

- stories number 

- presence of basement of underground 

The considered vertical structure are masonry walls, masonry pillars and metal 

columns. Only US 3 has an  RC diaphragm and it is considered as an “unicum”. 

The main horizontal structures are timber, concrete slab, vaults, metal beams with 

concrete slab, iron beam and little brick vaults, iron beam and very low brick 

vaults. 

Considering the roof, only two different typologies are identified: the first one is 

the most widespread in the center and it is characterized by timber trusses on 

which wooden rafters settle. The second one is present in all the later 

interventions of roof renewal such as the introduction of a practicable attic and it 

is characterized by concrete and timber trusses connected by a concrete ring beam. 

 

N
U

M
B

ER
 

TY
PO

LO
G

Y
 

R
EP

R
ES

EN
TA

TI
O

N
 

V
ER

TI
C

A
L 

ST
R

U
C

TU
R

E 

H
O

R
IZ

O
N

TA
L 

ST
R

U
C

TU
R

E 
 -

U
N

D
ER

G
R

O
U

N
D

 

H
O

R
IZ

O
N

TA
L 

ST
R

U
C

TU
R

E 
 -

G
R

O
U

N
D

 F
LO

O
R

 

H
O

R
IZ

O
N

TA
L 

ST
R

U
C

TU
R

E 
 -

O
TH

ER
 P

LA
N

S 

R
O

O
F 

ST
R

U
C

TU
R

E 

ST
O

R
EI

S 
N

U
M

B
ER

 

1 

 

Masonry 

wall 

Iron 
beams and 
little brick 

vaults 

 

Vaults 

Timber 
Concrete 

and timber 
trusses 

3+B Concrete 

slab 

2 

 

Masonry 

wall 

Iron 
beams and 
little brick 

vaults 

 

Timber 

Timber Concrete 
and timber 

trusses 
3+B 

RC 
diagraphm Timber 

3 

 

Masonry 

wall 
_ 

Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 3 

142 

  



CHAPTER 2: TYPOLOGICAL ANALYSIS 

 

 

4 

 

Masonry 

wall 
Vaults Vaults Timber Timber 

trusses 2+B 

5 

 

Masonry 

wall 
_ Vaults Timber Timber 

trusses 2 

6 

 

Masonry 

wall 
Vaults Vaults Timber Timber 

trusses 3+BI 

7 

 

Masonry 

wall 
_ 

Concrete 

slab 

Concrete 

slab 

Concrete 
and timber 

trusses 
2 

8 

 

 

Masonry 

wall 
_ 

Concrete 

slab 
_ 

Concrete 
and timber 

trusses 
1 

9 

 

Masonry 

wall 
_ 

Concrete 

slab 

Concrete 

slab 
Timber 
trusses 2 

10 

 

Masonry 

wall 
_ Timber Timber Timber 

trusses 4 

11 

 

Masonry 

wall 
Vaults 

Concrete 

slab 
_ 

Concrete 
and timber 

trusses 
1+B 

12 

 

Masonry 

wall 

Iron 
beams and 
little brick 

vaults 

 

Concrete 

slab 

Concrete 

slab 
Timber 
trusses 2+B 

Vaults 

13 
 

Masonry 

wall 
_ Vaults _ Timber 

trusses 1 

14 
 

Masonry 

wall 
_ 

Timber 

_ Timber 
trusses 1 

Iron beams 
and little 

brick 
vaults 

 

15 

 

Masonry 
Iron 

beams and 
little brick 

Timber Timber Timber 
trusses 2+B 

143 

  



CHAPTER 2: TYPOLOGICAL ANALYSIS 

 

 

wall 
vaults 

 

Vaults 

16 

 

Masonry 

wall 
_ Vaults Timber Timber 

trusses 3 

17 

 

Masonry 

wall 
Vaults Vaults 

Concrete 

slab 

Concrete 
and timber 

trusses 
2+B 

18 

 

Masonry 

wall 
_ Vaults Timber 

Concrete 
and timber 

trusses 
3 

19 

 

Masonry 

wall 
_ 

Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 2 

20 

 

Masonry 

wall 
_ Timber Timber Timber 

trusses 2 

21 

 

Masonry 

wall 

Iron 
beams and 
little brick 

vaults 

 

Vaults Timber Timber 
trusses 3+B 

22 

 

Masonry 

wall 

Iron 
beams and 
little brick 

vaults 

 

Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 2+B 

Vaults 

23 

 

Masonry 

wall 

Iron 
beams and 
little brick 

vaults 

 

Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 3+B 

24 

 

Masonry 
pillars _ 

Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 3 

25 

 

Masonry 

wall 
_ Vaults 

Concrete 

slab 

Concrete 
and timber 

trusses 
2 

144 

  



CHAPTER 2: TYPOLOGICAL ANALYSIS 

 

 

26 

 

Masonry 

wall 
_ Vaults Timber 

Concrete 
and timber 

trusses 
2 

27 

 

Masonry 

wall 
_ Timber Timber 

Concrete 
and timber 

trusses 
2 

28 

 

Metal 
reticular 
column 

_ 

Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 3 

29 

 

Masonry 

wall 
_ 

Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 4 

30 

 

Masonry 

wall 
_ 

Concrete 

slab 

Concrete 

slab 

Concrete 
and timber 

trusses 
4 

31 

 

Masonry 

wall 
_ Vaults Timber Timber 

trusses 4 

32 

 

Masonry 

wall 
_ Vaults Timber Timber 

trusses 2 

33 

 

Masonry 

wall 

Concrete 

slab 

Concrete 

slab 

Concrete 

slab 

Concrete 
and timber 

trusses 
4+B 

34 

 

Masonry 

wall 

Iron 
beams and 
little brick 

vaults 

 

Iron beams 
and little 

brick 
vaults 

 

Iron beams 
and little 

brick 
vaults 

 
Timber 
trusses 3+B 

Timber 

35 

 

Masonry 

wall 
Vaults Vaults Timber Timber 

trusses 3+B 

145 

  



CHAPTER 2: TYPOLOGICAL ANALYSIS 

 

 

36 

 

Masonry 

wall 
Vaults Vaults Timber 

Concrete 
and timber 

trusses 
3+B 

37 

 

Masonry 

wall 

Iron 
beams and 
little brick 

vaults 

 

Concrete 

slab 

Concrete 

slab 
Timber 
trusses 3+B 

38 

 

Masonry 

wall 
_ 

Concrete 

slab 

Concrete 

slab Timber 
trusses 3 

Timber 

39 

 

Masonry 

wall 
_ 

Concrete 

slab 

Concrete 

slab 

Concrete 
and timber 

trusses 
3 

40 

 

Masonry 

wall 
_ Vaults 

Concrete 

slab 

Concrete 
and timber 

trusses 
3 

41 

 

Masonry 

wall 
_ Vaults Timber 

Concrete 
and timber 

trusses 
2 

42 

 

Masonry 

wall 
_ Vaults Vaults 

Concrete 
and timber 

trusses 
2 

43 

 

Masonry 

wall 
_ Vaults 

Vaults 
Concrete 

and timber 
trusses 

3 Concrete 

slab 

44 

 

Masonry 

wall 
 Vaults Vaults Timber 

trusses 2+B 

45 

 

Masonry 

wall 
_ Vaults 

Concrete 

slab 

Concrete 
and timber 

trusses 
2 

46 

 

Masonry 

wall 
_ Vaults Timber Timber 

trusses 4 

47 

 

Masonry 

wall 
_ Vaults 

Concrete 

slab 
Concrete 

and timber 3 

146 

  



CHAPTER 2: TYPOLOGICAL ANALYSIS 

 

 

Timber 
trusses 

48 

 

Masonry 
pillars _ 

Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 4 

49 

 

Masonry 

wall 
_ 

Concrete 

slab 
Timber Timber 

trusses 2 

50 

 

Masonry 

wall 
_ 

Concrete 

slab 

Concrete 

slab 

Concrete 
and timber 

trusses 
2 

51 

 

Masonry 

wall 
 Vaults 

Vaults 
Concrete 

and timber 
trusses 

3+B 
Timber 

52 

 

Masonry 

wall 
_ Timber _ Timber 

trusses 1 

53 

 

Masonry 

wall 
Vaults 

Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 3+B 

54 

 

Masonry 
pillars _ 

Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 5 

55 

 

Masonry 

wall 

Iron 
beams and 
little brick 

vaults 

 

Iron beams 
and little 

brick 
vaults 

 

Iron beams 
and little 

brick 
vaults 

 
Concrete 

and timber 
trusses 

3+B 
Timber 

Concrete 

slab 

56 

 

Masonry 

wall 
_ 

Concrete 

slab 

Timber 

Timber 
trusses 3 Concrete 

slab 
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57 

 

Masonry 

wall 
Vaults Timber Timber Timber 

trusses 3+B 

58 

 

Masonry 

wall 

Iron 
beams and 
little brick 

vaults 

 

Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 4+B 

59 

 

Masonry 

wall 
_ Timber Timber Timber 

trusses 3 

60 

 

Masonry 

wall 
Vaults 

Iron beams 
and little 

brick 
vaults 

 
Timber Timber 

trusses 3+B 

Vaults 

61 

 

Masonry 

wall 
Vaults 

Iron beams 
and little 

brick 
vaults 

 
Timber Timber 

trusses 2+B 

Vaults 

62 

 

Masonry 
pillars _ 

Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 3 

63 

 

Masonry 

wall 
_ Vaults 

Timber 
Timber 
trusses 3 Concrete 

slab 

64 

 

Masonry 

wall 
_ 

Concrete 

slab 

Concrete 

slab 
Timber 
trusses 4 

65 

 

Masonry 

wall 

Metal 
beams 
with 

concrete 
slab 

Vaults Timber Timber 
trusses 3+B 

66 

 

Masonry 

wall 
_ Vaults Timber Timber 

trusses 3 
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67 

 

Masonry 

wall 
_ 

Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 6 

68 

 

Masonry 

wall 

Iron 
beams and 
little brick 

vaults 

 Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 3+B 

Vaults 

69 

 

Masonry 

wall 

Iron 
beams and 
little brick 

vaults 

 

Iron beams 
and little 

brick 
vaults 

 

Concrete 

slab 
Timber 
trusses 3+B 

Vaults 

70 

 

Masonry 

wall 

Vaults and 
horizontal 
diaphragm 

Iron beams 
and little 

brick 
vaults 

 

Timber 
Non-

thrusting 
mixed roof 

3+B 

71 

 

Masonry 

wall 

Iron 
beams and 
little brick 

vaults 

 

Timber _ Timber 
trusses 1+B 

72 

 

Masonry 

wall 
Vaults Timber _ Timber 

trusses 1+B 

73 

 

Masonry 

wall 

Iron 
beams and 
little brick 

vaults 

 

Concrete 

slab 
_ 

Concrete 
and timber 

trusses 
1+B 

Vaults 

74 
 

Masonry 

wall 
_ Timber _ 

Concrete 
and timber 

trusses 
1 

75 

 

Masonry 

wall 
Vaults Timber _ 

Concrete 
and timber 

trusses 
1+B 
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76 

 

Masonry 

wall 
_ 

Iron beams 
and little 

brick 
vaults 

 

Timber Timber 
trusses 2 

77 
 

Masonry 

wall 
_ Timber _ Timber 

trusses 1 

78 

 

Masonry 

wall 

Concrete 

slab 

Concrete 

slab 
_ 

Concrete 
and timber 

trusses 
1+B 

 

Tab. 2.4.1 Typologies identified in the first step of the procedure 

 

2.4.2   Second step 

The second step combines the horizontal structures considering only three 

categories: the ones with light structure, with heavy structures and with vaults. 

The vertical structure remains the same, cause almost all the typologies have 

masonry walls. Iron beam and little brick vaults and iron beams and very low 

brick vaults become light horizontal structures, while concrete slab and metal 

beams with concrete slab are considered as heavy horizontal structures. The vaults 

are considered separately due to their different weight. The subdivision in two 

classes, light and heavy, depends by the permanent loads of the structures: loads 

defined in the Vulnus manuals are taken as a reference. The roof maintains the 

division in two typologies, the timber trusses and the concrete and timber trusses 

structure but the initial division about the practicability of the attic is no more 

considered because it does not influence the structural behavior. 

For the definition of the stories number, out of ground stories are considered. 

Buildings with underground were associated to the ones without, because the 

seismic behavior of the building interests out of ground stories, regardless of the 

presence of none or more floors underground. Buildings with basement are still 

divided from the previous ones for the same reason, because part of the basement 

is out of ground and so valuable for the seismic behavior. 

Due to this simplifications, the number of typologies has been reduced from 78 to 

33. 
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The typologies of this second step have been intersected with thickness of ground 

floor walls, the medium ground floor height and the medium interstorey height. 

walls thickness has defined considering the values that were observed in situ: they 

can be 45 cm, 60 cm, 75 cm, 90 cm of 105 cm thick. (See chapter 1.9.1) 

 The intersection between structure characteristics and wall thickness creates some 

micro-typologies, identified by a number and an alphabet letter.  
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PO
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ST
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US 

G
R

O
U

N
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 F
LO

O
R

 
TH

IC
K

N
ES

S 
A

V
ER

A
G

E 
IN

TE
R

ST
O

R
EY

 
H

EI
G

H
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A 

M
as

on
ry

 

Li
gh

t  
ho

riz
on

ta
l s

tru
ct

ur
e 

an
d 

pr
ev

al
en

tly
 v

au
lts

 a
t g

ro
un

d 
flo

or
 

Ti
m

be
r t

ru
ss

es
 

1 
1A 

1 
36, 37 45 

3,8 
1B 152, 241 60 

2 

2A 

2 

7, 44, 74, 75, 98 45 

4 
2B 

8, 18, 19, 20, 29, 30, 31, 
55, 58, 59, 73, 77, 84, 97, 
115, 120, 121, 151, 175, 

193 202, 228, 301 

60 

2C 71, 80, 117, 145, 154 75 

2D 94, 95, 167, 185 90 

3 

3A 

3 

49, 50, 51 45 

4,3 

3B 
4, 5, 53, 76, 96, 103, 

104,105, 116, 118, 123, 
124, 140, 174, 178, 192 

60 

3C 81, 109, 130, 134 75 

3D 
79, 86, 87, 88, 137, 138, 

141, 166, 169B, 182, 
183, 188, 189, 190 

90 

4 

4B 

4 

25, 56, 133 60 

4,2 
4C 129 75 

4D 
90, 92, 93, 128, 135, 155, 

156, 187 
90 

5 5 157 90 4,8 
6 6 195 90 3,5 
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7 

7B 

2+B 

35, 38, 41, 61, 62, 64, 
149, 150, 172, 211, 212, 
213, 229, 230, 231, 233, 

236, 237 

60 

4 

7C 68 75 

7D 28, 100, 114, 217 90 

8 

8A 

3+B 

46 45 

4,2 
8B 

9, 24, 26, 43, 47, 54, 57, 
60, 65, 168, 173, 184, 

200, 201, 203, 207, 221, 
234, 235 

60 

8C 69, 70, 143, 153 75 

8D 101, 170 
105, 
90 

9 4+B 169A 90 4,7 

IO
SE

FI
N

       
10 

10A 
1+B 

224, 238, 239, 242 45 
4,7 

      10B 
208, 209, 210, 215, 216, 

218, 219, 220, 232 
60 

      11 3+B 204 60 3,4 

B 

M
et

al
  

re
tic

ul
ar

  
co

lu
m

n 

Li
gh

t  
ho

riz
on

ta
l s

tru
ct

ur
e 

Ti
m

be
r  

tru
ss

es
 

12 3 89, 127 60 4,9 

13 4 132, 144, 158 90 4,8 

C 

M
as

on
ry

 

M
od

er
at

el
y 

he
av

y 
ho

riz
on

ta
l 

st
ru

ct
ur

es
 

Ti
m

be
r t

ru
ss

es
 

14 2 139 60 4 

D 

M
as

on
ry

 

M
od

er
at

el
y 

he
av

y 
an

d 
lig

ht
 

ho
riz

on
ta

l 
st

ru
ct

ur
es

 

Ti
m

be
r t

ru
ss

es
 

15 3 72 60 4,7 

16 3+B 181 105 4,4 
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E 
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as
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ry
 

Li
gh

t  
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C
on

cr
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e 
an

d 
tim

be
r t

ru
ss

es
 

17 
17A 

2 
82 45 

4,2 
17B 83, 85, 111, 186 60 

18 3 52, 105,125, 131 60 4,3 

19 1+B 32 60 4,45 

20 

20B 

3+B 

2 60 

4 20C 148 75 

20D 102, 159 90 

IO
SE

FI
N

 

      21 1+B 225 45 4,5 

F 

M
as

on
ry

 a
nd

 R
C

 
w

al
l 

M
od

er
at

ly
 h

ea
vy

 
an

d 
lig
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l 
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ru
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C
on
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e 
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d 
tim
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r t
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ss
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22 3+B 3 60 4,1 

G 

M
as

on
ry

 

M
od

er
at

ly
 h

ea
vy

 h
or

iz
on

ta
l 

st
ru

ct
ur

es
 

C
on

cr
et

e 
an

d 
tim

be
r t

ru
ss

es
 23 1 22 60 3,8 

24 
24B 

2 
17, 21, 23, 63, 119 60 

4 
24C 146 75 

25 
25A 

3 
107 45 

3,6 
25B 108, 110, 164, 179 60 

26 
26B 

4 
91 60 

3,7 
26D 180 90 

27 2+B 48 45 3,7 
28 4+B 99 60 3,5 

IO
SE

FI
N

 

      

29 1 223 45 4,2 

30 

30A 

1+B 

226, 227, 243 45 

3,9 
30B 222, 245 60 

H 

M
as

on
ry

 

M
od

er
at

ly
 h

ea
vy

 a
nd

 
lig

ht
 h

or
iz

on
ta

l 
st

ru
ct

ur
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C
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e 
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d 
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r 
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ss
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31 2+B 34, 206 60 4 

32 3+B 106 45 3,6 
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IO
SE

FI
N

 
      33 3+B 205 60 3,8 

Tab. 2.4.2 Macro typologies(A-H, typologies(1-33) and micro-typologies (1A, 1B, etc…) identified 

in the second step of the procedure 

2.4.3   Third step 

These micro-typologies have finally been grouped into eight macro-typologies. 

Some generalizations have been made in order to simplify the analysis. For each 

structural unit (US) only prevalent horizontal structures has been considered 

while, for the vertical ones, the structural units with masonry pillar at the ground 

floor have been associated to masonry walls. The macro-typologies do not 

consider stories number, wall thickness and interstorey height.  

About roof typologies, the cases of timber trusses as roof structure and concrete 

slab as last horizontal structure have been united with the case of mixed and rigid 

roof, because the stiffen function of the concrete slab and its greater weight bring 

the roof structure to have a seismic behavior similar to mixed and rigid roof 

category. 

The first macro typology, A, is the more widespread and includes 11 typologies, 2 

of witch in Iosefin, with 157 structural units on a total of 242. Masonry walls, 

light horizontal structures, vaults at the ground floor and timber trusses roof 

characterize it. 

In this macro-typology, buildings with one storey (Typology 1) characterized by 

an average interstorey height of 3.8 m and a wall thickness that can assume the 

values of 45 cm (micro-typology A) and 60 cm (micro-typology B are included). 

Typology 2 includes buildings with two stories, with an average interstorey height 

for the ground floor of 4 m and 4.3 m for the upper floors, divided in four micro-

typologies, A, B, C, D, for each wall thickness. 

Typology 3 includes buildings with three stories, with an average interstorey 

height for the ground floor of 4.3 m and 4.2 m for the upper floors, divided in four 

micro-typologies, A, B, C, D, for each wall thickness. 

Typology 4 includes buildings with four stories, with an average interstorey 

height for the ground floor of 4.2 m and 4 m for the upper floors, divided in three 
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micro-typologies, B for the thickness of 60 cm, C for the 75 cm and D for the 90 

cm. 

Typologies 5 and 6 represent only two buildings of the city with 5 and 6 stories 

having both a wall thickness of 90 cm. 

Typology 7 includes buildings with two stories and basement, with an average 

interstorey height for the ground floor of 4 m, 5 m for the upper floors and 1,3 m 

for the basement. It is divided into three micro-typologies, B for the thickness of 

60 cm, C for the 75 cm and C for the 90 cm.  

Typology 8 includes buildings with three stories and basement, with an average 

interstorey height for the ground floor of 4.2 m, 4.2 m for the upper floors and 1,1 

m for the basement. It is divided into four micro-typologies, A, B, C, D, for each 

wall thickness. 

Typology 9 is the last of the city center and contains a single unit, 169 A, with 

four stories and the basement, an average interstorey height of the ground floor of 

4.7 m, 4.6 m for the upper floors and 1,6 m for the basement. 

Typology 10 and 11 are present only in the district of Iosefin. 

The second one, B, characterized by masonry walls above reticular column, light 

horizontal structures and timber trusses roof, is founded in few structural units and 

includes only two typologies, 12 and 13 of three and four stories. 

The third, C, represent one of the three “unicum”. The unit 139 is the only 

building of typology 14, defined by masonry walls, moderate heavy horizontal 

structures  and timber trusses roof, characterized by two out of ground stories, 

with a total height of 7.9 m and a thickness of 60 cm at the ground floor. 

The second “unicum” is the fourth macro-typology, D, composed by two 

structural units and two typology, number 15 and 16, both with three out of 

ground stories but the second one also with the basement. Masonry walls, 

moderate heavy and light horizontal structures and timber trusses as roof 

characterize them. 

The other four macro-typologies have in common the concrete and timber trusses 

roof. 
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The fifth macro typology, E, has masonry walls and light horizontal structure and 

prevalently vaults at the ground floor. It represents thirteen units and  five 

typologies. 

Typology 17 includes buildings with two stories, with an average interstorey 

height for the ground floor of 4.2 m and 4.7 m for the upper floors, divided into 

two micro-typologies, A for a thickness of the wall of 45 cm and B for a thickness 

of 60 cm. 

Typology 18 includes buildings with three stories, with an average interstorey 

height for the ground floor of 4.3 m and for the upper floors 4.2 m, with a 

thickness of the ground floor of 60 cm. 

Typology 19 represents the unit 32 with one storey and basement. 

Typology 20 includes buildings with three stories and basement, with an average 

interstorey height for the ground floor of 4 m, 4,2 m for the upper floors and 1,4 m 

for the basement. It is divided into two micro-typologies, A for a thickness of the 

wall of 45 cm and B for a thickness of 60 cm. 

Typology 21 has one storey and it is present only in the district of Iosefin. 

The last “unicum” , macro-typology F, is characterized by the presence on a RC 

wall in the middle of the building and a concrete slab under the roof. It represent 

only one unit, number 3, defined by typology 22. 

The seventh macro typology, G, is the more widespread between the ones with 

the concrete and timber trusses roof, its horizontal structures are moderately heavy 

and represents eleven typologies, two of them present only in Iosefin, with a 

global of twenty-two structural units. 

Typology 23 represent the unit 22 with only one storey, while typologies 27 and 

28 represent respectively units 48 and 99 with two and four stories respectively, 

both with basement. 

Typology 24 includes buildings with two stories, with an average interstorey 

height for the ground floor of 4 m and for the upper floors 4.5 m, divided in two 

micro-typologies, B for a wall thickness of 60 cm and C for a thickness of 75 cm. 

Typology 25 includes buildings with three stories, with an average interstorey 

height for the ground floor of 3.6 m and for the upper floors 3.3 m, divided in two 

micro-typologies, A for a wall thickness of 45 cm and B for a thickness of 60 cm. 
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Typology 26 includes buildings with four stories, with an average interstorey 

height for the ground floor of  3.7 m and for the upper floors 4 m, divided in two 

micro-typologies, B for a thickness of the wall of 60 cm and D for a thickness of 

90 cm. 

Finally the last macro typology, H, has moderate heavy and light horizontal 

structures, and defined three typologies 31, 32, and 33. The last one is present just 

in Iosefin, with five structural units. 

2.4.4  Plan module 

During the on-site activities a plan of almost the entire city center has been 

found.10 This map shows the ground floor of all the aggregates at north of the 

tram line in the historical center and it was hand-draw around 1980. The quality of 

the plan is not very detailed, in particular about the wall thickness and the 

windows and doors dimension, but the representation of internal rooms and walls 

allows the analysis of internal spaces to define recurrent plan modules. One 

module must cover the entire room area and its sides must overlap the internal 

walls. The first modules were defined for the first unit and then copied in the 

following unit where the measures coincide. If a room was not represented by a 

module of the previous unit, a new module was introduced. This procedure was 

repeated for all the represented aggregates, excluding monumental buildings, due 

to the fact that their particular characteristics exclude them from ordinary 

constructions. In some cases, if the room has huge dimensions or a particular 

shape, more modules combined were used to describe it or new “unicum” 

modules were introduced.  

In few cases it was possible to observe that the plan map does not correspond 

exactly to the real  disposition of internal rooms, due to possible interventions on 

the building in the latest  years, but it is still a precious instrument to study the 

typical internal structure of buildings. 

10 Material provided by Arch. Bogdan Demetrescu 
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Fig.2.4.1: Block 23represented in the map (left) and after the module analysis (right) 

 

modules for internal rooms are: 

 

MODULE SHAPE 
MEASURES 

[m] 
QUANTITY SPREAD 

1 

 

 12,20 x 4,60 39 

 

2 

 

 
10,30 x 5,80  77 

 

3 

 

 5,8 x 4,10 424 
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4 

 

 5,15 x 2,9 384 

 

5 

 

 

10,10 x 8,70 3 

 

6 

 

 
6,30 x 5,80 142 

 

7 

 

 4,15 x 3,80 312 

 

8 

 

 6,75 x 3,40 85 

 

9 

 

 
4,86 x 4,15 121 

 

10 

 

 3,55 x 2,3 262 
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11 

 

 

 
2,5 x 1,35 19 

 

12 

 

26 x 4,80 5 

 

13 

 

 
14,90 x 4,30 8 

 

14 

 

 8,85 x 3,60 19 

 

15 

 

 
8,05 x 5,00 23 

 

Tab. 2.4.3: Room modules 

 
The analysis shows that the modules having the biggest dimensions are less 

common than the ones with small dimensions. In fact the most common module is 

Module 3, followed by Module 4 and Module 7. Modules tend to be bigger near 

the façade and to become smaller near the internal courtyard.  
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A different type of modules has been set up for the under-crossing to internal 

courtyard. Just five modules are representative of this element and with one 

module or a combination of more than one it is possible to represent the entire 

casuistry: 

 

MODULE SHAPE 
MEASURES 

[m] 
QUANTITY SPREAD 

A 

 

 17,60 x 5,45 5 

 

B 

 

 
 

13,25 x 3,7 16 

 

C 

 
 

 
 

9,65 x 2,85 12 

 

D 

 

 6,15 x 2,65 102 

 

E 

 

 
5,85 x 1,45 44 

 

Tab. 2.4.4: Passage to the courtyard modules 
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The most common modules are D and E ones and as in the case of room modules 

they are the smallest ones. Module D in particular is the most widespread and it 

often appears  as two modules one above the other. 

Room modules and crossing modules have been combined to search for a 

common pattern or scheme to refer to building typologies, but even if there are 

some combinations that appears more often than others, no evident outline has 

been found. Anyway, the most common combinations are:  

- Module D flanked by Modules 2, 3, 6 and/or 9; 

- Module E flanked by Modules 2, 3, 6 and/or 9; 

- Module B flanked by Modules 2 and/or 6. 

 

 
Fig. 2.4.1: Most common combination of room and crossing modules 
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2.4.5  Façade module 

The buildings façades of Timisoara are characterized by a strong symmetry and a 

rhythmic pattern of the same module. The definition of a typological profile is 

necessary to analyze the in plane vulnerability of the buildings (see chapter 5.6). 

The considered units are the corner ones, because they are the more exposed to the 

in plane damage.  

The characterization of the façade typologies considers the corner units. Each 

structural unit belongs to a micro-typology defined in chapter 2.4.1, in which the 

ground floor and upper floor interstorey height, together with their maximum and 

minimum values,  has been defined.  These height are the same used to define the 

typological facades in this chapter.  

The 76 units considered have been divided in two big groups characterized by two 

roof typologies: the mixed roof with concrete and timber trusses and the roof with 

only timber trusses. This characteristic influences the weight that insist on the 

analyzed wall in the mechanism studied in chapter 5.6. 

The units of the two roof groups have been further subdivided in relation of their  

stories number and their initial typology was recognized, as can be seen in Tab. 

2.4.5. As a result of this first division, 4 classes have been defined for the mixed 

roof and 5 classes for the timber roof. In classes III, IV, V, VI and VIII, all the 

units in the same class belong to the same building typology, defined in chapter 

2.4, and their interstorey height and its variation are the same already defined in 

Tab. 2.4.2. In classes I, II, VII and IX instead, the units belong to different initial 

typologies so in the second step of the identification process, the values of the 

interstorey height are the average ones of the initial typologies values. 
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 [m

] 

B
A

SE
M

EN
T 

[m
] 

CONCRETE 
AND 

TIMBER 
TRUSSES 

I 
21, 119 

2 
24 4 ±0,5 4,5 ±1 

- 
82, 186 17 4,2 ±0,5 4,7 ±1 

II 
52, 125, 190 

3 
18 4,3 ±0,5 4,2 ±0,5 

- 
108 25 3,6 ±0,5 3,3 ±0,5 

III 91 4 26 3,7 - 4 ±0,5 - 

IV 99 4+SI 28 3,5 - 3,5 - 1,5 

TIMBER 
TRUSSES 

V 

7, 8, 18, 30, 
55, 71, 74, 115, 

117, 151, 154, 167,  
185  

2 2 4 ±0,5 4,3 ±0,5 - 

VI 
28,35, 41, 62, 64, 

68, 149, 150 
2+B 7 4 ±0,5 5 ±0,5 1,3 

VII 

4, 5, 42, 49, 50,  
51, 53, 76, 79, 81,  
86, 96, 103, 109, 

130, 137, 138, 
141, 166, 169B, 
174, 178, 192 

3 

3 4,3 ±1 4,2 ±0,5 - 

89, 127 12 4,9 - 5 - - 

105 18 4,3 ±0,5 4,2 ±0,5 - 

VIII 
24, 26, 43, 46, 47, 

54, 57, 60, 101, 153 
168, 170 

3+B 8 4,2 ±0,5 4,4 ±0,5 1,1 

IX 
93, 128, 133 

4 
4 4,2 ±0,5 4 ±0,5 - 

132, 144, 158 13 4,8 ±0,5 4,2 - - 

Tab. 2.4.5: Considered structural units 

 
All the pictures of the building facade were processed through the perspective 

rectification carried out by RDF program and they have been analyzed to define 

the medium dimension of the windows openings and their position. In the 

following figures is shown the perspective rectification. 
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Fig. 2.4.2: Perspective rectification of US 30 and US 86 
 

 For each typology a large number of photos was straighten: the windows 

dimensions were compared and a medium value was determined. The French door 

were always located in correspondence of the floor, while the smaller windows 

were located at 1 m from the floor. All the classes are characterized by only one 

façade type, and consequently by one of these window positions, and only the 

class V has both possibilities: the windows located 1 m from the floor and the one 

located in correspondence of the floor. 

With the same process, the length of the span was evaluated referring to the 

available pictures of the buildings and to the facades length of the structural units 

measured in the dwg files. With the picture rectification a first span dimension has 

been defined, following the windows pattern. This dimension has been later 

compared and adjusted with the plan modules defined in chapter 2.4 for each 

class. All the classes are indeed subdivided in micro-classes, according to the 

spans number and consequently to the façade length.  

The characteristics considered to describe the facades can be seen in Fig.2.4.2 and  

are: 

- Last storey height (hTOT): it is the height of the last storey, defined from 

Tab. 2.4.5 as the interstorey height of upper floors; 
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- Height from the ground (Z): it is the sum of the interstorey height of the 

ground floor, the upper floors and the basement (if present) until the last 

floor. For example, it can be the height of the ground floor, for a 2 stories 

building. The position of the windows must be considered too and if the 

window is located at 1 m from the floor, this meter must be added to the 

highness of the floors below; 

- Windows dimensions (bxh): the dimension of the windows is based on the 

facades analysis carried out with the rectification process. The dimensions 

are the average values of the analyzed cases for each class; 

- Span length (bbay): it is defined for each class referring to the most 

appropriate plan module.    

 
Fig. 2.4.3: Identification of the façade characteristics 
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The Tab. 2.4.6 resumes the analyzed classes and micro-classes characteristics. 

Classes III and IV are not considered in the analysis because they includes only 

one structural unit.  

The buildings characterized by concrete and timber trusses are divided in two 

classes according to the stories number. It total this class includes 11 units. 

The I class includes buildings with two stories and all the structural units belong 

to typologies 17 and 24. The dimensions that characterize this class are: 

• Last plan height: 4.6 m; 

• Height from the ground: 4.1 m; 

• Windows dimensions (bxh): 1.15 x 2.9 m; 

• Span length (connected with plan module 7): 3.8 m. 

The micro-classes a, b, c and d correspond to 2, 5, 7 and 11 spans respectively. 

The II class represents the buildings with three stories which belong to typologies 

18 and 25. The dimensions that characterized this class are: 

• Last plan height: 2.75 m; 

• Height from the ground: 8.7 m; 

• Windows dimensions (bxh): 1.15 x 2 m; 

• Span length (connected with plan module 4): 2.9 m. 

The micro-classes a, b, c, d and e correspond to 3, 6, 8, 10 and 13 bays. 

The group characterized by timber trusses is composed by 5 classes and includes 

65 structural units. 

The V class represents the buildings with two stories which all belong to typology 

2. The dimensions that characterized this class are: 

• Last plan height: 4.3 m; 

• Height from the ground: 4 m; 

• Windows dimensions (bxh): 1.3 x 2.3 m; 

• Span length (connected with plan module 7): 3.8m. 

The micro-classes a, b, c and d correspond to 5, 7, 9 and 11 bays. 

The VI class represents the buildings with two stories and basement, which all 

belong to typology 7. The dimensions that characterized this class are: 

• Last plan height: 5 m; 

• Height from the ground: 5.3 m; 
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• Windows dimensions (bxh): 1 x 2.8 m; 

• Span length (connected with plan module 7): 3.8m. 

The micro-classes a, b and c correspond to 5, 7 and 9 bays. 

The VII class represents the buildings with three stories, which majority belongs 

to typology 2 and only two buildings belong to typology 12. The dimensions that 

characterized this class are: 

• Last plan height: 3.2 m; 

• Height from the ground: 10.5 m; 

• Windows dimensions (bxh): 1.3 x 2 m; 

• Span length (connected with plan module 8): 3.4 m. 

The micro-classes a, b, c, d and e correspond to 4, 6, 8, 9 and 11 bays. 

The VIII class represents the buildings with three stories and basement, which all 

belong to typology 8. The dimensions that characterized this class are: 

• Last plan height: 3.4 m; 

• Height from the ground: 10.7 m; 

• Windows dimensions (bxh): 1.1 x 2 m; 

• Span length (connected with half plan module 4): 2.575 m. 

The micro-classes a, b and c correspond to 8, 12 and 15 bays. 

The IX class represents the buildings with four stories, which all belong to 

typologies 4 and 13. The dimensions that characterized this class are: 

• Last plan height: 4.1 m; 

• Height from the ground: 16.8 m; 

• Windows dimensions (bxh): 1.2 x 2.2 m; 

• Span length (connected with plan module 3): 4.1 m. 

The micro-classes a, b and c correspond to 5, 7 and 10 bays. 
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I 

a 2 

2 1,15x2,9 
7  

(3,8x4,15) 
4,6 ±1 4,1 ±0,5 3,8x4,6 

b 5 

c 7 

d 11 

II 

a 3 

3 1,15x2 
4  

(2,9x5,15) 
3,75 ±1 8,7 ±0,5 2,9x2,75 

b 6 

c 8 

d 10 

 e 13 

TI
M

B
ER

 T
R

U
SS

ES
 

V 

a 5 

2 1,3x2,3 
7  

(3,8x4,15) 
4,3 ±0,5 4 ±0,5 3,8x4,3 

b 7 
c 9 
d 11 

VI 
a 5 

2+B 1x2,8 
7  

(3,8x4,15) 
5 ±0,5 5,3 ±0,5 3,8x5 b 7 

c 9 

VII 

a 4 

3 1,3x2 
8  

(3,4x6,75) 
4,2 ±0,5 10,5 ±1 3,4x3,2 

b 6 

c 8 

d 9 

e 11 

VIII 
a 8 

3+B 1,1x2 
4  

(5,15x2,9) 
4,4 ±0,5 10,7 ±1 2,575x3,4 b 12 

c 15 

IX 
a 5 

4 1,2x2,2 
3  

(4,1x5,8) 
4,1 ±0,5 16,8 ±1 4,1x3,1 b 7 

c 10 

Tab. 2.4.6:In plane classes 
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3 CODES 

3.1  EVOLUTION OF ROMANIAN DESIGN CODES1 

The major earthquake events with large impact on human life caused different 

modifications of technical provisions for buildings seismic design. After the major 

earthquake of  Vrancea in 1940, a first reference regarding a seismic design code 

is done in the Romanian design guideline “Temporary instructions for preventing 

the deterioration of buildings due to earthquakes and restoration of the degraded 

ones” from 1941. In the seismic zoning map of 1952, that was the first established 

for Romania, Timisoara was considered a very low seismic risk zone. 

In the 1963 the design code has been modified and Timisoara has been included in 

a zone having a degree of intensity VI on the MSK scale, while the southeast of 

the country maintained more or less the same zonation and degree. 

 

Fig.3.1.1:  STAS 2923-52 - Seismic zonation in 1952 in terms of degrees in MSK scale. 

REFERENCE: STAS 2923-52, Macrozonarea teritoriului R. P. Romane  (Inforix) 

1 Seismic risk of buildings with RC frames and masonry infills from Timisoara, Banat region, 
Romania  (Mosoarcaet al.,  2014) 
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Fig.3.1.2:  STAS 2923-63 - Seismic zonation in 1963 in terms of degrees in MSK scale. 

REFERENCE: STAS 2923-63, Macrozonarea teritoriului R. P. Romane (Inforix) 

 

 Unfortunately, between 1963 and 1977, “a lot of buildings from Timisoara were 

designed according to a degree of intensity 7 on the MSK scale”2. In the design 

code P13-63, calculation of the seismic action was based on a response spectrum 

for crustal earthquakes, having a control period of Tc = 0.3 sec, let to 0.4 sec with 

P13-70. 

After the Vrancea earthquake of 1977, in design codes P100-78 and P100-81 the 

control period value was modified to Tc=1.5 sec and the ductility rules for RC 

shear wall & frame structures were introduced. “In order to better cover the 

response of crustal earthquakes from the Banat region, a corner period of Tc = 0.3 

and 0.4 sec was implemented.”3 

2 Seismic risk of buildings with RC frames and masonry infills from Timisoara, Banat region, 
Romania (Mosoarca et al.,  2014, p.5) 
3 Ibidem 
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After the 1977 event, new ductility rules for RC structures were imported from 

US practice and incorporated into Romanian seismic codes P100 and design rules 

were significantly improved after 1989, according to the EUROCODE 8 

requirements4.  

 

 

Fig.3.1.3:  STAS 1100/1-77 - Seismic zonation in 1977 in terms of degrees in MSK scale. 

REFERENCE: STAS 1100/1-77, Macrozonarea teritoriului R. P. Romane  (Inforix) 

 

  

The later P100-92 seismic design code introduced advanced ductility rules for RC 

shear wall and frame structures and for steel structures and new values for 

Timisoara seismic intensity, considering an increased degree of intensity from VII 

to VII and half on the MSK scale. These modifications also influenced the PGA 

and the dynamic amplification factor β. On the new seismic zoning map, 

Timisoara reaches a level of seismic intensity of 7.5 with a peak ground 

4Study on seismic design characteristics of existing buildings in Bucharest, Romania (Postelnicu et 
al., 2004  pp. 12-20) 
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acceleration of ag=0.16g, but it is very close to the limit with the area of 8 degree 

and ag=0.20g. 

 

Fig.3.1.4:  STAS 1100/1-93- Seismic zonation in 1993 in terms of degrees in MSK scale. 

REFERENCE: STAS 1100/1-93, Macrozonarea teritoriului R. P. Romane (Inforix) 
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Fig.3.1.5:  Seismic zonation map of Romania in 1993 – Tc corner period 

REFERENCE: Romania - Code for aseismic design of residental buildings, agrzootechnical an 
industrial structures (Isee, 1992) 

 

The 2006 seismic design code P100-2006  can be considered as the first one of 

the new generation of seismic design codes based on the expected seismic 

performance and it follows  the European code EN 1998-1 considering the 

requirements performances of life safety (SV) and limit damage (LD); the hazard 

was significantly lower than the one European code5. 

A separate spectrum with β0 = 3 and TC = 0.7 s is given for the crustal sources in 

the Banat area after the series of significant seismic events occurred in 19916. 

The 2006 code focused on the level of peak ground acceleration ag and, on the 

zonation  map, the Banat region had values ranging from ag = 0.08g to ag = 0.20g, 

while the value for the town of Timisoara is ag=0.16g. 

 

 

Fig.3.1.6:  Zonation of Romanian territory in terms of peak ground acceleration values  for 
earthquakes with average recurrence interval IMR = 100 years. Code design P100-1 / 2006 

5 Cod de proiectare seismică p100, Partea I - p100-1/2011 prevederi de proiectare  pentru clădiri 
(Postelnicu et al., 2011) 
6 A comparison between the requirements of present and former Romanian seismic design codes, 
based on the required structural overstrength (Craifaleanu, 2008, p. 3) 
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REFERENCE: Cauzele seismelor. Zone seismice (Inforix) 

 

 

Fig.3.1.7:  Romania in terms of zoning control period (corner), TC response spectrum. Code 
design P100-1 / 2006 

REFERENCE: Cauzele seismelor. Zone seismice (Inforix) 

 

 

Fig.3.1.8:  Comparison between the normalized elastic response spectra in the two releases of 
P100 
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REFERENCE: A comparison between the requirements of present and former Romanian seismic 

design codes, based on the required structural overstrength, (Craifaleanu, 2008, p. 3) 

P100-2013 introduced other modifications of these values, increasing the peak 

ground acceleration to values between ag = 0.10g to ag = 0.25g: for Timisoara the 

value of ag is ag=0.20g. The zonation in terms of control period of the national 

territory is almost identical to P100 -2006 code.  

 

Fig.3.1.9:  Zonation of Romania in terms of  peak ground acceleration values for ag with IMR = 
225 years and 20% probability of exceedance in 50 years 

REFERENCE: Cod de proiectare seismică. (Siugrc) 
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Fig.3.1.10:  Romania in terms of zoning control period (corner), TC response spectrum. Code 
design P100-1 / 2013 

REFERENCE: Cod de proiectare seismică - P100-1 / 2013 

Figure 1.4.12 rapresents the evolution of the seismic design coefficent in 

Bucharest from the design code P13-63 to P100-92. Before the editing of P100-78 

and P100-81 design codes buildings ductility was not considered, and the value of 

the dynamic coefficent β increases progressively making standards more 

restrictive. 
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Fig.3.1.11:  Evolution of  seismic design coefficient in Bucharest during period 1940-2003 

REFERENCE: Earthquake protection of historicalbuildings by reversible mixed technologies, 
(Lungu, Arion and Vacareanu, 2005, p.10) 
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3.2 HORIZONTAL RESPONSE SPECTRUM 

 

The seismic action parameters used for the vulnerability analysis are defined 

according to the Eurocode 87 and the Romanian Code8. The horizontal response 

spectrum is different for these two codes, so both will be analyzed. 

3.2.1   Romanian Code9 

The Romanian Code subdivides the national territory in seismic zones, in which 

the hazard level is considered constant. The hazard seismic design is described by 

the horizontal peak ground acceleration ag, determinated by the average return 

period IMR. With the so defined ag is possible to determinate the characteristic 

value of seismic action, AEk. The design value of seismic action is AEd and it is the 

result of the multiplication of the characteristic value for the importance and 

exposure factor of the construction: 

 AEd = ϒ1,e · AEk        (3.1) 

Values of ag are given in Fig. 3.1.9 and they correspond to IMR = 225 years with 

20% probability of exceedance in 50 years. For Timisoara the value is 0.20 ag. 

The horizontal component of the elastic response spectrum Se(T), expressed in 

m/s2, is defined as: 

  Se(T) = ag · β(T)       (3.2) 

where ag is expressed in m/s2 and β(T) is the normalized elastic response 

spectrum. The normalized spectrum β(T), for a conventional value of  critical 

damping  ξ=0.05 and as a function of control periods TB, TC and TD, is given by 

these relations: 

 0 ≤ T ≤ TB  β(T) = 1 + 
BT

 1) - ( 0β  · T   (3.3) 

 TB ≤ T ≤ TC  β(T) = β0     (3.4) 

7 Design of structures for earthquake resistance (Eurocode 8 – ENV 1998-1) 
8 Cod de proiectare seismică  (P100-1 / 2013) 
9 §3.1 Reprezentarea actiunii seismice pentru proiectare  (P100-1 / 2013 , pp. 43-39) 
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 TC ≤ T ≤ TD  β(T) = β0 · 
T
TC     (3.5) 

 TD ≤ T ≤ 5s  β(T) = β0 · 2T
TT DC ⋅     (3.6) 

where: 

T is the vibration period of a linear single-degree-of-freedom system 

β0 is the dynamic amplification factor for  a maximum ground acceleration of  

a linear single-degree-of-freedom system,  its value is β0 = 2,5; 

TB, TC and TD define the spectrum shape and TC value is given in Fig. 3.1.10. 

From its value it is possible to define also TB and TD values, due to Table 3.1: 

TC 0,70 s 1,00 s 1,60 s 

TB 0,14 s 0,20 s 0,32 s 

TD 3,00 s 3,00 s 2,00 s 

Tab. 3.2.1:  Control period TB, TC , TD for horizontal component of response spectrum 

REFERENCE: §3.1 Reprezentarea actiunii seismice pentru proiectare  (P100-1 / 2013, p. 45) 

The normalized elastic response spectrum β(T) for the city of Timisoara is the 

following. 

 

Fig. 3.2.1:  Normalized elastic response spectrum according to  Romanian Code for the city of 
Timisoara 
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3.2.2   Eurocode 810 

The Eurocode describes seismic hazard “in terms of a single parameter, which is 

the value of the reference peak ground acceleration on type A ground, agR. […] 

The reference peak ground acceleration, chosen by National Authorities for each 

seismic zone, correspond to the reference return period TNCR of the seismic action 

for the no-collapse requirement (or equivalently the reference of exceedance in 50 

years, PNCR) chosen by National Authorities.”11 

An importance factor ϒ1=1 is assigned to the reference return period and it 

depends on the types of building in terms of consequences of failure. The design 

ground acceleration on type A ground ag is defined as: 

 ag = ϒ1 · agR        (3.7) 

The identification of ground types regards the influence of local ground condition 

on the seismic action. Ground types are described by the stratigraphic profiles and 

parameters given in Tab. 3.2. The average shear wave velocity vs,30 for the city of 

Timisoara is about 200 m/s (see §1.2.4 p.15) so the ground type is C.  

Ground 

type 
Description of stratigraphic profile 

Parameters 

vs,30 [m/s] NSPT 
[blows/30cm] 

Cu [kPa] 

A 
Rock or other rock-like geological 
formation, including at most 5 m of 

weaker material at the surface. 

>800 - - 

B 

Deposits of very dense sand, gravel, 
or very stiff clay, at least several tens 
of meters in thickness, characterized 
by a gradual increase of mechanical 

properties with depth. 

360-800 >50 >250 

C 

Deep deposits of dense or medium-
dense sand, gravel or stiff clay with 
thickness from several tens to many 

hundreds of meters. 

180-360 15-50 70-250 

10  §3 Ground conditions and seismic action (Eurocode 8 – ENV 1998-1,  pp. 33-44) 
11 §3.2.1 Seismic zones (Eurocode 8 – ENV 1998-1 ,p. 35) 
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D 

Deposits of lose-to-medium 
cohesionless soil (with or without 
some soft cohesive layers), or of 

predominately soft-to-firm cohesive 
soil. 

<180 <15 <70 

E 

A soil profile consisting of a surface 
alluvium layer with vs values of type 

C or D and thickness varying 
between about 5 m and 20 m, 

underlain by stiffer material with vs > 
800 m/s 

   

S1 

Deposits consisting, or containing a 
layer at least 10 m thick, of soft 

alys/silts with high plasticity index 
(Pl > 40) and high water content. 

<100 
(indicative) - 10-20 

S2 

Deposits of liquefiable soils, of 
sensitive clays, or any other soil 

profile not included in types A-E or 
S1 

   

Tab. 3.2:  Ground types 

REFERENCE: § 3.2.2 Identification of ground types (Eurocode 8 – ENV 1998-1 ,p. 34) 

In the Eurocode 8 “the earthquake motion at a given point on the surface is 

represented by an elastic ground acceleration response spectrum, henceforth 

called an ‘elastic response spectrum’”.12 The shape of this spectrum is the same 

for the no-collapse requirement and for the damage limitation requirement. The 

horizontal elastic response spectrum Se(T) is defined by the following expression: 

 0 ≤ T ≤ TB  Se(T) = ag ·S ·[ 1 + 
BT

T ·(η·2,5-1)]  (3.8) 

 TB ≤ T ≤ TC  Se(T) =  ag ·S · η · 2,5    (3.9) 

 TC ≤ T ≤ TD  Se(T) =  ag ·S · η · 2,5 





T
TC    (3.10) 

 TD ≤ T ≤ 4s  Se(T) = ag ·S · η · 2,5 · 




 ⋅
2T
TT DC   (3.11) 

12 §3.2.2.1 Basic representation of the seismic action–General (Eurocode 8 – ENV 1998-1,  
p. 36) 
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where: 

Se(T) is the elastic response spectrum; 

T is the vibration period of a linear single-degree-of-freedom system; 

ag is the design ground acceleration on type A ground (ag = ϒ1 · agR); 

TB is the lower limit of the period of the constant spectral acceleration branch; 

TC is the upper limit of the period of the constant spectral acceleration branch; 

TD is the value defining the beginning of the constant displacement response 

range of the spectrum; 

S is the soil factor; 

η is the damping correction factor with a reference value of η=1 for 5% 

viscous damping. 

The values of the periods TB, TC and TD and the soil factor S depend on the ground 

type and they describe the shape of the elastic response spectrum.  

The Code defines two types of spectra, which depend from the earthquakes that 

contribute most to the seismic hazard defined for the site for the purpose of 

probabilistic hazard assessment: if the earthquake has a surface-wave magnitude 

Ms not greater than 5,5 it is recommended that the Type 2 spectrum is adopted, if 

it is greater than 5,5 the Type 1 spectrum has to be adopted13. The historical 

earthquakes that interested the area of Timisoara had a surface-wave magnitude 

usually lower than 5,5, but few of them exceeded this value, so both spectra have 

been evaluated but Type 2 has been used. 

Ground type S TB [s] TC [s] TD [s] 

A 1 0,15 0,4 2,0 

B 1,2 0,15 0,5 2,0 

C 1,15 0,20 0,6 2,0 

D 1,35 0,20 0,8 2,0 

E 1,4 0,15 0,5 2,0 

Tab. 3.2.3:  Values of the parameters describing the recommended Type 1 elastic response spectra 

REFERENCE: §3.2.2.2 Horizontal response spectrum  (Eurocode 8 – ENV 1998-1, p. 38) 

 

13 §3.2.2.2 Horizontal response spectrum  (Eurocode 8 – ENV 1998-1, p. 38) 
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Ground type S TB [s] TC [s] TD [s] 

A 1 0,05 0,25 1,2 

B 1,35 0,05 0,25 1,2 

C 1,5 0,10 0,25 1,2 

D 1,8 0,10 0,30 1,2 

E 1,6 0,05 0,25 1,2 

Tab. 3.2.4:  Values of the parameters describing the recommended Type 2 elastic response spectra 

REFERENCE: §3.2.2.2 Horizontal response spectrum  (Eurocode 8 – ENV 1998-1, p. 39) 

The Type 1 and Type 2 elastic response spectrum for the city of Timisoara are so 

the following: 

 

 

Fig. 3.2.2:  Type 1 elastic response spectrum according to the Eurocode 8 for the city of Timisoara 
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Fig. 3.2.3:  Type 2 elastic response spectrum according to the Eurocode 8 for the city of Timisoara 
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3.3 MATERIALS AND LOAD ANALYSIS 

For the vulnerability analysis it is necessary to know material characteristics and it 

was chosen to adopt values defined by the Italian regulation, NTC 2008.14 For 

masonry buildings the Italian Code defines three knowledge levels, according to 

the quality of information obtained. For this analysis the assumed level is LC1, 

that is reached when a geometric survey and limited in situ inspections are 

made.15 The knowledge level defines, for each wall typology, the values of 

mechanical parameters. For the masonry compressive strength and shear strength 

the minimum value has been taken, between 240 and 400 N/cm2 for the first 

parameter and between 6 and 9,2 N/cm2 for the second one. For the modulus of 

elasticity and the modulus of tangential elasticity the medium value has been 

taken, between 1200 and 1800 N/mm2 for the first parameter and between 400 and 

600 N/mm2 for the second one. The indicated value of 18 kN/m3 has been taken 

for the specific weight of masonry. 

 In Timisoara the vertical structures are made of solid bricks and lime mortar 

masonry, so the mechanical parameters for this wall typology, for a knowledge 

level LC1, are: 

fm 

 [N/cm2] 

τ0  

[N/cm2] 

E  

[N/mm2] 

G  

[N/mm2] 

w  

[kN/m3] 

240 6 1600 500 18 

Tab. 3.2.5:  Material properties of solid bricks and lime mortar masonry 

REFERENCE: §C8A.2 Tipologie e relative parametri meccanici delle murature  (Circolare NTC 
2008, p. 403) 

where: 

fm is the average value of masonry compressive strength 

τ0  is the average value of masonry shear strength 

14 Nuove Norme Tecniche per le Costruzioni ( Decreto del Ministero delle Infrastrutture 
14/01/2008); 
Istruzioni per l’applicazione delle Norme Tecniche per le Costruzioni (Circolare esplicativa n. 617 
02/02/09) 
15 §C8A.1.A.4 Costruzioni in muratura: livelli di conoscenza  (Circolare NTC 2008, p. 391) 
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E is the average value of modulus of elasticity  

G is the average value of modulus of tangential elasticity 

w is the average specific weight of masonry 

Regarding horizontal structures, architectural details have been hypothesized to 

estimate permanent loads as follow: 

Horizontal 

structure 

typology 

Constituent elements 
Dimensions 

[cm] 

ϒ  

[kN/m3] 

Permanent 

load  

Gk [kN/m2] 

Adjoining 

type timber 

structure 

Plaster 1,5 0,19 

2,31 

Fir beams 20 6 

Soil and shards filling 3 15 

Wooden planking 6 6 

Wood finish  2,5 6 

Parquet  2,5 6 

R.C. slab 

Plaster 1,5 0,3 

4,70 
Concrete slab 15 24 

Screed 7 14 

Floor finish 2 6 

Iron beams 
and little 

brick vaults 

Iron beam (IPE 200) 

i = 1 m 
0,284 78,5 

3,91 

Solid bricks 15 17 

Soil and shards filling 3 15 

Loamy soil filling 3 13 

Wooden finish 2,5 6 

Parquet 2,5 6 

Tab. 3.2.6:  Horizontal structures load analysis 

REFERENCE: §3.1.2  Pesi propri dei materiali strutturali (NTC 2008, p. 11) 
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To evaluate permanents loads of brick vaults, the Gelfi program Arco has been 

used. The characteristics considered were: 

Ring geometry 

Span 4,5 m 

Rise 1,5 m 

Thickness 0,15 m 

Segments number 30 

Unitary weight 

of volume 

ϒ 

Bricks 17 kN/m3 

Soil and shards filling 15 kN/m3 

Timber structure 6 kN/m3 

Timber structure dimension 0,1 m 

Soil and shards filling dimension 0,5 m 

Ring width 1 m 

Tab. 3.2.7:  Vaults characteristics considered on permanent loads evaluation 

 
This program gives horizontal and vertical reactions for each spring in case of 

barrel vaults. In case of cross vaults the reaction can be halved to obtain the 

searched results. The permanent load for brick vaults and concrete horizontal 

diaphragms are obtained from a combination of brick vault loads and R.C slab 

loads. 

The accidental loads follow the Italian regulation and are described above: 

Building 
category Environment qk  

[kN/m2] Ψ2j 

A Residential environment 2,00 0,3 

B Open to public offices  3,00 0,3 

C Environments susceptible to 
crowding 3,00 0,6 

D1 Shops 4,00 0,6 

D2 Commercial centers and libraries 5,00 0,6 

E1 Libraries, archives, deposits, etc… 6,00 0,8 

H1 Not-walkable roof and attics 0,5 0,0 

Tab. 3.2.8:  Accidental loads and values of combination factors for different building categories 

REFERENCE: §2.5.3 Combinazione delle azioni  (NTC 2008, p. 8);  §3.1.4 Carichi variabili  
(NTC 2008, p. 12); 
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4  VULNERABILITY ASSESSMENT 
 

The vulnerability assessment has been used in two different applications. The first 

one regards the study of three  blocks of the historical center,  with the purpose of 

defining the vulnerability level of the entire aggregate. The second application 

regards the study of four singular structural units, to compare the results obtained 

for two different level of information: the real case, obtained by detailed plans and 

sections, and the survey case, using the city plan of 1980 and information 

collected in situ. 

4.1 THE VULNERABILITY ASSESSMENT 

An aggregate of buildings is constituted by an assembly of linked parts that are 

the result of a complex and not uniform genesis, due to many factors such as the 

construction sequence, different materials, changing needs, owners alternation, 

etc1. An historical aggregate is indeed composed by adjoining buildings that 

interact to each other. The vulnerability assessment of these blocks must consider 

the buildings both in their entirety and in relation with adjacent corps with 

different characteristics. All the elements of the same aggregate are indeed 

connected, creating a complex set in which the structural behavior of a building 

can not ignore the adjacent units structural behavior.2 The software Vulnus, 

developed by the University of Padua, performs an expeditious analysis of 

buildings seismic vulnerability as a whole and allows statistical evaluations on the 

aggregate results3. 

 

 

 

1 §C8A.3 Aggregati edilizi (Circolare esplicativa NTC 2008, p. 406) 
2Manuale d’uso del programma, Vulnus 4.0 (Università degli Studi di Padova, 2009, p. 5) 
3 Ibidem 
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4.1.1  The Vulnus methodology4 

The Vulnus methodology works on the evaluation of the critical level of average 

horizontal acceleration applied to the building masses, correspondent to the 

activation of out of plan mechanisms of individual walls and in plan of the two 

system of parallel walls connected with the horizontal structures.  

Empirical observation of the earthquake effects and laboratory simulations 

demonstrated that masonry buildings can break up in two distinct modes: 

• Masonry walls characterized by reasonable quality and effectively 

confined from orthogonal walls and rigid stories can manifest shear failure 

of the walls; 

• Masonry walls characterized by low quality walls and not adequate 

enclosure can manifest complex failure mechanisms for perimeter walls. 

The vulnerability model of this methodology depends on these indexes: 

• I1: it is the ratio between the summation of the shear strengths in the 

middle plan of parallel walls in the weaker direction between the principal 

two of the building and the total building weight, that can be corrected to 

consider eventual irregularities in plan or in elevation. The I1 index is 

dimensionless and it can be seen also as the critical ratio between the 

average acceleration of the masses A and the gravity acceleration g. The 

evaluation of this parameter needs an estimation of the average resistance 

to diagonal traction, that can be obtained from laboratory data 

experimented on similar typologies. 

• I2: it is the ratio between the average acceleration that activates the out of 

plan mechanisms in the most critical conditions and the gravity 

acceleration. Through limit analysis of different kinematic models, the 

resistance of vertical masonry panels of external walls of the building, 

connected to horizontal structure with only confinement forces, and 

horizontal panels, connected to perpendicular walls through nodal areas, 

are separately evaluated. The local acceleration at different floors is 

evaluated assuming a distribution proportional to the building height. It is 

4 Ivi (p.6) 
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also required an evaluation of the tensile and compressive strength of the 

masonry walls and of the containment forces that may develop at the 

horizontal diaphragms level, due to the presence of effective tie rods or 

due to other resistance mechanisms. The analysis of just the external walls 

is justified from empirical observation on building damage during seismic 

events: out of plan mechanisms are not observed in case of internal septs 

or perimeter septs adjacent to higher. 

• I3: it is the weighted sum of the scores of the partial vulnerability factors 

expressed in the second level GNDT form: this value is normalized 

between 0 (construction built in a workmanlike manner or according to 

seismic codes) and 1. It is an empirical parameter that considered 

qualitative factors not considered by the  parameters calculation and that 

draws vulnerability index defined by Benedetti and Petrini (1984), 

discarding the  parameters jet valued by the previous two indices. 

The indices I1, I2 and I3, properly combined, are the basis for the formulation 

of a comprehensive assessment of the seismic vulnerability, which also takes 

into account the quality of the information gathered at the base of the 

calculation. 

The vulnerability rating may referred to the single structural unit, to the entire 

block, or to all the blocks in question. A later stage leads to the calculation of 

the expected values of serious damage through the construction of fragility 

curves and comparison between results obtained and those expected from the 

scale of macro seismic intensity EMS98. 
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4.1.2   The survey form5 

The input data derive from the compilation of the “Seismic vulnerability form for 

masonry buildings” (Fig 4.1). 

 

Fig. 4.1.1 Seismic Vulnerability survey form for masonry buildings 

REFERENCE: Mauale d’uso del programma Vulnus 4.0 (Università degli studi di Padova , 2009) 
 

Structural units must be homogeneous respect to the following building 

characteristics: 

• Period of construction; 

• Height and volume; 

• Materials and preservation state; 

• Construction techniques; 

• Foundations type and soil characteristics. 

5 Manuale d’uso del programma, Vulnus 4.0 (Università degli Studi di Padova, 2009, pp. 11-18) 
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The form is divided in three parts that concerns  buildings and walls 

characteristics. 

The first section is a space reserved to a schematic drawing of the building plan 

where nodes, walls and septa shall be identified by an index. The chosen  plan has 

to be the more representative of the building. The ground floor plan is usually 

considered  because the resistance verification to horizontal seismic forces is 

generally more onerous than in other floors. 

A wall identifies a straight portion of  masonry that can be divided into more 

septa, pinpointed by the initial and the final node, determined by walls 

intersections. The second section  summarizes the general characteristics of the 

building, that are: 

Constituent material: this parameter considers the prevalent material that 

constitute the walls or in case of unevenness the material with the worst 

characteristics. 

MATERIAL 
RESISTANCE [MPa] SPECIFIC DENSITY 

[kg/m3] COMPRESSION  TRACTION 

1) not identified 1.5 0.08 2100 
2) stone 2.6 0.14 2100 
3) bricks 4.0 0.22 1800 
4) RC blocks 4.0 0.36 1200 
5) tuff block 3.2 0.20 1800 

Tab. 4.1.1: Wall material and relative mechanical properties in the case of good quality masonry 

REFERENCE: Manuale d’uso del programma, Vulnus 4.0 (Università degli Studi di Padova, 
2009, p. 13) 

 

Material conservation: it describes the state of the building, and it is defined by 

four classes, from not identified to bad conservation. 

CONSERVATION STATE 

1) not identified Mechanical characteristics multiplied by 0.75 
2) good Mechanical characteristics multiplied by 1.00 
3) mediocre Mechanical characteristics multiplied by 0.75 
4) bad Mechanical characteristics multiplied by 0.50 

Tab. 4.1.2: Conservation state 

REFERENCE: Manuale d’uso del programma, Vulnus 4.0 (Università degli Studi di Padova, 
2009, p. 14) 
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Stories number: this parameter takes count of the building stories number,  

including the basement but not the underground. 

Horizontal structure typologies: it takes into account the loads per unit surface, 

plan rigidity and horizontal and vertical structure gripping. 

 

PERMANENT LOADS 

1) not identified  G + Q= 3.7 kN/m2 

2) very light wood (even stiffened), 
iron beams and little 

brick vaults 

G + Q= 2.2 kN/m2 

3) light G + Q= 3.7 kN/m2 

4) medium 

Concrete 

G + Q= 5.2 kN/m2 

5) heavy G + Q= 6.7 kN/m2 

6) very heavy G + Q= 8.2 kN/m2 

Tab. 4.1.3: Horizontal structures permanent loads 

REFERENCE: Manuale d’uso del programma, Vulnus 4.0 (Università degli Studi di Padova, 
2009, p. 14) 

 
Plan regularity: it considers the presence of holes and mass distribution. 

 

PLAN REGULARITY 

1) not identified 

2) regular 

3) not regular 

Tab. 4.1.4: Plan regularity 

REFERENCE: Manuale d’uso del programma, Vulnus 4.0 (Università degli Studi di Padova, 
2009, p. 15) 

 
Building height: this parameter is measured from ground level to the gutter line 

Building surface: it represents the building area and  is measured considering the 

external walls line. 

Warping of horizontal structures: it consider the prevalent warping present in 

the building. 
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HORIZONTAL STRUCTURE WARPING 

1) not identified 

2) X prevalent 

3) Y prevalent 

4) both directions 
 

Tab. 4.1.5: Horizontal structures warping 
REFERENCE: Manuale d’uso del programma, Vulnus 4.0 (Università degli Studi di Padova, 

2009, p. 15) 
 

Floor regularity: it identified the presence of thrusting floors or overweight. 

FLOOR REGULARITY 

1) not identified 

2) regular 

3) inactive at (_) floor on the walls parallel to X direction 

4) inactive at (_) floor on the walls parallel to Y direction 

5) inactive at (_) floor  on the walls parallel to X andY direction 

6) overweight at floor (_) 

Tab. 4.1.6: Floor regularity 

REFERENCE: Manuale d’uso del programma, Vulnus 4.0 (Università degli Studi di Padova, 
2009, p. 16) 

 

Walls restraint: this parameter denotes the continuity between horizontal and 

vertical structures in the parallel direction to X and Y. The friction coefficient, the 

number of tie rods and the dimension of the principal façade in both directions X 

Y are part of the parameter. 

The last section summarize the septa characteristics: 

• Wall index; 

• Wall angle; 

• Initial and final node; 

• Septum number; 

• Ground floor thickness; 

• Septum length; 

• Holes dimension; 
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• Extremity shoulders, that gives information about nodes: they are 

considered weakened  if the distance between the hole and the node is less 

than half of the dimension of the hole. They are identified by a number: 

1) not identified 

2) regular shoulders 

3) initial shoulder not regular 

4) final shoulder not regular 

5) both shoulders not regular. 

• Last storey thickness; 

• Stories number of the adjacent building with the value of:  

 0 for isolated septa; 

 -1 for internal septa or septa in common with other buildings; 

 stories number nc of the adjacent building for septa common to 

other buildings with lower height. 

If the building shows elevation and/or plan irregularity it can be subdivided in 

more structural units.  

4.1.3   Elementary kinematic models6 

Vulnus considered two groups of elementary kinematic models, as  said in chapter 

4.1.1: the first group includes in plane mechanisms of collapse (shear strength) 

and the second one considers out of plane mechanism of collapse. Usually, it is 

the second group of mechanisms that leads to  the building collapse.  

The hypotheses considered by the program are: 

• The distribution of the masses (including floors) is uniform along the 

whole height of the structure; 

• The acceleration distribution is proportional to the building height; 

• The walls parallel to the direction of the earthquake, in favor of security, 

absorbs the entire horizontal action transferred to them through 

mechanisms of flexural strength of orthogonal walls connected through the 

ceilings. 

 

6 Manuale d’uso del programma, Vulnus 4.0 (Università degli Studi di Padova, 2009, pp. 19-21) 
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4.1.4   In plane mechanism of collapse 

For each of the two main directions of the building, Vulnus evaluates the 

relationship between the critical value of the average horizontal acceleration on 

the building masses and the acceleration of gravity as ratio of the base shear and 

the total weight of the construction. The parameter I1 is given by the minimum 

value.  

Considering the vertical load uniformly distributed over the walls, the error 

introduced for the typology is small. The vertical stress σ0 depends mainly from 

the masonry weight, even considering the warping floors unidirectional (which 

does not correspond to reality) and neglecting the transmission capacity of the 

tangential stresses between the masonry at different levels of vertical tension. 

In the case of clustered buildings, the septa in common between two buildings 

must contribute to the shear strength of both: the distribution of shear strength is 

assumed proportionally to the load applied to them by the adjoining buildings, and 

that is approximately connected to the floor number. 

Therefore, the thickness of the wall, for adjacent walls in buildings with equal or 

lesser height, it is reduced proportionally to the load of responsibility. In case of 

lower contiguous buildings should be indicated the real total thicknesses for 

ground floor and top floor. 

4.1.5   Out of plane mechanism of collapse 

For out of plane mechanism of collapse, kinematic mechanisms concerning 

vertical and horizontal masonry strips are identified. For each mechanisms, the 

relationship between the average horizontal acceleration, which activates the 

mechanism, and the acceleration of gravity was calculated. A wall can be 

considered composed by a number of vertical stripes or by a number of horizontal 

stripes, so two resistance contributions has been considered: 

- I2' considers the resistance of 1m masonry vertical stripes simply supported 

(with no tensile strength) on the foundation and transversal walls or connected to 

the floors; 

- I2 '' considers the arc or beam resistance of horizontal masonry stripes connected 

by the transverse walls (parallel to the earthquake direction). 
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The I2 index, representative of the out of plane building resistance, is given by the 

lesser of the sums I2 '+ I2'' calculated for the various walls. 

The new version of the program was integrated with other mechanism that add the  

presence of a full curb on the masonry, since it can improve the box-shaped 

structure effect and  can increase the forces that counteract the earthquake action. 

The action of containment is transmitted to the masonry thanks to the friction, 

which is formed from the contact between masonry and curb.  

The stabilizing effect of the floors have different values depending on the floor 

warping. In case of  presence of a prevailing direction of floor warping μ = 0.15 is 

used, while for orthogonally septa μ = 0.05 is assumed.  

The friction force caused by the presence of the curb (or the friction between only 

horizontal and vertical structure with no curb) is inversely proportional to the 

height, because the weight of the overlying load decreases with the increase of the 

stories. 

Both the tie rods and the restraining effect of the curbs are subjected to 

deformations at high altitudes, so they respond to the seismic action with bigger 

forces on the given area.  

Thanks to the introduction of this model, it is possible to calculate the force 

produced by the curb presence and the force caused by the horizontal-vertical 

structures interaction.  

4.1.6   Kinematic mechanisms for 1 m deep vertical stripes 

As regards the one meter vertical strips mechanisms, the program considers the 

analysis to the global overturning of the wall (this analysis independent from the 

masonry resistance value) and the overturning or bending failure of the wall on 

the upper floor for high containment pressures (for simplicity it is considered that 

acceleration, and so distributed load on the last floor, is constant and equal to the 

average of the floors). 

4.1.7   Kinematic mechanism for 1 m high horizontal stripes 

The horizontal stripes are divided into spans of 1 meter height and length l for 

each wall, restricted by transversal walls in the nodal points, but not by  the 

horizontal structures and resistant to orthogonal actions: 
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• As beams embedded to nodes until the tensile strength limit of masonry 

(critical acceleration value a1); 

• According to the arc mechanism with displacement  in the thickness of the 

wall, until the collapse limit by compression or by overturning of the arc 

shoulders (the critical acceleration value a2). 

In both cases, for each node, the resistance to separation of the strips by transverse 

walls must be verified (critical acceleration value a3). The shear strength of the 

horizontal stripes does not appear limitative, with geometric values and materials 

strength practically significant. 

4.1.8   Effects of interaction between adjacent buildings 

After the definition of the elementary out of plane kinematic mechanisms, Vulnus 

calculates the indices I2' and I2" values for each considered mechanisms, for all 

the septa. It is also possible to display all the values  calculated for each 

mechanism and septum. 

For the evaluation of  I2 index not all the calculated values are considered: some 

mechanisms are considered by the procedure as not activatable. For example, in 

I2' calculation only the free external walls  are considered. To calculate I2'' all the 

shoulder nodes must be analyzed in order to understand which kind of mechanism 

can be activated (bending failure, compressive failure of the arch, local 

overturning due to the thrust of the arch, detachment of the septum from the 

perpendicular wall). 

Vulnus considers the nodes shown in Tab 4.1.7: 
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NODE TYPE  

CROSS NODE 
Possible breaking mechanisms:  

• Bending failure  
• Failure of the arch  

Mechanisms that cannot be activated:  
• Separation of the wall perpendicular to the 

septum 
• Local overturning due to the thrust of the 

arch  

INTERMEDIATE “T” NODE 

Possible breaking mechanisms:  
• Bending failure  
• Compression breaking of the arch 
• Separation of the wall perpendicular to the 

septum 
Mechanisms that cannot be activated:  

• Overturning of the wall shoulder 
perpendicular to the septum due to the 
thrust of the arch 

 

 

ENDING “T” NODE 

Possible breaking mechanisms:  
• Bending failure  
• Compressive failure of the arch  
• Local overturning due to the thrust of the 

arch  
Mechanisms that cannot be activated:  

• Separation of the wall perpendicular to the 
septum 
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“L” NODE 

Possible breaking mechanisms:  
• Bending failure  
• Compressive failure of the arch  
• Local overturning due to the thrust of the 

arch  
• Separation of the wall perpendicular to the 

septum 
 

 
Tab. 4.1.7: Effects of interaction between adjacent buildings 

REFERENCE: Manuale d’uso del programma, Vulnus 4.0 (Università degli Studi di Padova, 
2009, pp. 35-36) 
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4.1.9   I3 Index calculation 

The I3 index considers the factors, positive and negative, overlooked in the 

previous resistant mechanisms. These additional factors are identified through the 

compilation of the second level GNDT form, for each analyzed building. Below 

the form is shown. 

 
Fig. 4.1.2 Second level GNDT form 

REFERENCE: Criteri per l’esecuzione delle indagini, la compilazione delle schede di 
vulnerabilità II livello GNDT/CNR e la redazione della relazione tecnica (Regione Toscana, 2004) 
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The form collects information about eleven parameters that describe the building. 

For each parameter the form requires to indicate the class and the quality of the 

information used to define the class. For each category, the manual describes the 

method to evaluate correctly the parameter.  

The second level G.N.D.T. form was initially used to calculate the Normalized 

GNDT index (between 0 and 1), which determines the vulnerability of a single 

building as a function of the eleven representative parameters, considering the 

propensity of the building to be damaged from a seismic event. 

Actually, Vulnus considers only seven of the eleven parameters collected through 

the forms to calculate the I3 index, discarding those that are implicitly evaluated 

by I1 and I2  (Tab. 4.1.8). The I3 index is a normalized measure of the structural 

weaknesses of the building. If I3 = 0 the building respects the earthquake 

standards and it is characterized by good state of preservation. The I3 calculation 

is the same for isolated buildings and clustered buildings. 

PARAMETERS RELATION WITH I1 AND I2 I3 WEIGHT 

Resistant system type and 
organization 

I2 0.00 

Resistant system quality partially I1 and I2 0.15 

Conventional resistance I1 0.00 

Building and foundation 
position 

No 0.75 

Horizontal structures partially I2 0.50 

Planimetric configuration I1 0.00 

Altimetric configuration partially I2 0.50 

DMAX walls I2 0.00 

Roof partially I2 0.50 

Non-structural elements No 0.25 

Status quo partially I1 and I2 0.50 

Fig. 4.1.8: Parameters to calculate the I3 index 
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4.1.10   Procedure for vulnerability calculation 

Calculated I1, I2 and I3 indices, it is possible to progress with the vulnerability 

analysis. These parameters are transformed into fuzzy subsets of their definition 

range. This way the uncertainty related to the estimation of quantities that are 

difficult to measure directly (for example the foundations depth), the variability of 

physical parameters characterizing the materials (for example the compressive 

strength ) and any inaccuracies or errors in the detection process are considered. 

Special data structures called fuzzy variables are introduced. The fuzzy set theory 

allows to treat concepts without exact boundaries where the transition between an 

element belonging to the set and one that does not belong to it is not clear, but 

gradual. A deterministic model is used to calculate the vulnerability, applied to 

fuzzy quantities. The model  calculates with hyperbolic function the probability of 

survival fs, or the complementary probability of collapse Vu (vulnerability). Fig 

4.1.3 represents the function that describes the vulnerability: it divides the plane 

into the " certainly safe zone ", with Vu = 0, and  the "certainly insecure zone" 

with Vu = 1. There is a transition zone in which the value of Vu, variable between 

0 and 1, become the “probability of collapse” of the construction compared to I1, 

I2 and A variables. In this zone the curves characterized by a constant Vu value 

constitute a family of hyperbolas  for which the parameter u (0<u <1) or  Vu  are 

constant between the boundary of the safe and unsafe zones. The vulnerability 

function implies a perfect symmetry of the effects of I1 and I2 and therefore of the 

strength compared to the condition I1 = I2. 
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Fig. 4.1.3 Representation of the vulnerability function 

REFERENCE: Manuale d’uso del programma Vulnus 4.0 (Università degli studi di Padova , 2009, 
p. 50) 

 

The parameter a, defined in the range variable between 0 and 1, determines the 

amplitude of the transition zone, summarizing the influence of building qualitative 

factors (the parameters of the second level GNDT form). Even the same values of 

Vu depend on a: with constant I1 and I2, the function Vu grows monotonously 

with a. 

From the cooperation between the estimated Vulnus results and the real damage 

observed on the buildings, the model was calibrated: 

• c1 = 0.5 fixed the asymptotes of the hyperbolic function and therefore 

implies that, when A> min (I1 / 2, I2 / 2), it is certainly the appearance of 

serious damage; 

• c2 =1.0 and c3 =0.1 imply that, in the condition of symmetry (I1 = I2), if 

A is  equal to the values witch trigger the collapse mechanism (with an 

uncertainty of the model equal to 10%), this is the central values that 

separates the safety from the insecurity range; 
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• c4 = 1.0 implies that, always in condition of symmetry (I1 = I2), when A is 

less than half of the values which trigger the collapse mechanisms, is 

certainly to exclude the presence of serious damage. 

The hypothesis of interaction of hyperbolic type extends the conclusions to the 

case where I1 and I2 assume different values. 

 

206 

 



CHAPTER 4: VULNERABILTY ASSESSMENT 

            

4.2 APPLICATION OF THE METHODOLOGY TO THE BLOCKS 

4.2.1  Description of the blocks 

The Vulnus methodology has been applied to three blocks of the historical center 

of Timisoara: C3, C4 and C23 (Fig. 4.1.4). Blocks C3 and C4 are both masonry 

buildings and RC buildings while block C23 is composed by all masonry 

buildings, excepting for US 134 that is characterized by a bearing structure of 

concrete pillars. Vulnus software does not evaluate RC buildings so they are not 

included in this analysis. The relationship of the evaluated units with the omitted 

ones is still considered with the parameter “adjacent building stories number”, in 

which is indicated the relative height of the adjacent unit respect to the analyzed 

unit, and with the parameter “wall thickness”, that can be calibrated to consider 

adjoining or  common walls between two neighboring units. 

Block C3 has 11 buildings, of which 4 are masonry buildings and 7 are RC 

buildings. Block C4 has 10 buildings and just one is a RC building. Block 23 has 

8 buildings and just US 134 has an RC structural system that can not be evaluated 

in Vulnus. 

No reinforcing elements are considered in the analysis, due to both their uncertain 

activation  and to choose the worst situation possible, in favor of safety.. The 

same building can be subdivided in more structural units if it has parts with 

different stories number or if it has big dimensions.7  

7 The maximum number of walls that ca be put in the program is 21. If a building has more than 21 
walls it has been divided in more structural units. 
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Fig. 4.1.4:  Analyzed blocks 

To apply Vulnus methodology it is important to have a plan of the building to 

define walls, septa and nodes which are necessary to represent the analyzed 

structural units. For this purpose the map of the historical center, already used to 

define plan modules in chapter 2.4.4, has been used. The definition of walls and 

septa is calibrated following the plan modules already defined in chapter 2.4.4, to 

better understand the structural system of the building. Septum length, wall 

direction and number, plan area and façade length are so defined. Openings length 

and walls extremity shoulders are defined using the same map, even if the 

representation is not very detailed. All the others parameters are defined using the 
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data collected in situ, like building height, horizontal structures and wall 

thickness. The study is indeed aimed to give a vulnerability evaluation starting 

from the building characteristics that can be relived with a rapid survey. 

The assumptions made to complete the analysis are the following: 

- Material conservation: A and B ratings in the survey form correspond to 

parameter 2 (good) in Vulnus, C corresponds to 3 and D corresponds to 4. 

- Stories number: in this parameter the presence of basement must be 

considered. 

- Permanent load on horizontal structure: the prevalent horizontal structure 

must be considered; timber structures and iron beams and little brick 

vaults structures correspond to a light load of 3 kN/m2 while concrete slabs 

correspond to a medium load of 4.5 kN/m2. The vertical and horizontal 

 vault thrust are defined using Arco software, as explained in chapter 3.3; 

- Floor warping: warping direction is hypothesized following the most 

probable in plan disposition in case of timber structure or iron beams and 

little brick vaults; it is considered following both direction in case of 

concrete slab; it is considered usually perpendicular to the perimeter walls. 

- Floors regularity: if the structural unit is one or two stories high it is 

considered regular (parameter 2), if it has 3 or more stories it is considered 

unidentified (parameter 1). The floor regularity considers the possibility of 

different warping direction in different floors. It was choose to consider 

parameter 2 in case of two stories height buildings because it is more 

probable that the warping direction coincides for each floor. It is 

considered unidentified in case of more than two floors because it is more 

probable the presence of an horizontal structure with a different warping 

direction. 

- Friction coefficient: for walls perpendicular to warping direction the 

coefficient has a value of 0.15 and for walls parallel to warping direction it 

has a value of 0.05; if the warping has both directions the friction 

coefficient has a value of 0.15 in both directions. 

- Wall thickness: for perimeter walls, ground floor  and upper floors 

thickness are defined considering the values of the survey form; for 

internal walls the thickness decreases of 15 cm, except for principal walls; 
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for internal walls the thickness decreases of 15 cm from ground floor to 

upper floors. 

The following tables show the analyzed structural units for each block. They are 

part of the Vulnus form and the entire schedule can be found in annex C. The 

image represents the unit subdivision in walls (blue), septa (red) and nodes (dark 

blue), while the right part of the table contains informations about building 

characteristics and their evaluation following the criteria defined in chapter 4.1.2. 

 

BLOCK C3 

Building US 7 plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
2 

Stories 
number 

 
2 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1110 

Plan area 
( m2 ) 

 
618.8 

Floor  
warping 

( F ) 
2 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
2730 

 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
2750 

 

 

Building US 8 plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
2 

Stories 
number 

 
2 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
890 

Plan area 
( m2 ) 

 
923 

Floor  
warping 

( F ) 
4 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 

26411 
 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
4227 
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Building US 9 plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
2 

Stories 
number 

 
3 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1320 

Plan area 
( m2 ) 

 
224.4 

Floor  
warping 

( F ) 
2 

Floors regularity 
1 

( G ) ( irregular floor) 
 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1119 

 

Friction 
coefficient μ 

0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
2005 

 
 

Building US 17 plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
2 

Stories 
number 

 
2 

Horizontal 
structures 

( C ) 
4 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
850 

Plan area 
( m2 ) 

 
123.7 

Floor  
warping 

( F ) 
4 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number :2 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
897 

 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1519 

 

BLOCK C4 

Building US 18 plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
3 

Stories 
number 

 
2 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
835 

Plan area 
( m2 ) 

 
569 

Floor  
warping 

( F ) 
4 

Floors regularity 
2 

( G ) ( irregular floor) 
0 

   Ring beams number : 0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1834 

 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
4187 
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Building 19A plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
2 

Stories 
number 

 
1 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
450 

Plan area 
( m2 ) 

 
100 

Floor  
warping 

( F ) 
2 

Floors regularity 
2 

( G ) ( irregular floor) 
0 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
527 

 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1890 

 

 

Building US 19B plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
2 

Stories 
number 

 
2 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
850 

Plan area 
( m2 ) 

 
306.1 

Floor  
warping 

( F ) 
2 

Floors regularity 
2 

( G ) ( irregular floor) 
0 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1287 

 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
3598 

 
 

Building US 20 plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
2 

Stories 
number 

 
2 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
950 

Plan area 
( m2 ) 

372.7 

Floor  
warping 

( F ) 
2 

Floors regularity 
2 

( G ) ( irregular floor) 
0 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1452 

 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
3435 
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Building US 21 plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
2 

Stories 
number 

 
2 

Horizontal 
structures 

( C ) 
4 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
950 

Plan area 
( m2 ) 

 
546.4 

Floor  
warping 

( F ) 
4 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number : 2 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1759 

 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
4187 

 
 

Building US 22 plan  Building characteristics 
 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
2 

Stories 
number 

 
1 

Horizontal 
structures 

( C ) 
4 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
380 

Plan area 
( m2 ) 

 
170.1 

Floor  
warping 

( F ) 
4 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number :1 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1019 

 

Friction 
coefficient μ 

0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1669 

 
 

Building US 23 plan  Building characteristics 

 
 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
2 

Stories 
number 

 
2 

Horizontal 
structures 

( C ) 
4 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
740 

Plan area 
( m2 ) 

 
259.1 

Floor  
warping 

( F ) 
4 

Floors regularity 
2 

( G ) ( irregular floor) 
0 

   Ring beams number :1 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1759 

 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1473 
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Building US 24 plan  Building characteristics 
 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
3 

Stories 
number 

 
3 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1400 

Plan area 
( m2 ) 

 
313.3 

Floor  
warping 

( F ) 
4 

Floors regularity 
1 

( G ) ( irregular floor) 
0 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1586 

 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
2144 

 
 

Building US 25 plan  Building characteristics 
 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
2 

Stories 
number 

 
4 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1530 

Plan area 
( m2 ) 

 
482 

Floor  
warping 

( F ) 
3 

Floors regularity 
1 

( G ) ( irregular floor) 
0 

   Ring beams number : 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
2248 

 

Friction 
coefficient μ 

( + ) 
0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
2143 

 
 

Building US 26 plan  Building characteristics 
 
 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
2 

Stories 
number 

 
3 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1270 

Plan area 
( m2 ) 

 
295 

Floor  
warping 

( F ) 
3 

Floors regularity 
1 

( G ) ( irregular floor) 
0 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
2489 

 

Friction 
coefficient μ 

( + ) 
0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1261 
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BLOCK 23 

Building US 128 plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
3 

Stories 
number 

 
4 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1900 

Plan area 
( m2 ) 

 
495.3 

Floor  
warping 

( F ) 
4 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
2011 

 

Friction 
coefficient μ 

( + ) 
0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
2324 

 
 

Building US 129A plan  Building characteristics 
 
 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
3 

Stories 
number 

 
4 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1530 

Plan area 
( m2 ) 

 
330.7 

Floor  
warping 

( F ) 
3 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
2286 

 

Friction 
coefficient 

μ 
( + ) 

0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1525 

 
 

Building US 129B plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
3 

Stories 
number 

 
3 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1140 

Plan area 
( m2 ) 

 
361.7 

Floor  
warping 

( F ) 
3 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1941 

 

Friction 
coefficient μ 

( + ) 
0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
2263 
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Building US 130A plan  Building characteristics 
 

 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
4 

Stories 
number 

 
3 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1160 

Plan area 
( m2 ) 

 
245.4 

Floor  
warping 

( F ) 
2 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number : 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1357 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1865 

 

Building US 130B plan  Building characteristics 
 

 
 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
4 

Stories 
number 

 
3 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1160 

Plan area 
( m2 ) 

 
249.3 

Floor  
warping 

( F ) 
2 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number : 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1703 

 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1988 

 

 

Building US 131 plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
2 

Stories 
number 

 
3 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1160 

Plan area 
( m2 ) 

 
174.5 

Floor  
warping 

( F ) 
1 

Floors regularity 
1 

( G ) ( irregular floor) 
 

   Ring beams number : 4 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 

  1188 

Friction 
coefficient μ 

( + ) 
 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 

  1387 
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Building US 132A plan  Building characteristics 

  

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
3 

Stories 
number 

 
4 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1700 

Plan area 
( m2 ) 

 
378 

Floor  
warping 

( F ) 
2 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number : 0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1220 

 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
3264 

 

Building US 132B plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
3 

Stories 
number 

 
4 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1700 

Plan area 
( m2 ) 
230 

Floor  
warping 

( F ) 
3 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1294 

 

Friction 
coefficient μ 

( + ) 
0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1943 

 
 

Building US 132C plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
3 

Stories 
number 

 
4 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1700 

Plan area 
( m2 ) 

 
110.6 

Floor  
warping 

( F ) 
2 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
748 

 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1321 
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Building US 132D plan  Building characteristics 
 
 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
3 

Stories 
number 

 
5 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
2000 

Plan area 
( m2 ) 

 
65.4 

Floor  
warping 

( F ) 
3 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number : 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1296 

 

Friction 
coefficient μ 

( + ) 
0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
425 

 

 

Building US 133A plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
3 

Stories 
number 

 
4 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1390 

Plan area 
( m2 ) 

 
233.2 

Floor  
warping 

( F ) 
2 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1134 

 

Friction 
coefficient μ 

( + ) 
0.15 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1943 

 
 

Building US 133B plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
3 

Stories 
number 

 
4 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1390 

Plan area 
( m2 ) 

 
339.4 

Floor  
warping 

( F ) 
4 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number :0 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
2006 

Friction 
coefficient μ 

( + ) 
0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
1943 
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Building US 135 plan  Building characteristics 

 

Walls  
material 

( A ) 
3 

Material 
conservation 

( B ) 
3 

Stories 
number 

 
4 

Horizontal 
structures 

( C ) 
3 

Plan 
regularity 

( D ) 
3 

Building 
height 
( cm ) 
1830 

Plan area 
( m2 ) 

 
451.5 

Floor  
warping 

( F ) 
2 

Floors regularity 
2 

( G ) ( irregular floor) 
 

   Ring beams number : 

Restraint on walls parallel to direction: 
X                                                    Y 

Friction 
coefficient 

μ 
( + ) 

0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
2011 

 

Friction 
coefficient μ 

( + ) 
0.05 

Tie 
roads 

number 

Façade 
lenght 
( cm ) 
2567 

 

 

4.2.2   Statistical analysis  

The value of ag is given by Romanian code and for the city of Timisoara is 0.20 

ag. Vulnus calculates automatically the value of I1 and I2 for each building of the 

aggregate (Tab. 4.2.1) and it executes a statistical analysis that is graphically 

visible using histograms (Fig. 4.2.2, Fig. 4.2.3, Fig 4.2.4). Finally, the program 

recapitulates the maximum and the minimum values of I1 and I2 and the buildings 

in which they are identified, the average value on the whole block, the mean 

square deviation and the variation coefficient (Tab. 4.4.2, Tab 4.4.3, Tab 4.4.4). 

Block US I1 I2 I1/I2 
Eq. specific 

density [kg/m3] 
Volume 

[m3] 
Weight 

[kg] 

C3 

7 0,384 0,11 3,468 2220 6869 2198 

8 0,589 0,222 2,646 2134 8215 3850 

9 0,519 0,262 1,975 2011 2962 2091 

17 0,678 0,326 2,08 2225 1051 623 

C4 

18 0,53 0,221 2,395 2072 4751 2856 

19 A 0,872 0,753 1,157 1968 450 379 

19 B 0,396 0,154 2,567 2056 3060 1903 

20 0,544 0,158 3,431 2017 3541 2250 

21 0,486 0,279 1,738 2087 5191 3635 
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22 1,501 1,311 1,144 2172 646 459 

23 0,775 0,384 2,018 2316 1917 1100 

24 0,388 0,269 1,438 1990 4386 3225 

25 0,4 0,279 1,434 2144 7375 4086 

26 0,459 0,296 1,551 2012 3746 2730 

C23 

128 0,242 0,136 1,779 2020 9411 6272 

129 A 0,354 0,238 1,485 2045 5060 3888 

129 B 0,462 0,186 2,48 1993 4123 3885 

130 A 0,335 0,158 2,115 2024 2847 2000 

130 B 0,199 0,152 1,314 2121 2892 1639 

131 0,518 0,643 0,806 2020 2024 1605 

132 A 0,257 0,168 1,533 2227 6426 2832 

132 B 0,214 0,201 1,067 2124 4063 2198 

132 C 0,253 0,209 1,207 2150 1880 1067 

132 D 0,192 0,448 0,43 1987 1308 1268 

133 A 0,34 0,171 1,988 2335 3241 1428 

133 B 0,365 0,167 2,186 2141 4718 2948 

135 0,297 0,223 1,331 2042 8262 5299 

Tab. 4.2.1:  Basic data for the statistical analysis 

As it can be seen in the histograms below, all the buildings of block C3 have an 

index I1 that is higher than index I2, that means that they have a greater 

vulnerability to out of plane mechanisms than to in plane mechanisms. This 

behavior is typical for historical clustered buildings. The US 17 has the maximum 

values of both I1 and I2: it is two stories high and very regular and compact both 

in plan and in elevation. The US 7 has the minimum values of both I1 and I2: it 

has long and widely open wall, which is vulnerable to in-plane mechanism and 

consequently with a lower I1, and it has  large rooms and distanced internal walls, 

which decrease the out of plane resistance.  
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Fig. 4.2.2:  Indexes I1 and I2 for Block C 3 

 

Block C3 

 I1 I2 

Maximum value 0,678 0,326 

In building US 17 US 17 

Minimum value 0,385 0,111 

In building US 7 US 7 

Average value 0,543 0,231 

Weighted average value 0,51 0,194 

Mean square deviation 0,107 0,078 

Variation coefficient [%] 19,753 33,955 

Tab. 4.2.2:  Statistical analysis for block C3 

As it can be seen in the histograms below, also all the buildings of block C4 have 

an index I1 that is higher than index I2 but the average value of the indices is 

higher than block C3, probably due to the reduced dimensions of the rooms 

compared with the previous block ones. In fact a building with smaller rooms is 

less vulnerable due to the major proximity of the resistant walls. Unit 22 has the 

highest values of the indices: it is one storey high and it has concrete horizontal 

structure and roof. These characteristics decrease its seismic vulnerability because 

their greater weight favors the stabilizing moment and the concrete ring beams 
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favors the box behavior of the masonry structure. The minimum value of I1 

corresponds to US 24, that it is characerized by widely holed walls and therefore 

by a low in plane resistance. The minimun value of I2 corresponds to US 19B, 

that it is characterized by a long (19m) and two stories high wall and therefore 

very vulnerable to out of plan mechanisms. 

 

Fig. 4.2.3:  Indexes I1 and I2 for Block C4 

 

Block C4 

 I1 I2 

Maximum value 1,502 1,311 

In building US 22 US 22 

Minimum value 0,388 0,154 

In building US 24 US 19B 

Average value 0,636 0,411 

Weighted average value 0,497 0,267 

Mean square deviation 0,327 0,341 

Variation coefficient [%] 51,506 82,962 

Tab. 4.2.3:  Statistical analysis for block C4 

Unlike blocks C3 and C4, not for all the buildings of block C23 the index I1 is 

bigger than index I2: US 131 and US 132 have an higher I2. US 131 has also the 

maximum values of both I1 and I2: it is the only building in the aggregate that is 
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characterized by concrete horizontal structures. The minimum value of I1 

corresponds to US 132D: it is five stories high and it has an elongated shape that 

decrease its in plan resistance. The minimum  value of I2 corresponds to US 128: 

it is four stories high and at the ground floor it has a very large room that occupies 

almost half of the building area. The plan of the upper floors is not known but this 

large room probably does not repeat itself on other floors while the software 

evaluates the empty space as four stories high. In this situation the most 

vulnerable wall is four stories high and has a length of 23m with no perpendicular 

wall except for the perimeter ones. The extreme slender of the wall makes it very 

vulnerable to out of plane mechanisms. The average value is the lowest of the 

three blocks.  

 

Fig. 4.2.4:  Indexes I1 and I2 for Block C 23 

 

Block C23 

 I1 I2 

Maximum value 0,519 0,644 

In building US 131 US 131 

Minimum value 0,193 0,136 

In building US 132D US 128 

Average value 0,31 0,239 

Weighted average value 0,304 0,205 
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Mean square deviation 0,096 0,139 

Variation coefficient [%] 30,824 58,329 

Tab. 4.2.4:  Statistical analysis for block C23 

With Vulnus program it is also possible to approximately estimate the probability 

of survival in percentage of the buildings totality and to define the prevailing type 

of failure referring to I1 an I2 values (Tab. 4.2.5, Tab. 4.2.6, Tab. 4.2.7). Block 

C3, block C4 and block C23 have respectively a probability of survival of 75%, 

80% and 38.46% for an ag value of 0.2g. For blocks C3 and C4, the failure is for 

I2 (respectively with 25% and 20% of probability of collapse) while block 23 has 

the probability of failure both for I1 and I2. For this block, the probability of 

collapse for I1 corresponds to 7,69%, the probability of collapse for I2 

corresponds to 46,15% and for both I1 and I2 to 7,7%.  

 
Block C3 

Probability of 
Survival 

I1>a/g; I2 >a/g 
Collapse for I1 
I1<a/g; I2 >a/g 

Collapse for I2 
I1>a/g; I2 <a/g 

Collapse for I1, I2 
I1<a/g; I2 <a/g 

a/g = 0,02 75% 0% 25% 0 % 

Tab. 4.2.5:  Probabilistic analysis for block C3 
 

Block C4 

Probability of 
Survival 

I1>a/g; I2 >a/g 
Collapse for I1 
I1<a/g; I2 >a/g 

Collapse for I2 
I1>a/g; I2 <a/g 

Collapse for I1, I2 
I1<a/g; I2 <a/g 

a/g = 0,02 80% 0% 20% 0% 

Tab. 4.2.6:  Probabilistic analysis for block C4 
 

Block C23 
Probability of Survival 

I1>a/g; I2 >a/g 
Collapse for I1 
I1<a/g; I2 >a/g 

Collapse for I2 
I1>a/g; I2 <a/g 

Collapse for I1, I2 
I1<a/g; I2 <a/g 

a/g = 0,02 38,46% 7,69% 46,15% 7,7% 

Tab. 4.2.7:  Probabilistic analysis for block C23 

4.2.3  Vulnerabilty analysis 

The results of the II level GNDT form8 are shown in Tab. 4.2.8. The results are 

necessary to determinate the value of I3 index (Tab. 4.2.9) and therefore for the 

seismic vulnerability analysis. Parameters about info quality of block C23 are 

8 Criteri per l’esecuzione delle indagini, la compilazione delle schede di vulnerabilità II livello 
GNDT/CNR e la redazione della relazione tecnica (Regione Toscana, 2004) 
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higher than the other two blocks thanks to the information given by local architect 

Bogdan Demetrescu about the structural typology of buildings of this block. 
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Block C3 
7 D B C B D M C M D B D M A M D M B B D M B B 

8 D B C B C M C M D B B M A M D M B B D M B B 

9 D B C M C M C M D B C M A M A M B B C M B M 

17 D B C M A M C M D B C M A M A M B B C B B B 

Block C4 
18 D B C M B M C M D B C M A M C B C C D M C M 

19A D B C B B M C M D B D M A B A M B B D B A B 

19B D B C B D M C M D B D M A M D M B B D M A B 

20 D B C B C M C M D B D M A M A M B B D M A B 

21 C B C B C M C M A B C M A M A M A B D M A M 

22 C B C B A M C M A B B M A M A M A B D M A M 

23 C B C B B M C M A B A M A M B M B B A M A B 

24 D B C M C M C M D M B M A M A M B B D M C B 

25 D B C B C M C M D M A M A M C M B B C M B B 

26 D B C B C M C M D B C M A B A M B B C M B B 

Block C23 
128 D E C M A E C M D E A E A E D E B E C E C E 
129
A D E C M C E C M D E B E A E A E B E C E B E 

129
B D E C M C E C M D E D E A E A E B E C E B E 

130
A D E C M C E C M D E D E C E B E B E C E D E 

130
B D E C M D E C M D E D E A E D E B E C E D E 
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131 B E A E B E C M B E A E A E B E B E A E A E 
132
A D E C M D E C M D E D E A E C E B E A E B E 

132
B D E C M D E C M D E D E A E B E B E A E B E 

132
C D E C M D E C M D E A E A E B E B E A E B E 

132
D D E C M D E C M D E D E A E B E B E A E B E 

133
A D E C M B E C M C E A E A E B E B E C E B E 

133
B D E C M C E C M D E D E A E B E B E C E B E 

135 D E C M C E C M D E C E A E B E B E C E B E 

Tab. 4.2.8: Results of the II level GNDT form 

 

Block US I3 I GNDT I GNDT 
Norm 

C3 

7 0,534392 262,5 0,686275 
8 0,534392 202,5 0,529412 
9 0,507937 217,5 0,568627 
17 0,507937 172,5 0,45098 

C4 

18 0,587302 221,25 0,578431 
19A 0,481481 191,25 0,5 
19B 0,481481 247,5 0,647059 
20 0,481481 213,75 0,558824 
21 0,269841 131,25 0,343137 
22 0,269841 78,75 0,205882 
23 0,243386 101,25 0,264706 
24 0,587302 228,75 0,598039 
25 0,507937 210 0,54902 
26 0,507937 217,5 0,568627 

C23 

128 0,613757 258,75 0,676471 
129A 0,613757 288,75 0,754902 
129B 0,26455 93,75 0,245098 
130A 0,455026 247,5 0,647059 
130B 0,455026 243,75 0,637255 
131 0,455026 221,25 0,578431 

132A 0,455026 243,75 0,637255 
132B 0,455026 168,75 0,441176 
132C 0,507937 228,75 0,598039 
132D 0,507937 221,25 0,578431 
133A 0,560847 183,75 0,480392 
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133B 0,507937 210 0,54902 
135 0,507937 225 0,588235 

Tab. 4.2.9: I3, I GNDT and I GNDT norm indices 

4.2.4  Buildings vulnerability 

The vulnerability assessment for each building is shown in Tab 4.2.10 and it 

depends from index I3 values. The qualitative scale that Vulnus program uses to 

define the vulnerability evaluation is9: 

0 – very small 

1 – small 

2 – medium 

3 – severe 

4 – very severe 

 

Block US a/g = 0.02 

C3 

7 VERY SEVERE 
8 MEDIUM 
9 MEDIUM 
17 SMALL 

C4 

18 MEDIUM 
19A VERY SMALL 
19B MEDIUM 
20 MEDIUM 
21 MEDIUM 
22 VERY SMALL 
23 VERY SMALL 
24 MEDIUM 
25 MEDIUM 
26 MEDIUM 

C23 

128 VERY SEVERE 
129A MEDIUM 
129B MEDIUM 
130A MEDIUM 
130B VERY SEVERE 
131 VERY SMALL 

132A SEVERE 

9 Manuale d’uso del programma Vulnus 4.0 (Università degli studi di Padova, 2009, p. 59) 
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132B SEVERE 
132C MEDIUM 
132D MEDIUM 
133A MEDIUM 
133B MEDIUM 
135 MEDIUM 

Tab. 4.2.10: Vulnerability analysis for each building 

The graphical representation (Fig. 4.2.5) shows that the vulnerability evaluation is 

very diversified. The evaluation is different both in different blocks and in same 

building of the same aggregate. In general the vulnerability judgment respects the 

buildings evaluations already made for  maximum and minimum I indices: the 

vulnerability increases when the indices decrease. 

 

 
Fig. 4.2.5: Representation of the vulnerability assessment provided by Vulnus for a/g = 0.02 
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4.2.5  Group vulnerability 

The group vulnerability is expressed by an identified function Vg and it is 

evaluated on a discrete scale from 0 to 100 with steps of 10%. Tables below show 

the probability that the group has to belong to a certain value of the vulnerability 

evaluation scale, referring to buildings (Tab. 4.2.11) or to volumes (Tab. 4.2.12).10 

The program provides a “medium” assessment for the vulnerability of blocks C3 

and C23, while “small” to block C4. The vulnerability level referred to volumes is 

the same to the one referred to buildings for all the blocks. 

Vulnerability identify level referred to buildings 

a/g Block Vg Class 
0 10 20 30 40 50 60 70 80 90 100 

0,02 

C3 0 0 1 0,5 0,1 0 0 0 0 0 0 MEDIUM 

C4 0,5 1 0,899 0,5 0,1 0 0 0 0 0 0 SMALL 

C23 0 0 0,1 0,1 0,5 0,8 1 0,899 0,2 0 0 MEDIUM 

Tab. 4.2.11: Group vulnerability for blocks C3,C4 and C23 referred to buildings 

 

Vulnerability identify level referred to volumes 

a/g Block Vg Class 
0 10 20 30 40 50 60 70 80 90 100 

0,02 

C3 0 0 1 0,5 0,1 0 0 0 0 0 0 MEDIUM 

C4 0,5 1 0,899 0,5 0,1 0 0 0 0 0 0 SMALL 

C23 0 0 0,1 0,1 0,5 0,8 1 0,899 
0,1
18 

0 0 MEDIUM 

Tab. 4.2.12: Group vulnerability for blocks C3,C4 and C23 referred to volumes 

 

 

 

 

 

 

10 Manuale d’uso del programma Vulnus 4.0 (Università degli studi di Padova, 2009, pp. 52-54) 
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4.2.6  Expected damage frequencies 

The expected values of serious damage E[Vg] are defined in function of the 

different values of PGA/g ratio between peak ground acceleration and gravity 

acceleration, to obtain a further definition of the vulnerability. With E[Vg] values 

and the PGA/g (Tab. 4.2.13, Tab. 4.2.14, Tab. 4.2.15), Vulnus draws graphs 

constituted by fragility curves and in which is underlined the defined a/g value, 

that in this case corresponds to 0.2g (Fig. 4.2.6, Fig. 4.2.7, Fig. 4.2.8). Fragility 

curves are characterized by a lower, a central and an upper limit of the graph. The 

lower and upper curves delimit the area that defines the most probable values of 

expected damage frequencies of serious damage.  

For a PGA/g value of 0.2, the average expectation of damage is 44% in block C3, 

with a range between 20% and 63%, 33% in block C4, with a range between 10% 

and 52%, and 67% in block C23, with a range between 46% and 83%. 

 

 

C3 
PGA/g 

0 0,2 0,4 0,6 0,8 

E[Vg] Low 0 0,199 0,718 0,99 1 

E[Vg] White 0,02 0,437 0,87 1 1 

E[Vg] Up 0,049 0,625 0,988 1 1 

Tab. 4.2.13: Expectation values of damage for block C3 

 

 

C4 
PGA/g 

0 0,2 0,4 0,6 0,8 

E[Vg] Low 0 0,100 0,618 0,799 0,845 

E[Vg] White 0,02 0,333 0,738 0,865 0,928 

E[Vg] Up 0,049 0,524 0,839 0,915 0,961 

Tab. 4.2.14: Expectation values of damage for block C4 
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C23 
PGA/g 

0 0,2 0,4 0,6 0,8 

E[Vg] Low 0 0,463 0,936 0,981 1 

E[Vg] White 0,02 0,671 0,962 0,988 1 

E[Vg] Up 0,049 0,834 0,983 1 1 

Tab. 4.2.15: Expectation values of damage for block C23 

 

In the fragility curve graph (Fig. 4.2.6) for block C3 three phases can be 
identified: 

- First phase: there are constant values of low vulnerability in 

correspondence to low structural damage and in particular for each curve 

in the range: 

E[Vg] Low: 0.01 ≤ PGA/g ≤ 0.1 

E[Vg] White: 0.01 ≤ PGA/g ≤ 0.05 

E[Vg] Up: 0.01 ≤ PGA/g ≤ 0.05 

- Second phase: the lower and the central limits increase with similar and 

irregular slopes, while the upper limit grows with greater inclination 

compared to the other two curves. 

- Third phase: the three curves reach the maximum value of severe 

structural damage and consequent collapse of the structure after the 

following values: 

E[Vg] Low: PGA/g ≥ 0.44 

E[Vg] White: PGA/g ≥ 0.58 

E[Vg] Up: PGA/g ≥ 0.64 

Therefore for the value of PGA/g of 0.2 the vulnerability is medium. 
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Fig. 4.2.6: Fragility curves for block C3 

 

In the fragility curve graph (Fig. 4.2.7) for block C4 three phases can be 
identified: 

- First phase: there are constant values of low vulnerability in 

correspondence to low structural damage and in particular for each curve 

in the range: 

E[Vg] Low: 0.01 ≤ PGA/g ≤ 0.1 

E[Vg] White: 0.01 ≤ PGA/g ≤ 0.07 

E[Vg] Up: 0.01 ≤ PGA/g ≤ 0.07 

- Second phase: the lower and the central limits increase with similar and 

irregular slopes, while the upper limit grows with greater inclination 

compared to the other two curves. 

- Third phase: the three curves reach the maximum value of severe 

structural damage and consequent collapse of the structure after very high 

values of PGA/g: 

Therefore for the value of PGA/g of 0.2 the vulnerability is medium. 

232 

 



CHAPTER 4: VULNERABILTY ASSESSMENT 

            

 

Fig. 4.2.7: Fragility curves for block C4 

In the fragility curve graph (Fig. 4.2.8) for block C23 three phases can be 
identified: 

- First phase: there are constant values of low vulnerability in 

correspondence to low structural damage and in particular for each curve 

in the range: 

E[Vg] Low: 0.01 ≤ PGA/g ≤ 0.06 

E[Vg] White: 0.01 ≤ PGA/g ≤ 0.05 

E[Vg] Up: 0.01 ≤ PGA/g ≤ 0.05 

- Second phase: the lower and the upper limits increase with similar and 

irregular slopes, while the central limit grows with lower inclination 

compared to the other two curves. 

- Third phase: the three curves reach the maximum value of severe 

structural damage and consequent collapse of the structure after the 

following values: 

E[Vg] Low: PGA/g ≥ 0.63 

E[Vg] White: PGA/g ≥ 0.58 

E[Vg] Up: PGA/g ≥ 0.48 

Therefore for the value of PGA/g of 0.2 the vulnerability is medium-high. 
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Fig. 4.2.8: Fragility curves for block C23 
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4.3 APPLICATION OF THE METHODOLOGY TO STRUCTURAL 
UNITS 

4.3.1  Description of structural units 

Vulnus methodology has been applied also to four structural units, of which we 

have detailed plans and sections, to compare the results obtained with different 

level of information. The applied level of information are: 

- Real case: building dimensions and information about the structural 

typology and constructive details are obtained from plans and sections, 

usually in scale 1:50 or 1:100, of the building.11 

- Survey case: information about structural typologies, wall thickness and 

interstorey high result from the in situ survey, while plan and openings 

dimension has been taken from the city plan of 1980 (see chapter 2.4.4) 

The comparison between these two cases is finalized to underline eventual 

differences that can affect  the results of the analysis and to valid the assumptions 

previously made to complete the Vulnus process. The informations collected in 

situ are indeed often incomplete, even about important building characteristics, 

and the city plan does not represent eventual interventions of the latest years. For 

this reason it is important to verifying that the adopted method does not deviate 

too much from the real case, comparing different cases with different level of 

information. 

The analyzed units are: US 88, US 123, US 124 and US 130. The US 88 is located 

in the south side of block C16, between two buildings with the same stories 

number but one a little bit higher and one a little bit lower. US 123 and 124 are 

located side by side in the south  side of block C22 and are contained between an 

higher building and a building of the same height. The US 130 is located in the 

south-east corner of block C23 between an higher building and a building of the 

same height. They all belong to typology 3, characterized by three stories, 

masonry vertical structures, deformable horizontal structures with brick vaults at 

the ground floor and timber roof. Despite that, they belong to three different 

micro-typologies: US 123 and US 124 belong to micro-typology 3B, 

11 The material has been provided by Arch. Bodgan Demetrescu 
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characterized by a wall thickness of 60 cm, US 130 belongs to micro-typology 

3C, characterized by a wall thickness of 75 cm, and US 88 belongs to micro-

typology 3D, characterized by a wall thickness of 90 cm. All the units have an 

average typological interstorey high of 4,3 m for the ground floor and 4,2 m for 

upper floors. 

The assumptions made to complete the analysis are the same of chapter 4.2.1 

 

Fig. 4.3.1: Analyzed structural units 

The following images show the subdivision in walls, septa and nodes of the 

analyzed structural units. For each unit, the real plan is compared with the survey 

one and eventual differences can be observed. 

As can be seen in Fig. 4.3.2, the survey case of US 88 has a sensible number of 

walls less than the real case, particularly around the internal courtyard. Also in US 

123 (Fig. 4.3.3) the internal walls are objects of changings in position and 

number, while for US 124 (Fig. 4.3.4, Fig. 4.3.5) the scheme is almost identical.  

The US 130 (Fig. 4.3.6) has the same scheme for the real case and the survey case 

as well. Variations between the two cases are usually about the dimension and the 

position of openings and consequently about the shoulder regularity. Other 

important differences are the wall thickness both at the ground floor and at upper 

floors. 
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Fig. 4.3.2: Plan scheme of US 88 – Real (left) and survey (right) 

  

Fig. 4.3.3: Plan scheme of US 123– Real (left) and survey (right) 

  

Fig. 4.3.4: Plan scheme of US 124A – Real (left) and survey (right) 
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Fig. 4.3.5: Plan scheme of US 124B – Real (left) and survey (right) 

  
Fig. 4.3.6: Plan scheme of US 130A – Real (left) and survey (right) 

  

Fig. 4.3.7: Plan scheme of US 130B – Real (left) and survey (right) 
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4.3.2  Statistical analysis 

As previously said, Vulnus calculates automatically the value of I1 and I2 for each 

building. Indices of the real case and the survey case have been compared for each 

structural unit (Tab. 4.3.1, Tab 4.3.2, Tab. 4.3.3, Tab. 4.3.4). The last line of 

tables, called “difference”, shows the difference between the real case and the 

survey case. With histograms (Fig. 4.3.9, Fig. 4.3.10, Fig. 4.3.11, Fig. 4.3.12) it is 

easily visible the trend of the graphs. 

In the real case of US 88 the index I1 is smaller than the index I2 while in the 

survey case it is the opposite. I1 increases of 0.107 while I2 decrease of 0.318 

from real to survey case. The real case is more vulnerable to in plane mechanisms 

and, on the opposite, the survey case is more vulnerable to the out of plane 

mechanisms. The differences between the two cases are: 

- The thickness of external walls of the survey case is higher than the real 

one: 90 cm for the survey and 75 cm for the real case. This factor improve 

the in plan resistance of the survey case. 

- The 1980 map of the city, that is the reference for survey plans, often does 

not represent internal walls that there are in reality, particularly in 

correspondence of vaults spans. This factor increases the vulnerability of 

the survey case to out of plan mechanisms. 

- The dimension and the number of openings is higher in the real case, cause 

in the 1980 map the low quality of the representation tends to reduce the 

width of doors and windows. This factor increases the resistance to in plan 

mechanisms for the survey case. 

 

Block US I1 I2 I1/I2 
Eq. specific 

density 
[kg/m3] 

Volume 
[m3] 

Weight 
[kg] 

C16 

88 REAL 0,343 0,533 0,643 2066 3704 2161 

88 SURVEY 0,45 0,215 2,089 1955 3562 3466 

DIFFERENCE +0,107 -0,318 +1,446 -111 -142 +1305 

Tab. 4.3.1: Data for the statistical analysis-US 88 
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Fig. 4.3.9: Indices I1 and I2 for US 88 

 

For US 123 both cases have the I1 index higher than the I2 index: a lower I2 

indicates an higher vulnerability to out of plane mechanisms. The value of I1 is 

almost the same for the two cases, while the value of I2 increase of 0.119 for the 

survey case. The higher value of I2 in the survey case is justified by the 

representation of internal walls that do not exist anymore in the real case.  The 

presence of these walls, perpendicular to the wall object of the mechanism, 

decrease the length of the overturning wall and consequently they increase its 

resistance. 

Block US I1 I2 I1/I2 
Eq. specific 

density 
[kg/m3] 

Volume 
[m3] 

Weight 
[kg] 

C22 

123 REAL 0,467 0,24 1,945 2201 3912 1938 

123 SURVEY 0,429 0,359 1,194 2222 3911 1896 

DIFFERENCE -0,038 +0,119 -0,751 +21 -1 -42 

Tab. 4.3.2: Data for the statistical analysis-US 123 
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Fig. 4.3.10: Indices I1 and I2 for US 123 

 

US 124 has been divided in two structural units because the front part on the main 

street is three stories high (US 124A) while the back part on the internal courtyard 

is two stories high (US 124B). In fact a structural unit must have the same stories 

number in all its part, in case of different stories number or different height, the 

building must be subdivided in more structural units. The I1 index for US 124A is 

the same in both cases while it decreases of 0.151 in the survey case for US 124B. 

The I2 index increases sensibly in the survey case (0.524 for US 124A and of 

0.183 for US 124B). The anomalous difference of I2 index in US 124A is justified 

by the presence in the real case of a wall, with numerous and wide openings, on 

which a low barrel vault insists. This situation increases sensibly the vulnerability 

to out of plane mechanisms due to high value of the horizontal thrust which favors 

the mechanism activation. 

 

Block US I1 I2 I1/I2 
Eq. specific 

density 
[kg/m3] 

Volum
e [m3] 

Weight 
[kg] 

C22 

124A REAL 0,478 0,286 1,668 2012 1380 1206 

124A SURVEY 0,455 0,81 0,562 2061 1404 1111 

DIFFERENCE -0,023 +0,524 -1,106 +49 +24 -95 

C22 124B REAL 0,679 0,372 1,822 2042 929 759 
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124B SURVEY 0,528 0,555 0,95 2100 728 503 

DIFFERENCE -0,151 +0,183 -0,872 +58 -201 -256 

Tab. 4.3.3: Data for the statistical analysis-US 124 

   

Fig. 4.3.11: Indices I1 and I2 for US 124 

 

The US 130 has been divided in two structural units because the walls number 

exceeded 21, number accepted by Vulnus program. The front side towards the 

street is US 130A while the back side towards the internal courtyard is US 130B. 

The indices related to US 130A remain the same in both the analyzed cases. 

While the index I2 of US 130B remain the same, the index I1 increases in the 

survey case due to the higher thickness of walls and the lower dimensions of the 

openigns. 

 

Block US I1 I2 I1/I2 
Eq. specific 

density 
[kg/m3] 

Volum
e [m3] 

Weight 
[kg] 

C23 

130A REAL 0,324 0,156 2,075 2026 2847 1974 

130A SURVEY 0,351 0,176 1,992 2007 2847 2408 

DIFFERENCE +0,027 +0,02 -0,083 -19 = +434 

C23 130B REAL 0,224 0,258 0,869 2093 2892 1763 
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130B SURVEY 0,317 0,236 1,342 1949 2892 3334 

DIFFERENCE +0,093 +0,022 +1,255 -144 = +1571 

Tab. 4.3.4: Data for the statistical analysis-US 130 

   

Fig. 4.3.12: Indices I1 and I2 for US 130 

 

The probabilistic analysis shown in the following tables (Tab. 4.3.5, Tab. 4.3.6, 

Tab. 4.3.7, Tab 4.3.8) is helpful to define the probability of survival in percentage 

and to define the prevailing type of failure referring to I1 and I2 values. For both 

the cases (the real one and the survey one) US 88, 123 and 124 have the 100% 

probability of survival while US 130 has a probability of survival of 50% with 

collapse for out of plane mechanisms. 

US 88 Probability 
of 

Survival 
I1>a/g; I2 

>a/g 

Collapse for 
I1 

I1<a/g; I2 
>a/g 

Collapse for 
I2 

I1>a/g; I2 
<a/g 

Collapse for 
I1, I2 

I1<a/g; I2 <a/g 

REAL a/g = 0,02 100% 0% 0% 0% 

SURVEY a/g = 0,02 100% 0% 0% 0% 

Tab. 4.3.5:  Probabilistic analysis for US 88 

US 123 Probability 
of 

Survival 
I1>a/g; I2 

>a/g 

Collapse for 
I1 

I1<a/g; I2 
>a/g 

Collapse for 
I2 

I1>a/g; I2 
<a/g 

Collapse for 
I1, I2 

I1<a/g; I2 <a/g 

REAL a/g = 0,02 100% 0% 0% 0% 

SURVEY a/g = 0,02 100% 0% 0% 0% 
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Tab. 4.3.6:  Probabilistic analysis for US 123 

 

US 124 Probability 
of 

Survival 
I1>a/g; I2 

>a/g 

Collapse for 
I1 

I1<a/g; I2 
>a/g 

Collapse for 
I2 

I1>a/g; I2 
<a/g 

Collapse for 
I1, I2 

I1<a/g; I2 <a/g 

REAL a/g = 0,02 100% 0% 0% 0% 

SURVEY a/g = 0,02 100% 0% 0% 0% 

Tab. 4.3.7:  Probabilistic analysis for US 124 

US 130 Probability 
of 

Survival 
I1>a/g; I2 

>a/g 

Collapse for 
I1 

I1<a/g; I2 
>a/g 

Collapse for 
I2 

I1>a/g; I2 
<a/g 

Collapse for 
I1, I2 

I1<a/g; I2 <a/g 

REAL a/g = 0,02 50% 0% 50% 0% 

SURVEY a/g = 0,02 50% 0% 50% 0% 

Tab. 4.3.8:  Probabilistic analysis for US 130 

 

4.3.3  Vulnerability analysis 

The results of the II level GNDT form are shown in Tab. 4.3.9. Classes and info 

quality are necessary to determinate index I3 in the vulnerability analysis. The 

parameters class usually does not change between the real case and the survey 

case, but the info quality often does. The info quality of the parameters 

planimetric configuration, DMAX
12 walls and roof usually decreases of one level of 

quality from the real case to the survey case. 

Values of I3 index, I GNDT and I GNDT norm are given in Tab. 4.3.10. 

12 It is the maximum walls distance  and it is evaluated as a ratio between the orthogonal walls and 
the thickness of the analyzed wall. 
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US 88 

real D M C M D E C M D M D E A E A E B M C E C M 

surv
ey D B C B D M C M D B D M A M B B B B C E C M 

US 123 

real D B C B C B C M D B B M A B D M B B C B C B 

surv
ey D B C B C B C M D B B B A B D B B B C B C B 

US 124A 

real D B C B B B C M D B D M A B A M B B C B C B 

surv
ey D B C B B B C M D B C B A B A B B B C B C B 

US 124B 

real D B C B B B C M D B D M A B A M B B C B C B 

surv
ey D B C B B B C M D B D B A B A B B B C B C B 

US 130A 

real D E C M C E C M D E D E A E B E B E C E D E 

surv
ey D E C M D E C M D E D E A E D E B E C E D E 

US 130B 

real D B C B C M C M D M D M A M B B B M C E D M 

surv
ey D B C B C M C M D M D M A M D B B M C E D M 

Tab. 4.3.9:  Results of the II level GNDT form 
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US Case I3 I GNDT I GNDT 
Norm 

88 
real 0,560847 262,5 0,686275 

survey 0,560847 266,25 0,696078 

123 
real 0,560847 236,25 0,617647 

survey 0,560847 236,25 0,617647 

124A 
real 0,560847 217,5 0,568627 

survey 0,560847 210 0,54902 

124B 
real 0,560847 217,5 0,568627 

survey 0,560847 217,5 0,568627 

130A 
real 0,613757 258,75 0,676470578 

survey 0,613757 258,75 0,676471 

130B 
real 0,613757 288,75 0,754901946 

survey 0,613757 266,25 0,696078 

Tab. 4.3.10:  I3, I GNDT and I GNDT norm indices 

4.3.4  Building vulnerability 

The vulnerability assessment has been defined as shown in Tab. 4.3.11. The 

qualitative scale used by Vulnus to define the vulnerability evaluation is the same 

as chapter 4.2.4. For structural units 123, 124B, 130A and 130B the evaluation is 

the same for both cases, while for US 88  and 124A it changes. The US 88 has a 

“small” vulnerability in the real case and a “medium” vulnerability in the survey 

case. The survey case is therefore in favor of safety. The US 124A has a 

“medium” vulnerability in the real case and a “very small” vulnerability in the 

survey case. This change reflects the situation already observed in chapter 4.3.2 

about the same structural unit, in which the index I2 is sensibly increased in the 

survey case. 

US Case a/g = 0.02 

88 
real SMALL 

survey MEDIUM 
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123 
real MEDIUM 

survey MEDIUM 

124A 
real MEDIUM 

survey VERY SMALL 

124B 
real SMALL 

survey SMALL 

130A 
real MEDIUM 

survey MEDIUM 

130B 
real MEDIUM 

survey MEDIUM 

Tab. 4.3.11: Vulnerability analysis for each building 

4.3.5  Group vulnerability 

Tables below show the probability that buildings have to belong to a certain value 

of the vulnerability evaluation scale, referring to buildings or to volumes (Tab. 

4.3.12, Tab. 4.3.13, Tab.4.3.14, Tab.4.3.15). The vulnerability level referred to 

volumes is the same to the one referred to buildings for all the cases. Only for US 

130 the program provides the same “medium” assessment for both cases, while 

for all the others units it changes. US 88 has a “very small” assessment for the real 

case and a “small” one for the survey case while for US 123 and 124 the 

judgments are the same but opposite.  

 

US 88 
Vulnerability identify level referred to buildings 

a/g Case 
Vg 

Class 
0 10 20 30 40 50 60 70 80 90 

10
0 

0,02 
real 1 0 0 0 0 0 0 0 0 0 0 VERY 

SMALL 

survey 0,899 1 0,899 0,8 0,1 0 0 0 0 0 0 SMALL 

Vulnerability identify level referred to volumes 

a/g Case Vg Class 
0 10 20 30 40 50 60 70 80 90 100 

0,02 real 1 0 0 0 0 0 0 0 0 0 0 VERY 
SMALL 
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survey 0,899 1 0,899 0,8 0,1 0 0 0 0 0 0 SMALL 

Tab. 4.2.12: Group vulnerability for US 88  

 

 

US 123 
Vulnerability identify level referred to buildings 

a/g Case Vg Class 
0 10 20 30 40 50 60 70 80 90 100 

0,02 
real 1 0,899 0,5 0,1 0 0 0 0 0 0 0 SMALL 

survey 1 0,1 0 0 0 0 0 0 0 0 0 VERY 
SMALL 

Vulnerability identify level referred to volumes 

a/g Case Vg Class 
0 10 20 30 40 50 60 70 80 90 100 

0,02 
real 1 0,899 0,5 0,1 0 0 0 0 0 0 0 SMALL 

survey 1 0,1 0 0 0 0 0 0 0 0 0 VERY 
SMALL 

Tab. 4.2.13: Group vulnerability for US 123  

 

 

US 124 
Vulnerability identify level referred to buildings 

a/g Case Vg Class 
0 10 20 30 40 50 60 70 80 90 100 

0,02 
real 1 0,899 0,5 0,1 0 0 0 0 0 0 0 SMALL 

survey 1 0,1 0 0 0 0 0 0 0 0 0 VERY 
SMALL 

Vulnerability identify level referred to volumes 

a/g Case Vg Class 
0 10 20 30 40 50 60 70 80 90 100 

0,02 
real 1 0,899 0,5 0,1 0 0 0 0 0 0 0 SMALL 

survey 1 0,1 0 0 0 0 0 0 0 0 0 VERY 
SMALL 

Tab. 4.2.14: Group vulnerability for US 124 
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US 130 
Vulnerability identify level referred to buildings 

a/g Case 
Vg 

Class 
0 10 20 30 40 50 60 70 80 90 

10
0 

0,02 
real 0 0 0,11 0,55 0,88 1 0,88 0 0 0 0 MEDIUM 

survey 0,11 0,55 0,88 1 1 0,88 0,22 0 0 0 0 MEDIUM 

Vulnerability identify level referred to volumes 

a/g Case 
Vg 

Class 
0 10 20 30 40 50 60 70 80 90 

10
0 

0,02 
real 0 0 0,11 0,55 0,88 1 0,88 0 0 0 0 MEDIUM 

survey 0,11 0,55 0,88 1 1 0,88 0,22 0 0 0 0 MEDIUM 

Tab. 4.2.15: Group vulnerability for US 130 

4.3.6  Expected damage frequencies 

The expected values of serious damage E[Vg] are defined in function of the 

different values of PGA/g (Tab. 4.3.16, Tab. 4.3.17, Tab. 4.3.18) and Vulnus 

represents this relation through fragility curves graphs (Fig. 4.3.6, Fig. 4.3.7, Tab. 

4.3.8). Due to the proximity of US 123 and 124, these two units have been 

evaluated together and they belong to the same fragility curve.  

For a PGA/g value of 0.2, the average expectation of damage for US 88 is 19%, 

with a  range between 7% and 26%, in the real case and 46%, with a range 

between 7% and 78%,  in the survey case. The range defined in the survey case is 

higher of the one defined in the real case for the PGA/g value of 0.2 due to the 

greater uncertainty of the information, and consequently to the lower info quality, 

in the GNDT for of the survey case. 
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US 88 
PGA/g 

0 0,1 0,2 0,3 0,4 0,5 

real 

E[Vg] 
Low 

0 0 0,072 0,136 0,572 0,99 

E[Vg] 
White 

0,02 0,02 0,193 0,486 0,796 1 

E[Vg] 
Up 

0,049 0,049 0,263 0,789 0,986 1 

survey 

E[Vg] 
Low 

0 0 0,072 0,499 0,99 0,99 

E[Vg] 
White 

0,02 0,02 0,457 0,778 1 1 

E[Vg] 
Up 

0,049 0,049 0,784 1 1 1 

Tab. 4.3.16: Expectation values of damage for block US 88 

 

For a PGA/g value of 0.2, the average expectation of damage for US 123 and 124 

is 31%, with a  range between 4% and 53%, in the real case and 19%, with a 

range between 3% and 27%,  in the survey case. 

 

US 123 
US 124 

PGA/g 

0 0,2 0,4 0,6 0,8 

real 

E[Vg] Low 0 0,036 0,545 0,899 0,99 

E[Vg] 
White 

0,02 0,315 0,781 0,963 1 

E[Vg] Up 0,049 0,532 0,973 1 1 

survey 

E[Vg] Low 0 0,027 0,254 0,672 0,99 

E[Vg] 
White 

0,02 0,187 0,599 0,853 1 

E[Vg] Up 0,049 0,275 0,893 1 1 

Tab. 4.3.17: Expectation values of damage for block US 123 and 124 

 

For a PGA/g value of 0.2, the average expectation of damage for US 130 is 14%, 

with a range between 7% and 15%, in the real case and 18%, with a range 

between 5% and 25%,  in the survey case. As seen in US 88, the range defined in 

the survey case is higher of the one defined in the real case for the same PGA/g 

value of 0.2 due to the lower info quality in the GNDT for of the survey case. 
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US 130 
PGA/g 

0 0,1 0,2 0,3 0,4 0,5 

real 

E[Vg] 
Low 

0 0 0,072 0,109 0,481 0,945 

E[Vg] 
White 

0,02 0,02 0,136 0,403 0,741 0,984 

E[Vg] 
Up 

0,049 0,049 0,149 0,644 0,944 1 

survey 

E[Vg] 
Low 

0 0 
0,054 

0,054 0,236 0,463 

E[Vg] 
White 

0,02 0,02 0,179 0,363 0,599 0,757 

E[Vg] 
Up 

0,049 0,049 0,247 0,616 0,901 0,986 

Tab. 4.3.18: Expectation values of damage for block US 130 

 

In the fragility curve graph (Fig. 4.3.13) for the real case of US 88 three phases 

can be identified: 

- First phase: there are constant values of low vulnerability in 

correspondence to low structural damage and in particular for each curve 

in the range: 

E[Vg] Low: 0.01 ≤ PGA/g ≤ 0.14 

E[Vg] White: 0.01 ≤ PGA/g ≤ 0.14 

E[Vg] Up: 0.01 ≤ PGA/g ≤ 0.14 

- Second phase: the central curve increases with a constant and regular 

slope, while the upper limit grows with greater inclination compared to the 

central one. The lower limit has a first phase of constant 0,22 value and 

then it increases its inclination, with a slope similar to the upper curve. 

- Third phase: the three curves reach the maximum value of severe 

structural damage and consequent collapse of the structure after the 

following values: 

E[Vg] Low: PGA/g ≥ 0.49 

E[Vg] White: PGA/g ≥ 0.49 

E[Vg] Up: PGA/g ≥ 0.42 

Therefore for the value of PGA/g of 0.2 the vulnerability is low-medium. 
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In the fragility curve graph (Fig. 4.3.14) for the survey case of US 88 three phases 

can be identified: 

- First phase: there are constant values of low vulnerability in 

correspondence to low structural damage and in particular for each curve 

in the range: 

E[Vg] Low: 0.01 ≤ PGA/g ≤ 0.09 

E[Vg] White: 0.01 ≤ PGA/g ≤ 0.09 

E[Vg] Up: 0.01 ≤ PGA/g ≤ 0.09 

- Second phase: the central curve, after a first phase of higher inclination, 

increases with a constant and regular slope, while the upper limit grows 

with a greater inclination compared to the central one. The lower limit has 

a first phase of constant 0,22 value and then it increases its inclination. 

- Third phase: the three curves reach the maximum value of severe 

structural damage and consequent collapse of the structure after the 

following values: 

E[Vg] Low: PGA/g ≥ 0.41 

E[Vg] White: PGA/g ≥ 0.40 

E[Vg] Up: PGA/g ≥ 0.28 

Therefore for the value of PGA/g of 0.2 the vulnerability is medium. 

The fragility curve of the survey case is shifted to the left, corresponding to lower 

values of PGA/g respect to the real case. Plus, the range between the lower and 

the upper limits is wider in the survey case. 
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Fig. 4.3.13: Fragility curves for US 88- Real case 

 

Fig. 4.3.14: Fragility curves for US 88- Survey case 

In the fragility curve graph (Fig. 4.3.15) for the real case of US 123 and 124 three 

phases can be identified: 

- First phase: there are constant values of low vulnerability in 

correspondence to low structural damage and in particular for each curve 

in the range: 
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E[Vg] Low: 0.01 ≤ PGA/g ≤ 0.11 

E[Vg] White: 0.01 ≤ PGA/g ≤ 0.11 

E[Vg] Up: 0.01 ≤ PGA/g ≤ 0.11 

- Second phase: the lower and the upper limits increase with similar and 

irregular slopes, while the central limit grows with lower inclination 

compared to the other two curves. 

- Third phase: the three curves reach the maximum value of severe 

structural damage and consequent collapse of the structure after the 

following values: 

E[Vg] Low: PGA/g ≥ 0.65 

E[Vg] White: PGA/g ≥ 0.63 

E[Vg] Up: PGA/g ≥ 0.47 

Therefore for the value of PGA/g of 0.2 the vulnerability is medium. 

In the fragility curve graph (Fig. 4.3.16) for the survey case of US 123 and 124 

three phases can be identified: 

- First phase: there are constant values of low vulnerability in 

correspondence to low structural damage and in particular for each curve 

in the range: 

E[Vg] Low: 0.01 ≤ PGA/g ≤ 0.13 

E[Vg] White: 0.01 ≤ PGA/g ≤ 0.13 

E[Vg] Up: 0.01 ≤ PGA/g ≤ 0.13 

- Second phase: the central curve increases with a constant and regular 

slope, while the upper limit grows with greater inclination compared to the 

central one. The lower limit has a first phase low slope, until 0.21, and 

then it increases its inclination. 

- Third phase: the three curves reach the maximum value of severe 

structural damage and consequent collapse of the structure after the 

following values: 

E[Vg] Low: PGA/g ≥ 0.80 

E[Vg] White: PGA/g ≥ 0.79 

E[Vg] Up: PGA/g ≥ 0.60 

Therefore for the value of PGA/g of 0.2 the vulnerability is low-medium. 
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The fragility curve of the survey case is shifted to the right, corresponding to 

higher values of PGA/g respect to the real case. Plus, the range between the lower 

and the upper limits is wider in the survey case, due to the approximations made 

in this case. The range of the curve is in fact related with the info quality of the 

GNDT form: if the quality is low, the range is wider, if the quality is elevated, the 

range if thinner.  

 

Fig. 4.3.15: Fragility curves for US 123 and 124- Real case 

 

Fig. 4.3.16: Fragility curves for US 123 and 124- Survey case 
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In the fragility curve graph (Fig. 4.3.17) for the real case of US 130 three phases 

can be identified: 

- First phase: there are constant values of low vulnerability in 

correspondence to low structural damage and in particular for each curve 

in the range: 

E[Vg] Low: 0.01 ≤ PGA/g ≤ 0.06 

E[Vg] White: 0.01 ≤ PGA/g ≤ 0.06 

E[Vg] Up: 0.01 ≤ PGA/g ≤ 0.06 

- Second phase: the central curve increases with a constant and regular 

slope, while the upper limit grows with greater inclination compared to the 

central one. The lower limit has a first phase low slope, until 0.13, and 

then it increases its inclination. 

- Third phase: the three curves reach the maximum value of severe 

structural damage and consequent collapse of the structure after the 

following values: 

E[Vg] Low: PGA/g ≥ 0.28 

E[Vg] White: PGA/g ≥ 0.26 

E[Vg] Up: PGA/g ≥ 0.24 

Therefore for the value of PGA/g of 0.2 the vulnerability is medium. 

In the fragility curve graph (Fig. 4.3.18) for the survey case of US 130 three 

phases can be identified: 

- First phase: there are constant values of low vulnerability in 

correspondence to low structural damage and in particular for each curve 

in the range: 

E[Vg] Low: 0.01 ≤ PGA/g ≤ 0.07 

E[Vg] White: 0.01 ≤ PGA/g ≤ 0.07 

E[Vg] Up: 0.01 ≤ PGA/g ≤ 0.07 

- Second phase: the central curve increases with a constant and regular 

slope, while the upper limit grows with greater inclination compared to the 

central one. The lower limit has a first phase low slope, until 0.15, and 

then it increases its inclination. 
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- Third phase: the three curves reach the maximum value of severe 

structural damage and consequent collapse of the structure after the 

following values: 

E[Vg] Low: PGA/g ≥ 0.37 

E[Vg] White: PGA/g ≥ 0.36 

E[Vg] Up: PGA/g ≥ 0.27 

Therefore for the value of PGA/g of 0.2 the vulnerability is medium. 

The fragility curve of the survey case is shifted to the right, corresponding to 

higher values of PGA/g respect to the real case. Plus, the range between the lower 

and the upper limits is sensibly wider in the survey case. 

 

 

Fig. 4.3.17: Fragility curves for US 130- Real case 
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Fig. 4.3.18: Fragility curves for US 130- Survey case 

 

The results obtained for US 88 show that the survey case is evaluated in general 

as more vulnerable than the real case: for the same value of ag=0.2, the fragility 

curves define an higher probability of exceedance in the survey case respect the 

real case, the software gives a vulnerability evaluation of “small” in the real case 

and “medium” in the survey case and the I2 index, related with the out of plane 

mechanisms, is lower in the survey case. The assumptions and the simplifications 

made in the survey analysis are therefore in favor of the safer conduction. 

The results of units 123 and 124 show how the peculiarity of the building 

characteristics can influence the analysis. In fact the fragility curve indicates, for 

the same value of a/g=0.2, lower values of the exceedance probability in the 

survey case, even though the range between the low and the upper curve is wider. 

The survey case represents then a situation that is less vulnerable than the real 

case, underestimating the risk. This is evident also in the comparison of the I2 

index, which is higher in the survey case for both units, and the vulnerability 

judgement for US 124A, which is “medium” for the real case and “very small” for 

the survey case. The analysis of these units underline the fact that with a rapid 

survey is not possible to deeply evaluate each aspect of the buildings and the 
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possible presence of adverse structure characteristics which increase the seismic 

vulnerability must be considered.   

Also in the results of US 130 it is possible to note that the exceedance probability, 

correspondent to the same value of a/g=0.2, is lower in the survey case and the 

values of I1 and I2 are higher in the survey case than in the real case. Despite this, 

the vulnerability judgment of the software is “medium” for both cases. In this unit 

the approximations and the simplifications made in the survey case underestimate 

the vulnerability of the building, but the difference are not so incisive to change 

the global vulnerability assessment. 

The comparison made between the real cases and the survey cases for these four 

structural units shows that in general the assumptions made for the survey 

analysis, and consequently the typological analysis, are valid. In fact the results 

overestimates the seismic vulnerability, in favor of security, in US 88 and they 

underestimates it in US 123, 124 and 130, but with small difference that does not 

change the global assessment. The only exception is made in case of peculiar 

building characteristics that are not evaluable with a rapid survey. More precisely, 

the assumptions made are valid as a part of a rapid and typological analysis that 

considers the main building characteristics.  

 

259 

 



CHAPTER 5: LOCAL MECHANISMS OF COLLAPSE 

            

5 LOCAL MECHANISMS OF COLLAPSE 
 

For the vulnerability assessment of existing masonry buildings, two type of 

mechanisms of collapse are distinguished: local mechanisms of collapse and 

global mechanisms of collapse. The constructions safety must be evaluated 

considering both these type of mechanisms.1 

Local mechanisms interest both single walls panels or entire parts of the 

construction and they are favored by the absence or the ineffectiveness of 

connections between walls and horizontal structures and/or between perpendicular 

walls. Global mechanisms interest the entire construction and they usually involve 

walls panel on their plan. In case of clustered buildings which are adjacent, in 

contact or interconnected with adjoining buildings, global methods are not 

appropriate. During the analysis of a clustered building, the possible interaction 

with adjacent buildings must be considered and the structural unit (US) on which 

the study is performed must be identified. The structural unit is usually 

delimitated by open spaces, structural joints or adjacent buildings with a different 

structural typology. In the same structural unit the flow of vertical loads must 

have continuity from sky to earth.2 

Seismic events often cause the partial collapse of masonry buildings and in 

general it happens for the equilibrium loss of walls portions. The study of this 

mechanisms is possible only if the analyzed wall shows a monolithic behavior that 

prevents the disintegration of the masonry. The verification of local mechanisms 

of collapse, both in-plane and out-of-plane, can be performed using the limit 

equilibrium analysis, according to the kinematic approach. The identification of 

the collapse mechanism and the assessment of the horizontal action are the basis 

of this approach.3 

The analyzed local mechanisms are: the simple overturning mechanism, the 

vertical bending mechanism and the in-plane mechanism. The analysis has been 

performed considering the typological assumptions made in chapter 2. The 

1 §C8. Costruzioni esistenti (Circolare esplicativa NTC 2008, p. 295) 
2 §8.8.1 Costruzioni in muratura (NTC 2008, pp. 331-332) 
3 §C8A.4. Analisi dei meccanismi locali di collasso in edifici esistenti in muratura (Circolare 
esplicativa NTC 2008, p. 409) 
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analysis aims to define the fragility curve for each building typology (see chapter 

6). The study of the local mechanisms leads to define the capacity curves 

(chapters 5.4.4, 5.5.4, 5.6.4) for each analyzed typology and referring to each type 

of mechanism. The capacity curve is the basis to determinate the fragility curve 

and consequently to give a vulnerability assessment of the building typology, 

referring to the analyzed mechanism; once given the assessment to each typology 

it is possible to extend the vulnerability evaluation to all the historical center.  

5.1 MECHANISMS OF DAMAGE 

The building typological and structural characteristics influence the behavior that 

the construction has in response of the seismic action. The building response can 

be divided in two categories of mechanisms of damage: the first mode and the 

second mode mechanisms.  

The first mode mechanisms correspond to out of plane mechanisms and they 

affect the walls that are perpendicular to the main direction of the seismic event. 

This mechanisms is the most common case in ordinary buildings and brings to the 

activation of simple overturning, composed overturning and vertical flection 

mechanisms. 

The second mode mechanisms correspond to in plane mechanisms and they 

concern the walls that are parallel to the main direction of the seismic event. The 

damage caused by this type of mechanisms is typically due to shear and bending 

stresses and it usually occurs for higher values of the multiplier of the seismic 

masses than the ones obtained for out-of-plane mechanisms.  

In the following chapters the analyzed mechanisms of collapse are explained in 

detail. 
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5.2 REGULATORY APPROACH TO THE ANALYS OF LOCAL 

MECHANISMS OF COLLAPSE 

The kinematic approach4 allow to define the trend of the horizontal action that the 

structure is progressively able to sustain during the mechanisms evolution. The 

curve is expressed through the multiplier α, that determinate the connection 

between the applied horizontal forces and the corresponding weight of the masses, 

represented in function of the displacement dk of a reference point of the system. 

The curve must be defined until the annulment of the sustain horizontal actions 

ability (α=0). This curve can be transformed into the capacity curve of a one 

freedom degree equivalent system in which the ultimate displacement capacity of 

the local mechanism can be defined: the obtained value must be compared to the 

seismic displacement demand required by the seismic action. 

For each significant local mechanisms of collapse, the kinematic method is 

developed following these steps: 

- Transformation of a part of the construction in a labile system (kinematic 

chain), through the individuation of rigid bodies, which are defined by 

fracture planes hypothesized considering the low tensile strength of the 

masonry. Rigid bodies can rotate or slide between them (mechanisms of 

damage and collapse); 

- Evaluation of the horizontal loads multiplier α0, which implies the 

mechanism activation (limit state of damage) 

- Evolution assessment of the horizontal load multiplier α0 considering the 

increasing displacement dk of a control point of the kinematic chain, 

usually defined in proximity of the masses gravity center, until the 

annulation of the horizontal seismic force; 

- Transformation of the resulted curve in a capacity curve, ie in spectral 

acceleration (a*) and spectral displacement (d*), with the evaluation of the 

ultimate limit displacement obtained in case of collapse (ultimate limit 

state); 

- Safety analysis, through the compatibility control of displacements and/or 

required resistance for the structure. 

4 §C8A.4. Analisi dei meccanismi locali di collasso in edifici esistenti in muratura  (Circolare 
esplicativa NTC 2008, pp. 409-410) 
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For the application of the method the assumptions in general are: 

- Null masonry tensile strength; 

- Absence of sliding between the blocks; 

- Unlimited masonry compressive strength 

To have a more realistic simulation of the behavior it is appropriate to consider: 

- Sliding between blocks, considering the friction; 

- Connection between the masonry walls, even with limited resistance; 

- The presence of tie rods; 

-  The limited compressive resistance of masonry, considering the hinge 

rearward from the section edge; 

- The presence of walls with disconnected leafs. 

 

5.2.1  Linear kinematic analysis5 

In order to obtain the horizontal loads multiplier α0 which induces the activation of 

the local mechanism of damage, the following forces must be applied to the rigid 

blocks that constitutes the kinematic chain: the weight force of the blocks, applied 

in their barycenter; the vertical loads that insist on the block; a system of 

horizontal loads proportional to the vertical loads; eventual external forces (like 

forces transmitted by tie rods) and eventual internal forces. 

A virtual rotation θk is assigned to the generic block k and it is possible to define 

the applied forces displacements, as a function of θk and the building geometry. 

The multiplier α0 is obtained from the application of the Principle of Virtual 

Work, in terms of displacements, equalizing the total work performed by external 

and internal forces applied to the system during the virtual motion act: 

α0 · 
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where: 

n  is the number of the weight forces applied to the various blocks of the 

kinematic chain; 

5 §C8A.4.1 Analisi cinematica lineare  (Circolare esplicativa NTC 2008, pp. 410-411) 

263 

 

                                                 



CHAPTER 5: LOCAL MECHANISMS OF COLLAPSE 

            
m is the number of weight forces not directly imposed on the blocks, whose 

masses, under seismic action effect, generate horizontal forces on the 

elements of the kinematic chain; 

o is the number of external forces, not associated with the masses, applied to 

different bocks; 

Pi  is the generic weight force applied (weight of the block, applies in its 

center of gravity); 

Pj is the generic weight force, not directly applied on the blocks, whose mass, 

under seismic action effects, generates a horizontal force on the elements 

of the kinematic chain; 

δx,i is the virtual horizontal displacement of the application point of the i-th 

weight Pi. The verse associated with the direction of the seismic action that 

activates the mechanisms is assumed positive; 

δx,j is the virtual horizontal displacement of the application point of the j-th 

weight Pj. It is assumed positive the verse associated with the direction of 

the seismic action that activates the mechanisms; 

δy,i is the virtual vertical displacement of the application point of the i-th 

weight Pi. It is assumed positive upward; 

Fh is the generic external force (in absolute value) applied to a block; 

δh is the virtual displacement of the application point of the h-th external 

force in the same direction, positive if with conflicting verse; 

Lfi is the work of eventual internal forces. 

 

5.2.2  Non-linear kinematic analysis6 

In order to define the displacement capacity of the structure until the collapse for 

each considered mechanism, the horizontal loads multiplier α can be evaluated not 

only on the starting configuration, but also on the varied configuration of the 

kinematic chain, representative of the mechanism evolution and described by the 

displacement dk of a control point of the system. The analysis must be carried out 

until the achievement of the configuration which correspond to the annulment of 

the multiplier α, corresponding to the dk,0 displacement. 

6 §C8A.4.2 Analisi cinematica non lineare  (Circolare esplicativa NTC 2008, pp. 412-414) 
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In correspondence with each kinematic configuration of rigid blocks, the α 

multiplier value can ben estimated using the equation (5.1), referring to the 

modified configuration. The analysis can be carried out graphically, identifying 

the system geometry in different configurations until the collapse, or by 

analytical-numerical analysis, considering a sequence of virtual rotations and 

modifying progressively the system geometry. 

If the various actions (weight loads, external or internal forces) are constant 

during the kinematism evolution, the obtained curve is almost linear. In this 

condition, only the dk,0 displacement must be evaluated, which correspond to the 

annulment of the multiplier and the curve assumes the following expression: 
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This configuration can be obtained by expressing the geometry in a generic 

modified configuration, function of the finite rotation θk0, applying the Principle 

of Virtual Work using the equation (5.1), assuming α=0 and obtaining θk0 through 

the equation, usually non-linear. 

Starting from the trend of the horizontal loads multiplier α in function of the dk 

displacement of the structure control point, the capacity curve of the equivalent 

oscillator must be defined, identifying the relation between the a* acceleration 

and the d* displacement. 

The participant mass of the kinematism M* can be evaluated considering the 

virtual displacement of the application point of the different loads, associated with 

the kinematism, as a modal form of vibration: 
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where: 

n+m is the number of the weight forces Pi applied whose masses, due to the 

seismic action, generate horizontal forces on the elements of the kinematic 

chain; 

δx,i is the horizontal virtual displacement of the application point of the i-th 

weight load Pi; 
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The seismic spectral acceleration a* is obtained multiplying the gravity 

acceleration and the multiplier α, divided by the fraction of participant mass of the 

kinematism. The spectral acceleration for the activation of the mechanism is: 
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where: 

g is the gravity acceleration; 

e* is the fraction of participant mass of the structure and it is calculated with: 
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FC is the confidence factor. In the case in which the compressive strength of 

the masonry has not be taken into account during the evaluation of the 

multiplier α, the confidence factor is the one of the knowledge level LC1. 

  

The spectral displacement d* of the equivalent oscillator can be considered as the 

average displacement of the different points in which the weight Pi are applied. It 

is possible to define the equivalent spectral displacement from the dk displacement 

of the control point, considering the virtual displacements evaluated from the 

starting configuration: 
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where: 

n, m, Pi, δx,i are already been defined above; 

δx,k  is the virtual horizontal displacement of the k point, assumed as a 

reference for the determination of the displacement dk; 

 

If the different actions are constant, the curve has a linear trend and the capacity 

curve assumes the following expression: 
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where: 

d0* is the equivalent spectral displacement corresponding to dk,0. 

 

When the external forces have different entity, the curve is assumed at linear 

intervals. The strength and the displacement at the limit state of damage (LSD) 

and at the ultimate limit state (ULS) are evaluated considering the capacity curve 

in correspondence of the spectral displacement du* for the ultimate limit state. The 

spectral displacement du* is defined as the 40% of the displacement that annul the 

spectral acceleration a*. 

5.2.3  Safety analysis at the ultimate limit state7 

The verification at the ultimate limit state of local mechanisms can be applied 

using  the following criteria. 

Linear kinematic analysis 

If the analysis is referred to an isolated element or a portion of the construction 

from the top to the ground, the ultimate limit state analysis is satisfied if the 

spectral acceleration a0*, which activates the mechanism, satisfies the inequality: 

 
q
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where: 

ag is the function of the probability of exceedance the chosen limit state and 

the reference life as defined in chapter 3.2 of NTC 2008 code; 

S is the soil factor and its value is defined in chapter 3.2.2; 

q is the behavior factor, that can be considered equal to 2. 

 

If the local mechanism considers the upper part of the building, the absolute 

acceleration of the portion is amplified compared to the ground. An acceptable 

approximation consists in verifying both the inequality (5.8) and the following 

one: 
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7 §C8A.4.2.3 Verifiche di sicurezza (Circolare esplicativa NTC 2008, pp. 415-417) 
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where: 

Se(T1) is the elastic response spectrum as defined in chapter 3.2.2, in function of 

the exceedance probability of the analyzed limit state (in this case 10%) 

and of the reference period VR calculated for the period T1; 

T1 is the first vibration period of the entire structure in the considered 

direction; 

ψ(z) is the first vibration mode in the considered direction, standardized to 1 at 

the top of the building. It is assumed: 

   ψ(z) = Z/H       (5.10) 

 where H is the height above the foundation; 

Z is the height above the foundations of the barycenter of the constraint line 

between the blocks affected by the mechanism and the rest of the structure. 

 

Non-linear kinematic analysis 

The safety analysis for the ultimate limit state for local mechanisms considers the 

comparison between the ultimate displacement capacity du* of the local 

mechanism and the displacement demand obtained from the displacements 

spectrum in correspondence of the secant period Ts of the response spectrum. 

The displacement is defined as: 

 ds = 0.4 du*        (5.11) 

and the acceleration as* relative to the displacement ds* is identified on the 

capacity curve. The secant period of the response spectrum Ts is therefore 

calculated as: 
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The displacement demand Δd(Ts) is so obtained: 

- If the analysis is referred to an isolated element or a portion of the building 

from the ground to the top, the safety verification for the ultimate limit 

state is satisfied if: 

du* ≥ SDe (Ts)       (5.13) 

where SDe is the elastic design response spectrum defined in §3.2.3.2.2 of 

the NTC code; 
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- If the local mechanism is referred to the upper part of the building, the 

ultimate limit state analysis is satisfied if: 

du* ≥ SDe (T1)· ψ(z) ·γ·
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5.3 ANALYSIS OF THE MECHANISMS8 

First, the regulatory approach to the calculation of kinematic mechanisms is 

explained and then the analyzed mechanisms are illustrated in detail.  

The symbols used in the following paragraphs are: 

α is the horizontal load multiplier; 

n is the stories number which the mechanism affects; 

Wi is the wall weight at the i-th level or of the i-th macroelement; 

W0i is the weight of the portion of the separated wedge at the i-th floor in shear 

walls (including eventual loads transmitted by arches or vaults); 

FVi is the vertical component of arches or vaults thrust on the i-th level wall; 

FHi is the horizontal component of arches or vaults thrust on the i-th level wall; 

PSi is the weight of the floor acting on the i-th level; 

PS0i is the weight of the floor acting on the wedge portion on shear walls at the 

i-th level; 

PVij is the i-th vertical load transmitted on top of the j-th macroelement; 

P is the transmitted load from the ridge beam or from the rafter of the hip-

roof. For the in-plane mechanism is the weight of the triangular portion of 

the walls; 

N is the generic vertical load acting on top of the macroelement. For the in 

plane mechanism it is the transmitted load of the last floor and the roof; 

H is the maximum value of the reaction stainable by the shear wall or by the 

tie rod to the thrust of the horizontal arch effect. For the in-plane 

mechanism it is the height of the wall portion affected by the mechanism; 

PH is the static thrust acting on top of the macroelement due to the roof; 

PHij is the i-th component of the static thrust acting on top of the j-ht body due 

to the roof; 

Ti is the action of the eventual tie rods located on top of the wall at the i-th 

level; 

si is the wall thickness at the i-th level; 

hi is the vertical arm of the action due to the floor or tie rod acting on thte 

wall at the i-th level or it is the height of the i-th macroelement; 

8 Schede illustrative dei principali meccanismi di collasso locali negli edifici esistenti in muratura 
e dei relative modelli cinematici di analisi. (Milano et al., 2009) 
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hPi is the vertical arm of the action due to the floor acting on the wall at the i-

th level; 

Li is the length of the i-th macroelement; 

xGi is the horizontal arm of the weight of the i-th element weight; 

yGi is the vertical arm of the weight of the i-th element weight; 

xG0i is the horizontal arm of the wedge weight at the i-th level on shear walls; 

yG0i is the vertical arm of the wedge weight at the i-th level on shear walls; 

d is the horizontal arm of the vertical load acting on top of the 

macroelement; 

di is the horizontal arm of the load due to the floor acting on the wall at the i-

th level; 

dij is the horizontal arm of the i-th vertical load transmitted at the top of the j-

th floor 

d0i is the horizontal arm of the load transmitted by the slab to the wedge on 

shear walls; 

ai is the horizontal arm of the load transmitted by the slab on the wall at the i-

th level; 

hVi is the vertical arm of the arches and vaults thrust at the i-th level; 

dVi is the horizontal arm of the arches and vaults actions at the i-th level. 

The arms of the different forces that act on the microelements are referred to the 

hinges respect to which the rotation occurs.  

The arm of force N from the rotation pole during the in-plane analysis is assumed, 

for  safety purpose, as 0.75L. 

5.3.1  Simple overturning mechanism9 

The mechanism is activated from the rigid rotation of whole facades or walls 

portions. The rotation occurs usually around horizontal axes at the base of the 

rotation element and these axes run through the masonry structure subjected to out 

of plane actions. (Fig.5.3.1) 

The mechanism interests the monolithic external walls of the building that are 

perpendicular to the seismic action. It is influenced by the geometries and the 

9 Schede illustrative dei principali meccanismi di collasso locali negli edifici esistenti in muratura 
e dei relative modelli cinematici di analisi. (Milano et al., 2009, p. 4) 
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dimension of the analyzed wall and by the connection quality between horizontal 

structures and walls at the various levels of the structure. It can involve one or 

more building stories. 

The main conditioning factors of the simple overturning mechanism are the 

following. 

Constraint condition of the affected wall: 

- No constraint on the top; 

- No connection between perpendicular walls. 

Deficiencies and vulnerability associated with the mechanism: 

- Absence of ring beams and tie rods; 

- Deformable and poorly connected horizontal diaphragms; 

- Bad connections between walls; 

- Presence of thrusting elements; 

- Two leafs walls or poorly connected vertical leafs. 

Elements that shows the mechanism activation: 

- Vertical cracks at the walls intersections; 

- Out of plane overturning of the wall; 

- Beams slippage of the horizontal elements. 

Different variants of the mechanism: 

- The overturning may involve one or more floors, in relation to the 

connections of the different horizontal elements; 

- It may involve the entire wall thickness or only the external leaf, in 

relation to the wall characteristics; 

- The mechanism may interests different geometries of the wall, in relation 

to the discontinuity or openings presence. 
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Fig. 5.3.1: Schema of the simple overturning – whole façade and upper wall portion 

REFERENCE: Schede illustrative dei principali meccanismi di collasso locali  
(Milano et al., 2009, p. 4) 

 
Fig. 5.3.2: Schema of the mechanism 

REFERENCE: Schede illustrative dei principali meccanismi di collasso locali  
(Milano et al., 2009, p. 4) 
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Calculation of the stabilizing moment: 
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Calculation of the overturning moment: 
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Calculation of the seismic masses multiplier: 
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5.3.2  Vertical bending mechanism10 

The mechanism is activated by the formation of a horizontal cylindrical hinge that 

divides the wall in two blocks and it is described by the mutual rotation of these 

blocks around the horizontal axis. (Fig. 5.3.3) 

In case of clustered buildings, the wall structure resist to the bending stresses 

induced by orthogonal actions to its plane only if the result of the normal stresses 

is internal to the cross section. Otherwise the horizontal hinge arranges at that 

point and the bending mechanism activates. 

The main influencing factors of the simple overturning mechanism are the 

following. 

Constraint condition of the affected wall: 

- Effective constraints on the top; 

- No connection between perpendicular walls. 

Deficiencies and vulnerability associated with the mechanism: 

- Excessive wall slenderness; 

- Poorly connected horizontal diaphragms; 

- Presence of thrusting elements like arches or vaults; 

- Two leafs walls or poorly connected vertical leafs. 

10 Schede illustrative dei principali meccanismi di collasso locali negli edifici esistenti in muratura 
e dei relative modelli cinematici di analisi. (Milano et al., 2009, p.9) 
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Elements that shows the mechanism activation: 

- Vertical and horizontal cracks; 

- Bulging and out of plumb walls; 

- Beams slippage of the horizontal elements. 

Different variants of the mechanism: 

- The mechanism may involve one or more floors, in relation to the 

connections of the horizontal elements; 

- It may involve the entire wall thickness or only the external leaf, in 

relation to the wall characteristics; 

- The mechanism may interest different geometries of the wall, in relation to 

the discontinuity of the wall or the openings presence. 

 

  
Fig. 5.3.3: Schema of the vertical bending mechanism – ground floor and upper wall portion 

REFERENCE: Schede illustrative dei principali meccanismi di collasso locali  
(Milano et al., 2009, p. 9) 

 
 
The vertical bending mechanism analyzed in this thesis is the bending of one 

storey. This mechanism is activated with the formation of a horizontal cylindrical 

hinge that divides the wall included between two subsequent horizontal structures 

and it is described from the mutual rotation of these blocks around the horizontal 

axis due to out of plane actions (Fig. 5.3.4).  
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The formation of the horizontal hinge is hypothesized at the springing height of 

the vaults at the ground floor. 

 
 

Fig. 5.3.4: Schema of the vertical bending mechanism  

REFERENCE: Schede illustrative dei principali meccanismi di collasso locali  
(Milano et al., 2009, p. 9) 

 
Principle of Virtual Work: 

[ ] 022112211 =⋅−⋅−⋅−⋅−⋅−⋅+⋅+⋅+⋅ VyVPySNyyyVxHVxVxx FPNWWFFWW δδδδδδδδδα  (5.18) 

Calculation of the seismic masses multiplier: 
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Where E represent the following expression: 
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5.4 SIMPLE OVERTURNING MECHANISM 

The analysis of the simple overturning mechanism is applied  for the most 

widespread typologies of the historical center. Typologies that contain one 

structural unit or only buildings in Iosefin area are not considered for this analysis.  

The analysis is carried out considering the possible formation of the hinge at 

every floor, for example for a three stories building there are three possible hinge 

levels: at the ground level (level 0), at the level of the first floor (level 1) and at 

the level of the second floor (level 2). The wall portion above the hinge is 

considered rotating over the horizontal cylindrical axis at its base.  

The ag value used in the calculation is the value indicated in the Romanian Code 

and corresponds to a/g=0.2. As already defined in chapter 3.3, the material 

properties of the masonry are defined referring to the Italian normative and 

calculated with a knowledge level LC1, which correspond to a confidence factor 

of 1.35.11  

The horizontal structures defined in the typological classification are divided into 

light and moderately light structures and it is indicated the presence of eventual 

vaults at the ground floor. For light structures, that includes both adjoining type 

timber structures and iron beams and little brick vaults structures, the permanent 

load is considered of 3 kN/m2 while for moderately light structures, that 

correspond to concrete slab structures, the permanent load is considered of 4.5 

kN/m2. These values are taken from the permanent load values defined in Vulnus 

program in reference of these type of horizontal structures.12 The vertical and 

horizontal vaults thrusts are evaluated using Arco program, as defined in chapter 

3.3. The accidental loads follow the Italian regulation and are defined in chapter 

3.3 as well.  

The snow load has been calculated following the NTC code and it values 1.04 

kN/m2 but due to the low height above the sea level of the city of Timisoara, the 

snow load is annulled by its coefficient ψ on the seismic combination. 

The retraction of the hinge is considered and, due to the bad quality of the 

connection between walls and horizontal structures, a friction coefficient of 0.05 

is adopted to evaluate the friction forces. 

11 §C8A.1.A.4 Costruzioni in muratura: livelli di conoscenza  (Circolare NTC 2008, p. 391) 
12 §2.1 La scheda di rilievo Vulnus (Manuale d’uso del programma Vulnus 4.0, 2009, p. 14) 
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5.4.1  Parameters description 

One of the issues of a rapid survey on a large scale is the uncertainty of some kind 

of information that are hardly observable in many cases. During the in situ 

activities, only for 28 buildings a complete inspection has been possible and it 

corresponds to the 13% of the total. The characteristics that are more difficult to 

survey are interstorey height of upper and underground floors, wall thickness, 

type of horizontal structures and connection between constructive elements. 

Therefore the analysis of the local mechanisms has been applied considering a 

reference case, which is different for each micro-typology, by varying one 

parameter at time to consider the biggest number of possible cases. The obtained 

results refer both to the singular parameters and to the combination of them. As 

seen in Tab. 2.4.2 in chapter 2.4.1, every building typology can be subdivided in 

more micro-typology, referring to the ground floor thickness. Each of these 

micro-typologies has then 12 different cases: the reference case and 11 other cases 

corresponding to the 11 analyzed parameters, which are described below. For each 

case, a number of analysis equal to the typology stories number is made, one for 

each hinge level. 

The reference case considers the wall thickness of the micro-typology for the 

ground floor and a thickness decreased of 15 cm after the first floor. This 

consideration has been made considering local architects indications about the 

most representative distribution of the wall thickness. The interstorey height is the 

average value of the structural units belonging to the analyzed typology and it is 

different for ground floor, upper floors and eventual basement. If the typology has 

vaults at the ground floor, the reference case considers a cross vault with a rise of 

1m, which is the most common vaults type in the city center. The sept length and 

the considered area are referred to the most common plan module, defined in 

chapter 2.4.3: module 3. This module measures 5.8 x 4.10 m, for a total area of 

23.6 m2, and it usually collocated with its short side parallel to the façade. 

Therefore, the considered area depends from the horizontal structure type and it 

ranges from 5.9 m2 in case of cross vaults (1/4 of the total area) to 11.8 m2  (1/2 of 

the total area) in case of timber strictures, iron beams and little brick vaults or 

barrel vaults. The module most exposed side to out of plane mechanisms is the 

shorter one, so the sept length assumes the value of 4.1m. Initially the reference 
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module was a varying parameter but a deeper analysis shows that even big 

differences of area and sept dimensions bring to almost irrelevant differences into 

the results, so it has been decided to consider it as a constant. 

Finally, the analyzed parameters are: 

1- Constant wall thickness along the entire building height: the ground floor 

thickness is considered constant in all the stories, from the ground to the 

top of the building. 

2- Wall thickness that decreases on each floor: the wall thickness does not 

decrease of 15cm after the first floor and the it stays constant, but it 

decreases of 15cm on each floor until a minimum of 30cm. 

3- Minimum interstorey height for upper floors 

4- Maximum interstorey height for upper floors 

5- Minimum interstorey height for the ground floor 

6- Maximum interstorey height for the ground floor 

7- Barrel vault: instead of a cross vault, a barrel vault with rise of 1m is 

considered. 

8- Free standing wall: no loads from horizontal structures are considered in 

this case and the sept is considered free and disconnected along the entire 

building height. 

9- Absence of vaults at the ground floor: a light and deformable horizontal 

structure is considered at the ground floor instead of the cross vault. 

10-  Vault rise of 1.5m: the cross vault is considered to have a rise of 1.5m 

instead of 1m. The new thrusts are calculated with Arco program. 

11- Vault rise of 1.5m: the cross vault is considered to have a rise of 0.5m 

instead of 1m. The new thrusts are calculated with Arco program. 

Parameters 3, 4, 5 and 6 represent the minimum and the maximum values of the 

interstorey high for the ground floor and the upper floors. These values has been 

calculated considering not the absolute minimum and the absolute maximum 

between the interstorey height of the considered buildings, but choosing a range 

of ±0.5 m or of ±1m from the average value. This consideration has been made to 

find a value that better represents the building majority and not the individual 

extreme case. In parameters 10 and 11 the variation of the vault rise causes the 
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variation of the hinge height and consequently of the application point of the 

horizontal thrust, which is related to the hinge formation. 

In macro-typology G, characterized by moderately heavy horizontal structure and 

concrete and timber trusses roof, the parameters related to the vault are not 

considered, so the parameters 7, 9, 10 and 11 are missing.  

Not all the typologies have been directly analyzed because they can be included in 

the analysis of similar typologies, in correspondence of specific parameters. In 

particular: 

- Typologies 12 and 13, characterized by metal reticular columns at the 

ground floor, can be included in typology 3 and 4 respectively, 

considering the simple overturning mechanism at the upper floors; 

- Typology 22 is characterized by an inner RC septum which does not 

influence the façade overturning, so it can be included in typology 20; 

- Typologies 27 and 28 can be included in typologies 24 and 26 because 

they differ from each other just for the presence of the basement and a 

lower interstorey height. 

The Tab. 5.4.1 represents the analyzed typologies (green), the typologies that can 

be include in the analysis of similar typologies (orange) and the typologies that 

have been omitted because constituted of singular US or because they include 

only structural units located in Iosefin (red). The micro-typologies written in grey 

have been added subsequently to consider all the possible wall thickness, even if 

no structural units have been surveyed with these measures. The typology one is 

the only case that has been analyzed but the results result to be all negative and 

consequently it was not possible to carry on the analysis. 

In typologies 2 and 7, characterized by two stories and two stories with basement, 

only the values of the mechanism at the upper floors for micro-typologies A and B 

have been adopted because the values of the mechanism at the ground floor result 

negative. In Tab. 5.4.1 they are colored in light green. 
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A 

1 
1A 

1 
36, 37 45 

3,8 ± 0,5 - - - 
1B 152, 241 60 

2 

2A 

2 

7, 44, 74, 75, 98 45 

4 ± 0,5 4,3 ± 0,5 - 
2B 

8, 18, 19, 20, 29, 
30, 31, 55, 58, 59, 

73, 77, 84, 97, 
115, 120, 121, 

151, 175, 193 202, 
228, 301 

60 

2C 71, 80, 117, 145, 
154 75 

2D 94, 95, 167, 185 90 

3 

3A 

3 

49, 50, 51 45 

4,3 ± 1 4,2 ± 0,5 - 

3B 

4, 5, 53, 76, 96, 
103, 104,105, 116, 

118, 123, 124, 
140, 174, 178, 192 

60 

3C 81, 109, 130, 134 75 

3D 

79, 86, 87, 88, 
137, 138, 141, 

166, 169B, 182, 
183, 188, 189, 190 

90 

4 

4A 

4 

25, 56, 133 60 

4,2 ± 0,5 4 ± 0,5 - 4B 129 75 

4C 90, 92, 93, 128, 
135, 155, 156, 187 90 

5 5 157 90 4,8 - 3,7 - - 
6 6 195 90 3,5 - 3,3 - - 

7 

7 A 

2+B 

_ 45 

4 ± 0,5 5 ± 0,5 1,3 
7B 

35, 38, 41, 61, 62, 
64, 149, 150, 172, 

211, 212, 213, 
229, 230, 231, 
233, 236, 237 

60 
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7C 68 75 
7D 28, 100, 114, 217 90 

8 

8A 

3+B 

46 45 

4,2 ± 0,5 4,4 ± 0,5 1,1 
8B 

9, 24, 26, 43, 47, 
54, 57, 60, 65, 
168, 173, 184, 
200, 201, 203, 

207, 221, 234, 235 

60 

8C 69, 70, 143, 153 75 

8D 101, 170 90 

9 4+B 169A 90 4,7 - 4,6 - - 

A 
Iosef

in 

10 

10A 1+B 224, 238, 239, 242 45 

4,7 ± 0,5 - - 1,5 
10B  

208, 209, 210, 
215, 216, 218, 
219, 220, 232 

60 

11 3+B 204 60 3,4 - - - - 

B 
12  3 89, 127 45 4,9 - 5 - - 

13  4 132, 144, 158 60 4,8 ± 0,5 4,2 - - 
C 14 2 139 60 4 - 3,9 - - 

D 
15 3 72 60 4,7 - 4,9 - - 
16 3+B 181 105 4,4 - 2,8 - 1,2 

E 

17 

17A 

2 

82 45 

4,2 ± 0,5 4,7 ± 1 - 
17B 83, 85, 111, 186 60 
17C - 75 
17D - 90 

18 

18 A 

3 

- 45 

4,3 ± 0,5 4,2 ± 0,5 - 
18B 52, 105,125, 131 60 
18C - 75 
18D - 90 

19 1+B 32 60 4,45 - - - 0,7 

20 

20 A 

3+B 

- 45 

4 ± 0,5 4,2 - 1,4 
20B 2 60 
20C 148 75 
20D 102, 159 90 

E 
Iosef

in 
21 1+B 225 45 4,5 - - - 0,5 

F 22 3+B 3 60 4,1 - 3,35 - 1,9 

G 
23 1 22 60 3,8 - - - - 

24 24 A  - 45 4 ± 0,5 4,5 ± 1 - 
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24B 
2 

17, 21, 23, 63, 119 60 
24C 146 75 
24D  - 90 

25 

25A 

3 

107 45 

3,6 ± 0,5 3,3 ± 0,5 - 
25B 108, 110, 164, 179 60 
25C - 75 
25D - 90 

26 
26B 

4 
91 60 

3,7 - 4 ± 0,5 - 26C - 75 
26D 180 90 

27 2+B 48 45 3,7 - 4,8 - 0,8 
28 4+B 99 60 3,5 - 3,5 - 1,5 

G 
Iosef

in 

29 1 223 45 4,2 - - - - 

30 
30A 

1+B 
226,227,243 45 

3,9 ± 0,5 - - 0,8 
30B 222,245 60 

H 
31 2+B 34,206 60 4 ± 0,5 4,8 ± 0,5 1,1 
32 3+B 106 45 3,6 - 3,6 - 1,1 

H 
Iosef

in 
33 3+B 205 60 3,8 - 3,8 - 1,9 

Tab. 5.4.1: Analyzed typologies and interstorey height variations 

Not all the parameters have been analyzed in each typology because in few cases 

they result to be unnecessary or incongruous with the typology. The cases in 

which a parameter is not considered are the following. 

-  Typologies characterized by a wall thickness at the ground floor of 45cm 

and 30cm at the upper floor do not have the Parameter 2 (wall thickness 

that decreases on each floor) because it has already reached the minimum 

thickness; 

- Typologies without brick vaults at the ground floor do not consider 

parameters 7, 10 and 11 because they are related to the vault presence; 

- If all the structural units of the same typology have the same interstorey 

height, the parameters 3 and 4 of 5 and 6 are not considered, because they 

refer to the interstorey variation. 

- In typologies with four stories the wall thickness of 45cm at the ground 

floor is not considered because it results incongruous with the great 

building height. 
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5.4.2  Verification of the mechanism 

For each analyzed case, a linear and a non-linear kinematic analysis have been 

applied, following the method shown in chapter 5.2. The values of the horizontal 

load multiplier α0 has been reported and compared to each other. In the linear 

kinematic analysis, the value of the equivalent spectral acceleration a0* is 

compared with the inequality (5.8), in case of the hinge at level 0, and with the 

maximum value between (5.8) and (5.9) inequalities in case of the hinge at upper 

levels. In the non-linear kinematic analysis, the value of the ultimate displacement 

capacity du* is compared with the inequality (5.13), in case of the hinge at level 0, 

and with the maximum value between (5.13) and (5.14) inequalities in case of the 

hinge at upper levels.  

The verification values for typology 3 are shown in the following tables (Tab. 

5.4.2, Tab. 5.4.3, Tab. 5.4.4, Tab. 5.4.5) as example, while the values for the other 

typologies are shown in annex D1. The typology 3 is characterized by three 

stories high buildings, with an average interstorey height of 4.3m at the ground 

floor and 4.2m at the upper floors. The interstorey variation is of ±1m for the 

ground floor and ±0.5m at upper floors. It is subdivided in four micro-typologies: 

- Micro-typology 3A has a wall thickness of 45cm and includes 3 structural 

units; 

- Micro-typology 3B has a wall thickness of 60cm and includes 16 

structural units; 

- Micro-typology 3C has a wall thickness of 75cm and includes 4 structural 

units; 

- Micro-typology 3D has a wall thickness of 90cm and includes 14 

structural units. 

 

 

 

 

 

 

 

 

285 

 



CHAPTER 5: LOCAL MECHANISMS OF COLLAPSE 

            

3A 

PA
R

A
M

ET
ER

 

H
IN

G
E 

LE
V

EL
 

α0 

LINEAR KINEMATIC 
ANALYSIS 

NON-LINEAR 
KINEMATIC ANALYSIS 

a0* 

M
ax

im
um

 
ve

rif
ic

at
io

n 
va

lu
e 

Sa
fe

ty
 

co
ef

fic
ie

nt
 

V
ER

IF
IC

A
TI

O
N

 

du* 

M
ax

im
um

 
ve

rif
ic

at
io

n 
va

lu
e 

Sa
fe

ty
 

co
ef

fic
ie

nt
 

V
ER

IF
IC

A
TI

O
N

 

R 
0 0,0167 0,1645 1,4715 0,1118 NO 0,0592 0,0560 1,0577 YES 

1 0,0645 0,5735 1,4715 0,3898 NO 0,1638 0,0540 3,0337 YES 

2 0,0699 0,5705 2,3528 0,2425 NO 0,0947 0,0873 1,0848 YES 

1 
0 0,0294 0,2767 1,4715 0,1880 NO 0,1043 0,0560 1,8629 YES 

1 0,0730 0,6553 1,4715 0,4453 NO 0,1787 0,0539 3,3179 YES 

2 0,0921 0,7524 2,3528 0,3198 NO 0,1157 0,0848 1,3650 YES 

2 
0 - - - - - - - - - 

1 - - - - - - - - - 

2 - - - - - - - - - 

3 
0 0,0130 0,1267 1,4715 0,0861 NO 0,0426 0,0560 0,7600 NO 

1 0,0691 0,6115 1,4715 0,4156 NO 0,1562 0,0563 2,7739 YES 

2 0,0768 0,6254 2,5561 0,2447 NO 0,0934 0,0844 1,1065 YES 

4 
0 0,0197 0,1950 1,4715 0,1325 NO 0,0750 0,0560 1,3398 YES 

1 0,0608 0,5419 1,4715 0,3683 NO 0,1710 0,0536 3,1926 YES 

2 0,0642 0,5246 2,1817 0,2404 NO 0,0956 0,0900 1,0624 YES 

5 
0 0,0284 0,2845 1,4715 0,1934 NO 0,0937 0,0560 1,6737 YES 

1 0,0645 0,5735 1,4715 0,3898 NO 0,1638 0,0560 2,9254 YES 

2 0,0699 0,5705 2,3964 0,2381 NO 0,0947 0,0825 1,1482 YES 

6 
0 0,0079 0,0764 1,4715 0,0519 NO 0,0298 0,0560 0,5328 NO 

1 0,0645 0,5735 1,4715 0,3898 NO 0,1638 0,0634 2,5859 YES 

2 0,0699 0,5705 2,3029 0,2477 NO 0,0947 0,0917 1,0329 YES 

7 
0 -0,0343 -0,3433 1,4715 -0,2333 NO -0,1174 0,0560 -2,0958 NO 

1 0,0645 0,5735 1,4715 0,3898 NO 0,1638 0,0540 3,0337 YES 

2 0,0699 0,5705 2,3528 0,2425 NO 0,0947 0,0873 1,0848 YES 

8 
0 0,0634 0,6344 1,4715 0,4311 NO 0,1998 0,0560 3,5678 YES 

1 0,0526 0,4779 1,4715 0,3248 NO 0,1102 0,0560 1,9683 YES 

2 0,0633 0,4602 2,3528 0,1956 NO 0,0531 0,0763 0,6960 NO 

9 
0 0,0741 0,7112 1,4715 0,4833 NO 0,2674 0,0560 4,7750 YES 

1 0,0645 0,5735 1,4715 0,3898 NO 0,1638 0,0540 3,0337 YES 

2 0,0699 0,5705 2,3528 0,2425 NO 0,0947 0,0873 1,0848 YES 

10 
0 0,0366 0,3656 1,4715 0,2484 NO 0,1293 0,0560 2,3096 YES 

1 0,0645 0,5735 1,4715 0,3898 NO 0,1638 0,0540 3,0337 YES 

2 0,0699 0,5705 2,3528 0,2425 NO 0,0947 0,0873 1,0848 YES 

11 
0 -0,0390 -0,3781 1,4715 -0,2570 NO -0,1391 0,0560 -2,4833 NO 

1 0,0645 0,5735 1,4715 0,3898 NO 0,1638 0,0540 3,0337 YES 

2 0,0699 0,5705 2,3528 0,2425 NO 0,0947 0,0873 1,0848 YES 

Tab. 5.4.2: Verification of simple overturning mechanism – Micro-typology 3A 
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0 0,0333 0,3238 1,4715 0,2200 NO 0,1158 0,0560 2,0678 YES 

1 0,0730 0,6553 1,1902 0,5505 NO 0,1787 0,0560 3,1910 YES 

2 0,0921 0,7524 2,3528 0,3198 NO 0,1157 0,0848 1,3650 YES 

1 
0 0,0428 0,4034 1,4715 0,2741 NO 0,1498 0,0560 2,6747 YES 

1 0,0833 0,7516 1,4715 0,5107 NO 0,1987 0,0560 3,5487 YES 

2 0,1171 0,9527 2,3528 0,4049 NO 0,1391 0,0831 1,6732 YES 

2 
0 0,0264 0,2621 1,4715 0,1781 NO 0,0891 0,0560 1,5912 YES 

1 0,0703 0,6517 1,4715 0,4429 NO 0,1709 0,0560 3,0512 YES 

2 0,0699 0,5705 2,3528 0,2425 NO 0,0947 0,0873 1,0848 YES 

3 
0 0,0314 0,3036 1,4715 0,2064 NO 0,1011 0,0560 1,8048 YES 

1 0,0795 0,7120 1,4715 0,4839 NO 0,1733 0,5770 0,3003 NO 

2 0,1026 0,8385 2,5561 0,3280 NO 0,1159 0,0819 1,4140 YES 

4 
0 0,0346 0,3382 1,4715 0,2298 NO 0,1294 0,0560 2,3113 YES 

1 0,0677 0,6088 1,4715 0,4137 NO 0,1838 0,0560 3,2815 YES 

2 0,0835 0,6814 2,1817 0,3123 NO 0,1153 0,0875 1,3181 YES 

5 
0 0,0435 0,4297 1,4715 0,2920 NO 0,1407 0,0560 2,5120 YES 

1 0,0730 0,6553 1,4715 0,4453 NO 0,1787 0,0560 3,1910 YES 

2 0,0921 0,7524 2,3964 0,3140 NO 0,1157 0,0800 1,4458 YES 

6 
0 0,0253 0,2434 1,4715 0,1654 NO 0,0943 0,0560 1,6844 YES 

1 0,0730 0,6553 1,4715 0,4453 NO 0,1787 0,0622 2,8747 YES 

2 0,0921 0,7524 2,3029 0,3267 NO 0,1157 0,0891 1,2989 YES 

7 
0 -0,0081 -0,0803 1,4715 -0,0546 NO -0,0277 0,0560 -0,4944 NO 

1 0,0730 0,6553 1,1902 0,5505 NO 0,1787 0,0560 3,1910 YES 

2 0,0921 0,7524 2,3528 0,3198 NO 0,1157 0,0848 1,3650 YES 

8 
0 0,0715 0,7024 1,4715 0,4774 NO 0,2280 0,0560 4,0709 YES 

1 0,0664 0,6033 1,4715 0,4100 NO 0,1390 0,0560 2,4815 YES 

2 0,0950 0,6903 2,3528 0,2934 NO 0,0794 0,0762 1,0423 YES 

9 
0 0,0781 0,7472 1,4715 0,5078 NO 0,2766 0,0560 4,9396 YES 

1 0,0730 0,6553 1,1902 0,5505 NO 0,1787 0,0560 3,1910 YES 

2 0,0921 0,7524 2,3528 0,3198 NO 0,1157 0,0848 1,3650 YES 

10 
0 0,0489 0,4823 1,4715 0,3278 NO 0,1700 0,0560 3,0351 YES 

1 0,0730 0,6553 1,1902 0,5505 NO 0,1787 0,0560 3,1910 YES 

2 0,0921 0,7524 2,3528 0,3198 NO 0,1157 0,0848 1,3650 YES 

11 
0 -0,0104 -0,1004 1,4715 -0,0682 NO -0,0366 0,0560 -0,6540 NO 

1 0,0730 0,6553 1,1902 0,5505 NO 0,1787 0,0560 3,1910 YES 

2 0,0921 0,7524 2,3528 0,3198 NO 0,1157 0,0848 1,3650 YES 

Tab. 5.4.3: Verification of simple overturning mechanism – Micro-typology 3B 
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0 0,0467 0,4516 1,4715 0,3069 NO 0,1607 0,0560 2,8690 YES 

1 0,0833 0,7516 1,4715 0,5107 NO 0,1987 0,0560 3,5487 YES 

2 0,1171 0,9527 2,3528 0,4049 NO 0,1391 0,0831 1,6732 YES 

1 
0 0,0545 0,5136 1,4715 0,3491 NO 0,1887 0,0560 3,3688 YES 

1 0,0947 0,8563 1,4715 0,5819 NO 0,2214 0,0569 3,8909 YES 

2 0,1439 1,1635 2,3528 0,4945 NO 0,1634 0,0819 1,9941 YES 

2 
0 0,0416 0,4090 1,4715 0,2779 NO 0,1396 0,0560 2,4935 YES 

1 0,0799 0,7397 1,4715 0,5027 NO 0,1890 0,0560 3,3749 YES 

2 0,0921 0,7524 2,3528 0,3198 NO 0,1157 0,0848 1,3650 YES 

3 
0 0,0465 0,4474 1,4715 0,3041 NO 0,1479 0,0560 2,6409 YES 

1 0,0919 0,8275 1,4715 0,5624 NO 0,1949 0,0560 3,4796 YES 

2 0,1314 1,0716 2,5561 0,4192 NO 0,1402 0,0803 1,7466 YES 

4 
0 0,0465 0,4519 1,4715 0,3071 NO 0,1723 0,0560 3,0761 YES 

1 0,0764 0,6899 1,4715 0,4689 NO 0,2023 0,0560 3,6121 YES 

2 0,1055 0,8557 2,1817 0,3922 NO 0,1378 0,0859 1,6045 YES 

5 
0 0,0563 0,5517 1,4715 0,3749 NO 0,1798 0,0560 3,2109 YES 

1 0,0833 0,7516 1,4715 0,5107 NO 0,1987 0,0560 3,5487 YES 

2 0,1171 0,9527 2,3964 0,3976 NO 0,1391 0,0784 1,7731 YES 

6 
0 0,0390 0,3733 1,4715 0,2537 NO 0,1438 0,0560 2,5683 YES 

1 0,0833 0,7516 1,4715 0,5107 NO 0,1987 0,0560 3,5487 YES 

2 0,1171 0,9527 2,3029 0,4137 NO 0,1391 0,0874 1,5913 YES 

7 
0 0,0124 0,1226 1,4715 0,0833 NO 0,0403 0,0560 0,7200 NO 

1 0,0833 0,7516 1,4715 0,5107 NO 0,1987 0,0560 3,5487 YES 

2 0,1171 0,9527 2,3528 0,4049 NO 0,1391 0,0831 1,6732 YES 

8 
0 0,0794 0,7727 1,4715 0,5251 NO 0,2546 0,0560 4,5469 YES 

1 0,0802 0,7287 1,4715 0,4952 NO 0,1676 0,0560 2,9927 YES 

2 0,1267 0,9204 2,3528 0,3912 NO 0,1055 0,0761 1,3866 YES 

9 
0 0,0834 0,7964 1,4715 0,5412 NO 0,2917 0,0560 5,2088 YES 

1 0,0833 0,7516 1,4715 0,5107 NO 0,1987 0,0560 3,5487 YES 

2 0,1171 0,9527 2,3528 0,4049 NO 0,1391 0,0831 1,6732 YES 

10 
0 0,0596 0,5827 1,4715 0,3960 NO 0,2047 0,0560 3,6562 YES 

1 0,0833 0,7516 1,4715 0,5107 NO 0,1987 0,0560 3,5487 YES 

2 0,1171 0,9527 2,3528 0,4049 NO 0,1391 0,0831 1,6732 YES 

11 
0 0,0063 0,0586 1,4715 0,0398 NO 0,0220 0,0560 0,3923 NO 

1 0,0833 0,7516 1,4715 0,5107 NO 0,1987 0,0560 3,5487 YES 

2 0,1171 0,9527 2,3528 0,4049 NO 0,1391 0,0831 1,6732 YES 

Tab. 5.4.4: Verification of simple overturning mechanism – Micro-typology 3C 
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0 0,0584 0,5626 1,4715 0,3823 NO 0,1993 0,0560 3,5588 YES 

1 0,0947 0,8563 1,1417 0,7500 NO 0,2214 0,0560 3,9535 YES 

2 0,1439 1,1635 2,3528 0,4945 NO 0,1634 0,0819 1,9941 YES 

1 
0 0,0651 0,6140 1,4715 0,4173 NO 0,2236 0,0560 3,9934 YES 

1 0,1066 0,9662 1,4717 0,6565 NO 0,2455 0,0560 4,3847 YES 

2 0,1718 1,3803 2,3528 0,5867 NO 0,1880 0,0810 2,3205 YES 

2 
0 0,0543 0,5306 1,4715 0,3606 NO 0,1816 0,0560 3,2429 YES 

1 0,0909 0,8402 1,4715 0,5710 NO 0,2108 0,0560 3,7635 YES 

2 0,1171 0,9527 2,3528 0,4049 NO 0,1391 0,0831 1,6732 YES 

3 
0 0,0597 0,5728 1,4715 0,3893 NO 0,1883 0,0560 3,3631 YES 

1 0,1054 0,9520 1,4715 0,6469 NO 0,2188 0,0560 3,9071 YES 

2 0,1621 1,3160 2,5561 0,5148 NO 0,1652 0,0790 2,0901 YES 

4 
0 0,0569 0,5502 1,4715 0,3739 NO 0,2090 0,0560 3,7329 YES 

1 0,0860 0,7791 1,4715 0,5294 NO 0,2237 0,0560 3,9945 YES 

2 0,1290 1,0397 2,1817 0,4765 NO 0,1614 0,0847 1,9052 YES 

5 
0 0,0679 0,6614 1,4715 0,4495 NO 0,2148 0,0560 3,8352 YES 

1 0,0947 0,8563 1,4715 0,5819 NO 0,2214 0,0560 3,9535 YES 

2 0,1439 1,1635 2,0811 0,5591 NO 0,1634 0,0560 2,9176 YES 

6 
0 0,0506 0,4833 1,4715 0,3284 NO 0,1853 0,0560 3,3094 YES 

1 0,0947 0,8563 1,4715 0,5819 NO 0,2214 0,0608 3,6395 YES 

2 0,1439 1,1635 2,3029 0,5052 NO 0,1634 0,0862 1,8959 YES 

7 
0 0,0287 0,2799 1,4715 0,1902 NO 0,0964 0,0560 1,7212 YES 

1 0,0947 0,8563 1,1417 0,7500 NO 0,2214 0,0560 3,9535 YES 

2 0,1439 1,1635 2,3528 0,4945 NO 0,1634 0,0819 1,9941 YES 

8 
0 0,0873 0,8441 1,4715 0,5736 NO 0,2806 0,0560 5,0105 YES 

1 0,0940 0,8542 1,4717 0,5804 NO 0,1961 0,0560 3,5016 YES 

2 0,1583 1,1505 2,3528 0,4890 NO 0,1314 0,0760 1,7283 YES 

9 
0 0,0895 0,8529 1,4715 0,5796 NO 0,3098 0,0560 5,5329 YES 

1 0,0947 0,8563 1,1417 0,7500 NO 0,2214 0,0560 3,9535 YES 

2 0,1439 1,1635 2,3528 0,4945 NO 0,1634 0,0819 1,9941 YES 

10 
0 0,0694 0,6746 1,4715 0,4585 NO 0,2364 0,0560 4,2221 YES 

1 0,0947 0,8563 1,1417 0,7500 NO 0,2214 0,0560 3,9535 YES 

2 0,1439 1,1635 2,3528 0,4945 NO 0,1634 0,0819 1,9941 YES 

11 
0 0,0291 0,2788 1,4715 0,1895 NO 0,0999 0,0560 1,7844 YES 

1 0,0947 0,8563 1,1417 0,7500 NO 0,2214 0,0560 3,9535 YES 

2 0,1439 1,1635 2,3528 0,4945 NO 0,1634 0,0819 1,9941 YES 

Tab. 5.4.5: Verification of simple overturning mechanism – Micro-typology 3D 
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In micro-typology 3A the not verified cases are: 

- Parameter 3 (minimum interstorey height for upper floors) with the hinge 

at level 0; 

- Parameter 6 (maximum interstorey height for the ground floor) with the 

hinge at level 0; 

- Parameter 7 (barrel vault) with the hinge at level 0; 

- Parameter 8 (free standing wall) with the hinge at level 2; 

- Parameter 11(vault rise at 0.5m) with the hinge at level 0. 

In micro-typology 3B the not verified cases are: 

- Parameter 3 (minimum interstorey height for upper floors) with the hinge 

at level 1; 

- Parameter 7 (barrel vault) with the hinge at level 0; 

- Parameter 11(vault rise at 0.5m) with the hinge at level 0. 

In micro-typology 3C the not verified cases are: 

- Parameter 7 (barrel vault) with the hinge at level 0; 

- Parameter 11(vault rise at 0.5m) with the hinge at level 0. 

Parameters 7 and 11 with the hinge at level 0 result not verified for all the three 

cases, because the horizontal thrust is considerably increased and promotes the out 

of plane mechanism. Micro-typologies 3A and 3B, which have a low wall 

thickness at the upper floors, are more vulnerable to interstorey height variations. 

The only collapse at level 2 occurs in micro-typology 3A (upper floors thickness 

of 30cm) in correspondence of the parameter “free standing wall”. 

All cases result not verified with the linear kinematic analysis, but the majority of 

them results verified with the non-linear kinematic analysis. It is possible to 

observe in the graphics below (Fig. 5.4.1 and Fig. 5.4.2) that the percentage of 

verified cases increases with the increment of the wall thickness, reaching 100% 

in micro-typology 3D. 
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Fig. 5.4.1: Verification of simple overturning mechanism – Cases number 

   

  

Fig. 5.4.2: Verification of simple overturning mechanism – Percentage 

 

In typologies 2, 7 and 17 , characterized by two stories and  brick vaults at the 

ground floor, in correspondence of micro-typologies A and B (wall thickness of 

45 and 60cm), the simple overturning mechanism is usually verified at the upper 

level but is not verified at the ground floor. The only exceptions are the 
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parameters 8 (unstressed wall) and parameter 9 (absence of vaults at the ground 

floor) which do not consider the vault thrust. In micro-typology C (wall thickness 

of 75cm) the mechanism is not verified in correspondence of parameter 11 (vault 

rise at 0.5m) at the ground floor, due to the considerable horizontal thrust.  

The addition of the basement in a typology characterized by three stories, such as 

typology 8, increases the force at the last floor and consequently parameters 3 

(minimum interstorey height for upper floors), 6 (maximum interstorey height for 

the ground floor) and 8 (unstressed wall) result not verified for the last floor but 

with a safety coefficient very close to the verification. In the same typology the 

parameter 11 (vault rise at 0.5m) results verified only for the wall thickness of 

90cm. 

The typology 4 is the only one characterized by four stories and it does not 

consider the micro-typology A, because a wall thickness of 45cm is not valuable 

for a four stories building. all the analysis are verified, except for the parameter 2 

(wall thickness that decreases on each floor) in all the micro-typologies and the 

parameter 8 (unstressed wall) for a wall thickness of 60cm. 

all the macro-typology G is verified, except for the parameter 8 (unstressed wall) 

which is not verified at the last floor for the ground floor  thickness of 45cm. 

5.4.3  Parameters analysis 

Into the same micro-typology, a comparison between the values of α0, a0*, d0*and 

du*  of each parameter has been made. In this way it is possible to observe the 

influence of each parameter in the mechanism behavior. The histograms (Fig. 

5.4.3, Fig. 5.4.4, Fig. 5.4.5, Fig. 5.4.6) show the value variations of the multiplier 

α0 in each micro-typology of the building typology 3. 

It is possible to observe that the value of α0: 

- Is usually higher in correspondence of the hinge at level 2 and lower in 

correspondence of level 0. This distribution shows that the most 

vulnerable situation is the one with the hinge formation at the ground 

level. The parameters that do not have the same behavior are parameters 8 

(free standing wall) and parameter 9 (absence of vaults at the ground 

floor). In this two cases the α0 value at the level 0 is higher of both level 1 

and 2 for micro-typology 3A, is higher than level 1 for micro-typology 3B, 
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is equal to level 1 value for micro-typology 3C and is lower for micro-

typology 3D.  

- Reaches the minimum for parameters 7 (barrel vault) and parameter 11 

(vault rise of 1.5m) in case of hinge at level 0 because the horizontal thrust 

of these types of vaults is considerably higher than the reference case, and 

it encourages the out of plane mechanism. 

- Reaches the maximum for parameter 1 (constant wall thickness along the 

entire building height) in case of hinge at level 2 because the increment of 

the wall thickness in the upper floors improve the stabilizing action of the 

mechanism. 

- Can be negative if the overturning moment is higher than the stabilizing 

moment when the mechanism is not activated. This condition should bring 

to the collapse of the analyzed wall without the intervention of the seismic 

action and, as the building is in fact not collapsed, it is not an acceptable 

result. This means that possibly there are reinforcing elements that have 

not be surveyed. Negative values of α0 appear more often in buildings with 

one or two stories and with low wall thickness, as can be seen in annex 

D1. These cases will be analyzed considering the local mechanism of 

vertical bending in chapter 5.5.  

 

Fig. 5.4.3: Variation of α0 values – micro-typology 3A 
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Fig. 5.4.4: Variation of α0 values – micro-typology 3B 

 

 

Fig. 5.4.5: Variation of α0 values – micro-typology 3C 

 

Fig. 5.4.6: Variation of α0 values – micro-typology 3D 
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The same comparison can be made for the ultimate displacement capacity du* .  

The histograms below (Fig. 5.4.7, Fig. 5.4.8, Fig. 5.4.9, Fig. 5.4.10) show the 

variations of value du*  in each micro-typology of the building typology 3. 

In the micro-typology 3A, the lower value of du*  usually corresponds to the hinge 

at level 0, while the higher value to the hinge at level 1. Exceptions are made for 

parameters 8 (free standing wall), 9 (absence of vaults at the ground floor) and 10 

(vault rise at 1.5m). In these cases the higher value corresponds to the hinge at 

level 0, for parameters 8 and 9, and for parameter 10 the lower value becomes the 

one at level 2. The micro-typology 3B shows more or less the same behavior, 

while in micro-typologies 3C and 3D the lower value corresponds to the hinge at 

level 2 in almost all the parameters.  

A comparison has been made also for a0*and d0* values as it has been made for α0 

and du*. The histograms have the same trend of du* ones, and the same 

considerations made above can be extended to  a0*and d0*comparison.  

 

Fig. 5.4.7: Variation of du* values – micro-typology 3A 
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Fig. 5.4.8: Variation of du* values – micro-typology 3B 

 

Fig. 5.4.9: Variation of du* values – micro-typology 3C 

 

Fig. 5.4.10: Variation of du* values – micro-typology 3D 
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Comparing values in the same micro-typology is helpful to study the parameters 

influence but does not take into account the influence of the wall thickness in the 

local mechanism behavior, so a new kind of comparison has been made.  In the 

histograms below (Fig. 5.4.11, Fig. 5.4.12, Fig. 5.4.13) the value of α0 of the 

parameters set of each micro-typology has been compared, referring to the same 

hinge level.  

In general, it is possible to observe that the wall thickness affects more the values 

of α0 when the hinge is collocated at level 0 or at level 2 than when it is collocated 

at level 1. For example, the value of α0 in the reference case has a percentage 

increment from micro-typology 3A (wall thickness 45cm) to micro-typology 3D 

(wall thickness 90 cm) of 251% at level 0, 47% at level 1 and 106% at level 2. 

The level 0 is the most sensible to thickness variations and the only negative 

values of α0 appear at this level: for a wall thickness of 45 and 60cm, 

corresponding to parameter 7 (barrel vault) and parameter 11 (rise of 1.5m).  

 

Fig. 5.4.11: Variation of α0 referring to level 0- Typology 3 
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Fig. 5.4.12: Variation of α0 referring to level 1- Typology 3 

 

Fig. 5.4.13: Variation of α0 referring to level 2- Typology 3 
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After the analysis of the parameters values it is possible to define which ones have 

more influence in the building behavior and which ones can be overlooked. For 

example, the influence area was initially considered a varying parameter but due 

to its small influence in the mechanism behavior it has been overlooked and 

considered as a constant. Other parameters, on the opposite, prove to be very 

influential on the mechanism. For example, the parameters regarding the 

characteristics of the horizontal structures, such as parameters 7, 8, 9, 10 and 11, 

where introduced initially to consider the uncertainty that characterizes the in situ 

survey. It is indeed not always possible to define the horizontal structure of all the 

building, and these parameters considers the most probable options that diverge 

from the typological reference. The presence of a cross vault with a rise of 0.5m 

instead of 1m (parameter 11) can cause the collapse of the wall, such as the 

presence of a light horizontal structure instead of a cross vault (parameter 9) can 

strongly improve the seismic behavior of the local mechanism.  

5.4.4  Capacity curves13 

The capacity curve of the equivalent oscillator is defined through the relation 

between the acceleration a* and the displacement d*. As exposed in chapter 5.2.2, 

the spectral acceleration of the equivalent oscillator a0* is evaluated with the 

equation 5.4 during the non-linear kinematic analysis. The equivalent spectral 

displacement d0*, corresponding to dk,0, is given by the following expression: 

 

ix

mn

i
ikx

mn

i
ixi

k

P

P
dd

,
1

,

1

2
,

0
*
0

δδ

δ

⋅⋅

⋅
⋅=

∑

∑
+

=

+

=       (5.23) 

while the displacement of the control point (the barycenter of the seismic masses) 
dk,0 is evaluated as follow: 

 00 kbark senhd θ⋅=        (5.24) 

where θk0 is the finite rotation which annuls the stabilizing moment Ms. 

13 §C8A.4.2.2 Valutazione della curva di capacità  (Circolare esplicativa NTC 2008, pp. 412-414) 
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During the non-linear analysis the secant period Ts, which intersects the capacity 

curve and defines the displacement demand, is evaluated as follow in equation 

5.25, in relation of ds* and as*. 

 
*

*

2
S

S

a
d

Ts ⋅= π        (5.25) 

where: 

 ** 4.0 uS dd =         (5.26) 

 






 −
⋅= *
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*
*
0

* 1
d

d
aa S

S        (5.27) 

 0
* 4.0 ku dd =  

The values of a0*, d0*, as*, ds* and du* are calculated for each parameter and 

reported in the following tables (Tab.5.4.6, Tab.5.4.7, Tab.5.4.8, Tab.5.4.9). The 

same values have been calculated for each analyzed typologies.  
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IN

G
E 

LE
V

EL
 

a0* d0* as* ds* du* 

R 
0 0,1644 0,1481 0,1381 0,0237 0,0592 
1 0,5735 0,4096 0,4818 0,0655 0,1638 
2 0,5705 0,2367 0,4792 0,0379 0,0947 

1 
0 0,2767 0,2608 0,2324 0,0417 0,1043 
1 0,6553 0,4467 0,5504 0,0715 0,1787 
2 0,7524 0,2893 0,6320 0,0463 0,1157 

2 
0 - - - - - 
1 - - - - - 
2 - - - - - 

3 
0 0,1267 0,1064 0,1064 0,0170 0,0426 
1 0,6115 0,3904 0,5137 0,0625 0,1562 
2 0,6254 0,2335 0,5253 0,0374 0,0934 

4 
0 0,1950 0,1876 0,1638 0,0300 0,0750 
1 0,5419 0,4275 0,4552 0,0684 0,1710 
2 0,5246 0,2390 0,4406 0,0382 0,0956 

5 0 0,2845 0,2343 0,2390 0,0375 0,0937 
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1 0,5735 0,4096 0,4818 0,0655 0,1638 
2 0,5705 0,2367 0,4792 0,0379 0,0947 

6 
0 0,0764 0,0746 0,0642 0,0119 0,0298 
1 0,5735 0,4096 0,4818 0,0655 0,1638 
2 0,5705 0,2367 0,4792 0,0379 0,0947 

7 
0 -0,3433 -0,2934 -0,2884 -0,0469 -0,1174 
1 0,5735 0,4096 0,4818 0,0655 0,1638 
2 0,5705 0,2367 0,4792 0,0379 0,0947 

8 
0 0,6344 0,4995 0,5329 0,0799 0,1998 
1 0,4779 0,2756 0,4014 0,0441 0,1102 
2 0,4602 0,1327 0,3866 0,0212 0,0531 

9 
0 0,7112 0,6685 0,5974 0,1070 0,2674 
1 0,5735 0,4096 0,4818 0,0655 0,1638 
2 0,5705 0,2367 0,4792 0,0379 0,0947 

10 
0 0,3656 0,3233 0,3071 0,0517 0,1293 
1 0,5735 0,4096 0,4818 0,0655 0,1638 
2 0,5705 0,2367 0,4792 0,0379 0,0947 

11 
0 -0,3781 -0,3477 -0,3176 -0,0556 -0,1391 
1 0,5735 0,4096 0,4818 0,0655 0,1638 
2 0,5705 0,2367 0,4792 0,0379 0,0947 

Tab. 5.4.6: Capacity curve values  – Micro-typology 3A 

PA
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E 
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V

EL
 

a0* d0* as* ds* du* 

R 
0 0,3238 0,2895 0,2720 0,0463 0,1158 
1 0,6553 0,4467 0,5504 0,0715 0,1787 
2 0,7524 0,2893 0,6320 0,0463 0,1157 

1 
0 0,4034 0,3745 0,3388 0,0599 0,1498 
1 0,7516 0,4968 0,6313 0,0795 0,1987 
2 0,9527 0,3477 0,8003 0,0556 0,1391 

2 
0 0,2621 0,2228 0,2202 0,0356 0,0891 
1 0,6517 0,4272 0,5474 0,0683 0,1709 
2 0,5705 0,2367 0,4792 0,0379 0,0947 

3 
0 0,3036 0,2527 0,2551 0,0404 0,1011 
1 0,7120 0,4331 0,5981 0,0693 0,1733 
2 0,8385 0,2896 0,7044 0,0463 0,1159 

4 
0 0,3382 0,3236 0,2841 0,0518 0,1294 
1 0,6088 0,4594 0,5114 0,0735 0,1838 
2 0,6814 0,2883 0,5723 0,0461 0,1153 

5 
0 0,4297 0,3517 0,3609 0,0563 0,1407 
1 0,6553 0,4467 0,5504 0,0715 0,1787 
2 0,7524 0,2893 0,6320 0,0463 0,1157 
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6 
0 0,2434 0,2358 0,2045 0,0377 0,0943 
1 0,6553 0,4467 0,5504 0,0715 0,1787 
2 0,7524 0,2893 0,6320 0,0463 0,1157 

7 
0 -0,0803 -0,0692 -0,0674 -0,0111 -0,0277 
1 0,6553 0,4467 0,5504 0,0715 0,1787 
2 0,7524 0,2893 0,6320 0,0463 0,1157 

8 
0 0,7024 0,5699 0,5900 0,0912 0,2280 
1 0,6033 0,3474 0,5068 0,0556 0,1390 
2 0,6903 0,1986 0,5798 0,0318 0,0794 

9 
0 0,7472 0,6915 0,6276 0,1106 0,2766 
1 0,6553 0,4467 0,5504 0,0715 0,1787 
2 0,7524 0,2893 0,6320 0,0463 0,1157 

10 
0 0,4823 0,4249 0,4051 0,0680 0,1700 
1 0,6553 0,4467 0,5504 0,0715 0,1787 
2 0,7524 0,2893 0,6320 0,0463 0,1157 

11 
0 -0,1004 -0,0916 -0,0843 -0,0146 -0,0366 
1 0,6553 0,4467 0,5504 0,0715 0,1787 
2 0,7524 0,2893 0,6320 0,0463 0,1157 

Tab. 5.4.7: Capacity curve values  – Micro-typology 3B 

PA
R
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M
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G
E 
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V

EL
 

a0* d0* as* ds* du* 

R 
0 0,4516 0,4017 0,3794 0,0643 0,1607 
1 0,7516 0,4968 0,6313 0,0795 0,1987 
2 0,9527 0,3477 0,8003 0,0556 0,1391 

1 
0 0,5136 0,4716 0,4315 0,0755 0,1887 
1 0,8563 0,5535 0,7193 0,0886 0,2214 
2 1,1635 0,4085 0,9773 0,0654 0,1634 

2 
0 0,4090 0,3491 0,3435 0,0559 0,1396 
1 0,7397 0,4725 0,6213 0,0756 0,1890 
2 0,7524 0,2893 0,6320 0,0463 0,1157 

3 
0 0,4474 0,3697 0,3758 0,0592 0,1479 
1 0,8275 0,4871 0,6951 0,0779 0,1949 
2 1,0716 0,3505 0,9001 0,0561 0,1402 

4 
0 0,4519 0,4307 0,3796 0,0689 0,1723 
1 0,6899 0,5057 0,5795 0,0809 0,2023 
2 0,8557 0,3444 0,7188 0,0551 0,1378 

5 
0 0,5517 0,4495 0,4634 0,0719 0,1798 
1 0,7516 0,4968 0,6313 0,0795 0,1987 
2 0,9527 0,3477 0,8003 0,0556 0,1391 

6 0 0,3733 0,3596 0,3136 0,0575 0,1438 
1 0,7516 0,4968 0,6313 0,0795 0,1987 
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2 0,9527 0,3477 0,8003 0,0556 0,1391 

7 
0 0,1226 0,1008 0,1029 0,0161 0,0403 
1 0,7516 0,4968 0,6313 0,0795 0,1987 
2 0,9527 0,3477 0,8003 0,0556 0,1391 

8 
0 0,7727 0,6366 0,6491 0,1018 0,2546 
1 0,7287 0,4190 0,6121 0,0670 0,1676 
2 0,9204 0,2639 0,7731 0,0422 0,1055 

9 
0 0,7964 0,7292 0,6690 0,1167 0,2917 
1 0,7516 0,4968 0,6313 0,0795 0,1987 
2 0,9527 0,3477 0,8003 0,0556 0,1391 

10 
0 0,5827 0,5119 0,4895 0,0819 0,2047 
1 0,7516 0,4968 0,6313 0,0795 0,1987 
2 0,9527 0,3477 0,8003 0,0556 0,1391 

11 
0 0,0586 0,0549 0,0492 0,0088 0,0220 
1 0,7516 0,4968 0,6313 0,0795 0,1987 
2 0,9527 0,3477 0,8003 0,0556 0,1391 

Tab. 5.4.8: Capacity curve values  – Micro-typology 3C 

PA
R
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V
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a0* d0* as* ds* du* 

R 
0 0,5626 0,4982 0,4726 0,0797 0,1993 
1 0,8563 0,5535 0,7193 0,0886 0,2214 
2 1,1635 0,4085 0,9773 0,0654 0,1634 

1 
0 0,6140 0,5591 0,5158 0,0895 0,2236 
1 0,9662 0,6139 0,8116 0,0982 0,2455 
2 1,3803 0,4699 1,1595 0,0752 0,1880 

2 
0 0,5306 0,4540 0,4457 0,0726 0,1816 
1 0,8402 0,5269 0,7058 0,0843 0,2108 
2 0,9527 0,3477 0,8003 0,0556 0,1391 

3 
0 0,5728 0,4708 0,4812 0,0753 0,1883 
1 0,9520 0,5470 0,7996 0,0875 0,2188 
2 1,3160 0,4129 1,1054 0,0661 0,1652 

4 
0 0,5502 0,5226 0,4621 0,0836 0,2090 
1 0,7791 0,5592 0,6544 0,0895 0,2237 
2 1,0397 0,4034 0,8733 0,0645 0,1614 

5 
0 0,6614 0,5369 0,5556 0,0859 0,2148 
1 0,8563 0,5535 0,7193 0,0886 0,2214 
2 1,1635 0,4085 0,9773 0,0654 0,1634 

6 
0 0,4833 0,4633 0,4059 0,0741 0,1853 
1 0,8563 0,5535 0,7193 0,0886 0,2214 
2 1,1635 0,4085 0,9773 0,0654 0,1634 

7 0 0,2799 0,2410 0,2351 0,0386 0,0964 
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1 0,8563 0,5535 0,7193 0,0886 0,2214 
2 1,1635 0,4085 0,9773 0,0654 0,1634 

8 
0 0,8441 0,7015 0,7090 0,1122 0,2806 
1 0,8542 0,4902 0,7175 0,0784 0,1961 
2 1,1505 0,3284 0,9664 0,0525 0,1314 

9 
0 0,8529 0,7746 0,7165 0,1239 0,3098 
1 0,8563 0,5535 0,7193 0,0886 0,2214 
2 1,1635 0,4085 0,9773 0,0654 0,1634 

10 
0 0,6746 0,5911 0,5667 0,0946 0,2364 
1 0,8563 0,5535 0,7193 0,0886 0,2214 
2 1,1635 0,4085 0,9773 0,0654 0,1634 

11 
0 0,2788 0,2498 0,2342 0,0400 0,0999 
1 0,8563 0,5535 0,7193 0,0886 0,2214 
2 1,1635 0,4085 0,9773 0,0654 0,1634 

Tab. 5.4.9: Capacity curve values  – Micro-typology 3D 

A first comparison is made between the curves of the same level on the same 

micro-typology. As example, the capacity curves of the micro-typology 3A for 

each level are shown in Fig. 5.4.14, Fig. 5.4.15 and Fig. 5.4.16.  

An higher position of the capacity curve, corresponding to higher values of 

a0*and d0*,  defines a lower vulnerability to the local mechanism. At level 0, the 

curves are almost all parallel to each other and are arranged in three groups. The 

higher one corresponds to parameters 8 (free standing wall) and parameter 9 

(absence of vaults at the ground floor) and, as already seen in chapter 5.4.3, these 

parameters correspond to the less vulnerable cases. The lower group includes the 

parameter 7 (barrel vault) and the parameter 11(vault rise at 0.5m) which, as seen 

in chapter 5.4.3, correspond to the most vulnerable cases and assume negative 

values. The middle group includes the reference case and the remaining 

parameters. 
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Fig.5.4.14: Capacity curve  of micro-typology 3A-Level 0 

 

At levels 1 and 2, the parameters 7, 9, 10 and 11 have the same value of the 

reference case, because they interest building characteristics of the ground floor 

that are no more considered if the hinge is formed in correspondence of upper 

floors. In these levels the trend of the curves is the same, except for the slope, that 

is higher at level 2. The higher curve corresponds to parameter 1 (constant 

thickness along the entire building height) while the lower to parameter 8 (free 

standing wall). The case of free standing wall is more vulnerable with the increase 

of the floor level and it is the only parameter that is not verified at level 2 (see 

Tab. 5.4.2). 

The value of the secant is almost constant inside the same level and its slope 

increases with the level. 
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Fig.5.4.15: Capacity curve  of micro-typology 3A-Level 1 
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Fig.5.4.16: Capacity curve  of micro-typology 3A-Level 2 

 

The same considerations can be made for the others micro-typologies and their 

capacity curves can be found in annex D1.  

A second comparison  is made between the parameters of all the micro-

typologies, unifying the curves of the same hinge level. The graphs below (Fig. 

5.3.17, Fig. 5.3.18, Fig. 5.3.19) shows the capacity curves of all the parameters, 

distinguished by the curve color, corresponding of each micro-typology, 

distinguished by the line type.  

In general it is possible to observe that the curves are almost parallel to each other 

in the same level, particularly at level 0, and their slope increases with the hinge 

level. The values of a* become higher with the level height, while the values of 

d* become lower.  

The global capacity curve at level 0 shows 4 negative curves: the same already 

seen in Figure 5.3.14 about parameters 7(barrel vaults) and parameter 11(vault 

rise at 0.5m ) in micro-typology 3A, and the same parameters in micro-typology 
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3B. These two micro-typologies have the lower wall thickness(45 and 60cm). 

Other vulnerable curves, in the lower part of the first quadrant, are: 

- Parameter 11 (vault rise at 0.5m) in micro-typology 3C (wall thickness of 

75cm); 

- Parameter 6 (maximum interstorey height for the ground floor) in micro-

typology 3A (wall thickness of 45cm); 

- Parameter 7 (barrel vaults) in micro-typology 3C (wall thickness of 75cm); 

- Parameter 3 (minimum interstorey height for upper floors) in micro-

typology 3A (wall thickness of 45cm); 

The maximum interstorey height at the ground floor (parameter 6) causes the 

increment of the arm of the horizontal vault thrust and consequently it increases 

the overturning component of the mechanism. The minimum interstorey height 

for upper floors (parameter 3) reduces the stabilizing component of the wall 

weight at upper floors, promoting the activation of the local mechanism. 

It is possible to observe that this group of curves includes the most vulnerable 

parameters of micro-typology 3C and medium parameters of micro-typology 3A. 

In particular, the curve corresponding to a barrel vaults that insist on a wall of 

75cm of thickness (parameter 7 in 3C)  and the one corresponding to the 

minimum interstorey height for upper floors in case of 45cm wall are almost 

coincident. This shows how the vulnerability is not related to a singular parameter 

or to a particular wall thickness, but it is defined by a combination of elements 

and aspects of the building. 

The less vulnerable curves, in the upper part of the first quadrant, correspond to 

the parameters 8 (free standing wall) and 9 (absence of vaults at the ground floor) 

of all the micro-typologies.  
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Fig.5.4.16: Capacity curve  of typology 3-Level 0 

As already seen, at levels 1 and 2 the parameters 7, 9, 10 and 11 have the same 

value of the reference case and they do not appear in the graphs. The trend of the 

curves is similar in the two levels: the lower curves correspond to parameter 8 

(free standing wall) in micro-typologies 3A and the higher ones correspond to 

parameter 1 (constant wall thickness along the entire building height) in micro-

typology 3D.  

The capacity curves in relation with the level for each building typology can be 

found in annex D1. 
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Fig.5.4.17: Capacity curve  of typology 3-Level  
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Fig.5.4.18: Capacity curve  of typology 3-Level 2 

5.4.5  Structural units comparison 

The studies carried on in this thesis are based on data collected during a rapid 

survey of Timisoara and on the city center map that represents the ground floor 

plan around 1980. The information collected in situ are often incomplete, even 

about important building characteristics, and the city plan does not represent 

eventual interventions of the latest years. Farther, the typological analysis makes 

some approximations and simplifications of the structural characteristics that can 

influence the building behavior. For this reason it is important to verify that the 

adopted method does not deviate too much from the real case, comparing different 

cases with different levels of information. The same comparison has been made in 

chapter 4.3 with the application of  Vulnus methodology for the real case and the 

survey case. In this chapter, the comparison is made between the values of α0, a0*, 
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d0* and du* of the simple overturning mechanism of three different level of 

information: 

- Real case: building dimensions and information about the structural 

typology and constructive details are obtained from plans and sections, 

usually in scale 1:50 or 1:100, of the building.14 

- Survey case: information about structural typologies, wall thickness and 

interstorey high result from the in situ survey, while plan and openings 

dimension has been taken from the city plan of 1980 (see chapter 2.4.4) 

- Typological case: building dimensions, structural typologies and plan 

dimensions are taken from the building typology in which the analyzed 

building is included. (see Tab. 2.4.2) 

The analyzed units are US 88, US 123, US 124 and US 130. They all belong to 

typology 3, characterized by three stories, masonry vertical structures, deformable 

horizontal structures with brick vaults at the ground floor and timber roof. Despite 

that, they belong to three different micro-typologies: US 123 and US 124 belong 

to micro-typology 3B, characterized by a wall thickness of 60 cm, US 130 

belongs to micro-typology 3C, characterized by a wall thickness of 75 cm, and US 

88 belongs to micro-typology 3D, characterized by a wall thickness of 90 cm. All 

the units have an average typological interstorey high of 4,3 m for the ground 

floor and 4,2 m for upper floors. 

A friction coefficient of 0.05 has been used, with a ground acceleration of 

ag=0.2g. The main differences between the three cases are the wall thickness, the 

interstorey height and the horizontal structures typology. The analyzed wall is 

chosen considering the ones for which  the simple overturning mechanism can be 

activated. The most vulnerable one is analyzed. Each structural unit is now 

analyzed. 

US 88 

The analyzed wall is underlined by a red shape in Fig. 5.4.19 and Fig. 5.4.20. It is 

collocated in the building façade and it is three stories high. In the real case the 

horizontal structure typology of the ground floor is recognizable as a cross vault 

14 The material has been provided by Arch. Bodgan Demetrescu 
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but its rise and springing height is not indicated. For this unit indeed there are no 

building sections and the vertical dimensions are taken from the survey data. 

 

 

Fig.5.4.19: US 88 – Real case plan of the ground floor 

 

Fig.5.4.20: US 88 – Survey case plan the ground floor 

A table to resume the cases characteristics has been made and it is shown in Tab. 

5.4.10. It is possible to observe that: 

-  the wall thickness in the real case is different from the other two cases of 

some centimeters; 

- The interstorey height at the ground floor is 50cm higher in the typological 

case because the typology interstorey height derives from the average 

value of all the analyzed building of the typology 3; 
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- The plan module, the area and the septs dimension are quite homogenous; 

- The vault typology and its rise are the same in all the cases. 
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Real US 
88 

3 0 86 76_73 3,8 4,2 4,21 x 5,06 5,3 4,21 Cross 1 

3 1 - 76_73 - 4,2 4,21 x 5,06 5,3 4,21 Cross 1 

3 2 - 73 - 4,2 4,21 x 5,06 5,3 4,21 Cross 1 

Survey US 
88 

3 0 90 75 3,8 4,2 4,34 x 4,05 4,3 4,34 Cross 1 

3 1 - 75 - 4,2 4,34 x 4,05 4,3 4,34 Cross 1 

3 2 - 75 - 4,2 4,34 x 4,05 4,3 4,34 Cross 1 

Typological 3D 

3 0 90 75 4,3 4,2 4,1 x 5,8 5,9 4,1 Cross 1 

3 1 - 75 - 4,2 4,1 x 5,8 5,9 4,1 Cross 1 

3 2 - 75 - 4,2 4,1 x 5,8 5,9 4,1 Cross 1 

Tab. 5.4.10: Resume table of the characteristics of real, survey and typological cases- US 88 

 
As made for the typological analysis, the mechanism has been verified with a 

linear kinematic analysis and a non-linear kinematic analysis for each case and the 

values of α0, a0*, d0* and du* have been collected and compared. Tab. 5.4.11 

shows that all the cases result not verified in the linear kinematic analysis but 

verified in the non-linear kinematic analysis.  

Fig. 5.4.21 and Fig 5.4.22 shows the comparison of α0 and du*values and it is 

possible to observe that the histograms underline very few differences between 

the three cases: maximum and minimum are constant and the values have a 

variation of 0.007 for α0 and 0.03 for du*.  

Thanks to the result comparison it can be stated that the building typology that 

includes the US 88 well represents the units behavior. The assumptions made 

during the typological analysis are so far validated. 
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Real 
0 0,0571 0,5557 1,4715 0,3776 NO 0,1793 0,0560 3,2021 YES 

1 0,0945 0,8628 1,4715 0,5864 NO 0,2067 0,0560 3,6919 YES 

2 0,1476 1,1487 2,3756 0,4835 NO 0,1444 0,0765 1,8888 YES 

Survey 
0 0,0590 0,5783 1,4715 0,3930 NO 0,1846 0,0560 3,2961 YES 

1 0,0944 0,8586 1,4715 0,5835 NO 0,2054 0,0560 3,6683 YES 

2 0,1402 1,0716 2,3756 0,4511 NO 0,1384 0,0772 1,7919 YES 

Typologic
al 

0 0,0584 0,5626 1,4715 0,3823 NO 0,1993 0,0560 3,5588 YES 

1 0,0947 0,8563 1,1417 0,7500 NO 0,2214 0,0560 3,9535 YES 

2 0,1439 1,1635 2,3528 0,4945 NO 0,1634 0,0819 1,9941 YES 

Tab. 5.4.11: Verification of simple overturning mechanism – US 88 

 

 

Fig.5.4.21:α0 variation - US 88 

Real Survey Typological
Level 0 0,0571 0,0590 0,0584
Level 1 0,0945 0,0944 0,0947
Level 2 0,1476 0,1402 0,1439
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α0 variation - US 88 
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Fig.5.4.22: du* variation - US 88 

US 123 

The analyzed sept is underlined by a red shape in Fig. 5.4.23 and Fig. 5.4.24. It is 

collocated in the internal courtyard and it is indicated by Vulnus as the most 

vulnerable sept to out of  plane mechanisms. In the real case the sept is 

characterized by a thickness of 1.05m and by large openings over the full height. 

At the ground floor on a total length of 7.65m the openings occupy about 6m. In 

the survey case plan the sept appears to be thinner and with only one small 

opening.  

The Table 5.4.12  resumes the characteristics of the three cases and it is possible 

to observe: 

- The real case has a wall thickness of 1.05m at the ground floor that is  

considerably higher than the other two cases. The same observation can be 

made for upper floor walls thickness; 

- The interstorey height is similar in the real case and in the survey case but 

it is higher in the typological case. The difference of 1m is due to the 

simplifications made during the typologies definition; 

- The real case is characterized by a barrel vault with a rise of 0.5m that 

insists on the analyzed sept. The horizontal thrust of this type of vault is 

one of the highest of the entire analysis. 

 

Real Survey Typological
Level 0 0,1793 0,1846 0,1993
Level 1 0,2067 0,2054 0,2214
Level 2 0,1444 0,1384 0,1634
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Fig.5.4.23: US 123– Real case plan the ground floor 

 

Fig.5.4.24: US 123– Survey case plan the ground floor 
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Real US 
123 

3 0 105 88_67 3,11 3,64_2,65 1,89x7,65 7,25 7,65 Barrel 0,5 

3 1 - 88_67 - 3,64_2,65 1,89x7,65 7,25 7,65 Barrel 0,5 

3 2 - 88_67 - 3,64_2,65 1,89x7,65 7,25 7,65 Barrel 0,5 

Survey US 
123 

3 0 60 45 3,4 3,55 1,89x7,65 7,25 7,65 Cross 1 

3 1 - 45 - 3,55 1,89x7,65 7,25 7,65 Cross 1 

3 2 - 45 - 3,55 1,89x7,65 7,25 7,65 Cross 1 

Typolo
gical 3B 

3 0 60 45 4,3 4,2 4,1 x 5,8  11,8 4,1 Cross 1 

3 1 - 45 - 4,2 4,1 x 5,8  11,8 4,1 Cross 1 

3 2 - 45 - 4,2 4,1 x 5,8  11,8 4,1 Cross 1 

Tab. 5.4.12: Resume table of the characteristics of real, survey and typological cases- US 123 

 

The mechanism has been verified with a linear kinematic analysis and a non-

linear kinematic analysis for each case and the values of α0, a0*, d0* and du* have 

been collected and compared. Tab. 5.4.13 shows that all the cases result not 

verified in the linear kinematic analysis but almost all verified in the non-linear 

kinematic analysis, except for the real case with the hinge at the ground floor 

level. In the real case the horizontal thrust of the barrel vault brings to a negative 

value of α0 and, consequently, to negative values of a0*, d0* and du*. In this 

situation there is probably a resistance device, which was not detected, that 

prevents the mechanism activation. This particularity is evident also in Fig. 5.4.25 

and Fig.5.4.26 that underline the variations of α0 and du*values. Except for level 0, 

α0 is higher in the real case due to a greater wall thickness than the other two 

cases. The survey case and the typological case have similar values, even if the 

survey case has a lower α0 at level 0 and higher values at levels 1 and 2. The du* 

comparison shows that level 1 has the highest value in all the cases, followed by 

level 2 and level 0. In the typological case the levels 0 and 2 have the same du* 

value.  

Due to the difference of wall thickness and the presence of the pushing barrel 

vaults the results do not coincide as well as US 88 ones, but they still valid the 

typological analysis. 
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Real 
0 -0,0539 -0,5297 1,4715 -0,3599 NO -0,1255 0,0560 -2,2419 NO 

1 0,1336 1,2306 1,4715 0,8363 NO 0,2091 0,0560 3,7335 YES 

2 0,2184 1,7189 3,0222 0,5688 NO 0,1374 0,0560 2,4532 YES 

Survey 
0 0,0240 0,2413 1,4715 0,1640 NO 0,0639 0,0560 1,1406 YES 

1 0,0785 0,7133 1,4715 0,4848 NO 0,1472 0,0560 2,6278 YES 

2 0,1119 0,8766 2,6836 0,3267 NO 0,0948 0,0709 1,3375 YES 

Typologic
al 

0 0,0333 0,3238 1,4715 0,2200 NO 0,1158 0,0560 2,0678 YES 

1 0,0730 0,6553 1,1902 0,5505 NO 0,1787 0,0560 3,1910 YES 

2 0,0921 0,7524 2,3528 0,3198 NO 0,1157 0,0848 1,3650 YES 

Tab. 5.4.13: Verification of simple overturning mechanism – US 123 

 

 

Fig.5.4.25:α0 variation - US 123 

Real Survey Tipological
Level 0 -0,0539 0,0240 0,0333
Level 1 0,1336 0,0785 0,0730
Level 2 0,2184 0,1119 0,0921
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Fig.5.4.26:du* variation - US 123 

 
US 124 
 
The analyzed sept is underline by a red shape in Fig. 5.4.27 and Fig. 5.4.28. It is 

collocated on the internal courtyard and it is indicated by Vulnus as the most 

vulnerable sept to out of  plane mechanisms. Both in the real case and in the 

survey case the sept is widely open. The Table 5.4.14  resumes the characteristics 

of the three cases and it is possible to observe that: 

- The wall thickness is different for the three cases both at the ground floor 

and at the upper floors; 

- The interstorey height at the ground floor is similar in the real case and in 

the survey case, while it is different in the three cases at upper floors; 

- The area and the sept dimensions are different but comparable in terms of 

values and module shape; 

- In the real case the analyzed sept at the ground floor is unstressed because 

the barrel vault of the room insists on walls perpendicular to the façade. 

 

 
 

Real Survey Tipological
Level 0 -0,1255 0,0639 0,1158
Level 1 0,2091 0,1472 0,1787
Level 2 0,1374 0,0948 0,1157

-0,2
-0,1
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du* variation - US 123 
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Fig.5.4.27: US 124– Real case plan the ground floor 

  

 

Fig.5.4.28: US 124 – Survey case plan the ground floor 
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Real US 
124 

3 0 56 38_31 3,26 3,77_2,77 3,5x4,11 7,28 4,11 - - 

3 1 - 38_31 - 3,77_2,77 3,5x4,11 7,28 4,11 - - 

3 2 - 38_31 - 3,77_2,77 3,5x4,11 7,28 4,11 - - 

Survey US 
124 

3 0 75 60 3,3 4 3,65x4,67 8,54 3,65 Cross 1 

3 1 - 60 - 4 3,65x4,67 8,54 3,65 Cross 1 

3 2 - 60 - 4 3,65x4,67 8,54 3,65 Cross 1 

Typolo
gical 3B 

3 0 60 45 4,3 4,2 4,1 x 5,8  11,8 4,1 Cross 1 

3 1 - 45 - 4,2 4,1 x 5,8  11,8 4,1 Cross 1 

3 2 - 45 - 4,2 4,1 x 5,8  11,8 4,1 Cross 1 

Tab. 5.4.14: Resume table of the characteristics of real, survey and typological cases- US 124 

 

The mechanism has been verified with a linear kinematic analysis and a non-

linear kinematic analysis for each case and the values of α0, a0*, d0* and du* have 

been collected and compared. Tab. 5.4.15 shows that the cases result all not 

verified in the linear kinematic analysis but all verified in the non-linear kinematic 

analysis.  
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Real 
0 0,0835 0,8230 1,4715 0,5593 NO 0,2241 0,0560 4,0027 YES 

1 0,0768 0,6961 1,4715 0,4731 NO 0,1436 0,0560 2,5637 YES 

2 0,0991 0,8101 3,0628 0,2645 NO 0,0848 0,0749 1,1321 YES 

Survey 
0 0,0497 0,4929 1,4715 0,3350 NO 0,1498 0,0560 2,6750 YES 

1 0,0861 0,7804 1,4715 0,5303 NO 0,1906 0,0560 3,4031 YES 

2 0,1250 1,0081 2,4789 0,4067 NO 0,1333 0,0757 1,7618 YES 

Typologic
al 

0 0,0333 0,3238 1,4715 0,2200 NO 0,1158 0,0560 2,0678 YES 

1 0,0730 0,6553 1,1902 0,5505 NO 0,1787 0,0560 3,1910 YES 

2 0,0921 0,7524 2,3528 0,3198 NO 0,1157 0,0848 1,3650 YES 

Tab. 5.4.15: Verification of simple overturning mechanism – US 124 
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The histograms below (Fig.5.4.29 and Fig.5.4.30) show the comparison of α0 and 

du* variations. Both values are higher in correspondence of level 0 in the real 

case, because the absence of the horizontal thrust disfavors the activation of the 

overturning mechanism. The values of the survey case are the highest, except for 

the case above, both for α0 and du* due to a greater wall thickness combined  with 

a lower interstorey height at the ground floor. 

The results comparison is quite homogeneous, except for the particular case of the 

free standing wall at the ground floor. In general the building typology represents 

well the unit behavior. 

 

Fig.5.4.29:α0 variation - US 124 

 

Fig.5.4.30: du* variation - US 124 

 

Real Survey Typological
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US 130 
 
The analyzed sept is underlined by a red shape in Fig. 5.4.31 and Fig. 5.4.32. It 

occupies all the south façade of the structural unit, between the corner and the 

adjacent building. It is indicates by Vulnus as the most vulnerable wall to out of 

plane mechanism. In the real case the horizontal structure is recognizable as a 

barrel vault which insists on the analyzed wall.  

 

 
Fig.5.4.31: US 130– Real case plan 

 
Fig.5.4.32: US 130 – Survey case plan 

 

A table to resume the cases characteristics has been made and it is shown in Tab. 

5.4.16. It is possible to observe that: 

- The wall thickness of the ground floor is considerably higher in the real 

case, while it is homogeneous in the upper floors; 
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- The interstorey height is considerably higher in the typological case, while 

is quite homogenous in the upper floors; 

- The area and the sept dimensions are considerably lower in the typological 

case, due to the unusual great dimension of the analyzed room. 
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Real US 
130 

3 0 120 65_50 3,4 3,8_3,37 5,49 x 13,57 37,3 13,57 Barrel 1,5 

3 1 - 65_50 - 3,8_3,37 5,49 x 13,57 37,3 13,57 Barrel 1,5 

3 2 - 50 - 3,37 5,49 x 13,57 37,3 13,57 Barrel 1,5 

Survey US 
130 

3 0 75 60 3,6 4 5,49 x 13,57 37,3 13,57 Cross 1 

3 1 - 60 - 4 5,49 x 13,57 37,3 13,57 Cross 1 

3 2 - 60 - 4 5,49 x 13,57 37,3 13,57 Cross 1 

Typolo 
gical 3C 

3 0 75 60 4,3 4,2 4,1 x 5,8  11,8 4,1 Cross 1 

3 1 - 60 - 4,2 4,1 x 5,8  11,8 4,1 Cross 1 

3 2 - 60 - 4,2 4,1 x 5,8  11,8 4,1 Cross 1 

Tab. 5.4.16: Resume table of the characteristics of real, survey and typological cases- US 130 

 

As made for the typological analysis, the mechanism has been verified with a 

linear kinematic analysis and a non-linear kinematic analysis for each case and the 

values of α0, a0*, d0* and du* have been collected and compared. Tab. 5.4.17 

shows that all the cases result not verified in the linear kinematic analysis but all 

verified in the non-linear kinematic analysis.  

As can be seen in the histograms of α0 and du* variations (Fig. 5.4.33, Fig. 5.4.34) 

the three cases have very small differences, despite the different aspects 

underlined above. In general it is possible to say that the typological subdivision 

well represents the structural unit behavior. 
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Real 
0 0,0619 0,6574 1,4715 0,4468 NO 0,1631 0,0560 2,9122 YES 

1 0,0945 0,8714 1,4715 0,5922 NO 0,1900 0,0560 3,3922 YES 

2 0,1221 0,9974 2,7480 0,3630 NO 0,1220 0,0765 1,5944 YES 

Survey 
0 0,0523 0,5121 1,4715 0,3480 NO 0,1644 0,0560 2,9351 YES 

1 0,0864 0,7818 1,4715 0,5313 NO 0,1954 0,0560 3,4896 YES 

2 0,1232 1,0013 2,4651 0,4062 NO 0,1373 0,0782 1,7569 YES 

Typologic
al 

0 0,0467 0,4516 1,4715 0,3069 NO 0,1607 0,0560 2,8690 YES 

1 0,0833 0,7516 1,4715 0,5107 NO 0,1987 0,0560 3,5487 YES 

2 0,1171 0,9527 2,3528 0,4049 NO 0,1391 0,0831 1,6732 YES 

Tab. 5.4.17: Verification of simple overturning mechanism – US 130 

 

 

Fig.5.4.33:α0 variation - US 130 
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Fig.5.4.34: du* variation - US 130 

The comparison of the simple overturning mechanism for these four structural 

units is helpful to define which building characteristics cause more differences 

with the typological analysis and which can be simplified. In cases like the US 88 

and US 130 the typology well represents the building behavior, despite some 

differences in the interstorey height, the wall thickness and the area. In US 123 

and 124 the results of the real case diverge more from the typological case due to 

the different horizontal structure typology. The low barrel vault in the first unit 

and the free standing wall in the second one cause considerably difference in the 

mechanism behavior, as important aspects of it. These characteristics are 

considered specific of the two structural units due to their not widespread 

presence in the city center. Obviously, there can be other particular cases that 

cannot be relived during a rapid survey, but they will emerge with a detailed study 

of the building. The aim of this thesis is to give a vulnerability assessment of the 

building from its easily relived characteristics, such as interstorey height, number 

of plan and structure typology. 
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5.5 VERTICAL BENDING MECHANISM 

The analysis of the vertical bending mechanism is made for all the typologies that 

have a vaulted horizontal structure at the ground floor. The mechanism can be 

activated in case of a good connection of the first horizontal structure with the 

external wall such as to exert a restraining force at the first floor level. The 

analysis of this mechanism is made to consider the possible presence of 

restringing devices that were not relived in situ, but can make the activate of the 

mechanism possible.  

The analysis is carried out considering the possible formation of a cylindrical 

hinge at the vault springer height, as a consequence of the horizontal vault thrust.  

The assumptions made for the simple overturning mechanism in chapter 5.4 about 

mechanical properties, permanent and accidental loads and vaults trusts are valid 

for the vertical bending mechanism too. The only difference is that in this case the 

friction forces are not considered because they do not influence the mechanism. 

5.5.1  Parameters description 

As made for the overturning mechanism, the analysis is carried out considering a 

reference case and a varying set of parameters.  

The wall thickness, the interstorey height, the vault type, the sept length and the 

analyzed area of the reference case are the same of the overturning mechanism 

and they are  explained in chapter 5.4.1.  

The set of analyzed parameters is the same as in the previous chapter but two of 

them are not considered: parameter 8 (free standing wall) and parameter 9 ( 

absence of vaults at the ground floor). These parameters are not congruent to the 

analyzed mechanism. To avoid confusion, the same parameter numbers are kept 

so the analyzed parameters in this mechanism are: 

1-Constant wall thickness along the entire building height: the ground 

floor thickness is considered constant in all the stories, from the ground to 

the top of the building. 

2-Wall thickness that decreases on each floor: the wall thickness does not 

decrease of 15cm after the first floor and the it stays constant, but it 

decreases of 15cm on each floor until a minimum of 30cm. 

3-Minimum interstorey height for upper floors 
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4-Maximum interstorey height for upper floors 

5-Minimum interstorey height for the ground floor 

6-Maximum interstorey height for the ground floor 

7-Barrel vault: instead of a cross vault, a barrel vault with rise of 1m is 

considered. 

10-Vault rise of 1.5m: the cross vault is considered to have a rise of 1.5m 

instead of 1m. The new thrusts are calculated with Arco program. 

11-Vault rise of 0.5m: the cross vault is considered to have a rise of 0.5m 

instead of 1m. The new thrusts are calculated with Arco program. 

The macro-typologies that have mainly vaults at the ground floor are macro-

typology A and macro-typology E. The first one is characterized by masonry 

vertical structures, light horizontal structures and timber trusses, while the second 

one by masonry vertical structures, light horizontal structures and mixed concrete 

and timber trusses. Typologies that contain one structural unit or buildings only 

located in Iosefin area are not considered.  

As in the case of the simple overturning mechanism, some micro-typologies are 

added to consider all the possible cases that can appear in the city of Timisoara (in 

grey in Tab. 5.5.1). In particular micro-typologies C and D are added in typology 

17, with a wall thickness respectively of 75 and 90cm, micro-typologies A, C and 

D are added to typology 18, with a wall thickness respectively of 45, 75 and 

90cm, and the micro-typology A is added to typology 20, with a wall thickness of 

45 cm. The added micro-typologies do not correspond to relived structural units 

but take count of the possibility to extend the study to other part of the city. The 

interstories height and their variation are the same defined for the typology. 

The set of analyzed parameters changes with the typology characteristics: 

typologies with one storey do not consider parameters 1, 2 3 and 4 because they 

refer to upper floors and typologies with two stories do not consider parameter 2 

(wall thickness that decreases on each floor) because it coincides with the 

reference parameter. 

The analyzed typologies with the respective characteristics are shown in Tab. 

5.5.1. 
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1 
1A 

1 
36, 37 45 

3,8 ± 0,5 - - - 
1B 152, 241 60 

2 

2A 

2 

7, 44, 74, 75, 98 45 

4 ± 0,5 4,3 ± 0,5 - 
2B 

8, 18, 19, 20, 29, 
30, 31, 55, 58, 
59, 73, 77, 84, 
97, 115, 120, 
121, 151, 175, 
193 202, 228, 

301 

60 

2C 71, 80, 117, 145, 
154 75 

2D 94, 95, 167, 185 90 

3 

3A 

3 

 49, 50, 51 45 

4,3 ± 1 4,2 ± 0,5 - 

3B 

4, 5, 53, 76, 96, 
103, 104,105, 
116, 118, 123, 
124, 140, 174, 

178, 192  

60 

3C 81, 109, 130, 
134 75 

3D 

79, 86, 87, 88, 
137, 138, 141, 

166, 169B, 182, 
183, 188, 189, 

190 

90 

4 

4A 

4 

25, 56, 133 60 

4,2 ± 0,5 4 ± 0,5 - 
4B 129 75 

4C 
90, 92, 93, 128, 
135, 155, 156, 

187 
90 

7 7A 2+SI 

35, 38, 41, 61, 
62, 64, 149, 150, 

172, 211, 212, 
213, 229, 230, 
231, 233, 236, 

237 

60 4 ± 0,5 5 ± 0,5 1,3 
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7B 68 75 

7C 28, 100, 114, 
217 90 

8 

8A 

3+SI 

46 45 

4,2 ± 0,5 4,4 ± 0,5 1,1 
8B 

9, 24, 26, 43, 47, 
54, 57, 60, 65, 
168, 173, 184, 
200, 201, 203, 
207, 221, 234, 

235 

60 

8C 69, 70, 143, 153 75 

8D 101, 170 105, 
90 

E 

17 

17A 

2 

82 45 

4,2 ± 0,5 4,7 ± 1 - 
17B 83, 85, 111, 186 60 

17C - 75 

17D - 90 

18 

18A 

3 

- 45 

4,3 ± 0,5 4,2 ± 0,5 - 
18B 52, 105,125, 131 60 

18C - 75 

18D - 90 

20 

20A 

3+SI 

- 45 

4 ± 0,5 4,2 - 1,4 
20B 2 60 
20C 148 75 
20D 102, 159 90 

Tab. 5.5.1: Analyzed typologies and interstorey height variations 

5.5.2  Verification of the mechanism 

The procedure to evaluate the vertical bending mechanism is the same used for the 

simple overturning mechanism and it is shown in chapter 5.2. The only difference 

is the method to evaluate the seismic masses multiplier α0, as exposed in chapter 

5.3.2.  

The typology 3 is still used as example and the verification values are shown in 

the following tables (Tab.5.5.2, Tab. 5.5.3, Tab. 5.5.4, Tab. 5.5.5) while the tables 

for the other analyzed typologies can be found in annex D2. The typology 3 is 

characterized by three stories high buildings, with an average interstorey height of 

4.3m at the ground floor and 4.2m at the upper floors. The interstorey variation is 
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of ±1m at for the ground floor and ±0.5m at the upper floors. It is subdivided in 

four micro-typologies: 

- Micro-typology 3A has a wall thickness of 45cm; 

- Micro-typology 3B has a wall thickness of 60cm; 

- Micro-typology 3C has a wall thickness of 75cm; 

- Micro-typology 3D has a wall thickness of 90cm. 
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R 0,2485 4,9289 1,4715 3,3496 YES 0,0244 0,0142 1,7155 YES 

1 0,3404 8,0271 1,4715 5,4551 YES 0,0252 0,0110 2,2911 YES 

2 0,2485 4,9289 1,4715 3,3496 YES 0,0244 0,0142 1,7155 YES 

3 0,2209 4,1848 1,4715 2,8439 YES 0,0236 0,0152 1,5549 YES 

4 0,2739 5,6769 1,4715 3,8579 YES 0,02490 0,0134 1,8602 YES 

5 0,4218 9,3360 1,4715 6,3445 YES 0,0322 0,0119 2,7132 YES 

6 0,1630 2,9562 1,4715 2,0090 YES 0,0195 0,0164 1,1885 YES 

7 -0,1047 -1,7863 1,4715 -1,2139 NO 1,07E-5 1,4E-22 7,4E16 NO 

10 0,2700 5,2499 1,4715 3,5677 YES 0,0323 0,0159 2,0380 YES 

11 0,2980 6,0731 1,4715 4,1272 YES 0,0164 0,0095 1,7334 YES 

Tab. 5.5.2: Verification of vertical bending mechanism – Micro-typology 3A 
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R 0,6334 13,0170 1,4715 8,8460 YES 0,0506 0,0126 4,0160 YES 

1 0,7452 17,5638 1,4715 11,9360 YES 0,0485 0,0097 5,0131 YES 

2 0,7452 17,5638 1,4715 11,9360 YES 0,0485 0,0097 5,0131 YES 
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3 0,5856 11,4021 1,4715 7,7486 YES 0,0510 0,0135 3,7719 YES 

4 0,6771 14,6447 1,4715 9,9522 YES 0,05003 0,0118 4,2350 YES 

5 0,9464 22,0781 1,4715 15,0038 YES 0,0595 0,0094 6,3016 YES 

6 0,4701 8,7307 1,4715 5,9332 YES 0,0449 0,0145 3,0988 YES 

7 0,2139 3,8990 1,4715 2,6496 YES 0,0281 0,0172 1,6375 YES 

10 0,5951 12,0476 1,4715 8,1873 YES 0,0594 0,0142 4,1840 YES 

11 0,9315 19,5206 1,4715 13,2658 YES 0,0407 0,0073 5,5716 YES 

Tab. 5.5.3: Verification of vertical bending mechanism – Micro-typology 3B 
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R 1,0192 21,3690 1,4715 14,5219 YES 0,0717 0,0117 6,1250 YES 

1 1,1455 26,9057 1,4715 18,2846 YES 0,0684 0,0089 7,6795 YES 

2 0,9453 18,6297 1,4715 12,6604 YES 0,0587 0,0110 5,3174 YES 

3 0,9490 18,7591 1,4715 12,7483 YES 0,0730 0,0126 5,7910 YES 

4 1,0829 24,0046 1,4715 16,3130 YES 0,07022 0,0102 6,8515 YES 

5 1,4881 35,8418 1,4715 24,3573 YES 0,0819 0,0080 10,2301 YES 

6 0,7708 14,4939 1,4715 9,8497 YES 0,0652 0,0136 4,8082 YES 

7 0,5463 10,4005 1,4715 7,0680 YES 0,0582 0,0151 3,8487 YES 

10 0,9264 19,2056 1,4715 13,0517 YES 0,0818 0,0132 6,2025 YES 

11 1,5519 33,0125 1,4715 22,4346 YES 0,0584 0,0062 9,4225 YES 

Tab. 5.5.4: Verification of vertical bending mechanism – Micro-typology 3C 
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R 1,4054 29,8303 1,4715 20,2720 YES 0,0899 0,0106 8,5142 YES 

1 1,5429 36,0805 1,4715 24,5195 YES 0,0860 0,0084 10,2982 YES 

2 1,3273 26,7385 1,4715 18,1709 YES 0,0780 0,0102 7,6318 YES 

3 1,3117 26,1546 1,4715 17,7741 YES 0,0919 0,0120 7,6721 YES 

333 

 



CHAPTER 5: LOCAL MECHANISMS OF COLLAPSE 

            
4 1,4903 33,5471 1,4715 22,7979 YES 0,08762 0,0092 9,5751 YES 

5 2,0413 50,1976 1,4715 34,1132 YES 0,1013 0,0071 14,3276 YES 

6 1,0674 20,2116 1,4715 13,7354 YES 0,0824 0,0129 6,3863 YES 

7 0,8887 17,4385 1,4715 11,8508 YES 0,0829 0,0139 5,9475 YES 

10 1,2619 26,5512 1,4715 18,0436 YES 0,1017 0,0125 8,1299 YES 

11 2,1641 46,4346 1,4715 31,5560 YES 0,0722 0,0054 13,2535 YES 

Tab. 5.5.5: Verification of vertical bending mechanism – Micro-typology 3D 

 

All the cases result verified except for the parameter 7 (barrel vault) of micro-

typology 3A. This case is characterized by a wall thickness of 45cm at the ground 

floor and 30cm at upper floors, with an horizontal thrust of the barrel vaults of 

106.31 kN15. The percentage of almost 100% of verified cases is justified by the 

low vulnerability of this type of local mechanism in the analyzed cases.   

 

 

Fig. 5.4.1: Verification of simple overturning mechanism – Cases number 

The wall thickness is the parameter that most influence the mechanism 

verification. The parameters of typology 1, which is the only one with one storey 

for the vertical bending mechanism result all not verified. The verification 

percentage of  typologies 2, 7 and 17, which are characterized by two stories or 

two stories and basement, changes with the micro-typology and consequently with 

the wall thickness. In fact micro-typologies C and D (wall thickness of 75 and 

90cm) result all verified,  the micro-typology B (wall thickness of 60cm) results 
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all verified except for parameter 7(barrel vault) and the micro-typology A (wall 

thickness of 45cm) results not verified for more than half of the parameters. The 

typologies 3, 8 and 18,with three stories or three stories and basement,  result all 

verified except for the parameter 7 (barrel vault) in micro-typology A (wall 

thickness of 45cm). The typology 4, which is the only one with four stories 

analyzed with the vertical bending, is all verified. 

5.5.3  Parameters analysis 

The comparison of α0, a0*, d0*and du*values has been made for each parameter in 

each micro-typology. The histograms below (Fig. 5.5.3, Fig. 5.5.4, Fig. 5.5.5, Fig. 

5.5.6) ) show the value variations of the multiplier α0 in each micro-typology of 

the building typology 3. 

It is possible to observe that the value of α0: 

- Is minimum in correspondence of parameter 7 (barrel vault); 

- Is maximum in correspondence of parameter 5 (minimum interstorey 

height for the ground floor) in micro-typologies 3A and 3B and in 

correspondence of parameter 11(vault rise at 0.5m) in micro-typologies 3C 

and 3D. While for micro-typologies 3A and 3D the maximum value is 

clear, for micro-typologies 3B and 3C the values of parameter 5 and 11 re 

very close; 

- Is lower of the reference value in correspondence of parameters 2 (wall 

thickness that decreases on each floor), 3 (minimum interstorey height for 

upper floors), 6(maximum interstorey height for the ground floor) and 7 

(barrel vault). Parameters 2 and 3 reduce the stabilizing contribute of the 

weight forces of upper floors walls, the parameter 6 increases the moment 

arm of the horizontal vault thrust and consequently it favors the 

mechanism activation, as does the parameter 7. The α0 value of parameter 

10 (vault rise at 1.5m)  is lower than the reference case in micro-typologies 

3B, 3C and 3D, but is higher in micro-typology 3A. This happens because 

increasing the distance of the central hinge from the extremities, the 

moment arms of the destabilizing forces rise, but in case of low wall 

thickness the higher vertical component of the vault thrust helps the 
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stabilizing forces more than the increment of the destabilizing moments 

helps the mechanism activation. 

 

Fig. 5.5.3: Variation of α0 values – Micro-typology 3A 

Fig. 5.5.4: Variation of α0 values – Micro-typology 3B 
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Fig. 5.5.5: Variation of α0 values – Micro-typology 3C 

Fig. 5.5.6: Variation of α0 values – Micro-typology 3D 

The same comparison can be made for the ultimate displacement capacity du* .  

The histograms below (Fig. 5.5.7, Fig. 5.5.8, Fig. 5.5.9, Fig. 5.5.10) show the 

value variations of du*  in each micro-typology of the building typology 3. 

In general the values are quite homogeneous through all the micro-typologies. An 

exception is made for parameter 7 (barrel vault) of micro-typology 3A that, as 

already seen, represent the most vulnerable case. Low values of du*correspond to 

parameters 6 (maximum interstorey height for the ground floor) and 11( vault rise 

at 0.5m) for micro-typology 3A, to parameters 6, 7 and 11 for micro-typology 3B, 

to parameters 2 (wall thickness that decreases on each floor), 7 and 11 for micro-

typology 3C. in micro-typology 3D the values are more homogenous and even if 

there are higher and lower values there is not an evident minimum. 
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Fig. 5.5.7: Variation of du* values – micro-typology 3A 

Fig. 5.5.8: Variation of du* values – micro-typology 3B 

Fig. 5.5.9: Variation of du* values – micro-typology 3C 
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Fig. 5.5.10: Variation of du* values – micro-typology 3D 

 

A comparison has been made also for a0*and d0* values as it has been made for α0 

and du*. The histograms have the same trend of du* ones, and the same 

considerations made above can be extended to  a0*and d0*comparison.  

To consider the influence of the wall thickness, the values of all the parameter for 

each micro-typology have been compared. (Fig. 5.5.11) 

It is possible to observe that the values are deeply influenced by the wall 

thickness, for example the α0 value of the reference case is 0.2485 for a wall 

thickness of 45cm and it is 1.4054 for a wall thickness of 90cm. The increment in 

percentage is 466%. Some parameters have an even higher increment, like 

parameter 11 (vault rise at 0.5), growing of 626%. 

The wall thickness is the most influential building geometrical characteristics in 

case of vertical bending mechanism, followed by the values of the ground floor 

interstorey height (parameters 5 and 6).  
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Fig. 5.5.11: Variation of α0 values for vertical bending mechanism – Typology 3 

The α0 values of  typology 1, characterized by one storey, is negative for all the 

analyzed parameters, except for the parameter 10 (vault rise at 1.5m) in micro-

typology B (wall thickness of 60cm). Consequently, the values of a0*, d0* and du* 

are negative too. The results negative sign leads to think that probably there are 

some restraint devices that were not relived in situ and that prevent the 

mechanism activation in the present state. Negative α0 values appear also in 

correspondence of parameters 7 (barrel vault) and 11 (vault rise at 0.5m) of micro-

typology 2A, and in correspondence of parameter 7 in micro-typologies 8A and 

17A. In these two last micro-typologies the value of parameter 11 is positive but 

extremely low compared to the other parameters. The interstorey height of 

typologies 8 and 17 is indeed a little bit higher than the one of typology 2, and 

even if this building characteristic is not the most influential, in extreme cases can 

be determinant for the mechanism activation. 

 

3A (wall
thickness 45

cm)

3B (wall
thickness 60

cm)

3C (wall
thickness 75

cm)

3D (wall
thickness 90

cm)
REFERENCE 0,2485 0,6334 1,0192 1,4054
Parameter 1 0,3404 0,7452 1,1455 1,5429
Parameter 2 0,2485 0,5652 0,9453 1,3273
Parameter 3 0,2209 0,5856 0,9490 1,3117
Parameter 4 0,2739 0,6771 1,0829 1,4903
Parameter 5 0,4218 0,9464 1,4881 2,0413
Parameter 6 0,1630 0,4701 0,7708 1,0674
Parameter 7 -0,1047 0,2139 0,5463 0,8887
Parameter 10 0,2700 0,5951 0,9264 1,2619
Parameter 11 0,2980 0,9315 1,5519 2,1641

-0,20
0,20
0,60
1,00
1,40
1,80
2,20
2,60

α0  - Typology 3 
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5.5.4  Capacity curves 

The capacity curve of the equivalent oscillator is defined with the method exposed 

in chapter 5.4.4, with the calculation of the spectral acceleration a0*, the 

equivalent spectral displacement d0*, the secant Ts and consequently the values of 

as*, ds* and du*. The values are calculated for each parameter and reported in the 

following tables (Tab.5.5.6, Tab.5.5.7, Tab.5.5.8, Tab.5.5.9). The same values 

have been calculated for each analyzed typologies.  

3A 

PA
R

A
M

ET
ER

 

a0* d0* as* ds* du* 

R 4,9289 0,0610 4,1403 0,0098 0,0244 

1 8,0271 0,0629 6,7428 0,0101 0,0252 

2 4,9289 0,0610 4,1403 0,0098 0,0244 

3 4,1848 0,0590 3,5152 0,0094 0,0236 

4 5,6769 0,0623 4,7686 0,0100 0,0249 

5 9,3360 0,0805 7,8422 0,0129 0,0322 

6 2,9562 0,0488 2,4832 0,0078 0,0195 

7 -1,7863 0,0000 -1,5005 4,3E-6 1,07E-5 

10 5,2499 0,0808 4,4100 0,0129 0,0323 

11 6,0731 0,0411 5,1014 0,0066 0,0164 

Tab. 5.5.6: Capacity curve values  – Micro-typology 3A 

3B 

PA
R

A
M

ET
ER

 

a0* d0* as* ds* du* 

R 13,0170 0,1265 10,9342 0,0202 0,0506 

1 17,5638 0,1213 14,7536 0,0194 0,0485 

2 10,7628 0,1276 9,0407 0,0204 0,0510 

3 11,4021 0,1274 9,5778 0,0204 0,0510 

4 14,6447 0,1251 12,3015 0,0200 0,0500 

5 22,0781 0,1488 18,5456 0,0238 0,0595 

6 8,7307 0,1123 7,3337 0,0180 0,0449 

7 3,8990 0,0702 3,2751 0,0112 0,0281 

10 12,0476 0,1484 10,1200 0,0237 0,0594 

11 19,5206 0,1016 16,3973 0,0163 0,0407 

Tab. 5.5.6: Capacity curve values  – Micro-typology 3B 
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3C 

PA
R

A
M

ET
ER

 

a0* d0* as* ds* du* 

R 21,3690 0,1793 17,9500 0,0287 0,0717 

1 26,9057 0,1710 22,6008 0,0274 0,0684 

2 18,6297 0,1468 15,6490 0,0235 0,0587 

3 18,7591 0,1826 15,7577 0,0292 0,0730 

4 24,0046 0,1756 20,1639 0,0281 0,0702 

5 35,8418 0,2047 30,1071 0,0328 0,0819 

6 14,4939 0,1629 12,1748 0,0261 0,0652 

7 10,4005 0,1455 8,7364 0,0233 0,0582 

10 19,2056 0,2046 16,1327 0,0327 0,0818 

11 33,0125 0,1461 27,7305 0,0234 0,0584 

Tab. 5.5.6: Capacity curve values  – Micro-typology 3C 

 

3D 

PA
R

A
M

ET
ER

 

a0* d0* as* ds* du* 

R 29,8303 0,2246 25,0574 0,0359 0,0899 

1 36,0805 0,2151 30,3076 0,0344 0,0860 

2 26,7385 0,1950 22,4604 0,0312 0,0780 

3 26,1546 0,2298 21,9699 0,0368 0,0919 

4 33,5471 0,2191 28,1795 0,0350 0,0876 

5 50,1976 0,2534 42,1660 0,0405 0,1013 

6 20,2116 0,2061 16,9777 0,0330 0,0824 

7 17,4385 0,2072 14,6484 0,0331 0,0829 

10 26,5512 0,2542 22,3030 0,0407 0,1017 

11 46,4346 0,1806 39,0051 0,0289 0,0722 

Tab. 5.5.6: Capacity curve values  – Micro-typology 3D 
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A first comparison is made between the curves on the same micro-typology 

(Fig.5.5.12, Fig.5.5.13, Fig.5.5.14, Fig.5.5.15). The trend of the curves is similar 

for all the micro-typologies: the higher curve correspond to parameter 5(minimum 

interstorey height for the ground floor) and the lower curve correspond to 

parameter 7 (barrel vault) while all the other curves are included in a medium 

group. In the vertical bending mechanism, the curve slope changes with the 

parameter so the curves are not parallel to each other. The second lower curve 

corresponds to parameter 6 (maximum interstorey height for the ground floor) and 

while for low wall thickness it is quite distant from the parameter 7 curve, for 

higher thickness the two curves are almost coincident. It can be observed that with 

the increment of the wall thickness, the spectral accelerations and the ultimate 

displacements increase too. The slope of the secant Ts is more diversified in this 

mechanism than in the simple overturning mechanism. Same considerations are 

valid for all the analyzed typologies because the curves trend is not considerably 

influenced by the stories number. 

 

 

Fig.5.5.12: Capacity curve  of micro-typology 3A(wall thickness 45cm) 
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Fig.5.5.13: Capacity curve  of micro-typology 3B(wall thickness 60cm) 
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Fig.5.5.14: Capacity curve  of micro-typology 3C(wall thickness 75cm) 

 

Fig.5.5.15: Capacity curve  of micro-typology 3D(wall thickness 90cm) 
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All the curves have been then combined in the graph below (Fig.5.5.16) for the 

typology 3. The slopes of the curves are quite diversified , as well as the secants, 

but they are almost parallel to each other considering the same parameter for each 

micro-typology. Some of the lowest curves include: 

- Parameter 7 (barrel vault) of micro-typology 3A, as already seen above; 

- Parameter 6 (maximum interstorey height for the ground floor) of micro-

typology 3A, which improves the moment arm of the destabilizing forces; 

- Parameter 3 (minimum interstorey height for upper floors) of micro-

typology 3A, which decreases the stabilizing contribute of the weight 

force of upper floors walls; 

- Parameter 11(vault rise at 0.5) of micro-typology 3A, which is 

characterized by an higher value of the horizontal thrust; 

- Parameter 7 (barrel vault) of micro-typology 3C. 

As already noted analyzing the Fig. 5.5.11, the comparison of the capacity curves 

for each micro-typologies underlines the importance of the wall thickness as the 

characteristic that more influences the vertical bending behavior. 

The comparison of the capacity curves, both inside the same micro-typology and 

in the global typology, for all the analyzed cases are shown in annex D2. 
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Fig.5.5.16: Capacity curves  of typology 3  
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5.6 IN-PLANE MECHANISM 

The analysis of the in plane mechanism is made for 7 of the 9 classes defined in 

chapter 2.4.5, because two of them represents a single corner structural units 

characterized respectively by four stories (class III) and four stories and basement 

(class IV). The classes do not consider the units in the district of Iosefin. 

The analysis is carried out considering the activation of the mechanism in the 

most vulnerable situation: the last plan of corner units. 

The assumptions made for the simple overturning mechanism in chapter 5.4 about 

mechanical properties, permanent and accidental loads and vaults trusts are valid 

for the in plane mechanism too. The only difference is that in this case the friction 

forces are not considered because they do not influence the mechanism. The in-

plane mechanism involves only the last storey, so only the roof typology and the 

horizontal structure of the attic are considered. 

As made for the simple overturning mechanism, the analysis for the in-plane 

mechanism of collapse is made considering a reference case, which is different for 

each micro-class, and a set of variable parameters. 

As seen in chapter 2.4.4, each façade class can be subdivided in more micro-

classes, referring to the spans number. Each of these micro-classes has 8 different 

cases: the reference case and 7 other cases corresponding to the 7 analyzed 

parameters.  

The reference case considers always a wall thickness of 45cm, to make the cases 

comparable. The interstorey height, already analyzed in chapter 2.4.4, is referred 

to the structural units and their relation with the typologies defined in chapter 

2.4.2. The reference case considers the average value for the top floor, which 

defines the highness of the spandrel wall over the windows of the last considered 

storey, and the average value of the other stories (ground floor and upper floors if 

the class is more than  two stories high), to define the height from the ground. The 

roof typology is a determinant characteristic of the class and it can be 

characterized by  timber trusses or  by concrete and timber trusses. To each of 

these two roof typology a weight is associated. The span length was evaluated 

referring to the available pictures of the buildings and to the facades length of the 

structural units measured in the dwg files. With the picture rectification a first 

span dimension has been defined, following the windows pattern. This dimension 
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has been later compared and adjusted with the plan modules defined in chapter 2.4 

for each class. All the classes are indeed subdivided in micro-classes, according to 

the spans number and consequently to the façade length. Finally, the analyzed 

parameters are: 

1. Maximum interstorey height for the top floor: it defines the maximum 

masonry spandrel wall over the windows; 

2. Minimum interstorey height for the top floor; it defines the minimum 

masonry spandrel wall over the windows; 

3. Maximum distance from the ground; if the class is characterized by two 

stories buildings, it implies the maximum interstorey height for the ground 

floor. If the class is characterized by more than two stories buildings, it 

implies the sum between the maximum interstorey height for the ground 

floor and for the upper floors; 

4. Minimum distance from the ground; if the class is characterized by two 

stories buildings, it implies the minimum interstorey height for the ground 

floor. If the class is characterized by more than two stories buildings, it 

implies the sum between the minimum interstorey height for the ground 

floor and for the upper floors; 

5. Wall thickness of 30 cm 

6. Wall thickness of 60 cm 

7. Wall thickness of 75 cm 

Parameters 1, 2, 3 and 4 consider the range defined in chapter 2.4.2. 

The analyzed typologies with the respective characteristics are shown in Tab. 

5.6.1. 
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I 

a 2 

2 1,15x2,9 
7  

(3,8x4,15) 
4,6 ±1 4,1 ±0,5 3,8x4,6 

b 5 

c 7 

d 11 

II 

a 3 

3 1,15x2 
4  

(2,9x5,15) 
3,75 ±1 8,7 ±0,5 2,9x2,75 

b 6 

c 8 

d 10 

 e 13 

TI
M

B
ER

 T
R

U
SS

ES
 

V 

a 5 

2 1,3x2,3 
7  

(3,8x4,15) 
4,3 ±0,5 4 ±0,5 3,8x4,3 

b 7 
c 9 
d 11 

VI 
a 5 

2+B 1x2,8 
7  

(3,8x4,15) 
5 ±0,5 5,3 ±0,5 3,8x5 b 7 

c 9 

VII 

a 4 

3 1,3x2 
8  

(3,4x6,75) 
4,2 ±0,5 10,5 ±1 3,4x3,2 

b 6 

c 8 

d 9 

e 11 

VIII 
a 8 

3+B 1,1x2 
4  

(5,15x2,9) 
4,4 ±0,5 10,7 ±1 2,575x3,4 b 12 

c 15 

IX 
a 5 

4 1,2x2,2 
3  

(4,1x5,8) 
4,1 ±0,5 16,8 ±1 4,1x3,1 b 7 

c 10 

Tab. 5.6.1: Analyzed typologies and interstorey height variations 
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The procedure to evaluate the in plane mechanism is the same used for the simple 

overturning mechanism and it is shown in chapter 5.2. All the cases result verified 

with the linear kinematic analysis due to the low vulnerability of this type of local 

mechanism. The parameter with a minor safety coefficient, in all the micro-

classes, is parameter 2, characterized by a minor interstorey height of the top 

floor. The masonry panel dimensions remain constant so the measure variation 

interests the masonry spandrel wall above the windows. To reduce the spandrel 

wall height means to decrease the stabilizing contribute of its weight force. 

Comparing the two groups of classes, characterized by the roof type, the one with 

the timber trusses roof has generally higher values of α0, d0*, as, du*, compared to 

the one with the same stories number of the concrete trusses type. 
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6 FRAGILITY CURVES1 
 

The Performance Based Engineering (PBE) is the basis of the new structural 

design codes and it uses probabilistic concepts based on the awareness that the 

loads arising from usage and external events (demand), the man-made and natural 

hazards and the strengths of material constructions (capacity) are uncertain in 

nature. The risk is defined by the combination of all these aspects  and it is 

managed by the provisions in standards and codes.  

The structural response of a building is dynamic and it needs to be related to the 

damage that occurs under repeated (usually inelastic) cyles. The structural actions 

induced by a seismic event involved the entire system. 

The earthquake resistance philosophy is to limit the occurrence of life-threatening 

damage under the design earthquake and the structure has to retain a substantial 

margin of safety against the overall collapse.  

The performance assessment and the design process have been divided into 

simpler elements in terms of description, definition and quantification of 

earthquake intensity measures (IMs), engineering demand parameters (EDPs), 

damage measures (DMs) and decision variables (DVs). Examples of these 

parameters are: 

- The peak ground acceleration and the first-mode spectral acceleration for 

IMs; 

- The interstorey drift ratios and the inelastic component deformations  for 

EDPs; 

- The damage states of structural and nonstructural elements and dead for 

DMs; 

- The direct financial losses and downtimes for DVs. 

All these elements are considered in the “PEER Equation”: 

)()()()()( IMdHIMEDPdPEDPDMdPDMDVPDVP ⋅⋅⋅= ∫∫∫  (6.1)  

1 Strategies for seismic assessment of common existing reinforced concrete bridges typologies 

(Morbin, 2013, pp. 17-24); 
Derivable 35 - Definition of seismic safety verification procedures for historical buildings 
(PERPETUATE, 2012, pp. 12-14); 
Ponti in muratura: valutazione sismica mediante curve di fragilità (Thiella, 2014). 
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where: 

• P(DV|DM) is the probability that the DV exceeds a specific value, 

conditioned by the structural damage DM. The estimation of DV comes 

from probabilistic analysis of economic losses, and it is difficult to 

perform; 

•  P(DM|EDP) is the probability that DM exceeds a specific value, when a 

certain value is given to parameter EDP. Considering different IMs, this 

term is denoted as the seismic fragility; 

•  P(EDP|IM) is the probability that EDP exceeds a certain value given a 

particular value of IM; 

• H(IM) is the seismic hazard of the site, obtained by a Probabilistic Seismic 

Hazard Analysis (PSHA). 
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6.1  SEISMIC VULNERABILITY 

The evaluation of the seismic damage is important to assess, during an 

earthquake, the risk evaluation. In order to evaluate the seismic damage is 

essential to identify the vulnerability elements associated to different damage 

levels. The capacity of the structure must be compared with the associated seismic 

demand and it can be represented as a displacement or an acceleration. 

The seismic evaluation considers the materials properties, the intensity, the 

frequency and the duration of the seismic action and the characteristics of the site; 

these parameters represent the demand. The data considered in this analysis 

cannot be defined for sure, so it is necessary to associate them to a measure of 

uncertainty and fortuity that takes count of the probabilistic nature of the problem.  

The fragility curves are graphs that express the conditional probability of an 

element to match or exceed a certain damage state (or performance level) for 

various levels of ground shaking IM, typically the peak ground acceleration 

(PGA) or the spectral acceleration (Sa). 

The figure below (Fig. 6.1) shows how the capacity and the demand diagrams are 

obtainable using a probabilistic distribution. Due to this, the performance point of 

the structure, the intersection between the capacity curve and the demand ones, is 

not identified by a single value, but rather from a range of points. 

 

 

Fig. 6.1.1: Capacity-demand Acceleration-Displacement spectra showing uncertainty in structural 
behavior and ground motion 
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REFERENCE: ( Mander et al.,1999) 

 

The fragility curve is a log-normal cumulative probability function2. To define the 

curves only two parameters are necessary:  

• a median (the 50th percentile); 

• a normalized logarithmic standard deviation.  

The cumulative probability functions is given by: 

( )





























Φ=>=>
β
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d

cdPL

S
S

IMSSPIMdDP
ln

)(     (6.2) 

• Sd is the structural demand (damage on the structure) which changes for 

each IM; 

• Sc is the structural capacity related to a specific performance level (median 

or expected value); 

• β is the normalized composite log-normal standard deviation which takes 

into account uncertainty and randomness for both demand and capacity, it 

can also be computed as 𝛽𝛽 = �𝛽𝛽𝑑𝑑2 + 𝛽𝛽𝑐𝑐2  considering demand and capacity 

contributions respectively; 

• Φ[•] is the standard normal distribution function. 

 

In literature there are two different methods to create the fragility curves: the 

empirical one and the analytical one. 

The empirical method is based on the collection of data after a seismic event3.As 

an exemple, the Hazus project and the Risk-UE are empirical methods. 

The analytical method is used when there are no data collected for the post-

earthquake damages, like in Romania, and it is necessary to develop a model for 

each structure to obtain information. In this case the necessary data, related to the 

2 (VV.AA., 1999); 
(Cornell et al., 2002);  
(Monti & Nisticò, 2002);  
(Choi et al., 2003);  
(Nielson & DesRoches, 2007) 
3 Bazos, Northridge earthquake, 1194 and Shinouzuka, Kobe earthquake, 1995 
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seismic response of the structure, can be derived by different types of analysis: 

elastic analysis, nonlinear static analysis (push-over)4, and non-linear dynamic 

analysis in time history5. The last analysis is the most reliable but also the most 

onerous.  

The analytical methods consist of three steps: 

• First step: simulation of ground motions; 

• Second step: representation of the element using an analytical model, 

considering the uncertainties strictly related to it; 

• Third step: generation of the fragility curves from the seismic response 

data obtained using the analytical model.  

Recently the application of non-linear static analysis to probabilistic analysis 

demonstrated their effectiveness and adequacy. The dynamic non-linear analysis 

is the most reliable method, but it is complex and unsuitable to test a large number 

of buildings. 

This work is based on Shinozuka method: it used a non-linear static analysis 

based on CSM method (Capacity spectrum method). The method was applied by 

Shinozuka to masonry bridge structures but it can be adapted to other types of 

structure, like masonry buildings. 

6.1.1  Definition of the performance level on the pushover curve 

The identification of damage levels is fundamental in order to define fragility 

curves. Damage measures in earthquake engineering proposed in scientific 

literature are numerous and particularly they can be defined for each structural 

element and sub-elements (local indexes) or for the entire structure (global 

indexes). The most commonly used parameters for the evaluation of structural 

damage are the ductility, expressed by rotation, curvature or displacement, and the 

plastic energy dissipation. 

In the non-linear kinematic analysis the i-th level of damage is associated to the 

displacement which has the horizontal load multiplier α of the pushover curve 

equal to 0 (d0). Particularly the i-th damage level is calculated starting from the 

4 (Shinouzuka et al., 2000) 
5 (Karim, 2001, Choi, 2003); 

 (DesRoches et al., 2006) 
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ultimate spectral displacement d0* of the one degree of freedom equivalent 

oscillator.  

The criteria proposed to define the damage levels are summarized in Tab 6.1. In 

particular: 

-  The PL1 level is the displacement value and correspondents to  

aDL1 = 0.7aDL2 = 0.7aS .       (6.3) 

- The PL2 level is associated to the yeld point and corresponds to 

aDL2=as       (6.4) 

- The PL3 level corresponds  to  

dDL3=0.25d0        (6.5) 

-  The PL4 level corresponds to  

dDL4=0.4d0 .       (6.6) 

The PL4 level is the conventional reference point and the different 

analysis typologies of the Normative consider the structure characterized 

by the “ultimate” condition. 

 

As explained in the “Derivable 35”, the limit values proposed to define damage 

states 3 and 4 have been calibrated on the basis of an extended set of nonlinear 

incremental dynamic analyses, performed by UNIGE: as resulting from these 

analyses, it may be stated that the value of 40% of the ultimate displacement 

capacity in most cases insures against the occurrence of some dynamic instability 

of the block. On the safe side, the values proposed are within this limit; actually, 

they could be further refined and corroborated on basis of additional numerical 

analyses or experimental data available for the given structure examined6.  

 

 

 

 

 

 

 

6 Definition of performance level on the pushover curve  (Derivable 35, 2012, p. 14) 
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DLi Single block or Single Macro-element 

Minor 

1 
In terms of percentage of the horizontal multiplier associated to dDL2 

dDL1 corresponds to the point in which the multiplier is αDL1= 0.7 αDL2 

Moderate 

2 
In terms of percentage of dy and check on dpeak 

dDL2 = min(dy; dpeak) 

Extensive 

3 
In terms of percentage of the ultimate displacement capacity d0 

dDL3= 0.25 d0 ≥ dDL2 

Complete 

4 
In terms of percentage of the ultimate displacement capacity d0 

dDL4= 0.4 d0 ≥ dDL2 

Tab. 6.1.1: Definition of level of damage 

REFERENCE: Definition of performance level on the pushover curve  (Derivable 35, 2012, p. 14) 
 

 
Fig 6.1.2: Criteria to define DLs on the pushover curve in case of non-linear kinematic analysis 

REFERENCE: Definition of performance level on the pushover curve  (Derivable 35, 2012, p. 14) 
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6.2 METHODOLOGY 

The earthquake intensity is another factor that cannot be controlled; this work 

considers only one type of soil (C) but it takes count of different PGA values, with 

a range from 0 to 0.4 with steps of 0.05, where the normative value is the medium 

one (Fig 6.2.1)7. 

 
Fig 6.2.1: Acceleration range considered for the soil typology C 

Eight elastic response spectra have been determined for each PGA, representing 

the different acceleration analyzed in this work (Fig 6.2.2). 

 
Fig 6.2.2: Elastic spectrum response for different PGA 

 
As mentioned before, the method considered for this thesis is the one proposed by 

Shinozuka et al. (2000), based on the “CSM Method”. A non-linear static method 

is used to define the intersection point between the demand curve and the capacity 

curve (Fig 6.2.3).  

This point is the “performance point” and represents the maximum expected 

displacement related to the PGA considered. 

7Ponti in muratura: valutazione sismica mediante curve di fragilità (Thiella, 2014). 
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This procedure utilizes the capacity curve and the response spectrum in terms of 

spectral acceleration and spectral displacement in the ADRS (Acceleration-

Displacement Response Spectrum) plan, where the response spectrum becomes 

the demand spectrum and the capacity curve becomes the capacity spectrum. 

The transformation from the response spectrum (acceleration-period) to the 

demand spectrum ADRS is made with the relation: 

AD STS 2

2

4π
=         (6.7) 

• SD is the x-coordinate of the demand spectrum; 

• SA is the y-coordinate of the response and demand spectrum; 

• T is the period to evaluate SD. 

The y-coordinate is the same for both the response and the demand spectra so that 

the two spectra are comparable. To transform the capacity curves to the ADRS 

plan are necessary: 

• The multiplier α; 

• The confident coefficient FC, in this thesis is considered  FC=1.35; 

• The participant mass M*; 

• The displacement of the control point. 

 

Fig 6.2.3 intersection between the ADRS spectrum and the capacity curves 
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The intersection between the ADSR spectrum and the capacity curve represents 

the “performance point”. The procedure has to be repeated for all the considered 

PGA values. 

After determining the converging point, the damage is defined as: 

C

D

d
d

IM =          (6.8)  

• dD is the displacement depending on the seismic demand (SDe(Ts)); 

• dC is the displacement related to the damage level. 

The lognormal distribution is the best model to represent the seismic demand. In 

the following graph is represented the seismic demand related to one of the 

considered PGA (Fig 6.2.4). 

 

Fig 6.2.4: IM elaboration for a PGA of 0.05 

The following law represents the medium demand: 

AB
d eIMS ⋅=        (6.9) 

In the logarithmic plan, the following regression line represents the medium 

demand: 

)ln()ln( IMBAS d ⋅+=       (6.10) 
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A and B coefficients are defined from the regression line, considering the standard 

deviation of the scattergram related to the demand values, the average deviations 

are referred to the regression line for the considered IM. 

The following diagram represents the four regression lines related to the four 

considered level of damage, the eight scattergram represent the data for each 

evaluated PGA (Fig 6.2.5). 

 

Fig 6.2.5: Four regression line for each damage level considered 
 

Once defined the coefficients A and B and the standard deviation, the fragility 

curve  is represented by  a lognormal distribution: 

[ ]adDPaP LPPLf >=)(,       (6.11) 

and the exceedance probability is represented by  the following formula: 


















 −

−
⋅

=
2ln

2
1exp

2
1

e
l

eπ
d

d
f D     (6.12) 

• λ=A+Bln(IM) is the medium value of the regression line related to a 

IM(PGA) value; 

• ε is the IM(PGA) scattergram. 
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The following graph represents as an example a fragility curve related to a local 

mechanism of simple overturning for a masonry building. In the x-axis there are 

the PGA values and in the y-axis there is the exceedance probability to overflow 

or to equal the level of damage indicated in the relative curve. The exceedance 

probability is expressed in percentage. 

 

Fig 6.2.6: Fragility curves for the four different Damage Levels 
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6.3 FRAGILITY CURVES OF THE SIMPLE OVERTURNING 
MECHANISM 

Local mechanisms of collapse, which defines the a0*, d0*, as* and ds*values, 

allow to collect all the data that are necessary to define fragility curves for each 

building typology . The analyzed typologies are the same of chapter 5.4 and 

belong to macro-typologies A, E and G. Macro-typologies A and E are both 

characterized by masonry vertical structures and light horizontal structures with 

vaults at the ground floor, but the first one has a timber trusses roof and the 

second one a mixed roof with concrete and timber trusses. The macro-typology G 

is characterized by masonry vertical structures, moderately heavy horizontal 

structures and roof composed by concrete and timber trusses. The parameters 

related to the presence of the vault are indeed not considered in typologies 24, 25 

and 26.  

Some micro-typologies do not represent structural units of the historical center but 

have been added afterwards to consider all the possible cases typical of Timisoara 

buildings. These typologies are written in grey in Tab. 6.3.1, which represents  the 

exceedance probability for a/g=0.2 for each level of damage.  It is indeed the aim 

of this thesis the definition of a preliminary vulnerability assessment of a building, 

which can be included in one of the defined typologies, after the detection of its 

main structural characteristics, such as vertical and horizontal structures, roof 

typology, wall thickness, interstorey height and stories number. The addition of 

these micro-typologies helps to cover a major number of cases and consequently 

the possibility to extend the results. 

The negative values of the horizontal load multiplier α0, and consequently of a0*, 

d0* and du*, cause the impossibility to define the fragility curve for typology 1. 

Negative values are indeed unusable to define the fragility curves and the 

respective parameters have not been considered in the analysis. Due to this 

problem, just few parameters have been removed from the analysis and usually 

they correspond to parameters 7 (barrel vault) and 11 (vault rise at 0.5m) for 

typologies with the vault presence at the ground floor. In typologies 2, 7 and 17, 

characterized by two stories or two stories with basement, the micro-typologies A 

and B (wall thickness of 45 and 60cm) have a great number of parameter with 

negative number for the hinge at level 0. In these cases the fragility curves have 
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been defined using all the values of micro-typologies C and D and the values of 

the upper floor mechanisms for micro-typologies A and B. For the ground floor of 

these two micro-typologies the reference mechanism is the vertical bending 

instead of the simple overturning one. 

Each parameter is important for the fragility curve definition, because a singular 

value can considerably modified the curve trend. The proximity of the real value 

to the expected value defines the variance and consequently the standard 

deviation. If the real value and the expected value are close, the standard deviation 

is small, if they are far, the standard deviation is great. Choosing the parameters 

suitable to the curve definition is then an important step, that can affect the curve 

validity. In this analysis all the positive values have been considered, to give a 

complete representation of the site possibilities. 

The exceedance probability percentages for a/g=0.2, which are already defined in 

Tab. 6.3.1, are shown in Fig. 6.3.1  It is possible to observe that: 

- Typologies with the highest exceedance probability of PL1 and PL2 are 

typologies 2, 7 and 17, characterized by two stories or two stories with 

basement. Between these three typologies, the one with the highest 

percentage of exceedance probability of PL3 and PL4 is typology 7, which 

is characterized by the basement presence; 

- Typology 24 is the only one in which the exceedance probability  of 

complete damage (PL4)  is 0% for a/g=0.2; 

- The percentage values of typologies 4 and 26, both characterized by four 

stories, are comparable for each level of damage, even if the typology 4 

has the horizontal thrust of the vaults at the ground floor and the typology 

26 does not have it. The destabilizing force of the vault thrust at the 

ground floor is indeed less determinant in the vulnerability of the typology 

with the increment of the stories number; 

- In general the presence of the basement  and the different roof  type do not 

considerably influence the exceedance probability of the fragility curve. 

The parameter that most influence the curve behavior is the stories 

number.  
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EXCEEDENCE PROBABILITY 
FOR a/g=0.2 

PL1 PL2 PL3 PL4 

A 

1 1A 
1 

45 
- - - - 

1B 60 

2 

2A 

2 

45 

86% 69% 40% 15% 2B 60 
2C 75 
2D 90 

3 

3A 

3 

45 

76% 54% 22% 5% 3B 60 
3C 75 
3D 90 

4 
4B 

4 
60 

60% 38% 16% 3% 4C 75 
4D 90 

7 

7A 

2+B 

45 

80% 70% 52% 32% 7B 60 
7C 75 
7D 90 

8 

8A 

3+B 

45 

83% 59% 24% 5% 8B 60 
8C 75 
8D 90 

E 

17 

17A 

2 

45 

85% 66% 37% 12% 17B 60 
17C 75 
17D 90 

18 

18A 

3 

45 

76% 49% 15% 2% 18B 60 
18C 75 
18D 90 

20 

20A 

3+B 

45 

79% 58% 27% 8% 20B 60 
20C 75 
20D 90 

G 

24 

24 A 

2 

45 

72% 32% 3% 0% 24B 60 
24C 75 
24D 90 

25 

25A 

3 

45 

64% 36% 10% 1% 25B 60 
25C 75 
25D 90 

26 
26B 

4 
60 

53% 32% 13% 3% 26C 75 
26D 90 

Tab. 6.3.1: Exceedance probability of each level of damage, referred to a/g=0.2 
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 Fig 6.3.1: Exceedance probability for a/g=0.2 in each typology 

 

The following figures represent the fragility curves for the analyzed typologies 

and the value of a/g=0.2 is indicated. The most vulnerable typologies have a 

fragility curve that is shifted to the left of the graph, corresponding to lowest PGA 

values, like typologies 2 (Fig. 6.3.2), 7 (Fig. 6.3.5) and 17 (Fig. 6.3.7).  The less 

vulnerable typologies, like typology 4 (Fig. 6.3.4) and 26 (Fig. 6.3.12) have a 

fragility curve that is shifted to the right, in correspondence of higher PGA values. 

The PL4 curve reach the 100% of exceedance probability for lower PGA values in 

the first case (around 1.5) and for higher values in the second case (around 3).  
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Fig 6.3.2: Fragility curve – Typology 2 

 

 
Fig 6.3.3: Fragility curve – Typology 3 

 
Fig 6.3.4: Fragility curve – Typology 4 
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Fig 6.3.5: Fragility curve – Typology 7 

 
Fig 6.3.6: Fragility curve – Typology 8 

 
Fig 6.3.7: Fragility curve – Typology 17 
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Fig 6.3.8: Fragility curve – Typology 18 

 
Fig 6.3.9: Fragility curve – Typology 20 

 

 
Fig 6.3.10: Fragility curve – Typology 24 
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Fig 6.3.11: Fragility curve – Typology 25 

 

 
Fig 6.3.12: Fragility curve – Typology 26 
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6.4 FRAGILITY CURVES OF THE VERTICAL BENDING 
MECHANISM 

The typological study and the analysis of local mechanisms aim to define the 

fragility curve for each building typology. The analyzed typologies belong all to 

macro-typologies A and E, which are both characterized by masonry vertical 

structures and light horizontal structures with brick vaults at the ground floor. The 

difference between the two macro-typologies is the roof type: the macro-typology 

is characterized by a timber trusses roof, while the macro-typology E is 

characterized by a mixed roof with concrete and timber trusses.  

The Tab. 6.4.1 represents all the analyzed typologies and the exceedance 

probability for a/g=0.2 for each level of damage is indicated. As made in chapter 

6.3, the parameters characterized by negative values are not considered in the 

fragility curve definition. Due to this problem, the parameter 7 (barrel vault) has 

been removed in typologies  3, 8, 17 and 20 and parameters 7 and 11 (vault rise at 

0.5) have been removed in typology 2. 

The percentage values of Tab. 6.4.1 are represented in Fig. 6.4.1, which gives a 

visual representation of the exceedance probability for a/g=0.2 for each level of 

damage. It is possible to observe that: 

- Typologies 2 and 17, both characterized by two stories, have the highest 

percentage of exceedance probability and consequently are the most 

vulnerable typologies to the vertical bending mechanism. They are the 

only two typologies which present a probability of exceedance the 

complete level of collapse (PL4) and the percentage of exceedance 

probability for PL4 are respectively the 13% and the 12%; 

- Typology 4 is the less vulnerable typology and, like typology 7, it shows a 

probability of exceedance only for PL1 and PL2 levels, never reaching an 

extensive level of damage; 

- In typology 7 the micro-typology A, corresponding to a wall thickness of 

45 cm, has not been added afterwards because it can be considered 

included in micro-typology 2A, which has two stories too and the presence 

of the basement in typology 7 can be assimilated to the maximum 

interstorey height at the ground floor of micro-typology 2A (parameter 6); 
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- The absence of the most vulnerable micro-typology decreases 

considerably the exceedance probability of typology 7, proving once again 

the great influence that the wall thickness has in the local mechanism 

behavior, particularly in the vertical bending one. 
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S EXCEEDENCE PROBABILITY 
FOR a/g=0.2 

PL1 PL2 PL3 PL4 

A 

1 1A 
1 

45 
- - - - 

1B 60 

2 

2A 

2 

45 

60% 45% 29% 13% 2B 60 
2C 75 
2D 90 

3 

3A 

3 

45 

39% 18% 4% 0% 3B 60 
3C 75 
3D 90 

4 
4B 

4 
60 

21% 2% 0% 0% 4C 75 
4D 90 

7 
7B 

2+B 
60 

29% 4% 0% 0% 7C 75 
7D 90 

8 

8A 

3+B 

45 

30% 15% 4% 0% 8B 60 
8C 75 
8D 90 

E 

17 

17A 

2 

45 

62% 44% 26% 12% 17B 60 
17C 75 
17D 90 

18 

18A 

3 

45 

34% 18% 4% 0% 18B 60 
18C 75 
18D 90 

20 

20A 

3+B 

45 

25% 13% 2% 0% 20B 60 
20C 75 
20D 90 

Tab. 6.4.1: Exceedance probability of each level of damage, referred to a/g=0.2 
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Fig 6.4.1: Exceedance probability for a/g=0.2 in each typology 

 

After the considerably difference in the results of typology 7 fragility curves, the 

micro-typology 7A with a thickness of 45cm has been added. In Tab. 6.4.2 the 

new values of the exceedance percentage of typology 7 are shown and the Fig. 

6.4.2 represent the new situation for an a/g of 0.2. It is possible to observe that 

with the addition of the most vulnerable micro-typology, the exceedance 

probabilities increase, reaching values comparable with micro-typologies 2 and 

17.  
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Fig 6.4.2: Exceedance probability for a/g=0.2 in each typology – 7A added 

The following figures represent the fragility curves of each analyzed typology  

and the value of a/g=0.2 is indicated. It is possible to see that the curves of the 

vertical bending mechanism have a different shape than the simple overturning 

ones:  the curves reach the 100% of exceedance probability of PL4 for higher 

values of PGA. The vertical bending is in fact a less vulnerable mechanism and it 

must be subjected to greater values of ground acceleration to activate. The reason 

why curves, particularly PL4 curves, reach the 100% of exceedance probability 

for high values of PGA is related to very small values of a micro-typology 

parameter. In fact very small values of a0*, d0* and ds* cause very high values of 

the logarithm of the Demand/Capacity ratio. High values that considerably 

diverge from the regression line cause high values of the standard deviation, 

which is the reason why the curves need high values of PGA. Low values of a0*, 

d0* and ds* are common for parameter 7 (barrel vault) and 11 (vault rise at 0.5m). 

The fragility curves of typologies 2 (Fig. 6.4.3), 7 (Fig. 6.4.6) and 17 (Fig. 6.4.8) 

are the most vulnerable ones and they are shifted to the left side of the graph, 

corresponding to lower values of PGA. They are characterized by two stories and 

so the stabilizing weight of  upper floors is lower compared to buildings with 3 or 

4 stories. The curve of typology 4 (Fig. 6.4.5) is in fact shifted to the right, in 

correspondence to higher values of PGA. 
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Fig 6.4.3: Fragility curve – Typology 2 

 

 
Fig 6.4.4: Fragility curve – Typology 3 

 
Fig 6.4.5: Fragility curve – Typology 4 
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Fig 6.4.6: Fragility curve – Typology 7 

 
Fig 6.4.7: Fragility curve – Typology 8 

 
Fig 6.4.8: Fragility curve – Typology 17 
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Fig 6.4.9 Fragility curve – Typology 18 

 Fig 6.4.10: Fragility curve – Typology 20 
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6.5 FRAGILITY CURVES OF THE IN PLANE MECHANISM 

The determination of typologies that describe all the corner buildings of 

Timisoara  historical center (chapter 2.4.5) and the comparative analysis with the 

variation of  parameters set (chapter 5.6.3) were both necessary to create fragility 

curves for in-plane mechanism.  

The activation of the in-plane mechanism demands greater PGA values than the 

other two mechanisms and the development of the mechanism is instantaneous: 

while for the out of plane mechanisms there is a range of about 3 m/s2 between the 

0% and the 100% exceedance probability of the same PL curve, for the in-plane 

mechanism the range is about 0.5 m/s2 or even less.  

The slope of the curves is steep, differently from the other mechanisms,  and 

represents the rapidity of the mechanism development. 

In the following table (Tab 6.5.1) the exceedance probability for each level of 

damage, referred to the normative acceleration of a/g=0.2, is represented. 
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I 

a 2 

2  0% 0% 0%  0%  3,305 
b 5 
c 7 
d 11 

II 

a 3 

3 8% 0%   0%  0% 1,345 
b 6 
c 8 
d 10 
 e 13 

TI
M

B
ER

 T
R

U
SS

ES
 

V 

a 5 

2 0%  0% 0%  0% 1,91 
1,92 

b 7 
c 9 
d 11 

VI 
a 5 

2+B  0% 0%  0%  0 % 2,23 b 7 
c 9 

VII 

a 4 

3 0,8% 0%  0%   0% 1,265 
b 6 
c 8 
d 9 
e 11 

VIII 
a 8 

3+B 26% 0% 0% 0% 0,985 b 12 
c 15 

IX 
a 5 

4 3% 0% 0% 0% 1,17 b 7 
c 10 

 

Tab. 6.5.1: Exceedance probability of each level of damage, referred to a/g=0.2 

The exceedance probability of all the levels of damage, referred to a/g= 0.2, is 

very low, in particular the levels of damage PL2, PL3 and PL4 never exceed the 

0%. The PL1 level (minor damage) is the only one which exceeds the 0% and the 

higher percentage is referred to the VIII class with a 26% exceedance probability. 
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Fragility curves for in-plane mechanism are carried on for 7 of the 9 classes 

exposed in chapter 2.4.4, because classes III and IV, respectively having four 

stories and four stories plus basement, are both represented by one structural unit. 

These two units are considered comparable with the class II and these three 

classes are represented by the same fragility curve (Fig 6.5.2). 

The class V is characterized by two fragility curves because of a double façade 

configuration: in the first one the windows are located at 1 m from the floor (Fig 

6.5.3) and in the second one the windows are located at the height of the analyzed 

floor (Fig 6.5.4), as already exposed in chapter 2.4.4. The two fragility curves are 

very similar: the percentage of exceedance probability is the same for all the 

levels of damage and the  PGA value to which corresponds PL4=1 is very close, 

1.91 for the first and 1.92 for the second. From these results it is possible to 

deduce that the difference of 1 m in the window height from the ground level is 

not a influent parameter.  

The classes analyzed are divided in two groups characterized by the roof 

typology: concrete and timber trusses (class I and II) and timber trusses (class V, 

VI, VII, VIII, IX). The classes are characterized by the stories number and divided 

in micro-classes corresponding to the different  façade length observed in situ, 

defined by the bays number. The analyzed parameters and their variations 

considered for the creation of the fragility curves are : 

- Last plan height; 

- Height from the ground; 

- Window dimensions (bxh); 

- Bays number. 

Between the two classes characterized by the timber trusses roof, the class I (two 

stories) and class II (three stories), the most vulnerable is the second one, which 

has the 8% of exceedance probability to overflow the PL1 and it reaches the 

collapse (PL4) for a PGA of 1.345. The class I reaches the collapse with PGA of  

3.305 and its fragility curve (Fig 6.5.1) is characterized by a lower slope and 

involves a larger  range of PGA. 

The five classes of the timber trusses roof group are characterized by similar 

fragility curves to each other, with a strong slope. The most vulnerable class is the  
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VII class, characterized by three stories and the basement (Fig. 6.5.7). In general 

the classes vulnerability growths with the stories number. 

 From the comparison of the two groups (characterized by the roof type), it is 

possible to notice that the fragility curves of the building with two stories (Fig 

6.5.1, Fig. 6.5.3, Fig. 6.5.4) are similar, but the ones with the timber trusses roof 

are more sloping and more vulnerable, due to the lower stabilizing weight of the 

roof. 

The fragility curves of the classes characterized by three stories (Fig. 6.5.2, Fig 

6.5.5) are quite similar. The roof weight in case of buildings with more than two 

stories is then not an influent parameter. 

In the following figures the fragility curves of all the analyzed classes are shown. 

 

Fig. 6.5.1: Fragility curve for the I class 

 
Fig. 6.5.2: Fragility curve for the II class 
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Fig. 6.5.3: Fragility curve for the V class _ first version 

 

Fig. 6.5.4: Fragility curve for the V class _ second version 

 

Fig. 6.5.5: Fragility curve for the VI class  
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Fig. 6.5.6: Fragility curve for the VII class  

 
Fig. 6.5.7: Fragility curve for the VIII class  

 
Fig. 6.5.8: Fragility curve for the IX class  
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6.6 VULNERABILITY ASSESMENT MAP 

The results of the fragility curves have been graphically resumed in the annex B. 

In the following figures the exceedance probability is referred to the simple 

overturning, the vertical bending and the in plane mechanisms (Fig.6.6.2, 

Fig.6.6.3, Fig.6.6.4), in correspondence of the a ground acceleration of a/g=0.2 for 

the city of Timisoara.  

The following color scale (Fig 6.6.1) represents the exceedance probability in 

reference to the considered level of damage: the red represents the maximum 

possibility of exceeding the considered level of damage (>90%) while the pink the 

minimum possibility (<10%) 

 

Fig. 6.6.1: Exceedance probability scale  
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Fig. 6.6.2: Vulnerability assessment of PL2 - simple overturning mechanism  

In Fig 6.6.2 the exceedance probability for level of damage PL2 (moderate 

damage) is  represented, referring to the simple overturning mechanism. As 

already resumed in Tab. 6.3.1 the biggest part of the typologies is characterized by 

a significant percentage of possibility of exceeding the level of moderate damage. 

Typologies 2, 3, 7, 8, 18 and 20 are characterized by a percentage between 50-

70%, while typologies 4, 8, 24, 25 and 26 between 30-50%. All the typologies, 

except the “unicum” units, are represented in the map, confirming the results of 

the local mechanism analysis: the simple overturning mechanism is the most 

vulnerable one and it is more probable in case of bad connections between 

horizontal structures and walls. 
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Fig. 6.6.3: Vulnerability assessment of  PL2 -  vertical bending mechanism  

 

In Fig. 6.6.3 the exceedance probability referred to the level of damage PL2 is 

represented. Many typologies are involved by this mechanism and almost the 

entire historical center is included. The exceedance percentages are characterized 

by lower values of the simple overturning mechanism and they are ranging  

between the 10% and the 30 % , with some peaks close to the 40%. 
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Fig. 6.6.4: Vulnerability assessment of PL1 -  in-plane mechanism  

 

Finally the in plane mechanism considers only the corner units and the 

exceedance probability is referred to the level PL1 (minor damage), because for 

the considered a/g= 0.2, is the only level of damage different from zero. The 

higher value corresponds to class VIII, characterized by a exceedance percentage 

of 26%, while classes II,VII, IX have values that correspond to less than 10% .The 

activation of the in plane mechanism requires high ground accelerations and the 

map confirms that the in-plane mechanism is the less vulnerable one, even less 

probable than the vertical bending mechanism. 
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In the following table (Tab. 6.6.1) all the typologies with their exceedance 

probability are resumed. For each percentage the number of the interested 

structural units is indicated for the three local mechanisms, referring to the 

defined level of damage. 

EXCEEDANCE 
PROBABILITY 

SIMPLE 
OVERTURNING 

(PL2) 

VERTICAL  
BENDING 

(PL2) 

IN-PLANE 
MECHNISM 

(PL1) 

Interested 
typologies 

Number 
of 

interested 
US 

Interested 
typologies 

Number 
of 

interested 
US 

Interested 
typologies 

Number 
of 

interested 
US 

<10% - 0 4,  11 II, VII, 
IX 36 

10-20% - 0 3, 8, 18, 
20 70 - 0 

20-30% - 0 - 0 VIII 12 

30-40% 4, 24, 
25, 26 24 - 0 - 0 

40-50% 18 4 2, 7, 17 61 - 0 
50-60% 3, 8, 20 66 - 0 - 0 
60-70% 2, 17 39 - 0 - 0 
70-80% 7 22 - 0 - 0 
80-90% - 0 - 0 - 0 
>90% - 0 - 0 - 0 

Tab. 6.6.1: Exceedance probability for each analyzed mechanism – interested US 
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CONCLUSIONS 
 

This thesis aims to define the seismic vulnerability assessment of the historical 

clustered buildings of the city of Timisoara, starting from the rapid survey on a 

urban scale and the most easily relived building characteristics. 

The analysis is based on a typological study of the data collected during the on-

site activity and on the information of constructive techniques and building 

peculiarities collected during the preliminary phase. The typologies are defined 

referring to the main building characteristics, such as vertical and horizontal 

structures, roof typology, wall thickness, interstorey height and stories number. 

The typologies definition is the starting point for the analyses both applying 

Vulnus methodology and the local mechanisms of collapse, because of its 

relevance in the definition of buildings most common structures, dimensions and 

geometries. On a urban scale it is not possible to analyze in detail each 

construction and some peculiar characteristics cannot be detected. It is 

determinant for the analysis validity that the typological simplifications do not 

excessively deviate the results from the real case. For this reason the comparison 

of results obtained with different levels of information is carried out, both in 

Vulnus methodology and in the local mechanism analysis. The results comparison 

brought out the general validity of the survey assumptions and consequently of the 

typological analysis. In fact the results usually overestimate the seismic 

vulnerability, due to preliminary choices made in favor of safety. It must be 

underlined that a rapid and external survey cannot consider every structural aspect 

of a building and particular structural combinations, which can considerably 

increase the vulnerability assessment, were not surveyed. It is indeed important to 

underline the preliminary character of the typological vulnerability assessment 

exposed in this thesis.  

In the analysis of the local mechanisms the varying parameters, used to carry out 

the process, are chosen in order to represent all the surveyed possible cases and to 

consider the uncertainties of the rapid survey, particularly about the horizontal 

structure typology, which are difficult to detect with an external survey. The 

parameter that more influences both the local mechanisms of collapse is the wall 

thickness, even if the vertical bending is more sensible to its variations than the 
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simple overturning. The vertical bending mechanisms has been analyzed only for 

the typologies with brick vaults at the ground floor, hypothesizing the hinge 

formation in correspondence of the vault shoulder. The vault presence is in fact an 

element that increases the possibility of the mechanism activation and it has been 

detected always at the ground floor of the analyzed typologies.  

This mechanism results to be less vulnerable than the simple overturning one, as 

typical of clustered masonry buildings. The parametric analysis adopted in the 

methodology can be extended to other useful application, such as the definition of 

 iso-acceleration curves, which  proved the spectral acceleration in relation of the 

main geometrical characteristics of the construction. 

For each building typology the fragility curve is defined, for both the analyzed 

local mechanisms. In both cases the fragility curves result to be more vulnerable 

in correspondence of two stories typologies, decreasing their vulnerability with 

the increment of the stories number. In the simple overturning mechanism the 

probability of exceeding the levels of minor and moderate damage, in 

correspondence of the ground acceleration indicated in the Romanian code, often 

exceeds respectively the 70% and the 50% while for the level of complete damage 

the percentage of exceedance probability has a range between 5 and 15%. The 

percentages for the vertical bending mechanisms are considerably lower and for 

the same ground acceleration many typologies do not even develop the level of 

complete damage.  

In conclusion the results of this thesis allow the definition of a preliminary 

assessment of a building vulnerability to the analyzed out of plane mechanisms 

after the detection of its main structural characteristics, such as vertical and 

horizontal structures, roof typology, wall thickness, interstorey height and stories 

number. This assessment is immediate and it can be identified on-site after a first 

rapid survey of the construction. It allows to define the building inclination to a 

level of damage and consequently the urgency of an eventual intervention. It is 

therefore an important device to develop prevention strategies to protect the 

existing cultural heritage as well as the human life. 
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