Universita degli Studi di Padova

DEPARTMENT OF INFORMATION ENGINEERING

Master Thesis in TELECOMMUNICATION ENGINEERING

Extraction of Gait Patterns from
Smartphone-acquired Inertial and Video

Signals

Supervisor Master Candidate
MicHELE RoOssI ALBERTO LANARO
UNIVERSITA DI PADOVA

Co-supervisor
Ri1cCARDO BONETTO
UNIVERSITA DI PADOVA

21 FEBRUARY 2017 ACADEMIC YEAR 2016/2017

ii

Abstract

In recent years, smartphones and wearable devices are the fastest growing tech-
nologies that, together with advances in Wireless Sensor Networks (WSN), will
enable ubiquitous sensing. These devices are suitable for indoor and outdoor
scenarios, can be worn on many parts of the human body and integrate a large
number of sensors able to gather physiological and behavioural biometric infor-
mation.

In this work, I am concerned with the design and implementation of a gait
analysis system able to extract meaningful gait patterns and parameters from the
biometric characteristics of a user’s walking style. A smartphone located in ad-hoc
made chest support is utilized to gather inertial data and video signals from the
built-in sensors and rear-facing camera. After a data and video processing phase,
the performance of the Growing When Required (GWR) unsupervised clustering
algorithm is investigated using different combinations of the input signals. Final
results show how the synthesis of signals extracted from the reference video and
accelerometer data is able to detect all the expected input data clusters in all the
analyzed scenarios.

iii

iv

Sommario

Negli ultimi anni, la tecnologia legata al mondo degli smartphone e dei dispositivi
indossabili é sicuramente tra quelle con tasso di crescita maggiore. Essa, assieme
agli sviluppi in ambito delle reti di sensori (WSN), ha inoltre permesso la real-
izzazione di innovativi scenari di ubiquitous sensing. Questi dispositivi possono
essere impiegati sia in situazioni indoor che outdoor, possono essere indossati in
diverse parti del corpo e integrano un gran numero di sensori che permettono di
ricavare informazioni di varia natura sull’utente analizzato.

Questa tesi é dedicata alla progettazione e all'implementazione di un sistema
di analisi della camminata in grado di estrarre parametri e modelli caratterizzanti
un dato individuo. Durante la fase di acquisizione, i dati provenienti dai sensori
integrati di uno smartphone posizionato al livello del torace sono sono affiancati
da un video di riferimento acquisito dalla videocamera posteriore. Dopo le succes-
sive fasi di processazione dei dati inerziali e del video, sono testate le performance
dell’algoritmo di clustering non supervisionato GWR, utilizzando diverse combi-
nazioni dei segnali di input. I risultati finali mostrano come, accostando i dati
accelerometrici ai segnali estratti dal video di riferimento, in tutti gli scenari anal-
izzati, il sistema proposto riesca a rilevare, in maniera ottimale, i cluster previsti
per i segnali di input.

vi

Contents

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

LIST OF ACRONYMS

1 INTRODUCTION

1.1

1.2
1.3
1.4

Human Activity Recognition
1.1.1 Sensors
1.1.2 Activities and Applications
1.1.3 Activity Recognition Process

1.1.4 Challenges of Activity Recognition with Smartphones

Gait Analysis Using Wearable Sensors
Gait Identification
Motivations and Contributions

2 RELATED WORK

3 CAMERA

3.1
3.2

3.3

3.4

Computer Vision
Camera Calibration
3.2.1 Camera Model
3.2.2 Calibration
Optical Flow
3.3.1 Optical Flow Estimation
3.3.2 Keypoints Extraction
Motion and Structure,
3.4.1 Essential Matrix
3.4.2 Essential Matrix Factorization
3.4.3 Essential Matrix Computation

4 AN OVERVIEW OF UNSUPERVISED LEARNING

4.1
4.2

Unsupervised Learning
Unsupervised Clustering
4.2.1 A Taxonomy of Clustering Methods

vii

4.2.2 Cluster Validity Analysis 47

4.3 Growing Neural Gas 48

4.3.1 GNG Pseudo-code 49

432 GNG Explained 51

4.4 The Growing When Required Network 53

4.4.1 Growing Neural Gas (GNG) vs. GWR 53

4.4.2 GWR Pseudo-code 54

5 THE GAIT ANALYSIS SYSTEM 57

5.1 Data Acquisition 58

5.2 Data and Video Processing 60

5.2.1 Data Processing oo oo 60

5.2.2 Video Processing L. 65

5.3 GWR Clustering and Pattern Extraction 68

5.3.1 GWR Parameters 69

5.3.2 Pattern Extraction L. 70

5.4 Gait Parameters Extraction 71

6 AcTIVITY LOGGER VIDEO 73

6.1 Android Programming 74

6.1.1 Android Architecture 74

6.1.2 Application Components 75

6.2 Activity Logger Video 76

6.2.1 Video Frames / Sensor Data Synchronization 82

7 RESULTS 87

71 GWR Clustering 87
7.2 Performance Analysis of the GWR, Algorithm with Different Com-

binations of Input Signals 92

7.3 Gait parameters 98

8 CONCLUSIONS AND FUTURE WORK 101

REFERENCES 103

viii

Listing of figures

1.1 Principal sensors available on smartphones. 3
1.2 Main steps of activity recognition. 8
1.3 Gait phases in a normal gait cycle. 12
3.1 Geometric model of the camera, [1]. 25
3.2 Simplified camera model, [1]. 26
3.3 Difference of Gaussian. oo 33
3.4 Maxima and minima of Difference of Gaussian (DoG). 34

4.1 The GNG network adapts to a signal distribution that has different

dimensionalities in different areas of the input space. 51
4.2 Winner node movement, [2]. 52
5.1 General scheme of the proposed gait analysis system. 57
5.2 Chest support for smartphone. L. 59

5.3 Comparison of the sampling frequency distribution of the smart-
phone employed in the data acquisition (Asus Zenfone 2) and an-

other smartphone (LG Nexus 5X). 60
5.4 Power spectral density of the three-axial accelerometer data. 61
5.5 Example of y-axis accelerometer data before and after the filtering

procedure. Lo 62
5.6 Stride, stance and swing times. L. 62
5.7 Example of ICs and FCs detection. 63
5.8 Example of left and right IC events detection. 64
5.9 KLT tracker example for two frames representing a left step and a

right step. 66
5.10 Roll, pitch and yaw angles. 67
5.11 Input matrices of the GWR clustering algorithm. 68
5.12 Activity curve and firing counter curve with different values of 7. . 70
5.13 Example of y-axis acceleration pattern. 71
6.1 Android architecture diagram. 75
6.2 Activity Logger Video icon and home screen. 81
7.1 Firing counter curve and firing counter threshold h;. 88

ix

7.2
7.3
7.4
7.5
7.6
7.7

7.8

Example of the GWR network evolution using accelerometer and

video signals.o 89
Reference patterns associated to the clusters discovered by GWR

algorithm using accelerometer and video signals. 91
Y-axis acceleration signals for the three different walking styles. . . 92
Clustering results obtained with accelerometer and video signals. . 93

Clustering results obtained with accelerometer and gyroscope signals. 95

Clustering results obtained in the user identification scenario with
accelerometer and video signals. L. 96
Clustering results obtained in the user identification scenario with
accelerometer and gyroscope signals. 97

1.1
5.1
7.1

7.2

7.3

7.4

7.5

7.6
7.7

Listing of tables

Types of activities studied in literature 5
IMU specifics of Asus Zenfone 2 used for data acquisition. 58
Expected and found number of clusters using accelerometer and
video signals. 94
Expected and found number of clusters using accelerometer and
gyroscope signals.o oo 94
Expected and found number of clusters using accelerometer and
video signals in the user identification scenario. 96
Expected and found number of clusters using accelerometer and
gyroscope signals in the user identification scenario. 97
Gait parameters extracted from normal walking samples. 99
Gait parameters extracted from right-limp walking samples. 99
Gait parameters extracted from left-limp walking samples. 99

xi

xii

Listing of acronyms

ARBF Augmented Radial Basis Function Neural Network

BIC Bayesian Information Criterion
CCD Charge-Coupled Device
CoM Center of Mass

CPU Central Processing Unit

CWT Continuous Wavelet Transform

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DoG Difference of Gaussian

ECF Explicit Complementary Filter
EER Equal Error Rate

EM Expectation-Maximization
EMG Electromyography

FC Final Contact

FIR Finite Impulse Respose

FTP File Transfer Protocol
GMM Gaussian Mixture Model
GNG Growing Neural Gas

GWR Growing When Required
HAR Human Activity Recognition
IC Initial Contact

IMU Inertial Measurement Unit

xiii

KLT Kanade, Lucas and Tomasi feature tracker
KNN K-Nearest Neighbours

LoG Laplacian of Gaussian

MEMS Micro Electro-Mechanical Systems
ML Machine Learning

OS Operating System

PCA Principal Component Analysis
PPM Perspective Projection Matrix

PSD Power Spectral Density

RCE Rapid Cluster Estimation

SIFT Scale-Invariant Feature Transform
SVD Singular Value Decomposition

SVM Support Vector Machine

Xiv

Introduction

The development of smartphones equipped with a set of different and powerful
sensors has enabled new techniques that allow to better understand the rela-
tionship between physical activity and health condition. Moreover, smartphones
sensors can be also exploited to develop new frameworks that can be utilized to
recognize a target from its walking style [3], [4], or to detect anomalies in gait pat-
terns [5]. Generally, we can find three main application fields: Human Activity
Recognition (HAR), medical and healthcare, identification and authentication.

1.1 Human Activity Recognition

Monitoring daily activities can help in recognizing the health and wellness of dif-
ferent users and can induce behavioural changes for an healthier and more active
lifestyle. HAR has attracted increasing attention in the field disease prediction.
For example, when abnormal actions of elders or postoperative patients are de-
tected, nursing staff or family members may receive a warning message so that
sick patients can receive medical attention. Besides, old people might have dis-
eases such as Alzheimer, Parkinson or epilepsy if their action often deviate from
normal habits and activities.

In HAR, different types of sensing technologies have been exploited to improve

the recognition rate and adapt to different application scenarios. They can be di-

vided in three main categories: vision-based approaches, environment interactive
sensor based approaches and wearable sensor based approaches. Vision-based
techniques mainly exploits cameras or videos to monitor and recognize differ-
ent activities. Although this method can reach high recognition rate, the use of
camera or video is not very practical in many indoor environments, especially
for privacy issues. Another issue of vision-based approaches that greatly limits
their practical use, is that they often suffer from illumination variation, ambient

occlusion and background change.

For environmental interactive sensor-based approaches, they try to recognize
human activities by analysing the interaction between objects and the user. This
is done assuming that there exists a relation between objects and activities. For
example, if a sensor that is embedded in a chair is triggered, we can deduce
that the user is sitting on it. With this approach activities like eating, washing,
sleeping can be recognized. However, this usually comes at a high cost and is
often only limited to indoor scenarios. Other issues include how to efficiently
deploy the sensors without causing much inconvenience to the users and how to

set up and maintain the system in order to make everything work normally.

For the sensor based approach, the small size and the flexibility of the sensors
make it possible for a user to wear or carry mobile devices during his daily routine
without any problems. These devices are suitable both for indoor and outdoor
scenarios, and can be worn on many parts of the human body like legs, ankles,
arms and wrist. Moreover, a user can take more than one mobile device at the
same time in order to increase the detection rate of the HAR system [6]. As a
consequence, more recent studies focused on exploring the potential of wearable
devices for activity recognition in a pervasive and ubiquitous way. Among all the
wearable devices, smartphones have the advantage that they do not force the user
to wear additional sensing components and therefore the interest on smartphone-
based HAR is drastically increasing. Also, modern smartphones have powerful
computing and communication capabilities that allow us to process data in real
time and efficiently interact with remote servers. Moreover, smartphones con-
tain several sensors such as gyroscope, accelerometer, GPS, camera, microphone,
compass, etc. that can be exploited to collect important signals and data that
provide an alternative and economic way for activity recognition. Besides using

their powerful sensing functionalities, smartphones can be used as platforms for

persuasive applications to motivate healthier behaviour because of their ubiqui-
tous presence. In the next section, I briefly recall the available sensors on the
mobile phones that can be used for activity recognition purposes and next I focus

on the main activities that can be recognized using them.

1.1.1 Sensors

Although today’s mobile phones are very powerful devices and their computing
power and functionalities are increasing, from the user’s point of view they still
as communication devices. One possible big step could be to use them as active
assistant devices that support users’ daily activities, and this could be realized
thanks to the embedded sensors on mobile phones.

Figure 1.1 shows the main sensors available on current smartphones: the stan-
dard sensors such as cellular radio, WiFi, Bluetooth, microphone, camera and
GPS, and the newer ones like accelerometer, gyroscope, digital compass, the light
sensor and the proximity sensors. In the near future, it is expected that the
number of sensors integrated in the smartphones will grow to support new ap-
plications. Sensors providing health information like heart beat rate or blood
pressure are not very useful if embedded on a smartphone since they require con-
tact with the skin of the user. However, there already exist wrist/chest bands
and smartwatches that are able to collect this information and that are directly

connected via Bluetooth to the smartphone.

Cellular Radio

Camera
Accelerometer Gyroscope
Digital Compass Bluetooth
GPS Proximity Sensor
Microphone Light Sensor

WiFi

Figure 1.1: Principal sensors available on smartphones.

One fundamental sensor on a smartphone, the radio for cellular communication,
is used in ubiquitous applications for context recognition. By using the connection
information between the radio and the cell tower, it is possible to locate the user,
for example, it is possible to determine when he/she is at home. Even though
this only provides a high level activity information, it gives a clue of what the
user may be doing. Moreover, signal fluctuations between the radio and the tower
may be used to assess if the user is walking, driving or if he is in a stationary
state.

Besides the radio for cellular communication, Bluetooth and WiFi radios can
be used for context and activity recognition. For example, interactions among
different smartphones Bluetooth transceivers can be used to infer social interac-
tions between users. Another application the transceivers can be utilized for is
localization. For example, fluctuations in WiF1i signals can be used to locate the
user.

The microphone and the camera can also be used for HAR purposes by collect-
ing audio or pictures during user’s daily activities, such as being in a conversation
or being in a noisy environment. GPS is one other sensor used mainly to track
the location and the speed of the mobile phone.

The three-axis accelerometer is probably the most effective sensor in the HAR
with smartphones context. Even though it was integrated in the mobile phone
with the objective of enhancing the user experience (by changing the orientation
of the screen according to the orientation of the phone), it can be used to recognize
activities like walking, running, sitting, climbing stairs, and even falling. Activity
recognition using smartphones inertial sensors is receiving a lot of interest since
with these type of sensors a very high classification rate can be achieved. Similarly,
the gyroscope and the digital compass can be used for HAR by measuring the
orientation of the smartphone and they lead to very good results when combined
with the accelerometer.

Proximity and light sensors were introduced to enhance the user experience. For
example, when the proximity sensor detects that the user is holding the phone
close to its face, the keyboard is disabled or similarly the light sensor automati-
cally adjusts the brightness of the screen according to the surrounding environ-
ment. For activity recognition purposes, they can be used in combination with

other sensors in order to infer more detailed information about users activities.

For instance, the light sensor may provide information about the environment of
the user and consequently also prior information about the activities that can be

performed in that situation.

1.1.2 Activities and Applications

If we analyze the early works on HAR with smartphones, they only considered
high-level activities associated with location information like staying at home or
being at the office. However, these results do not tell much about the exact
activity performed by the user. In fact, being at the office is not equivalent to
working, or staying at home does not tell if the user is watching TV or having
lunch. With other sensors like accelerometer or gyroscope more specific activities
can be recognized, like sitting or standing. From the microphone, for example,
we can detect that a conversation is going on, from the bluetooth sensor we can
understand that the user’s contacts are around and consequently we can conclude

that the user is sitting at a meeting in the office.

Class Activity types
Locomotion Walking, running, standing, still,
lying.

Mode of transportation Biking, travelling with a vehicle,
riding a bus, driving.

Exercise Outdoor bicycling, playing soccer,
biking on a fitness bike.

Health related activities Falls, rehabilitation activities,
following routines.

Daily activities Shopping, using a computer, sleeping,
going to work, going back home, working,
lunch, dinner, breakfast, in a conversation,
attending a meeting.

Usage of the phone Text messaging, making a call, browsing

the web, writing an email, using an app.

Table 1.1: Types of activities studied in literature

Location and motion-associated activity recognition are the two main fields
of activity recognition using mobile phones. Recent works used smartphones to
recognize even more complex activities like, in the sports field: cycling, playing
soccer, running, sitting, standing, walking, lying, falling, etc. or, for daily ac-
tivities: shopping, using a computer, sleeping, going to work, working, having
lunch, dinner or breakfast. In Table 1.1 I present the main types of activities
studied in the literature classified in six different categories according to their ob-
jectives [7]. HAR with smartphones can be used in various application scenarios.
They are classified in three main categories [8]: applications for end users (health
monitoring, fitness tracking, etc.), application for third parties, applications for
crowds and groups (activity-based social networks, place/event detection, etc.).
The development of health-care applications is mainly due to the strong correla-
tion between the level of physical activity and the level of well-being. Common
diseases like obesity are related to a high level of physical inactivity. Nowadays
patients are asked to keep a diary about all their principal physical daily activi-
ties. However, this practice can only succeed if the patients are very meticulous
and precise. On the other hand, an automatic activity recognition system based
on mobile sensing can surely offer a more reliable solution.

Activity recognition with smartphones can also help in following daily routines
and this can be very useful, especially for elderly users. Deviations from routines
and habits can be easily identified and this helps doctors to diagnose particular
conditions that would not be observed during routine analysis. In the case of
elderly patients, in fact, inconsistencies in their daily routines can be a symptom
of dementia or Alzheimer. One of the main challenges in this field, especially
when working with elderly, is that these type of patients may experience strong
difficulties with the smartphone interface due to their limited experience.

Another field of application of activity recognition with mobile phones is the
rehabilitation of diseases. For instance, a HAR system can detect if a user is
correctly doing the exercises recommended by a physician or a physiotherapist.

Well-being and fitness monitoring are also typical applications in HAR studies.
The mobile phone can act as a pedometer and can count the steps and calories
burnt during our daily activities. Moreover, using persuasive techniques, it can
interact with the users to change and improve their behaviour and lifestyle.

Ambient-assisted living is another field that can benefit from activity recogni-

tion systems. Assistance for people with cognitive disorders or people with chronic
condition can be provided and their physical activities and routines can be moni-
tored. Another useful application exploited recently by researchers in this field is
the smartphone-based fall detection. When a fall is detected, especially outdoor,
these systems provide support with an online location identification using the
GPS.

1.1.3 Activity Recognition Process

The activity recognition process can be summarized in collecting sensor readings,
processing them and assigning each sensor reading to the appropriate activity
(i.e. the process of how to interpret raw sensor data to classify a set of different
activities). Most of the studies, not necessarily in the field of mobile sensing,
focused on statistical and Machine Learning (ML) tools [9] in order to infer useful
information about the activities from the sensor data. The learning phase can be
of two different types: supervised or unsupervised. The first one relies on sample
observations (labels) associated with a specific activity used to train a classifier.
Unsupervised techniques, on the other hand, do not rely on labeled data. Usually
supervised or semi-supervised methods are the two favourite approaches [9], [10],
[11].

Supervised methods are composed of two main phases: training and classifica-
tion or testing. In the training phase a given set of labelled data called "training
set” is used to train a given classifier in order to discover patterns from the sensor
readings. One of the main issues of this phase is labelling the data in the training
set. Either the user itself labels each data according to the corresponding activi-
ties, or the performed activities should be recorded with a video camera and then

automatically labeled by the system.

Activity Classification Steps

After the sensor data are collected, the main steps of activity recognition, shown
in Figure 1.2, are preprocessing, segmentation, feature extraction, optionally di-

mensionality reduction and finally classification [12], [13].

7

SEGMENTATION

+

RAW DATA PREPROE)ESSING
FEATURE

EXTRACTION

CLASSIFICATION| —

Y EX R

Figure 1.2: Main steps of activity recognition.

The preprocessing phase includes noise removal and representation of raw data.
The segmentation step is applied to a continuous stream of sensor data in order
to divide the signal into smaller segments. The feature extraction phase includes
the generation of abstractions that better characterize the sensor data. In prac-
tice, raw data are reduced to a smaller set of features, called feature vector, that
represents the original data in the best way. Dimensionality reduction is not
mandatory and can be applied to remove irrelevant features to decrease the com-
putational effort and also to increase the performance of the activity recognition
process [14]. After all these intermediate steps, the processed data can be passed
to the final classifier. The classification phase is a mapping of the extracted fea-
tures to a set of activities. The classification procedures may involve different
techniques, from a simple thresholding scheme to a more refined ML algorithm

based on pattern recognition or neural networks.

Performance Measures

In the testing phase the output should be compared with the ground truth, i.e.
the actual activity the user is performing, in order to evaluate the performance
of the implemented classification system. Most of the times, cross validation is
employed using a large part of the training set as ground truth and the other as
test set [15]. Other times training and test data may be split [16].

The performance measures used in most of the studies on HAR with smart-
phones are: accuracy, precision, recall or sensitivity, confusion matrices and F-
measure, derived from precision and recall [17]. Even though accuracy and pre-

cision are the mostly adopted performance measures in literature, since we often

deal with unbalanced datasets, other performance measures such as average pre-

cision and recall over all possible activities should be used.

1.1.4 Challenges of Activity Recognition with Smartphones

In this section we investigate the main specific challenges related to activity recog-

nition with smartphones.

Continuous Sensing Continuous sensing, i.e. the continuous sampling of the sensor
on the smartphone, is fundamental for every activity recognition application, but
it highly affects the battery life of the mobile phone. When supporting continuous
sensing applications, the user experience should not be affected, so that the user
should be able to use the phone for making calls, sending SMS, taking pictures
and browsing the web. Therefore, energy-efficient mechanisms that duty-cycle or

turn off the sensors are required to save as much energy as possible.

Running Classifiers on Smartphones As mentioned above, most of the algorithms
used in activity classification originate from ML techniques. However, in the
field of activity recognition, especially with mobile phones, these algorithms may
not reach very high performance because of the limited processing power and the
battery constraints. Moreover, if we look at the literature on activity recogni-
tion using smartphones, we can observe that in most of the studies sensor data
are collected from the smartphone and are then processed off-line, using most of
the collected data for training [18], [19], [20]. However, off-line processing can
be exploited only when online recognition is not necessary. For example, if we
are interested in following the daily routine of a person, the sensors can collect
the data during the day; the data can then be uploaded to a server and finally
processed off-line for classification purposes. However, for applications where the
user is given a program with a set of activities and their duration, we might be
interested in what the user is actually doing and if he is performing the assigned
tasks. Therefore, online activity recognition becomes important, especially for
personal fitness and well-being applications running on smartphones.

Despite the limited resources available on the smartphones, examples of activity
recognition show that simple classifiers like decision trees, minimum distance

classifiers and K-Nearest Neighbours (KNN) can run on mobile phone providing

9

quite good accuracy rates [21]. When considering more complex and resource-
intensive classifiers, we must rely on backend servers uploading the collected data
and downloading the final results. However, with this approach, no support for

real-time applications is available.

Phone Context Problem One of the main problem associated with mobile sensing
is the phone context problem. It occurs when the phone is carried in an inappro-
priate position with respect to the event being sensed. For example, this problem
is encountered when the application wants to take a sample from the light sen-
sor but the phone is located in the pocket. Especially with accelerometer-based
recognition systems, the phone location strongly influences the classification per-
formance. In most of the studies using inertial sensors, the phone is forced to be
carried in a particular location by the user, or only the signal magnitude, that is
independent of the phone orientation, is to be considered. In [22], a two-phase
activity recognition system is proposed. In the first phase, the position of the
smartphone is detected while in the second phase the classification procedure is
performed.

Although there exist other attempts in the literature to solve the phone context
problem [23], [24], it is still an open issue, especially in real time applications
including different poses and activities.

Training Burden Another challenging phase is the training phase. Usually, all the
training models are created off-line and then used in the classification phase.
This off-line training phase is not an easy task and it is essential for an activity
recognition system to create effective models. Generally, the training sets are
collected over a long period with a adequate number of test subjects. However,
collecting a sufficient amount of data may be hard and tedious and so it would be
interesting to have applications that do not require to deal with the burden of the
training phase. Moreover, having classifiers able to recognize activities with an
high detection rate with only a limited set of training data is very important. This
is partially solved by semi-supervised approaches like active and self learning [25],
[11]. Self-learning employs a single classier, which is used to classify unlabelled
data. When the classifier’s confidence in its prediction for a sample is high, it

labels that sample with its prediction and adds it to the training set. When only

10

the most confident results are used as labels, the accuracy of the classifier should
increase. Active learning, instead, does not use predictions as labels. Rather, it
chooses samples of interest and asks the user to label them manually. The data
labeled by the user are then added into the training data to recreate the classifier.
Samples are chosen based on the confidence of prediction, but instead of using
those with a high confidence like self-learning, those with the lowest confidence

are selected.

1.2 Gait Analysis Using Wearable Sensors

A particular way or manner of walking is the definition for gait [26] and human
gait is the continuous repetition of cycles, which generally consist of two steps
each. Gait analysis is the study of human locomotion and it provides useful

information in various areas such as health care and therapy.

Gait is not a new topic in the research field, in fact it has been investigated in
several medical studies, such as [27], [28]. In this works Murray stated ”Although
the excursions of both pelvic and thoracic rotation in repeated trials of the same
subject were similar, there were striking differences in these excursions among
the individual subjects tested and also if all gait movements are considered, gait
is unique .” This study presents a first input to gait uniqueness of each person.
Moreover, in [26] it is shown how several human factors like aging, weight, injuries,
operations, diseases, etc. may change a person’s way of walking in a permanent

or temporary way.

Moreover, Figure 1.3 shows how Dr. J. Perry divided the biological process
of the musculo-skeletal system of a gait cycle, which consists five stance phase

periods and three swing phase periods [29].

11

Phases p——o____Stance Phase } Swing Phase ——

AR

Initial Loadin Terminal Pre initial | Mid Terminal
Perlods -~ tact Remn?ﬂ Midstance Stance Swing Swing| Swing Swing
% Cycle | ; t { 1
% 12% 50% B82% 100%

Figure 1.3: Gait phases in a normal gait cycle.

. Initial contact: This is the initial phase of each gait cycle. It comprises

the moment when the foot touches the floor.

. Loading response: This is the initial double-stance period. It begins with
the initial floor contact and continues until the other foot is lifted for swing.

. Midstance: In this phase the limb advances over the stationary foot while

the knee and hip extend.

. Terminal stance: This phase completes the single-limb support. The
stance begins with the heel rising and continues until the other foot strikes

the ground. Throughout this phase, body weight moves ahead.

. Pre-swing: This final phase of the stance is the second double-stance inter-
val in the gait cycle. It begins with the Initial Contact (IC) of the opposite
limb and ends when the foot lifts from the floor.

. Initial swing: This phase is approximately one-third of the swing period,
it begins with a lift of the foot from the floor and it ends when the swinging

foot is opposite the stance foot.

. Mid-swing: This phase begins as the swing limb is opposite the stance
limb and ends when the swinging limb is forward and the tibia is vertical.

12

8. Terminal swing: This final phase of the swing begins with a vertical tibia

and ends when the foot strikes the floor.

The sequential combination of these phases enables the limb to accomplish three
basic tasks, namely, weight acceptance, single-limb support and limb advancement.
Weight acceptance begins the stance period through IC and loading response.
Single-limb support continues the stance through the midstance and terminal
stance. Limb advancement begins in the pre-swing phase and continues through

initial swing, mid-swing and terminal swing.

The main achievements of human gait analysis can be divided into three areas,
namely, kinematics, kinetics and FElectromyography (EMG). The kinematics of
the human gait describes the movements of the major joints and components of
the lower extremity. Gait kinetics focuses on the study of forces and moments
that result in the movement of human segments. The EMG of the human gait is
mainly used to detect and analyze muscle activity during human walking.

For many years, the quantitative analysis of gait patterns has been studied in
gait laboratories equipped with many sophisticated analysis and measurement de-
vices that required specialized personnel and laboratory environment. Moreover,
most of the equipment was costly and the data acquisition procedures were often
cumbersome. More recently, different types of low cost and small sensors such
as accelerometer, gyroscope, force sensors, etc. were used to perform human gait
analysis because they are easy to use, they do not require a laboratory environ-
ment and their reliability is satisfactory [30]. A current and quite recent trend
has seen the deployment of accelerometers in off-the-shelf cellphone handsets such
as smartphones and, consequently, studies of gait analysis have been attempted
using smartphones embedded sensors.The effectiveness of this approach has been
shown in [31]. Here, the authors confirmed that smartphones with gait analysis
applications have the capacity to quantify gait parameters with a degree of accu-
racy that is comparable to that of the tri-axial accelerometer. Hence, parameters
like step length, step velocity, cadence and motion intensity can be calculated
through the inertial sensors of the smartphone and can be used for anomaly de-

tection or medical studies.

13

1.3 Gait Ildentification

Gait identification is a new biometric technology dealing with the identification of
individuals through the analysis of the way they walk. Gait recognition systems,
like HAR, have typically three main components. A low-level sensing module
that gathers raw data using motion sensors. A feature processing and selection
module that processes the raw sensor data and extracts a set of useful features.
A classification module that uses the extracted features to identify the users. Re-
searchers works differ according to the techniques and algorithms used in these
three modules, but the common aspect is that the gait data acquisition is per-
formed through wearable sensors.

In [5], it is used a device called GaitShoe, worn on shoes and equipped with
an extensive sensor suite. The results suggested that GaitShoe is able to extract
useful features and to recognize individual subjects, as well as groups of subjects
with a similar gait. Moreover, Neural Networks appeared to be a promising
method for discriminating between both individual subjects and between groups
of subjects with normal gait, and groups of subjects with Parkinson’s disease.

The first work aimed at investigating user identification from accelerometer
signals was [32], where the recognition is based on the analysis of the three-
dimensional acceleration signal produced by a portable device worn on a belt
with fixed orientation. Processing is performed using peak detection, and for
identification purposes they analyzed the correlation in the frequency domain.
The results are quite promising with a mean Equal Error Rate (EER) of 13%.

In other works, data acquisition is performed with inertial sensors worn in
different body positions leading to unrealistic scenarios, such as ankle, hip and
waist. Moreover, inertial sensors are used in combination with other sensors (e.g
GPS) due to their sensing ability.

Recently, attention has been given to accelerometer-based gait recognition on
mobile devices due to their rapid deployment and to the explosion of their usage
in people’s daily lives. In 2010, Derawi et al. [33] acquired acceleration data
from a mobile phone attached to the belt of the subject. Only the acceleration
on the x-axis is used to extract gait cycles and they used a single representative
average cycle for each person. Dynamic Time Wrapping [34] is used as comparison

method. Finally, ML algorithms are investigated in the classification phase for

14

user identification. Supervised algorithms such as KNN, Support Vector Machine
(SVM), Multi Layer Perceptron and, Decision Trees [35] are typically used.

1.4 Motivations and Contributions

This thesis describes the development of a novel system to extract meaningful
gait patterns and gait parameters from smartphone-acquired accelerometer data
and signals obtained from a reference video. Moreover, it is able to discriminate
between different types of gait and to detect anomalies like limps or other walking
problems. Therefore, it can be used in rehabilitation scenarios to monitor the
evolution of patient’s gait during the treatment. Additionally, it can be useful in
Parkinson’s disease studies to analyze the gait changes along different stages of
the disease. Besides, this system can be included in a personal health counseling
application in order to warn a person about his possible walking issues.

The proposed system includes three main sequential phases typically imple-

mented in almost every gait recognition system:
e data acquisition;
« data preprocessing;
* patterns extraction.

This work differs from the approaches present in the literature for the inclusion
of signals extracted from a reference video acquired during a walk and for the
techniques and algorithms used in the patterns and parameters extraction phase.

First of all, for data collection and video acquisition, I used a last generation
smartphone with built-in inertial sensors and camera. From the inertial sensor
accelerometer and gyroscope data were acquired with the corresponding times-
tamps. The former are widely used for gait analysis and the latter, in this work,
are used mainly in combination with accelerometer ones in order to extract gait
cycles. Regarding the data acquisition procedure, volunteers walked in a real
world scenario at their preferred walking speed. Every volunteer was asked to
record four walking acquisitions: the first two in a way that he considered normal,

the third simulating a limp on the right leg and the fourth simulating a limp on

15

the left leg. All acquisitions were performed with the smartphone located in the
chest with a support that blocked it in a fixed vertical position.

From the recorded video, using different computer vision techniques and al-
gorithms like optical flow estimation and frame keypoints extraction [1], the in-
formation about the positions of the user in the sagittal, transverse and vertical
axis during the walking cycles are retrieved along with the pitch, roll and yaw
rotations. Inspired by [36] and [37], IC and Final Contact (FC) instants of every
step are detected and gait cycles are extracted. From the extracted gait cycles,
classical parameters like stance and swing time, step length and step velocity are
calculated.

For the pattern extraction phase, I proposed an unsupervised ML algorithm
that is able to find meaningful clusters in the space of gait cycles creating a
representative template for each of them. In particular, the proposed algorithm
is an adaptation of the Growing Neural Gas (GNG) clustering algorithm [38]. In
the classical GNG algorithm a new node is introduced in the network after a fixed
number of iteration, while in this version, called Growing When Required (GWR),
a new node is added only when no existing node sufficiently matches the input
(39].

The rest of this thesis is organized as follows. In Chapter 2, I illustrate the
literary work related to the proposed gait analysis system. In Chapter 3, I pro-
vide an introduction to computer vision and to the algorithm used to estimate
the position and the rotation of the user during the walking acquisitions. In
Chapter 4, I present an overview of unsupervised machine learning and unsuper-
vised clustering. Moreover, the GNG and GWR algorithm are analyzed in detail
presenting their main differences. In Chapter 5, I describe the design and the
implementation of the proposed gait system analysis, while, in Chapter 6, the
data logger application is presented together with the main issues faced during
its implementation. Then, in Chapter 7, I present the experiments and tests car-
ried out to asses the performance of the proposed system. Finally, in Chapter 8
I draw the conclusions.

16

Related Work

In this thesis, I consider a gait analysis system based on accelerometer and gyro-
scope collected data together with a reference video. Extracting meaningful and
significative parameters and analyzing irregularities and anomalies in the walking
gait of a person may be very useful for healthcare and prediction of some diseases
like Parkinson or Alzheimer. The instruments and procedures of gait assessment
should be simple, inexpensive and easy-to-use.

In the last decade, a lot of works related to the extraction and analysis of gait
parameters and anomaly detection have been proposed in the literature. Most of
them are based on the processing of raw data collected from Inertial Measurement
Unit (IMU) placed in different parts of the body (e.g. ankles, chest, arm or lower-
back). Other approaches investigated the detection of unusual walking patterns
with computer vision techniques applied to an input reference video.

In order to obtain accurate gait parameters, different algorithms for the pro-
cessing of the raw accelerometer and gyroscope data have been proposed. In [40],
the authors reviewed five different estimation methods for gait event detection
and temporal parameters extraction from acceleration signals collected from a
single inertial measurement unit. Their results indicate that the obtained sensi-
tivity ranges from 81% up to 100% across the different methods. The positive
predictive values range from 94% to 100%. In the estimation of step and stride

durations all methods are acceptable. On the contrary, when estimating swing

17

and stance times some differences were found due to errors of FC detection. In
this work, the authors also show how the placement of the IMU in the lower trunk
does not significantly affect the final accuracy. In [37], the authors present a gait
parameter estimation method similar to the one I use in this thesis. They take
advantage of the continuous wavelet transform that is able to denoise the signal
preserving the underlying main frequencies. When combined with differentiation
analysis, this technique shows good performance in suppressing noise, correcting
baseline drift and resolving overlapping peaks problems. Moreover, it can detect
IC and FC instants of every gait cycle without errors. They also present a method
based on the filtered vertical component of the gyroscope that is able to distin-
guish whether an IC event comes from the right or left foot. In their experiments,
all ICs and FCs are correctly detected and the time error is approximately 2%

and 3% in each side, respectively.

In [41], the authors propose a personal health counseling application that is
able to find some special features of the user and monitor their weekly or monthly
changes. If irregular or abnormal walking parameters (like asymmetry or skew,
stumbles or slip) are often detected, the user may have some physical problems
that can possibly increase the fall risk. In this study the data are collected from
an embedded tri-axial accelerometer and tri-axial gyroscope of a last generation
smartphone located in the belt of the user. In the data collection phase, in order
to avoid problems related to noise recursion, accelerometer drift, and to remove
the effect of the gravity on the raw data, the authors propose low-pass filtering
and a "zero velocity updating” technique assessing the drift of the accelerometer
with every step. Thus, allowing the removal of the effects of the drift over one
step. The walking distance is calculated through a quadratic integral acceleration
over time. Mean step length and mean walking speed are estimated using the up-
ward and downward movement of the trunk according to the inverted pendulum
model of the body’s Center of Mass (CoM) trajectory. Qin et al. [42] present a
smartphone based system to collect and calculate classical gait parameters like
step length, velocity, cadence, motion intensity and walking regularity. Moreover,
the authors developed a prototype of gait parameter collection and visualization
system on a laptop and a cell phone with an integrated fall and anomaly detection
function. The anomaly detection algorithm, that includes a dynamic threshold

set according to a normal distribution model, can find distinct abnormal gait

18

parameters that come from an occasional accident. If the latest data deviates
from the normal activity model too much, the data will be set as an abnormal
event. The proposed system shows high accuracy and reliability with respect to
counting steps and walking duration with a global error smaller than 5.45%. In
[43] another anomaly detection system is proposed. It is an accelerometer-based
solution with predefined extracted features. This approach uses an unsupervised
ML algorithm able to detect abnormal situations with a reasonable detection
rate. In order to detect whether a pattern is classified as abnormal or not, a
probability model based on Gaussian Mixture Model (GMM) is created. In or-
der to define the suitable probability function and determine the optimal number
of classes of the GMM, the Expectation-Maximization (EM) algorithm is used
together with Bayesian Information Criterion (BIC). Using the defined probabil-
ity density function, if the random variable associated with the current instance
has a probability that is below a given threshold, likely it is associated with an

abnormal event.

Gupta et al. [44] performed falling detection using a tri-axial accelerometer.
They put an accelerometer on subjects’ waist combining it with a pressure sen-
sor in the insole. The authors propose a basic threshold-based algorithm and an
innovative one based on frequency analysis which uses wavelet transform. Chen
et al. [45] present a fall detection method using non invasive wearable sensors in
conjunction with a wireless network. They use a low-power and low-cost Micro
Electro-Mechanical Systems (MEMS) technology based accelerometer and build
a wearable circuit on board for that. The device is then secured on the waist of
the user in order to measure the acceleration of the subject. Once the norm of
the acceleration exceeds a predefined threshold an impact is found. If there is
no impact within the next several seconds, the system starts to look for orienta-
tion change. If no orientation change is detected, the subject is assumed to be
injured or unconscious and an alarm system sends a warning message. Selvabala
et al. [46] implement a human fall detection system using two different network
architectures. This system is conceived with two sensors including a three-axis
accelerometer and a passive infrared sensor to monitor the activities of elderly
people. The real time output is compared with stored templates and the com-
putational analysis is done within a microcontroller in real time. The system

informs the caretaker through the wireless architecture whenever an abnormal

19

data is detected. Chehade et al. introduced a normal distribution walking model
based on one feature extracted from acceleration signal during walking activities
[47]. They tried different placements for the tri-axial accelerometer on the human
body. Finally they found that the sensor on the chest performed best in separat-
ing stumble from normal activities. Stumble data, in fact, are considered as an
abnormal deviation from the normal activity model, so they trained their model
through a long period of history data.

Recent works demonstrated how spectrogram image processing can be exploited
as a powerful signal processing tool in many different fields including speech pro-
cessing and biomedical engineering. In [48], for example, El-Gohary shows the
capability of spectrogram analysis using kinematic sensors to track tremors in
Parkinson’s disease patients in free-living conditions. In [49], the authors imple-
mented a system that uses neural networks and clustering of wavelet-decomposed
spectrogram images able to detect gait episodes. Signals collected from a chest-
worn IMU are processed using Explicit Complementary Filter (ECF) in order
to estimate and track the torso angle. Using the features obtained from the
wavelet decomposition of spectrogram images, they use an Augmented Radial
Basis Function Neural Network (ARBF) to classify gait episodes. ARBF is a
variant of RBF neural network that has been used for the classification of head
movement command using head-worn accelerometer [50] and classification of falls
using waist-worn accelerometer [10]. Cluster centroids of ARBF are then opti-
mized using Rapid Cluster Estimation (RCE). A pilot study of 11 participants
suggests that the proposed approach is able to distinguish between walk and
non-walk activities with up to 85.71% and 91.34% specificity.

In parallel with traditional inertial sensors-based gait analysis, researchers have
recently begun to explore low-cost computer vision technologies to augment ex-
isting sensing networks into smarter visual monitoring systems to automatically
assess human behaviours for potential medical diagnosis. For example, a tracking
system for home-based rehabilitation is proposed in [51] to help stroke patients
recover their mobility, Nait-Charif et al. [52] performed activity summarisation
and fall detection in a supportive home environment and Gao et al. [53] ana-
lyzed eating activities of patients at a nursing home. In [54], a computer vision
based system able to determine different walking styles and to detect whether a

walking action deviates from usual walking patters is proposed. The analyzed

20

method starts with the extraction of human silhouettes from an input video and
the computation of frame-to-frame optical flows, then motion metrics based on
histogram representations of silhouettes-masked flow and finally gait analysis with
eigenspace transformation. This work, based on the analysis of six different walk-
ing gaits, suggests good results with an accuracy of about 90%.

Differently from the existing sensor-based or smartphone-based gait analysis
studies proposed in the literature, in this thesis I focus on merging the informa-
tion coming from the embedded sensors of the chest-worn smartphone together
with the signals extracted from the rear phone video camera, recorded while the
user is walking. The main objectives of my work are to detect and extract mean-
ingful patterns and parameters that characterize user’s gait and to observe if
different walking styles can be reliably detected in an unsupervised scenario. As
in [54], T used different computer vision techniques like the computation of the
frame-to-frame optical flows, described in detail in Chapter 3, that allows me to
retrieve the rotation and the translation of the user’s body during the acquisi-
tion. The encouraging results described in [37] concerning the detection of the
IC and FC instants in the gait cycles led me to apply the same algorithms to the

accelerometer and gyroscope data extracted from the smartphone.

21

22

Camera

3.1 Computer Vision

Between all the human senses, vision is largely known to be the one that has
more potentiality. The biological system capabilities are very powerful: the eye
is able to collect all the electromagnetic radiations coming from different objects
and the brain can processes this information creating an image of the scene we
are looking at. If we would give a definition of Computer Vision, we could say
that it deals with image analysis and its main objectives are to detect what is
present in the scene and where every element is located.

In [55], Ullman distinguishes between high-level and low-level computer vision.
The former is focused on extracting some physical properties of the visible envi-
ronment like tridimensional shape or the edges of the objects. Low-level computer
vision processes are typically parallel, spatially uniform and independent from the
problem and the prior knowledge associated with some particular objects.

On the other hand, high-level computer vision deals with the extraction of
spatial relations, recognition and objects classification. High-level processes are
usually applied to a portion of the image and depend on the objective of the com-

putation and on the a priori knowledge associated with some particular objects.

High-level problems related to the perception and the recognition of the objects

23

make the reconstruction of the geometry of the scene a very difficult task. This

task can be effectively described as the inverse of computer graphic, in fact, given:
o the geometric description of the scene;

o the radiometric description of the scene (light sources and surface proper-

ties);
e the complete description of the camera;

the calculator creates a "synthetic” image seen from the camera. The dimension-
ality reduction related to the geometric projection and the computation of the
luminance and the radiometry of the scene make the problem under-constrained
and consequently it has no unique solution.

A theory called reconstructionism [56], describes the computer vision problem
by considering that an artificial or natural visual system is simply a system that
processes information. Once all the physical assumptions are defined, the main
problem is related to the tridimensional reconstruction of a pictorial scene. To
summarize, the main purpose of computer vision, as defined in the reconstruc-
tionist paradigm, is a complete and accurate description of the world based on
tridimensional primitives.

This approach has been contested in [57] where the authors claimed that the
description of the world must not be too general, but instead it must be driven

by a main objective (purposivism).

3.2 Camera Calibration

In this section I introduce a geometric camera model together with the problem

related to the computation of the model’s parameters (calibration).

3.2.1 Camera Model

The most common geometric camera model is the so called pinhole camera model
that consist in a plane R and a point C (center of projection) at a distance f
(focal length) from the plane. The line passing through C and orthogonal to R is
the optical axis (z-axis of Figure 3.1), its intersection with R is called principal

24

point. The plane F that is parallel to R and contains the principal point is called
focal plane. All the points that belong to this plane are projected towards infinity

on the image plane.

In order to analytically describe the perspective projection of the camera, first
I have to introduce some suitable cartesian reference systems to express the three-
dimensional space coordinates of the point and the coordinates of its projection

on the image plane.

Figure 3.1: Geometric model of the camera, [1].

Simplified Model

Let us introduce a right-handed reference system (X, Y, Z) in the three-dimensional
space centered in C with the Z-axis that corresponds to the optical axis. More-
over, let us define another reference system (u, v) in the plane R centered in
the principal point with u and v respectively oriented like X and Y, as shown in

Figure 3.1.

25

uA X A
M
R
_ . -z
—f ————————— O O
C

Figure 3.2: Simplified camera model, [1].

Let us consider a point M with three-dimensional space coordinates M = [z,y,2]"
and let m with coordinates m = [u,v] be its projection on R through C. With
simple consideration on triangular similarities (see Figure 3.2) we can write the

following relation:

izlu:;v7 (3.1)
z T Y
and so:
u=e (3.2)
v:%fy))

Equation 3.2 is called perspective projection. The transformation from three-
dimensional coordinates into two-dimensional coordinates is clearly non linear
but, if we consider homogeneous coordinates, it becomes linear.

The homogeneous coordinates of a point in R” correspond to a vector in R™*1,
The additional coordinate specifies whether the point lies at the infinite (70”) or
corresponds to a real point in the Euclidean space (”1” or different from ”07).
Using homogeneous coordinates we can change the perspective projection, which
is a non-linear relation, into a linear one.

If we define

[SEEENS.]

u
m= |v| M= (3.3)
1

—_

as the homogenous coordinates of m and M, the perspective equation can be

26

rewritten as:

ul [—fo —f 0 ool |"
ol ==yl =10 =f 0 of |” (3.4)
z
1 z 0 0 1 0
1
In matrix notation we have:
zm = PM, (3.5)
or, also:
m ~ PM, (3.6)

where ~ means “equal with respect to a scale factor” (z). Matrix P represents
the geometric model of the camera and is called camera matriz or Perspective
Projection Matrix (PPM).

General Model

A general and realistic camera model must take into account also:
¢ the rigid transformation between the camera and the scene;

« the pixelization (shape and dimension of the Charge-Coupled Device (CCD)

and its location with respect to the optical center).

Intrinsic parameters Pixelization is introduced with an affine transformation that
takes into account the optical center’s translation and the possible rescaling of u
and v axes:
u=k,=Lr+u
R ’ (3.7)
U= kv %fy + o,
where (ug, vg) are the coordinates of the principal point and k, (k,) is the inverse
of the pixel dimension along u (v) direction and it is measured in pizel - m~!. In

the general camera model the PPM becomes:

*fk‘u 0 Uo 0
P=| 0 —fk, v 0| =K][I0], (3.8)
0 0 1 0

27

where

—fku 0 Ug
K=1| 0 —fk w]|- (3.9)
0 0 1

Extrinsic parameters In order to take into account the fact that, in general, the
reference system of the world may not coincide with the standard reference system
of the camera, a rigid transformation that connects the two systems must be
introduced. If we introduce a change of coordinates related to the introduction of
a rotation R followed by a translation t and if we denote by M, the homogeneous
coordinates of a generic point in the standard reference system of the camera and
by M the homogeneous coordinates of the same point in the reference system of

the world, we can write:

M, = GM, (3.10)
where
t
G = i (3.11)
01

Given equations 3.6 and 3.8, we have:
m ~ K[I|0]M. = K[I|0|GM, (3.12)
and, finally:
P = KI[I|0]G. (3.13)

Equation 3.13 is the most general expression of the PPM: matrix G contains
the extrinsic camera parameters, matrix K contains the intrinsic parameters and
matrix [I|0] represents the perspective transformation in the standard reference
system. The extrinsic parameters are six: three for the rotation and three for the

translation. Sometimes the next different factorization may be useful:
P = K[R]t]. (3.14)

28

Normalized Coordinates

If we introduce the change of coordinates defined by
p=K"'m, (3.15)

the PPM reduces to [I|0]. These special coordinates are called normalized coor-
dinates or image coordinates. In order to compute the normalized coordinates all

intrinsic camera parameters must be known.

Scaling Factor

If we analyze equations 3.5 and 3.6 we can see that they differ only from a scaling
factor. In fact, if we substitute P with vP in 3.6 we obtain the same projection,
Vy € R\ {0}.

Degrees of Freedom

Matrix P is composed of 12 elements but it only has 11 degrees of freedom since

one is lost because of the scaling factor.

3.2.2 Calibration

Camera calibration corresponds to the computation of the intrinsic and extrinsic
camera model parameters. The main idea is that if the tridimensional projections
of some points are known (calibration points), it its possible to compute the un-
known parameters by solving the perspective projection equations. There exist
several calibration methods. Among these methods, those called direct formu-
late the calibration problem identifying the camera parameters as the unknowns.
Others, like [58], instead, resolve the PPM estimation problems, from which all

the parameters can be retrieved.

3.3 Optical Flow

In camera-centered coordinates, each point on a tridimensional surface moves
along a tridimensional path. When projected onto the image plane, each point

produces a bidimensional path. The instantaneous direction of this path is the

29

velocity. The bidimensional velocities for all visible surface points is often re-
ferred to the bidimensional motion field. The goal of optical flow estimation is
to compute an approximation of the motion field from the time-varying image

intensity.

A common starting point for optical flow estimation is to assume that pixel

intensities are translated from one frame to the next:
I(x,t) = I(x+ vAt, t + At) (3.16)

where I(x,t) is the image intensity as a function of space and time. Of course,
brightness constancy rarely holds exactly. The underlying assumption is that
surface radiance remains fixed from one frame to the next. Although unrealistic,
it is remarkable that the brightness constancy assumption of Eq. 3.16 works very

well in practice.

Assuming that the displaced image is well approximated by a first-order Taylor

series we obtain [1]:

At
I(x + VALt + At) = I(x,t) + gradl (x,1)" [VN] | (3.17)
Splitting the temporal and spatial component we obtain:
I(x + VALt + At) = I(x,t) + VI(x, 1) VAL + I,(x, 1) At, (3.18)

where VI indicates the spatial gradient (%, %)T and I; is the temporal derivative

Y
of I.
If we substitute Eq. 3.16 into Eq. 3.18 and divide by At, we obtain:

VI(x,t) v+ I(x,t) = 0. (3.19)

This final expression is called image brightness constancy equation. We can ob-
serve that there are two unknowns (the components of (v) = (v,,v,)) and only
one equation. Hence, the problem is underconstrained. Eq. 3.19 defines a con-
straint on VI(x,t)"v that corresponds to the projection of the motion field on

the gradient’s direction.

30

3.3.1 Optical Flow Estimation

In order to estimate the optical flow, Eq. 3.19 is used but other constrains must

be added since the problem is underconstrained.

Lucas and Kanade

Lukas and Kanade optical flow estimation method is based on the assumption
that the optical flow v is constant in a n x n neighbourhood W of every point.
This basic assumption allows to obtain more than a single equation for the same

unknown v. Every point x; € W provides a linear equation:
VI(x;,t) v =—I(x,1). (3.20)

Given all n X n equations we obtain the following linear system:

Av=D>b (3.21)
where
VI(X17t>T —It(Xl,t)
A= : b= : (3.22)
VI(Xnxn, t)" —I;(Xnxn: t)

The least square solution of this overdetermined system is given by:
v=A"b=(ATA) A (3.23)

Usually a gaussian weight function w(x;), defined on W, is introduced to enhance

the central points and weight less the external ones [1].

Kanade, Lucas and Tomasi Feature Tracker

Starting from the Lucas and Kanade algorithm, Kanade, Lucas and Tomasi fea-

ture tracker (KLT) is based on two main steps:
o frame features extraction;

o feature tracking.

31

In the feature extraction phase we must have Aoz /Amin =~ 1, where Apaz and A,
are respectively the maximum and minimum eigenvalue of matrix A. In practice,
we must also have large eigenvalues in order to discard weak textures that may
be corrupted by noise. The selection of the keypoints by the KLT feature tracker
is based on the following condition:

min()\l,)\2) >)\th; (324)

where A\, is a predefined threshold. If \,,;, is sufficiently large, the condition on
the similarity of the eigenvalues is automatically satisfied since the value of A,
has an upper limit.

The feature tracking phase is performed between every couple of consecutive

frames. More in details, the algorithm proceeds as described in Algorithm 3.1.

Algorithm 3.1 KLT Tracker

Input: Sequential images
Output: Keypoints tracking

1. spatial filtering with Gaussian 2D kernel;
2. temporal filtering with 1D Gaussian kernel;
3. first frame keypoints extraction;

4. for every frame couple I(t), I(t +1):

o tracking: for every keypoint in I(¢) compute v on a n x n window
centered in the keypoint;

o apply motion to every point and obtain the position in the successive
frame I(t +1).

3.3.2 Keypoints Extraction

In this section I will introduce a rotation and scale-invariant method to extract

keypoint or feature points from image frames.

32

SIFT

Scale-Invariant Feature Transform (SIFT) has been introduced by D. Lowe in
2004 [59] and it includes five main steps: scale-space extrema detection, keypoint

localization, orientation assignment, keypoint description and keypoint matching.

Scale-space extrema detection In this first phase, in order to detect local extrema
over scale and space, a scale-space filtering technique is used. SIFT algorithm
uses Difference of Gaussian (DoG) which is an approximation of Laplacian of
Gaussian (LoG) and is obtained as the difference of gaussian blurring of an image
with two different o, where o is a parameter that identifies different scales in the
image. DoG is done for different octaves of the image in gaussian pyramid and

its representation can be seen in Figure 3.3.

ol — >
=

(next

o) | 3o >

Scale = 2.
(first
octave)

Difference of
Gaussian Gaussian (DOG)

Figure 3.3: Difference of Gaussian.

Once DoG are found, local extrema over scale and space are identified. For
example, one pixel in an image is compared with its eight neighbours as well as
nine pixels in the next scale and nine pixels in the previous scale as shown in
Figure 3.4. If it is a local extrema, it is a potential keypoint. It basically means

that the keypoint is best represented in that scale.

33

)

Scale)

Figure 3.4: Maxima and minima of DoG.

Keypoint localization Once all the potential keypoints are found, they have to be
refined to get more accurate results. A Taylor series expansion of scale space
is used to get more accurate location of extrema, and if the intensity at these
extrema is less than a predefined threshold value, it is rejected. DoG has higher
response for edges, thus these also need to be removed. For this, a 2 x 2 Hessian
matrix is used to compute the principal curvature. The two eigenvalues are
computed and if their ratio is grater than a certain threshold (i.e., an edge is
detected), the keypoint is discarded.

Orientation assignment In this phase an orientation is assigned to each point in
order to achieve invariance with respect to image rotation. A neighbourhood
is taken around the keypoint location depending on the scale, and the gradient
magnitude and direction are calculated in that region. An orientation histogram
with 36 bins covering 360 degrees is created. It is weighted by the gradient
magnitude and the Gaussian-weighted circular window with o equal to 1.5 times
the scale of keypoint. Then, the highest peak in the histogram is taken and any
peak above 80% of it is also included in the calculation of the orientation. This

procedure creates keypoints with same location and scale, but different directions.

34

Keypoint description Once the keypoint descriptor is created, a 16 x 16-pixel neigh-
bourhood around the keypoint is analyzed. It is divided into 16 sub-blocks of 4 x 4
size. For each sub-block, eight-bin orientation histogram is created. So, a total of
128 bins values are available. It is then represented as a vector to form a keypoint
descriptor. In addition, several measures are taken in order to achieve robustness

against illumination changes, rotation, etc.

Keypoint matching Keypoints between two images are matched by identifying their
nearest neighbours. In some cases, however, the second closest-match may be very
near to the first. This may happen due to noise or some other reason. In this case,
the ratio between the closest-distance and the second-closest distance is taken. If
it is greater than 0.8, they are rejected. This step eliminates around 90% of false

matches while discarding only around 5% of the correct ones.

3.4 Motion and Structure

In this section I discuss the structure from motion problem. Given different views
of the scene taken from a moving camera with known intrinsic parameters, and
given a set of corresponding points, we have to reconstruct the camera motion

and the structure of the scene.

3.4.1 Essential Matrix

Let us assume that we have a camera with known intrinsic parameters that is
moving in a static scenario following an unknown trajectory. Let us consider two
images taken from the camera in two different temporal instants and assume that
there exists a given set of common points between the two images. Let P and P’
be the PPM of the cameras corresponding to the two temporal instants and let
p =K 'm, p' = K'"'m’ be the normalized coordinates of the matching points.

If we take the reference system of the first camera as the world reference system,

we can write the following PPM:
P =[I|0] and P'=[I|0|G = [R]t] (3.25)

35

From 3.25 we can derive the bilinear form that relates the matching points:
p’"[t]«Rp = 0. (3.26)

The matrix

E 2 [t]«R, (3.27)

is called essential matriz. It depends on three parameters for the rotation and
two for the translation. We can observe that the essential matrix is defined with
respect to a scale factor and it is singular since det[t|x = 0. In order to get to five
degrees of freedom, two more constraints must be added. The following Theorem
3.2 states that these two constraints are given by the equality of the non-zero
singular values of F.

3.4.2 Essential Matrix Factorization

Lemma 3.1. Given a rotation matriz R and two orthogonal matrices U and V,
then det(UV) URV' " is a rotation matriz, i.e., it has positive determinant.

Theorem 3.2. A 3 x 3 real matriz E can be factorized into the product of a
non-zero antisymmetric matriz and a rotation matriz if and only if E has two

equal non zero singular values and one singular value that is equal to 0.

Proof. Let E = SR where R is a rotation matrix and S is antisymmetric. Let
S = [t]x where ||t|| = 1. Let U be a rotation matrix such that Ut = [0,0,1]" £ a,
so S = [t]x = [UTa]x. Now we can write:

S =[U"a], =U'[a]U.

LGiven a vector a € R, the matrix

0 —as as
[a]x £ | a3 0 —af,
—a2 aiq 0

behaves as an external product, i.e. [a]xb=a X b.

36

Let us consider matrix EE T

EET =SRR'ST =8S" =U"[a],UU [a]lU =UT

o O =
o~ O
o o O

The diagonal elements are the eigenvalues of EE T, i.e. the squared singular values
of E. This fact proves one implication.

Let us consider now the other way around. Let £ = UDV " be the Singular
Value Decomposition (SVD) of E, with D = diag(1,1,0), U and V orthogonal.
The key observation is that:

100 0 -1 0][0 10
D=|010|=1|1 0 0||-10 0| £5R,
000 0 0 o0|l]o 01

where S’ is antisymmetric and R’ is a rotation matrix. Therefore

E=UDV' =US'RV'T =(USU")URV") =
= det(UV T (US'U)det(UVTYURVT).

If we take S = det(UV) US'U" and R = det(UVT)UR'VT, the factorization
is: E = SR. In fact, US'UT is antisymmetric and matrix det(UV) UR'VT is

orthogonal with positive determinant. O

This is not the only possible factorization. It is possible to change the sign of
D by changing the sign of S’ or by transposing R’ and, therefore, we have four
possible factorizations given by:

S=U(*S\U" (3.28)
R=det(UVURV" or R=det(UVUR"V" (3.29)
where
0 -1 0 0 0
S211 0 0f R=2]|-10 0f. (3.30)
0 0 0 0 01

37

3.4.3 Essential Matrix Computation

Given a sufficiently large set of matching points {(p;, p;)i = 1,--- ,n} defined in
normalized coordinates, we want to determine the essential matrix E connecting

the points in the bilinear relation described by:
T —
p; Ep; = 0. (3.31)

The unknown matrix can be retrieved with the vec? operator and the Kronecker

product?. In fact, we can derive:
p,' Ep; = 0 <= vec(p} Ep;) =0 <= (p; @ p,)vec(E) = 0. (3.32)

Therefore, every couple of matching points generate an homogeneous linear
equation with nine unknowns that correspond to the essential matrix E. Given n
couples of matching points we have a linear system of n equations:

Pl ®@p/’
T T
®
P2 B2 ec(B) = 0. (3.33)
P, ©p,’
Un

The solution of this homogeneous linear system is the kernel of U,. With n = 8
the kernel matrix has dimension equal to one and so the solution is determined
with respect to a scaling factor. Therefore, this method is called eight-points
algorithm [60].

In practice, more than eight points are available and the elements of the essen-

2 Vectorization: vectorization of a given m x n matrix A, denoted by vec(A), is the mn x 1
vector obtained by stacking the columns of A.

3 Kronecker product: Let A be a m x n matrix and B a p x ¢ matrix. The Kronecker product
between A and B is the mp x ng matrix defined by

CLHB alnB
A® B = :

Am1 B ... amnB

38

tial matrix can be retrieved by solving a least square linear problem. The solution
is the unitary eigenvector that corresponds to the minimum eigenvalue of U, U,
that can be easily computed with the SVD of U,,.

39

40

An Overview of Unsupervised Learning

4.1 Unsupervised Learning

As described in Section 1.1.3, supervised learning relies on sample observations
(labels) associated to a specific output used to train a given classifier. Let us
denote by Y = (Yi,...,Y;,) the response variables for a given set of input predic-
tor variables X = (X1,...,X,). Let z; = (z;1,...,2) be the input for the ith
training case, and let y; be a response measurement. The predictions are based
on the training samples (z1,v1), ..., (Zn, yn) of previously solved cases, where the
joint values of all the variables are known.

Assuming that (X,Y") are random variables represented by some joint probabil-
ity density P(X,Y’). Then, the supervised learning can be formally characterized
as a density estimation problem where one is concerned with determining prop-
erties of the conditional probability P(Y|X). Usually the properties of interest

are the "location” parameters p that minimize the expected error at each =z,

p(x) = argmin By x L(Y,0), (4.1)
0

where L(Y,0) is a given loss function.

41

If we apply the definition of conditional probability we get

where P(X) is the joint marginal density of the X values alone. In supervised
learning P(X) is typically of no direct concern. One is mainly interested in the
properties of the conditional density P(Y|X). Since the dimension of Y is usually
small (often one), and only its location p(z) is of interest, the problem is greatly
simplified.

In unsupervised learning, or ”learning without a teacher”, one has a set of N
observations (x1, z,...,%,) of a random p-vector X having joint density P(X).
The goal is to directly infer the properties of this probability density without
the help of a supervisor providing correct answers or degree-of-error for each
observation. The dimension of X is sometimes much higher than in supervised
learning and the properties of interest are often more complicated than simple
location estimates. These factors are somewhat mitigated by the fact that X
represents all of the variables under consideration; one is not required to infer how
the properties of P(X) change, conditioned on the changing values of another set

of variables.

In low-dimensional problems, there are a variety of effective nonparametric
methods for directly estimating the density P(X) itself at all X-values, and rep-
resenting it graphically. Owing to the curse of dimensionality, these methods fail
when dealing with high-dimensional data. One must settle for estimating rather
crude global models, such as Gaussian mixtures or various simple descriptive
statistics that characterize P(x).

Generally, these descriptive statistics attempt to charaterize X-values, or col-
lections of such values, where P(X) is relatively large. Principal components [61],
multidimensional scaling, self-organizing maps [62] and principal curves [63], for
example, attempt to identify low-dimensional manifolds within the X-space that
represent high dimensional data densities. This provides information about the
associations among the variables and whether or not they can be considered as
functions of a smaller set of "latent” variables. Cluster analysis attempts to find
multiple convex regions of the X-space that contain modes of P(X). This can

tell whether or not P(X) can be represented by a mixture of simpler densities

42

representing distinct types or classes of observations. Mixture modeling has a
similar goal. Association rules attempt to construct a simple description of the
high density regions in the special case of very high dimensional binary-valued
data.

With supervised learning there is a clear measure of success or lack of it, that
can be utilized to test the performance in particular situations and to compare
the effectiveness of different methods in various scenarios. The lack of success is
directly measured by the expected loss over the joint distribution P(X,Y"). This
can be estimated in a variety of ways including cross-validation. In the context of
unsupervised learning, there is no such direct measure of success. It is difficult to
establish the validity of inferences drawn from the output of most unsupervised
learning algorithm. One must rely on heuristic methods not only for motivating
the algorithms, as is often the case in supervised learning, but also for judging
the quality of the results. This uncomfortable situation has led to the heavy

proliferation of methods, since the effectiveness cannot be verified directly.

4.2 Unsupervised Clustering

Clustering (or cluster analysis) aims to organize a collection of data items into
clusters, such that items within a cluster are more ”similar” to each other than
they are to items in the other clusters. This notion of similarity can be expressed
in very different ways, according to the purpose of the study, to domain-specific
assumptions and to prior knowledge of the problem.

Clustering is usually performed when no information is available concerning
the membership of data items to predefined classes. For this reason, clustering
is traditionally seen as part of unsupervised learning. In this section I describe
unsupervised clustering to distinguish it from a more recent an less common ap-
proach that makes use of a small amount of supervision to ”guide” or ”adjust”
clustering called semi-supervised clustering.

To support the extensive use of clustering in computer vision, pattern recogni-
tion, information retrieval, data mining, etc., very different methods were devel-
oped in several communities. Detailed surveys of this can be found in [64], [65]
or [66]. In the following, I review some important and core concepts of cluster

analysis and describe the main categories of clustering methods.

43

4.2.1 ATaxonomy of Clustering Methods

In this section, I describe some criteria that provide significant distinction between

different clustering methods:

Objective of clustering. Many methods aim at finding a single partition
of the collection of items. However, obtaining a hierarchy of clusters can
provide more flexibility and other methods focus on this. A partition of
the data can be obtained from a hierarchy by cutting the tree of clusters at

some level.

Nature of the data items. Most clustering methods were developed for
numerical data, but some can deal with categorical data or with both nu-
merical and categorical data

Nature of the available information. Many information methods rely on
rich representations of the data (e.g. vectorial) that leave one define proto-
types, data distributions, multidimensional intervals, etc., beside comput-
ing (dis)similarities. Other methods only require the evaluation of pairwise
(dis)similarities between data items. While imposing less restrictions on the

data, these methods usually have a higher computational complexity.

Nature of the clusters. The degree of membership of a data item to a cluster
is either in [0, 1] if the clusters are fuzzy or in {0, 1} if the clusters are crisp.
For fuzzy clusters, data items can belong to some degree to several clusters
that don’t have hierarchical relations with each other. This distinction
between fuzzy and crisp can concern both the clustering mechanisms and

their results. Crisp clusters can always be obtained from fuzzy clusters.

Clustering criterion. Clusters can be seen either as distant compact sets or
as dense sets separated by low density regions. Unlike density, compactness
usually has strong implications on the shape of the clusters, so methods that
focus on compactness should be distinguished from methods that focus on

the density.

Several taxonomies of clustering methods were suggested in [67], [65] or [66].

By focusing on some of the discriminating criteria mentioned above, I propose a

simplified taxonomy inspired by the one suggested in [65].

44

Partitional clustering Partitional clustering aims at directly obtaining a single par-
tition of the collection of items into clusters. Many of these methods are based
on the iterative optimization of a criterion function reflecting the ”agreement”
between the data and the partition. Here are some important categories of par-

titional clustering methods:

o Methods using the squared error rely on the possibility to represent each
cluster by a prototype and attempt to minimize a cost function that is the
sum over all the data items of the squared distance between each item and
the prototype of the cluster it is assigned to. In general, the prototypes
are the cluster centroids, as in the popular k-mean algorithm [68]. Several
solutions have been developed for cases where a centroid cannot be defined,
such as the k-medoid method [66]. In this method the prototype of a cluster
is an item that is "central” to the cluster. Another method is the k-modes
method [69] that is an extension of the previous one to categorical data.
By employing the squared error criterion with a Minkowski metric [70] or
a Mahalanobis metric [71], one makes the implicit assumption that clusters
have elliptic shape. The use of multiple prototypes for each cluster or of

more sophisticated distance measures can remove this restriction.

Fuzzy versions of methods based on the squared error were defined as, for
example, the Fuzzy C-Means [72]. When compared to their crisp counter-
parts, fuzzy methods are more successful in avoiding local minima of the
cost function and can model situations where clusters actually overlap. To
make the results of clustering less sensitive to outliers, several fuzzy solu-

tions have been proposed.

Many early methods assumed that the number of clusters was known a
priori; since this is rarely the case, techniques for finding an "appropri-
ate” number of clusters had to be devised. This is an important issue for
partitional clustering in general. For methods based on the squared error,
the problem is partly solved by adding a regularization term to the cost

function.

¢ Density-based methods consider that clusters are dense sets of data items

separated by less dense regions; clusters may have arbitrary shape and data

45

items can be arbitrarily distributed. Many method, such as Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [73], rely on the
study of the density of items in the neighbourhood of each item.

Grid-based solutions, such as DenClue [74] or CLIQUE [75], can be included
among density based methods, even though they were mostly developed for
spatial data mining. These methods quantize the space of the data items
into a finite number of cells having high density of items; isolated data items
are ignored. Quantization steps and density thresholds are common param-
eters for these methods. Many of the graph-theoretic clustering methods are
also related to density-based clustering. The data item are represented as
nodes in a graph and the dissimilarity between two items is the ”length” of
the edge between the corresponding nodes. In several methods, a cluster is
a subgraph that remains connected after the removal of the longest edges
of the graph. However, some other graph-theoretical methods rely on the
extraction of cliques. This makes these methods more related to the squared

error ones.

Mixture-resolving methods assume that the data items in a cluster are
drawn from one of several distributions (usually Gaussian) and attempt to
estimate the parameters of all these distributions. The introduction of the
EM algorithm [76] was an important step in solving the parameter estima-
tion problem. Mixture-resolving methods make rather strong assumptions
regarding the distribution of the data. The choice of the number of clusters
for these methods was studied in different works like [77] or [78]. In some
cases a model for the noise is explicitly considered. Most mixture-resolving
methods view each cluster as a single simple distribution and thus strongly
constrain the shape of the clusters.

Hierarchical clustering. Hierarchical clustering aims at obtaining a hierarchy of clus-

ters, called dendrogram, that shows how the clusters are related to each other.

These methods proceed either by iteratively merging small clusters into larger

ones (agglomerative algorithms) or by splitting large clusters (divisive algorithm).

A partition of the data items can be obtained by cutting the dendrogram at a
desired level [79], [80].

46

Agglomerative algorithms need a criterion for merging small clusters into larger
ones. Most of the criteria deal with the merging of pairs of clusters and are
variants of the classical single-link, complete-link or minimum-variance criteria.
The use of the single-link criterion can be related to density-based methods but
often produces upsetting effects: clusters that are "linked” by a "line” of items
cannot be separated or most items are individually merged to one or a few clusters.
The use of the complete-link or of the minimum-variance criteria relates more to

squared error methods.

4.2.2 Cluster Validity Analysis

As discussed above, the effectiveness of an unsupervised learning procedure is
usually more difficult to assess than that of a supervised one. Several questions

can be asked regarding the application of clustering methods [81]:
1. Are there clusters in the data?

2. Are the identified clusters in agreement with the prior knowledge of the
problem?

3. Do the identified clusters fit well the data?

4. Are the results obtained by a method better than those obtained by an-
other?

The first question concerns the cluster tendency of the data and should in princi-
ple be answered before attempting to perform clustering, using specific statistical
tests. Unfortunately, such tests are not always very helpful and require the for-
mulation of specific test hypotheses.

The other questions concern the analysis of the cluster validity and can only be
answered after the application of some clustering methods to the data. According

to [65], three main types of validation procedures can be distinguished:

e FExternal validation consists in finding an answer to the second question and
can only be performed when some general characteristics of the clusters or

relations between specific items are explicit.

47

e Internal validation concerns the third question and is based on the evalu-
ation of the "agreement” between the data and the partition. In the lit-
erature, different validity indices have been proposed for the categories of
clustering methods discussed above. Some of the possible validity indices
are: the modified Humbert’s statistic, related to the alignment between the
dissimilarity matrix and the crisp partition matrix. The Davies-Bouldin,
roughly defined as the ratio between within-cluster scatter and between-
cluster separation index [82]. Dunn’s index for the diameter of a set and
for the distance between sets [83]. The average partition density, instead, is
obtained as the mean ratio between the "sum of central members” of each
cluster and the volume of the cluster. Finally, the Xie-Beni index, is the
ratio between the average intra-cluster variation and the minimum distance

between cluster centers [84].

e Relative comparisons attempt to provide an answer to the fourth question
and are usually the main application of the indices defined in internal vali-
dation. Such comparisons are often employed in order to select good values

for important parameters, such as the number of clusters.

In this work, I employed a modified version of the unsupervised Growing Neural
Gas (GNG) clustering algorithm, called Growing When Required (GWR). In
order to fully clarify how GNG and GWR can be implemented, I dedicate the
next two sections to the presentation of their architectures.

4.3 Growing Neural Gas

In this section I describe in detail and explain the GNG unsupervised incremen-
tal clustering algorithm proposed by Bernd Fritzke in [38]. Given some input
distribution in R™, the GNG incrementally creates a graph, or network of nodes,
where each node in the graph has a position in R”. GNG can be used for vector
quantization by finding code-vectors in clusters. It can also be used for finding
topological structures that closely reflect the structure of the input distribution.
Moreover, GNG only has parameters that are constant in time and since it is in-
cremental, there is no need to determine the number of nodes (clusters) a priori.

Starting with two nodes, the algorithm builds a graph in which pair of nodes are

48

considered neighbours if they are connected by an edge. The neighbour infor-
mation is maintained throughout execution by a variant of competitive Hebbian

learning [16], that is,

For each input signal & an edge is inserted between the two closest
nodes. The distance between nodes is measured by the Fuclidean dis-

tance.

4.3.1 GNG Pseudo-code

The GNG algorithm assumes that each node k consists of the following:
e wy: a reference vector in R".
e errory: a local accumulated error variable.
o A set of edges defining the topological neighbours of node k.

The reference vector may be interpreted as the position of a node in the input
space. The local accumulated error is a statistical measure that is used for de-
termining the appropriate insertion points for new nodes. Further, each edge has
an age variable used to decide when to remove old edges in order to keep the

topology updated.

INIT: Create two randomly positioned nodes, connect them with a zero age

edge and set their errors to 0.
1. Generate an input vector £ conforming to some distribution.

2. Locate the two nodes s and t nearest to &, that is, the two nodes with
reference vectors wy and w, such that |[ws — &|| is the smallest value and
||lw; — &|| is the second smallest, for all nodes k.

3. The winner-node s must update its local error variable so the squared dis-

tance between w, and & has to be added to error,

errors < errors + ||\ws — &||, (4.2)

49

4. Move s and its topological neighbours (i.e all nodes connected to s by an

edge) towards &€ by fractions e, and e, of the distance. (e,, e, € [0,1])

Wy — Wg + €,(& — wWy), (4.3)
Wp < Wy +e,(& —w,), Yn € Neighbours(s). (4.4)

5. Increment the age of all edges from node s to its topological neighbours.

6. If s and t are connected by an edge, then set the age of that edge to 0. If
they are not connected then create and edge between them.

7. If there are any edges with an age larger than a,,,, then remove them. If,

after this, there are nodes with no edges then remove these nodes.

8. If the current iteration is an integer multiple of A and the maximum node-
count has not been reached, then insert a new node. Insertion of a new
node r is done as follows:

e Find the node u with largest error.
o Among the neighbours of u, find the node v with the largest error.

¢ Insert the new node r between v and v as follows:

. (W%W) (4.5)

o Create edges between u and r and v and r, and then remove the edge

between v and wv.

¢ Decrease the error-variable of v and v and set the error of node r:

ETTOT, < O X erTor,,
ETTOoT, < O X error,, (4.7)

ETTOTy $— ETTOTy,. (4.8)

9. Decrease all error-variable of all nodes j by a factor 5:
error; < [3 X error;. (4.9)

50

10. If the stopping criterion is not met then repeat.

The stopping criterion might be, for example, whether the performance on
a test set is good enough or not, or when a maximum number of nodes has

been reached, etc.

Figure 4.1: The GNG network adapts to a signal distribution that has different dimensionalities in different areas
of the input space. Here are shown the initial network consisting of two randomly placed units and the network
after 600, 1800, 5000, 15000 and 20000 input signals have been applied, [38].

4.3.2 GNG Explained

The Local Accumulated Error

Equation 4.2 describes how the local error is updated. Updating the error with
the squared distance is a way of detecting nodes that cover a larger portion
of the inputs distribution. Consequently these nodes will have, statistically, a
faster growing error than other nodes. Large coverage is then equivalent to larger
updates of the local error, since the input at greater distances will be mapped
into the node. Since we want to minimize the error, knowing where the error is
large is useful when inserting new nodes. In Equation 4.9 a global reduction of
all local errors is performed, in order to give recent errors greater influence and

to keep the local error from growing too much.

51

Node Movements

Equations 4.3 and 4.4 deal with nodes movement. The principle is the same
for the winner node and its neighbours. Figure 4.2 shows the idea behind the

movement of the winner node.

A A
o — o
X

e (=W
WS

[
»

<

[

v

Figure 4.2: Winner node movement, [2].

The winner-node s is shifted along the scaled difference vector (¢ — wy). The
scaling amount is denoted by e,, and its value is between 0 and 1. The movement
is linear and the further the node is from the input the greater the shift distance.
This is also true for the neighbour movement. However, the neighbour translation

vector is scaled with a constant e, much smaller than e,,.

Node Insertion

In GNG, nodes are inserted at fixed rate. Every A-th iteration a new node is
inserted between the node with largest error and its neighbour with the largest
error. Having a fixed insertion rate policy might not always be desirable, since it
may lead to unnecessary or untimely insertions. As will be discussed in the next
session, a different policy based directly on the local or global mean error might
perhaps be preferreble.

In the case of fixed insertion rate, the A\ parameter has significant impact on
the performance of the algorithm. Setting it too small will result in poor initial
distribution of nodes, since the statistical local error will be badly approximated
and since the nodes have not had a chance to distribute themselves over the input

space.

52

4.4 The Growing When Required Network

In this section I describe an evolution of the GNG clustering algorithm called

Growing When Required (GWR) [39].

441 GNGvs. GWR

Like GNG, GWR is a growing network-based incremental clustering algorithm
that introduces a different criterion for the insertion and the initialization of a
new node. Differently from GNG, where nodes are only added at a fixed rate,
in GWR a node is added whenever the current input is not matched by any of
the existing nodes to some (arbitrary) accuracy. Moreover, a new node is not
added to support the node with highest error but it is added between the two
best matching nodes. This has the benefit that once the input space is matched
within some defined error bound by the network nodes, the network will stop
growing, but it will still be able to grow again if the input distribution changes.
The GWR algorithm decides when to add new nodes by evaluating the activity
of the node that best matches the current input. In this setup, good matches
are identified by high activity. GWR also uses information about how often that
node has fired previously. While the network is learning it may be the case that
the node that is the best match is still not actually a good match (so its activity
is low). If this node has not fired often it may be that the node is untrained, and
just needs further training. However, if the node has often won, then its activity
should be high, as the training will ensure that the node matches the input well.
If the activity of the node is low, then a new node is needed to match the current
input and so one is added. The training of each node can be modeled in different
ways, the simplest one is the use of a simple counter that is incremented whenever
that node is the best match.

An alternative to using the simple counter is to have a variable that decreases
exponentially from 1 to 0, so that new nodes have a value of 1 and nodes that have
fired frequently are close to 0. This is equivalent to a counter with an upper limit,
but has few benefits. First of all, the fact that neighbours of the winning node are
also trained can be acknowledged, as their variables can also decrease, although

in a smoother manner. Also, the number of times that a node has fired can be

53

taken into account in the learning rate (see Eq. 4.18), so that nodes that have
fired frequently are trained less. This approach removes a problem that affects
networks that learn continuously. In this type of networks, in fact, the weights
of well-trained nodes continue to move slightly, so that they do not converge to a
stable configuration.

4.4.2 GWR Pseudo-code

I now detail the steps of the algorithm. Let A be the set of map nodes, and
C C A x A be the set of connections between nodes in the map field. Let the
input distribution be p(€), for inputs £€. Define w,, as the weight vector of node n.

INIT: Create two nodes for the set A
A= {ny,na},
with ny, ny randomly initialized from p(€). Define C to be the empty set
C=0.

Then, each iteration of the algorithm is:
1. Generate a data sample £ for the input to the network.

2. For each node i in the network, calculate the distance from the input

1€ — will.

3. Select the best and the second best matching node, that is the nodes s,t € A

such that
s = argmin ||§ — w,, || (4.10)
neA
t = argmin || — w, ||, (4.11)
neA\{s}

where w,, is the weight vector of node n.

54

4. If there is not a connection between s and ¢, create it
C=CU{(s,t)}, (4.12)
otherwise set the age of this connection to 0.

5. Calculate the activity of the best matching unit

a = exp(— ||& — wsl]). (4.13)

6. If the activity a < activity threshold a; and firing counter < firing counter
threshold h; then a new node should be added between the two best match-

ing nodes:

¢ Add the new node r
A=AuU{r}. (4.14)

o Create the new weight vector, setting the weights to be:

w, = (ws + &)/2. (4.15)

Insert edges between r and s and between r and ¢:
C=CU{(r,s),(r,t)}. (4.16)
e Remove the link between s and ¢:

C=0C\{(st)} (4.17)

7. If a new node is not added, adapt the position of the winning node and its

neighbours #:

Aw, = ¢, X hg X (& —wy) (4.18)
AWZ' = e, X hz X (£ — Ws) (419)

where 0 < e, < e, < 1 and h, is the values of the firing counter for node s.

55

8. Update age of the edges with an end at s

agesq) = age(sq) + 1. (4.20)

9. Reduce the counter of how frequently the winning node s has fired according

10.

11.

to
hs(t) = ho — w(l — e wt/™) (4.21)
Qp
and the counter of its neighbours ¢
4
hl(t) = h() — S()(1 — e_o‘"t/T") (422)

n

where h;(t) is the size of the firing variable for node i, hy the initial strength
and S(t) is the stimulus length, usually set to 1. «,, o, 7, and 7, are
constants controlling the behaviour of the curve. The firing counter of the
winner node reduces faster than those of its neighbours. Equation 4.21 is

the solution to the differential equation

dhy(1)
dt

)

— aylho — h(H)] — S(2), (4.23)

which was proposed by Stanley in [85] and models how the efficacy of an

habituating synapse reduces over time.

Check if there are any nodes or edges to delete, i.e. if there are any nodes
that no longer have any neighbours or edges that are older than the greatest

allowed age @4z

If further inputs are available, return to step 1 unless some stopping criterion

has been satisfied.

56

The Gait Analysis System

In this chapter I present how the tools described in the previous sections are com-
bined together to develop a gait analysis system based on smartphone-acquired
inertial data and video able to extract meaningful users’ parameters and gait
patterns.

The system is composed of four main blocks:

Data acquisition.

Data and video processing.
o GWR clustering and patterns extraction.

Parameters extraction.

.\\
DATANIDEO
PROCESSING +

SEGMENTATION

CLUSTERING + GAIT PARAMETERS
PATTERNS EXTRACTION EXTRACTION

Figure 5.1: General scheme of the proposed gait analysis system.

DATA ACQUISITION

o7

These main steps are represented in Figure 5.1 and in the next sections I describe
in detail each of them, highlighting the fundamental data processing techniques

involved.

5.1 DataAcquisition

Input data for the designed system are collected using a Asus Zenfone 2 smart-
phone. If features a 2.3 GHz quad-core Intel Atom Central Processing Unit (CPU)
and it comes with 4GB of RAM. The Operating System (OS) is Android 5 Lol-
llipop. It is equipped with several built in sensors. The sensors of interest for
this work are: GPS, proximity sensors, light sensor and IMU. In particular, IMU
comprises a tri-axial PSH accelerometer sensor, a gyroscope and a magnetometer,

whose specifications are reported in Table 5.1.

Sensor PSH Accelerometer | PSH Gyroscope | PSH Magnetometer
Vendor Intel Inc. Intel Inc. Intel Inc.

Range 39.227 34.907 800

Resolution | 0.01 (0.024%) 0.002 (0.005%) | 0.5 (0.062%)
Power 0.006mA 6.1mA 0.ImA

Table 5.1: IMU specifics of Asus Zenfone 2 used for data acquisition.

Data collection is performed with an ad-hoc developed Android application,
called Activity Logger Video (described in detail in Chapter 6). This application is
used to set up the parameters acquisition, give information about the user, collect
and save data in the non-volatile memory and, optionally, send them to a File
Transfer Protocol (FTP) server. During the acquisition phase, the smartphone
is carried with the rear-facing camera looking forward and is placed in an ah-hoc
made chest support as shown in Figure 5.2. This support allows the smartphone
to be carried in a steady vertical position during the whole acquisition process and
thus no orientation transformations are needed. Moreover, in such conditions, the

reference video can be acquired without any orientation and occlusion issues.

58

Figure 5.2: Chest support for smartphone.

Raw data were collected from different volunteers, either males or females, aged
between 21 and 54 years. Volunteers were asked to walk in a real world scenario
at preferred walking speed along a straight line. Each of them performed four
different walking acquisitions: for the first two, the individuals walked as they
normally do. For the third and fourth acquisitions, a limp was forced on the right
and left leg, respectively. The duration of each acquisition was approximately 35
seconds. Inertial data and the reference video were then saved in the non-volatile
memory of the smartphone so that they could be sent to an FTP server through
a WiFi network or through cellular data. The server runs on a Raspberry Pi
module that is used for data storage. All collected data are then downloaded and
processed in a PC.

At the end of each acquisition, only accelerometer and gyroscope data vectors
on each axis together with the reference video are considered and processed in the
subsequent phases. One of the common problems of collecting inertial data from
the built in sensors of a smartphone is that the sampling rate can vary during an
acquisition. The sampling rate, in fact, is related to the computational load of

59

the operative system stack and, as can be seen in Figure 5.3, some smartphones
can have a sampling rate that has a distribution with standard deviation larger

than zero. Hence, an interpolation phase of all gathered signals is necessary.

; Asus Zgnlone 2 §amplin ‘rate distribution . LG Nexus 5X sampling rate distribution

probability
probability
o
@

O‘ﬂ“_‘nrﬂr;_n__n_il—n_._

0 . .
50 60 70 80 920 100 110 120 130 140 392 394 396 398 400 402 404 406 408
frequency [Hz] frequency [Hz]

Figure 5.3: Comparison of the sampling frequency distribution of the smartphone employed in the data
acquisition (Asus Zenfone 2) and another smartphone (LG Nexus 5X).

As for the video, it was acquired with the rear-facing camera of the smartphone,
and the frame rate was set to 30 fps with a H.264 compression, an encoding
bitrate of 3 Mbit/s and a resolution of 720 x 576 pixel. With these parameters
every acquisition video has a size of around 13MB.

All the signals extracted from the reference video with the tools described in
Section 5.2.2 must also be interpolated to ensure they have the same sampling

rate of the inertial accelerometer and gyroscope signals.

5.2 Dataand Video Processing

5.2.1 DataProcessing

Raw data collected from the accelerometer and gyroscope sensors, together with
the signals extracted from the reference video, need to be processed in order to
remove possible high-frequency noise and to extract gait cycles. The extracted
gait cycles are then utilized to form the dataset for the clustering and pattern

extraction phase.

60

The data processing step includes four main phases: interpolation, filtering,

cycles extraction and normalization.

Interpolation

As discussed above, since the sampling rate is not constant during the acquisition
due to the non-real-time nature of the Android Operative System, an interpolation
step is needed. Moreover, smartphones output data values whenever there is a
change in the sensor and, therefore, the time intervals between two samples are
not evenly spaced and differ for each sensor. This is solved through a spline
interpolation to ensure a sampling rate of f; = 200 Hz and a fixed time interval

between any two consecutive samples.

Filtering

Figure 5.4 shows the Power Spectral Density (PSD) of the accelerometer signals
through the Welch’s method [86], considering a full walking trace and setting the
Hanning window length to 1 s, with half window overlap. Most of the signal
power, as expected, is located at low frequencies, mostly below 40 Hz. Hence, in
order to smooth the signals and remove high-frequency motion artifacts, a lowpass
Finite Impulse Respose (FIR) filter of order 40 and cutoff frequency f. = 40 Hz
is applied to all the available signals.

30

x-axis acc
—-—- y-axis acc
20 - — — z-axisacc | -

Power Spectral Density [dB]

|
10° 10" 102
frequency [Hz]

Figure 5.4: Power spectral density of the three-axial accelerometer data.

61

An example of the output of the described filtering procedure applied to the
y-axis acceleration can be seen in Figure 5.5. As expected, the filter denoises the
input signal reducing the effect of high-frequency noise.

C
18 — Original signal
—-—Filtered signal

16~ . 4

L 1 1 1 1 1 1 1
10 10.5 1 11.5 12 125 13 135 14
time [s]

Figure 5.5: Example of y-axis accelerometer data before and after the filtering procedure.

Cycles Extraction

Filtered signals are then passed through a cycle extraction phase. As discussed
in Section 1.2, human gait follows a cyclic behaviour where there is a periodic
repetition of a pattern, known as cycle, that corresponds approximately to two

human steps.

ICleft FCleft ICleft FCleft ICleft FCleft

A L e
LEFT STEPS u'_‘___//' \—)__//‘ \—)__//'
ICright ! ! FCright ICright |

FCright ICright FCright

! STRIDE

< e »

! STANGE ! SWING

Figure 5.6: Stride, stance and swing times.

62

In order to extract and identify gait cycles different techniques have been pro-
posed. The one I implemented in this work is based on that used in [36]. The IC
and the FC events (see Figure 5.6) within each cycle are estimated by analyzing
the vertical component a, of the accelerometer data.

IC and FC events are determined using a Continuous Wavelet Transform (CWT)
transform of a, which is first integrated and then differentiated using a Gaussian
CWT. The IC events, as can be seen in Figure 5.7, are detected as the local
minima of the CWT. A further differentiation resulted in the local maxima cor-
responding to the FC events. In order to exclude possible spurious results, a
further optimization step is proposed: only IC and FC peaks within a predeter-
mined timed interval (0.25 - 2.25 s) are included. As demonstrated in [36], this
technique leads to better estimation results.

15— —
" A
/
\ A
Y L A
i A A i | A a A
i i HA i \ i \ /
i [| Do i F I [
10 I D L o I [. Py
P [L [i il P -
[o i i P [[i
! i ! ; ! i ! i i i ! | i i ! i
! i ! ! i ! ! i i ! i [i 1
i i i 1 i ! i i i i i i i
5 i . i i i Y i i i i i i _
i i | i i i i I f i i ! \
H H | | b
i i I ! i i ! | i i ! | i ! i ! ! i
i i i i i ' i i i] i i i H i i i i
I S S LT Vs N A N A N R S N O e AN B A I V2l SN B R O S P N R B A e N B
% A0 iV AN : AN i i i \ AP NN AN SN
£ 0 i i (A i AW AN i i il i i
£ ! il s B A : i il (AN I i ! i
i \ i | i i N i Ay | n i O i \ i N
! NI N ! N { N Nl ! i N N
i o ! eﬁ\ ! o ! o i o ! v i Ser i ~ot ! o
i i i ' | 1 ! i i i ! i i i i ! ! !
l ! 4 i / i H / i (| i ! i
h H 1 \ I i i H i | i i
5~ ! h | i ! i ! i i i | i 1
/ i | i ! ! i i ! ! ! i i
i P I ' ! i ! | i i ! i i i i ! ! i
i P! Vo P! b P (I Lo Vo i
i v Vo \ i P Vo P Lo [i
! [Vo T (] I (I [Vo 1
ol Vo i L P Vo o Lo P i
i i Vo i 1 i il Vo ()
\ ! I i Vo [N Lo ! \
i Lo ¥ i i i \J Vg p
] (W u [\ v \ —— detrended input
s v v/ Y4 \ 4 — — 1stgewt
~ —-—-2nd gewt
o IC
15—
5 2 FC
| | | | | | | | | I |
3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

samples

Figure 5.7: Example of ICs (circles) and FCs (triangles) detection. The solid line represents a,, the dashed line
represents the differentiated with Gaussian CWT of a, and the dash dotted line represents the second Gaussian
CWT differentiation of a,,.

Left and right steps are then identified by the sign, for every IC, of the vertical
axis angular velocity g, filtered with a low-pass 4th-order Butterworth filter with
cutoff frequency f. =2 Hz (see Figure 5.8).

After this processing phase, gait cycles instants can be easily identified. In
fact, a generic walking cycle ¢ starts at IC'(i) and ends at IC(i+2). Moreover, in
order to avoid possible errors at the beginning and at the end of each acquisition,

63

the first and last 2 cycles are excluded from the computation. It is thus possible

to locate the walking cycles vectors in all the available signals.

20]

25]

—— 2Hz-filtered + detrended input
80 = o ICleft —
4 (Cright
1 1 1 1 1 1 1 1

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900
samples

Figure 5.8: An example of left and right IC events detection. The solid line represents the filtered angular
velocity. Positive or negative sign of the filtered signal indicates left and right ICs, respectively.

Other useful parameters like stance, swing time, step length and step velocity
can be extracted from the IC and FC events and from the accelerometer data
related to every walking cycles. The computation of these parameters is described
in Section 5.4.

Normalization

Each extracted gait cycle has a different duration, which depends on the walking
speed and the stride length. Because of that, the accelerometer data and the
signals extracted from the video (these are the signals that will be used as input
to the clustering algorithm), have variable-size and, hence, a further adjustment
is necessary. This is done using a spline interpolation to represent all the walking
cycles through vectors of N = 200 samples each. This value of N is selected in
order to avoid aliasing. In fact, assuming a maximum duration of 7 = 2 seconds,
and a signal bandwidth of B = 40 Hz, a number of samples N > 2B7 = 160

samples/cycle is required.

64

5.2.2 Video Processing

In this section I formalize the problem of extracting the signals representing the
position of the user in the three-dimensional space and I describe all the steps
that allow to retrieve this information. I implemented this algorithm in Python
using the OpenCV-Python library [87].

OpenCV-Python

OpenCV is an open source C,, library for image processing and computer vi-
sion, originally developed by Intel and now supported by Willow Garage. It is
free for both commercial and non-commercial use. It is a library composed by
many inbuilt functions mainly aimed at image processing. Now it has several hun-
dreds of image processing and computer vision algorithms which make developing
advanced computer vision applications easy and efficient.

OpenCV-Python is the Python API for OpenCV, combining the best quali-
ties of the OpenCV (', API and the Python language. Extending Python with
C/C, 1 modules provides two advantages: first, the code is as fast as the original
C/C, . code and second, it less time-consuming to code in Python than C'/C. .
OpenCV-Python makes use of Numpy [88], which is a highly optimized library for
numerical operation with MATLAB-style syntax. All the OpenCV array struc-
tures are converted to and from Numpy arrays. This also makes it easier to
integrate with other libraries that use Numpy as SciPy and Matplotlib.

Problem Formulation

Input We have a stream of gray scale images coming from the camera. Let the
frames, captured at time ¢ and ¢ + 1 be referred to as I; and I;;1. We have prior
knowledge of all intrinsic parameters of the camera, obtained via the calibration

technique described in Section 3.2.

Output For every image, we need to find the rotation matrix R and the translation
vector ¢, from which information about the motion and the rotation of the user

between two successive frames can be extracted.

65

Algorithm Outline
1. Capture images: Iy, I;y1.
2. Undistort the above images using the camera parameters.

3. Check if the acquired image is corrupted (number of white pixels > 90%

total number of pixels).

4. Use SIFT algorithm to detect keypoints in I;, and track them to I, with
KLT tracking. A new detection is triggered if the number of keypoints drops

below a certain threshold.

Left step. Right step.

Figure 5.9: KLT tracker example for two frames representing a left step and a right step. The extracted keypoints
are represented by the bold points, while the colored lines represent the estimated direction of the optical flow.

5. Compute essential matrix E. In order to estimate the essential matrix, an
evolution of the eight-points algorithm called Nister’s 5-point algorithm is
employed [89]. Moreover, an iterative method called RANSAC is used to
detect the correspondences between two successive frames needed for the

computation of E [90].
6. Estimate R and t from E.

7. Recover yaw, roll and pitch rotations from R.

66

RANSAC If all of the computed correspondences are perfect, then, with the Nis-
ter’s 5-point algorithm, we would need only five feature correspondences between
two successive frames to accurately estimate the motion. However, the feature
tracking algorithms are not perfect, and therefore we have several erroneous cor-
respondences. A standard technique of handling outliers when doing model esti-
mation is RANSAC. At every iteration, it randomly samples five points from a
set of correspondences, estimate the essential matrix, and then check if the other
points are inliers when using this essential matrix. The algorithm terminates af-
ter a fixed number of iterations, and the essential matrix with which the highest
number of points agree is used.

Determining yaw, pitch and roll from a rotation matrix Given a rotation matrix

Too Tor To2
R=1\|rw mm m2]|,

T20 T21 T22

if we denote by «, 3 and v respectively the roll, yaw and pitch angles (see Fig-
ure 5.10), we have that:

a = tan""(r19/ro0), (5.1)
B =tan""(—ra/\/ 13 +13,), (5.2)
Y= tcm_l(?“gl/?"gg). (53)

Figure 5.10: Roll, pitch and yaw angles.

67

5.3 GWR Clustering and Pattern Extraction

Once all the previous steps are completed, the GWR algorithm is utilized to ex-
tract meaningful clusters from the data and to obtain a reference pattern from
each of them. Not all the available signals are used as input to the algorithm, but
only the accelerometer and the signals extracted from the video are considered.
The gyroscope data, as will be discussed in Chapter 7, are left out. In particu-
lar, the signals extracted from the video are obtained considering the difference
between the yaw, pitch and roll angles of two consecutive frames. Therefore, the
input to the algorithm is a 6 x 200 matrix (see Figure 5.11) composed by the
three components of the acceleration vector and the three signals representing
the rotation in three axes.

1 Accelerometer signals GWR clustering algorithm

= Signals extracted
L] from the video

Figure 5.11: Input matrices of the GWR clustering algorithm. At every round a new matrix representing a
different gait cycle is used as input to the algorithm.

I recall that every component of the gait cycles is represented by a 200-sample
signal after the normalization step. The clustering algorithm, then, takes as input
the matrices representing the extracted gait cycles and tries to put together all
the gait samples that have similar characteristics in order to distinguish different
walking styles.

Since the GWR algorithm, as described in Section 4.4, takes as input a one-
dimensional signal, I have modified it in order to deal with multidimensional
inputs. In this extended version of the GWR, algorithm every node is provided
with a 6 x 200 matrix that, at every round, is compared to the one of the input

sample in order to discover the two closest nodes. To compare two different

68

matrices, however, a distance measure between them must be introduced. Given
two a x b matrices I and U, their distance d(I, U) can be defined as:

a

d(I,U) = w (5.4)
where I; and Uj; represent the i-th row of matrix I and U, respectively. In other
words, d(I,U) is the average distance between each row of the matrices, where
the distances are computed through the euclidean norm.

Since every single row of the input matrix contains a signal that must be
compared only with its correspondent signal in the matrix of every node, in
this extended version of the GWR, algorithm, all the rows of every matrix are
independent from the others. Finally, the mean is taken in order to have a single
scalar value representing all the distances between the considered signals.

5.3.1 GWR Parameters

In order to achieve the best possible results, several parameters can be adjusted

and modified according to the input signals. These parameters are:

 activity threshold a; and firing counter threshold h; that are related to the

insertion of a new node in the network.

e ¢, and e, that controls the learning rates of the best node and of its neigh-

bours.

o hg, S(t), ap oy, T, and 7, that are tuning parameters of the firing counter
h(t) of each node.

In this work, the parameters that regulate the firing counter are set like in [39],
ie: hg =1, 8(t) =1, o = 1.05, o, = 1.05, 7, = 3.33, 7, = 14.3. The best
results are then achieved with a; = 0.2, hy = 0.245, e, = 0.3 and e,, = 0.006. The
activity and the firing counter curves are represented in Figure 5.12. It can be
seen that the firing counter of the winner becomes smaller faster than those of its
neighbours. In particular, the threshold h; is set so that if a node has fired five
times then it is considered to be trained. Moreover, we can see that if the value

of the threshold a; is very close to 1, then more nodes are produced. Instead,

69

for lower values of a; fewer nodes are added since a higher difference between the

reference input and any other node is required in order to extend the network.

Activity curve | Firing counter curve for different values of =
T T T T T T T T T

h(t)
/

o L L 0
o 2 4 6 8 10 12 14 16 18 20 o
1€ -wil t

Figure 5.12: Activity curve and firing counter curve with different values of 7.

5.3.2 Pattern Extraction

Once all the input matrices associated to the extracted gait cycles are processed
by the clustering algorithm, a network of connected nodes is created. Every node
represents a cluster of gait cycles and, in particular, the matrices associated with
every existing node in the network contain useful information about the associated
cluster. Moreover, each node is considered a valid cluster if it has been trained

at least five times during the training phase.

Every row of the matrix associated with a given node in the network is a mean-
ingful pattern representing a subset of the input gait cycles created taking into
account the learning rates and the firing counters of all the input samples asso-
ciated with that cluster (see Equation 4.18). In particular, for every node, we
have three patterns representing the acceleration signal in the cartesian coordi-
nate system and three patterns representing the rotation in the three axes. An
example of y-axis accelerometer pattern represented together with all the gait

cycles assigned to the reference cluster can be seen in Figure 5.13.

70

Y-axis accelerometer pattern together with gait cycles

18

m/s~2

! ! !
0 50 100 150 200
samples

Figure 5.13: Example of y-axis acceleration pattern (bold black line) together with all the reference y-axis
accelerometer gait cycles.

5.4 Gait Parameters Extraction

Once all the gait cycles are processed by the GWR, algorithm, a certain number
of gait parameters charaterizing the particular cluster to which they belong can
be extracted. From the identification of the IC and FC instants, in fact, stride
and subsequently stance and swing time (see Figure 5.6) of each gait cycle can

be computed as:

Stance time = FC(i+ 1) — I1C(i) (5.5)
Stride time = IC(i + 2) — IC(1) (5.6)
Swing time = Stride time — Stance time (5.7)

Therefore an average value of these parameters can be computed for each cluster.

Other two important gait parameters that can be estimated are the step length
and the step velocity. They are computed using the upward and downward move-

ment of the trunk. Assuming a compass gait type, Center of Mass (CoM) move-

71

ments in the sagittal plane follow a circular trajectory during each single support
phase. In this inverted pendulum model, changes in height of the CoM depend
on the step length [91]. Thus, when changes in height are known, the step length
can be predicted from the geometrical characteristics as follows:

Step length = 2v/2lh — h2. (5.8)

In this equation h is equal to the change in height of the CoM and [is equal
to the pendulum length. Changes in the vertical position are calculated by a
double integration of the vertical component a, of the accelerometer data. To
avoid integration drift, data are high-pass filtered with a fourth-order zero-lag
Butterworth filter at 0.1 Hz. The amplitude in vertical position h is determined
as the difference between the highest and lowest position during a step cycle. Leg
length is taken as pendulum length .

Once the step length is estimated, the average step velocity can be retrieved

by the simple ratio between distance and time:

Step velocity = Step length/Stride time. (5.9)

72

Activity Logger Video

Data collection and video recording are performed with an ad-hoc developed
Android application, called Activity Logger Video, which is used to set up the
acquisition parameters, give basic information about the user, collect data from
the built-in sensors of the smartphone, record a reference video from the rear-
facing camera, save all acquisitions data in non-volatile memory and, possibly,
send them to an FTP server.

This application is an extension of the Activity Logger Android application de-
veloped by Matteo Gadaleta and Michele Rossi in a project aimed at recognizing
a target user from his/her way of walking [3]. In their work, only accelerometer
and gyroscope data coming from the embedded sensor of a commercial smart-
phone are used and thus some changes must be introduced in order to adapt this
application to this work. First of all, the possibility of recording a video from the
rear-facing camera has to be added. Moreover, in the original version of the ap-
plication, the collected inertial data are stored in a temporary three-dimensional
buffer and, when the acquisition ends, the buffer is read, the data of each sensor
are saved in a text file and then stored in a directory of the smartphone file sys-
tem. However, since this process can take several seconds even if the acquisition
time is short, I introduce a different mechanism for saving the data: every time an
acquisition sample is available from any sensor, it is immediately written in the

correspondent file without any additional temporary buffer. This process drasti-

73

cally reduces the saving time making it almost independent from the acquisition

time span.

6.1 Android Programming

Android applications are usually developed in the Java language using the An-
droid Software Development Kit. Once developed, Android applications can be
easily packaged and sold out through different stores like Google Play, Opera
Mobile store or Amazon Appstore.

6.1.1 Android Architecture

Android operating system is a stack of software components which is roughly

divided into five sections and four main layers as shown in Figure 6.1 [92].

o Linux Kernel. At the bottom of the layers is Linux 3.6, with approximately
115 patches. This provides a level of abstraction between the device hard-
ware and it contains all the essential hardware drivers like camera, keypad,

display, etc.

o Libraries. On top of the Linux kernel there is a set of libraries including open
source Web browser engine WebKit, SQLite database, libraries to play and
record audio and video and SSL libraries responsible for Internet security,
etc.

o Android Runtime. This third section of the architecture provides a key
component called Dalvik Virtual Machine which is a kind of Java Virtual
Machine specially designed and optimized for Android. The Dalvik Virtual
Machine makes use of Linux core features like memory management and
multi-threading, which is intrinsic in the Java language. It also enables

every Android application to run in its own process.

o Application Framework. The Application Framework layer provides many
higher-level services to applications in the form of Java classes. Application

developers are allowed to make use of these services in their applications.

74

o Applications. Android application layers is at the top. Developers write
applications to be installed on this layer only. Examples of such applications

are Contacts Books, Browser, Games, etc.

Applications

[bome H e | == M Caloncar HMediaplayer } = =3
[cones H Vace Dia H Ema M Broweer H Cock H Abum H -

Application Framework

{ Activity Manager } { Window Manager } [Content Provider

_J

{ View System } [Notification Manager }

{ Package Manager } { Telephony Manager } [Resource Manager

—_J

{ Location Manager } [XMPP Service }

Libraries Android Runtime

Surface Manager Media Framework SQLite Core Libraries

Dalvik Virtual Machine

LibWebCore

OpenGL ES FreeType

SGL ssL Libe

il
I
il
I

Linux Kernel

[Display Driver } { Camera Driver } { Bluetooth Driver

(N

{ Flash Memory Driver J { Binder (IPC) Driver }

[USB Driver } { Keypad Driver } { WiFi Driver

_J

{ Audio Driver } { Power Manager }

Figure 6.1: Android architecture diagram.

6.1.2 Application Components

Application components are the essential building blocks of an Android applica-
tion. These components are defined in the application manifest file AndroidMan-
ifest.xml that describes each component of the application and how they interact.
There are four main components that can be used within an Android application:

Activities, Services, Broadcast Receivers and Content Providers.

o Activities. An activity represents a single screen with a user interface. In
short, activities performs actions on the screen. If an application has more
than one activity, then one of them should be marked as the activity that

is presented when the application is launched.

-3

5

o Services. A service is a component that runs in the background to perform
long-running operations. For example, in the Activity Logger Video (the
application developed for this thesis), a service starting the video recording

is launched when the start button is tapped.

e Broadcast Receivers. Broadcast receivers simply respond to broadcast mes-
sages from other applications or from the system. Applications can also
initiate broadcasts to let other applications know that some data has been

downloaded to the device.

o Content Providers. A content provider component supplies data from one
application to the others on request. Such requests are handled by the meth-
ods of the ContentResolver class. Data may be stored in the file system, in

the database or somewhere else entirely.

6.2 Activity Logger Video

Activity Logger Video requires a minimum API Level of 8 and requests permission
for audio and video recording, accessing the camera, the internet and using ex-
ternal storage. All the required permissions together with the main components
of the applications are detailed in the AndroidManifest.zml file (Listing 6.1).

76

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.signet.activityloggervideo" >
<uses-sdk android:minSdkVersion="8" />
<uses-permission android:name="android.permission.RECORD_VIDEO" />
<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.CAMERA" />
<uses-feature android:name="android.hardware.camera" />
<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.WAKE_LOCK" />
<uses-permission android:name="android.permission.GET_ACCOUNTS" />
<uses-permission android:name="android.permission.INTERNET" />
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity
android:name=".MainActivity"
android:label="@string/app_name"
android:screenOrientation="portrait">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"
/>
</intent-filter>
</activity>
<service
android:name="com.signet.activityloggervideo.RecorderService"
/>
</application>

</manifest>

Listing 6.1: AndroidManifest.xml file of the application Activity Logger Video.

7

The application is composed of a main activity that defines all the functions
related to the sensor acquisitions, data savings and data uploading. Moreover,
when the camera switch is enabled, a service controlling the video recording
is started. As can be seen from Figure 6.2, in the home screen the user can
personalize the acquisition by entering his/her name, the activity he’s going to
perform and can add some additional information in the "Note” section. The
acquisition can be delayed by a given interval in order to let the user fix the
smartphone in the support. Moreover, it can be stopped manually by pressing
the stop button or automatically by setting a predefined acquisition time. At the
bottom of the home screen, in the video preview section, the video can be analyzed
while it’s being recorded. In the menu placed on the top-right corner of the home
screen the user can delete all the acquisition files stored in the application folder
or he can send all the data to the FTP server. In order to control the connection
to the server, a class called send_file_ F'TP has been developed. It extends the
AsyncTask class that enables the proper use of the Ul thread. This class allows
to perform background operations and publish results on the Ul thread without
having to manipulate threads and handlers. At first, in the send_ file FTP class,

four different strings are defined as is Listing 6.2.

String server = "kxxxxxxxx'y
String user = "kkkxkxxxxk';
String pass = "kxkxxxxxx';
String serverRoad = "xxxkkkxxx';

Listing 6.2: Strings identifying the connection parameters in the send_file_FTP class.

These strings define, respectively, the FTP server, the user name, the password
and the path in which all the acquired data are going going to be saved in the
server. Moreover, a protected method dolnBackground defined in this class is
called by the system to perform actions in the worker thread. Also, the system
delivers to this method the same parameters given to AsyncTask.ezecute(). This
method initially creates a FTPClient object (see Listing 6.3), and then tries to

connect the the target server using the credentials defined above.

78

protected Boolean doInBackground(String... file_path){
String filename =
file_path[0].substring(file_path[0].lastIndexOf("/") +
1);
try{
FTPClient ftpClient = new FTPClient();
ftpClient.connect(server);
ftpClient.login(user, pass);
ftpClient.enterLocalPassiveMode();
ftpClient.setFileType(FTP.BINARY_FILE_TYPE);
ftpClient.changeWorkingDirectory(serverRoad);
FileInputStream file = new FileInputStream(new
File(file_path[0]));
if (!ftpClient.storeFile(filename, file)){
file.close();
ftpClient.logout();
ftpClient.disconnect();
return false;
}
file.close();
ftpClient.logout();
ftpClient.disconnect();
return true;
}
catch (Exception e){
e.printStackTrace();

return false;

Listing 6.3: Protected method doInBackground.

79

The results of the connections and of the uploading procedures are handled by
another protected method, called onPostExecute. This method takes as input a
boolean value representing the outcome of the previous operations and printed out
a message to the user reporting whether they have been successful or not. Once
all the saved data have been sent to the server, thy are permanently deleted from

the smartphone. The code implementing this method can be seen in Listing 6.4.

protected void onPostExecute(Boolean result){
progress_dialog.dismiss();
if (result){
show_only_ok("Data sended.");
delete_all_data(dir);

}
else{

show_only_ok("ERROR! Data NOT sended.");
}

Listing 6.4: Protected method onPostExecute.

In order not to have any aliasing problem due to a too low sampling rate, data are
acquired from the built-in sensors at highest possible sampling rate: this can be
achieved with the constant SensorManager.SENSOR_DELAY FASTEST. An-

droid, in fact, let you tune the sensors’ sampling rate. The possible choices are:

o SensorManager.SENSOR_DELAY NORMAL: rate suitable for screen ori-
entation changes (set by default).

o SensorManager.SENSOR_DFELAY UI: rate suitable for the user interface.

o SensorManager.SENSOR_DELAY GAME: rate suitable for games.

o SensorManager.SENSOR_DELAY FASTEST: get sensor data as fast as
possible.

80

ActivityLoggerVideo

I

Activity Logger Video
Alberto

Walking < Enable Camera * @)

Note

Start delay (sec): 0

Acquisition time (sec): g

Activate 'Flight Mode' for better resuilts.

START

Figure 6.2: Activity Logger Video icon and home screen.

Since the acquisition time may be quite long, a Wakelock is needed in order to
let the CPU running and prevent the screen from dimming during the acquisition
phase. Wakelocks, in fact, are power manager system features that are able to
control the power state of the host device. If not well-managed, however, they
have a dramatic influence on the battery drain associated with a given application.

Wakelocks are defined, triggered and released as follows:

powerManager = (PowerManager) getSystemService(POWER_SERVICE);
// Wakelock definition
wakelLock =
powerManager .newWakelLock (PowerManager .PARTIAL_WAKE_LOCK,
"Acquisition_Wakelock");
wakelLock.acquire(); // Wakelock start

wakelLock.release(); // Wakelock release

Listing 6.5: Wakelock definition, triggering and release.

81

6.2.1 Video Frames /Sensor Data Synchronization

One of the main problems of working with a combination of video frames and
data coming from the built-in sensors of the smartphone is how to synchronize
them. Sensors and camera, in fact, have different acquisition rate: sensors data
are acquired at around 100/200 Hz (depending on the smartphone model) while
modern smartphones’ cameras have a frame rate of 20/30 fps, depending on the
video resolution. Moreover, as discussed above, sensors’ sampling rate is not
always constant during the acquisition. Video frames and sensor data synchro-
nization, however, is very important in this kind of applications since events that
are detected in the inertial signals coming from the sensors must also be analyzed
in the signals extracted from the reference video. This can be achieved only when
the two kind signals are well-synchronized.

Sensor samples alone can be easily synchronized by looking at the correspondent
SensorEvent.timestamp. In fact, every time a new sample is available from any
sensor, a timestamps measured in nanoseconds is returned. The method that
allows to collect data coming from the sensor is onSensorChanged. 1t is defined
in the SensorEventListener Android interface and it is automatically called by
the system every time a new sensor event is detected. An example of how the
data coming from the sensors can be managed with this method is shown in
Listing 6.6.

@Override
public final void onSensorChanged(SensorEvent event){
long sensorTimens = event.timestamp;
Float[] temp = {event.values[0], event.values[1l], event.values[2]};
switch (event.sensor.getType()) { // check which sensor produced
the data sample
case Sensor.TYPE_ACCELEROMETER:
write_file(temp, event.timestamp, fos_acc); // write data and
timestamp in the correspondent file
break;
case Sensor.TYPE_LINEAR_ACCELERATION:
write_file(temp, event.timestamp, fos_acclin);
break;
case Sensor.TYPE_GYROSCOPE:

82

write_file(temp, event.timestamp, fos_gyro);
break;

case Sensor.TYPE_MAGNETIC_FIELD:
write_file(temp, event.timestamp, fos_magn);
break;

case Sensor.TYPE_GRAVITY:
write_file(temp, event.timestamp, fos_grav);
break;

case Sensor.TYPE_ROTATION_VECTOR:
write_file(temp, event.timestamp, fos_rotvec);

break;

Listing 6.6: Example of OnSensorChanged method implementation.

With this approach, every time a new sample is available, the reference timestamp
for the three axes is saved in the sensorTimens variable and then written in a
file associated to the correspondent sensor. The sensor that produced the sample
can be easily identified with analyzing the event.sensor.getType output.

As for the camera, however, Android does not provide any method that allows
for a frame by frame analysis and, consequently, it is not possible to have an
exact reference timestamp for every frame. In order to cope with this, I used the
System.nanotime method and the MediaMetadataRetriever object to estimate the
exact instant in which the video recording is started and the video length. With
these two additional information and given the frame rate, the number of video

frame can be easily computed as
N frames = Video_length - frame rate - 103, (6.1)

where frame rate is expressed in frame per second (fps) and video_length is
expressed in milliseconds. Moreover, starting from the initial recording instant, a
timestamp can be assigned to every frame. Let timestamp, denote the timestamp

of the n-th frame and let start_rec be initial recording instant, we have that:

timestamp,, = start_rec+n - 1077, (6.2)

frame_rate '

83

where start_rec is measured in nanoseconds. In the computation of the frame
timestamps I assume that the camera frame rate is almost constant. The reference
code for the video information and frame timestamp retrieval can bee seen in
Listing 6.7.

// Retrieve video information

MediaMetadataRetriever retriever = new MediaMetadataRetriever();

retriever.setDataSource(RecorderService.this, Uri.fromFile(new
File(Environment.getExternalStorageDirectory().getPath() +
"/ActivitylLoggerVideo/" + video_path + "/" + video_path +
".mp4")));

video_length = Long.parselLong(retriever.extractMetadata(

MediaMetadataRetriever .METADATA_KEY_DURATION));

n_frames = Math.round(video_length / ((1 / fps) * 1e3));

// compute frame timestaps asssuming uniform sampling frequency
frame_timestamps = new long[(int)n_frames];
for(int i = 0; i <= frame_timestamps.length-1; i++)

frame_timestamps[i] = (long) ((start_rec) + i x (1/fps) * 1le9);

writeFrameTimestamps(); // write timestamp in a file
writeVideoInfo(); // duration and number of video frames are written

in a file

Listing 6.7: Procedure for retrieving video information and frame timestamps.

At this point, even if every frame has an assigned timestamp, sensors data and
frames timestamps must be aligned. In fact, they are both computed in nanosec-
onds but with respect to different initial instants. According to the Android API
documentation, SensorEvent.timestamp is the time at which the event happened
since the operating system started. On the other hand, the value returned from
System.nanotime represents the nanoseconds since some fixed but arbitrary ori-
gin time. Then, in order to align these values, at every new acquisition, the
offset between the two measurements is computed and then added to all the Sen-
sorEvent.timestamp values. With this procedure a final software synchronization

between video frames and sensor data can be achieved.

84

In Listing 6.8 is presented the code, included in the OnSensorChanged method,
that implements the alignment between data and frame timestamp. At the be-
ginning of every new acquisition, two different arrays called Systs and Futs are
defined. They are going to contain a certain number of System.nanoTime and
event.timestamp entries. After the filling procedure, the last ten samples of each
array are used to compute the average offset value between the two time refer-
ences. In the computation of the offset, I decided to utilize only the last samples
since, at the beginning of each acquisition, the timestamps returned from the
two methods are not stable and precise because of the computational load of the
application.

if(!done){ // do this exactly once at every new acquisition
Systs[counter] = System.nanoTime();
Evts[counter] = event.timestamp;
counter ++;
if(counter == Systs.length) {
int samples = 10; // compute average value using last 10 samples
for(int i = Systs.length - samples; i <= Systs.length - 1; i++)
startoffset = startoffset + (Systs[i] - Evts[i]);
startoffset = startoffset / samples;
done = true;

counter = 0;

Listing 6.8: Procedure utilized to align data and frame timestamps.

85

86

Results

In this chapter, 1 present the analysis and the experiments carried out to set
up the the proposed gait analysis system. In particular, I discuss and detail an
example of the GWR algorithm applied to the gathered data describing all the
main iterations and steps involved.

Besides, I show that the combination of accelerometer and signals extracted
from the video can lead to better clustering results if compared to the "classi-
cal” approach that uses accelerometer data together with gyroscope ones. The
outcomes of the clustering procedure are also analyzed in a user identification sce-
nario, where the proposed algorithm tries to distinguish between different users
from their walking style. Finally, the parameters extracted from the different

walking acquisitions are presented and discussed in detail.

7.1 GWR Clustering

As discussed in Section 4.4, the GWR is an unsupervised growing network-based
incremental algorithm that can be used to discover topological structures and
clusters in the input data. I recall that the parameters regulating the firing
counter of each node in the network are set as in [39]. With respect to the
activity threshold a;, € [0, 1], a value of a; = 1 means that at every iteration a

new node is added (if also the firing counter constraint is satisfied) and a; = 0

87

means that no new node are ever going to be added to the network. In this
work, as, the firing counter threshold h; and the learning rates e, and e, have
been tuned according to the final clustering results. In fact, since the number
of expected clusters is known a priori and since I know to which cluster each
gait cycle belongs to, the best values for a; and h; are the ones maximizing the
correct matches. According to this procedure, the assigned values are a; = 0.2,
h; = 0.245, e, = 0.3 and e, = 0.006. With this value of h;, as can be seen in
Figure 7.1, a given node is considered to be trained after having fired exactly five

times.

T 1 I]
\ () ht:iiring counter threshold

0.9

08— |\ |

0.7 - \ -

0.6

h(t)

0.5

0.4

0.3

0.245

0.2

0.1

0

Figure 7.1: Firing counter curve and firing counter threshold h;.

In Figure 7.2 it is shown an example of the evolution of the GWR network
using the accelerometer and video signals gathered from the four different walking
acquisitions of one of the volunteer. These data are then put together, processed,
rearranged in matrix form, and given as input to the clustering algorithm.

In this example, the maximum allowed age for the edges of the graph is set to
Amaz = D.

The algorithm starts with the initialization phase (ITERATION 1) where two
nodes are randomly created and connected with an edge that has age equal to

Zero.

88

ITERATION 1 ITERATION 5
Node 0
Node 0
Node 1
Node 1 0
Node 2
« Algorithm initialization « Insertion of Node 2 between Node 0 and Node 1
ITERATION 10 ITERATION 20
Node 0 Node 0
Node 1 1
5>amax
Node 2
« age(y 2)>amax — Since isolated, Node 1 is removed
ITERATION 41 ITERATION 46
Node 0

Node 2

Node 0
....5>8max Node3

Node 2

« Insertion of Node 3 between Node 0 and Node 2

« age(p3)>a max — Since isolated, Node 0 is removed

ITERATION 53

ITERATION 59

Node 3

Node 3

Node 2

» Insertion of Node 4 between Node 2 and Node 3

« Insertion of Node 5 between Node 2 and Node 3

ITERATION 64

ITERATION 76

Node 5

Node 3

Node 2 Node 4

Final Nodes

Node 3

-« age(p) >amayx — €dge (2,5) is removed

age(03) > amax— Since isolated, Node 2 is removed
« Final clusters identified by Node 3, Node 4 and Node 5

89

Figure 7.2: Example of the GWR network evolution using accelerometer and video signals.

In ITERATION 5, the activity and the firing counter values of the best node
(Node 0) are smaller than the correspondent thresholds. Consequently, Node
2 is added to the network between Node 0 and Node 1. This new node will
have an associated weight matrix wy = (wo + £)/2, where wy is the weight
matrix associated to Node 0 and £ is the input data matrix at the fifth iteration.
Moreover, the connection between Node 0 and Node 1 is removed. After five
more algorithm iterations, the age of the edge connecting Node 1 and Node 2
exceeds @4 and consequently it is deleted. At this point, Node 1 is isolated
from the network and it is permanently discarded. From ITERATION 10 to
ITERATION 40, the network setup does not change and the two nodes keep
adapting their weight matrices to the input data. In the successive iterations the
network grows adding Node 3, Node 4 and removing the starting Node 0. At
ITERATION 59, Node 5 enters the network between Node 2 and Node 3. This
insertion is different from the others since it occurs between two nodes that were
not previously connected. New node insertion, in fact, always happens between
the two best matching nodes but it does not imply their connection. In the last
iterations, the connections of Node 2 are deleted since they booth exceed a,qz-
After the removal of Node 2 the algorithm ends with a final set of nodes composed
by Node 3, Node 4 and Node 5.

These nodes identify the final clusters detected by the algorithm in the input
data. Each input sample, in fact, is assigned to one of these three clusters. In
particular, it can be noticed that the GWR network is built by creating and
deleting different nodes and only the ones that lead to the best representation of
the input data are kept.

The weight matrices associated with the final nodes contain six different pat-
terns that define the cluster they represent. These patterns represent a sort of
weighted average of all the input samples that have been assigned to a given
cluster. In particular, every patter is also strongly influenced by the learning rate
parameters and by the firing counter of each node.

The reference patterns associated to the example discussed above can be seen
in Figure 7.3. These six patterns are related to the three components of the
accelerometer and of the signals extracted from the videos. The ones associated
to the “cluster0” represents the regular-walking-style cluster while the other two

identify the walks with a right and left limp, respectively.

90

x meter pattern v lerometer pattern

EJ 00 5o 0 E] 00 =0 o0 - E] 1o ey 0
sampes. samples sampies

X-axis video signal pattem

E3 00 50 70 - E] 00) 0 - E] 1o) ™0
samples. samples samples

Figure 7.3: Reference patterns associated to the clusters discovered by GWR algorithm using accelerometer and
video signals. "Cluster0” is related to the regular walking style, "cluster1” is related to the walk with a right limp
and "cluster2” is related to the walk with a left limp.

As expected, it can be seen that the curves associated to "cluster0)” are almost
symmetric. This emphasize the fact that, during a regular walk of a healthy
person, the signals extracted from the left and right step are almost the same. For
what concerns the other two clusters, not surprisingly, this symmetry is absent,

especially in the patterns extracted from the video signals.

91

7.2 Performance Analysis of the GWR Algorithm with Different

Combinations of Input Signals

In this section I present and evaluate the results obtained from the GWR algo-
rithm focusing upon the benefits that the signals extracted from the video can
bring if combined with the accelerometer ones. As already discussed, in fact, in
most gait analysis or human identification works, the classical signals included in
the study are the ones coming from accelerometer and gyroscope.

In Figure 7.4 are reported three examples of y-axis accelerometer signals cor-
responding to the three considered walking styles. The gait cycles are extracted
with the techniques discussed in Chapter 5 and are represented by different colors

in the figures.

H.

““f |

mis~2

ﬂ

mis~2

{." I

WL

(P/

Normal walk. Right limp.

mis~2

mmmmmmmm

Left limp.

Figure 7.4: Y-axis acceleration signals for the three different walking styles. Different gait cycles are represented
by different colors.

It can be seen that there are no significant differences between the analyzed

92

30 Clustering results with accelerometer and video signals

© cluster0
* cluster1
A cluster2

20

*
© * % o
°
2 o o
3 a
2 a ** o 990
o N 9o
o
@,
A ©
* oo
10 o ol * %
% ° %o
o a 4 * o
#* 08%
o [y o
-20 a
*
a *x
a
-30 &
N *

40
20
0

20
feature 2 -40 -30 -20 -10 0 10 20 30
feature 1

Figure 7.5: Clustering results obtained with accelerometer and video signals.

signals. In fact, the waveform and the range values are almost the same for
all the walks. This fact underlines that differentiating the walking acquisitions
finding meaningful clusters that effectively represent the input space is not a
trivial problem.

Figure 7.5 shows how the input gait samples of a given user are clustered by
the GWR algorithm using the accelerometer components together with the signals
extracted from the reference videos. Since every gait sample is represented by a
6 x 200 matrix, to visualize them a dimensionality reduction technique has to be
applied. The tool I utilized is Principal Component Analysis (PCA) [61].

PCA is a dimensionality-reduction algorithm that can be used to reduce a large
set of variables to a small set that still contains most of the information of the
large one. It is a mathematical procedure that transforms a number of correlated
features into a number of uncorrelated ones, called principal components, where
each pair of new distinct features has 0 covariance. Features are ordered with
respect to how much of the variance of the data each component captures. The
first feature captures as much of the variance of the data as possible and, subject

to the orthogonality requirement, each successive attribute captures as much of

93

the remaining variance as possible.

Every input matrix is vectorized obtaining a reference input vector of 1200
samples that is given as input to the PCA algorithm. In order to correctly
visualize the results, the number of PCA features is set to three. Obviously,
introducing a dimensionality reduction in the data, leads to an information loss.
The extracted features, however, are still able to successfully describe the data
since the clusters detected by the GWR algorithm can be easily identified even
with visual inspection.

Using the accelerometer and video signals, as reported in Table 7.1, the number
clusters detected by the algorithm matches the number of expected ones: a cluster
that represents the normal walk, another representing the walk with a limp on
the right leg and the third related to the walk with a limp on the left leg.

Expected number of clusters | Number of found clusters

3 3

Table 7.1: Expected and found number of clusters using accelerometer and video signals.

However, even if the number of detected and expected clusters is the same, it
does not mean that the clustering procedure has completely succeed. It could be,
in fact, that some input samples may be assigned to a wrong cluster. So, in order
to compute the accuracy results, the cluster assigned to each input sample must
be compared with the ground truth. In this case, the clustering results perfectly
match the ground truth for every of the five users considered in this study. The
final accuracy reached with accelerometer and video signals is then 100%.

Figure 7.6 shows the clustering results obtained with the accelerometer and
gyroscope data. As underlined by Table 7.2, in this case the GWR algorithm is
not able to detect all the expected clusters.

Expected number of clusters | Number of found clusters
3 2

Table 7.2: Expected and found number of clusters using accelerometer and gyroscope signals.

From the plot below, in fact, only two well-separated clusters can be observed.

By comparing the clustering results with the ground truth, it can be seen that the

94

Clustering results with accelerometer and gyroscope signals

© cluster0
* clustert

**
10 —| *
* T L]
o
*
*
5| ° oo o *
® eo ° . * ;
° o 00
dgoo 0, * *
,;,’ 0— o % 090 ° * %
El 8 *,
© o *
o ° ° °
-~ 5 — o
*
* 5
X
* *
10 — *
*
“3
15 — K
20
= -10
20 = 0
40 30 = 10
20 10 0 — 20
-10 -20 30 30

feature 1 feature 2

Figure 7.6: Clustering results obtained with accelerometer and gyroscope signals.

input gait samples related to the normal walk are all correctly assigned to "clus-
ter0”. However, the left and right limp clusters are not differentiated by the
algorithm since the associated samples are all assigned to the same ”clusterl”.

From these results it comes out that the approach that includes accelerometer
data and signals extracted from input videos can describe the input data in a
more precise manner, leading the clustering algorithm to discover all the expected
clusters without any classification error. On the other hand, the classical approach
that sees the accelerometer data combined with the gyroscope ones leads to the
detection of only two clusters, the one related to the normal walk and the other
that includes all the samples coming from a generic walk with a limp.

The clustering performance of the proposed system is also evaluated in a differ-
ent scenario. Considering only the acquisitions coming from the normal walks, it
is analyzed whether the algorithm is able to recognize which gait samples belongs
to a certain user. Also in this case, the results coming from the combination of
accelerometer data and video signals are compared against the ones related to the
combination of accelerometer and gyroscope signals. To the best of my knowl-

edge, an unsupervised human identification approach similar to the one proposed

95

Clustering results for user identification with accelerometer and video signals

cluster0
clustert
cluster2
cluster3
cluster4

* + D % O

15— . Wk, *
+ Pt g
++ & ° @ *
+ *
10 —| L %
i o S
P % °%%cn° °
b dE T o
5—| L + o 8o o
o
0—]
AN
a
o 5] o oad o
3 YT N
% AAA AA a
S 10| a « % =
= a a o
.
%
15 —|
’;QQ «
b *
20 — At *

10

20 30 60 feature 1
feature 2

Figure 7.7: Clustering results obtained in the user identification scenario with accelerometer and video signals.

in this work has never been investigated in the literature.

Figure 7.7 presents the results achieved utilizing the accelerometer and video
signals. The parameters of the GWR algorithm are set as described in Section 7.1
and, also in this case, PCA is performed in order to visualize the input data. As
reported in Table 7.3, all the five expected clusters corresponding to the five
users are successfully identified by the algorithm. Besides, even if "cluster0” and
"cluster1” are so close to each other, the algorithm is still able to split them. Also
in this user identification scenario, the accuracy of the system, assessed comparing
the obtained results with the ground truth, shows great performance since all the

input samples are correctly assigned to the correspondent cluster.

Expected number of clusters | Number of found clusters

5 5

Table 7.3: Expected and found number of clusters using accelerometer and video signals in the user
identification scenario.

As before, also in this case the results are investigated when the video signals
are replaced by the gyroscope data. Figure 7.8 shows that, even in the user iden-

tification scenario, the system is not able to perfectly characterize the input data

96

Clustering results for user identification with accelerometer and gyroscope signals

o cluster0
4 clustert
* cluster2

30

S
2 .t n
«
ot 0%
10 Ay
[s]
9_) o
=1 o
s 0 @0
2 oo
Bap &
Oy
S

feature 2

20

50 0 feature 1

Figure 7.8: Clustering results obtained in the user identification scenario with accelerometer and gyroscope
signals.

when the gyroscope is included in the computation. Even with visual inspection
the data are not well-separated and only three main clusters can be recognized.
The number of clusters identified by the algorithm, in fact, does not matches the

number expected ones (see Table 7.4).

Expected number of clusters | Number of found clusters
5 3

Table 7.4: Expected and found number of clusters using accelerometer and gyroscope signals in the user
identification scenario.

Analyzing the ground truth, it can be seen that the gait samples correspond-
ing to the second and fourth user are correctly assigned to two different clusters
("clusterl” and "cluster2”). On the other hand, the input samples correspond-
ing to the first, third a fifth user are all misclassified and assigned to a unique
"cluster(”.

These results confirm that the approach including accelerometer and gyroscope
data is overcome by the one including the signals extracted from the reference

video. The combination of these signals, in fact, can effectively describe the input

97

in such a way that all the expected clusters can be identified by the algorithm in

both scenarios.

7.3 Gait parameters

In this section I present the parameters estimated from the extracted gait samples.
After each sample is assigned to a certain cluster, in fact, the stance and swing
time values together with the step velocity are computed using the techniques
described in Chapter 5.

I recall that the stance time is defined as the time in which the reference foot
is in contact with the ground at the beginning of each gait cycle. The swing
time, instead, is the time in which the reference foot swings forward between one
episode of ground contact and the next one.

In the three tables below I report the average value and standard deviation of
the parameters estimated from the input samples of every user. It can be seen
that there are no substantial changes in the parameters value of User 1 and User 3
for the different walking styles. As for User 0, instead, it can be noticed a decrease
of the swing time of around 9% in the case of walking with a limp acquisitions.
In User 2 and User 4 limp parameters, there is a noticeable decrease in the step
velocity value of around 23% and 18%), respectively. Moreover, as opposite to the
results obtained for User 0, User 2 has an increased swing time value (around
10%) in the case of the walks with a limp.

98

User ID

Gait User 0 User 1 User 2 User 3 User 4
parameters

Stance time 0.44 £ 0.007 s 0.40 £+ 0.007 s 0.42 £ 0.006 s 0.39 £ 0.01 s 0.39 £ 0.01 s
Swing time 0.73 £ 0.01s 0.67 £ 0.01s 0.70 £ 0.01 s 0.69 + 0.02 s 0.62 £ 0.01s

Step velocity

1.00 £ 0.06 m/s

1.08 + 0.06 m/s

1.06 &+ 0.03 m/s

0.92 £ 0.04 m/s

1.11 + 0.04 m/s

Table 7.5: Gait parameters extracted from normal walking samples.

User ID
Gait User 0 User 1 User 2 User 3 User 4
parameters
Stance time 0.41 £0.01s 0.41 £0.01 s 0.45 £ 0.01 s 0.37 £0.03 s 0.43 £0.04 s
Swing time 0.66 + 0.014 s 0.67 £ 0.02 s 0.77 £ 0.02 s 0.67 £ 0.04 s 0.66 £ 0.03 s

Step velocity

111 + 0.03 m/s

1.06 £ 0.03 m/s

0.8 £ 0.08 m/s

0.89 £ 0.06 m/s

0.92 £+ 0.07 m/s

Table 7.6: Gait parameters extracted from right-limp walking samples.

User ID
ait User 0 User 1 User 2 User 3 User 4
paramctcrs
Stance time 0.42 + 0.03 s 0.40 £ 0.01 s 0.43 £ 0.01 s 0.42 + 0.02 s 0.43 £0.02 s
Swing time 0.67 £ 0.03 s 0.67 £ 0.01 s 0.79 £ 0.02 s 0.67 £ 0.03 s 0.72 £ 0.05 s

Step velocity

1.11 £ 0.09 m/s

1.12 £ 0.06 m/s

0.82 £ 0.08 m/s

0.83 &+ 0.07 m/s

0.88 + 0.06 m/s

Table 7.7: Gait parameters extracted from left-limp walking samples.

99

100

Conclusions and Future Work

In this thesis, I have presented a gait analysis system based on inertial and video
signals acquired from a smartphone located in an ad-hoc made chest support
during different walking sessions. In particular, the proposed system exploits
accelerometer and gyroscope data together with signals extracted from a reference
video to estimate useful gait parameters and identify meaningful clusters in the
walking data. After a preprocessing and a cycle segmentation phase, an adapted
version of the GRW unsupervised clustering algorithm is applied. This algorithm,
in addition to identify clusters in the input data, returns a representative pattern
for each of them.

The performance of the proposed clustering algorithm has been investigated
in two different scenarios using different combinations of input signals. At the
beginning, the system tries to distinguish between three different walking styles
performed by a single user. Then, different walking samples coming from different
users are used as input to detect whether the algorithm was able to assign each
sample to the correspondent user.

Results showed that the combination of accelerometer and video signals per-
forms much better than the combination of accelerometer and gyroscope data,
leading to a perfect classification in both scenarios.

As future work, the proposed system could be exploited in researches aimed

at studying the evolution of the Parkinson’s syndrome, analyzing if particular

101

gait patterns occur, identifying the stage of the disease,etc.. Moreover, it could
be included in a personal health counseling application able to find user-related

walking patterns, track them over time and monitor monthly or weekly changes.

102

1]

2]

References

A. Fusiello, Visione Computazionale. Tecniche di Ricostruzione Tridimen-

sionale. Milano: Franco Angeli, 2013.

J. Holmstrom, “Growing Neural Gas Experiments with GNG, GNG with
Utility and Supervised GNG,” Master’s thesis, Uppsala University.

M. Gadaleta and M. Rossi, “Idnet: Smartphone-based gait recognition
with convolutional neural networks,” CoRR, vol. abs/1606.03238, 2016.
[Online]. Available: http://arxiv.org/abs/1606.03238

N. Neverova, C. Wolf, G. Lacey, L. Fridman, D. Chandra, B. Barbello, and
G. W. Taylor, “Learning human identity from motion patterns,” CoRR, vol.
abs/1511.03908, 2015. [Online]. Available: http://arxiv.org/abs/1511.03908

S. J. Morris and J. A. Paradiso, “Shoe-integrated sensor system for wireless
gait analysis and real-time therapeutic feedback,” pp. 2468, 2469, October
2002.

M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J. M.
Havinga, “Complex human activity recognition using smartphone
and wrist-worn motion sensors,” sensors, 2016. [Online]. Available:

www.mdpi.com/journal /sensors

O. D. Incel, M. Kose, and C. Ersoy, “A review and taxonomy of activity
recognition on mobile phones,” Springer Science + Business Media New
York, 2013.

Lockhart, P. JW., W. T., and G.M., “Applications of mobile activity recog-
nition,” pp. 1054-1058, 2012.

S. O. Haykin, Neural Networks and Learning Machines, 3rd ed. Prentice
Hall, 2008.

103

[10]

[11]

[12]

[13]

M. Yuwono, B. Moulton, S. Su, B. G. Celler, and H. Nguyen, “Unsupervised
machine learning method for improving the performance of ambulatory
fall detection systems,” BioMedical Engineering OnLine, 2012. [Online].
Available: http://www.biomedicalengineering-online.com/content/11/1/9

B. Longsta, S. Reddy, and D. Estrin, “Improving activity classification
for health applications on mobile devices using active and semi-supervised

learning.”

C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference and prediction, 2nd ed. Springer, 2009.
[Online]. Available: http://www-stat.stanford.edu/~tibs/ElemStatLearn/

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Application of dimen-
sionality reduction in recommender system-a case study,” DTIC Document,
Tech. Rep., 2000.

R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy

estimation and model selection,” in [jcat, vol. 14, no. 2, 1995, pp. 1137-1145.

T. Martinetz, “Competitive hebbian learning rule forms perfectly topology
preserving maps,” in Proceedings of the International Conference on Artifi-
cial Neural Networks (ICANN-93), Amsterdam, S. Gielen and B. Kappen,
Eds. Heidelberg: Springer, 1993, pp. 427-434.

D. M. Powers, “Evaluation: from precision, recall and f-measure to roc,

informedness, markedness and correlation,” 2011.

P. Siirtola and J. Roning, “User-independent human activity recognition
using a mobile phone: Offline recognition vs. real-time on device recogni-
tion,” in Distributed Computing and Artificial Intelligence. Springer, 2012,
pp. 617-627.

104

[19]

[20]

[21]

[22]

[23]

[24]

J. J. Guiry, P. van de Ven, and J. Nelson, “Classification techniques for
smartphone based activity detection,” in Cybernetic Intelligent Systems
(CIS), 2012 IEEE 11th International Conference on. IEEE, 2012, pp.
154-158.

J. J. Guiry, P. van de Ven, J. Nelson, L. Warmerdam, and H. Riper, “Activ-
ity recognition with smartphone support,” Medical engineering € physics,
vol. 36, no. 6, pp. 670-675, 2014.

O. D. Incel, M. Kose, and C. Ersoy, “Online human activity recognition on
smart phones,” 2012.

H.-H. Hsu, C.-T. Chu, Y. Zhou, and Z. Cheng, “Two-phase activity recog-

nition with smartphone sensors,” 2015.

M. E., Papandrea, M., Lane, and Campbell, “Pocket, bag, hand, etc. auto-
matically detecting phone context through discovery,” 2010.

Park, J.g., Patel, A., Curtis, D., Ledlie, J., and Teller, “Online pose classifi-
cation and walking speed estimation using handheld devices,” pp. 113-122,
2012.

J. Guo, X. Zhou, Y. Sun, G. Ping, G. Zhao, and Z. Li, “Smartphone-based
patients’ activity recognition by using a self-learning scheme for medical

monitoring,” Springer Science + Business Media, 2016.

M. O. Derawi, “Accelerometer-based gait analysis, a survey,” Nor Infor-
masjonssikkerhetskonferanse NISK, 2010.

M. Murray, “Gait as total pattern of movement,” American Journal of
Physical Medicine, vol. 46, 1967.

M. Murray, A. B. Drought, and R. C. Kory, “Walking patterns of normal
men,” Journal of Bone ans Joint Surgery, vol. 46, 1964.

J. Perry, “History of the study of locomotion.” [Online|. Available:
http://www.clinicalgaitanalysis.com /history /modern.html

105

[30]

[31]

[33]

[34]

H. M., L. H., and M.-N. R., “Test-retest reliability of trunk accelerometric
gait analysis,” 2004.

S. Nishiguchi, M. Yamada, K. Nagai, S. Mori, Y. Kajiwara, T. Sonoda,
K. Yoshimura, H. Yoshitomi, H. Ito, K. Okamoto, T. Ito, S. Muto, T. Ishi-
hara, and T. Aoyama, “Reliability and validity of gait analysis by android-
based smartphone,” Telemedicine and e-Health, vol. 18, pp. 292-296, March
2012.

J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S. Makela, and H. Ailisto,
“Identifying users of portable devices from gait pattern with accelerome-
ters,” pp. 973-976, March 2005.

M. Derawi and P. Bours, “Gait and activity recognition using commercial
phones,” vol. 39, pp. 137-144, November 2013.

M. Miiller, “Dynamic time warping,” Information retrieval for music and
motion, pp. 69-84, 2007.

F. Miao, Y. He, J. Liu, Y. Li, and I. Ayoola, “Identifying typical physical

activity on smartphone with varying positions and orientations,” 2015.

S. D. Din, A. Godfrey, and L. Rochester, “Validation of an accelerometer
to quantify a comprehensive battery of gait characteristics in healthy older

adults and parkinson’s disease: Toward clinical and at home use,” 2015.

J. McCamley, M. Donati, E. Grimpampi, and C. Mazza, “An enhanced
estimate of initial contact and final contact instants of time using lower
trunk inertial sensor data,” pp. 316-318, 2012.

B. Fritzke, “A growing neural fas network learns topologies,” 1995.

S. Marsland, J. Shapiro, and U. Nehmzow, “A self-organising network that

grows when required,” 2002.

D. Trojaniello, A. Cereatti, and U. D. Croce, “Accuracy, sensitivity and
robustness of five different methods for the estimation of gait temporal
parameters using a single inertial sensor mounted on the lower trunk,” pp.
487-492, 2014.

106

[41]

[45]

[46]

[49]

[50]

S. Jiang, B. Zhang, G. Zou, and D. Wei, “The possibility of normal gait
analysis based on a smart phone for healthcare,” in Conference on Green
Computing and Communications and IEEE Internet of Things and IEEE
Cyber, Physical and Social Computing, August 2013.

D. Qin and M.-C. Huang, “A smartphone based gait monitor system,” 2015.

J. G. Lim, “Unsupervised clustering for abnormality detection based on the

tri-axial accelerometer,” 2009.

P. Gupta, G. Ramirez, D. Y. Lie, R. T. Dallas, E. Banister, and A. Dentino,
“Mems-based sensing and algorithm development for fall detection and gait
analysis,” MOEMS-MEMS, 2010.

J. Chen, K. Kwong, D. Chang, J. Luk, and R. Bajcsy, Engineering in
Medicine and Biology Society, pp. 3551-3554, 2005.

V. S. N. Selvabala and A. B. Ganesh, “Implementation of wireless sensor
network based human fall detection system,” Procedia Engineering, pp. 767—
773, 2012.

N. H. Chehade, P. Ozisik, J. Gomez, F. Ramos, and G. Pottie, “Detecting
stumbles with a single accelerometer,” pp. 6681-6686, 2012.

M. El-Gohary, J. McNames, K. Chung, M. Aboy, A. Salarian, and F. Ho-
rak, “Continuous at-home monitoring of tremor in patients with parkinson
disease,” Biosignal 2010: Analysis of Biomedical Signals and Images, pp.
420-424, 2010.

M. Yuwono, S. W. Su, B. D. Moulton, and H. T. Nguyen, “Gait episode
identification based on wavelet feature clustering of spectrogram images,”
August 2012.

M. Yuwono, A. M. A. Handojoseno, and H. T. Nguyen, “Optimization of
head movement recognition using augmented radial basis function neural
network,” August 2011.

Y.Tao and H. Building, “Building a visual tracking system for home-based
rehabilitation,” pp. 343-348, 2003.

107

[52]

[53]

[54]

[56]

[57]

H. Charif and S. McKenna, “Activity summarisation and fall detection in

a supportive home environment,” 2004.

J.Gao, H.Wactlar, and A.Hauptmann, “Combining motion segmentation
with tracking for activity analysis,” AFG, 2004.

L. Wang, “Abnormal walking gait analysis using silhouette-masked flow
histograms,” 2006.

S. Ullman, High-level wvision: Object recognition and wvisual cognition.
Boston, MA, USA: MIT Press, 1996.

D. Marr, Vision. A computational investigation into the human representa-

tion and processing of visual information. San Francisco: Freeman, 1982.

J. Y. Aloimonos and D. Shulman, Integration of Visual Modules: An Fzx-
tension of the Marr Paradigm. San Diego, CA, USA: Academic Press
Professional, Inc., 1989.

O. Faugeras, Three-dimensional Computer Vision: A Geometric Viewpoint.

Cambridge, MA, USA: MIT Press, 1993.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, no. 2, pp. 91-110, Nov. 2004. [Online].
Available: http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

)

7. Zhang, “Eight-point algorithm,’
pp- 239-240.

in Computer Vision. Springer, 2014,

S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37—
52, 1987.

T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78,
no. 9, pp. 1464-1480, 1990.

T. Hastie and W. Stuetzle, “Principal curves,” Journal of the American
Statistical Association, vol. 84, no. 406, pp. 502-516, 1989.

108

[64]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1988.

A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264-323, Sep. 1999. [Online].
Available: http://doi.acm.org/10.1145/331499.331504

L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction
to Cluster Analysis. John Wiley, 1990.

B. Everitt, S. Landau, M. Leese, and D. Stahl, Cluster analysis, 5th ed.
Wiley, 2011.

J. Macqueen, “Some methods for classification and analysis of multivariate

observations,” in In 5-th Berkeley Symposium on Mathematical Statistics
and Probability, 1967, pp. 281-297.

Z. Huang, “Clustering large data sets with mixed numeric and categorical
values,” in In The First Pacific-Asia Conference on Knowledge Discovery
and Data Mining, 1997, pp. 21-34.

P. J. Groenen and K. Jajuga, “Fuzzy clustering with squared minkowski
distances,” Fuzzy Sets and Systems, vol. 120, no. 2, pp. 227-237, 2001.

S. Xiang, F. Nie, and C. Zhang, “Learning a mahalanobis distance metric
for data clustering and classification,” Pattern Recognition, vol. 41, no. 12,
pp. 3600-3612, 2008.

J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: Fuzzy c-means algorithm,”

Computers and Geoscience, 1984.

M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm
for discovering clusters in large spatial databases with noise.” in Kdd, vol. 96,
no. 34, 1996, pp. 226-231.

D. A. Keim and A. Hinneburg, “Clustering techniques for large data
sets—from the past to the future,” in Tutorial Notes of the Fifth
ACM SIGKDD International Conference on Knowledge Discovery and Data

109

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[84]

Mining, ser. KDD ’99. New York, NY, USA: ACM, 1999, pp. 141-181.
[Online]. Available: http://doi.acm.org/10.1145/312179.312189

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic
subspace clustering of high dimensional data for data mining applications,”
SIGMOD Rec., vol. 27, no. 2, pp. 94-105, Jun. 1998. [Ounline]. Available:
http://doi.acm.org/10.1145/276305.276314

T. K. Moon, “The expectation-maximization algorithm,” IEEFE Signal pro-
cessing magazine, vol. 13, no. 6, pp. 47-60, 1996.

J. D. Banfield and A. E. Raftery, “Model-based gaussian and non-gaussian
clustering,” Biometrics, pp. 803-821, 1993.

G. Celeux and G. Govaert, “Gaussian parsimonious clustering models,”
Pattern Recognition, vol. 28, no. 5, pp. 781-793, 1995.

S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32,
no. 3, pp. 241-254, 1967.

G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical clustering
using dynamic modeling,” Computer, vol. 32, no. 8, pp. 68-75, 1999.

N. Grira, M. Crucianu, and N. Boujemaa, “Unsupervised and semi-
supervised clustering: a brief survey,” in A Review of Machine Learning
Techniques for Processing Multimedia Content, 2004.

S. Petrovic, “A comparison between the silhouette index and the davies-
bouldin index in labelling ids clusters,” in Proceedings of the 11th Nordic
Workshop of Secure IT Systems, 2006, pp. 53—64.

J. C. Bezdek and N. R. Pal, “Cluster validation with generalized dunn’s
indices,” in Artificial Neural Networks and FExpert Systems, 1995. Pro-

ceedings., Second New Zealand International Two-Stream Conference on.
IEEE, 1995, pp. 190-193.

X. L. Xie and G. Beni, “A validity measure for fuzzy clustering,” IFEFE
Transactions on pattern analysis and machine intelligence, vol. 13, no. §,
pp- 841-847, 1991.

110

[85]

[86]

[90]

[92]

J. C. Stanley, “Computer simulation of a model of habituation,”
Nature, vol. 261, pp. 146-148, May 1976. [Online|. Available: http:
//dx.doi.org/10.1038 /26114620

P. D. Welch, “The use of fast fourier transform for the estimation of power
spectra: A method based on time averaging over short, modified peri-
odograms,” IEEE Transactions on audio and electroacoustics, vol. 15, no. 2,
pp- 70-73, 1967.

G. Bradski, Dr. Dobb’s Journal of Software Tools.

E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001. [Online|. Available: http://www.scipy.org/

D. Nistér, “An efficient solution to the five-point relative pose problem,”
IEEFE transactions on pattern analysis and machine intelligence, vol. 26,
no. 6, pp. 756770, 2004.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated car-
tography,” Communications of the ACM, vol. 24, no. 6, pp. 381-395, 1981.

W. Zijlstra and A. L. Hof, “Assessment of spatio-temporal gait parameters
from trunk accelerations during human walking,” November 2003. [Online].
Available: https://www.ncbi.nlm.nih.gov/pubmed/14654202

Google, “Android developers,” 01 2017. [Online]. Available: http:

//developer.android.com

111

112

