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Abstract

The study of black hole physics is fundamental in the understanding of strong
gravity effects and, in general, serves as a crucial test for a quantum theory of
gravity. In this context, string theory provides an elegant framework for con-
ducting explicit calculations, achieving striking results such as the counting of
black hole microstates that reproduce the Bekenstein-Hawking entropy formula.
In order to find solutions in string theory, one possible approach is to study
its low energy limit: supergravity. A well-known aspect of supergravity black
holes is the “attractor mechanism”, namely the fact that the area of the horizon
of extremal solutions - and consequently, the entropy of black holes - does not
depend on the asymptotic values of the scalars but only on the charges. Over
the past decades, different configurations have been studied, starting from the
simplest case of ungauged theories. Progress was then made by studying black
hole solutions with an Anti-de Sitter (AdS) vacuum, which have important im-
plications for gauge/gravity correspondence. A significant class of solutions yet
to be explored includes gauged solutions where the cosmological constant has
not been fixed to be negative. A better understanding of these solutions may
have numerous consequences, including a deeper comprehension of the attractor
mechanism itself.
In this thesis, we analyse D = 4, N = 2 gauged supergravity theories that
include both vector multiplets and hypermultiplets, without fixing a priori a
gauging choice that leads to AdS vacua. In this context, a first-order description
for the most general black hole solution in terms of the gradient flow of a real
superpotential was obtained, generalizing the previous results obtained for AdS
black holes. Moreover, the explicit construction of some simplified models with
one vector multiplet and one hypermultiplet was carried out, underlying their
limitations and suggesting possible extensions to be considered in future works.
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Introduction

Black holes are a fundamental prediction of the theory of General Relativity formulated by Albert

Einstein in 1915. After over a century of intense theoretical work, the first direct detection of grav-

itational waves from the merger of two black holes by the LIGO experiment [1], and the images of

accretion disks from the Event Horizon Telescope [2], provided striking experimental evidence for the

existence of these fascinating objects, displaying a stunning agreement with predictions from General

Relativity. Alongside all the experimental verifications the theory has gathered over the years, from

the first groundbreaking result on the precession of Mercury perihelion to the precise estimate of the

energy emission via gravitational waves for binary pulsars (see [3] for a review), these achievements

reinforce the theory’s foundational role in our understanding of gravity.

Despite its undeniable success, it is nowadays universally recognized that General Relativity cannot

represent the final description of the gravitational interaction. In particular, as fundamental as they

proved to be, black holes carry the seeds of the theory’s own failure. From singularities sitting behind

the event horizon to inconsistencies in their evaporation process arising from the contact of General

Relativity with Quantum Field Theories, black holes testify the need to go beyond General Relativity

and serve as the quintessential theoretical laboratory for a quantum theory of gravity.

The first cracks in the General Relativity description emerge already at the semiclassical level: one of

the most profound discoveries is that black holes are not entirely black; instead, they emit particles

with a thermal spectrum [4], a phenomenon known as Hawking radiation. This thermodynamic

analogy could be further formalized, getting to the “black holes laws of thermodynamics” and leading

to the identification of an entropy, S, proportional to the area A of their event horizon (measured in

Planck units), as expressed by the renowned Bekenstein–Hawking formula:

S =
kB
l2P

A

4
. (1)

In analogy with known thermodynamic systems, this entropy is expected to have a statistical inter-

pretation in terms of microscopic configurations. Just as the properties of gases could be derived

from the collective behaviour of individual molecules, we would like to identify a set of microstate

geometries that could let black holes macroscopic properties emerge. However, due to a series of

no-hair theorems, such a task is beyond the reach of General Relativity. In particular, the classical

theory associates a unique geometry with a black hole for given properties like mass and charges,

leaving no room for the vast ensemble of microstates that the Bekenstein–Hawking entropy suggests.

This mismatch clearly exposes the inadequacy of General Relativity in possessing the necessary de-

grees of freedom to be considered the ultimate theory for describing our Universe already at the

1



CONTENTS

classical level, pointing to the need for a more fundamental, UV-complete theory that could resolve

the contradictions and, eventually, reconcile gravity with the quantum world.

Over the last decades, string theory has emerged as the most promising candidate for a quantum

theory of gravity. In string theory, the fundamental entities are not point-like particles, but extended

objects that exist in a ten-dimensional spacetime. Additionally, it is the only theoretical frame-

work that intrinsically predicts the existence of the gravitational interaction, and therefore, it must

address the unresolved issues inherited from General Relativity to ensure its consistency. Notably,

starting from the groundbreaking work by Strominger and Vafa [5], there are compelling examples

for which string theory is able to provide a microscopic explanation of the Bekenstein–Hawking en-

tropy, shedding light on the nature of microstates accounting for black hole entropy. However, as it

often happens in theoretical physics, these successes frequently rely on strong simplifying assump-

tions, rendering the configurations studied somewhat idealized and making it imperative to intensify

searches for more complex and yet realistic models.

In this grand quest, a pivotal role is played by supergravity, the low-energy effective field theory that

emerges from string theory. Supergravity allows us to find explicit black hole solutions within the

four-dimensional spacetime we observe, effectively bridging the high-energy, ten-dimensional world

of string theory with our familiar four-dimensional Universe. In this thesis, we will focus specifically

on four-dimensional N = 2 supergravity. While being distant from any potential phenomenological

application, our choice is inspired by the fact that N = 2 supergravity strikes a balance between the

extremely rigid maximally supersymmetric N = 8 theory and the poorly governable N = 1 models,

thus allowing for results that could shed some light also onto more realistic situations, particularly

as we strive to comprehend scenarios in which supersymmetry is broken.

Being a direct extension of General Relativity, supergravity naturally encompasses all its solutions,

making it a valuable framework for the study of black hole physics. However, supergravity intro-

duces additional complexity due to new particles arising from supersymmetry. Notably, it includes

the gravitino, the spin-3/2 supersymmetric partner of the graviton, as well as a multitude of scalars.

The first results obtained in these theories heavily relied on the inputs from supersymmetry, which al-

lowed for greater control over the equations governing the solutions, reducing them from second-order

to first-order differential equations. Through a careful analysis, however, it was eventually realized

that the possibility of having a first-order description does not depend on the supersymmetry content

of the theory but rather on an intrinsic property of black holes themselves: extremality.

This realization led to several consequences, including the possibility of studying more intricate black

hole configurations, such as multi-centre solutions. These solutions are highly non-trivial due to the

intrinsic non-linear nature of General Relativity and they represent the fundamental building blocks

for the construction of black holes microstate geometries.

Another intriguing aspect of extremal black holes is their behaviour at the event horizon. Regardless

of the influence of scalar fields, the characteristics of the horizon are determined solely by the black

hole’s electric and magnetic charges. Specifically, scalar fields flow to fixed values dictated by the
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ratio of these charges, making the horizon an ”attractor” point. This feature, firstly explored in [6],

is usually referred to as “attractor mechanism” and has been crucial for understanding how black

holes entropy in supergravity depends only on the charges, as it should to explain its microscopic

origin.

Building upon these insights, after a thorough review of black hole physics within supergravity

theories, this work aims to extend the existing theoretical framework to encompass a broader class

of black hole configurations.

Specifically, we will analyse black holes solutions in four-dimensionalN = 2 supergravity with Abelian

gaugings. As we will present, these theories can describe a wide variety of physical scenarios, including

the presence of a non-vanishing cosmological constant and the possibility of partial supersymmetry

breaking. Our goal is precisely to include this richness, extending previous analyses that have been

limited to asymptotically flat spacetimes without gaugings or Anti-de Sitter backgrounds.

The work presented in this thesis represent a significant advancement, as we were able to study

the supersymmetry equations of the theory coupled to the most general allowed matter content.

In particular, we showed that the supersymmetry variations can be expressed as first-order flow

equations for the bosonic content of the theory in terms of a real function, W , which is directly

related to the ADM mass of the black hole. The obtained results successfully include previous

analyses and extend their range of applications.

This work represents a crucial and necessary first step towards a deeper understanding of black hole

configurations. Future investigations should focus on finding explicit solutions fulfilling the equation

we’ve derived, verifying the equations of motion by rewriting the action in a BPS squared form, and

exploring the near-horizon geometry of this new class of black holes.

This thesis will be structured as follows:

� in chapter 1, we will provide a broad overview of black hole physics. We begin our discussion

with black hole solutions in General Relativity, introducing the concept of extremality and

outlining their thermodynamic properties. Next, we will explore how string theory addresses

questions that remain unresolved from a classical perspective, examining the work of Strominger

and Vafa on microstate counting, the explicit construction of black hole microstates and the

Fuzzball programme, and the original interpretative framework provided by the AdS/CFT

holographic correspondence. Finally, we will examine how black hole solutions are realized

within Supergravity theories, introducing the attractor mechanism.

� Chapter 2 is dedicated to a comprehensive introduction to four-dimensional N = 2 gauged

Supergravity. After an overview of all the basic ingredients of the theory, we will describe

how electromagnetic duality and R-symmetry constrain the scalar sector of the theory. We

will therefore proceed to define both Special and Quaternionic Kähler manifolds, summarizing

their key features and properties. Next, we will review the general gauging procedure, the role of

symplectic invariance, and introduce holomorphic and triholomorphic prepotentials as essential

components of a gauged theory. With these foundations in place, we will present the bosonic

Lagrangian of the theory and the supersymmetry transformation rules for the fermionic fields.

Finally, we will properly define the concept of a vacuum and introduce the topic of spontaneous
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supersymmetry breaking.

� In chapter 3, we will delve into the study of black hole physics within D = 4, N = 2 super-

gravity theories. We will start our discussion from single-centre solutions in asymptotically

flat spacetimes, discussing the discovery of the attractor mechanism, the first-order description

for BPS solutions and the subsequent extension of the formalism to non-supersymmetric cases.

Then, we will explore the field of multi-centre black holes in Minkowski spacetime and their

string theory origin, focusing on both BPS and non-BPS states. To conclude, we will examine

BPS black holes in Anti-de Sitter spacetimes within gauged supergravity theories and their

related attractor mechanism.

� In chapter 4, we will develop a comprehensive framework for describing black hole solutions

in N = 2 supergravity with Abelian gaugings, focusing on cases where the theory is coupled

to both vector multiplets and hypermultiplets, a scenario not previously explored in existing

solutions. After specializing the general theory to the specific gauging choices we made, we will

derive a set of first-order differential equations governing the solutions directly from the analysis

of fermionic supersymmetry variations. Moreover, we will verify that the whole solution could

be described in terms of a real superpotential. Finally, we will attempt to construct explicit

realizations for some simplified models, discussing the general procedure for finding the vacua

of the theory.
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Chapter 1

Black Holes, String Theory and
Supergravity

In this chapter, we will delve into black hole physics, starting with a review of classical solutions and

their thermodynamics [7–10]. Next, we will examine how black holes are addressed in string theory,

the most promising quantum theory of gravity to date [11,12]. In particular, we will summarize how

string theory provides a microscopic interpretation of black hole entropy, the construction of black

hole geometries from stringy components and the Fuzzball programme [13–17], and the thoughtful

insights provided by the AdS/CFT correspondence [18–20]. Finally, we will review some basic aspects

of black holes in supergravity, the low-energy effective realization of string theory. Specifically, we

will understand how supersymmetry allows us to describe black holes solutions via first-order flow

equations and review the attractor mechanism [9, 10,20].

1.1 Black Holes: Classical Solutions and Thermodynamic Proper-
ties

1.1.1 Charged Black Holes and Extremality Condition

One of the simplest and yet most instructive examples of black hole solutions we can consider arises

in Einstein–Maxwell theory, which describes Einstein gravity coupled to an Abelian gauge field in 4

dimensions and whose Lagrangian density is given by

e−1L = R− 1

4
FµνF

µν , (1.1)

where e denotes the determinant of the metric.

In this framework, we can consider the Reissner–Nördstrom solution, whose metric describes a static,

spherically symmetric black hole of mass M, electric charge Q and magnetic charge P1:

ds2 = −
(

1− 2M

r
+
P 2 +Q2

r2

)
dt2 +

(
1− 2M

r
+
P 2 +Q2

r2

)−1

dr2 + r2dΩ2, (1.2)

where dΩ2 represents the metric on the unit 2-sphere.

For the specific choice of the parameters Q = P = 0, this metric reduces to the one for the well-known

Schwarzschild solution.

1Here and in the rest of the chapter we will employ natural units, i.e. c = ~ = kB = GN = 1.
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Chapter 1. Black Holes, String Theory and Supergravity

By looking directly at the metric (1.2), the Reissner–Nördstrom metric exhibits a singularity for

r = 0. Additionally, depending on the values of the charges, there might be additional singular

points, identified by setting grr = 0:

r± = M ±
√
M2 − (P 2 +Q2). (1.3)

As it becomes clear by computing the curvature invariant in terms of the Ricci tensor

RµνR
µν = 4

(
Q2 + P 2

)2
r8

, (1.4)

only r = 0 is a true curvature singularity, while r± are coordinate singularities and represent the

horizons of this specific gravitational configuration.

IfM2 < P 2+Q2, the two horizons disappear and the black hole is characterized by a naked singularity.

According to the cosmic censorship conjecture, this situation is believed to be non-physical, therefore,

for this specific class of solutions, the conjecture directly implies the bound M2 ≥ P 2 +Q2.

When the bound is exactly saturated, i.e. for M2 = P 2 + Q2, the two horizons coincide and the

black hole is said to be extremal.

To better understand the differences between these two classes of solutions, it is interesting to analyse

the near-horizon geometry as we vary the charges. Specifically, we can focus on the grr = −gtt
components, which approach

1− 2M

r
+
P 2 +Q2

r2
=

(r − r+) (r − r−)

r2

r→r+−−−→ r+ − r−
r2

+

ρ, (1.5)

where we defined ρ = r − r+ so as to measure the distance from the outer horizon.

In the non-extremal case, the resulting near-horizon geometry can be interpreted as the product of

a 2-dimensional Rindler spacetime with a 2-sphere. This becomes clear by rewriting the metric as:

ds2
Non-Extremal

r→r+−−−→ e2αξ(−dτ2 + dξ2) + r2
+dΩ2, (1.6)

where we introduced a new set of coordinates ρ = e2αξ, t = τ
4α2 and the constant α =

√
r+−r−
2r+

.

On the other hand, in the extremal case, since the two horizons coincide, the near-horizon behaviour

is described by a quadratic function of ρ ; in particular, introducing z = −M2

ρ , the metric becomes

ds2
Extremal

r→r+−−−→ M2

(
−dt2 + dz2

z2

)
+M2dΩ2. (1.7)

Therefore, extremal black holes may be regarded as solitons of classical general relativity, inter-

polating between two vacua of the theory: the flat Minkowski space-time, which is recovered at

spatial infinity r → ∞, and the Bertotti–Robinson metric, describing the conformally flat geometry

AdS2 × S2 in the near horizon limit.

Another insightful perspective on the extremal case can be obtained upon rewriting the metric (1.2)

in an isotropic form:

ds2 = −H−2(~x)dt2 +H2(~x)d~x2
3. (1.8)

By imposing the equation of motions, H(~x) turns out to be a generic harmonic function which, in

principle, may have multiple centres:

H = 1 +
∑
i

Mi

|~x− ~xi|
, M2

i = P 2
i +Q2

i . (1.9)
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Chapter 1. Black Holes, String Theory and Supergravity

Given the intrinsic non-linear nature of General Relativity, this is a remarkable result and it relates

to the fact that extremality can be interpreted as a perfect balance between gravitational attraction

and electromagnetic repulsion.

As will become clear later on, extremal black holes represent a particularly interesting class of solu-

tions, especially as we move from classical general relativity toward a quantum theory of gravity.

1.1.2 Black Holes and Thermodynamics

Black holes are thermal systems that obey the laws of black holes thermodynamics.

The interplay between two seemingly distinct branches of physics originates from Hawking’s “Area

law” [21]. This result of classical general relativity states that the black hole horizon area cannot

decrease in any process. Moreover, when two black holes merge, the area of the resulting black hole

cannot be smaller than the sum of initial areas.

The compelling analogy between the area of the horizon and the entropy of a thermal system inspired

Bekenstein [22] to first attempt to unify black hole physics with thermodynamics. In his seminal

work, he concluded that black holes must indeed be characterized by some form of entropy so as not

to violate the second law of thermodynamic, and that this entropy should be related to the horizon

area via some universal coefficient.

A fundamental step forward towards the complete understanding of the matter was then taken

through the groundbreaking work of Hawking and Unruh [4, 23], showing that black holes actually

emit radiation (Hawking radiation) with a perfect black body spectrum at a temperature T = κ
2π ,

where κ is the surface gravity. It’s worth noticing that for extremal black hole configurations, the

Hawking temperature is actually vanishing, which implies their thermodynamic stability.

Dealing with a thermodynamic system for which we defined the energy (given by the mass of the

black hole) and a temperature, it is natural to define an entropy, such that

dSBH
dM

=
1

T
. (1.10)

This leads to the formulation of the Bekenstein–Hawking entropy :

SBH =
A

4
, (1.11)

where A is the area of the black hole horizon expressed in Plank units. This relation not only ties

thermodynamics to the geometric properties of a black hole, but also highlights a peculiar aspect

of General Relativity. In ordinary Quantum Field Theories, most physical quantities (like energy or

entropy) typically scale with the volume of the system. The fact that the black hole entropy depends

on the horizon area rather than the volume thus signals a fundamental distinction in the nature of the

gravitational interaction, suggesting that its description as a quantum theory should be profoundly

different from other known physical theories.

Moreover, this observation raises a more fundamental question: what are the internal, microscopic

degrees of freedom that the Bekenstein–Hawking entropy is counting?

In most physical systems, thermodynamic entropy has a statistical interpretation, keeping track of

the microscopic degrees of freedom via Boltzmann’s relation

S = log Ω(M,Q,P ), (1.12)
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Chapter 1. Black Holes, String Theory and Supergravity

where Ω is the total number of microstates of the system for a given energy and fixed charges.

In General Relativity, as a consequence of the no-hair theorem, the black hole geometry is completely

specified by the charges measured at infinity, thus Ω = 1. On the other hand, for instance, based on

its horizon area, the black hole at the centre of the Milky Way (Sgr A*) should have about Ω ≈ e1090

microstates, leading to one of the largest discrepancies in modern theoretical physics.

Shedding light on formula (1.12) at a more fundamental level and resolving this discrepancy are

essential duties any quantum theory of gravity is called to fulfil.

1.2 A String Theory perspective on Black Holes

String theory is a theoretical framework for quantum gravity, where the fundamental constituents

of the theory are not point particles, but rather one-dimensional vibrating strings whose vibration

frequencies give rise to various particles. In addition to strings, the theory includes extended, non-

perturbative objects known as D-branes.

Since the study of black holes involves strong coupling, the need to go beyond simple string pertur-

bation theory renders D-branes fundamental ingredients for the study of black holes. In particular,

black hole solutions are interpreted as bound states of D-branes in a space-time compactified to four

or five dimensions.

1.2.1 Microstates counting

In 1996, Strominger and Vafa [5] provided the first striking theoretical evidence that the Bekenstein–

Hawking entropy formula could be matched with a microscopic counting of degrees of freedom. The

core idea behind their result is to compare the entropy related to the horizon area, as determined from

the low-energy effective theory (i.e. supergravity), with the counting of stringy-like states degeneracy.

To understand how this matching works, it is important to recall that, as it will be further described

later on, supergravity offers an effective description of superstring theory that is valid at the lowest

order in the string loop expansion and when the space-time curvature is much smaller than the typical

string scale ls. Therefore, as long as charged black holes are concerned, the supergravity description

is reliable when the horizon radius is much larger than the string scale, corresponding to the limit of

large charges. Schematically, by introducing the string coupling gs and the number of D-branes N
2, this regime is identified by

gsN � 1 and gs → 0. (1.13)

On the string theory side, the microstate counting can be effectively performed in the weakly coupled

open string picture. In particular, as long as gs → 0, D-branes do not source gravitons (i.e. closed

strings), therefore we can consider open strings on D-branes in flat spacetime3. Therefore, a reliable

calculation in string theory terms can be carried out in the regime

gsN � 1 and gs → 0. (1.14)

To actually perform the matching, one should extrapolate this result and compare it to the one

obtained from supergravity within the same range of validity. The problem is that, in general, as the

2The supergravity charges are related to the number of D-branes, which act like electric/magnetic sources.
3Closed strings perturbation theory goes with powers of gs while open strings expansion parameter gets enhanced

to gsN .
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coupling increases, non-perturbative effects are expected to arise, potentially modifying the counting.

This problem could be avoided by examining BPS states of string theory, i.e. solutions that preserve

supersymmetry, at least partially. In this particular scenario, supersymmetry protects the degeneracy

counting, extending the validity of the result to arbitrary values of the coupling.

In the specific case studied by Strominger and Vafa, five-dimensional extremal black hole solutions

carrying an electric charge QF and an axion charge QH were studied. The Bekenstein–Hawking

entropy, as determined from the low-energy effective action, is

SBH = 2π

√
QHQ2

F

2
. (1.15)

On the other hand, the leading order result for the logarithm of the bound-state degeneracy for large

QH and fixed QF as obtained in Type IIB string theory compactified on K3× S1 reads

Sstat = 2π

√
QH

(
1

2
Q2
F + 1

)
, (1.16)

which leads to SBH = Sstat for large charges.

This is actually a highly non-trivial test of string theory, testifying that, in principle, it has the right

microscopic degrees of freedom required for a consistent quantum gravity theory.

1.2.2 The Information Paradox and the Fuzzball proposal

As we have discussed, string theory successfully reproduces the Bekenstein–Hawking entropy formula

by counting microscopic degrees of freedom. However, for it to claim its primacy as the final theory

of quantum gravity, more details are needed.

Specifically, not only do we want to count black holes microstates but also understand what these

microstates actually look like so as to address another fundamental problem arising from the contact

of General Relativity and Quantum Mechanics: the Information Paradox.

This paradox arises from the fact that, since Hawking radiation originates just above the horizon,

the uniqueness of black holes in GR implies that the radiation is universal, thermal and featureless.

Consequently, it is impossible to reconstruct the interior state of a black hole from the final state of

the Hawking radiation. Therefore, the evaporation process cannot be described as a unitary trans-

formation of states in a Hilbert space, which is inconsistent with foundational postulates of quantum

mechanics.

In 2009, Mathur [24] showed that, under some general assumptions, the information paradox cannot

be solved by higher-order corrections to either GR or quantum field theory. Before this result, the

key to the resolution of the paradox was thought to reside in small corrections to the Hawking result

that, together with the extremely large evaporating time, could incrementally resolve the problem.

As a consequence of Mathur’s result, to solve the information paradox there should be some “order

1” modification to our current description of black holes. In particular, we should relax at least one

of these two hypothesis: locality of the interactions or absence of additional structures at the horizon

scale.

The Fuzzball and Microstate Geometry programs are promising attempts within string theory work-

ing with the latter hypothesis. In this context, traditional black holes are replaced with fuzzballs, a

new phase that emerges when matter is compressed to black-hole densities, consisting of branes and

9



Chapter 1. Black Holes, String Theory and Supergravity

other stringy ingredients; this new phase prevents the formation of a horizon or singularity, which

only arise when gravity is described using a theory that has too few degrees of freedom.

Ground states and sufficiently coherent excitations of these new configurations can be described

by supergravity and are referred to as microstate geometries. They have the huge advantage that

detailed computations can be done and one might reasonably hope that simple, semi-classical quanti-

zation of the supergravity phase space could provide further details of the quantum fuzzball, similar

to the way kinetic theory describes gases. Additionally, if one can find a smooth geometry with

no horizon that corresponds to every microstate, then a black hole would be nothing more than a

classical effective description of the statistical ensamble of microstate geometries.

The first success of this identification was obtained for the D1-D5 two-charge system [25], for which

the smooth supergravity solutions dual to microstates have been classified and shown to precisely

account for the entropy of this setup. As interesting as this result is, the two-charge system does not

give rise to a true black hole with non-zero horizon area.

The simplest generalization displaying a finite horizon area is given by the three-charge system. In

this framework, Bena and Warner [26,27] exploited supersymmetry to simplify non-linear supergrav-

ity equations to linear, first-order differential relations (i.e. BPS equations) which make it possible

to construct huge classes of solutions with the same supersymmetries and charges of the three-charge

black holes. Actually, the obtained solutions are generally BPS black rings, which are five-dimensional

black holes with an event horizon of topology S1 × S2. For the purpose of finding three-charge ge-

ometries dual to black hole microstates, one is actually interested in their zero-entropy limit 4; this

limit would actually lead to singularities but, via a peculiar geometric transition, one actually gets

a huge moduli space of smooth, horizonless “bubbled” geometries. As a result, the actual black hole

is replaced with multi-centre configurations and the position of the centers are constrained in terms

of the charges through “bubble equations”.

Therefore, despite many questions remain open, the fuzzball and microstate geometry approaches

have the potential to shed light on the physics of black-holes microstructure.

1.2.3 AdS/CFT correspondence

Both microstate counting and the interpretation of black holes as statistical ensembles of different

stringy configurations sit perfectly inside the picture of the AdS/CFT correspondence conjecture,

one of the greatest achievements of string theory. Broadly speaking, AdS/CFT correspondence is a

specific example of gauge/gravity duality, that is an equality between two theories: a quantum field

theory in d space-time dimensions and a gravity theory on a d+ 1 dimensional spacetime, which has

an asymptotic boundary which is d dimensional.

The basic prescription for the correspondence is that fields on the gravity side (the bulk) act as sources

for the CFT fields on the boundary; schematically, to each operator O of the CFT we associate a

source h(xµ) which is considered the boundary value of an on-shell bulk field ĥ(xµ, xd+1) (i.e., ĥ

solves the equations of motions of the gravity theory). With this construction, the foundational

statement of AdS/CFT is that:

eW (h) =
〈
e
∫
hO
〉
QFT

= eSBulk(ĥ), (1.17)

4As it is typical in statistical mechanics, a single microstate is expected to have vanishing entropy.
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for W (h) the generating functional for connected correlation functions and SBulk the action for the

gravity theory.

The pivotal example of such a correspondence in the context of string theory was brought up by

Maldacena in 1997 [28], exploring the duality between N = 4 Super-Yang-Mills theory and the type

IIB string background AdS5 × S5.

To understand the motivation for such a correspondence, one must first recall that quantizing open

strings ending on a D-brane leads to massless excitations corresponding to a supersymmetry vector

multiplet. Moreover, a set of N D-branes carries a Yang-Mills theory with gauge group U(N) on its

world-volume.

The original Maldacena conjecture stems from the observation that the two theories can be obtained

through the same decoupling limit, α′ → 0, performed on the world-volume theory and the back-

reacted metric curved by the presence of D-branes. Specifically, N = 4 SYM theory can be realized

on N parallel D3-branes in Type IIB; in general, the world-volume theory interacts with the bulk

fields which live in 10 dimensions, but in the limit α′ → 0 the theory decouples from the bulk.

On the other hand, looking at the metric obtained by deformations of the background due to the

presence of D3-branes and taking the same limit, one ends up precisely with the product of AdS5×S5.

By a comparison of the parameters of the two theories, one finds that

4πgs =
x

N
, (1.18)

R2

α′
=
√
x, (1.19)

where we introduced the t’Hooft coupling x = g2
YMN . This reveals that the weak coupling regime

of the gravity theory (gs → 0) corresponds to the strong coupling regime of the CFT and vice-versa,

making this correspondence extremely useful and powerful.

In the context of black holes physics, the AdS/CFT connects the entropy of a black hole with the

ordinary thermal entropy of a field theory, giving a statistical foundation for black hole entropy and

reinforcing the interpretation of black holes as ordinary thermal states in a unitary quantum field

theory.

From the practical point of view, the entropy for extremal black holes should be recovered by enu-

merating supersymmetric states in the dual theory, that basically is equivalent to computing the

partition function for a suitable statistical ensemble. As it is common in statistical mechanics, get-

ting an explicit expression for the partition function may result in too hard a task, therefore one

usually relies on some supersymmetric indices or consider some limiting case [20] (e.g. the high

temperature limit allows to estimate the entropy for a two dimensional CFT via Cardy’s formula).

1.3 Supergravity

As already mentioned several times, supergravity theories arise as the low-energy effective actions of

superstring theories. Even as an infrared limit, its highly non-linear interactions enable supergravity

to capture certain non-perturbative properties of string theory, such as D-branes configurations.

Historically, inspired by the striking success of local gauge invariances in Standard Model physics,

supergravity was initially conceived as the gauge theory of supersymmetry. In particular, since

the supersymmetry parameter is a spinorial quantity, it was soon realized that the theory internal

11
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consistency naturally led to the inclusion of spin-2 particles, i.e. gravitons.

As a consequence, general relativity and its solutions are automatically included in supergravity,

leading to a natural embedding of black hole configurations. The essential new ingredients are

provided by supersymmetry, which requires the presence of additional vector and scalar fields.

1.3.1 Black Holes in Supergravity: an overview

At the two-derivative level, a generic Lagrangian describing the bosonic degrees of freedom for a

supergravity theory has the form

e−1L =
R

2
− 1

2
gij(φ)∂µφ

i∂µφj +
1

4
IΛΣ(φ)FΛ

µνF
Σ µν +

1

4
RΛΣ(φ)

εµνρσ

2
√
−g

FΛ
µνF

Σ
ρσ, (1.20)

where gij(φ) is the metric for the scalar σ-model, I is definite negative and describes non-minimal

gauge kinetic couplings, and R is the generalization of the θ-terms.

Looking for single centre, static, spherically symmetric, charged and asymptotically flat black hole

solutions, we can introduce magnetic and electric charges, defined respectively as:

1

4π

∫
S2

FΛ = pΛ ,
1

4π

∫
S2

GΛ = qΛ, (1.21)

where we introduced the dual field strengths GΛ ≡ − δL
δFΛ . These two-forms are related by the

usual electric-magnetic duality ; as will be thoroughly reviewed in the following chapters, in a general

supergravity theory, this duality can be extended to a larger group of duality transformations that

leave both the Bianchi identities and the equations of motion invariant, playing a crucial role in the

construction of the theory itself.

To find explicit solutions for the theory, one can specify suitable ansatze for the metric and the vector

fields and obtain the equations of motion, resulting in a set of second-order differential equations.

However, if we focus on supersymmetry-preserving states, i.e. BPS solutions, one can actually

describe the fields dynamics through first-order differential equations.

Specifically, BPS states preserve a fraction, 1/2 or 1/4 or 1/8, of the original supersymmetries. This

implies the existence of a suitable projection operator S2 = S acting on the supersymmetry charge

QSUSY , such that

(S ·QSUSY ) |BPS state〉 = 0. (1.22)

Since the supersymmetry transformation rules of any supersymmetric field theory are linear in the

first derivatives of the fields, eq. (1.22) is actually a system of first-order differential equations. In

particular, since, as we will present in the following, fermions vanish on the solutions we typically

take into account, the supersymmetric variations of bosonic fields are automatically satisfied. On the

other hand, the request of vanishing fermionic variations furnishes a set of equations for the bosonic

fields content.

While the resulting BPS equations typically do not solve the full set of equations of motion for the

theory, they can be easily supplemented with Bianchi Identities or some conditions for the form-fields

to restore full equivalence.

Although BPS configurations will be the main focus of our work, it is important to highlight that

it is actually possible to obtain a first order-description also for solutions that do not preserve any

supersymmetry [29].

12



Chapter 1. Black Holes, String Theory and Supergravity

1.3.2 Attractor mechanism

As we discussed previously, in the weak-coupling, low-energy limit, we can compute the entropy

for a black hole from the Bekenstein–Hawking formula. The area of the horizon can be explicitly

extracted from the relevant supergravity solution that, in general, will depend on many scalar fields.

As a consequence, in principle, the area may depend on many parameters, including asymptotic

values for the moduli. On the other hand, the microscopic entropy of extremal black holes is a

function of the conserved charges only, therefore the horizon should loose all the information about

the scalar fields.

This feature is explicitly realized through the attractor mechanism [6, 30]: for extremal black holes,

scalar fields, independently of their value at spatial infinity, flow to a fixed point given in terms of

the charges of the solution at the horizon. Therefore, we conclude that the entropy of extremal black

holes does not depend on continuous parameters and it is given in terms of quantized charges only.

To get the physical intuition behind this result, we recall that for extremal black holes the horizon is

at an infinite proper distance from any observer; in particular, starting from the metric (1.2) adapted

to the extremal case and introducing the radius r2
H = M2 = (P 2 + Q2), one immediately sees that

the length L of any radial curve (for fixed t, θ and ϕ) is indeed log-divergent:

L =

∫ rH

r∗

dr

1− rH
r

=∞. (1.23)

Therefore, as they descend down the AdS2 infinite throat, scalar fields lose memory of their initial

conditions as a direct consequence of the request of having regular solutions. Specifically, their

derivative with respect to the radial coordinate should vanish while approaching the horizon, so as

to prevent their values from growing indefinitely.

By looking at the equation of motions for the scalars obtained from (1.20), this condition on the

derivatives actually implies that, at the horizon, the moduli reach a critical point of the black hole

potential VBH
5:

∂iVBH(φihorizon, q, p) = 0. (1.24)

Since the only parameters appearing in the minimization condition are the black hole charges, the

attractor values of the scalar fields are going to be given in terms of the charges

φihorizon = φihorizon(p, q). (1.25)

As a consequence, at the horizon, the black hole charges are the only parameters specifying the

solution and all the dependence on the asymptotic value of the moduli fields is lost.

5The black hole potential emerges once we integrate out formally t, θ and ϕ from (1.20) and we describe our system
via an effective 1-dimensional action. It is completely specified once the scalar σ-model and the charges of the solutions
are fixed.
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Chapter 2

N = 2, D = 4 Gauged Supergravity

Besides its string theory origin, supergravity represents an intrinsically rich and fascinating theory,

laying its foundations on deep geometrical principles and providing profound insights on black hole

physics. Since our main interest in this thesis is the study of black hole solutions in the context

of N = 2 supergravity in four spacetime dimensions, we provide in this chapter a concise and

yet comprehensive introduction to the theory, mostly following the presentation in [31]1. After an

overview of the matter content and its general structure, we will thoroughly review the scalar sector of

the theory. In particular, we will describe how generalized electro-magnetic duality and R-symmetry

force scalar dynamics to be described via sigma models on Special Kähler and quaternionic-Kähler

manifolds [32]. These peculiar geometrical objects will be properly defined and the most important

geometric relations will be presented [31–33].

Next, we will describe the gauging of the isometries of the scalar manifold, an essential ingredient

in extended supergravity theories to obtain a non-vanishing scalar potential. After a general outline

of the required steps to gauge an isometry [32], we introduce momentum maps or prepotentials as

essential geometric constructions for the gauging, following our main reference.

The full bosonic Lagrangian of the theory and fermionic supergravity variations will then be presented

[31], thus collecting all the relevant definitions that will serve as a starting point for our subsequent

work.

Finally, we will properly define the vacua of a supergravity theory and present the supersymmetry

breaking mechanism in Minkowski backgrounds, mainly following the presentation in [33].

2.1 Matter Content and Geometrical Structure

As intricate as it may appear at first glance, the theory for N = 2 supergravity in four dimensions

can be successfully understood in terms of a few geometrical inputs.

To begin our examination, we first introduce the field content of the theory, which includes:

� a gravitational multiplet, described by the vielbein 1-form V a, (a = 0, 1, 2, 3), the spin-connection

1-form ωab, the SU(2) doublet of gravitino 1-forms ψA, ψA (respectively left and right chirality),

and the graviphoton 1-form A0;

1We will mainly follow the reference conventions, with some minor changes that will be pointed out throughout the
chapter.
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� nV vector multiplets, each containing a gauge boson 1-form AI (I = 1, ..., nV ), a doublet of

spinors (gauginos) λiA, λi
∗
A , and a complex scalar field zi (i = 1, ..., nV ). The scalar fields zi can

be thought as coordinates on a manifold SM of complex dimension nV that supersymmetry

dictates to be Special Kähler;

� nH hypermultiplets, each carrying a doublet of spinors (hyperinos) ζα (α = 1, ... , 2nH , with

lower/upper index denoting left/right chirality) and four scalar fields qu, (u = 1, ... , 4nH),

which parametrize a quaternionic-Kähler manifold QM of real dimension 4nH . Moreover, as

will be presented later in the discussion, any quaternionic manifold has a holonomy group

Hol(QM) ⊂ SU(2)⊗ Sp(2nH ,R),

and the index α of the hyperinos sits in the fundamental representation of Sp(2nH ,R).

Given the rich matter content of the theory, the supersymmetric Lagrangian and the supersymmetry

transformation rules are indeed quite involved. However, a closer examination reveals that all the

couplings, the mass matrices and the vacuum energy are completely fixed by supersymmetry once

three geometrical quantities are specified:

1. a special Kähler manifold SM describing the vector multiplets σ-model;

2. a quaternionic-Kähler manifold QM describing the hypermultiplets σ-model;

3. the choice of a gauge group G, that in general must be a subgroup of the isometry group of the

complete scalar manifold Mscalar ≡ SM ⊗ QM, and its immersion in the symplectic group

Sp(2nV + 2,R) of electric-magnetic duality rotations.

In the following we will therefore illustrate the main features and properties of the scalar geometry

and the gauging procedure.

2.2 Scalar Geometry

2.2.1 Vector Multiplets

Electromagnetic Duality

The field equations for a general theory of Abelian vector fields in four spacetime dimensions reveal

the presence of an underlying electric–magnetic duality.

In the context of extended supergravity theories (namely, for N > 1), since multiplets with vectors

contain scalar fields as well, this additional duality structure will directly constrain the other matter

content of the theory. In particular, it will force the scalar fields sitting in the vector multiplets to

parametrize a Special Kähler manifold.

Let’s consider a 2-derivative Lagrangian containing nV Abelian vectors, AΛ (for Λ = 1, ..., nV ),

appearing through their field strengths FΛ = dAΛ. Additionally, we will consider arbitrary couplings

with other scalar fields2 φi, so that the Lagrangian takes the general form:

e−1L =
1

4
IΛΣ(φ)FΛ

µνF
Σ µν +

1

4
RΛΣ(φ)FΛ

µνF̃
Σ µν +

1

2
OµνΛ FΛ

µν + e−1Lrest, (2.1)

2The discussion follows similar steps also for other bosonic or fermionic fields.
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where we introduced two field-dependent, symmetric matrices IΛΣ and RΛΣ (the former being nega-

tive definite to ensure unitarity), a generic tensor function, OµνΛ , of the other fields containing at most

a single derivative, and Lrest contains all the terms that do not depend on the vector field strengths.

By definition, the nV vector fields satisfy the Bianchi identities:

dFΛ = 0. (2.2)

Additionally, following the usual variational method, their equations of motion can be read from

∇µ ∂L

∂Fµν Λ
= 0. (2.3)

Introducing the dual field variables

G̃Λ µν = 2
∂L

∂Fµν Λ
, (2.4)

for G̃Λ µν = 1
2εµνρσG

ρσ
Λ , the equations of motion (2.3) can be actually recast in terms of Bianchi

identities for the dual fields, i.e.

dGΛ = 0. (2.5)

Näıvely, the system of Bianchi identities and equations of motion seems invariant under generic,

constant GL(2nV ,R) transformations,

F′ = SF, F = F ≡
(
FΛ

GΣ

)
. (2.6)

However, in order to preserve the very same definition (2.4) for GΛ, S is actually constrained to be

an element of the subgroup Sp(2nV ,R), as was first realized in the seminal work by Gaillard and

Zumino [34]; a modern, expanded presentation can be also found in [32].

Apart from the technicalities of the derivation, it is important to underline that the invariance of

the system dF = 0 does not imply an invariance of the Lagrangian. In particular, introducing the

complex kinetic matrix

NΛΣ = RΛΣ + iIΛΣ (2.7)

and the self-dual combination

O+ =
1

2

(
O − iÕ

)
, (2.8)

one finds that they must transform under duality transformation as:

N ′ = (C +DN ) (A+BN )−1 , (2.9)

O+′ = O+ (A+BN )−1 , (2.10)

for

S =

(
A B

C D

)
∈ Sp(2nV ,R). (2.11)

Since, in general, both N and O depend on the scalar fields, these transformations can be interpreted

also as a non-trivial action of the duality group on the scalars. Explicitly, this implies that, given

the scalar manifold Mscalar, there exist a homomorphism

ιδ : Diff(Mscalar) −→ Sp(2nV ,R), (2.12)
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such that

∀ ξ ∈ Diff(Mscalar) ∃ ιδ(ξ) = Sξ ∈ Sp(2nV ,R). (2.13)

Moreover, for consistency, N (ξ(φ)) should transform as prescribed by (2.9).

Given the non-trivial action on the scalars, in order to ensure invariance of the full set of equations

of motion, the duality group should be further reduced, identifying the U-duality group GU ,

GU ⊂ Sp(2nV ,R). (2.14)

Interpreting scalar fields as coordinates on suitable manifolds, the U-duality group will coincide with

the symmetry group under which the reparametrization of the scalar fields leaves the Lagrangian

invariant, i.e., the isometry group of the scalar manifold Iso(Mscalars).

To summarize, in general, the global symmetry group leaving invariant the set of Bianchi identities

and equations of motion is Gglobal = GU ×Ginert, where Ginert is the global symmetry group of those

fields that do not have direct couplings to vector fields (e.g., hypermultiplets in N = 2 supergravity).

Special Kähler Geometry

As already pointed out, the scalar fields zi and their complex conjugates can be thought as coor-

dinate on a Special Kähler manifold; in view of the preceding discussion, we expect this result to

emerge from the interplay between supersymmetry and symplectic duality covariance of the Bianchi

identities and equations of motion for the nV + 1 vector fields3.

Let’s start by considering a complex (nV + 1)-dimensional Kähler manifold, namely a complex man-

ifold with an Hermitian metric gī(z, z̄) and closed fundamental two-form

K = igīdz
i ∧ dz̄ ̄, dK = 0. (2.15)

This last relation implies the existence of a real function K(zi, z̄ ̄) dubbed Kähler potential, such that

gī = ∂i∂̄K. (2.16)

In general, this function is not globally defined but differs on different coordinate patches Uα and Uβ

by a Kähler transformation:

Kα = Kβ + fαβ + f∗αβ , (2.17)

where fαβ is a holomorphic function on the overlap Uα ∩ Uβ.

A Kähler manifold M admitting a line bundle L −→ M such that its first Chern class equals the

de Rham cohomology class [K] of the Kähler form is said to be Hodge–Kähler. This implies that,

introducing the composite connection Q on the U(1)-bundle associated to the line bundle L,

Q =
i

2

[
(∂̄K)dz ̄ − (∂iK)dzi

]
, (2.18)

its curvature will be related to the Kähler form

dQ = K, (2.19)

3In N = 2 supergravity coupled to nV vector multiplets we have a total of nV + 1 Abelian vectors, the additional
one being the graviphoton sitting in the gravitational multiplet.
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up to an exact two-form.

Hodge–Kähler manifolds are the scalar geometry of N = 1 supergravity, as required by local su-

persymmetry and invariance under Kähler transformations [32]. Moving to N = 2, the symplectic

duality group will further constrain this kind of geometries, leading to the definition of Special Kähler

manifolds.

To characterize Special geometry, let’s start by introducing a new holomorphic, flat vector bundle

SV −→ M of rank 2nV + 2 and structural group Sp(2nV + 2,R). Consider now a tensor bundle

H = SV ⊗ L, whose typical holomorphic sections will be of the form:

V =

(
XΛ

FΣ

)
, Λ,Σ = 0, 1, ..., nV . (2.20)

As a consequence, the transition functions between two different local trivializations of H on Uα and

Uβ have the form

Vα = e−fαβSαβVβ, (2.21)

for Sαβ a constant element in Sp(2nV + 2,R).

Moreover, to ensure a consistent definition, the transition functions are subject to the cocycle condi-

tion on a triple overlap:

efαβ+fβγ+fγα = 1 = SαβSβγSγα. (2.22)

Definition. A (local) Special Kähler manifold is a Hodge–Kähler manifold equipped
with a tensor bundle H = SV ⊗ L such that for some holomorphic section V the Kähler
potential is given by:

K = − log
(
i
〈
V ,V

〉)
= − log

(
iV TΩV

)
= − log

[
i
(
X

Λ
FΛ − FΣX

Σ
)]
, (2.23)

where Ω denotes the symplectic invariant matrix and 〈·, ·〉 is a Hermitian and symplectic
metric on H.
Additionally, the sections satisfy:

〈∇iV ,∇jV 〉 = 0, (2.24)

for ∇iV ≡ (∂i + ∂iK)V the Kähler covariant derivative of V .

For nV > 1, the last identity implies the existence of a symplectic frame with a holomorphic

prepotential F (XΛ), i.e., there exist a symplectic transformation S ∈ Sp(2(nV + 1),R) such that

Ṽ = S · V =

(
X̃Λ

F̃Σ

)
and F̃J = ∂F (X̃)/∂X̃J , with F (XΛ) a homogeneous function of degree two.

Starting from V , we can also introduce a covariantly holomorphic section

V =

(
LΛ

MΣ

)
≡ eK/2V , (2.25)

so that (2.23) can be rewritten as

1 = i
〈
V, V

〉
= i
(
L

Λ
MΛ −MΣL

Σ
)
. (2.26)

By definition, it immediately follows that

∇ı̄V =

(
∂ı̄ −

1

2
∂ı̄K

)
V = 0. (2.27)
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Additionally, defining

Ui =

(
fΛ
i

hΣi

)
≡ ∇iV =

(
∂i +

1

2
∂iK

)
V, (2.28)

one can introduce the period matrix or gauge kinetic matrix NΛΣ via the relations:

MΛ = NΛΣL
Σ
, hΣi = NΛΣf

Σ
i . (2.29)

They can be explicitly solved introducing two (nV + 1)× (nV + 1) vectors

fΛ
I =

(
fΛ
i

L
Λ

)
, hΛI =

(
hΛi

MΛ

)
(2.30)

and setting:

NΛΣ = hΛ|I ◦
(
f−1

)I
Σ
. (2.31)

Starting from its definition, it is possible to verify that the matrix N transforms exactly as prescribed

by (2.9). Moreover, the additional condition in eq. (2.24) ensures the symmetry and uniqueness of

NΛΣ.

Given all the ingredients introduced so far, it is possible to derive a set of useful relations, some of

which we will report in the following [35]:

ImNΛΣL
ΛL̄Σ = −1

2
, (2.32)

〈V,Ui〉 = 〈V,Uı̄〉 = 0, (2.33)

UΛΣ ≡ fΛ
i f

Σ
̄ g

ī = −1

2
(ImN )−1|ΛΣ − L̄ΛLΣ, (2.34)

gī = −i
〈
Ui | Ū̄

〉
= −2fΛ

i ImNΛΣf
Σ
̄ . (2.35)

As a final remark, we notice that, as opposed to what happens for N = 2 supersymmetry, we can-

not locally identify the zi with the XI(z) (since we have one XI more due to the presence of the

graviphoton). Instead, one can interpret the XI as homogeneous coordinates of a projective space

and zi ≡ Xi/X0 as the corresponding inhomogeneous coordinates (only for symplectic frames in

which a prepotential exists). For this reason, Special Kähler geometry is also referred to as projective

Special Kähler and this specific coordinate system is usually dubbed as special coordinates.

2.2.2 Hypermultiplets

Since the N = 2 hypermultiplets do not contain any fields with spin greater than 1/2, the scalar

geometry is directly constrained only by the supersymmetry algebra.

In particular, from the structure of the R-symmetry group (i.e., U(2)R), one finds that the linearized

supersymmetry transformations for nH hypermultiplets are invariant under Sp(2nH ,R) × SU(2).

Additionally, since the SU(2) doublet of supersymmetry parameters is not constant, the SU(2) part

of the curvature has to be non-trivial [32].

Therefore, scalars qu sitting in hypermultiplets should span a manifold of real dimension 4nH with

holonomy contained in Sp(2nH ,R)×SU(2) and non-trivial SU(2) curvature. As we will discuss, these

properties precisely define a quaternionic-Kähler manifold.

Consider a real manifold QM of dimension 4nH equipped with a metric

ds2 = huv(q) dqu ⊗ dqv, (u, v = 1, ..., 4nH), (2.36)
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and three complex structures Jx (x = 1, 2, 3) satisfying the quaternionic algebra

JxJy = −δxyI + εxyzJz. (2.37)

Generalizing the usual construction for Kähler manifolds, the metric is hermitian with respect to the

complex structures:

∀X,Y ∈ T (QM) : h(JxX, JxY ) = h(X,Y ) (x = 1, 2, 3), (2.38)

hence we can introduce a triplet of two-forms

Kx = Kx
uvdq

u ∧ dqv = huw (Jx)wv dqu ∧ dqv. (2.39)

This SU(2) Lie-algebra valued two-form is often referred to as HyperKähler form, as it provides a

generalization of the usual Kähler form (which is U(1) Lie-algebra valued). Unlike the Kähler form,

however, the HyperKähler form is not generically closed.

Let us now define a principal SU(2)-bundle SU −→ QM and an associated connection ωx.

Definition. QM is said to be quaternionic-Kähler if the associated HyperKähler two-
form is covariantly closed with respect to the connection ωx:

∇Kx ≡ dKx + εxyzωy ∧Kz = 0. (2.40)

Additionally, the curvature of the SU-bundle is proportional to the HyperKähler form,
that is:

Ωx ≡ dωx +
1

2
εxyzωy ∧ ωz = −Kx. (2.41)

By construction, the manifold QM has precisely the holonomy group required by supersymmetry:

Hol(QM) = SU(2)⊗H, H ⊂ Sp(2nH ,R), (2.42)

as it will be also clear by looking at the structure of the Riemann tensor.

We can now introduce flat indices running in the fundamental representation of SU(2) and Sp(2nH ,R)

and the vielbein one-form

UAαu = UAαu dqu, (A = 1, 2 and α = 1, ..., 2nH), (2.43)

such that

huv = UAαu UBβv CαβεAB, (2.44)

for Cαβ = −Cβα and εAB = −εBA the flat Sp(2nH ,R) and SU(2) metrics, respectively.

Introducing also a Sp(2nH ,R)-Lie Algebra valued connection ∆αβ = ∆βα, the vielbein is covariantly

closed:

∇UAα ≡ dUAα +
i

2
ωx
(
εσxε

−1
)A

B ∧ UBα + ∆αβ ∧ UAγCβγ = 0, (2.45)

where (σx)A
B denotes the standard Pauli matrices.

Moreover, UAα satisfies the reality condition:

UAα ≡
(
UAα

)∗
= εABCαβUBβ . (2.46)

Finally, we can introduce the inverse vielbein UuAα, such that:

UuAαUAαv = δuv . (2.47)
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As already mentioned, it is actually interesting to flatten a pair of indices of the Riemann tensor

Ruvts and get

RuvtsUAαu UBβv = −1

2
Ωx
ts
AC (σx)C

BCαβ + Rαβts ε
AB, (2.48)

for Rαβts the field-strength of the Sp(2nH ,R) connection. As anticipated, the structure of the Riemann

tensor explicitly realises the statement that the Levi–Civita connection associated with the metric

h has the correct holonomy group. Moreover, the previous equations actually imply that QM is an

Einstein space [36] with Ricci tensor given by

Ruv = −(2 + nH)huv. (2.49)

At this point, it is useful to introduce some quaternionic identities that will be largely employed in

the following. First of all, let’s notice that one can actually write down a stronger version of (2.44):(
UAαu UBβv + UAαv UBβu

)
= huvε

AB. (2.50)

Additionally, as a consequence of the quaternionic nature of the complex structures Jx and the

relation between the SU(2) curvature and the HyperKähler two-form, one can actually write:

hstKx
usK

y
tv = −δxyhuv + εxyzKz

uv, (2.51)

which can be equivalently recast also in terms of Ωx

hstΩx
usΩ

y
tv = −δxyhuv − εxyzΩz

uv. (2.52)

In particular, this last relation implies that the intrinsic components of the curvature two-form Ωx

yield a representation of the quaternionic algebra. As a consequence, one can see that

i

2
Ωx(σx)A

B = −UAα ∧ UBα. (2.53)

Finally, exploiting eqs. (2.50, 2.53) we can express the product of two vielbeins as:

CαβUAαu UBβv =
1

2
huvε

AB +
i

2
Ωx
uv(σx)C

BεAC . (2.54)

2.3 The Gauging

After having thoroughly reviewed the underlying geometrical features associated to the scalars, we

are now ready to review the gauging procedure. This step is actually crucial in the context of extended

supergravity theories, as gauging provides the only mechanism that can generate a scalar potential,

a crucial ingredient for moduli stabilization and supersymmetry breaking.

Before delving into technical details, we will shortly review the basic gauging structure and the role

of duality transformations.

2.3.1 Gauging and Symplectic Frames

An overview

By gauging we usually refer to the procedure of making local a global symmetry of a given Lagrangian.

In general, these symmetries coincide with the isometries of the scalar manifold Mscalar and are

described in terms of Killing vectors kiΛ,

δφi = αΛkiΛ, for ∇(ikΛj) = 0, (2.55)
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where αΛ denote infinitesimal symmetry parameters.

The first step towards a gauged theory is therefore the choice of a suitable gauge group G ⊂
Iso(Mscalar), whose dimension should not exceed the number of vectors in the theory.

Allowing for non-constant symmetry parameters, αΛ(x), requires the introduction of a number of

modifications of the theory. In particular, covariant derivatives for the scalar fields should be intro-

duced

Dµφi ≡ ∂µφi −AΛ
µk

i
Λ, (2.56)

and the Maxwell-type transformations for the vector fields should be replaced by

δAΛ
µ = ∂µα

Λ + fΛ
Σ∆A

Σ
µα

∆, (2.57)

for f the structure constants associated to G.

As long as the kinetic terms of the vector fields are concerned, gauge invariance demands the replace-

ment of Abelian field strengths with their non-Abelian counterpart

FΛ
µν = 2∂[µA

Λ
ν] + fΛ

Σ∆A
Σ
µA

∆
µ . (2.58)

Rescaling the gauge vectors and making the gauge coupling explicit A→ gA, one immediately realizes

that the adjustments introduced so far correspond to O(g2) modifications, which inevitably break

explicitly supersymmetry. After properly covariantizing also the kinetic terms for the fermions and

all the derivatives appearing in the supersymmetry transformation rules, additional adjustments are

required for the theory to completely restore its supersymmetry content:

1. the introduction of a “fermionic shift” involving scalar field-dependent terms at order O(g) in

the fermionic supersymmetry variations;

2. the addition of a fermion-fermion, Yukawa-like term of order O(g) in the Lagrangian;

3. a contribution to the scalar potential at order O(g2).

Even if we will not deal with the detailed calculations behind these steps, we point out that this

procedure is entirely general and will help us understand the origin of the various terms present in

the general Lagrangian and in the supersymmetry variations.

The role of Symplectic Frames

Up to this point, we have introduced two different relevant groups: the group of global symmetries

of a given Lagrangian, GL, and the symmetry group of Bianchi identities and equations of motion,

i.e., the U-duality group GU .

Taking a closer look, this actually implies that, for a fixed set of multiplets, a given theory may have

different Lagrangian realizations with different GL. The set of Lagrangians that cannot be mapped

to each other by local field redefinitions is identified with the double quotient space

GL(nV + 1,R) \ Sp(2(nV + 1),R) / GU . (2.59)

This result follows from the simple observation that we can reabsorb a duality transformation through

a local field redefinition of the vector fields, which is accounted for by the GL(nV + 1,R) quotient,

but also via redefinitions of the other fields contained in the U-duality group GU .
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Each different Lagrangian defines a distinct symplectic frame and is invariant under a particular

electric subgroup4 of the GU duality group. The choice of the symplectic frame is therefore important

to find a purely electric realization of the gauge group G (i.e., G ⊂ GL).

In any case, before the gauging, the resulting equations of motion and Bianchi identities for any

Lagrangian defined through (2.59) are still equivalent, being related by symplectic field redefinitions.

2.3.2 Killing Prepotentials

All the modifications of the Lagrangian and of the supersymmetry transformation rules required

upon gauging a subgroup of isometries of the scalar manifold can be actually described in terms of

a generic geometric construction associated with the action of Lie-Groups on manifolds admitting a

symplectic structure: the prepotentials or momentum maps.

In the following, we will construct explicitly such objects on both Special Kähler and quaternionic-

Kähler manifolds.

Holomorphic prepotentials on Special Kähler manifolds

Let’s consider a set of Killing vectors kiΛ(z) associated with the isometries of the metric gī of a

Special Kähler manifold SM.

Given the complex nature of the manifold, we expect kiΛ to be holomorphic, i.e. ∂̄k
i
Λ(z) = 0, so as

not to mix zi and z̄ ı̄. Moreover, they satisfy the usual Killing equation that, in holomorphic indices,

reads

∇ikj,Λ +∇jki,Λ = 0 and ∇ı̄ kj,Λ +∇j kı̄,Λ = 0. (2.60)

The request for the isometry group to have an embedding into the symplectic group can be formulated

by writing that

LΛV ≡ kiΛ∂iV + kı̄Λ∂ı̄V = TΛV + V fΛ(z), (2.61)

where LΛ denotes the Lie derivative along kiΛ, V is the covariantly holomorphic section introduced

in (2.25), TΛ is an element of the real symplectic Lie algebra and fΛ corresponds to an infinitesimal

Kähler transformation.

Since the holomorphic Killing vectors preserve both the metric on SM and its complex structure,

they will also preserve the Kähler form:

LΛK = iΛdK + diΛK = diΛK = 0, (2.62)

for iΛ denoting the interior product along kΛ and where we exploited the Cartan formula for the Lie

derivative and the fact that dK = 0 for a Kähler manifold.

This implies that, at least locally, there must exist functions P0
Λ such that

iΛK = dP0
Λ. (2.63)

These functions are known as Killing prepotentials or momentum maps and they can be expressed

explicitly in terms of the Killing vectors and the Kähler potential as

iP0
Λ =

1

2

(
kiΛ∂iK + kı̄Λ∂ı̄K

)
= kiΛ∂iK = −kı̄Λ∂ı̄K. (2.64)

4Although δLrest = 0, under a generic transformation in GU the vectorial sector of the Lagrangian gets modified.
The full Lagrangian is invariant, up to a total derivative, only under “electric” transformations, obtained by setting
B = 0 in (2.11).
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Exploiting Special geometry identities, one can actually recast the prepotential in terms of symplectic

invariants. In particular, focusing on electric gaugings, the symplectic image of the generators is

block-diagonal and coincides with the adjoint representation in each block, that is

TΛ =

(
fΣ

Λ∆ 0

0 −fΣ
Λ∆

)
. (2.65)

For this specific case we can write

P0
Λ =

〈
V |TΛV

〉
= eK

(
F∆f

∆
ΛΣX

Σ
+ F∆f

∆
ΛΣX

Σ
)
. (2.66)

As a final remark, we underline that to every generator of the abstract Lie algebra of the group G we

have associated a function P0
Λ. From a geometrical point of view, the prepotential is the Hamiltonian

function providing the Poissonian realization of the Lie algebra on the Special Kähler manifold. In

particular, it holds5: {
P0

Λ,P0
Σ

}
≡ 4πK(Λ,Σ) = fΛΣ

ΓP0
Λ, (2.67)

where
{
P0

Λ,P0
Σ

}
are the Poisson bracket of P0

Λ with P0
Σ and K(Λ,Σ) ≡ K(kΛ, kΣ) denotes the value

of the Kähler form along the pair of Killing vectors.

Equation (2.67) is usually referred to as equivariance condition and in components it reads

i

2
gī
(
kiΛk

̄
Σ − k

i
Σk

̄
Λ

)
=

1

2
fΛΣ

ΓP0
Γ. (2.68)

The triholomorphic prepotentials on Quaternionic manifolds

To construct suitable prepotentials on quaternionic-Kähler manifolds, we have to generalize the

construction we carried out in the previous section. Specifically, in this context, the Kähler form is

replaced by the SU(2) Lie-algebra valued HyperKähler two-form and, as a consequence, holomorphic

Killing vectors ought to be generalized to triholomorphic ones.

Triholomorphicity implies that the Killing vector fields leave the HyperKähler form invariant up to

SU(2) rotations, that is

LΛK
x = εxyzKyW z

Λ and LΛω
x = ∇W x

Λ, (2.69)

for W x
Λ an SU(2) compensator associated to the Killing vector kuΛ. The previous relation can be

obviously expressed also in terms of the SU(2) curvature by virtue of its proportionality to the

HyperKähler form.

In full analogy with the Special Kähler case, to each Killing vector we can associate a triplet of 0-form

prepotentials PxΛ(q) via the following relation:

iΛΩx = −∇Px ≡ −(dPx + εxyzωyPz), (2.70)

where ∇ denotes the SU(2)-covariant derivative. In components, the relation reads

2kuΛΩx
uv = −∇vPxΛ. (2.71)

To find an explicit expression for the prepotentials in terms of the Killing vectors, starting from the

Killing equation and using the fact that the Ricci tensor on quaternionic-Kähler manifolds takes the

5This relation actually holds only if the Lie algebra has a trivial second cohomology group, which is always the case
for semi-simple Lie algebras.
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form in eq. (2.49), one can notice that the prepotentials are actually eigenfunction of the covariant

Laplacian [36], that is

∇v∇vPxΛ − 4nHPxΛ = 0. (2.72)

This last relation, together with the defining equation in (2.70), leads to

PxΛ =
1

2nH
∇ukvΛΩx

uv (2.73)

Finally, we point out that Killing prepotentials provide once again a Poissonian realization of the

gauge group Lie algebra; in particular, introducing the triholomorphic Poisson bracket

{PΛ,PΣ}x ≡ iΛiΣKx + εxyzPyΛP
z
Σ for

1

2
iΛiΣK

x ≡ −Ωx
uvk

u
Λk

v
Σ, (2.74)

the equivariance condition now reads

{PΛ,PΣ}x = f∆
ΛΣPx∆, (2.75)

or, in components
1

2
εxyzPyΛP

z
Σ − Ωx

uvk
u
Λk

v
Σ =

1

2
f∆

ΛΣPx∆. (2.76)

2.4 Lagrangian and Supersymmetry Variations

Having introduced the main concepts and geometric structures for the ungauged theory, and described

the key ingredients in the gauging procedure, we are now ready to present the Lagrangian and the

supersymmetry variations for N = 2 gauged supergravity. Given that our following analysis will

focus on solutions with vanishing fermionic fields, we will concentrate on the bosonic part of the

Lagrangian and on the supersymmetry variations for the fermions. Our presentation will primarily

follow [31]; however, since we will employ the mostly plus signature, there will be a sign difference

whenever there is an upper spacetime index.

Schematically, the bosonic N = 2 supergravity Lagrangian can be split as

Lbosonic = Lk − V (z, z̄, q), (2.77)

where Lk consists of the properly covariantized kinetic terms and V (z, z̄, q) denotes the O(g2) con-

tributions to the scalar potential arising from the gauging6. Explicitly, each term reads:

Lk =
1

2
R− gī∇µzi∇µz ̄ − huv∇µqu∇µqv + i

(
NΛΣF

−Λ
µν F

−Σµν −NΛΣF
+Λ
µν F

+Σµν
)
, (2.78)

V (z, z̄, q) = g2
[(
gīk

i
Λk

̄
Σ + 4huvk

u
Λk

v
Σ

)
L̄ΛLΣ +

(
gi ̄fΛ

i f
Σ
̄ − 3L̄ΛLΣ

)
PxΛPxΣ

]
, (2.79)

where we introduced explicitly the coupling constant g so as to clearly identify the terms due to

gauging.

The covariant derivatives appearing in the Lagrangian are

∇zi = dzi + gAΛkiΛ(z), ∇z̄ ı̄ = dz̄ ı̄ + gAΛkı̄Λ(z), (2.80)

∇qu = dqu + gAΛkuΛ(q). (2.81)

6As we discussed, in principle we also expect order O(g) Yukawa-like contributions to the Lagrangian but they
vanish in the absence of fermions.
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Moreover, the vector field strengths appear as F±Λ
µν = 1

2

(
FΛ
µν ± i

2ε
µνρσFΛ

ρσ

)
, i.e. through their self-

dual and anti self-dual combinations, respectively.

As long as the supergravity transformation rules of the fermionic fields are concerned, we have:

δψAµ = DµεA − T−µνγνεABεB + igηµνγ
νSABε

B; (2.82)

δλiA = −i∇µziγµεA +G−iµνγ
µνεABεB + gW iABεB; (2.83)

δζα = −iUBβu ∇µquγµεABCαβεA + gNA
α εA. (2.84)

In the above supersymmetry variations the field strengths appear in their anti self-dual combinations,

dressed by the scalar fields as follow:

T−µν = 2iIΛΣL
ΣF−Λ

µν ; G−iµν = −D̄iL̄ΓIΓΛF
−Λ
µν . (2.85)

Moreover, as expected, contributions at order O(g) appears in the supersymmetry variations through

the mass matrices, given by

SAB =
i

2
(σx)A

CεBCPxΛLΛ, (2.86)

W i AB = εABkiΛL̄
Λ + i(σx)C

BεCAPxΛgīf̄Λ
̄ , (2.87)

NA
α = 2UAαukuΛL̄Λ. (2.88)

The covariant derivative for the supersymmetry parameters reads explicitly

DµεA = ∂µεA +
1

4
ωabµ γabεA +

i

2
Q̂µεA + (ω̂µ)A

BεB, (2.89)

for the U(1) and SU(2) gauged connection defined respectively as

Q̂ = Q+ gAΛP0
Λ (2.90)

and

(ω̂)A
B =

i

2
ω̂x(σx)A

B, with ω̂x = ωxudqu + gAΛPxΛ. (2.91)

Finally, as outlined when discussing the general gauging procedure, we would like to stress that the

scalar potential of the theory is indeed related to the fermionic shifts appearing in the supersymmetry

variation. In particular, it holds [33]

g−2δAB V (z, z̄, q) = gīW
iACW ̄

BC + 2NA
αN

α
B − 12SACSBC . (2.92)

This relation is usually referred to as Ward Identity and can be generalized also to other supergravity

theories.

2.5 Vacua and Supersymmetry Breaking

A Lorentz preserving vacuum of a supergravity theory is a maximally symmetric solution, i.e., a

solution exhibiting Minkowski, de Sitter, or anti-de Sitter spacetime geometry, depending on the

value of a cosmological constant Λ.

As a consequence of the combined request of Lorentz invariance and maximal spacetime symmetry,
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only spin-0 fields can develop a non-vanishing, uniform vacuum expectation value (v.e.v.), that is,

specifying our treatment to N = 2 supergravity,〈
zi(x)

〉
= zi0, 〈qu(x)〉 = qu0 and 〈ψµA〉 =

〈
λiA
〉

= 〈ζα〉 =
〈
AΛ
µ

〉
= 0, (2.93)

for 〈 〉 denoting quantities evaluated on the vacuum.

Denoting collectively φ0 = (z0, z̄0, q0), such a value for the scalar fields identifies a point in the moduli

space which extremize the scalar potential V (z, z̄, q):

∂V

∂zi

∣∣∣∣
φ0

=
∂V

∂z̄ ı̄

∣∣∣∣
φ0

=
∂V

∂qu

∣∣∣∣
φ0

= 0, ∀ i ∈ {1, ..., nV } , u ∈ {1, ..., 4nH} (2.94)

and the value V (z0, z̄0, q0) provides the effective cosmological constant describing the background

geometry:

Λ = V (z0, z̄0, q0). (2.95)

A given vacuum, identified by the critical values for the scalars, can preserve a certain amount of

supersymmetry of the original theory. In such cases, this implies that there should exist a local

supersymmetry parameter εA(x) along which the supersymmetry variations of the fermionic fields

vanish on the solution. The analogous condition on the supersymmetry variations of the bosonic field

content of the theory would be trivially satisfied since these are expressed in terms of the fermionic

fields which go to zero when evaluated on the vacuum.

By looking at the explicit expressions for the fermionic transformation rules given in eqs. (2.82)-

(2.84), on the vacuum one obtains

δψAµ = DµεA + igηµνγ
νSABε

B = 0,

δλiA = gW iABεB = 0,

δζα = gNA
α εA = 0,

(2.96)

for Dµ reducing to the Lorentz-covariant derivative.

These equation are usually referred to as Killing spinor equations and the background preserves a

number N ′ ≤ N of the original N supersymmetries of the theory if they admit N ′ distinct solutions.

As it becomes clear from eq. (2.96), the presence of residual supersymmetries translates to conditions

on the mass matrices SAB, W i AB and NA
α , that correspond, via their definitions, to geometrical

constraints on the scalar manifold and its gauged isometries.

In our work, we’ll be interested in solutions that preserve supersymmetry, at least partially. In

the context of N = 2 supergravity, this implies that solutions either preserve the whole N = 2 or

spontaneously break the supersymmetry content down to N = 1.

In the first case, it immediately follows from (2.96) that

W iAB = 0 and NA
α = 0. (2.97)

Moreover, restricting our treatment to Minkowski vacua, from the Ward identity in (2.92) it is clear

that it should also hold

SAB = 0, (2.98)

which effectively implies that both gravitini should remain massless on the solution.

On the other hand, in the case of spontaneous supersymmetry breaking N = 2→ N = 1, the Killing
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spinor equations admit only one solution, that we identify with ε1 without any loss of generality.

This implies that

W iA1 = 0, N1
α = 0, (2.99)

so that the Ward identity now becomes

g−2δ1
B V (z, z̄, q) = −12S1CSBC . (2.100)

The last equation is easily solved by writing

g2SACS
BC =

(
− 1

12V 0

0 S2CS
2C

)
. (2.101)

For the Minkowski case, this means that SAB eigenvalues should be non-degenerate and one of them

has to vanish, i.e., one of the two gravitini has to become massive while the second remains massless.
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Chapter 3

Black hole solutions in N = 2, D = 4
Supergravity

The aim of this chapter is to give a comprehensive overview of the state of the art in black hole physics

within D = 4, N = 2 supergravity theories. In addition to tracing the historical developments in the

field, with this review we aim to describe the essential ideas and tools that form the foundational

background for the new solutions that we will present in the following chapter.

We will begin by reviewing black hole solutions in asymptotically flat spacetimes. In particular, we

will start from the original work on supersymmetric, single centre black holes [37], and the subsequent

discovery of the attractor mechanism. Then, we will explain how certain properties of these solutions,

initially thought to be exclusively related to supersymmetry, are in fact shared by all extremal black

holes [38]. Moreover, we will introduce the role of the superpotential as the object effectively de-

scribing the solution by a gradient flow, laying the groundwork for extending the formalism, mutatis

mutandis, to non-supersymmetric configurations through the introduction of a “fake-superpotential”,

as developed in [29].

We then shift our focus to the physics of multi-centre black hole solutions. Firstly, we will present

Denef’s pioneering work on BPS configurations [39], explaining how these solutions can be fully

characterized by harmonic functions. Secondly, we explore the challenges emerging in the attempt

of generalizing this framework to non-BPS solutions. Specifically, we will discuss how multi-centre

configurations can be uplifted to 11-dimensional supergravity. Then, by carefully choosing a com-

pactification scheme, we present how Denef’s results can be recovered and extended to the non-

supersymmetric case, introducing the idea of the “floating brane” ansatz and the role of U-duality

transformations [40,41].

Finally, we turn our attention to BPS black holes in Anti-de Sitter spacetimes within gauged super-

gravity theories [42]. In particular, we will examine how the attractor mechanism emerges in these

AdS configurations and explore how the Killing spinor equations lead to the first-order flow equations

that describe BPS solutions.

3.1 Asymptotically flat Black Holes

We will start our review by focusing on theories without gauging; as we described in the previous

chapter, this implies the absence of a scalar potential and, as a consequence, we will be able to study
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exclusively black holes configurations that are asymptotically flat.

3.1.1 Single Centre Solutions

Supersymmetric black holes... and beyond?

The efforts towards an understanding of black hole physics in the context of D = 4, N = 2 super-

gravity theories went initially exclusively into supersymmetric (BPS) configurations because, as we

presented in the first chapter, they open up a string theory perspective on the puzzle of black holes

entropy. Moreover, enforcing the vanishing of the supersymmetry transformations for fermions (as

sketched in (1.22)), BPS configurations are expected to admit a simplified description in terms of

first-order differential equations.

In this direction, the first results were obtained for static, spherically symmetric and magnetically

charged black holes by Ferrara, Kallosh and Strominger [37] in N = 2 ungauged supergravity coupled

to nV vector multiplets.

As a first step, a suitable metric ansatz was chosen

ds2 = −e2U(r)dt2 + e−2U(r)d~x2, (3.1)

for U an arbitrary function of the radial coordinate (r =
√
~x2) only, and, via Bianchi identities

(dF̂ = 0), the radial component of the magnetic field strengths were fixed to their values

F̂Λ
r =

pΛ

r2
eU(r), for F̂Λ

r ≡ 2εr
θφF̂Λ

θφ. (3.2)

At this point, inserting the obtained ansatze in the variations for the gravitino and the gaugino fields

and demanding that they vanish for some choice of the supersymmetry parameter, one can derive

the first-order differential equations:

4U ′ = −

√
(Z̄Np)(ZNp)(Z̄NZ)

(Z̄NZ)(Z̄N Z̄)
eU , (3.3)

(ZΛ)′ = −e
U

4

√
(ZNZ)(Z̄Np)(Z̄NZ)

(Z̄N Z̄)(ZNp)
(ZΛp0 − pΛ), (3.4)

where the primes denotes the derivative with respect to ρ ≡ 1/r, ZΛ(zi) are the inhomogeneous

special coordinates on the Special Kähler manifold (i.e., Z0 = 1 and Zi = zi), pΛ represent the

magnetic charges and where we dropped contracted indices (e.g., the ZNp ≡ ZΛNΛΣp
Σ).

By looking at (3.4), it is immediately clear that, once initial conditions are specified at infinity

(ρ = 0), ZΛ will evolve until it reaches a fixed point. In particular, imposing that (ZΛ)′ = 0, we find

ZΛ
fixed =

pΛ

p0
, (3.5)

so that the fixed points are completely specified in terms of the charges of the black hole. This was

indeed the first example of the attractor mechanism mentioned in (1.3.2).

Additionally, upon integration of eq. (3.3), one finds that, at such fixed point, in the near-horizon

limit, the solution corresponds to the maximally symmetric charged Bertotti–Robinson universe.

These results were soon generalised to arbitrary electric-magnetic charges by Strominger [43].

Shortly after, Ferrara, Gibbons and Kallosh [38] realized that regularity requirements on the solutions
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for scalar fields were sufficient to explain the attractor mechanism, without employing supersymmetry

whatsoever.

To understand their result, let’s start by considering the general Lagrangian described in (1.20),

together with the ansatz for extremal black holes in eq. (3.1) expressed in terms of a new coordinate

τ ≡ (r − rH)−1

ds2 = −e2Udt2 + e−2U

[
dτ2

τ4
+

1

τ2
dΩ2

]
. (3.6)

As it is clear from the definition, in these coordinates the horizon sits at τ → −∞.

Since we are interested in static, spherically symmetric solutions, one can actually reduce the system

by integrating out formally the (t, θ, ϕ) coordinates, ending up with a one-dimensional effective

Lagrangian [38]

L1D =

(
dU

dτ

)2

+ gij
dφi

dτ

dφj

dτ
+ e2UVBH(φ, p, q), (3.7)

where we introduced the black hole potential VBH arising in the integration procedure. It is defined

as

VBH(p, q, φi) = −1

2
QTMQ ≡ −1

2
QT

(
I +RI−1R −RI−1

−I−1R I−1

)
Q, for Q ≡

(
p

q

)
. (3.8)

For the solutions of the reduced system to actually solve the equations of motion of the complete

theory, we need to add an additional constraint (usually referred to as the Hamiltonian constraint)(
dU

dτ

)2

+ gij
dφi

dτ

dφj

dτ
− e2UVBH(φ, p, q) = 0. (3.9)

By looking at the metric ansatz, in order to obtain a finite area solution, it is clear that it must hold:

e−2U →
(
A

4π

)
τ2 as τ → −∞. (3.10)

Moreover, we demand that the scalars kinetic term in the original Lagrangian remains finite as we

approach the horizon, i.e.,

gij∂µφ
i∂µφj = gij

dφi

dτ

dφj

dτ
e2Uτ4 <∞, (3.11)

which, together with (3.10) implies that

gij
dφi

dτ

dφj

dτ

(
4π

A

)
τ2 → X2 as τ → −∞, (3.12)

for X a real, finite constant. To better understand the physical consequences of such a requirement,

it is useful to introduce a “proper-distance” coordinate ω ≡ − log(−τ)1, so that we obtain

gij
dφi

dω

dφj

dω

(
4π

A

)
→ X2 as ω → −∞. (3.13)

It is therefore clear that the only compatible choice with the request of finite moduli near the horizon

is X2 = 0 and, as a consequence,
dφi

dω

∣∣∣∣
horizon

= 0. (3.14)

1In these coordinates, for extremal black holes the horizon sits at ωH = −∞, at infinite proper distance from any
observer.
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Under this condition, solving the equations of motion for the scalars in the proximity of the horizon

one gets

φi =

(
2π

A

)
∂VBH
∂φi

log τ + φihorizon. (3.15)

Enforcing again a regular value of the scalars in the near horizon region, it follows that the fixed

value of the scalars must be an extremum of the black-hole potential

∂VBH(p, q, φihorizon)

∂φi
= 0. (3.16)

This last relation implicitly ties the values of the moduli at the horizon to the charges of the black

holes.

Therefore, with no use of supersymmetry, we were able to prove that scalar fields must reach a fixed

value on the black hole horizon and that this value is related to the charges of the black hole via

(3.16). We stress how the whole construction heavily relies on the extremal nature of the black hole.

The horizon of non-extremal black holes, in fact, sits at finite proper distance from an arbitrary

observer, thus the previous intuition does not apply.

Specializing now the discussion to N = 2 supergravity, we interpret φi = zi as the scalar fields sitting

in the vector multiplets parametrizing a Special Kähler manifold, whose metric is denoted by gī. In

this context, the black hole potential actually corresponds to the symplectic invariant I1 of Special

geometry [44]:

VBH = I1 ≡ |Z(z, p, q)|2 + |DiZ(z, p, q)|2, (3.17)

for Z ≡ 〈Q,V 〉 = (LΛqΛ −MΛp
Λ) the N = 2 central charge. The one-dimensional Lagrangian and

the Hamiltonian constraint now read

L1D =

(
dU

dτ

)2

+ gī
dzi

dτ

dz̄ ̄

dτ
+ e2U

(
|Z(z, p, q)|2 + |DiZ(z, p, q)|2

)
, (3.18)

(
dU

dτ

)2

+ gī
dzi

dτ

dz̄ ̄

dτ
− e2U

(
|Z(z, p, q)|2 + |DiZ(z, p, q)|2

)
= 0. (3.19)

Making use of some properties of Special geometry, one can actually rewrite the Lagrangian as a sum

of squares

L1D =

(
dU

dτ
± eU |Z|

)2

+

∣∣∣∣dzidτ ± eUgik̄D̄k̄Z̄
∣∣∣∣2 ± d

dτ

(
eU |Z|

)
, (3.20)

from which we immediately read the first-order flow equations

dU

dτ
= ∓eU |Z| and

dzi

dτ
= ∓eUgik̄D̄k̄Z̄. (3.21)

Although both sign choices are in principle admitted, only the lower sign leads to meaningful black

hole solutions. In particular, the flow equation for the warp factor should increase along the flow, as

it approaches one at infinity and becomes proportional to |τ | near the horizon.

It can be shown that these flow equations derived without any input from supersymmetry precisely

reproduce the ones reported in eqs. (3.3)-(3.4).

As a final remark, it is important to notice that the critical points of the black hole potential coincide

with the critical point of the central charge Z. In particular, extremal points such that

DiZ = 0 and Z 6= 0 (3.22)

give rise to supersymmetric black holes.
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Non-BPS black holes and “Fake Superpotentials”

As we reviewed in the previous section, the attractor mechanism and the existence of first-order

flow equations seem to be related to the extremal nature of black hole solutions rather than to their

supersymmetry content. This realization, along with advancement in the study of non-BPS domain-

wall solutions, inspired the quest for a first-order formalism also for non-supersymmetric extremal

black holes.

Ceresole and Dall’Agata [29] found out that non-BPS configurations could indeed be described by

first-order differential equations by replacing the central charge Z by another function W (z), dubbed

“fake-superpotential”.

To see this, we can start by generalizing the results obtained before. In particular, we notice that the

Hamiltonian constraint (3.9) actually relates the black hole potential, the derivatives of the scalar

fields and the warp factor U . As a consequence, finding a real “superpotential” W (z, z̄) such that

VBH = W 2 + 4gī∂iW∂̄W, (3.23)

the Hamiltonian constraint is identically satisfied and the equations of motion take the form

dU

dτ
= ±eUW and

dzi

dτ
= ±2eUgik̄∂k̄W. (3.24)

This is evident upon rewriting the one-dimensional Lagrangian as

L1D =
(
U ′ ± eUW

)2
+
∣∣∣zi′ ± 2eUgik̄∂k̄W

∣∣∣2 ∓ d

dτ

(
eUW

)
. (3.25)

By identifying the superpotential W with |Z|, this generalization immediately reduces to the BPS

case that we analysed previously.

Going beyond the supersymmetric case, we are interested in theories for which the Hamiltonian con-

straint admits multiple solutions. In particular, the black hole potential might not univocally identify

a superpotential, allowing for different equivalent choices of W , only one of which correspond to the

central charge Z. When such a “fake superpotential” exists (which is not simply proportional to

Z), the first-order equations would not imply anymore preserved supersymmetries since they would

differ from the Killing spinor equations. Therefore, critical points of the form ∂iW = 0 would give

rise to stable non-BPS black holes.

Specializing our discussion for N = 2 supergravity, we present one possible strategy for the construc-

tion of W [29]. In particular, starting from the matrix M appearing in the definition of VBH (3.8),

we can define an additional symplectic matrix M via the relation

M = ΩM = Ω

(
D C

B A

)
, for Ω =

(
0 −I
I 0

)
(3.26)

and

A = −DT = RI−1, C = I−1, B = −I −RI−1R. (3.27)

Notice that M2 = −I.
By looking again at the definition for VBH , we see that we can perform a symplectic rotation of the

charge vector Q→ SQ without changing the value of the potential, provided that

STMS =M =⇒ STΩMS = ΩM =⇒ [S,M ] = 0, (3.28)
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where we made use of the fact that STΩS = Ω.

Therefore, by looking at the relation among VBH and the central charge (eq. (3.17)), we deduce that,

anytime we find a constant symplectic matrix S that commutes with M, we can define a new “fake

superpotential”

W = QTSTΩV (with W = |W|) (3.29)

giving rise to the same potential as Z and such that its critical points describe non-supersymmetric

black holes.

3.1.2 Multicentre solutions

After the study of single centre black holes in asymptotically flat spacetimes, it is natural to look

for solutions that allow for multiple black holes sitting at different centres. These configurations are

particularly interesting because they seem to play a significant role in the study of black hole physics

within the String Theory framework, the aforementioned microstate geometries programme (chapter

1.2.2) being one representative example of application. Therefore, it is of compelling importance to

study and classify both supersymmetric and non-supersymmetric multicentre solutions.

Supersymmetric case

Pivotal results in this direction were obtained by Denef [39], which succeeded in completely classifying

supersymmetric, multicentre configurations. To summarize the main findings contained in its work,

let’s start by considering a general metric ansatz for stationary solutions

ds2 = −e2U
(
dt+ ωidx

i
)2

+ e−2U
(
dxi
)2
, (3.30)

where both U and ω are arbitrary functions of ~x, with the only requirement that U, ω → 0 as r →∞
to recover asymptotically Minkowski. Notice that setting ω = 0 and r2 = δijx

ixi, we recover the

single centre ansatz employed before.

By rewriting the action in the usual BPS squared form (just like it was done in eq. (3.20)), one

finds that the entire gravitational solution for N sources sitting at positions ~xI , each with charges

(pΛ
I , qΛ I), is described in terms of a symplectic vector of harmonic functions H of the form

H = −
N∑
I=1

QI
|~x− ~xI |

+ 2Im
(
e−iαV

)∣∣
r→∞ , (3.31)

for V the usual covariantly holomorphic section of Special geometry, Qi the vector of electric-magnetic

charges of the i-th centre and α a real-valued function.

In particular, defining the 1-form

ζ ≡ −〈dH, V 〉 =
N∑
I=1

〈QI , V 〉 dτI =
N∑
I=1

ZI dτI , for τI =
1

|~x− ~xI |
, (3.32)

we can get the flow equations:

dU = −eURe
(
e−iαζ

)
, (3.33)

dzi = −eUgīeiαD̄̄ζ, (3.34)
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which precisely generalize the ones obtained in eq. (3.21) for the single centre case, together with

the phase constraint

Q+ dα = eU Im
(
eiαζ

)
= −1

2
e2U 〈dH,H〉 , (3.35)

for Q the U(1) connection on the Kähler manifold.

Explicitly, for N = 1, identifying α = argZ, one gets

ζ = Zdτ, (3.36)

and
dU = −eU |Z| dτ,

dzi = −eUgīeiαD̄̄Z̄dτ = −2eUgī∂̄ |Z| dτ,
(3.37)

where in the last equality we used the fact that e2iα = Z/Z̄. Written in this form, the obtained

equations exactly reproduce the ones for single centre configurations, as written in eq. (3.24).

Moreover, the additional non-static contribution to the metric is also determined starting from H,

via

?0 dω = 〈dH,H〉 , (3.38)

for ?0 the 3D Hodge dual with respect to the flat metric.

As a final remark, just like standard General Relativity, it is interesting to define the angular mo-

mentum vector ~J from the asymptotic form of the metric

ωi = 2εijkJ
ix
k

r3
+O

(
1

r3

)
, as r →∞. (3.39)

Employing the flow equation for ω, one finds that

~J =
1

2

∑
I<J

〈QI , QJ〉
~rIJ
|~rIJ |

, (3.40)

for ~rIJ ≡ ~xI − ~xJ . This implies that multicentre configurations can be characterized by intrinsic

angular momentum, even when centres are at rest. This is actually a more general phenomenon,

arising for example also in the context of ordinary electrodynamics.

Non-supersymmetric configurations: to String Theory and Back

Just like we did for the single centre solutions, we would like to understand how the results obtained

for BPS multicentre configurations extend to the non-BPS case. Unfortunately, this problem has

proven to be significantly more challenging then other studied scenarios since, even for the simplest

solutions involving two centres, solving the non-linear Einstein’s equations is too difficult of a task

without any input coming from supersymmetry.

The first results were obtained by Goldstein and Katmadas [45] by noticing that the very same equa-

tions governing five and four dimensional supersymmetric multicentre black holes could also describe

non-BPS solutions by opportunely changing a few signs. Actually, these type of solutions are usually

called “almost-BPS” since, except for global constraints, they locally preserve supersymmetry.

A supergravity approach for constructing more general non-BPS solutions, encompassing also the

advancements introduced in [46], was provided by Bena, Giusto, Ruef and Warner [40], who employed
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a “floating brane” ansatz to simplify the problem. Specifically, they realized that an insightful per-

spective on non-supersymmetric configurations could be obtained by studying five dimensional U(1)3

supergravity solutions which could be uplifted to solutions of D = 11 supergravity and that, when

further compactified to four-dimensions, correspond to solutions for the STU model in N = 2 su-

pergravity. By imposing that a probe M2 brane in the supergravity ansatz experiences no net force

(hence the term “floating brane”), the equations of motion factorize, enabling the derivation of more

general solutions. Finally, working in this framework, Dall’Agata, Giusto and Ruef [41] were able

to generate new solutions via the action of U-duality, getting to the most general class of extremal

non-BPS multicentre under-rotating2 solutions of the STU model.

In the following, we will therefore review how these solutions are obtained, starting from the higher-

dimensional supergravity theory and showing how the multicentre solutions are recovered by suc-

cessive compactifications, first to five and then to four dimensions. Our presentation will mainly

follow [41] and [10].

Consider eleven-dimensional supergravity3 carrying M2 and M5 branes, together with KK6 monopoles

and momentum charges. We will focus on compactifications on a Calabi-Yau and a circle, CY6×S1,

for the specific choice

CY6 =
T 6

Z2 × Z2
' (T 3)2 (3.41)

since this configuration leads to the STU model in four-dimensions.

The ansatze for both the metric and the 3-form potential from the M-theory perspective reads:

ds2
11 = −Z−2(dt+ k)2 + Z ds2

4(x) +

3∑
I=1

Z

ZI
ds2

I , A(3) =

2∑
I=1

(
−dt+ k

ZI
+ aI

)
∧ dTI , (3.42)

for (t, ~x) the coordinates of 4-dimensional spacetime, ZI the warp factors which define Z ≡ (Z1Z2Z3)1/3,

ds2
4 denotes the metric on a Ricci-flat 4-dimensional Euclidean space and ds2

I and dTI are respectively

the metric and the volume form on the I-th 2-torus.

Subsequently, we choose to specialize ds2
4 to the one for a Gibbons–Hawking space, i.e.

ds2
4 =

1

V

(
dψ + ~A

)2
+ V ds2

3(~x), where ? dA = ±dV, (3.43)

ds2
3(~x) denotes the 3-dimensional flat space, ψ ia a U(1) isometry of the metric and V is the harmonic

function generating the NUT charge. Each sign choice corresponds to a different orientation of the

spacetime manifold and, consequently, to different solutions. In particular, the plus sign corresponds

to BPS configurations while the minus sign is related to non-supersymmetric solutions.

Finally, having specified the four-dimensional base space, we can also specialize the one-forms aI and

k appearing in the metric ansatz

aI = PI (dψ +A) + wI , k = µ (dψ +A) + ω , (3.44)

for wI and ω 1-forms on ds2
3(~x).

At this point, one can explicitly write down the equations of motion that regulate the solutions of

2Geometries of the under-rotating type are the ones that, like the extremal Reisner–Nordström black hole, have a
conformally flat three-dimensional base.

3We briefly recall that D = 11 supergravity describes a graviton, a gravitino and a 3-form gauge field.
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the eleven-dimensional supergravity theory for the BPS case, which read

d ? dZI =
CIJK

2
d ? d (V PJPK) , (3.45)

?dwI = −d (V PI) , (3.46)

?dω = V dµ− µdV − V ZIdPI , (3.47)

and the non-BPS case, for which we have

d ? dZI =
CIJK

2
V d ? d (PJPK) , (3.48)

?dwI = PIdV − V dPI , (3.49)

?dω = d(µV )− V ZIdPI . (3.50)

As anticipated before, the resulting theory obtained from the reduction on the circle identified by

the ψ direction and on the CY6 could be described via the N = 2 STU supergravity model, i.e., a

theory coupled to three vector multiplets whose scalar manifold is given by

Mscalar =

[
SU(1, 1)

U(1)

]3

. (3.51)

The 11-dimensional ansatze employed before imply a constrained form for both the 4-dimensional

metric and the three scalar fields, which will explicitly read

ds2
4d = −e2U (dt+ ω)2 + e−2Uds2

3(~x) , for e−2U =
√
V Z3 − V 2µ2 (3.52)

and

zI =
(V ZIPI − V µ)− ie−2U

V ZI
, (3.53)

where ZIPI is not summed over I. Similar expressions could be also found for the vector fields AΛ.

As long as the BPS case is concerned, one can explicitly verify that the equations of motion (3.45)-

(3.47) admit solutions in terms of 8 harmonic functions
{
HΛ, HΛ

}
, exactly reproducing the results

obtained by Denef [39].

For the non-supersymmetric case, on the other hand, the full solution (which can be found in [46]

and we do not report here for conciseness) cannot be fully expressed in terms of harmonic functions.

Moreover, it can be shown that, in this case, regularity conditions of the solutions translate into

equations for the distance between the centres, implying that such configurations describe bound

states of black holes.

To conclude, we would like to analyse the role of U-duality transformations on the obtained solutions.

Specifically, as shown in [41], duality transformations acting on BPS solutions simply rotate the

harmonic functions among themselves. More interestingly, the same transformations act non-trivially

on non-supersymmetric solutions. This implies that, in principle, one could choose a specific “seed”

solution and, via U-duality, construct new non-BPS configurations.

The construction we have presented here for a compactification on
(
T 3
)2

which leads to the STU

model can be clearly generalized by following the standard procedures for obtaining N = 2 four-

dimensional supergravity theories from Calabi–Yau compactifications.
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3.2 Anti-de Sitter Black Holes

Up to this point we have focused our attention on ungauged supergravity theories and black hole

solutions in asymptotically flat space-times.

In this section, mainly following [42], we will be interested instead in BPS black holes in four-

dimensional anti-de Sitter space (AdS), where the presence of a non-trivial cosmological constant is

made possible by suitable gauging choices.

Motivations for studying supersymmetric AdS black holes arises in different context. Firstly, they

provide an additional benchmark for the universality of the attractor mechanism. Secondly, in the

light of AdS4/CFT3 correspondence, controlling the gravitational solution is fundamental for the

computation of the microscopic entropy and for a comparison with Bekenstein–Hawking formula.

Lastly, within the framework of flux compactifications in String theory, it is important to determine

whether the attractor mechanism is still at work in gauged supergravity theories, so as not to desta-

bilize the vacuum.

The first results for supersymmetric, static black hole solutions in AdS backgrounds were obtained

in [47,48], although both works are significantly limited by the assumption of constant scalars profiles,

which led to naked singularities and irregular geometries. A major breakthrough was obtained by

Cacciatori and Klemm [49], who focussed on N = 2 gauged supergravity with vector multiplets only

and U(1) gauging provided by Fayet–Iliopoulos terms. Their results were later fully generalized by

Dall’Agata and Gnecchi [42], providing a completely covariant solution that allows for both electric

and magnetic gauging, and describing the entire black hole solutions by means of first-order flow

equations governed by a superpotential W , echoing the approach adopted for the asymptotically flat

case.

Therefore, in the final part of this chapter, we will review the results of [42] to gain a deeper under-

standing of the physical content of this class of solutions, and to establish the starting point for the

results we will present in the next chapter.

As anticipated, let’s start by considering dyonic black hole solutions of N = 2 U(1) gauged super-

gravity coupled to nV vector multiplets, a linear combination of which will gauge a U(1) factor via

Fayet–Iliopoulos (FI) terms. Starting from the general Lagrangian in eq. (2.77), for this class of

models we can write

L =
1

2
R− gī∂µzi∂µz ̄ +

1

4
ImNΛΣF

Λ
µνF

Σµν +
1

4
ReNΛΣF

Λ
µνF̃

Σµν − Vg, (3.54)

where the scalar potential can be written in terms of the superpotential L as

Vg = gīDiLD̄̄L̄ − 3|L|2, for L ≡ 〈G,V〉 , (3.55)

where G ≡
(
gΛ, gΛ

)
denotes the FI terms and V is the usual covariantly holomorphic symplectic

section of Special geometry.

At this point, we specify the metric ansatz

ds2 = −e2Udt2 + e−2U
(

dr2 + e2ψdΩ2
)

(3.56)

and the appropriate expressions for the vector fields, so that∫
S2

FΛ = 4πpΛ,

∫
S2

GΛ = 4πqΛ (where GΛ ≡
δL

δFΛ
), (3.57)
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for Q ≡
(
pΛ, qΛ

)
the black hole magnetic and electric charges. As always, we will assume spherical

symmetry of the solution, so that the scalars zi(r) and the warp factors U(r) and ψ(r) are functions

of the radial coordinate only.

Just like we did for the asymptotically flat case, by employing the anstaze introduced before, we can

obtain a 1-dimensional effective action for the theory

S1d =

∫
dr
{
e2ψ

[
U ′2 − ψ′2 + gīz

i′z̄ ̄′ + e2U−4ψVBH + e−2UVg

]
− 1
}

+

∫
dr

d

dr

[
e2ψ

(
2ψ′ − U ′

)]
,

(3.58)

where the primes denote derivatives with respect to the radial coordinate and the black hole potential

is the same as eq. (3.17).

To extract the first-order flow equations describing the solutions, one could rewrite the action as a

sum of BPS squares by using Special geometry identities. The result of such an approach gives

S1d =

∫
dr

{
−1

2
e2(U−ψ)ETME − e2ψ

[(
α′ +Qr

)
+ 2e−U Re

(
e−iαL

)]2
− e2ψ

[
ψ′ − 2e−U Im

(
e−iαL

)]2 − (1 + 〈G, Q〉)

−2
d

dr

[
e2ψ−U Im

(
e−iαL

)
+ eU Re

(
e−iαZ

)]}
,

(3.59)

where we introduced

ET ≡ 2e2ψ
(
e−U Im

(
e−iαV

))′ T − e2(ψ−U)GTΩM−1 + 4e−U
(
α′ +Qr

)
Re
(
e−iαV

)T
+QT , (3.60)

for Q the U(1) composite connection of Special geometry.

Therefore, the action has been rewritten as a sum of squares, provided that the charges fulfill the

constraint

〈G, Q〉 = −1. (3.61)

The resulting flow equations are

U ′ = −eU−2ψRe
(
e−iαZ

)
+ e−U Im

(
e−iαL

)
,

ψ′ = 2e−U Im
(
e−iαL

)
,

zi′ = −eiαgī
[
eU−2ψD̄Z̄ + ie−UD̄L̄

]
,

(3.62)

together with the phase constraint

e2iα =
Z − ie2(ψ−U)L
Z + ie2(ψ−U)L

. (3.63)

An important outcome of this analysis is that, just like we saw for the ungauged case, we can introduce

a superpotential

W = eU
∣∣∣Z − ie2(ψ−U)L

∣∣∣ (3.64)

so that the flow equations become:

U ′ = −gUU∂UW,

ψ′ = −gψψ∂ψW,

zi′ = −2g̃ī∂̄W,

(3.65)
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for gUU = −gψψ = e2ψ, g̃ī = e2ψgī. Notice that, for G = 0, i.e. turning off the gauging, we recover

exactly the ungauged superpotential.

As we already mentioned, the same flow equations could be actually obtained also by imposing

that the supersymmetry variations for the fermionic fields vanish. In particular, by finding suitable

projectors relating spinorial components of the supersymmetry parameters, it is possible to translate

supergravity variations to first-order differential equations for the bosonic content of the theory.

Moreover, each independent projector condition will halve the number of preserved supersymmetry.

In this particular case, the relevant supersymmetry variations could be obtained by adapting the

general ones in eqs. (2.82)-(2.83):

δψµA = DµεA − εABT−µνγνεB −
i

2
LδABγνηµνεB,

δλiA = −i∂µziγµεA +G−iµνγ
µνεABεB + D̄iLδABεB.

(3.66)

Employing the metric ansatz in (3.56) and taking

FΛ
tr =

e2U−2ψ

2
(I−1)ΛΣ

(
RΣΓp

Γ − qΣ

)
,

FΛ
θφ = −1

2
pΛ sin θ

(3.67)

as ansatz for the field strengths, we can explicitly write down the variations.

Let’s start by considering, for example, the time component of the gravitino δψtA = 0:

1

2
e2UU ′γ01εA +

1

2
AΛ
t gΛδACε

CBεB +
i

2
e3U−2ψZγ1εABε

B − i

2
eULδABγ0εB = 0. (3.68)

To actually identify the right projectors it is convenient to rewrite the equation in the following

fashion:

U ′εA = e−2UAΛ
t gΛδACγ

1γ0εCBεB + ieU−2ψZγ0εABε
B − ie−ULδABγ1εB. (3.69)

Written in this form, it is evident that by imposing the two projector conditions

γ0εA = ieiαεABε
B and γ1εA = eiαδABε

B, (3.70)

we can rewrite δψtA = 0 as a single differential equation multiplying the same spinor εA. In particular,

we obtain (
−U ′ + ie−2UAΛ

t gΛ − eU−2ψZe−iα − ie−ULe−iα
)
εA = 0, (3.71)

whose real part matches precisely the first equation in (3.62). By similar arguments applied to the

other variations, employing again the same projectors in eq. (3.70), one is able to reproduce all the

flow equations (as described thoroughly in Appendix A, [42]).
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Chapter 4

Black Holes in N = 2 U(1) Gauged
Supergravity with Hypermultiplets

In the previous chapter, our review highlighted a significant gap in the current understanding of

black hole physics within supergravity theories: the absence of a systematic study of the equations

governing solutions that include hypermultiplets.

Hypermultiplets are expected to arise naturally in generic string compactifications, making their in-

clusion essential for a complete description of black hole solutions. Unlike ungauged supergravity, in

which their dynamics decouples from the rest of the system, in gauged theories, quaternionic scalars

may be charged and thus actively participate in the solutions. Despite some progress in this direction,

such as the construction of new solutions with non-trivial hypermultiplets in [50], a comprehensive

treatment using a superpotential has yet to be developed.

In this chapter, we aim at filling this gap by extending the work of [42], developing a general frame-

work that could describe black hole solutions in supergravity theories with Abelian U(1) gaugings

coupled to both vector multiplets and hypermultiplets.

We begin by illustrating how the general N = 2 theory adapts to the specific gauging choices of

our interests. Then, we outline the key properties of the solutions we seek to describe. With these

foundations in place, we then proceed to write down the most general supersymmetry variations,

specifying the ansatze for the solutions. Subsequently, we will identify the necessary projectors

required to extract first-order BPS equations that govern the solution. These equations will naturally

reduce to those found in [42] when the hypermultiplets are turned off. Finally, we present some

attempts to construct explicit solutions for simple cases involving one hypermultiplet and one vector

multiplet, describing the general procedure for finding vacua whenever moduli parametrize coset

manifolds and the limitations that the simple models considered present.

4.1 N = 2, D = 4 supergravity with Abelian gaugings

In this chapter we consider 4-dimensional N = 2 gauged supergravity theories coupled to nV vector

multiplets and nH hypermultiplets, specifically focusing on U(1) Abelian gaugings of the quaternionic-

Kähler manifold isometry group. Therefore, we begin our examination by detailing how the general

theory presented in chapter 2 is adapted to this specific setup.
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One direct simplification arises at the Lagrangian level and in the supersymmetry variations for the

gaugini. In particular, the choice to only consider Abelian gaugings of the quaternionic isometries

effectively implies the cancellation of all the terms proportional to the holomorphic Killing vectors kiΛ.

Therefore, recalling the general expressions reported in eqs. (2.78), (2.79) and (2.83), and removing

the book-keeping gauge parameter g (that is, setting it to one), we obtain

Lk =
1

2
R− gī∂µzi∂µz ̄ − huv∇µqu∇µqv +

1

4
IΛΣF

Λ
µνF

Σ µν +
1

4
RΛΣF

Λ
µνF̃

Σ µν , (4.1)

V (z, z̄, q) = 4huvk
u
Λk

v
ΣL̄

ΛLΣ +
(
gi ̄fΛ

i f
Σ
̄ − 3L̄ΛLΣ

)
PxΛPxΣ (4.2)

and

δλiA = −i∂µziγµεA +G−iµνγ
µνεABεB +W iABεB, (4.3)

for W iAB that reduces to

W i AB = i(σx)C
BεCAPxΛgīf̄Λ

̄ . (4.4)

The other variations, instead, maintain their general forms presented in (2.82) and (2.84).

Now, let’s consider the equivariance condition for the triholomorphic prepotentials, which in compo-

nents is given by
1

2
εxyzPyΛP

z
Σ − Ωx

uvk
u
Λk

v
Σ =

1

2
f∆

ΛΣPx∆. (4.5)

The request of having an Abelian gauge group immediately translates into the need for vanishing

structure constants, i.e., f∆
ΛΣ = 0.

Additionally, the expression can be further simplified as we will require that at least one of the gauged

isometries remains unbroken on the vacuum, i.e., kuΛ = 0 for some choice of Λ. The need for such a

condition can be understood by examining the kinetic term for the quaternionic scalars:

Lk ⊃ huv∇µqu∇µqv = ...+ huv k
u
Λ k

v
Σ AΛ

µA
Σµ, (4.6)

where we extracted the contribution to the vector field masses arising in the gauging procedure.

It is therefore clear that the request of an unbroken isometry on the vacuum ensures that at least

one vector field AµΛ continues to be massless, allowing for a consistent definition of the black holes

charges.

As a consequence, assuming without any loss of generality that ku1 = 0 along the solution, since

we will focus on U(1)×U(1) gaugings, the only non-trivial contribution proportional to the SU(2)

curvature will be of the form Ωx
uvk

u
2k

v
2 , which vanishes due to antisymmetry.

It is important to note that this condition poses stronger constraints than simply requiring the Killing

vectors to commute.

Combining these two requests, eq.(4.5) becomes

εxyzPyΛP
z
Σ = 0 (4.7)

or, equivalently,

~PΛ × ~PΣ = 0. (4.8)

The prepotentials are therefore parallel in SU(2) space and they admit a decomposition of the type

PxΛ = gΛ(q)Qx(q), (4.9)
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for Qx identifying a direction in SU(2) and satisfying QxQx = 1.

Introducing Pauli matrices, we can also define

QA
B = i(Qxσx)A

B, (4.10)

so that

QA
BQB

C = −δCA and QABQ
BC = δCA , (4.11)

as it follows from (σx)A
B(σy)B

C = δxyδ
C
A + iεxyz(σz)A

C .

Additionally, we can define Lx ≡ PxΛLΛ and its complex conjugate Lx ≡ PxΛL̄Λ. Exploiting the

decomposition in eq. (4.9), these quantities can be also rewritten as

Lx = gΛ L
Λ Qx ≡ L Qx and Lx = gΛ L̄

Λ Qx ≡ L̄ Qx. (4.12)

Finally, it is useful for our purposes to derive a simple equality for L. Consider the SU(2)-covariant

derivative acting on Lx
∇uLx = (∂uL)Qx + L∇uQx

= LΛ∇uPxΛ,
(4.13)

where in the first line we have used the decomposition introduced in (4.12) while the second follows

from the Lx definition itself.

Then, since Qx∇uQx = 0 as a direct consequence of QxQx = 1, contracting both sides of the previous

relation with Qx we end up with

∂uL = LΛQx∇uPxΛ. (4.14)

Finally, recalling the defining relation for the prepotentials given in eq. (2.71), we get

∂uL = −2LΛQxkvΛΩx
vu. (4.15)

Similar calculations lead to

∂uL̄ = −2L̄ΛQxkvΛΩx
vu. (4.16)

4.2 Analysis of Supersymmetry Variations

Working within the context of four-dimensional N = 2 U(1) gauged supergravity coupled to both

vector multiplets and hypermultiplets, we now present the general analysis of supergravity variations

of the fermionic fields and how these lead to a set of differential equations describing supersymmetric

black hole configurations.

Specifically, after outlining the properties of the solutions we aim to describe, we will choose appro-

priate ansatze for the metric and the vector fields, specify the supergravity variations and identify

the projection conditions that leads to BPS equations. To conclude, we will show how the whole

solution can be described in terms of a suitable superpotential W .

4.2.1 Expected properties of the solutions and Ansatze

We are interested in the analysis of static, spherically symmetric, single centre black holes in an

asymptotically flat spacetime. Notice that, working in the context of gauged supergravity, the last

assumption actually poses a constraint on the scalar potential given in eq. (4.2). In particular,
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following the general treatment presented in chapter 2, V (z, z̄, q) should exhibit a minimum (zi0, z̄
ı̄
0, q

u
0 )

such that

V (z0, z̄0, q0) = 0. (4.17)

Additionally, as mentioned in the derivation of eq. (4.7), we require that at least one of the gauged

isometries (or, equivalently, a linear combination of them) remains unbroken on the vacuum, i.e.,

kuΛ = 0 for some choice of Λ.

As a last request, we would like our solution to preserve supersymmetry, at least partially.

We remark that the combined request of having a vanishing scalar potential and some residual su-

persymmetry on the solution could be only fulfilled in the presence of hypermultiplets. In particular,

setting nH = 0, we can still obtain a U(1)nV +1 gauging via Fayet-Iliopoulos terms

PxΛ = ξxΛ, (4.18)

which correspond to constant gauge prepotentials. The scalar potential would then read

V (z, z̄) =
(
gi ̄fΛ

i f
Σ
̄ − 3L̄ΛLΣ

)
ξxΛξ

x
Σ. (4.19)

Although a particular choice of the prepotential F (X) on the Special manifold could possible result

in V = 0, it has been proven [51] that this class of models completely breaks supersymmetry.

Ansatze for the solution

Consider the generic ansatz for the metric

ds2 = −e2U(r)dt2 + e−2U(r)
(

dr2 + e2ψ(r)dΩ2
)
, (4.20)

valid for static, spherically symmetric, single centre black hole solutions. Working in the framework

of gauged supergravity, the additional warp factor ψ is required to compensate for the curvature

contributions expected to arise from the varying non-trivial cosmological constant.

A suitable vielbein choice for this metric is given by

e0 = eUdt, e1 = e−Udr, e2 = eψ−Udθ, e3 = eψ−U sin θ dϕ, (4.21)

so that gµν = eaµe
b
νηab, for ηab the Minkowski metric.

Following the standard procedure, we can derive the spin-connection from the torsion-free condition

Dea = dea + ωab ∧ eb = 0 , (4.22)

from which we get

ω0
1 = U ′ e2Udt, ω0

2 = ω0
3 = 0,

ω1
2 =

(
U ′ − ψ′

)
eψdθ, ω1

3 =
(
U ′ − ψ′

)
eψ sin θdϕ, (4.23)

ω2
3 = − cos θdϕ,

where the primes denote derivatives with respect to the radial coordinate.

As long as the vector fields are concerned, for spherically symmetric solutions we can introduce

electric potentials χΛ and write

AΛ = χΛ(r) dt+ pΛ cos θ dϕ, (4.24)
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so that

FΛ = dAΛ =
(
χΛ
)′

dr ∧ dt− pΛ sin θdθ ∧ dϕ and

∫
S2

FΛ = 4πpΛ. (4.25)

An analogous construction could be also carried out for the dual fields AΛ, introducing magnetic

potentials φΛ and

AΛ = φΛ(r) dt+ qΛ cos θ dϕ, (4.26)

from which

GΛ ≡
δL

δFΛ
= dAΛ and

∫
S2

GΛ = 4πqΛ. (4.27)

By employing the equations of motion, one could actually integrate out the electric potentials and

rewrite them in terms of the charges and the real/imaginary part of the gauge kinetic matrix NΛΣ.

Specifically, imposing that

dGΛ = d
(
RΛΣF

Σ − IΛΣF̃
Σ
)

= 0 (4.28)

and enforcing the duality relation between FΛ and GΛ, one gets(
χΛ
)′

= e2U−2ψ
(
I−1

)ΛΣ (
qΣ −RΣΓp

Γ
)
. (4.29)

Therefore, in components

FΛ
tr =

1

2
e2U−2ψ

(
I−1

)ΛΣ (RΣΓp
Γ − qΣ

)
,

FΛ
θϕ = −1

2
pΛ sin θ.

(4.30)

As we have seen in chapter 2, in the supersymmetry transformation rules the field strengths actually

appear in their dressed versions, as defined in (2.85).

Thus, as a first step, we introduce the antiself-dual combination

F−Λ
µν =

1

2

(
FΛ
µν −

i

2
εµνρσF

Λρσ

)
. (4.31)

Starting from the field strengths components in eq. (4.30) and the metric ansatz, we can write

F−Λ
tr =

1

4
e2U−2ψ

[(
I−1

)ΛΣ (RΣΓp
Γ − qΣ

)
+ ipΛ

]
,

F−Λ
θϕ =

i

4
sin θ

[(
I−1

)ΛΣ (RΣΓp
Γ − qΣ

)
+ ipΛ

]
.

(4.32)

At this point, we can explicitly compute

T−tr = 2iIΛΣL
ΣF−Λ

tr

=
i

2
e2U−2ψ

[
LΣ(RΣΓ + iIΣΓ)pΓ − LΣqΣ

]
=

i

2
e2U−2ψ

[
LΣNΣΓp

Γ − LΣqΣ

]
= − i

2
e2U−2ψZ,

(4.33)

where in the last equality we have used the fact that MΛ = NΛΣL
Σ and recalled the definition for

the central charge Z = 〈Q,V 〉 = LΣqΣ −MΣp
Γ.

Identical calculations lead to

T−θϕ =
1

2
sin θ Z. (4.34)
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As long as G−iµν is concerned, through similar calculations

G−itr = −D̄iL̄ΓIΓΛF
−Λ
tr

= −1

4
e2U−2ψ

[
D̄iL̄ΓNΓΛp

Λ − D̄iL̄ΓqΓ

]
=

1

4
e2U−2ψD̄iZ,

(4.35)

where we employed the fact that D̄iMΛ = NΛΣD̄
iLΣ. Similarly,

G−iθϕ =
i

4
sin θD̄iZ. (4.36)

As a final remark, we emphasise how, given the spherical symmetry of the solutions, we will assume

all the scalar fields to depend on the radial coordinate only, i.e., zi = zi(r) and qu = qu(r).

We now have all the ingredients to write down explicitly the fermionic supersymmetry variations.

4.2.2 Fermionic Supersymmetry Variations

We can now begin our analysis by specializing the general supersymmetry transformations presented

in eqs. (2.82)-(2.84). In this way, the general structure of the Killing spinor equations will emerge,

allowing us to determine the appropriate projectors to extract the BPS equations.

Gravitini

Consider the transformation rule for the gravitini:

δψAµ = DµεA − T−µνγνεABεB + iηµνγ
νSABε

B = 0. (4.37)

The mass matrix SAB, recalling the decomposition in eq. (4.9) and the definition for QA
B, can be

rewritten as

SAB =
i

2
(σx)A

CεBCPxΛLΛ =
1

2
(iQxσx)A

CεBCL =
1

2
QABL. (4.38)

Let’s start by looking at the time component of the variation; recalling that γµ ≡ eµaγa, we can write

δψAt = DtεA − T−tr γrεABεB + iηttγ
tSABε

B

= ∂tεA +
1

4
ηab (ωac)t γ

bcεA +
i

2
QtεA +

i

2

(
ωxt +AΛ

t PxΛ
)

(σx)A
BεB+

− T−tr eraγaεABεB −
i

2
L etaγaQABεB

=
1

4
ηab (ωac)t γ

bcεA +
1

2
AΛ
t gΛQA

BεB +
i

2
e3U−2ψZεABγ1εB − i

2
eULγ0QABε

B = 0,

(4.39)

where in the last equation we assumed the supersymmetry parameters to be time independent, and

exploited the fact that Qt = ωxt = 0, as a consequence of ∂tz
i = ∂tq

u = 0.

Writing down the only non vanishing spin-connection component, we end up with

δψAt = −1

2
U ′e2Uγ01εA +

1

2
AΛ
t gΛQA

BεB +
i

2
e3U−2ψZεABγ1εB − i

2
eULγ0QABε

B = 0. (4.40)

Since γ01 = γ0γ1 and
(
γ1
)2

= −
(
γ0
)2

= 1, the last equation can be rewritten as

U ′εA = ieU−2ψZεABγ0εB − iLe−UQABγ1εB − e−2UAΛ
t gΛQA

Bγ1γ0εB. (4.41)
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Let’s now turn to the θ-component, that is

δψAθ = DθεA − T−θϕγ
ϕεABε

B + iηθθγ
θSABε

B = 0. (4.42)

Using again the fact that Qθ = ωxθ = 0, and recalling from our ansatz (4.24) that AΛ
θ = 0, we obtain

δψAθ = ∂θεA +
1

2
ω12
θ γ12εA −

1

2
eU−ψZεABγ3εB +

i

2
eψ−ULQABγ2εB

= ∂θεA +
1

2

(
U ′ − ψ′

)
eψγ12εA −

1

2
eU−ψZ εABγ

3εB +
i

2
eψ−UL QABγ2εB = 0.

(4.43)

In a completely similar fashion, we find for the ϕ-component

δψAϕ = ∂ϕεA +
1

2

(
U ′ − ψ′

)
sin θ eψγ13εA +

1

2
sin θ eU−ψZ εABγ

2εB+

+
i

2
sin θ eψ−UL QABγ3εB +

1

2
AΛ
ϕgΛQA

BεB −
1

2
cos θ γ23εA = 0.

(4.44)

It is worth noticing that, setting aside the last two terms, the equation for the ϕ-component is

basically proportional to the θ-one, as expected by spherical symmetry. As we will see, the additional

terms will provide a constraint on the black hole charges.

As long as the gravitini are concerned, the only missing variation is the radial one. In this case

ωabr = 0 = AΛ
r and we will have non-vanishing contributions from both the U(1) and the SU(2)

connections. Explicitly

δψAr = DrεA − T−rtγtεABεB + iηrrγ
rSABε

B

= ∂rεA +
i

2
QrεA +

i

2
(σx)A

Bωxr εB +
i

2
e−ULQABγ1εB − i

2
eU−2ψZεABγ0εB,

(4.45)

so that, all in all,

δψAr = ∂rεA +
i

2
QrεA +

i

2
(qu)′(ωxuσx)A

BεB +
i

2
e−ULQABγ1εB − i

2
eU−2ψZεABγ0εB = 0. (4.46)

Gaugini

Moving on onto the gaugini variation, we recall that

δλiA = −i∂µziγµεA +G−iµνγ
µνεABεB +W iABεB, (4.47)

and the mass matrix W iAB now reads

W iAB = i(σx)C
BεCAPxΛgīD̄̄L̄

Λ = QABgīD̄̄L̄. (4.48)

Therefore

δλiA = −i∂rziγrεA + 2G−itr γ
trεABεB + 2G−iθϕγ

θϕεABεB + gīD̄̄L̄QABεB

= −ieU
(
zi
)′
γ1εA +

1

2
e2U−2ψD̄iZ

(
γ01 + iγ23

)
εABεB + gīD̄̄L̄QABεB = 0.

(4.49)

Hyperini

Finally, looking at the hyperini

δζα = −iUBβu ∇µquγµεABCαβεA +NA
α εA

= −iUBβu
[
(qu)′ γr +AΛ

µk
u
Λγ

µ
]
εABCαβεA + 2UAαvkvΛL̄ΛεA

= −iUBβu (qu)′ γrεABCαβεA + 2UAαvkvΛL̄ΛεA = 0.

(4.50)
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In the last equality we used the fact that, under our working assumptions, the combination AΛ
µk

u
Λ is

always vanishing. Specifically, whenever kuΛ is related to a preserved isometry, kuΛ = 0; on the other

hand, for broken isometries the corresponding vector fields AΛ
µ become massive and we set them to

zero on the solution.

This equation can be actually recast in a much more instructive form by contracting it with another

vielbein UAαu . In particular, we can write

UAαu
(
iUBβv (qv)′ γrεABCαβεA − 2UBβv CαβkvΛL̄ΛεB

)
= 0, (4.51)

so that, recalling the quaternionic identity

CαβUAαu UBβv =
1

2
huvε

AB +
i

2
Ωx
uv(σx)C

BεAC , (4.52)

we end up with [
huvε

AB + iΩx
uv(σx)C

BεAC
] [
i (qv)′ eUεDBγ

1εD − 2k̄vεB
]

= 0, (4.53)

for k̄u ≡ kuΛL̄Λ.

4.2.3 Projectors and BPS equations

Having written down explicitly all the relevant equations, the next crucial step is to identify the

appropriate projectors for the supersymmetry parameters. Specifically, as already mentioned in the

context of AdS black holes, due to the non-trivial spinorial structure of the equations arising from the

supersymmetry variations, it is necessary to identify suitable projectors that can reduce the number

of independent εA components, allowing for a rewriting in terms of first-order differential equations

for the bosonic fields alone.

To establish their correct form, let’s start by looking at the time-component for the gravitini variation

δψAt = 0 : U ′εA = ieU−2ψZεABγ0εB − iLe−UQABγ1εB − e−2UAΛ
t gΛQA

Bγ1γ0εB. (4.54)

Written in this form, recalling that both εAB and QAB square to unity (modulo a minus sign), it is

clear that imposing

γ0εA ∝ εABεB and γ1εA ∝ QABεB (4.55)

we should be able to rewrite the supersymmetry variation as a first-order differential equation for

the bosonic content of the theory multiplying the same spinor εA.

Specifically, we introduce two independent projector conditions relating the spinor components as

γ0εA = ieiαεABε
B, (4.56)

and

γ1εA = eiαQABε
B. (4.57)

For consistency, we should also impose that

γ0εA = −ie−iαεABεB and γ1εA = e−iαQABεB. (4.58)
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These requirement can be actually recast in terms of two projectors Π0 and Π1, defined on the

four-dimensional spinor (εA, ε
A) as

Π0

(
εA
εA

)
≡ 1

2

(
εA + ieiαγ0εABε

B

εA − ie−iαγ0εABεB

)
(4.59)

and

Π1

(
εA
εA

)
≡ 1

2

(
εA − eiαγ1QABε

B

εA − e−iαγ1QABεB

)
. (4.60)

Conditions (4.56)-(4.58) thus correspond to

Π0

(
εA
εA

)
= 0 and Π1

(
εA
εA

)
= 0. (4.61)

The only necessary non-trivial checks are to confirm that Π0 and Π1 truly define projectors and that

the two projections are mutually independent.

The first check comes from explicit calculations:[(
Π0
)2
ε
]A

=
1

2
Π0
[
εA − ie−iαγ0εABεB

]
=

1

4

[
εA − ie−iαγ0εABεB − 2ie−iαγ0εAB

(
Π0ε

)
B

]
=

1

4

[
εA − ie−iαγ0εABεB − ie−iαγ0εAB

(
εB + ieiαγ0εBCε

C
)]

=
1

2

[
εA − ie−iαγ0εABεB

]
=
(
Π0ε

)A
,

(4.62)

where we exploited the fact that
(
γ0
)2

= −1.

Analogously, for Π1:[(
Π1
)2
ε
]A

=
1

2
Π1
[
εA − e−iαγ1QABεB

]
=

1

4

[
εA − e−iαγ1QABεB − 2e−iαγ1QAB

(
Π1ε

)
B

]
=

1

4

[
εA − e−iαγ1QABεB − e−iαγ1QAB

(
εB − eiαγ1QBCε

C
)]

=
1

2

[
εA − e−iαγ1QABεB

]
=

(
Π1ε

)A
,

(4.63)

as
(
γ1
)2

= 1 and QABQBC = δAC . Similar calculations hold for the lower components of both
(
Π0ε

)
A

and
(
Π1ε

)
A

.

To verify instead the independence of the two conditions, we can compute the commutator of the

projectors and check that it vanishes. In particular, focusing for simplicity on εA:

[
Π0, Π1

]
εA =

1

2
Π0
(
εA − eiαγ1QABε

B
)
− 1

2
Π1
(
εA + ieiαγ0εABε

B
)

=
i

4
QABε

BCγ1γ0εC +
i

4
εABQ

BCγ0γ1εC

=
i

4

[
QABε

BC − εABQBC
]
γ1γ0εC

= 0.

(4.64)
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One last crucial information is the dimension of the space Π0 and Π1 project on. Specifically, this

can be determined by computing

Tr
(
Π0
)

= 4 and Tr
(
Π1
)

= 4, (4.65)

where the trace is taken on both the spinor and the SU(2) space and the fact that Tr (γµ) = 0 was

explicitly employed.

Since we start from 8 independent supercharges, these results imply that each projector will halve

the number of independent degrees of freedom. Therefore, imposing two compatible projectors, the

resulting solutions will preserve only 1/4 of the original supersymmetry (in this case, the solutions

are said to be 1/4-BPS). This can be also explicitly verified by computing

Tr
(
Π1Π0

)
= 2. (4.66)

Finally, turning off the contribution from the hypermultiplets, i.e., Qx = δx2, the condition on γ1εA

becomes

γ1εA = eiαQABε
B = eiα

(
iδx2σx

)
A

C
εBCε

B = eiαδABε
B, (4.67)

precisely recovering the projector in eq. (3.70) employed in [42] for the study of AdS black holes.

Gravitini

Starting once again from the time-component of the gravitini variation, we have

U ′εA = ieU−2ψZεABγ0εB − iLe−UQABγ1εB − e−2UAΛ
t gΛQA

Bγ1γ0εB

= ieU−2ψZεAB(−ie−iαεBCεC)− iLe−UQAB
(
e−iαQBCεC

)
+

− e−2UAΛ
t gΛQA

Bγ1
(
ieiαεBCε

C
)

= −eU−2ψe−iαZεA − ie−iαLe−U εA − e−2UAΛ
t gΛQA

B
(
ieiαεBC

) (
e−iαQCDεD

)
= −eU−2ψe−iαZεA − ie−iαLe−U εA + ie−2UAΛ

t gΛεA.

(4.68)

Therefore, we can write(
U ′ + eU−2ψe−iαZ + ie−Ue−iαL − ie−2UAΛ

t gΛ

)
εA = 0 (4.69)

and, separating the real and imaginary part, we obtain equations for the warp factor U(r) and the

vectors time component:

U ′ = −eU−2ψRe
(
e−iαZ

)
+ e−U Im

(
e−iαL

)
(4.70)

and

AΛ
t gΛ(q) = e3U−2ψIm

(
e−iαZ

)
+ eURe

(
e−iαL

)
. (4.71)

Let’s now apply the same projectors to the θ-component. As we will see, this will lead to the flow

equation for the warp factor ψ.

In particular, recalling that

δψAθ = 0 : ∂θεA +
1

2

(
U ′ − ψ′

)
eψγ12εA −

1

2
eU−ψZ εABγ

3εB︸ ︷︷ ︸
(i)

+
i

2
eψ−UL QABγ2εB︸ ︷︷ ︸

(ii)

= 0, (4.72)

we study each term separately:
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(i) looking at the first term,

− 1

2
eU−ψZ εABγ

3εB =
i

2
eU−ψe−iαZγ3

(
ieiαεABε

B
)

=
i

2
eU−ψe−iαZγ3γ0εA. (4.73)

Then, since in our conventions γ5 = iγ0γ1γ2γ3, we can rewrite iγ3γ0 = −γ2γ1γ5, so that

i

2
eU−ψe−iαZγ3γ0εA = −1

2
eU−ψe−iαZγ21γ5εA = −1

2
eU−ψe−iαZγ21εA, (4.74)

given that γ5εA = εA;

(ii) in this case, we straightforwardly obtain

i

2
eψ−UL QABγ2εB =

i

2
eψ−Ue−iαLγ2

(
eiαQABε

B
)

=
i

2
eψ−Ue−iαLγ21εA. (4.75)

Therefore, equation (4.72) becomes

∂θεA +
eψ

2

[
ψ′ − U ′ − eU−2ψe−iαZ + ie−Ue−iαL

]
γ21εA = 0. (4.76)

At this point, by making use of the equation for U ′ in (4.70) and decomposing both e−iαZ and e−iαL
into real and imaginary part, we get

∂θεA +
eψ

2

[
ψ′ − 2e−U Im

(
e−iαL

)
+ i
(
e−URe

(
e−iαL

)
− eU−2ψIm

(
e−iαZ

))]
γ21εA = 0, (4.77)

from which we can extract

ψ′ = 2e−U Im
(
e−iαL

)
, (4.78)

together with the constraint

e−URe
(
e−iαL

)
= eU−2ψIm

(
e−iαZ

)
(4.79)

and the condition

∂θεA = 0 . (4.80)

We can now turn to the ϕ-component:

δψAϕ = 0 : ∂ϕεA +

[
1

2

(
U ′ − ψ′

)
sin θ eψγ13εA +

1

2
sin θ eU−ψZ εABγ

2εB+

+
i

2
sin θ eψ−UL QABγ3εB

]
+

1

2
AΛ
ϕgΛQA

BεB −
1

2
cos θ γ23εA = 0.

(4.81)

Consider the expression included in square brackets:

1

2

(
U ′ − ψ′

)
sin θ eψγ13εA +

1

2
sin θ eU−ψZ εABγ

2εB +
i

2
sin θ eψ−UL QABγ3εB

=
eψ

2
sin θ

[(
U ′ − ψ′

)
γ13εA − ieU−2ψe−iαZγ2

(
ieiαεABε

B
)

+ i e−Ue−iαLγ3
(
eiαQABε

B
)]

=
eψ

2
sin θ

[(
U ′ − ψ′

)
γ13εA − ieU−2ψe−iαZγ20εA + i e−Ue−iαLγ31εA

]
=
eψ

2
sin θ

[
ψ′ − U ′ − eU−2ψe−iαZ + ie−Ue−iαL

]
γ31εA,

(4.82)

where in the last equation we used iγ2γ0 = γ3γ1γ5.

From a direct comparison with eq. (4.76), it is evident that the whole expression vanishes once we
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consider the supersymmetry equations (4.78)-(4.79). As anticipated, this is a direct consequence of

the spherical symmetry of the solution.

The analysis of the ϕ-component thus reduces to

∂ϕεA +
1

2
AΛ
ϕgΛQA

BεB −
1

2
cos θ γ23εA = 0. (4.83)

Recalling that εBAε
BC = δCA , we can rewrite the second term as

1

2
AΛ
ϕgΛQA

BεB =
1

2
AΛ
ϕgΛQA

CδBC εB

=
1

2
AΛ
ϕgΛQA

C
(
εDCε

DB
)
εB

=
i

2
AΛ
ϕgΛ

[
eiαQA

CεDC
(
−ie−iαεDBεB

)]
=
i

2
AΛ
ϕgΛ(q)γ01εA =

1

2
AΛ
ϕgΛ(q)γ32γ5εA.

(4.84)

So, given the ansatz for the vector field (4.24), we are left with

∂ϕεA +
1

2
cos θ

[
1 + pΛgΛ(q)

]
γ32εA = 0, (4.85)

resulting in

∂ϕεA = 0 , (4.86)

together with the constraint on the charges

pΛgΛ(q) = −1 . (4.87)

The only variation yet to be studied is the radial one. Specifically,

δψAr = 0 : ∂rεA +
i

2
QrεA +

i

2
(qu)′(ωxuσx)A

BεB +
i

2
e−ULQABγ1εB︸ ︷︷ ︸

(i)

− i
2
eU−2ψZεABγ0εB︸ ︷︷ ︸

(ii)

= 0.

(4.88)

Also in this case, we can employ the projectors to rewrite each single term:

(i)
i

2
e−ULQABγ1εB =

i

2
e−ULQAB

(
e−iαQBCεC

)
=
i

2
e−Ue−iαL εA, (4.89)

(ii)

− i

2
eU−2ψZεABγ0εB = − i

2
eU−2ψZεAB

(
−ie−iαεBCεC

)
=

1

2
eU−2ψe−iαZεA. (4.90)

The resulting expression

∂rεA +
i

2
QrεA +

i

2
(qu)′(ωxuσx)A

BεB +
i

2
e−Ue−iαLεA +

1

2
eU−2ψe−iαZεA = 0 (4.91)

can be further simplified by employing the usual trick of decomposing e−iαZ and e−iαL into real and

imaginary part, and recalling equation (4.70) for the warp factor U, getting to

∂rεA+
i

2
QrεA+

i

2
(qu)′(ωxuσx)A

BεB−
1

2
U ′εA+

i

2
e−URe

(
e−iαL

)
εA+

i

2
eU−2ψIm

(
e−iαZ

)
εA = 0. (4.92)

To conclude, we can define

Q̃ ≡ Qr + e−URe
(
e−iαL

)
+ eU−2ψIm

(
e−iαZ

)
= Qr + 2e−URe

(
e−iαL

)
,

(4.93)
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where we used the constraint in eq. (4.79), so that the equation for the radial component of the

supersymmetry parameters can be written in the compact form

∂rεA −
1

2

(
U ′ − iQ̃

)
εA +

i

2
(∂rq

u) (ωxuσx)A
BεB = 0 . (4.94)

If the combination (qu)′ (ωxuσx)A
B vanishes, we exactly recover the result obtained for AdS black

holes [42].

Gaugini

As long as the gaugini are concerned, we can extract a differential equation for the scalar fields zi

through properly employing the projectors defined in eqs. (4.56)-(4.57).

In particular, δλiA = 0 implies

− ieU
(
zi
)′
γ1εA +

1

2
e2U−2ψD̄iZ

(
γ01 + iγ23

)
εABεB + gīD̄̄L̄QABεB = 0. (4.95)

The second term of the equation can be rewritten as

1

2
e2U−2ψD̄iZ

(
γ01 + iγ23

)
εABεB =

i

2
e2U−2ψeiαD̄iZ

(
γ01 + iγ23

) (
−ie−iαεABεB

)
=

i

2
e2U−2ψeiαD̄iZ

(
γ01 + iγ23

)
γ0εA

=
i

2
e2U−2ψeiαD̄iZ

(
γ01 + γ01γ5

)
γ0εA,

(4.96)

where the last step follows from the definition of γ5.

Recalling now that {γ5, γ
µ} = 0 and γ5ε

A = −εA, we can further simplify the last equation and write

i

2
e2U−2ψeiαD̄iZ

(
γ01 + γ01γ5

)
γ0εA = ie2U−2ψeiαD̄iZγ01γ0εA = ie2U−2ψeiαD̄iZγ1εA. (4.97)

The term proportional to D̄̄L̄ in eq. (4.95) can be recast as

gīD̄̄L̄QABεB = gīeiαD̄̄L̄
(
e−iαQABεB

)
= gīeiαD̄̄L̄γ1εA, (4.98)

so that the whole variation becomes[
−ieU

(
zi
)′

+ ie2U−2ψeiαD̄iZ + gīeiαD̄̄L̄
]
γ1εA = 0, (4.99)

from which we conclude (
zi
)′

= eiαe−2ψgīD̄̄

[
eUZ + ie2ψ−U L̄

]
. (4.100)

Hyperini

Let’s finally consider the hyperini variation:

δζα = 0 :
[
huvε

AB + iΩx
uv(σx)C

BεAC
] [
i (qv)′ eUεDBγ

1εD − 2k̄vεB
]

= 0. (4.101)

Projecting the spinor components of the supersymmetry parameters[
huvε

AB + iΩx
uv(σx)C

BεAC
] [
i (qv)′ eUεDB

(
e−iαQDN εN

)
− 2k̄vεB

]
=
[
huvε

AB + iΩx
uv(σx)C

BεAC
] [

(qv)′ eUe−iα(σyQ
y)B

D − 2k̄vδDB

]
εD = 0,

(4.102)
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where in the last equality we’ve used the explicit definition for QAB and renamed some dummy

indices.

We will now show that this seemingly involved expression could be actually recast in a matrix

equation of the form BADu εD = 0. Specifically, multiplying the quantities in the square brackets and

expanding the product of two Pauli matrices (σx)A
B(σy)B

C = δxyδ
C
A + iεxyz(σz)A

C , we end up with[
B0
uε
ABδDB + Bzu(iσz)B

DεAB
]
εD = 0, (4.103)

where we defined the following quantities:

B0
u ≡ ieUe−iα Ωx

uvQ
x (qv)′ − 2k̄u, (4.104)

Bzu ≡ −ieUe−iα Qz huv (qv)′ + ieUe−iα εxyzΩ
x
uvQ

y (qv)′ − 2Ωz
uvk̄

v. (4.105)

In principle one should impose B0
u = Bzu = 0 separately but, employing the identities of quaternionic

geometry, one can show that actually they are not independent conditions. In particular, the first

equation is solved by writing

k̄u =
i

2
eUe−iα Ωx

uvQ
x (qv)′ . (4.106)

Then, plugging this expression in the second equation we get

huvQ
z (qv)′ − εxyzΩx

uvQ
y (qv)′ + hvtΩz

uvΩ
x
tmQ

x (qm)′ = 0. (4.107)

Finally, recalling the relation (2.52) for the contraction of two SU(2) curvatures

hstΩx
usΩ

y
tv = −δxyhuv − εxyzΩz

uv, (4.108)

equation (4.107) identically vanishes.

As a side comment, it is interesting to notice that this pattern is not exclusive of the physical setting

we are analysing. In particular, the same formal structure arises also in the study of domain wall

solutions in five dimensional N = 2 supergravity [52].

To extract a flow equation for the quaternionic scalars, we can plug the expression (4.106) in the

relation obtained in (4.16) and get

∂uL̄ = −2Qx
[
i

2
eUe−iα hvsΩy

stQ
y
(
qt
)′]

Ωx
vu

= ieUe−iα
(
qt
)′

[hvsΩx
uvΩ

y
st]Q

xQy

= ieUe−iα
(
qt
)′

[−hutδxy − εxyzΩz
ut]Q

xQy

= −ieUe−iα hut
(
qt
)′
,

(4.109)

where we used the fact that QxQx = 1 and the additional term proportional to the antisymmetric

εxyz vanishes in the contraction with the symmetric combination QxQy.

Finally, we can invert the obtained relation and write

(qu)′ = ieUeiαhuv∂vL̄ . (4.110)

As we will present shortly, we can describe the whole solution by introducing a suitable superpotential

W . As a consequence, equation (4.110) will further split, yielding also a constraint on the phase α.
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4.2.4 Superpotential description

From our review on the previously known black hole solutions in supergravity carried out in chapter

3, we have realized that every scenario admits a description in terms of a properly defined super-

potential W . It is therefore interesting to verify that the equations we have derived in the previous

section fall into the same pattern.

Let’s start by considering the constraint (4.79) obtained from the variation of the gravitini θ-

component, i.e.,

e−URe
(
e−iαL

)
= eU−2ψIm

(
e−iαZ

)
. (4.111)

This relation can be actually recast into an expression that identifies the phase α as:

e2iα =
Z − ie2(ψ−U)L
Z + ie2(ψ−U)L

. (4.112)

Written in this form, we realize that we can interpret eiα as the phase of a complex quantity W
whose norm is given in terms of the superpotential W defined as

W ≡ eiαW, for W ≡ eU
∣∣∣Z − ie2(ψ−U)L

∣∣∣ (4.113)

or, equivalently,

W = eURe
(
e−iαZ

)
+ e−U+2ψIm

(
e−iαL

)
. (4.114)

For convenience we also define the complex conjugate quantity W = e−iαW .

The whole set of differential equations for the warp factors and the scalars can be actually rewritten

in terms of W .

In particular, let’s start by rewriting the equation for U(r) as

U ′ = −eU−2ψRe
(
e−iαZ

)
+ e−U Im

(
e−iαL

)
= −e−2ψ

[
eURe

(
e−iαZ

)
− e2ψ−U Im

(
e−iαL

)]
= −e−2ψ∂U

[
eURe

(
e−iαZ

)
+ e2ψ−U Im

(
e−iαL

)]
,

(4.115)

so that we end up with

U ′ = −e−2ψ∂UW . (4.116)

In a similar fashion, we can recast the condition on ψ(r) in the form

ψ′ = 2e−U Im
(
e−iαL

)
= e−2ψ

[
2e2ψ−U Im

(
e−iαL

)]
= e−2ψ∂ψ

[
e2ψ−U Im

(
e−iαL

)]
= e−2ψ∂ψ

[
eURe

(
e−iαZ

)
+ e2ψ−U Im

(
e−iαL

)]
,

(4.117)

where the fact that ∂ψ
[
eURe

(
e−iαZ

)]
= 0 was explicitly used.

Therefore, we immediately read

ψ′ = e−2ψ∂ψW . (4.118)

As long as the scalars are concerned, consider the equation for zi :

(zi)′ = −e−2ψeiαgī D̄

[
eUZ + ie2ψ−UL

]
= −e−2ψeiαgī D̄W. (4.119)
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To rewrite this last expression in terms of W , we can employ the phase constraint in eq. (4.112).

Specifically, by taking derivatives of both sides with respect to the scalars, one can obtain

∂̄e
2iα =

1

W
∂̄W −

W
W2∂̄W = e2iα

[
1

2
(∂̄K)W − 1

W
∂̄W

]
, (4.120)

where in the second equality we employed the fact that Dı̄W =
[
∂ı̄ − 1

2 (∂ı̄K)
]
W = 0, as it follows

directly from the definitions of Z and L.

After some trivial calculations, the previous relation can be rewritten as

2i∂̄α = − 1

W

[
∂̄ −

1

2
(∂ı̄K)

]
W. (4.121)

As a consequence, we immediately obtain

eiαgī D̄W = 2gī∂̄W, (4.122)

so that

(zi)′ = −2e−2ψgī∂̄W . (4.123)

Finally, since ∂uZ = ∂uU(r) = ∂uψ(r) = 0, we can rewrite the equation for the quaternionic scalars

as
(qu)′ = ieUeiαhuv∂vL̄

= ie−2ψeiαhuv∂v

[
eUZ + ie2ψ−UL

]
= e−2ψeiαhuv∂v

[
e−iαW

]
= e−2ψhuv∂vW − ie−2ψhuv∂vα.

(4.124)

Separating real and imaginary part, we end up with

(qu)′ = e−2ψhuv∂vW and ∂uα = 0 . (4.125)

As anticipated, together with the flow equation for the scalars qu, we learn that the phase α associated

to the projectors does not depend on the quaternions.

Therefore, to summarize, considering Abelian U(1) gaugings of the isometries of the hypermultiplets

scalar geometry, solutions for spherically symmetric, static and charged BPS black holes are described

by the following first-order differential equations:

U ′ = −e−2ψ∂UW,

ψ′ = e−2ψ∂ψW,

(zi)′ = −2e−2ψgī∂̄W,

(qu)′ = e−2ψhuv∂vW,

(4.126)

together with the constraints

AΛ
t gΛ(q) = e3U−2ψIm

(
e−iαZ

)
+ eURe

(
e−iαL

)
,

e2iα =
Z − ie2(ψ−U)L
Z + ie2(ψ−U)L

,

pΛgΛ(q) = −1,

∂uα = 0.

(4.127)
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4.3 Searches for Explicit Solutions

In this last section, we’d like to present our attempts to build explicit models as benchmarks for the

equations we have obtained. In particular, we will focus on supergravity models coupled to one vector

multiplet and one hypermultiplet, restricting ourselves to scalar geometries that could be described

as coset spaces.

Before entering into the details of such models, we point out that for these simple setups we will not

be able to study solutions that partially break supersymmetry. Specifically, as discussed in chapter

2, the spontaneous N = 2→ N = 1 pattern implies that one gravitino has to become massive. The

residual N = 1 supersymmetry, as observed for the first time in [53], then forces the massive gravitino

to sit into a massive N = 1 representation for spin-3/2 fields1 and, consequently, also two vectors

have to become massive. Therefore, since models with nV = nH = 1 are coupled to two vectors only,

this scenario is clearly in contrast with our request of having at least one preserved isometry (i.e.,

one massless vector).

As a result, we will look for N = 2 preserving solutions employing the constraints derived in eqs.

(2.97)-(2.98), together with the general assumptions under which we have derived the flow equations.

In particular, by looking at the explicit expressions for the mass matrices, for Abelian gaugings one

finds that the request of N = 2 supersymmetry implies the following constraints on both the Killing

vectors and the prepotentials:

PxΛLΛ = 0, PxΛDiLΛ = 0, kuΛL̄
Λ = kuΛL

Λ = 0. (4.128)

Actually, recalling the definiton in eq. (2.30), the first two equations could be recast as

PxΛ
(
fΛ
i

L̄Λ

)
= PxΛfΛ

I = 0 (4.129)

and, being fΛ
I invertible, this implies

PxΛ = 0. (4.130)

We remark that these relations characterize the asymptotic vacuum. Then, in general, the black

hole solution will lead to the partial or complete breaking of supersymmetry, which could then be

enhanced at the horizon.

4.3.1 Vacua on Coset Manifolds

Before specializing our discussion to a specific choice for the scalar manifold, we would like to outline

some basic properties of coset spaces (for a full review on the topic, see [32]) and describe how the

search for the vacua of the theory can be simplified thanks to their structure.

Let’s start by recalling that a homogeneous space is a manifold with a metric whose isometry group,

G, has a transitive action on the space, i.e., any point on the space can be reached from any other

by the group action. The subgroup H of G that leaves a point of the manifold fixed is called the

isotropy group. Any homogeneous space can be therefore described as the coset space G/H, that is

the set of equivalence classes of elements of G with respect to the right action of H elements:

g ∼ g′, if g = g′h for g, g′ ∈ G, h ∈ H. (4.131)

1We recall that, for N = 1, the matter content of such a multiplet is given by: one spin-1/2 fermion, two vectors
and one spin-3/2 field [9].

59



Chapter 4. Black Holes in N = 2 U(1) Gauged Supergravity with Hypermultiplets

The dimension of such a space is therefore given by d = dim(G)− dim(H).

As we previously described, vacua of supergravity theories are identified by extremizing the scalar

potential, i.e. by finding the values of the moduli that minimize the potential obtained for a given

gauge choice. In general, this implies solving a set of coupled equations involving both the moduli

and the gauging parameters and solving them analytically usually results in too hard of a task.

For scalars parametrizing a coset manifold2 a different approach can be followed, simplifying the

standard procedure and allowing for a more general scan of the theory vacua [54].

In particular, following the presentation given in [33], let’s start from the observation that the poten-

tial actually depends on both the scalars and the choice of a gauge group G ⊂ G, so that V = V (φ,G).

Additionally, V is a singlet with respect to the group action, that is

∀L ∈ G, V (Lφ,LG) = V (φ,G), (4.132)

for L a coset representative, and Lφ and LG denoting the action of a group transformation on the

scalars (as described via the Killing vectors) and on the gauging (as dictated by the Lie Algebra

associated to G), respectively.

This implies that, if V (φ,G) has an extremum for φ0,

∂V (φ,G)

∂φ

∣∣∣∣
φ0

= 0, (4.133)

then V (φ,LG) will display a critical point at Lφ0,

∂V (φ,LG)

∂φ

∣∣∣∣
Lφ0

= 0, (4.134)

with the same value of the potential.

As a consequence, when working with coset manifolds, we can map any generic vacuum φ0 of a given

theory defined by G to a chosen base point of the moduli space via a transformation L(φ0) ∈ G.

Then, the base point will now be a vacuum for the theory defined by L(φ0)G. This implies that,

when searching for vacua with given properties (residual supersymmetry, cosmological constant, mass

spectrum, etc.), we can compute all the relevant quantities at the base point and vary the gauging

parameters only, thus systematically exploring all the possible gauging choices.

4.3.2 Explicit Examples

We will now describe our attempts to find explicit realizations of the solutions for the equations we

derived from the supersymmetry variations. As we anticipated, we will consider supergravity models

coupled to one vector multiplet and one hypermultiplet.

As long as the Special geometry is concerned, we focused our attention on

Mvector =
SU(1, 1)

U(1, 1)
. (4.135)

Following [55], we can describe the manifolds by choosing the holomorphic sections as

X0(z) = −1

2
, X1(z) =

i

2
, F0 = iz, F1 = z. (4.136)

2This is always the case for N ≥ 3 supergravity [32].
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Employing the relations introduced in chapter 2, we can therefore derive the Kähler potential

K = − log
[
i
(
X

Λ
FΛ − FΣX

Σ
)]

= − log(z + z̄), (4.137)

and the metric

gzz̄ =
1

(z + z̄)2 (4.138)

on the Special-Kähler manifold.

Ferrara - Girardello - Porrati Model

One possible choice for the hypermultiplet geometry is given by the “Euclidean anti-de Sitter” space

(EAdS), defined as

MEAdS =
SO(4, 1)

SO(4)
. (4.139)

Together with the Special-Kähler manifold introduced before, this is precisely the model studied by

Ferrara, Girardello and Porrati (FGP) [55]. The quaternionic geometry is determined from the SU(2)

connection ωx = ωxudqu and their field strength Ωx = Ωx
uvdq

u ∧ dqv, which read

ωxu =
1

q0
δxu, Ωx

0u = − 1

2(q0)2
δxu, Ωx

yz =
1

2(q0)2
εxyz. (4.140)

Following the quaternionic identities, one finds that the metric is given by

huv =
1

2(q0)2
δuv (4.141)

and a consistent choice for the vielbein UαAu is

UαA =
1

2q0
εαβ

(
dq0 − iσxdqx

)A
β
. (4.142)

As long as the isometries of the quaternionic manifold are concerned, it is useful to exploit the

isomorphism that ties the conformal algebra to the one for SO(4, 1). Employing the parametrization

of the former, we introduce the generators:

P i (translation),

M ij (rotations),

D (scale transformations),

Ki (special conformal transformations),

with i, j = 1, 2, 3, for a total of ten isometries.

The corresponding Killing vectors could be written explicitly as

kPi = δui ∂u, (4.143)

kM32 ≡ kR1 = q3∂2 − q2∂3, kM13 ≡ kR2 = q1∂3 − q3∂1, kM21 ≡ kR3 = q2∂1 − q1∂2, (4.144)

kD = qu∂u, (4.145)

kuKi = 2quqi − δuiδmnqmqn. (4.146)
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Finally, the SO(4, 1) algebra is recovered by identifying

M ij = T ij , P i = T i4 + T i5, Ki = T i4 − T i5, D = T 45, (4.147)

or, inverting these relations,

T ij = M ij , T i4 =
1

2
(P i +Ki), T i5 =

1

2
(P i −Ki), T 45 = D. (4.148)

It is therefore useful to introduce the following Killing vectors combinations

k±i =
1

2
[kPi ± kKi ] . (4.149)

In the gauging procedure, we can consider arbitrary linear combinations of Killing vectors (as long

as they commute). In the basis we have just introduced, the most general Killing vectors read

kΛ =
3∑
i=1

[
aΛ,ik

+
i + bΛ,ik

−
i

]
+ cΛkD +

3∑
i=1

rΛ,ikRi (Λ = 1, 2), (4.150)

for aΛ,i, bΛ,i, cΛ, rΛ,j real numbers.

We choose as base point for our scalar manifold q0 = 1 = Rez and q1 = q2 = q3 = Imz = 0.

With this choice, one can explicitly verify that:

ku+,i = kuRi = 0, ku−,i = δiu, kD = δ0u (i = 1, 2, 3), (4.151)

and the associated prepotentials (computed employing eq. (2.73)):

Px−,i = PxD = 0, Px+,i = δix, PxRi = −δix (i = 1, 2, 3). (4.152)

We notice that, for the chosen origin of the moduli space, the only non-vanishing Killing vectors are

the one associated to non-compact isometries. As long as the prepotentials are concerned, instead,

the opposite is true, with the compact isometries yielding the only non-trivial contributions.

For this model, the conditions for a maximally supersymmetric Minkowski vacuum introduced in

eqs. (4.128) - (4.130) read:

aΛ,i = rΛ,i, cΛL
Λ = 0, bΛ,iL

Λ = 0. (4.153)

As long as the vector masses are concerned, since at the base point the metric on the quaternionic

manifold becomes huv = 1
2δuv, the request of having at least one massless vector can be written as

det(huvk
u
Λk

v
Σ) = 0 −→ (k1)2(k2)2 − (ku1k2,u)2 = 0, (4.154)

which takes the form of a saturated Cauchy–Schwarz inequality.

At the base point, this translates into a condition on the non-compact components of the two Killing

vectors; in particular

ku2,non−compact = λku1,non−compact,

that is

c2 = λc1, b2,i = λb1,i (λ ∈ R). (4.155)

Having obtained the general constraints our gauging choice should fulfil, we can now try to build

some explicit realizations.
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As a first step, we notice that thanks to the quotient with SO(4) we can partially simplify the

expression for one of the two Killing vectors. In particular, looking at eq. (4.148) we realize that T i5

and T 45 are actually related via an SO(4) rotation, so we can choose the latter as the only relevant

non-compact direction and turn off all the others, i.e., b1,i = 0. At this point, we realize that we

still have an SO(3) redundancy in our description among T i4 and T ij that can be further eliminated.

This is also confirmed by the fact that in the previous step we only used 3 out of the 6 degrees of

freedom coming from SO(4).

Choosing i = 3 as the only relevant direction (a1,1 = a1,2 = r1,3 = 0), we end up with

k1 = a1,3k+,3 + c1kD + r1,1kR1 + r1,2kR2 ,

while the other one should be kept generic.

At this point, imposing the first condition in eqs. (4.153) and (4.155), we end up with:

k1 = c1kD,

k2 = λc1kD + a2,1(k+,1 + kR1) + a2,2(k+,2 + kR2) + a2,3(k+,3 + kR3).

Before imposing the second condition in (4.153), we observe that the commutator between these two

vectors vanishes if and only if c1 = 0 or a2,i = 0, resulting in parallel Killing vectors. Thus, we

conclude that this model cannot provide an explicit realization of the solutions of our interest.

Universal Hypermultiplet

Another possible choice for the quaternionic geometry is given by the universal hypermultiplet, whose

manifold is defined as

MUH =
SU(2, 1)

U(2)
. (4.156)

In our discussion we will mainly follow the description of the geometry given in [52], adapting all the

definitions to our conventions.

Explicitly, denoting with (V, σ, θ, τ) the scalar fields on the manifold, the SU(2) curvatures are given

by

Ω1 =
1

V 3/2
[(dσ + 2θdτ) ∧ dθ + dτ ∧ dV ],

Ω2 =
1

V 3/2
[(dσ − 2τdθ) ∧ dτ + dθ ∧ dV ],

Ω3 =
1

V
dθ ∧ dτ − 1

2V 2
[(dσ − 2τdθ + 2θdτ) ∧ dV ],

(4.157)

while the metric reads

ds2 =
dV 2

4V 2
+

1

4V 2
[dσ + 2θdτ − 2τdθ]2 +

1

V

[
dτ2 + dθ2

]
. (4.158)
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Tbe SU(2,1) isometry group of the metric is generated by the following Killing vectors:

~k1 =


0

1

0

0

 , ~k2 =


0

2θ

0

1

 , ~k3 =


0

−2τ

1

0

 , ~k4 =


0

0

−τ
θ

 ,

~k5 =


2V σ

σ

θ/2

τ/2

 , ~k6 =

 σ2 −
(
V + θ2 + τ2

)2
σθ − τ

(
V + θ2 + τ2

)
στ + θ

(
V + θ2 + τ2

)
 ,

~k7 =


−2V θ

−σθ + V τ + τ
(
θ2 + τ2

)
1
2

(
V − θ2 + 3τ2

)
−2θτ − σ/2

 , ~k8 =

 −στ − V θ − θ
(
θ2 + τ2

)
−2θτ + σ/2

1
2

(
V + 3θ2 − τ2

)
 .

(4.159)

The first three vectors correspond to some constant shift of the coordinates, the fourth is the generator

of the rotation symmetry between the θ and τ coordinates and the fifth generates dilatations. The

remaining three Killing vectors correspond to some highly non-trivial isometries of the metric.

To let the underlying coset structure emerge more clearly, it is actually convenient to define the

following combinations

SU(2)


T1 = 1

4(k2 − 2k8),

T2 = 1
4(k3 − 2k7),

T3 = 1
4(k1 + k6 − 3k4),

U(1)

{
T8 =

√
3

4
(k4 + k1 + k6) , (4.160)

SU(2, 1)

U(2)


T4 = ik5,

T5 = −i1
2 (k1 − k6) ,

T6 = −i1
4 (k3 + 2k7) ,

T7 = −i1
4 (k2 + 2k8) .

(4.161)

that realize explicitly the SU(3) algebra. Notice that the generators T4, T5, T6 and T7 are imaginary,

so that the corresponding real algebra is SU(2,1).

Dropping the imaginary units, we will employ this base to build the prepotentials. In particular,

choosing as a base point (V, σ, θ, τ) = (1, 0, 0, 0)), we find that:

T u1 = T u2 = T u3 = T u8 = 0,


T u4 = δu0,

T u5 = −δu1,

T u6 = −1
2δ
u2,

T u7 = −1
2δ
u3,

(4.162)

and

Px1 = −δx1, Px2 = δx2, Px3 = −δx3, Pxi = 0 (i = 4, 5, 6, 7, 8). (4.163)

For a generic Killing vector kΛ =
∑8

i=1 a
i
ΛT

u
i , the condition in (4.130) implies that

aiΛ = 0, for i = 1, 2, 3. (4.164)

At this point, we can consider the request for the presence of a massless vector and, following the

same reasoning adopted in the FGP model, we get that, at the base point,

T u2,non−compact = λT u1,non−compact −→ ai2 = λai1, for i = 4, 5, 6, 7 and λ ∈ R. (4.165)
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Imposing all the conditions established so far, the two Killing vectors take the forms

k1 =
7∑
i=4

ai1Ti + a8
1T8,

k2 = λ
7∑
i=4

ai1Ti + a8
2T8.

(4.166)

Again, before even imposing the other conditions for a N = 2 supersymmetric vacuum, requiring

the Killing vectors commutator to vanish we realize that the only possibility is that the two Killing

vectors are parallel.

Therefore, we conclude that both models considered are too simple to capture the physics we would

like to describe, and further analyses should be conducted allowing for more complex models.
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Chapter 5

Summary and Outlook

In this last chapter, we would like to briefly summarize the content of this thesis and explore possible

extensions of the results we have presented.

The aim of this work was to describe the most general black hole solution in the context of N = 2

U(1) gauged supergravity coupled to both vector multiplets and hypermultiplets, extending the

results presented in [42] for vectors only. Such scenarios naturally emerge in the context of flux

compactifications in string theory, and their comprehension is therefore crucial for obtaining a com-

prehensive view of black hole physics in a theory of quantum gravity.

With this goal in mind, chapter 1 was devoted to a wide introduction to black holes, introducing

some basic notions coming from the classical theory of General Relativity and presenting how string

theory effectively describes them as a collection of D-branes, allowing, with some caveats, to cor-

rectly identify the microscopic geometries that could account for the Bekenstein–Hawking entropy.

Additionally, we briefly discussed the embedding of black hole solutions within supergravity theories,

giving a first general introduction to the concepts of BPS equations and the attractor mechanism.

In chapter 2, we specialized the discussion on the theory we chose to focus on. In particular, we pro-

vided an overview of four-dimensional N = 2 gauged supergravity, properly introducing Special and

Quaternionic Kähler geometries as essential geometrical ingredients of the theory and describing the

general gauging procedure for the isometries of the scalar manifold. The complete bosonic Lagrangian

and the fermionic supersymmetry variations were then presented, together with a proper definition

of the theory vacua and an introduction to the topic of spontaneous supersymmetry breaking.

With the theoretical framework in place, we reviewed in chapter 3 the current understanding of

black holes in both ungauged and gauged N = 2 theories. Starting from the seminal work in [6], we

presented how both BPS and non-BPS black holes allow for a first-order description in terms of a

real superpotential W . The same also applies to multicentre black holes, though the non-BPS case

is much more involved and requires some insights from the string theory point of view. Finally, we

briefly described the work in [42] for AdS black holes, obtained in the context of N = 2 U(1) gauged

supergravity coupled to vector multiplets only.

Finally, in chapter 4 we addressed the question that inspired this work. The first necessary step was

to show how the general theory gets simplified under the joint assumptions of dealing with U(1)×U(1)

gaugings and having one preserved isometry or, equivalently, one massless vector on the solution. In

particular, we realized that the equivariance condition forces the triholomorphic prepotentials to be
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parallel in SU(2) space, thus allowing for a rewriting of the form

PxΛ = gΛ(q)Qx(q) (for QxQx = 1) (5.1)

together with the definition of

Lx = PxΛLΛ = LQx. (5.2)

Starting from the general fermionic supersymmetry variations, we were then able to derive a set of

first-order differential equations describing static, spherically symmetric black holes in an asymptot-

ically flat background. Subsequently we showed that, just like all the other known scenarios, the

whole solution encompassing both vector and quaternionic scalars could be described in terms of a

real superpotential

W ≡ eU
∣∣∣Z − ie2(ψ−U)L

∣∣∣ . (5.3)

The resulting equations take the form of gradient flows

U ′ = −e−2ψ∂UW,

ψ′ = e−2ψ∂ψW,

(zi)′ = −2e−2ψgī∂̄W,

(qu)′ = e−2ψhuv∂vW,

(5.4)

or algebraic constraints

AΛ
t gΛ(q) = e3U−2ψIm

(
e−iαZ

)
+ eURe

(
e−iαL

)
,

e2iα =
Z − ie2(ψ−U)L
Z + ie2(ψ−U)L

,

pΛgΛ(q) = −1,

∂uα = 0.

(5.5)

Since the equations were obtained by imposing two independent projectors on the supersymmetry

parameters εA, the resulting solutions will preserve only 1/4 of the original supersymmetry content,

though they may have enhanced supersymmetry at the horizon and at infinity.

Despite the progress presented in this thesis, several important directions for future research remain

open. First, there is a need to refine our search for explicit realizations of the class of black holes that

we discussed. As demonstrated in chapter 4, models involving one hypermultiplet and one vector

multiplet, together with our request of one preserved isometry, do not allow for any supersymmetry

breaking patterns. Additionally, the requirement for full N = 2 supersymmetry to be preserved at

infinity imposes too stringent a constraint, forcing the Killing vectors chosen in the gauging proce-

dure to be parallel. Therefore, a crucial step forward would be to consider larger models with at

least three vector fields that could potentially fulfil our requests.

Another possible direction is to rewrite the bosonic action in a “BPS squared form” to show that the

flow equations we’ve derived directly imply the equations of motion. As explored in chapter 3, flow

equations can be directly derived from the action after formally integrating out the (t, θ, ϕ) compo-

nents and rewriting the resulting effective action as a sum of squares. Applying a similar procedure

to our setup does not present any conceptual difficulties, so we expect such a rewriting to be feasible.
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Finally, it would be particularly insightful to perform a near-horizon analysis of the solutions, so as

to generalize the one conducted in [42] (which did not consider hypermultiplets). Specifically, given

the flow information on the warp factors and scalar fields, we would expect the attractor mechanism

to be at work also in this scenario, for scalars reaching a critical point at the horizon so as not to

diverge and spoil the regularity of the solution. Such an analysis should eventually shed some light

onto the details of the mechanism, extracting the explicit conditions at the horizon and determining

their general properties.

To conclude, over the last century, black holes have proven themselves to represent profoundly rich

and intricate objects within the broader and highly ambitious project of formulating a final theory

of quantum gravity, one of the most compelling challenges contemporary theoretical physics has to

face. In this context, the work presented in this thesis represents a small contribution in the pursuit

of more realistic black hole solutions. And as vast as the complexities involved in the quest might

appear, so too are the potential rewards, with each step bringing us even closer to a complete and

unified understanding of the Universe we live in.
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Appendix A

Normalizations and conventions

� Minkowski metric:

ηab = (−,+,+,+). (A.1)

� Decomposition of tensors in self-dual and antiself-dual parts (ε0123 = 1):

T∓µν =
1

2

(
Tµν ∓

i

2
εµνρσT

ρσ

)
. (A.2)

� Clifford algebra:

{γµ, γν} = 2ηµν , [γµ, γν ] = 2γµν , (A.3)

γ5 ≡ −iγ0γ1γ2γ3 = iγ0γ1γ2γ3. (A.4)

� Decomposition of fermions in chiral and antichiral parts:

γ5

 λiA

ζα

ψA

 =

 λiA

ζα

ψA

 ,

γ5

 λi
?

A

ζα

ψA

 = −

 λi
?

A

ζα

ψA

 .

(A.5)

� SU(2) and Sp(2n) metrics:

εABεBC = −δAC , εAB = −εBA; (A.6)

CαβCβγ = −δαγ , Cαβ = −Cβα. (A.7)

For any SU(2) vector PA we have

εABP
B = PA, εABPB = −PA. (A.8)

The same conventions apply to Sp(2n) vectors.
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