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Tomy dear cousin Livia,
with a mind full of knowledge

and the beautiful heart
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Abstract

This thesis explores the use of Variational Autoencoders (VAEs) in the field of sound genera-
tion, with a particular focus on timbral diversity and the infinite possibilities of sound transfor-
mation. Sound generation is approached from two distinct angles: harmonic sounds and non-
harmonic soundscapes. Several prior research studies have already demonstrated the ability of
AutoEncoders to capture the primary features of a sound, creating a latent space that preserves
these features and can subsequently generate similar sounds, characterized by a shared timbral
quality or musical intent. This thesis will, therefore, scrutinize this sound generation system,
conducting multiple experiments with mel-spectrograms as input.
Furthermore, the latent space of themodels will be extensively explored, capable ofmapping

the characteristics of sound into a space from which it is then possible to easily manipulate
timbres and sound changes, leading to the generation of smooth sound morphing.
A questionnaire was administered to some participants to assess crucial aspects of the gener-

ated sound, such as sound quality, sound classification, and the smoothness of the generated
soundmorphings. The resultswere very promising, indicating a good level of sound generation
and a certain fluidity in sound transformation, both for harmonic and non-harmonic sounds.
This research has natural practical applications in the field of sound design and the creation

of background music generation systems. With strong prospects for sound manipulation and
exploration, the approach presented is a promising blend of deep learning and musical knowl-
edge.
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1
Introduction

Music is generally and commonly defined as the science or art of ordering tones or sounds in
succession, in combination, and in temporal relationships to produce a composition having
unity and continuity [1] . However, music has been the subject of various attempts at defini-
tion, as it is something that everyone knows what it is but defining it is quite complex. Some,
for example, emphasize the aspect of intentional sound or the contrast with noise, some focus
on organized sound, some on aesthetic and pleasing sound[2]. One of the most interesting
musicological perspectives on this matter is the Edgard Varèse approach[3], who argues that
music is nothing more than organized sounds in space. This opens up a very interesting sce-
nario for sound because it allows for the consideration of all types of manipulable sounds as
music, removing the limitation to atonal or highly experimental music. This theory has, in
turn, been the subject of various criticisms, especially directed towards the excessive abstrac-
tion of his viewpoint, which did not even consider the melodic or harmonic aspect of a sound.

Regardless of the interpretation of what is definable as music, it remains a fact that an in-
tegral part of what characterizes it, especially from an aesthetic point of view, is the presence
of patterns and sound timbres, which are responsible for making music pleasing to the human
ear. Music is created through imitation and creativity, using the art of musical composition,
which encompasses the act of conceiving a piece of music, the art of creating music, and the
final musical product [4].
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The significant interest in computer-based composition began in the second half of the 20th
century. Reviewing the history of computers and the programs that later led to the develop-
ment of new possibilities and perspectives for computer music and electronic music, onemust
remember CSIRAC[5]. It originated in Australia in 1949 and was the world’s first computer
to reproduce digital music in 1951. Computer music further evolved in 1957 thanks to Max
Mathews[6]. In that year, not only was the first computer music generator developed, func-
tioning with the IBM 704, but also the MUSIC I programming language was created. It later
evolved intoMUSIC II the following year, allowing four-voice polyphony but requiring about
an hour to generate oneminute ofmusic. From there, the history of computermusic program-
ming took off, especially thanks to significant inventions like the IBM7090,GROOVE[7], and
Fairlight CMI[8], remembered as one of the first digital workstations.

Much of computer music developed during that period, often starting from emerging re-
search centers in computer music, which were engaged in discovering new languages and pro-
ducing software and hardware for musical purposes. For example, during those years, the sig-
nificant and pioneering contributions of CCRMA at Stanford University (founded by John
Chowning and focused on the development of digital synthesizers andprogramming languages
likeMax/MSP), IRCAM (with contributions from Jean Claude Risset, emphasizingmultidis-
ciplinarity and innovation), CNMAT at the University of California (known for its significant
contributions in algorithmic composition and audio signal processing), CNUCE (with contri-
butions from Pietro Grassi, specializing in sound manipulation techniques), and CSC at the
University of Padua (foundedbyDebiasi andoriented towards developing systems for real-time
synthesis and live electronic performance) should be remembered.

Additionally, it is worth mentioning groundbreaking musical works in this field, such as Le-
jaren Hiller’s Illiac Suite[9] from 1956, one of the first compositions produced with the help
of a computer (Illiac I), and various compositions by Max Mathews, such as Analog 1: Noise
Study and Daisy Bell (with synthetization of human voices), both born in 1961. Also note-
worthy are Experiments inMusical Intelligence (EMI) byDavid Cope and Analogiques A and
B by Iannis Xenakis. In 2000, Koening’s Project1 (PR1) marked a turning point as it utilized
Markov chains for computer music generation.[10].

Since then, various computational techniques have been employed, including Generative
Grammars, Cellular Automata, and Chaos Theory. The potential of generating music tracks
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through algorithmic-mathematical control started to emerge. The development of these tech-
niques eventually led to their integrationwith advancedDeepLearningmethods, with pioneer-
ing examples like DeepBach [11] for the computational composition of Bach chorales. Neural
networks have proven to be excellent tools for music generation, and in recent years, there has
been a particular focus on developing increasingly effective Deep Learning techniques.

1.1 Music Generation
Musical generation is a vast field that ranges from faithful sound reconstruction to compu-
tational creativity, using various algorithmic approaches and different types of sound input.
What’s even more crucial is the purpose of the sound one wishes to produce and the ways in
which it will be suitably generated. The basic features of the musical generation process can be
divided in the following manner [12]:

Characteristic What does it mean Example
Sound type what do you want to produce? melody, polyphony, timbre...

Sound destination who is it intended for? musician, user, new software...
Sound usage how is the generated sound processed? Music performance, audio file...
Sound mode how is the sound generated? Sheet music, audio file...
Sound style What musical style is required? classical style, polyphonic...

Table 1.1: Sound generation: main characteristics

Many of the generative characteristics of the sound are intrinsically chosen at the time of
model development. Indeed, the style of the sound is intrinsically chosen by the input sounds
used in the model’s training, just as the mode or use of the sound is intrinsically linked to the
type of output set by the model. It should also be remembered that the architecture of the
model to be chosen is closely connected with the characteristics of the sound and with the
generation objective. For instance, the generation of polyphonic pieces will require a multi-
channel structure andmore memory compared to what might be needed for the generation of
ambient sounds.

The sound generation process undergoes several steps [13] common to all the differentDeep
Learning architectures that can be used:

• Selection and collection of sound data. This can take various forms; the essential thing
is to derive a certain number of sounds from which the model can learn.
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• Choice of audio representation. This choice is closely linked to the purpose of the
generation and the chosen data (for instance, a chromatogram might be more suitable
in cases of polyphony, and presumably ineffective in the case of inharmonic sounds).

• Choice of the model configuration. This step includes not only the conscious choice
of themodel most suited to our purpose but also the various trials for the choice of ideal
parameters and hyperparameters.

• Model training. This can require more or less time, often linked to the complexity of
the model and the choice of hyperparameters (example: the number of epochs).

• Sound generation. In essence, the step that deals with transforming what the model
has learned into real sound.

• Evaluation. Sensory evaluation of the sound, namely the human ear’s verification of
how close the generated sound was to what was hoped for.

Another crucial issue in the field ofmusic generation is the type of sound representation that
will be provided to the model. This is divided into two broad categories: Audio and Symbolic
[14]. This division can be intuitively seen as a categorization into continuous (audio) and dis-
crete (symbolic) variables. For a detailed and comprehensive look at the audio representations
used here, the reader is referred to the Audio Representation for a DL approach section in the
following chapter. However, it is pertinent to examine the main characteristics of these two
types of representations and their advantages and disadvantages:

Audio Representation: Direct encoding of sound waves without further conversions or
transformations. The sound is processed as it is. Examples of audio representations are wave-
forms and spectrograms.

• ADVANTAGES:

1. Faithfully captures sound nuances and details
2. Quite consistent
3. Suitable for harmonic sounds and simple noises, ideal for ambient sounds and

complex noises.

• DISADVANTAGES:

1. Requires more memory
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2. Greater computational complexity
3. Less intuitive sound manipulation.

Symbolic Representation [15]: Translates sound into a set of symbols, typically MIDI
sounds and musical notes.

• ADVANTAGES:

1. Easier sound manipulation and analysis
2. Reduces computational load

• DISADVANTAGES:

1. Captures fewer sound nuances.
2. Requires conversion before listening (possible information loss)
3. Not suitable/optimal for all sounds (e.g., ambient noises)

Basically, we can conclude that audio can provide greater fidelity, while symbolic offers en-
hanced interpretability and control.

1.2 DL for sound generation
Deep Learning is a form of machine learning in which the computer can learn from experi-
ence. Specifically, through hierarchical operations, the machine is capable of learning complex
concepts and then reworking and reconstructing them from simpler concepts[16]. A funda-
mental part of Deep Learning is Deep Neural Networks, which have evolved naturally from
the Perceptron[17]. It is, in fact, the inefficiency of the Perceptron in classifying non-linearly
separable domains that led to the creation of the neural networks as we know them and apply
them today.
The history of neural networks is relatively recent (1980) but quite intense, experiencing

continuous fluctuations in interest from the scientific community. Over time, increasingly
complex neural architectures have been created, suitable for different types of data. What typi-
cally distinguishes a neural network, however, is a structure composed of three types of layers:
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input, hidden, and output layers. Depending on the type of problem, these layers will take on
different characteristics (for example, an output layer for a binary problemwill be significantly
different from that for amulti-class classification problem). Whatmakes neural networks com-
plex and powerful are undoubtedly the hidden layers. Of course, depending on the depth of
the network, the model will be more complex and better at capturing important information
from the data.

During the same period of development of the first neural networks, studies on sound gener-
ation through Deep Learning began. In the initial experiments, architectures that had already
proven effective in similar fields, such as computer vision or NLP, were used. It should be
noted that, depending on the type of data being analyzed, different architectures are appro-
priate. Music, in particular, is a type of data that can be treated differently depending on the
representation chosen for it. Below is a list of themainDeep Learning architectures considered
effective for music generation.

1.2.1 Autoencoder

An autoencoder is a type of neural networkwidely used in tasks such as classification andmusic
generation, as well as in data dimensionality reduction. As the main subject of this thesis, the
autoencoder, its functioning, and its limitations will be extensively discussed in the following
chapter.

1.2.2 Restricted BoltzmannMachine

ARestricted BoltzmannMachine (RBM) is a stochastic neural network capable of learning the
probability distribution of the inputs it encounters. It owes its name to the Boltzmann distri-
bution. Its operation is facilitated by the presence of two distinct layers, one visible and one
hidden. While nodes within the same layer cannot be interconnected, every node in the visible
layer is connected to every node in the hidden layer. The initiation of a stochastic process leads
to the estimation of activation probabilities of the hidden layer, which will subsequently be
used to estimate the activation probabilities of the visible layer. This process allows for the re-
construction of the original input. Subsequently, an algorithmnamed “contrastive divergence”
is employed to adjust the weights between the nodes. With each iteration of this process, there
will be progressively better learning from the data.
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However, the process can be further summarized into two steps:

• Feedforward step: encodes the input into the hidden layer.

• Backward step: decodes the input. Specifically, during this operation, the aim is to re-
generate the representation.

Each iteration corresponds to a differentweight update: if the generated data is considered to
beoriginal, the connections remainunchanged; otherwise, theweights are updated. Inpractice,
the RBM operates by adjusting the weights to enhance the representation capability of the
generated data.

1.2.3 RecurrentNeural Network

Recurrent Neural Networks (RNNs) are widely used deep learning algorithms for sequential
data. This makes them perfect for use in music generation[18], especially in the realm of sym-
bolic music. In fact, music is essentially a language where dependencies between one sound
and another are what create the coherence, linearity, and suggestiveness of a melody.
In practical terms, RNNs are feedforward neural networkswith a recurrent component that

captures sequences of information useful for calculating the newoutput. Like feedforward net-
works, recurrent networks consist of input layers, hidden layers, and output layers. However,
while the feedforward network can be represented by the equation Xt = Yt, in a recurrent net-
work, the prediction equation[19] is:

(ht, ct) = fn(ht−1, xt) (1.1)

Where ht is the new state, ht−1 is the previous state, xt is the current input, and xt−1 is the
previous input.
Their characteristic is, therefore, the ability to learn not only from current elements but also

from previous ones. This is what makes these networks perfect for time sequences.
However, RNNs use Backpropagation Through Time (BPTT[20]) to estimate gradients.

The underlying mechanism is the same as traditional backpropagation but specifically tailored
for sequence data. The only difference is that in BPTT, errors are summed at each step. It is
precisely because of this operation thatRNNs face a significant training problem: gradient esti-
mation difficulty. There are twomain issues: vanishing gradients and exploding gradients[21].
Both problems are determinedby the gradient’smagnitude. The first problemoccurswhen the
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gradient is too small, becoming so tiny during iterations that it vanishes. The second problem
occurs when gradients are too large, leading to model instability and NaN values. Certainly,
the problem can be mitigated by reducing the model’s complexity, perhaps by reducing the
number of hidden layers. However, the real trick to overcome this issue is to use a specific
type of RNN, which has become increasingly popular lately: the Long Short-Term Memory
(LSTM).

LSTM: overcoming the challenges of RNN

The success of LSTM lies in learning how to manage its memory, removing it from the contin-
uous flow of network operations. This is possible thanks to the addition of a key element of
such a network: a cell gate. The cell is the foundation of LSTM, as it can regulate its memory.
Specifically, it functions through these elements:

• Input Gate: chooses which information should be added to the cell’s memory.

• Forget Gate: Chooses which information should be omitted and forgotten.

• Output Gate: selects the parts of memory contributing to the current output.

This, in brief, allows for the use of a recurrent network capable of capturing long sequences
by capturing the right information.

1.2.4 Generative Adversarial Network
TheGenerative Adversarial Attack (GAN) is a significant recent innovation (2014) in the field
ofmusic generation[22]. Their mechanism involves the simultaneous training of two different
neural networks:

• The Generator: the generative model that transforms a noise sample into a sample re-
sembling those taken from a distribution of real sound representation.

• The Discriminator: the discriminative model that calculates the probability that the
generated sample comes from real data rather than from the generator.

Formula[23] is:

min
G

max
D

V (G,D) = Ex∼PData [logD(x)] + Ez∼Pz(z) [log(1−D(G(z)))] (1.2)
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where D(x) is the probability that x came from the real data, D(G(x)) is the probability
that G(x) came from the real data, 1−D(G(x)) is the probability that G(x) didn’t come from
the real data. Moreover, Ex∼PData [logD(x)] represents the estimate of the probability that
x is a real data point drawn from our set of real data. The algorithm aims to maximize this
quantity, as it would mean that the algorithm is able to accurately recognize real data among
all data points. AndEz∼Pz(z) [log(1−D(G(z)))] represents the expectation of the logarithm
of 1 − D(G(z)) with respect toG(z) whenG generates data from z in accordance with the
probability distribution pz . This term is used in the training of generative models like GANs
to assess how effectively the generatorG is deceiving the discriminatorD. The objective is to
maximize this expectation, whichmeans that the generator is producing data that is difficult to
distinguish from real data according to the discriminator.
In the case ofmusic generation, the input typically used for the generator G is randomnoise.

Currently, GANs are among the most advanced algorithms in terms of coherence, creativity,
and the quality of the generated sound. Below is the presentation of their main advantages and
disadvantages:

• ADVANTAGES:

1. High-quality sound generation.
2. Flexible generation, adaptable to all types of sound,music, style, andmusical genre.
3. Versatile and open-ended generation: the created samples can be entirely different

from the original ones while maintaining a certain similarity.

• DISADVANTAGES:

1. High computational complexity
2. Extended training time
3. Not immediately interpretable
4. Possibility of generating inconsistent sounds (if training is not optimal)
5. Tendency to overfit (and, consequently, to produce very static generation)

We can conclude that GANs, despite their many flaws and limitations, are so widely used
because they are among the existing architectures with greater authenticity and quality in the
generated sound.
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1.3 Limitations and Future Trends
The sound generation capability is still very limited in many respects. The most significant
limitation is undoubtedly the almost complete lack of creativity.
For the generation of goodmusic, a certain level of song structuring is also required tomake

it linear and coherent for an engaging listening experience. The structure of a musical piece is
what gives it a sense of direction in listening and is inherently connected to the genre or style
of the piece itself. Going into specifics, highly competitive elements of a good piece include
those related to the details of the composition, such as melodic passages, choice of key, specific
alterations, and, in general, everything that contributes to the pleasantness and smoothness of
a musical phrase. All of this requires a high degree of competitive reasoning, as well as con-
tinuous experimentation to find the best timbre or sequence of sounds. All these operations
are extremely limited when using Deep Learning. They have also been categorized by Briot
and Pachet[24] into four classes: control, structure, creativity, and interactivity. Below, the
difference and limitation of Deep Learning compared to human composition[25] are outlined
according to these classes.

Challenges Human Composing[26] DL Composing

Control
High. Quite natural depending on
the theoretical and technical prepara-
tion of the composer.

Minimum. Generative algorithms op-
erate as black boxes.

Structure
High. Fairly automatic depending
on the composer’s theoretical and cul-
tural knowledge

Low. Requires additional constraints
and specific data corpora for the
intended objective.

Creativity
High. Depends on the composer’s
level of creativity. Sometimes it can
be innate or extremely natural.

Minimal, very limited. The music cre-
ated is only an intelligent regeneration
of the input sounds.

Interactivity
Very high. The compositional
process itself consists of continuous
changes.

Low. The machine is automatic and
does not involve interactivity.

Table 1.2: DL Music Generation Limits

Studies on music generation using Deep Learning are promising, but there is still a long
way to go. The limitations discussed earlier can be seen as areas of scientific exploration that
researchers will seek to investigate in the future. Pushing beyond the boundaries of limited con-
trol, structure, creativity, and interactivity in generated music will be a potential goal of future
research. Other avenues of scientific exploration could involve combining different architec-
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tures, which could lead to the creation of more dynamic and engaging musical material. It is
also possible to explore how generation changes based on very diverse data, such as music of
different styles or genres. Basically, the future of music generation is still open, and computer
and sonic explorations are among themost diverse and promising[27]. In general, the future di-
rections may lean more towards the development of generative algorithms to assist composers
rather than as autonomous algorithms.

1.4 RelatedWorks
Musical generation has been under scrutiny by the scientific community for several decades,
although the use of Deep Learning in sound generation has been explored only in more recent
decades. Studies such as [28] and [29] have provided a clear history of computer-based sound
generation, while [30] has contributed to giving a general overview of AI usage in the field.
Crucial for the development of more in-depth DL research are several synthesis articles, such
as [13] and [31]. These general articles offer a perspective on the evolution of musical gener-
ation, ranging from the use of various models, such as VAE, GAN[32], or LSTM[33], which
have been roughly outlined in articles like [34]. The most detailed and comprehensive study,
covering essential aspects of musical generation from its inception, is [23].
Specifically, for the variational autoencoders, the focus of this thesis, various investigations

have been conducted, both regarding their application in computer music [35] and in the anal-
ysis of sound timbres through latent space [36]. Finally, the future developments in the field
of DL in musical composition, as well as its limitations and challenges, have been thoroughly
outlined and described by Pachet in [24].
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2
Data

2.1 Audio Representation for a DL approach
Asmentioned in the previous chapter, when using a deep learning architecture, great caremust
be taken in how the audio is represented as input. Recalling that sounds can be represented
through audio representation or symbolic representation, this paragraph will delve into the
audio representations. For the project of this thesis, in fact, only audio representations were
used. The reason for this choice lies in the very objective of the thesis, which is the timbral
exploration of sound. In cases with more polyphonic or melodic purposes, a symbolic repre-
sentation would certainly have been more appropriate. In this case, however, the sole audio
representation allows preserving all the nuances of the sound, enabling its exploration with
greater coherence and detail.

2.1.1 Waveform

A waveform is the simplest and most direct audio representation, as it is a raw audio signal.
The waveform is encoded using pulse code modulation, known as PCM. This allows for the
generation of a continuous wave over time. Specifically, the x-axis represents time, while the y-
axis represents the amplitude of the signal. Thewaveform is decoded as a sequence of numbers,
where each number represents an amplitude sample at a given sampling frequency. The most
common sampling frequencies are 22050 and 44100, which will respectively produce 22050
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and 44100 samples (in the case of 1 second of audio playback).
Deep Learning architectures that allow the use of waveforms as input are somewhat limited

and primarily encompass various end-to-end architectures.

2.1.2 Spectrogram

In the description of the main audio representations, it is appropriate to start with the funda-
mental element of digital sound reproduction: the signal. It is nothingmore than the variation
in air pressure over time. Its measurement in samples (commonly 22050Hz or 44100Hz, but
also) generates the so-called waveforms (already descripted previously). A waveform is what
allows us to listen to a sound and verify its behavior. However, it captures only the amplitudes
of the sound and is not suitable for all types of tasks. In fact, when dealing with neural net-
works, it is advisable to input much more substantial elements than a simple waveform. One
possible solution is to decompose the signal in order to convert it from the time domain to
the frequency domain. In this operation, the Fourier transform comes to our aid, capable of
generating the signal’s spectrum.

Figure 2.1: Fast Fourier Transformation mechanism

The transform is based on the Fourier theorem, which states that every signal can be decom-
posed into a set of sinusoidal or cosinusoidal waves that add up to the initial signal.
The algorithmthat applies theFourier transform is calledFast FourierTransformation (FFT).
Completeness is achieved through the use of Short Time Fourier Transform (STFT). It rep-

resents the spectrum of signals as time varies. Essentially, it calculates different spectra by per-
forming FFT on different windowed segments of the signal.
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Stacking the generated FFTs on top of each other is what leads to the creation of a sound
spectrogram. The x-axis represents time, and the y-axis represents frequency. It is also worth
noting that the y-axis is converted to a logarithmic scale, and spectrograms have their own col-
ors, which are used to indicate the intensity of sound (usually expressed in decibels).

2.1.3 Mel-Spectrogram

Themel-spectrogram originates from a fundamental assumption: the human ear does not per-
ceive frequencies linearly. It is here that the need arose to create a scale that represents the
frequency content of sound as it is humanly perceived, rather than how it actually is. The scale
created for this purpose is called the “mel” scale. It tracks the perception of sound by the hu-
man ear. Its shape reflects the fact that humans perceive differences in frequency of low-pitched
sounds better than high-pitched sounds.

M(f) = 2595 · ln(1 + 700) (2.1)

Figure 2.2: Mel scale versus Hertz scale plot

In conclusion, the mel-spectrogram is nothing more than a spectrogram in which frequen-
cies are converted to the mel scale.

Data Pre processing

For the creation of spectrograms consistentwith our objective, the choice of certain parameters
is important:

• Hop length: it determines the number of samples between consecutive frames. Its value
is linked to the temporal resolution of the spectrogram.
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• Number of FFT (Fast Fourier Transform): it is the number of points used for spectro-
gram computation. Its value is linked to the frequency resolution of the spectrogram.

For both parameters, common values include 128, 256, 512, 1024, and 2048. The choice
depends on the trade-off sought between temporal and frequency resolution. It is advisable
to avoid the number of FFT exceeding the hop length value. Specifically, it is preferable that
hop length ≤ num. FFT/2.
As final values, 1024 has been chosen as the number of FFT, and 256 as the hop length value

for the spectrogram.

2.1.4 Other representations
There are several possible audio representations to choose from. We can list various types of
acoustic features, which compress and contain certain sound aspects, as well as other variations
of the spectrogram, such as chromatograms or MFCCs. The choice to use spectrograms and
mel spectrograms exclusively in the experimental part was dictated both by their recognized
effectiveness in similar tasks and by our initial data. Audio representations like waveforms
or acoustic features would not have been an optimal choice for generating perceptually good
sound or would have been limited and computationally expensive. Other representations de-
rived from the spectrogram in the same way would not have been as suitable for the type of
reference data. For example, MFCCs are better suited for speech data, while chromatograms
are more suitable for data where melodic patterns play a significant role, whereas our data is
audio-based, and even in harmonic sounds, the melodic component is limited, as there is at
most one note for each audio clip.
Since the ultimate goal is to achieve good sound generation, it is reasonable to assume that

themel spectrogram is the winning choice, as it is the representationmost capable of capturing
the perceptible sound timbres to our ear and then generating similar ones.

2.2 Dataset
For this thesis, we have chosen to work on both harmonic and non-harmonic sounds.

• Harmonic Sounds: these are sounds whose spectral components follow a harmonic re-
lationship with each other. Specifically, one can identify a fundamental frequency fol-
lowed by a set of partials that are more or less evenly spaced, thus following a harmonic
ratio. Examples of such sounds are musical instruments like the violin, piano, and flute,
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where the sound is relatively clear, along with the perception of the fundamental fre-
quency.

• Non-Harmonic Sounds: as the name suggests, these are sounds that do not relate to har-
mony. Their spectral components do not follow a harmonic frequency ratio, and their
structure tends to be more complex. Non-harmonic sounds include dissonant sounds,
noises, or even percussive sounds.

The following image illustrates this distinction clearly.

(a) Harmonic sound spectrum (oboe) (b) Non harmonic spectrum (sound 0)

Figure 2.3: Harmonic ‐ non Harmonic comparison

While in the sound of an oboe (a harmonic sound), there is a clear fundamental frequency
around 500Hz (see the red line), with partials following a harmonic ratio spaced 500Hz apart,
in the non-harmonic sound, there is no clear pattern, and the structure appears more complex.

2.2.1 Non-Harmonic Sounds: FoodSoundDataset

TheFoodSounddataset consists of 11,000 audio clips divided into 22different types of sounds.
The original dataset provides clips of varying duration (1, 2, or 4 seconds) while maintaining
sound stability and coherence throughout the clip, meaning they do notmodulate. All sounds
are non-harmonic, characterized by a lack of clear structure, and are associated with specific
sound effects, backgrounds, or noises. The sounds exhibit considerable diversity, with key sonic
attributes including continuity and depth, contrasting with sizzling and synthetic sound types.
The sounds are both continuous and exhibit variable pitch. The frequency varies, and there is
a presence of glitchy and sci-fi-influenced elements. Below is a list of all types of sounds.
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Sound Type
0 Continuous glitchy elements with moving panorama
1 Continuous hum with pitch and frequency modulation
2 Continuous, deep and spatial, stable and rumbly
3 Continuous, deep, spatial and gloomy
4 Continuous, hollow, humming with ascending and descending

pitch
5 Continuous, humming with regular low impulse
6 Continuous, rapid and glitchy elements with long pitch envelope
7 Continuous, rapid elements with slowly moving panorama
8 Continuous, rapid, glitchy buzzing elements
9 Continuous, rapid, sizzling elements
10 Continuous, scary sizzling cymbals with varying pitch
11 Continuous, soft noise. Alarm like effect
12 Continuously stridulating, buzzing and sizzling sound of pro-

cessed crickets
13 Digital, continuous humming with varying pitch
14 Light, a tonal ring of shredded glassy elements like insect swarm
15 Sci-fi, science fiction, continuous, slightly sizzling elements
16 Sci-fi, science fiction, squishy humming
17 Spatial, continuous, glitchy element with modulation and pan-

ning movements
18 Spatial, deep, synthetic with continuous frequency modulation
19 Subtle, softly sizzling element with moving panorama
20 Synthetic sci-fi, science fiction with a sixth interval and slight mov-

ing panorama
21 Synthetic sci-fi, science fiction with glitchy, slowly varying pitch

envelope and heavy low rumbling

2.2.2 Harmonic Sounds: Good Sounds Dataset

The chosen dataset is GoodSounds [37]. It contains short recordings of variable duration (ap-
proximately 5 seconds per clip) of harmonic sounds. The sounds in the initial dataset belong
to two different types: single notes and sustained notes (held) and scales. Only the first type
of sounds was used, as our objective is the exploration of sound timbre, which requires the
presence of sounds with clear and sustained timbre, without variations in time or frequency.
Specifically, the sounds were performed by professional musicians using different microphone
configurations (from one to four different microphones) and various recording devices. Each
clip contains a sustained note from a musical instrument. The timbre of the instruments is
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particularly sharp and clear, making the type of instrument easily recognizable even by non-
experts. The chosen instruments are cello, violin, flute, clarinet, oboe, piccolo, and trumpet.
These musical instruments share a sustained envelope. More percussive instruments such as
piano or percussion would not be particularly suitable for continuous timbral exploration and
sound morphing. Furthermore, it should be noted that the instruments are diverse, ranging
from stringed instruments to wind instruments, and their musical ranges are also different.
This will contribute to an even more interesting timbral analysis.

2.2.3 Data Pre Processing

For both reference datasets, the audio clips are in .wav format. Proper data preprocessing is
crucial, especially in deep learning models, particularly in generative models, where the accu-
racy and coherence of the results are heavily linked to the quality of the audio used as input for
model training. The inherent nature of the chosen datasets is highly advantageous, as all the
audio clips are clear and free from noise. Operations such as normalization, filtering, feature
extraction, equalization, and click reduction are common and widely employed in such appli-
cations. In this paragraph, I will present the main operations that have enabled the reference
.wav files to become excellent training material for the model.

• Audio Loading. The audio should be loaded appropriately, accommodating its main
characteristics such as duration, sample rate, and number of channels.

• Duration Management. When the audio is loaded, it will assume its own duration.
However, it’s important to note that when generating a uniform audio representation
for all the samples used in training, it’s essential to ensure the sameduration for all sounds
used as samples. This is closely related to the architectures that will be used, as having
the same image shape for all spectrograms will allow the model to train. Therefore, a
PADDING function will be applied to each audio representation to make all audio rep-
resentations of the same duration.

• Normalization. Normalizing the values of an audio representation (which are notori-
ously different from each other) ensures uniformity and the absence of distortion while
appropriately preserving all the nuances of the sound.
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non-harmonic sound

As a quick consideration of non-harmonic data, it becomes evident that they are rather diverse
innature. They are continuous over time, exhibit different frequencies (notice, for example, the
low frequencies of sound number 3 compared to sound number 7), and have rather distinct
connotative elements. This is evident from the very patterns in the spectrogram. Spectrograms
with clear horizontal lines give rise to smoother sounds, while spectrograms with vertical lines
give rise to sizzling or glitchy elements (see sound 17).

Figure 2.4: Non Harmonic Sounds ‐ Waveforms, Spectrograms and Mel‐Spectrograms
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harmonic sound

As aquick assessment of harmonic data, it is evident that they possess an extremely recognizable
timbre[38]. Within the various clips, the sound has a variable onset moment, typically within
the first second of the clip. Furthermore, the sound exhibits a clear envelope and a certain pitch
stability. Differences in instrument timbre can be discerned from the spectrogram, as we can
clearly observe the relatively lower fundamental frequency of the cello compared to that of the
piccolo. The onset frequency remains the same throughout the clip.

Figure 2.5: Harmonic Sounds ‐ Waveforms, Spectrograms and Mel‐Spectrograms
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3
Variational AutoEncoder

3.1 Preliminaries: AutoencoderModel
The autoencoder is a widely used and highly effective model for both classification tasks and
the generation of new samples. It is a neural network consisting of several hidden layers, with
the sole constraint of having the same number of nodes in input and output. This ensures
its functionality, allowing, for example in music generation, to produce new samples more or
less similar to those given as input. The strength of autoencoders lies in their ability to extract
essential features from the input through a dimensionality reduction process. It falls under the
supervised learning category. To delve deeper into its structure, it’s essential to note that an
autoencoder is composed of two main parts:

• ENCODER: the first part of the model’s operation. It takes samples as input and then
represents them in a latent space of arbitrary dimensionality using dimensionality reduc-
tion techniques.

• DECODER: takes the encoder’s output (the latent space) and tries to reconstruct the
original samples.

Why an AutoEncoder isn’t enough

The Autoencoder model has a tremendous capacity to capture fundamental details and rep-
resent them in a latent space, which is why this model is highly valued in scientific literature.
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Figure 3.1: AutoEncoders ‐ General structure

However, the model proves to be very effective in classification tasks and less so in generation
tasks. The reason that makes this model less effective for sound generation tasks lies in the la-
tent space. The standalone autoencoder, in fact, is not able to structure the latent space in a
way that can generate consistent new samples. Without clear regularization, the points in the
latent space may become nonsensical and incapable of congruent generation. Moreover, being
a very unconstrained model, it tends towards overfitting, which further complicates the gen-
eration of suitable and diverse samples. The solution to the AE’s challenges lies in the use of
VAEs, which we will delve into in the next section.

3.2 Variational Autoencoder
TheVariational Autoencoder (VAE) is a type of deep learningmodel primarily focused on gen-
eration. It goes beyond creating a latent representation of data anddecoding it; it aims tomodel
the probabilistic distribution of the latent space. This allows transitioning from a deterministic
model (autoencoder) to a probabilistic model (variational autoencoder).
Following the encoding process, the goal of VAE is to understand how the initial data (high-

dimensional) canbe coherently generated fromthe latent variables. The jointprobabilityp(x|z)p(z)
enables this mechanism. p(x|z) estimates how the data x is generated from the latent variables
z, while p(z) represents the latent variables.
The strength of VAE lies in the use of Variational Inference, which provides greater compu-
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tational efficiency by drastically reducing the complexity of estimating p(x) using traditional
methods and sampling techniques. Variational Inference focuses on estimating an approximate
distribution of p(x) rather than the exact distribution. The approximate distribution is esti-
mated from the family of distributions q(z|x). This results in a distribution that provides a
good approximation of the data while minimizing the complexity of manipulation and opti-
mization operations.
Variational Inference is fundamentally based on two key concepts: the Kullback-Leibler Di-

vergence (KLD) and the Evidence Lower Bound (ELBO).
The KLD measures the divergence between the approximate distribution q(z|x) and the

exact conditional distribution p(z|x). In simple terms, it is essential for validating a good ap-
proximation of the data.
This leads to the formula:

q∗(z|x) = argminDKL [q(z|x) ‖ p(z|x)] (3.1)

At the end of this process, we can have confidence in a good latent representation of the
data because the goal of finding the best approximate distribution q(zx) among the possible
distributions inQwill have been achieved.
The goal to maximize, as an immediate consequence of estimating the KLD, is the ELBO,

which aims to find the best approximation of the latent data distribution. In fact, the objective
function of the VAE is [39]:

L(θ,φ) = Eqφ(z) [log pθ(x|z)]− βDKL (qφ(z|x) ‖ pθ(z)) (3.2)

or, in other words, the difference between the likelihood and the KL.
It is possible to decompose the objective function into three essential blocks[40]:

• Reconstructive block. It focuses on a coherent reconstruction of the initial samples. In
other words, it aims to minimize the reconstruction error.

• Regularization block. It deals with regularizing the approximation to q so that the ap-
proximate distribution does not deviate too much from the true one. In other words, it
deals with the probabilistic estimation of the model.

• The reconstruction term β. The value of this parameter regulates the effect of the two
blocks presented earlier. In particular, as β increases, greater emphasis will be given to
regularization. Conversely, the model will favor the reconstruction aspect
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Figure 3.2: Variational AutoEncoder ‐ General structure

So it’s possible to intuitively visualize the structure and operation of a Variational Autoen-
coder (VAE) from the following image, where it’s clear how the encoder, with the involvement
of mean and variance values that allow regularization of the space, manages to create a bottle-
neck. This will serve as the starting point for the decoder to generate new observations.

Reparametrization trick

The effective functioning of a neural network largely hinges on the backpropagation mech-
anism, which is crucial for optimizing the model’s weights. This technique is rooted in the
computation of the gradient of the loss function by retroactively propagating the error. This
mechanism facilitates the updating of weights accordingly, typically through the employment
of a gradient descent algorithm. Consequently, backpropagation enables the training of net-
works to be efficient, swift, potent, and to achieve optimal performance.
Variational Autoencoders also heavily rely on this method, but for its proficient implemen-

tation, it is imperative to employ the so-called reparametrization trick.
Indeed, the VAE harbors an intrinsic challenge: the estimation of the latent space necessi-

tates sampling from a reference distribution, usually denoted as a multivariate normal. Such
sampling gives rise to stochastic elements since extracting any sample from a probabilistic distri-
bution entails a random process. However, the backpropagation algorithm cannot be directly
executed through randomnodes. It also involves the utilization of a gradient descent algorithm
during sampling, which introduces a stochastic element, hence being non-differentiable.
To be precise, backpropagation pivots on computing gradients in deterministic operations,

thereby necessitating exact gradients. Yet, sampling remains a random act and lacks defined
gradients.
This would render the employment of backpropagation unfeasible.
This is where reparametrization steps in, with a mechanism that is inherently quite straight-

forward: it bifurcates the deterministic and the stochastic elements. Therefore, one wouldn’t
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sample from N(m,σ2), but would instead sample the error from the N(0, 1) distribution,
subsequently deriving the desired sample z.
The error component, epsilon, introduces randomness, transforming µ + σε into a fully

deterministic and differentiable entity[41].

Figure 3.3: Reparameterization trick mechanism

In conclusion, reparametrization serves as the cornerstone that facilitates the use of back-
propagation while preserving the model’s stochastic essence.

Loss Function

Loss functions are well-known components of a neural network that allow us to assess the
model’s performance during training. In fact, in supervised problems, the loss function is al-
ways closely related to the accuracy (or its variants) as it measures the effectiveness of amodel in
capturing information and making accurate predictions of output data. In our case, the goal
is to minimize the loss, which means that in the training process, from input to output, the
information loss is minimal. This leads to effective model optimization.
In this thesis, the loss function used will be the typical loss function of variational autoen-

coders, which is a combined loss composed of the sum of the reconstruction loss and the
Kullback-Leibler Divergence (KLD).

Combined Loss = RLweight× RL+ KLD (3.3)

The reconstruction loss measures the error between the input and the output reconstructed
from the input. In the case of variational autoencoders, this measure is calculated using Mean
Square Error or BinaryCross-Entropy, depending on the reference data. This loss aims to com-
press the input into a lower-dimensional space as efficiently as possible while ensuring consis-
tency in regenerating the initial input. Formula is:
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Reconstruction Loss = 1

N

N∑

i=1

∥∥∥y(i)target − y(i)predicted

∥∥∥
2

2
(3.4)

The KLD is the function that transforms the latent space into a normally distributed space.
This results inmore agile data sampling and is suitable for generating coherent newdata, as well
as exploring and manipulating the latent space. Formula is:

KL Divergence Loss = −1

2

N∑

i=1

(
1 + log(variance(i))− µ(i)2 − exp(variance(i))

)
(3.5)

The use of the combined loss leads to faithful input reconstruction, the ability to generate
various similar timbres, and a sufficiently manipulable latent space.

3.2.1 Conditional Variational Autoencoder

The Conditional Variational Autoencoder model (CVAE) originates as a variant of the VAE
(Variational Autoencoder). It is characterized by the presence of an additional attribute that
conditions the model’s behavior. Similar to the VAE, the CVAE consists of both an inference
network (encoder) and a generative network (decoder). Mathematically, the only difference lies
in the estimation of p(z|x).
ACVAE is amore complexmodel than a simple VAE, primarily because it requires a slightly

more elaborate design (including the target variable y) and, most importantly, an appropriate
dataset in which each observation is associated with a label y.
The significant advantage of a CVAE is its ability to incorporate additional information be-

yond what can be gleaned from the data alone. In this project, the CVAE will be employed
because it offers a good potential for generating clean, high-quality sound that aligns well with
the desired type of audio.

3.2.2 Latent Space and Sound Variability

VAEs are designed to have a regularized latent space, aiming to lead to the generation of coher-
ent samples. However, the latent space is not merely a passageway before generation; it is a re-
markable mode of timbral exploration. The latent space allows us tomanipulate certain sound
characteristics and merge them[40]. This is because we are in a regularized space identified by
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specific points, each representing a different sample. By projecting our latent space using some
dimensionality reduction technique, it becomes visualizable, with closely related observations
forming small clusters. If each point, based on its features, occupies a space in proximity or
distance to other points, respectively closer or farther in terms of common characteristics, it
means that we can thoroughly explore all timbral variations contained in our reference data.

Figure 3.4: Regularized Latent Space behavior

In this study, we chose to use two dimensionality reduction techniques for space visualiza-
tion: PCA and T-SNE.

Principal Component Analysis

Principal Component Analysis (PCA) is a linear dimensionality reduction technique. It starts
with the variables that describe the original data. Using a covariance matrix, it estimates the
relationships among the different variables. It then proceeds to calculate eigenvalues and eigen-
vectors, which allow the selection of principal components that capture themost data variance.
In essence, it aims to choose dimensions that, despite reduced dimensionality, explain as much
data variability as possible. At the end of the process, the reduced-dimensional data is ready to
be projected and visualized, either in 2D or 3D, depending on the number of selected compo-
nents.

T-Distributed Stochastic Neighbor Embedding

For the description of howT-SNEworks, please refer to the algorithmoutlined in the reference
paper of this visualization technique for the latent space [42].
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Figure 3.5: T‐SNE Algorithm

3.2.3 Advantages andDisanvantages
In general, the use of autoencoders and their variants [43] has been highly successful, as they
are a very flexible type of model capable of capturing various types of information, both linear
and nonlinear, from different types of data. They are also highly adaptable and customizable,
providing access to a wide range of hyperparameters that can be chosen by the user. However,
this is also a drawback of autoencoders, as they are indeed very sensitive to hyperparameters,
requiring careful tuning by the programmer. Additionally, despite their flexibility, they can be
quite computationally expensive.
Their use has proven to be highly effective in various types of tasks, including anomaly detec-

tion, feature extraction, sample generation, and denoising. Furthermore, their use is also quite
effective in the field of music. Specifically in the context of generation, autoencoders are not
only extensively studied in scientific literature [35] but also highly appreciated for their ability
to generate sound that seamlessly combines coherence and variability of the desired sound.
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4
Sound generation by means of CVAE

In this chapter, I will present the attempts at sound generation for the two reference datasets.
Specifically, the objective is not limited to faithful sound generation from the input but also
to the exploration of sound in its various aspects. In particular, harmonic and inharmonic
sounds will be analyzed separately. It is expected that these two different types of sounds will
be characterized by different aspects. For harmonic sounds, greater attention will be placed on
the timbral resemblance of the represented instrument, while for non harmonic sounds, the
ability to faithfully recreate the effects that are most present in the chosen sounds, such as the
sense of depth or sizziness, will be the focus. A fundamental subject of studywill also be sound
exploration through latent space.

Input sound: a compromise between detail and cost

In the preprocessing phase towards the mel spectrogram, as previously described in detail, the
choice of the number of mel bands to represent the sound plays a fundamental role. This
parameter affects two crucial aspects essential for good generation:

• Sound resolution, or howmany sound details we choose to capture.

• Input shape, or howmuch computational effort the machine will need to train the data.

Specifically, the number ofmel bands alters the length of the input image’s axis. For example,
a mel value of 64 results in a shape of 64 in one of the dimensions. This is why it is important
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to choose this parameter carefully. For good sound generation, the soundmust bemore or less
clear, sharp, and detailed, but at the same time, I do not want disproportionate computational
complexity compared to the generative task’s objective. The values used for parameters and
hyperparameters for each dataset will be referenced in the following paragraphs.

Code Implementation

The code implementation was carried out using various libraries, which can be divided into
three categories:

• UTILITY: use of common Python libraries for data manipulation (numpy, pandas...)
and visualization (matplotlib, sklearn...)

• DEEP LEARNING: I chose an approach with PyTorch, driven by the fact that it is a
highly flexible and customizable library, highly appreciated by the scientific community,
even in the musical field, for its computational efficiency.

• SOUND: for sound data processing (especially for input and output conversion pro-
cesses), I preferred to use LIBROSA. Libraries like soundfile and sounddevice were also
essential.

An overview of the code implementation can be found in the GitHub repository [44].

4.1 CVAE application
AConditional Variational Autoencoder (CVAE) has been chosen for the following reasons:

• The structure of the datasets used allows for it. In fact, both datasets used come with
labels. For the Good Sounds dataset, the condition will be the musical instrument. For
the Food Sounds dataset, the condition will be the type of sound.

• ACVAE can acquiremore information about sound due to the presence of label y. This
leads to:

– Clearer and separable latent variables
– Better manipulation of variables and, consequently, the generation of sound
– When a specific sound is required, precise and accurate generation of that exact
sound.
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4.1.1 Non-Harmonic Sounds

Non harmonic sounds are characterized by greater complexity. However, since the original
dataset contains a wide variety of sounds, the models to be experimented with and the gener-
ated results may vary significantly. Several attempts were made, ranging from simpler to more
complex models:

Name Characteristic Time per Epoch Val Loss Original VS Generated
Model 1 Three hidden layers (two

in encoding, one in de-
coding) with 32 hidden
units each. LS = 32.

6s 0.0010

Model 2 Three hidden layers
(two in encoding, one in
decoding) with 256 and
128 hidden units. LS =
64.

5s 0.0010

Model 3 Three hidden layers
(two in encoding, one in
decoding) with 256 and
128 hidden units. LS =
128.

5s 0.0010

Model 4 Six hidden layers (three
in encoding, three in de-
coding) with 1024 or 512
hidden units each.

20s 0.0008

Model 5 FourHiddenLayers (two
in encoding, two in de-
coding) with 256 hidden
units each. LS = 256.

6s 0.0008

Model 6 FourHiddenLayers (two
in encoding, two in de-
coding) with 256 hidden
units each. LS = 512.

9s 0.0010

Table 4.1: Some Experimented Models

As for hyperparameters, various trials were conducted:
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• Batch Size: 64, 128, 256

• Learning Rate: 0.0001, 0.0005, 0.001

• Optimizer: Adam

• Epochs: 50, 100, 250, 500, 1000

As activation functions, ReLU, TanH, and sigmoid have been experimented with. Specifi-
cally, sigmoid is used in the final layer of each model. In fact, the sigmoid activation function
maps values from 0 to 1, which is perfectly compatible with the type of data I am dealing with,
as themel-spectrograms used as input are normalized between 0 and 1. Regarding the loss func-
tion used, please refer to subsection “Loss Function” in Section 3.2.

It’s important to note that as the number of epochs increases, the generated results do not
deteriorate; rather, they become ineffective as the loss function stops decreasing around the
100th epoch. Below is a figure showing the trend.

Figure 4.1: Loss Plot ‐ Non Harmonic

As initial observations regarding the model’s performance, which will be further elaborated
in the following paragraphs, it is possible to deduce that:

• Less is more: The use of fewer hidden layers resulted in greater similarity to the original
sound and smoother output. Addingmore hidden layers does not necessarily lead to im-
proved performance, or at least not significantly. There is a stronger risk that the sound
appears mechanical with more hidden layers.
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• Thenumber ofhiddenunits is naturally linked to themodel’s complexity, andhere again,
less is more.

• The choice of activation function is crucial. Three types were tested: ReLU, Sigmoid,
and TanH. Only ReLU is capable of achieving good results.

• The very low loss value is due to the type of image that is predominantly all blue with a
few yellow lines to predict. It is important to consider this relatively (as a comparison be-
tween different models) rather than in absolute terms. The ultimate judgment of sound
quality is, however, the perceptual evaluation by human listening.

At first glance at the spectrogram reproductions, the generation appears to be functioning,
and the sound is similar to the original.

The most crucial factor for sound generation turned out to be the dimension of the latent
space. While hyperparameters may provide only marginal improvements to generation, the
latent space has the ability to completely alter the sound generation process.

Sound Complexity and Latent Space Dimensionality:
why they can change everything

In general, it can be observed from the early generations that an excessively high-dimensional
latent space generates sound that is overly mechanical, stuttering, and less evocative. On the
other hand, an excessively low-dimensional latent space makes the sound unclear, intuitively
because the latent space does not seem capable of capturing all the essential details of the audio
clip. Consequently, the generated sound appears anonymous and devoid of its initial charac-
teristics, while still preserving a certain level of listenability.
Whendealingwithnon-harmonic sounds, theproblembecomesmore complex as thedataset

comprises sounds with diverse characteristics. This implies that in the generation process, a sig-
nificant distinction must be made between sounds in the dataset with a more complex and
irregular structure compared to those that, although non-harmonic, exhibit a predominantly
regular and orderly structure.

• Simpler sounds: continuous and deep [e.g., 3, 8]

• More complex sounds: sizzling, scratchy, or noise like background sounds [e.g., 2, 17]
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Figure 4.2: SPECTRUM: simple VS complex sound

The varying complexity of sound canbe discernednot only in its audio representations, such
as the mel spectrogram used as input but is also evident in the spectrum, as illustrated in the
graph below.
Simpler models, such as those with fewer hidden units, prove to be very effective for con-

tinuous and deep sounds, perhaps because they possess very distinct characteristics that can
be captured even by a simpler model. Their not entirely irregular structure allows for good
compression in the latent space even with lower dimensions, such as 64 or 128. In contrast,
more complex sounds, at the same latent space dimensionality, are generated in a bothersome
andmechanicalmanner. Therefore, a high-dimensional latent space capable of capturingmore
information is required.

4.1.2 Harmonic Sounds

For harmonic sounds, the same models were implemented, and experiments were conducted
by varying all the parameters and hyperparameters used for non-harmonic sounds. Following
a similar trial-and-error approach, good generation results were achieved. Here, the ease of
training compared to non-harmonic sounds lies in the lower sound variety. In fact, as previ-
ously mentioned in the dataset description, what distinguishes the sounds is the timbre, not
the sound type (presence of the timbre of a single musical instrument) or its nature (sustained
sound, same frequency).
For this task, themodels that were experimentedwithwere generally the ones tested for non-

harmonic sounds. In the case of harmonic sounds, a larger latent space was required. Among
themodels experimentedwith, we canmention the amodelwith three hidden layers (two in the
encoder, one in the decoder), 512 hidden units, and a latent space of 256 as the best-performing
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one, proved to be an excellent solution. With a time per epoch of 8 seconds and a loss of
0.0005, the model is simple and efficient, capable of capturing the main information. Unlike
non-harmonic sounds, all the sounds benefit greatly from the same type of model, which is a
direct consequence of the homogeneity of sound complexity.
All models were trained for many epochs, and below is the image of the loss plot for each

epoch.

Figure 4.3: Loss Plot ‐ Harmonic

It is evident that it behaves similarly to that for non-harmonic sounds, reaching a minimum
around 100 epochs. Generally, the loss values are very close, fluctuating between 0.0005 and
0.0006. In terms of auditory perception, the sounddoes not appearmechanical at all but rather
very fluid. The generated timbre is clearly recognizable and attributable to the original instru-
ment.

4.1.3 Without conditioning: a convolutional VAE approach

Among the various experiments conducted, I report the attempt to remove the conditional part
from themodel. This can be achieved by simply removing the labels from the reference dataset
and adjusting the model training accordingly. In addition to implementing the models already
presented in the previous paragraph (which also yielded unsatisfactory results), we considered
trying the use of convolutional layers.
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Using convolutional layers in variational autoencoders could yield significant benefits in cer-
tain specific tasks. Specifically, they are highly effective and widely used in classification algo-
rithms, denoising operations, and capturing specific features. Convolutional layers have their
natural application in computer vision and, in general, in tasks related to extracting valuable in-
formation from images. Since we are using spectrograms as input, which can be considered as
“images” of sound, it was advantageous to employ this technique. In fact, a convolutional vari-
ational autoencoder is capable of extracting valuable information from spectrograms as well.
However, this approach proves to be less suitable, both empirically and computationally, for
sound generation objectives.
This is related to the lack of constraints in the latent distribution, leading to the generation

of sounds that are less consistent with the original ones or otherwise unsatisfactory. At the
computational level, the algorithm is less efficient, more complex, andwith significantly longer
execution times, taking 3 seconds per epoch. The non conditional convolutional model is not
well-suited for sound generation. It is worth noting that this type of model is rarely used for
musical and generative purposes in the scientific literature.
Below, we present a typical poor generation in the case of not conditioning the autoencoder,

despite the implementation of convolutional layers.

(a)Original Spectrogram (b) CVAE Generated Spectrogram

Figure 4.4: Conditional VAE Generation ‐ CELLO Sound

In the case of cello sounds, you can observe the following characteristics of the generated
sound:

• It is very noisy, and the sound intensity is significantly lower, making the audio clip al-
most distant in perception.

• Sometimes it reproduces only the fundamental frequencywithout capturing the timbral
characteristics of the sound. This is in stark contrast to the primary goal, which aims for
a purely timbral analysis.
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4.2 Generation of sound morphing
In general, variational autoencoders work quitewell for sound generation. However, the assess-
ment parameters for generation vary depending on whether the sounds are harmonic or non-
harmonic. In harmonic sounds, themost significant parameter is the timbre of the instrument,
which is the auditory recognizability of the instrument producing the sound. In non-harmonic
sounds, the most significant parameter is how well the generated sound preserves some form
of structure. For example, the evaluation includes assessing how well a continuous sound has
preserved its continuity or how well a scratched sound has retained its original character.
These evaluations are based on two characteristic data comparisons:

• Original mel-spectrogram vs. generated mel-spectrogram. Even at a visual level, it is pos-
sible to determine if the reference pattern has been reproduced. Measures such as loss
scores or Mean Squared Error (MSE) can also be helpful in this regard.

• Original sound vs. generated sound. For this assessment, only the human ear is taken
into consideration.

A crucial step to proceed with sound evaluation is the conversion from a spectrogram to
audio. This essentially requires the reverse process compared to the initial preprocessing. The
most widely used and highly effective method is the Griffin-Lim[45] algorithm. Its mecha-
nism is based on an initial estimation of the sound’s phase. Then, through an iterative process
until convergence, the audio signal is reconstructed using the inverse Fourier transform and in-
formation obtained from the spectrogram, such as magnitude. At the end of this process, the
reconstructed signal should closely resemble the original audio. To achieve accurate reconstruc-
tion, it is essential to use the same parameters as those used in the input preprocessing, namely
a hop length of 256 and a frame size of 1024. The functioning of the Griffin-Lim algorithm is
described below:

Figure 4.5: Griffin Lim Algorithm
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Before to continue, it’s important to note that the parameters for assessment may vary de-
pending on whether the sounds are harmonic or non-harmonic, and these considerations are
essential when evaluating the quality of sound generation.

Non-harmonic Sound

Asmentioned earlier, in the case of non-harmonic sounds, the evaluation of generation is based
on how well it reflects its initial characteristics (see the table in section 2.2.1).
A fundamental consideration to make is that the quality of generation is inherently linked

to the complexity of the sound. In fact, it is quite interesting to observe the difference between
generating a simple sound and a more complex sound during the training phase. Below is an
image of the generation of a simple sound after only 5 epochs.

Figure 4.6: Sound Generation ‐ Simpler non‐Harmonic Sound

While even the simplest soundhas not beenperfectly generated, it is evident that its structure
has been largely captured by the model, which will be able to refine the sound further with
additional epochs.
On the contrary, for a complex sound, capturing the pattern requires many more epochs to

achieve even a minimum resemblance to the original spectrogram. A complex sound, after 5
epochs, has not been understood at all and requires at least 100 epochs for a minimal pattern
definition.

Figure 4.7: Sound generation ‐ More complex non‐harmonic Sound
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While itmay appear that the pattern has been recreated after 100 epochs, a closer look reveals
that the generated sound is rigid. This results in a sound that, while retaining the pattern, is
somewhat mechanical and less natural compared to the original.
This effect is a direct consequence not only of the types of sounds, whethermore or less com-

plex but also of the dataset itself. In fact, 500 clips have been provided for each sound type. For
some sounds, the clips are very similar to each other, which becomes evident even upon initial
listening. Special attention should be given to all those sounds with rapid variations over time.
These variations are very rapid and highly variable from clip to clip. This could explain the
greater difficulty in capturing the main features. In contrast, continuous or deep audio clips
have minimal variations, both in terms of time and frequency. They are also very stable in each
audio clip, which greatly aids the model’s training. To obtain measurable confirmation of this,
I randomly selected a certain number of audio clips from the same sound class for two differ-
ent sounds: one with a clear dominant frequency, continuous and static, and one with rapid
variations over time. When calculating the Mean Squared Error between samples of the same
class from their original data, the continuous sound showed significantly lower MSE. There-
fore, we can confirm that the internal variability between classes also contributes to a simpler
or more complex generation by the model. Below are images of three sounds from the same
class compared, one more static and one with rapid variations over time.

Figure 4.8: Static sounds of the same class

Figure 4.9: Dynamic over time sounds of the same class

There is a clear distinction between continuous sounds and more dynamic sounds, and the
complexity of sound plays a fundamental role. However, in general, sound generation for non-
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harmonic sounds is quite good. In addition to generating themain characteristics of the sound,
other elements such as sound intensity and their development over the audio clip duration are
correctly regenerated.
Below are three generated sounds, specifically sound 0, 10, and 16. Please note that the good

reconstruction is evident not only from the mel spectrogram, which is the model’s input but
also from the spectrogram and the corresponding waveform.

Figure 4.10: Original ‐ Sound 0

Figure 4.11: Generated ‐ Sound 0

Figure 4.12: Original ‐ Sound 10

Overall the generation of non-harmonic sounds is quite good. Perceptually, the generated
sounds preserve all the main properties of the original sounds. In particular, smooth, continu-
ous, and deep sounds are particularly recognizable, while glitchy, sizzling, and sci-fi sounds are
a bit more challenging to generate. However, this study does not only focus on sound gener-
ation but also on its analysis. That’s why this paragraph will provide a detailed analysis of the
latent space of the reference dataset.
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Figure 4.13: Generated ‐ Sound 10

Figure 4.14: Original ‐ Sound 16

Figure 4.15: Generated ‐ Sound 16

For constructing the projection of the latent space, themodel was chosenwith a latent space
dimensionality of 256. Dimensionality reduction was applied using PCA and T-SNE. Specifi-
cally, for PCA, it was chosen to visualize the projection in the case of both 2 and 3 components.

Figure 4.16: Principal Component Analysis with 2 and 3 components
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Regarding T-SNE, it was chosen to visualize 2 components with a perplexity of 10, an early
exaggeration of 40, and a number of iterations of 3000. The choice of these values is not ran-
dom but the result of several attempts. The combination of all these values is what made such
a distinctly separate visualization between sound classes possible. The space, being regularized,
is taken from the various classes in a fairly uniformmanner.

Figure 4.17: T‐SNE for non‐Harmonic sounds with 2 components

First of all, it should be noted that the further the classes of points are from the center, the
clearer the characteristics and well-defined patterns they exhibit. Conversely, central points
show less evident patterns, often due to the sound itself (which has a less pronounced pattern)
but also due to the model’s inability to capture all the nuances.
We can imagine the projected latent space as divided by two diagonals that describe its basic
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characteristics. Specifically, there are two characteristics that best define the latent space:

• Smoothness. Continuous sounds and sounds with frequent temporal variations and
discontinuities are extremely separated in space. For example, the first quadrant consists
of the smoothest sounds among all, while in the third quadrant, sounds are full of dis-
continuities and sonic distortions.

• Frequency. The dataset is very diverse regarding frequency bands, as deep sounds have
very low frequencies, up to sounds with variable and higher frequencies.

Harmonic Sound

For harmonic sounds, faithful timbre regeneration is of utmost importance. In this regard,
VAEmodels can be considered an excellent solution, as the generated sounds have proven to be
highly proficient in producing a coherent representation of the reference musical instrument.
For a comprehensive sound analysis, it is necessary not to limit oneself to the evaluation of

musical timbre alone; there are additional aspects to consider.
Remember that the initial dataset consists of sounds that not only have different timbres

but also various characteristics. The frequencies vary and change not only depending on the
nature of the instrument but also among sounds of the same instrument, there are variations
in pitch and frequency (see the figure below, where the black line represents the fundamental
frequency range for each musical instrument, while the striped pattern represents harmonics
range).

Figure 4.18: Sound Range for each musical instrument

It is important to consider that the regeneration is optimal for all types of frequencies and
instrument ranges.
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However, the higher the frequency emitted by the instrument, the lower its resolution and
pleasantness. While in low-frequency clips (clarinet, cello...), the sound is clear and deep, in
higher frequencies (such as violin and piccolo), it tends to be shrill and less natural. Neverthe-
less, overall sound quality is perceived as quite good.
Here is the generation of the spectrogram at the beginning and at the end of the training

process.

Figure 4.19: Harmonic Generation ‐ an example

Both in terms of sound and in terms of the spectrogram, the sound is generated very well. It
is possible to recognize the musical instrument and its timbre in each sound. For an overview
of the excellent performance of the model, please refer to the following image.

Figure 4.20: Original VS Generated Instruments

Although the model’s performance is excellent, there are two inaccuracies that arise in some
generations. The first inaccuracy concerns the discontinuity of the sound. It is not always
regenerated too similarly to the original, as the model tends to make the discontinuous sound
less discontinuous. However, this does not represent a significant issue in this research, as our
goal is to generate a good characteristic sound, not an identical copy of a sound.
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Figure 4.21: Original VS Generated Sound

The second inaccuracy concerns the generation of harmonics. While it is true that the fun-
damental frequency is always reproduced optimally, the harmonics tend to be abundant. This
often happens in sounds with delayed attack or with many harmonics in their spectrogram.
Here, the inaccuracy has a negative impact on sound production, as it results in the presence of
disturbing frequencies when listening. They are not entirely unpleasant, but they are certainly
noticeable and make the sound heavier. However, the sound still appears more or less natural.

Figure 4.22: Original VS Generated Sound 2

Another fundamental element is the so-called sound envelope, which represents the varia-
tion in intensity and amplitude of a sound over time. Themost commonmodel of an envelope
is the ADSR[46] (Attack, Decay, Sustain, Release), which evaluates the sound’s change over
time by dividing it into four phases: Attack, Decay, Sustain, Release.

In general, we can observe that the generation is quite consistent throughout the audio, ex-
cept for the attack phase, whose accurate generation is closely related to the reference audio clip.
In fact, the timing variability of the attack varies greatly from clip to clip. Some audio clips have
the sound attacking shortly after the beginning, while others have the sound attacking towards
the end. Moreover, the nature of the attack can differ; it can be sharp and sudden or softer and
more gradual. Despite the significant variability, it is easy to notice that the immediate attacks
are typical of clarinet and trumpet clips, while less immediate attacks (starting from themiddle
of the audio) are typical of oboe and piccolo. The cello stands out for having rather powerful
attacks.
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These observations are crucial for a thorough analysis of the generativemodel’s performance.
The attack phase is what typically poses the most challenges in the case of delayed attacks. The
phenomenon that occurs is clearly visible in the spectrogram shown below:

Figure 4.23: Attack Issue in CVAE Generation

While the model faithfully reproduces the original sound in immediate and soft attacks, a
peculiar sonic effect occurs in sudden and delayed attacks, preceding the actual attack. It is
plausible that the model, trained on temporally diverse attack data, attempts to fill the silence
preceding the attack with harmonic sounds in some way. This suggests that the latent space
can capture information about the timing of the attack but is less effective at capturing infor-
mation about moments preceding it, which are filled with attack frequencies but at a lower
intensity. The resulting effect is neither the most pleasant nor the most unpleasant. It’s as if
it sonically prepares for the actual attack, which then occurs at the right moment. While this
doesn’t compromise the sound generation after the attack, it’s worth noting that the attack
phase is an essential part of the sound, as it clearly defines its nature from the beginning. This
may be seen as one of the model’s significant limitations.

In the following table, we provide a concise summary of some sound characteristics and their
evaluation in the generated sounds.
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Characteristic What is it?[47] Generation Result

Timbre

Attribute of auditory sensation in
terms of which a listener can judge
that two sounds similarly presented
and having the same loudness and
pitch are dissimilar (ASA, 1960)

Clearly recognizable by thehumanear,
even by non-experts (see the following
chapter for further details).

Pitch
Attribute of auditory sensation in
terms of which sounds may be or-
dered on a musical scale (ASA, 1960)

Extremely similar to that of the
original sound.

Intensity Subjective perception of sound
pressure

Extremely similar to that of the origi-
nal sound.

Envelope How the level of a sound wave
changes over time

Similar to the original sound, butwith
issues related to the attack depending
on the instrument and the reference
audio clip. Some difficulties in case of
tremolo or discontinuity in the sound.

Table 4.2: Harmonic Generation Evaluation

In this case as well, an analysis of the latent space through projection and dimensionality
reduction can provide a clear understanding of the encoding process.

Figure 4.24: Latent Space Plots ‐ 3D PCA and T‐SNE

Unlike non-harmonic sounds, in this case, the classes are not so separable from each other.
However, this should not be a problem as it does not significantly affect the generation pro-
cess. While a latent space with linearly separable classes ensures excellent class classification, it
is also true that we are using a variational autoencoder that regularizes the latent space, mak-
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ing it more challenging to separate the classes without significantly affecting their generation.
A clear example of this is seen when applying the same model with the same parameters and
hyperparameters but without regularization, i.e., implementing an autoencoder without the
variational component.

Figure 4.25: Woodwind Latent Space with AE

The reason behind this limited separation between classes may be that many instruments
share frequency bands, and frequency is considered the most relevant feature for sound classi-
fication by the encoding. This is evident from the plot, as the class furthest from the others is
the cello class, which has the lowest and most distinct frequency range compared to all other
instruments. The closer one gets to the center, the higher the frequency. It is no coincidence
that the outermost points are from the cello, clarinet, and trumpet classes, while the innermost
points are from the piccolo and violin classes. I refer the reader to Figure 4.18 for an overview
of the frequency range of each instrument, perfectly respected and cataloged in the acquired
latent space.

However, frequency is not the only discriminator. In fact, the characteristic that truly maps
the points in the latent space is the timbre. It is related to three implicit features: frequency
and harmonics (that we have already discussed), attack/decay, and tremolo.

Specifically, it can be observed that there is a clear distinction between continuous and well-
defined sounds (right part of the plot) and discontinuous sounds (left part). Furthermore, the
area around is characterized bywell-defined frequencies and harmonics with strong harmonics
present. The closer one moves towards the center, the less defined the sounds become. This
can also be caused by limitations in sound reproduction or a less clear timbral quality.

50



Figure 4.26: Mel‐spectrograms distributed in Latent Space

It’s possible to conclude this section by stating that the latent space is highly capable of cap-
turing nuances of sound for each type of sound, and even in the case of a latent space with
separable classes, sound generation continues to be optimal.
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5
Experimental evaluation

In this section, I will illustrate the process that led to the creation of audio clips that smoothly
blend different sounds together in a gradual and controlled manner. The goal of good sound
morphing is indeed to transition from an initial sound to a final sound thatmay bemore or less
different (with perceptually different characteristics such as timbre or pitch)while traversing all
characteristic combinations between the two soundswithout a significant break between them.
Fluidity, smoothness, and naturalness in the sound change are the ultimate objectives of this
process. In the scientific literature, there are variousmethods to perform soundmorphing[40].
In the field of sound, there has been extensive exploration of the interpolation[36] technique,
which allows us to interpolate the most relevant features of a sound by controlling a single pa-
rameter, alpha, a coefficient that ranges from 0 to 1 and determines the level of interpolation.
In this research, we opted for the use of the weighted average technique, which manages the
metamorphosis process from one sound to another through a control parameter.

5.1 How to combine sounds
The basic operation is very intuitive: sounds with a different degree of feature mixing are con-
catenated together, starting from the initial sound and ending with the final sound. The start-
ing point is the latent space, which maps the sound through some of its characteristics. For ex-
ample, in the case of harmonic sounds, the sounds aremapped for their frequency and smooth-
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ness. At this point, it is necessary to choose two points in space, preferably from two classes of
sounds that are more or less different from each other. Then, the weighted average formula is
applied:

Weighted Average =
weight1 · point1 + weight2 · point2

weight1 + weight2
(5.1)

Thiswill generate different combinations of features that, depending on theweight (ranging
from 0 to 1) assigned to each observation, will be more or less similar to the initial sound. The
weight of 0 corresponds to the absence of characteristics from the first chosen sound and the
presence of characteristics from the second observation (sound). Intermediate points, such as
a weight of 0.50, indicate a perfectly equal mix between the initial and final sounds. It ends
with a weight of 1, equal to 1, whichmeans the total absence of characteristics from the second
chosen sound. At this point, the decoding part of the CVAE can be applied to regenerate the
sounds and obtain their respective spectrograms. It should be noted that the decoding is made
independent of the reference classes, allowing for the generation of sounds of a different nature
without the constraint of belonging to a specific class (which would be an obstacle to mixed
generation).

The figure below illustrates the process leading to the formation of various sound combina-
tions:

Figure 5.1: Sound morphing process ‐ pt.1
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5.2 How to improve smoothness and variability

While the creation of audio that blends points in the latent space is the fundamental core of the
process, it is also true that there cannot be successful sound morphing without a good connec-
tion between one observation and another. The risk of concatenating observations without
some level of preprocessing inevitably leads to sound distortions or clicks. Furthermore, an-
other fundamental problem is the lack of sound variability. These issues attempt to find a
solution in some operations that will be presented in this section.

Fade In/Fade Out andOverlap

After creating various audio mixes, it is necessary to concatenate them in a thoughtful manner.
To achieve a natural and smooth transition, audio clips should overlap at their respective initial
and final parts. Additionally, some fading in and out at the entry and exit points of each clip is
required for smoother transitions. Specific techniques are employed for this purpose.

Fade In is a gradual entrance of sound, while Fade Out is a gradual exit. They work by se-
lecting a reference function, which can be of various types. In this research, linear, exponential,
and logarithmic functions were experimented with. While the exponential function proved
to be ineffective, linear and logarithmic functions are suitable for smoothing the transition
between clips. For instance, in the case of harmonic sounds, a logarithmic Fade In/Out is op-
timal, while for non-harmonic sounds, a linear function suffices for simple sounds, and the
logarithmic function is more suitable for complex sounds. There is a portion of sounds (when
concatenating two complex and substantially different sounds) where the transition is not very
smooth even with the use of a logarithmic function. For experiments on this concatenation,
Reaper[48] was chosen, as it provides great flexibility and manipulation of these operations,
designed for music production.

Once an appropriate late fade in/out is applied to the audio, overlapping is applied according
to the chosen overlap coefficient, which determines the portion of sound to be matched.

Below is an explanatory plot that represents the concatenation of two violin audio clips.
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Figure 5.2: Preliminary procedures for sound morphing ‐ fade in/fade out + overlap

Perlin Noise

The variability in sound morphing can be increased in two ways:

• Changing the observation by selecting one from the same class to vary the type of sound
while preserving its characteristics.

• Applying Perlin Noise of different intensities during the sound morphing process.

Perlin Noise is a gradient-based noise commonly used in computer vision applications but
applicable to sound as well. While adding noise to a spectrogram and, consequently, its au-
dio waveform does alter the audio, it’s important to note that too random of a noise compo-
nent leads to an unpleasant and non-uniformmutation, resulting in audiomore distorted than
the original. Perlin Noise, on the other hand, has the characteristic of being controlled noise,
which is why it is widely used for creative purposes. The parameter controlling its complexity is
referred to as “octaves”. Below, you can see a non-harmonic sound from the dataset in its varia-
tions depending on the type of Perlin Noise injected. It’s easy to observe that the spectrogram
changes, but only slightly and in a completely controlledmanner, preserving its distinctive char-
acteristics.

In the image below, you can see how the spectrogram of a sound changes depending on the
different type of Perlin noise added.
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Figure 5.3: Perlin Noise Injection effect

5.2.1 General Considerations
In general, the sound is quite pleasant, and the transition from one sound to another is gener-
ally very smooth. For further considerations on the quality of soundmorphing, please refer to
the following chapter. Before delving into the details, it is appropriate to make some consider-
ations about the operations performed for the creation of sound transformations:

ADVANTAGES:

• There is a high level of control. The ability to choose the number of observations to gen-
erate before arriving at the final observation canmake the transition very fluid, especially
when dealing with sounds with very different characteristics. The control over the over-
lap coefficient also contributes to smoothness.

• The latent space allows for combinations with great flexibility. Even with a simple cal-
culation like weighted averaging, it is possible to obtain various results. This allows for
the mixing of many different types of sounds, starting from a reasoned combination of
theirmain characteristics. Understanding the ratio withwhich points are projected into
the latent space enables the creation of sounds with well-defined features.

DISADVANTAGES:

• The final result depends too much on parameters and hyperparameters. This problem
is closely related to the nature of the data, as the attacks in the clips vary in time, leading
to very short-duration sounds in some cases (e.g., in oboe or piccolo clips). The shorter
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the actual sound duration, the less possibility there is for smooth transitions unless a
programmer meticulously controls the overlap coefficient or adjusts the starting point
of the sound. This is further compounded by the model’s inability to reconstruct si-
lence in the case of clips with delayed attacks, filling the silence with preparatory and
inappropriate frequencies.

• The smoothness is too closely tied to the distance between points in the latent space.
The greater the distance between points, the greater the difference in sound characteris-
tics, and themore intermediate steps are required for good smoothness. The number of
steps, along with other parameters, requires careful control.

Non-Harmonic Sounds

For non-harmonic sounds, we want to analyze how the sound changes as the differences that
most characterize the distribution of the latent space, namely smoothness and frequency, vary.
To assess the distance between sound classes, in order to conductmore diverse soundmorphing
experiments, a distancematrix has been created, both for the centroids of each class and for the
median points.

(a) Average of points for each class. (b)Median of points for each class.

Figure 5.4: Distance Matrix ‐ Points in Latent Space

The exploration of the sound space in the case of non-harmonic sounds has been carried
out with various combinations. What we wanted to investigate the most is how the distance
between classes in the latent space can influence the development of smooth sound morphing,
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especially in the case of changes in the main sound-mapping characteristics (smoothness and
frequency). Here are some interesting examples:

Figure 5.5: Sound Morphing according to distance (15 ‐> 12 and 15 ‐> 3)

Starting from sound 15, it is evident how the distance in the space influences the sound
metamorphosis. Specifically, note in the transition to sound number 12 how the reference
frequency bands are similar, leading to an extremely gradual soundmorphing. Instead, to reach
sound 3, the spectrogram reaches lower frequencies, resulting in a more significant but still
smooth sound change.
Another example of interest, especially for exploring the most distinctive and pronounced

characteristics of sound, is the sound morphing carried out on extreme points in the latent
space:

Figure 5.6: Sound Morphing ‐ Extreme distance points (12 ‐> 13 and 19 ‐> 20)
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In this case, as intended to demonstrate, the characteristics that aremutated along the sound
metamorphosis are very defined. Indeed, from sound 2 to 13 (respectively, the sounds farthest
to the right and left in the latent space), a significant metamorphosis from high frequencies to
low frequencies can be observed. Therefore, it is expected that from sound 19 to 20 (respec-
tively, the sounds highest and lowest in the latent space), the transition involves the smooth-
ness property of the sounds, which happens and is evident from the spectrogram shown above.
Note that, in addition to a frequency mutation, the spectrogram changes from being very
smooth (with very smooth horizontal lines) to having a vertical pattern, indicating interrup-
tions and temporal discontinuities. This is exactly what indicates the transition from a contin-
uous sound to a discontinuous one (such as glitchy or sizzling classes in the dataset).

Harmonic Sounds

In the case of harmonic sounds, the distance between one sound class and another is likely rep-
resented by the timbre and all attributed sounds (with particular attention to the fundamental
frequency). Furthermore, the division into classes is already implicitly performed by the instru-
ment class to which the instruments in the dataset belong (woodwinds - strings - brass).

Figure 5.7: Sound Morphing Mechanism for Harmonic Sounds

A first example of sound morphing was performed between cello and trumpet.

Figure 5.8: Cello ‐ Trumpet Sound Morphing
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These two instruments share a fairly close range of frequencies. What distinguishes them
significantly are the harmonics and the sound development, with the trumpet being generally
more discontinuous. This can be observed in the spectrogram shown below.

In a sound morphing like the one between cello and violin, the fluidity of the transition
from a lower frequency to a higher one is evident. Since the sounds belong to the same cate-
gory (strings), there are no significant additional changes.

Figure 5.9: Cello ‐ Violin Sound Morphing

Below, other attempts at soundmorphing are also shown, and the final results are discussed
in the following chapter.

Figure 5.10: Woodwind to String ‐ Woodwind to Woodwind
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6
Final Results

6.1 Survey

In order to objectively evaluate some key sound characteristics, a questionnaire was admin-
istered. The PsyToolkit software was used. Its preparation involved generating 12 different
sounds using some of the best experimented CVAE models. Specifically, 4 individual sounds
were generated (all non-harmonic), along with 8 sound morphings (4 harmonic and 4 non-
harmonic). The generation of soundmorphings required careful control of certain parameters,
such as the number of steps in transitioning from one sound to another (a parameter closely
related to the duration of the audio clip as well).
The purpose of the survey is to investigate the following aspects:

Non-Harmonic Harmonic

Quality Absence of clicks, distortions, or any
auditory disturbances.

Absence of clicks, distortions, or any
auditory disturbances. Perception of
musical timbres.

Class What perceptual associations are re-
lated to the sound.

Which musical instruments are
involved in the generation.

Smoothness
Smoothness of the change in sound
characteristics (frequency, sound
continuity).

Smoothness of the timbral change
(gradual and pleasant).

Table 6.1: Survey aims and general structure
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In short, we want to investigate how the generated sound approaches certain perceptual and
timbral characteristics of the original sound.

6.1.1 Participants
The survey was administered to individuals aged 18 and above. They took part in the question-
naire completely voluntarily and with a guarantee of anonymity in their responses. 45 obser-
vations were collected. Survey participants were very diverse, exhibiting a wide range of ages,
genders and presence of earing problems.

Figure 6.1: Participants plots ‐ Age, Gender and hearing problems

It should be noted that the survey was not administered exclusively to musically competent
individuals or musicians. Many of the participants had limited musical expertise, which could
potentially lead to different results, particularly in the section related to the recognition of mu-
sical instruments, which inherently requires a certain level of experience with sound timbres.

6.1.2 Structure
The survey structure is as follows:

• First section: listening to 4 classes of non-harmonic sounds, each lasting 8-12 seconds.
Each sound was obtained by randomly sampling 5 points from the same latent space
class. Random Perlin Noise was injected into each point, which was then transformed
into generated sound through a decoding process. Crossfading was applied to each
sound to concatenate the 5 spectrograms smoothly. Finally, the Griffin Lim Algorithm
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transformed the final spectrogram into sound. This allows the construction of a kind
of sound trajectory of the same sound class. This aspect is very important because it
ensures variability and dynamism in the generated sound.

• Second section: listening to 4 non-harmonic sound morphings, each lasting 10-18 sec-
onds. The 4 audio clips explore various distances between classes in the latent space, with
different levels of intermediate steps depending on the class distance.

• Third section: listening to 4 harmonic sound morphings, each lasting 10-18 seconds.
The 4 audio clips investigate changes between different types of musical instruments,
ranging from sounds of the same class (for example, from violin to cello) to different
classes (from cello to trumpet).

How questions, audios and options were chosen

Forquestions aboutnon-harmonic sounds, 4quite different soundswere chosen (a deep sound,
a scratchy sound, one with varying pitch, and one sizzling). The answer options were chosen
according to the distancematrix in Figure 4 and the proximity of the classes from the t-sne plot.
Specifically, for each question, there are four different answer options:

• The actual class to which the sound belongs

• Two sound classes close to the actual class

• One sound class far from the actual class

For questions about harmonic soundmorphing, the answer options are the same for all ques-
tions and correspond to various instruments (clarinet, oboe, flute, violin, cello, trumpet). The
piccolo, being essentially a higher-pitched flute, will be categorized as a flute, especially to ac-
commodate less experienced ears. Here, it is generally not important to precisely identify the
specific instrument but rather the nature of the instrument itself. Therefore, the aim is not for
precise and strict instrument identification but rather for the reference class.
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6.2 Results

6.2.1 Quality
Sound quality was the first characteristic measured. By “quality”, I do not refer to the pleasant-
ness of the sound but rather the absence of any sound distortions, various types of noise, clicks,
and, more generally, any auditory phenomena that would disrupt the sound.

Figure 6.2: Sound Quality Evaluation

The overall evaluation of the sounds is acceptable and reasonably good, as all audio clips
were rated as fully sufficient, with the exception of non-harmonic sounds number 2 and 3,
which had an average score of 5.5. It is not surprising that non-harmonic sounds were rated on
average lower in quality. This phenomenon could also be attributed to the type of sound being
reproduced, as it might not be a coincidence that lower scores were given to glitchy and sizzling
sounds with very rapid temporal variations. In fact, for somewhat smoother sounds (such as
the last audio clip of non-harmonic sounds), the quality improved significantly.
Regarding harmonic sounds, the earmight bemore accustomed to them, as they are pleasant

to listen to. These considerations could provide a rationale for the variations among different
types of sound classes. However, the most important points to consider are:

• The sound quality is good and acceptable but not optimal.

• The variance of the scores is quite high, indicating a wide range of judgments, possibly
due to individual perceptions of sound quality.
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• Sound morphing received higher average scores than individual sounds.

• Harmonic sounds received higher average scores than non-harmonic sounds.

• The sound with the highest quality is the sound morphing between cello and trumpet,
obtained from steady, constant sound clips with clear and stable pitch.

• The sound with the lowest quality is non-harmonic sound number 0, with glitchy char-
acteristics. It is a sound with constant and rapid temporal variations, easily confused by
less experienced ears as poor or interrupted sound quality.

In order to verify if there is a significant difference between the different audio clip results, we
have chosen to implement some statistical tests. Specifically, wewant to test the null hypothesis
that there is no significant difference between the results of the different audio clips, and that
the quality of the generation is fairly consistent across all audio clips. Therefore, we can opt for
either anANOVA test[49] or a Kruskal-Wallis test[50] (nonparametric test), depending on the
behavior of the means and variances of our results. As an already verified assumption, we have
the independence of the audio clips. An assumption to be checked, in case of using ANOVA,
is that the data should be normally distributed, and the variance between the data should be
homogeneous. If the assumptions are not met, we can proceed with a Kruskal-Wallis test.

To verify these two basic conditions, I implement the Shapiro-Wilk[51] test to check for nor-
mal distribution and the Levene test[52] to check for homogeneity of variance.

Below are the results of statistics and p-values. As a reference value to accept or reject the
null hypothesis, I have chosen the value 0.05.

Figure 6.3: Verifing ANOVA assumptions: Shapito‐Wilk and Levene Tests

It is evident from the results, particularly from the p-value, that the assumption of homo-
geneous variance is verified, but the assumption of normal distribution is not. In fact, only
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some audio clips exhibit normally distributed results, while others show a p-value that leads to
rejecting the normality assumption. Therefore, we choose to proceed with the Kruskal-Wallis
test since, given the lack of basic assumptions and the small sample size, ANOVA would lack
robustness and efficiency.

I proceed, therefore, with the Kruskal-Wallis test to verify significant differences among the
results of various clips. Below are the results:

Figure 6.4: Kruskal‐Wallis Test ‐ Quality Scores

The obtained values make it clear about the data behavior: the null hypothesis, which as-
sumes no significant difference between the groups, is rejected. We can conclude that there
are two or more groups showing significant differences in the results. To analyze which groups
might exhibit these differences, various statistical tests are available. Themost commonones are
the Tukey test[53] and the Dunn test[54]. Since the Tukey test is typically used with ANOVA,
we opted for the use of the Dunn test, which is closely related to the Kruskal-Wallis test and is
its direct consequence.

Below is the table of p-values indicating the significance of differences between the results of
the various audio clips. Values below 0.05, signifying significance, are highlighted in red.

Figure 6.5: Dunn Test for significant differences ‐ p‐values table

It can be concluded that the qualitative results of the audio clips exhibit homogeneous vari-
ance, different distributions (normal and non-normal), a significant difference between the
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various results, particularly involving the difference between single sound and sound morph-
ing results. In fact, based on the tests, it can be inferred that the quality of single sounds was
considered significantly lower compared to sound transformations.

6.2.2 Classification

Regarding sound classification, it was approached differently for harmonic and non-harmonic
sounds. This is because the aspects being investigated are different. For harmonic sounds, the
goal is to determine if the reference instrument is recognizable, while for non-harmonic sounds,
the aim is to investigate if the latent space is capable of perceptually mapping the sounds. In
fact, the descriptions of the generated sounds are not objectively traceable to a specific sound
source but rather to a kind of sensation (e.g., an artificial simulation of cricket sounds) that the
sound conveys through more prominent auditory features (e.g., a deep sound).
In this perspective, below are the obtained results:

Non - Harmonic

Figure 6.6: Non Harmonic Sound Classification according to CVAE Latent Space

The results of perceptual recognition for non-harmonic sounds are not excellent but cer-
tainly promising. It can be observed that:
There is always a clear predominant response, except for the last audio clip, which appears

to have mixed responses. Only one observation (the first audio clip) was correctly associated
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with its reference class, and with a significant majority of votes. For the other classes, the ob-
tained responses are not optimal from a purely classification perspective. However, the highly
promising aspect of this study is that the sound is consistently associated with classes adjacent
to the reference class. This suggests that, perceptually, the sound is correctly linked to a cer-
tain type of sensation. Therefore, we can conclude that the results of this part of the survey
are improvable but very promising from a sound perception perspective. They demonstrate a
clear and practical indication that the latent spacemaps sound perceptions, which can likely be
recreated starting from the latent space.

Harmonic

The results of harmonic sound morphing are surprisingly good, especially considering that a
significant portion of the participants had little musical expertise, presumably having an un-
trained ear for timbral recognition.

Each sound morphing represents the transition from one musical instrument to another.
The survey required the recognition of both instruments, allowing for the selection of multi-
ple musical instruments.

The audio clips submitted in the survey are quite diverse. Two transitions involve instru-
ments from the same class (flute to oboe and cello to violin), while two transitions involve in-
struments from different classes (clarinet to violin and cello to trumpet), with varying degrees
of frequency distance between them (clarinet to violin with a high-frequency distance, cello to
trumpet with a reduced frequency distance).

Figure 6.7: Harmonic Sound Morphing Classification Results
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It is evident that:

Sound Morphing Evidences

CLARINET TOVIOLIN

Instruments were clearly identified.
There were fewer selections for in-
struments from similar classes (e.g.,
flute), while instruments from differ-
ent classes (e.g., trumpet) were chosen
very infrequently.

CELLOTOVIOLIN
Instruments were clearly identified.
Numerous selections were made for
the oboe as well.

FLUTE TOOBOE

The flute was clearly identified, but
the oboe was not. This could be a
direct consequence of the oboe’s
similarity to the clarinet, which is the
second most selected instrument.

CELLOTOTRUMPET
Instruments were clearly identified.
Numerous selections were made for
the oboe and violin as well.

Table 6.2: Harmonic Sound Morphing Results

It can be concluded that the most clear and recognizable instrument is the violin, which re-
ceived very high scores when present. The trumpet also proved to be very recognizable. The
instrument with the least recognizability is the oboe, possibly due to the less experienced ear’s
difficulty in clearly identifying its sound and differentiating it from similar instruments like the
flute or clarinet.

Furthermore, it is evident that the final sound is generally more recognizable than the initial
one. This may be due to the nature of sound morphing itself, where the final sound has more
potential for sound development, with a fairly clear and recognizable attack and conclusion.

For the statistical evaluation of the previous results obtained, a chi-square test was used. It
can be used to determine whether there is a significant relationship between the categories
of the variables involved in audio classification. It can be used to check for a significant rela-
tionship between generated sound and position in latent space (in the case of non-harmonic
sounds) as well as to verify the presence of a relationship between generated sounds and mu-
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sical instruments. In short, it is possible to assess the significance of the responses and results
obtained.

Figure 6.8: Chi Square ‐ Contingency Tables for Sound Morphing items in the survey

After creating the contingency tables, everything is set for the implementation of the chi-
square test.

Figure 6.9: Chi Square Test ‐ Values and Interpretations

From the values obtained through the chi-square test, we can easily conclude that, both in
the case of harmonic and non-harmonic sounds, the results are very good. There is a clear
significance of the results (p-value < 0.01), and the obtained results can be considered reliable
and indicative of a relationship between sound and assigned class.

6.2.3 Smoothness

Sound smoothness is an extremely important element in sound morphing because it provides
a clear and unequivocal measure of how smooth, gradual, unforced, or unpleasant the sound
change is.

Below is the image showing the response distributions for each item (Figure 6.10).

I proceed, as with the sound quality assessment, to use statistical tests for result validation.
Specifically, we want to verify if there is a significant difference among the various audio clips.
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Figure 6.10: Smoothness Evaluation

Therefore, as before, I conduct the Shapiro-Wilk and Levene tests.

Figure 6.11: Verifing ANOVA assumptions: Shapito‐Wilk and Levene Tests

Here, the assumption of homoscedasticity is confirmed, but the assumption of normal dis-
tribution of all data is not. We, therefore, proceed with the non-parametric Kruskal-Wallis test.

Figure 6.12: Kruskal‐Wallis Test ‐ Smoothness Scores

It is evident that there is no significant difference among the smoothness results of the vari-
ous audio clips. It is, therefore, possible to conclude that the smoothness of sound morphing
is considered quite good and homogeneous between harmonic and non-harmonic sounds.
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Several considerations can be made regarding this:

- On average, soundmorphing appears to be smoother in the case of harmonic sounds. This
may also be connected to the inherently smoother nature of harmonic sounds, which are gen-
erally smoother compared to some of the non-harmonic sounds under examination.

- There is noticeable variability in the responses, with a distribution skewed to the left. The
variability is not excessive but remains consistent for all the questions asked, with a standard
deviation range from 2.01 to 2.62.

- The worst sound morphing result is for sound 19 to 20, with an average score below pass-
ing (5.23). This is not surprising as it represents sound morphing between the sounds that
are farthest from each other. This is evident both from the latent space (they are the extreme
sounds in the space) and from the perception of sound, which transitions frombeing very deep
and smooth to having significant sound variations over time. To achieve this soundmorphing,
multiple steps were used, which provided a degree of smoothness but not enough to reach the
levels of other sounds that are on average less distant from each other.

- The best soundmorphing overall is between cello and violin, followed by piccolo and oboe.
This is not coincidental, as they are all harmonic sounds (perceivedmore suggestively) from the
same class (string and woodwind, respectively). Multiple steps were used for this sound mor-
phing, which proved to be sufficient for a smooth transition between instruments.

- The best non-harmonic soundmorphing is between sounds 19 and13. They share a crucial
point of continuity and depth in sound. This is what allows this audio clip to be so pleasant,
despite only a few steps being used. It can be intuitively inferred that smoothness is widely
achieved for all types of sounds.

- The transition between sounds is gradual and pleasant, without any sense of force. The
achieved gradualness depends closely on the number of steps used, but especially on the quan-
tity and quality of shared characteristics between the two connected sounds. In the case of
sounds perceived as distant from each other, it is still possible to increase the number of steps
and the duration of the audio clip to allow for a more pleasant transition.
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7
Conclusion

7.1 Discussion

The conclusions of this research address two very different questions:

! Is it possible to generate sound using Variational Autoencoders?

! Can the sound space be explored using Variational Autoencoders?

Regarding the capacity and efficiency of variational autoencoders, there is no doubt that
they can be used for sound generation. Even with simple models, without the necessary use of
convolutional layers or toomany layers with numerous units, sound can be correctly generated.
In fact, similarities between generated sound and original sound are evident both analytically
and perceptually.
For both harmonic and non-harmonic sounds, sound generation is optimal. However, it

depends on the model and, more importantly, on other fundamental aspects: the dimension
of the latent space and the complexity of the original sound. Both aspects are connected to
the complexity of generation, which requires a strong trade-off between ineffective generation
and overly accurate generation, almost tending towards sound distortion. An excessively large
latent space, for example, does not always lead to optimal soundproductionbut rather tomech-
anization, making the sound less fluid and natural.

75



Among the best models, a model with three hidden layers of 512 hidden units each and
ReLU activation function stood out. As for hyperparameters, a learning rate of 0.0005, 500
epochs, and a batch size of 64 proved to be excellent. For non-harmonic sounds, a different la-
tent space dimensionality is preferred depending on the complexity of the sound. For deep and
continuous sounds, a dimensionality of 64 dimensions may suffice, while for complex sounds
with frequent temporal variations, a dimensionality of 128 or 256 is more suitable.
However, there is little experimentation with more complex models, which could involve

the use of more convolutional layers or simply deeper networks. The choice to focus more
on sound exploration was made for several reasons: first, the desire to delve deeper into sound
exploration; once good generations were achieved, the modeling research was terminated. Sec-
ond, computational costs played a role. Even for simplermodels, training time exceeded several
hours for epochs greater than 250. Therefore, it was preferred to steer the study towards the
timbral and analytical aspects rather than the algorithmic ones.
From the survey administered, it is possible to affirm that fundamental features for gener-

ating good sound, such as sound quality (understood not as sound pleasantness but as the
absence of sound disturbances in the audio clip), sound classification (objective for harmonic
sounds, with timbres originating from a clear sound source, subjective and perceptual for non-
harmonic sounds), and the smoothness and fluidity of sound changes (during sound space
exploration in the latent space) were generally well-rated by participants. The results are not
excellent but very promising.
From a sound perspective, a significant analysis of the latent space of sounds has been car-

ried out. For both harmonic and non-harmonic sounds, the latent space is a precious source
of sound information, from which it is possible to generate sound not only mechanically but,
above all, to manipulate it. The strength of this approach lies in its highly controllable sound
manipulation capacity. It has been possible to autonomously design well-defined trajectories,
both within the same sound class and between different classes. The trajectory generated be-
tween different types of sounds (soundmorphing) is smooth and pleasant, allowing for sound
synthesis that touches many nuances of sound with very simple operations in the latent space,
such as weighted averaging.
However, among the disadvantages of this approach, there is limited sound variability, con-

nected to excessive individual control. In fact, creating a specific sound trajectory without con-
siderable hyperparameter control can be unpleasant and static. Finally, the generated sounds
themselves do not exhibit great variability but simply faithfully reproduce the characteristics of
the reference dataset. In this sense, the model is very faithful and efficient but not very creative
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if creativity is understood as the ability to generate something unique, different, and original.
In conclusion, the Variational Autoencoder is an excellentmodel formusic generation, espe-

cially due to the level of control andmanipulation it allows for sound. Furthermore, the study
has shown very interesting aspects from the perspective of sound exploration and timbral mu-
sical experiments. We anticipate that this research can contribute to the study of generative AI
for various types and complexities of sounds and can serve as a basis for future work, where the
timbral element and its exploration are the focus of sound research.

7.2 Future Directions

Advanced studies are already underway on the use of Variational Autoencoders for AI sound
generation. One such example is the Riffusion model[55], which, given a written prompt,
can generate suitable and interesting audio clips. The improvement of implementations for
interpolating between different clips is also ongoing, utilizing the latent space of the model,
similar to what was done in this study. In this regard, Riffusion could be easily employed for
timbral studies like the one conducted in this research.
However, there are several potential future applications of this study, which is expected to

contribute to the future developments in sound exploration:

Real-time Infinite and ControlledMusic Generation

It is possible to create an infinite sound trajectory that explores specific regions of the chosen
latent space. For example, a generative system could take a prompt with words describing a
sonic characteristic (e.g., dark or deep) as input and create a trajectory that traverses the sound’s
latent space with those characteristics.

AI Tool forMusicians and SoundDesigners

Timbral exploration can be made much simpler when starting from precise characteristics. It
could be interesting and useful for sound creators to have easy access to a wide range of arti-
ficial sound exploration (It refers, for example, to RAVE[55], a tool based on the Riffusion
model that utilizes VAE for soundmanipulation). By expanding the dataset to include various
sound types, it is genuinely possible to create countless artificial musical timbres that can be
manipulated with minimal operations, quickly, efficiently, and accessible to all.
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OptimizingMusic Generation System for Experiences and Perceptions

This development is related to thepowerofmusic to influenceperceptions. It iswell-established
that from a neuroscientific perspective, music has significant benefits, particularly in accompa-
nying a specific experience or altering a particular mental state. By connecting a type of sound
to a defined sensation, it is possible to generate endless sound trajectories designed to do just
that. I refer, in particular, to the SoundFood project, an interesting research project currently
ongoing at theCentro di SonologiaComputazionale (CSC) at theUniversità di Padova, which
aims to generate sounds aimed at enhancing the eater’s experience. Indeed, thanks to a blend
of musical and neuroscientific knowledge, it is possible to create the perfect sound mix to op-
timize the taste perception of what is being consumed. This is a clear example of how this
research can be employed to generate music for experiential purposes.
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