
1 

 

 

Facoltà di Ingegneria 

Laurea magistreale Ingegneria dell’energia Elettrica 

 

 

 

 

Advanced techniques for rated speed increment in 

industrial drives  

 

 

Relatore: Ch.mo Prof. Silverio Bolognani 

Correlatore: Prof. Christopher Gerada 

 

Laureando: Francesco Toso                                                    Matricola n˚ 1106839 

Anno Accademico: 2015/2016 

 

 

 



2 

 

 

 

 

 

 

 

 
…A Michelle, Vanna, Luciano, Filippo, Jacopo, Maria e Marinella…. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



3 

 

Index 
 

 

      Introduction 

1-  The FACRI project 

1.1 Introduction................................................................................... 11 

1.2 The FACRI project........................................................................... 11 

1.3 The motor....................................................................................... 13 

1.4 The modulator and the inverter..................................................... 19 

1.5 Appendix......................................................................................... 25 

 

2-  Control algorithm 

2.1  Introduction.................................................................................... 26 

2.2  Control scheme............................................................................... 26 

2.3  MTPA............................................................................................... 26 

2.4  FW................................................................................................... 31 

2.5  PI..................................................................................................... 37 

2.6  Voltage limiter................................................................................. 39 

2.7  Appendix......................................................................................... 40 

 

3-   The switching frequency 

3.1  Introduction..................................................................................... 43   

3.2  Variable switching frequency........................................................... 43 

3.3  Best solution.................................................................................... 47 

3.4  Appendix.......................................................................................... 56 

 

4-   Overmodulation, square wave and selective harmonics cancellation 

4.1  Introduction..................................................................................... 57 

4.2  Overmodulation............................................................................... 57 

4.3  Harmonic voltage content analytical description............................ 65 

4.4  Square wave and selective harmonic cancellation.......................... 72 

4.5  Appendix.......................................................................................... 82 

 



4 

 

 

 

 

5-   Proportional Resonant controllers 

5.1  Introduction................................................................................... 86  

5.2  Internal model principle................................................................. 86 

5.3  PR................................................................................................... 88 

5.4   Test in a continuous domain.......................................................... 90 

5.5   Discretization................................................................................. 93 

 

6-   Simulation final results 

6.1  Introduction................................................................................... 97 

6.2  Requirements................................................................................. 97  

6.3  MTPA and Flux Weakening............................................................. 98  

6.4  Voltage references......................................................................... 100 

6.5  Overmodulation............................................................................. 102 

6.6  Final results.................................................................................... 104 

 

7-   Real components 

7.1  Introduction................................................................................... 109 

7.2  Power electronic converter design................................................ 109 

7.3  DSP................................................................................................. 113 

      Conclusion  

      Bibliography 

 

 

 

 

 

 

 



5 

 

INTRODUCTION 
 

During this training and orientation project, I have taken part in the development of an industrial 

project called FACRI. My work was to write an algorithm of control able to satisfy precise specifics 

for a Permanent Magnet (PM) high speed motor, known the inverter and the motor parameters. 

Before to enter in details, it is useful doing a short introduction of the operating principles, the 

equations of a PM motor and the base structure of an actuator in order to have more clear ideas 

later on how the algorithm works. 

Operating principle 

The operating principle is based on the interactions between magnetic fields and eddy currents on 

the rotor and/or the stator. In particular PM motors have in the rotor permanent magnets 

characterized by a wide cycle of hysteresis and high residual magnetization that make magnetic flux 

in the air gap. The stator is built in the same way of an induction motor, with the conductors inside 

the cavities that when the current flows, they produce a stator magnetic field that summed with the 

PM one, makes a torque and therefore the rotation of the rotor. The rotor where there are the PM 

can be isotropic, so the reluctance crossing any directions is equal, and it’s the case of a SPM 

(Surface Permanent Magnet) motor because the magnetic permeability of the PM is the same of the 

air, or it can present anisotropy that is the case of the IPM ( internal Permanent Magnet). In the next 

chapter will be described in detail the FACRI motor. 

Equations for a SPM motor     

To understand better let’s analyse the motor equations neglecting the eddy currents and iron losses. 

The voltages of the phases a,b,c are the followings: 

�� = ��� + ����	 										(0.1) 

�� = ��� + ����	 										(0.2) 

�� = ��� + ����	 										(0.3) 

Where R is the resistance, i is the current and λ s the magnetic flux. 

Applying the Clarke Transform we have: 

��� = ���� + �����	 										(0.4) 

Whose components are: 

�� = ��� + ����	 										(0.5) 
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�� = ��� + ����	 										(0.6) 

The flux is given by two contributes, one by the PM and one by the stator currents, so if we apply the 

superposition principle we obtain: 

���� = ��� cos(#�$)										(0.7) 

												���& = ��� cos '#�$ − 2)3 *										(0.8) 

													���, = ��� cos '#�$ − 4)3 *										(0.9) 

Where  

#�$ = .#�										(0.10) 

is the electric position of the rotor. 

Applying the Park Transform: 

���	�� = ���/0123 										(0.11) 

Now using a rotating reference system the last space vector becomes: 

���	45 = ���	��/60123 = ���										(0.12) 

The contribution given by the stator currents is the following: 

��,8 = 9��� + 9:���� + 9:���� 										(0.13) 

��,8 = 9:���� + 9��� + 9:����										(0.14) 

��,8 = 9:���� + 9:���� + 9��� 										(0.15) 

But with the hypothesis done before, we can assume that the auto inductances of the three phases 

are: 

9� = ;� = 9� = 9<									(0.16) 

While the mutual inductances are: 

9:�� = 9:�� = 9:�� = 9:�� = 9:�� = 9:�� = 9:<< = −|9:<<|										(0.17) 

So we can write the phase a like follows: 

��,8 = 9<�� + 9:<<(�� + ��)									(0.18) 

But 

�� + �� = −��										(0.19) 

And substituting 
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��,8 = (9< − 9:<<)�� = 9�� 										(0.20) 

��,8 = 9��										(0.21) 

��,8 = 9�� 											(0.22) 

 

Applying the Park Transform in a rotating reference system we have: 

�8	45 = 9�45										(0.23) 

So the total flux in d-q is: 

�45 = ���	45 + �8	45 = ��� + 9�45										(0.24) 

Now skipping some calculations, we can write the final equations in abc: 

�� = ��� + 9 ����	 + ���>�$ cos ?#�$ + )2@										(0.25) 

�� = ��� + 9 ����	 + ���>�$ cos '#�$ + )2 − 2)3 *										(0.26) 

�� = ��� + 9 ����	 + ���>�$ cos '#�$ + )2 − 4)3 *										(0.27) 

Applying the space vector definition we finally obtain: 

��� = ���� + 9�����	 + A>�$���/0123 										(0.28) 

And passing in a rotating reference system we obtain: 

�45 = ��45 + 9 ��45�	 + A>�$9�45 + A>�$���										(0.29) 

The components are: 

�4 = ��4 + 9 ��4�	 − >�$9�5										(0.30) 

�5 = ��5 + 9 ��5�	 + >�$9�4 + >�$���										(0.31) 

If we want to do a power balance we have to remember that the space vector is not conservative for 

the power, but it needs of a correction factor 3/2, so we have that the total power is: 

. = 32 ∗ C�4�4 + �5�5D										(0.32) 

And substituting 
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. = 32 ∗ E�C�4F + �5FD + 9E� �4F2�	 + � �5F2�	 G − >�$9�5�4 + >�$9�4�5 +>�$����5G										(0.33) 

 Where the Joule losses are: 

.HIJK$ = 32�C�4F + �5FD										(0.34) 

The variation of magnetic energy is: 

�L��	 = 329E� �4F2�	 + � �5F2�	 G										(0.35) 

And the mechanical power is: 

.� = 32 C−>�$9�5�4 + >�$9�4�5 +>�$����5D										(0.36) 

.� = 32 C>�$����5D										(0.37) 

From the last expression we want find the torque equation. Remembering that the mechanical 

power is equal to the product between the torque and the mechanical speed of the motor we can 

write: 

.� = M ∗ >�										(0.38) 

But 

>�$ = . ∗ >�										(0.39) 

Where .	is the number of couples of poles, so we have: 

.� = M ∗ >� = 32 C>�.����5D										(0.40) 

Well the final expression of the torque is: 

M = 32.����5										(0.41) 
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For the IPM motors the magnetic field lines, made by the D current, cross the permanent magnets 

that have a magnetic permeability similar to the air one, therefore with a high reluctance, while the 

magnetic field lines made by the Q current don’t cross the magnets, but they cross only the iron and 

the air gap, so the total reluctance of the magnetic circuit is lower than the other one. 

ℛ4 > ℛ5										(0.42) 

Well 

94 < 95										(0.43) 

The equations in a rotating reference system are: 

�4 = ��4 + 94 ��4�	 − >�$	95	�5										(0.44) 

�5 = ��5 + 95 ��5�	 + >�$94	�4 + >�$���										(0.45) 

So doing the same previous calculations to find the expression of the torque, we obtain: 

M = 32.�5C��� + C94 − 95D�4D										(0.46) 

The scheme of the model is the following 

 

Figure 0.1 
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Electric actuator 

An actuator is a component of machines that is responsible for moving or controlling a mechanism 

or system. An actuator requires a control signal and source of energy. The control signal is relatively 

low energy and may be electric voltage or current, pneumatic or hydraulic pressure, or even human 

power. The supplied main energy source may be electric current, hydraulic fluid pressure, or 

pneumatic pressure. When the control signal is received, the actuator responds by converting the 

energy into mechanical motion. An actuator is the mechanism by which a control system acts upon 

an environment. The control system can be simple (a fixed mechanical or electronic system), 

software-based (e.g. a printer driver, robot control system), a human, or any other input. An electric 

actuator is powered by a motor that converts electrical energy into mechanical torque. The electrical 

energy is used to actuate equipment such as multi-turn valves. It is one of the cleanest and most 

readily available forms of actuator because it does not involve oil. 

The base structure of an electric actuator for a PM motor is presented in the following picture: 

 

 

Figure 0.2 

 

In the followings chapters will be presented the complete control proposed for the FACRI motor step 

by step. 
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Chapter 1:   

The FACRI Project 
 

 

1.1  Introduction 

In this chapter we will present the FACRI project in order to better understand what are the specifics 

required for the control and all the parameters of the DC-link, inverter and motor, that are necessary 

for our simulations. 

1.2  The FACRI project 

Let’s give some information about the FACRI project and the FACRI motor in particular. This project 

looks into the design of an actuator drive system required to meet the specifications given by FACRI 

in an effort to develop a reliable and high power density drive system which is optimised holistically 

rather than each component designed individually . This leads to an optimised solution at system 

level. This trade-off study deals with the concept selection of the electrical machine, the power 

electronics (PE) and the control scheme and identifies the key aspects to look at in the next design 

phase. These are dealt with individually within this report however consideration to the adjacent 

system components is given. After the initial concepts are selected some initial design work was 

done to confirm the feasibility of the solution proposed and identify the major aspects to consider 

and evaluate in the subsequent preliminary design phase. This considers the electromagnetic, 

mechanical, power conversion and thermal aspects required. The key objectives of the trade-off 

study are: 

a) Identify potential machine topologies and quantitatively select the most promising to take to 

the preliminary design stage 

b) Identify potential converter configurations and power device technologies and quantitatively 

select the most promising to take to the preliminary design stage. 

c) Identify the main thermal management solutions and quantitatively down select the most 

promising. 

d) Identify the most promising control platform to enable the development of the drive system. 

[ this point in particular consists in our work ] 

e) Identify the most impacting parameters in the system and within each constituent 

component to ensure an optimisation design process which captures these parameters and ensures 

an overall optimised solution. 

f) Determine a structure for the preliminary design of the drive system   
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Output requirements 

For sake of completeness, the summary of the project requirements is reported in this section. 

1 Without oil-cooling, the system needs to be able to achieve a linear torque-speed 

curve, where the stall torque equals to 3.4Nm and a continuous torque equal to 

1.6Nm when the speed is 19000 rpm (3.18kw). (Room temperature, installed in test 

frame and no forced cooling). This condition is not an application requirement but 

rather a guideline for isolated motor-drive testing within a laboratory environment.  

  

2 With oil cooling，a 10.5Nm continuous torque is to be delivered within a speed 

range of 0 to 8700 rpm (9.6kw) and a continuous torque of 5Nm at 19000 rpm 

(9.9kw). This is expected to be the normal working condition of the drive in the 

application environment. 

 

 

Figure 1.1 : Torque-speed characteristic 

 

Dimensional constraints 

A. Motor axial cross section :≦80mm×80mm 

B. Weight ≦ 2.5Kg, including all active parts: rotor, stator, front/ending bearing, 

resolver and testing frame, excluding the cooling fluid mass. 

Thermal management 

The electrical machine is to be fluid cooled (oil) with properties to be determined within the 

preliminary design phase and the power electronics will be naturally ventilated. 
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1.3  The motor 

Now let’s focus on the motor of the project. Permanent magnet (PM) motors are electro-mechanical 

devices where the field is achieved by the use of PMs, instead of the more traditional wound field 

coils. This results in simplification in construction, reduction in losses and improvement in efficiency.  

PMSMs, which are widely used in variable speed drive applications, are synchronous machines with 

excellent performances in terms of power and torque density and efficiency. PMSMs can be loosely 

classified into two main groups, relative to the placement of the PMs on the rotor, namely SMPM 

machines and IPM motors. 

For SMPM motors, the PMs are mounted on the outer surface of the rotor as shown in Figure. This 

arrangement provides higher torque density due to high air gap flux density, leading to a potential 

minimization of machine volume and mass.  An SMPM motor also enjoys lower rotor losses and thus 

higher efficiency. The main demerits of this configuration are the risk of PM demagnetization, and 

the need for retaining sleeves for the PMs especially for high speed machines as in the application 

considered here. The rotor has an iron core that may be solid or may be made of laminations.  An 

important aspect of SMPM machines is that it is a non-salient machine, resulting in that direct axis 

inductance Ld and the quadrature axis inductance Lq of the PMSM are equal (Ld=Lq). 

 IPM motors have their PMs “buried” inside the rotor as shown in Figure.  This configuration typically 

weakens the mechanical strength of the rotor however somewhat provides for magnet 

demagnetization protection. The motors cannot be used for very high speed applications since the 

magnets are only physically contained using magnetic steel which is often not very mechanically 

robust. In addition they typically have lower critical speeds compared with the surface mount 

counterpart. Torque density performance of such a machine is comparable (if slightly lower) to that 

of an SMPM motor for the same kVA rating, while torque ripple is somewhat higher. These motors 

have a saliency effect with q axis inductance greater than the d axes inductance (Lq > Ld) if designed 

properly. It is important to highlight however that the extent of this saliency is however very 

dependent on the winding configuration, pole number and air gap clearance.  

 

Figure 1.2 
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An important advantage of PM machines is that they are synchronous machines in which the 

excitation is provided by the magnets on the rotor. In distributed-wound versions of these machines, 

the magnet losses are low, and can be lowered to negligible values by magnet segmentation. This 

can result in thermal management benefits as cooling rotating components can be very challenging 

due to their naturally high resistance thermal path to ambient. Unlike IMs, PM machines are well 

suited for design at higher pole numbers if the power electronics switching allows. This can result in 

advantages in terms of having lower inertia rotors as well as rotors with significantly reduced weight 

(hollow rotors). 

PM machines offer great flexibility in terms of design when compared to induction machines as they 

are easier to adopt higher pole numbers as discussed above, different winding structures, lower 

inertia rotors and more importantly larger air gaps when compared to all other machines. In recent 

detailed study the authors of this report did within the clean sky framework it was found out that if a 

high peak to rated (continuous) torque is required then PM machines perform better for actuation 

applications. A perceived drawback of PM machines is their behavior under faulty conditions 

especially in safety-critical environments. The issues here range from the possibility of uncontrolled 

fault currents in the event of a short-circuit fault to the potential large terminal voltages due to the 

magnet flux in case of a converter malfunction at high speed. Whilst these drawbacks are important, 

there are a number of ways they can be managed by design and control.   

 

 

Figure 1.3 : Cross-section of 8p/9s SPMSM 
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Figure 1.4 : Quasi-Halbach array 

The last figure represents the cross section of the final model of our motor. 

 

In the following tables there are the machine design dimensions: 

 

 

Table 1.1 
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Table 1.2 

While here is reported the main code in Matlab that contains all parameters of our control model. 

%%%%  FACRI motor parameters  
  
speed_rpm = 19000;              %operating speed [rpm]  
omega_m=speed_rpm/60*2*pi;      %operating speed [rad/s]  
p=4;                            %poles  
R=0.0951;                       %phase resistance [ohm]  
Ld = 211e-6;                    %d axes inductance [H]  
Lq = 306e-6;                    %q axes inductance [H]   
B=0.0004432;                    %viscosity friction [Nms]  
J=1e-4;                         %momento di inerzia [kgm^2]  
flux_mg=0.0236;                 %[Vs]  
U_lim_LL=270;                   %Line to Line voltage limit [V]  
U_lim=U_lim_LL/sqrt(3);         %phase voltage limit [V]  
I_lim=78;                       %phase current limit [V]  
m_max = 12;                     %maximum torque [Nm]  
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%%%% converter parameters  
  
Fs = 16e3;                      %switching frequency [Hz]  
Ts = 1/Fs;                      %switching period [s]  
Fs_boost = 1;  
Vdc = 270;                      %DC-link voltage [V]  
Vdc_up_precharge = Vdc/2;       % [V]  
Vdc_dw_precharge = Vdc/2;       % [V]  
Cdc_up = 1200e-6;               % [F]  
Rcdc_up = 10e-6;                %[ ohm]  
Cdc_dw = 1200e-6;               % [F]  
Rcdc_dw = 10e-6;                % [ohm]  
t_dead= 2.5e-6;                 %dead time [s]  
 
 

we can observe that the d and q axes inductances are different, so in the control we have 

implemented an IPM motor. 
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Initially the motor was implemented in Simulink with the scheme showed in the introduction, but 

when the control was increasing its completeness we needed of a motor implemented in Plecs, that 

is another Matlab tool, because was the only way to use also the inverter implemented with Plecs 

which permits to calculate a lot of losses (switching losses, thermal losses, ecc). In the Plecs library 

there is already a model of a PM machine but we had to give up to use it because the references 

that it uses for the Park transform in the C-script are different to ours. So we built a circuital model 

in d-q inside a Plecs circuit to implement our motor like showed in the following figure.   

 

 

Figure 1.5 : Circuital model of the motor 

The yellow background means that it is a Plecs circuit block. Plecs is useful because it runs C-scripts, 

while Simulink solves M-scripts, in this way we make the simulation faster, in fact the C-code is very 

faster than the M-code. Black lines connect electrical components, green lines transport signals and 

the violets are for the mechanical components of our model like the inertia, the friction and the 

torque load. The inputs of the motor are the outputs of the inverter and the outputs of the motor 

are the phase currents, the torque, the back electromotive forces and the electric position of the 

rotor like we can observe in the figure below, where are presented also the modulator and the 

inverter. 
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Figure 1.6 : Plecs blocks  

 

1.4  The modulator and the inverter 

In the first simulation we have considered the modulator and the inverter only like a delay equal to 

1.5*Ts, where Ts is the sampling period of the PWM modulator equal to 1/Fs, and Fs is the switching 

frequency. The modulator is approximated like a delay produced by the calculation time required to 

the elaboration of the signals for the inverter. This delay is about Ts, so the inverter will receive the 

control signals with a delay equal to a sampling period: 

G(s)STUVWXYTZ = e6\]^ = 1e\]^ 										(1.1) 

and if we use Taylor until the first order we have: 

G(s)STUVWXYTZ = 1e\]^ ≅ 11 + sT\ 											(1.2) 

Now let’s see how is done the transfer function of the inverter: 

G(s)abcdZYdZ = 11 + sT\2 										(1.3) 

well the total delay produced by the inverter and the PWM is Ts+Ts/2, so we obtain: 

G(s)efghabcdZYdZ = e6\iF]^ ≅ 11 + s32T\ 											(1.4) 

always using Taylor until the first order. 
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Using the technique of the axes decoupling, we can write the last transfer function for the d and q 

axes both like we can see in the following figure. 

 

Figure 1.7 

 

Once done the ideal simulation, the next step of the work was considering a real modulator and a 

real inverter with the switching, the dead times, the DC-link, and all the losses that the simple delay 

that we had before didn’t consider. In the figure 1.6 we observe that the inputs of the modulator are 

the abc voltage references normalized with half DC-link, while in the previous the inputs were the 

voltages in the dq reference, so we need of a transformation to move from a dq reference to a abc 

reference. In the figure we can observe the transformation and the normalization of the voltages. 

 

Figure 1.8 

 

The Matlab code for the transformation is showed in the appendix of this chapter. 
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The modulator makes a comparison between the input signals and a carrier included between -1 and 

1, then it takes the result and produces a vector which the second component is the negative of the 

first. The modulator produces three vectors, one for each inverter leg, in fact we have a three phase 

inverter. In the following figure we can see the block of the modulator, made with PLECS, and under 

its mask. 

 

Figure 1.9 
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The inverter is obviously represented with the DC-link that is the alimentation of the motor. In the 

figure we can see the circuit of the DC-link, where there are the line to line voltage source V_dc of 

270 [V] ,  two resistors and two capacitors of 10 [µΩ] and 1200 [µF] respectively. We have used also 

a voltmeter and an ammeter to measure the voltage, the current and  the power of the DC-link. 

 

Figure 1.10 
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Now let’s observe how the inverter is made. It is connected with the modulator and with the DC-link, 

it is a three phase inverter, like said before, and every leg is composed by two IGBT transistors and 

two diodes. In the following figure we can see under all the masks of the block of the inverter made 

with PLECS. 

 

Figure 1.11 : DC-link and three phase inverter 

A curiosity: the resistors R1 R2 R3 R4 R5 R6 are of the order of mega ohm well it’s like  they aren’t, 

but they are of help to smooth all the discontinuities made by the switches, that are damaging for 

the software calculations. Now let’s see inside one of the legs. 

 

Figure 1.12 : leg A 
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In the last figure we can observe that the input ‘’ctrlA’’ which comes from the modulator, it is 

corrected by two blocks that make a delay of 2.5 [µs]. This particular delay represents the dead time 

for the switches, so we are sure to avoid a short circuit with the DC-link. 

Considering the modulator and the inverter we have to discretize all the Simulink model and the 

simulations are very different respect considering them like a simple delay, and it is more difficult 

control the full system. 
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1.5  Appendix 

Transformation from d-q to abc: 

function  [ua,ub,uc] = T_dq_abc(ud,theta_me,uq)  
 
 
%%%% T_dq_abc 
 
 
 T1=[cos(theta_me) sin(theta_me)  
    -sin(theta_me) cos(theta_me)];  % T_allfabeta_dq  
 
 T2=inv(T1);                         % T_dq_alfabeta  
 T3=[1 0 1  
    -0.5 sqrt(3)/2 1  
    -0.5 -sqrt(3)/2 1];             % T_alfabetazero_abc  
 
 g_0=0;                              % componente omopolare  
 u_alfabeta=T2*[ud  
    uq];  
 u_alfabeta0=[u_alfabeta  
    g_0];  
 u_abc=T3*u_alfabeta0;  
 ua=u_abc(1);  
 ub=u_abc(2);  
 uc=u_abc(3);  
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Chapter 2: 

Control algorithm 
 

2.1  Introduction 

In this chapter will be presented the structure of our control in order to satisfy the requirements of 

the project, in particular will be explained in detail the MTPA (Max Torque Per Ampere), the FW 

(Flux Weakening) algorithms and PI regulators used in the two current loops. 

2.2  Control scheme 

The test of the motor in the lab will be done with another motor that holds the speed, therefore our 

control scheme is been projected without the speed loop and only the two current loops. In the 

following figure is showed an example of current control. 

 

Figure 2.1 

 

�4∗  and �5∗  are the references given by the MTPA and FW algorithm, known the torque-speed 

characteristic requirement, and the PID are the (Proportional Integral Derivative) regulators, but in 

our case normal PI will be enough. Now let’s see how the two references �4∗  and �5∗  are generated. 

2.3  MTPA 

Now we are considering the steady state, so all the time derivative terms in the equations seen in 

the introduction will be neglected and will be used a capital letters notation for the physical 

quantities.  

The operation limits for an IPM machine are the followings: 

j k4F + k5F ≤ kK8�Fm4F + m5F ≤ mK8�F n 									(2.1) 

But in steady state we have: 

o m4 = �k4 − Ω�$95k5m5 = �k5 + Ω�$(94k4 + ���)n 										(2.2) 
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So, if we substitute the last in the previous system and we neglect the resistivity terms, we obtain: 

j k4F + k5F ≤ kK8�Fm4F + m5F = Ω�$F 95F k5F + Ω�$F (94k4 + ���)F ≤ mK8�F n 										(2.3) 

 

The first equation is the current limit and it is the equation of a circumference, while the second one 

corresponds to the voltage limit and it is the equation of an ellipse, like we can observe in the 

bottom figure. 

 

Figure 2.2 

 

Our purpose is to find the currents Id and Iq of the MPTA (Max Torque Per Ampere) condition, 

knowing the torque reference m_ref. To do this, we need of the relation between the torque and 

the currents in MTPA. The torque equation is the following: 

q = 32.r��� + C94 − 95Dk4sk5										(2.4) 

But if we write the Iq in function of M we have: 

k5 = q32.r��� + C94 − 95Dk4s										(2.5) 

that is the equation of the hyperbole in the figure 2.2. We have the MTPA condition if we impose the 

orthogonality between the tangent of the hyperbole and the straight line for the O, so writing with 

mathematical language we have the followings relations. 

Mt = �k5�k4 = 2q3. ∗ −1r��� + C94 − 95Dk4sF ∗ C94 − 95D									(2.6) 
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and substituting the expression of the torque M: 

Mt = − k5C94 − 95D��� + C94 − 95Dk4 										(2.7) 

But the angular coefficient of the straight line for the O is: 

MF = k5k4 										(2.8) 

and the orthogonality relation is: 

Mt = − 1MF 										(2.9) 

So we obtain: 

k5 = ±vk4r��� + C94 − 95Dk4s94 − 95 										(2.10) 

Now that we have the relation between the Id  and Iq in MTPA, we can use it with the torque 

equation like follows: 

wxy
xzq = 32.r��� + C94 − 95Dk4sk5
k5 = ±vk4r��� + C94 − 95Dk4s94 − 95

n 										(2.11) 

Now let’s make some calculations: 

wxy
xzk4 = { 2q3.k5 − ���| 194 − 95k5F = ���k494 − 95 + k4F n 										(2.12) 

Substituting Id in the second equation and skipping some calculations we have: 

k5} = 4qF − 6q���.k59.F(94 − 95)F 										(2.13) 

Therefore 

−4 ∗ qF + 6.���k5 ∗ q + 9.F(94 − 95)Fk5} = 0										(2.14) 

The last one is a second order equation that can be resolved analytically and the roots are the 

followings: 

qt,F = 6.k5 ~��� ± ����F + 4(94 − 95)Fk5F�8 										(2.15) 
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The solution with the ‘’minus’’ is not acceptable because even if Ld=Lq we have to have torque in 

any case, so we have obtained finally: 

q = 34.k5 ~��� + ����F + 4(94 − 95)Fk5F�										(2.16) 

that is the relation between the torque and the  current Iq in the MTPA condition, but in our control 

the torque is the  input and the Iq is the output, so we have to find Iq=f(M).  

A solution could be to use the function polyfit in Matlab to find a polynomial that approaches the 

function Iq=f(M), and so we have done obtaining a good result, infact from the following figure 2.3 

we can’t see the error, but we have to zoom a lot before to see the error of the approximation and, 

like we can see in the figure 2.4, the  error can be neglect. 

 

Figure 2.3 : equation 2.16 vs polyfit 
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Figure 2.4 

 

The function polyfit finds the coefficients Cq, well we can write the Iq like follows: 

k5_:��� = �5tq� + �5Fq� + �5iq� + �5}q� + �5�q} + �5�qi + �5�qF + �5�qt+ �5�q�										(2.17) 

and so we have obtained the relation between the current Iq and the torque M in the MTPA 

condition that gives us the Iq_MTPA in output from the input of the torque M. Now that we know 

Iq_MTPA it’s easy to find the Id_MTPA because we only have to substitute it in the Iq equation of 

2.11 and we obtain: 

k5_:���F = ���k4_:���94 − 95 + k4_:���F 										(2.18) 

That is a second order equation where the unique unknown is Id_MTPA, well we have: 

∆= ���F(94 − 95)F + 4k5����F 										(2.19) 

k4_:���t,F = − ���94 − 95 ± √∆2 										(2.20) 

but we want a negative Id_MTPA so our solution to implement is: 
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k4_:��� = − ���94 − 95 − √∆2 										(2.21) 

Finally we can use the last two equations to implement in the MTPA block in Simulink for our 

control. In the appendix of this chapter there is the code that we have used in the main to calculate 

the coefficients vector which we need inside the MTPA block in Simulink. 

 

2.4  FW 

When the motor speed increases, the voltage limit becomes smaller like we can observe from its 

equation: 

'9594*F k5F + 'k4 + ���94 *F ≤ mK8�F94FΩ�$F 										(2.22) 

Where 

Ω�$ = .Ω�										(2.23) 

and Ωm is the rotor speed, so it’s possible that if we work always in the MTPA condition, we don’t 

respect the voltage limit with the increasing of the speed, therefore we have to work in Flux 

Weakening. Working in FW means that our operation point is moving on the circumference of the 

current limit like showed in the bottom figure. 

 

Figure 2.5 

The second image shows that if the centre of the voltage limit is inside the circumference of the 

current limit, we have to work in FW until a certain speed and after that we have to work in the 

MTPV (Max Torque Per Voltage) condition, but it’s not our case. Below there are our case curves of 

the current limit (in red) and of the voltage limit neglecting the resistance and vary the speed (in 

blue). 
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Figure 2.6 : voltage and current limits 

 

To implement the Flux Weakening, we have used a simple ‘’if loop’’ in Matlab where we give the 

followings instructions: 

If                                                 ?����@F k5_:���F + ?k4_:��� + �2��� @F ≤ ���2����Ω23� 										(2.24) 

k4_�� = k4���� 										(2.25) 

k5_�� = k5_:���										(2.26) 

Else 

�'9594*F k5_��F + 'k4_�� + ���94 *F = mK8�F94FΩ�$Fk5_��F + k4_��F = k5_:���F + k4_:���F n 										(2.27) 

End 

To resolve the system, we find Id_FW first and later Iq_FW. Substituting the second equation in the 

first in 2.27 and making some calculations we obtain: 

{1 − '9594*F| k4F + '2���94 * k4 + ���F94F − mK8�F94FΩ�$F + '9594*F ∗ Ck5����F + k4����F D = 0										(2.28) 

That is a simple second order equation with a ‘’delta’’ equals to: 

∆= '2���94 *F − 4 {1 − '9594*F| ∗ {���F94F − mK8�F94FΩ�$F + '9594*F ∗ Ck5����F + k4����F D|										(2.29) 
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Therefore 

k4_��t,F = −'2���94 * ± √∆
2 {1 − '9594*F|

										(2.30) 

Since we want an Id<0, so the numerator has to be positive because the denominator is always 

negative as Lq>Ld, therefore the right solution is: 

k4_�� = −'2���94 * + √∆
2 {1 − '9594*F|

										(2.31) 

Well 

k5_�� = ��� (q) ∗ �Ck5����F + k4����F D − k4¡¢F 										(2.32) 

Finally we have built a block in Simulink that with the inputs of torque and speed, decides if working 

in MTPA or FW condition, and the outputs will be reference currents for the current loops of our 

control.   

 

Figure 2.7 

Under the mask there is the following scheme: 



34 

 

 

Figure 2.8 

 

With the previous Flux Weakening implementation we had problems of discontinuities in the 

passage between MTPA and flux weakening, we have resolved this problem considering  also the 

resistance that before we neglected.  If we consider the resistances we obtain the following system 

that describes the intersection between the current and the voltage limits. 

j k4F + k5F = kK8�Fm4F + m5F = mK8�F n 										(2.33) 

Where  

kK8�F = k4_:���F + k5_:���F 										(2.34) 

 

But 

o m4 = �k4 − Ω�$95k5m5 = �k5 + Ω�$(94k4 + ���)n 									(2.35) 

Well 

£ k4 = −�kK8�F − k5F(�k4 −Ω�$95k5)F + [�k5 + Ω�$(94k4 + ���)]F = mK8�F
n 									(2.36) 

Substituting Id in the second equation we have: 

[−��kK8�F − k5F − Ω�$95k5]F + [�k5 + Ω�$(−94�kK8�F − k5F + ���)]F = mK8�F 										(2.37) 

Now we develop the equation considering like unknown the speed, in this way we obtain a second 

order equation 
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{95F k5F + (−94�kK8�F − k5F + ���)F| ∗ Ω�$F + {2��kK8�F − k5F95k5 − 2�k594�kK8�F − k5F + ���| ∗ Ω�$+ �FkK8�F − mK8�F = 0										(2.38) 

Well 

¦ = 95F k5F + (−94�kK8�F − k5F + ���)F										(2.39) 

§ = 2��kK8�F − k5F95k5 − 2�k594�kK8�F − k5F + ���									(2.40) 

� = �FkK8�F − mK8�F 										(2.41) 

∆= §F − 4¦�										(2.42) 

Ω�$tF = −§ ± √∆2¦ 									(2.43) 

But we are interested only at positive speeds so 

Ω�$ = −§ + √∆2¦ 									(2.44) 

Now that we have obtained an analytical expression of the speed in function of the q current, we 

can use again the polyfit to extract the Iq from the speed. In this case we have used a polyfit until 

the eleven order and we have built a matrix of coefficients K in the main matlab code, where every 

row of this matrix corresponds to the polyfit coefficients calculated with a particular current limit 

from the MTPA code. In the appendix is showed the code to do this, while here there are the plots of 

the curves of speed(Iq) (in red) and the Iq(speed) (in blu).  

 

Figure 2.9 

Ir

q
[A]

0 10 20 30 40 50 60 70 80 90

104

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4



36 

 

If we do the zoom in the lower right region that is our operating region we observe the errors of the 

approximation. 

 

Figure 2.10 

 

Figure 2.11 

 

We can see that the error is about of 2 [rad el / sec] that results acceptable in our control and in this 

way we have resolved the problem of the discontinuity.  
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Once known the q-current is very easy to find the d-currents that is calculated like follows: 

�4	¨$© = −�|k|F − �5	¨$©F 										(2.45) 

Where 

|k| = ��4	:���F + �5	:���F 										(2.46) 

Finally we have obtained the references for our control, now let’s see in detail the PI regulators 

utilized. 

 

2.5  PI 

For the current regulators we have used simple PI with the proportional part and the integral part 

with the following function transfer. 

�(�)ª = «� + «ª� 										(2.47) 

With a regulator time constant equal to 

¬ = «�«ª 										(2.48) 

And the following Simulink scheme  

 

Figure 2.12 

For the first calculation of the coefficients KI and KP we have written a code (that we can find in the 

appendix of this chapter) with particular specifications of cut frequency and phase margin, 

considering the machine like an SPM and doing the axis decoupling and the fem compensation. In 

this way we can consider the d loop and the q loop equals and we can calculate KI and KP once like 

follows. However, after the first calculation of KP and KI, we have to do a work of tuning to find the 

right coefficients watching the simulations with the full scheme of control. To simplify the work of 

discretization, we have written the PI with Matlab and we have added two typologies of anti-wind-

up algorithm, one static and the other dynamic. Here there is the figure of the regulators. 
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Figure 2.13 

The anti-wind-up is a particular limiter of the integrator inside the regulator. It can be static or 

dynamic and we have implemented both choosing the dynamic and commenting the code part of 

the static one, but let’s see what a dynamic anti wind-up does:   

 

Figure 2.14 

Like we can observe from the figure 2.14, in the d loop we have: 

®�� = −¯	�/°±�.;� �										(2.49) 
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While in the q loop we have 

®�� = �	�/°±�.;� � + ²/M	°±M./ �³	�± 										(2.50) 

So we see that Y_FF can change and our algorithm can take it in to account because it does the 

followings operations: 

We want respect this restriction 

−mK8� ≤ ®ª + ®� + ®�� ≤ mK8�										(2.51) 

So, if we have 

®ª + ®� + ®�� ≥ mWaS 									(2.52) 

Do this 

®ª = mK8� − ®� − ®�� 												(2.53) 

While if we have 

®ª + ®� + ®�� ≤ −mK8�										(2.54) 

Do this 

®ª = −mK8� − ®� − ®�� 										(2.55) 

In this way our algorithm change the limits of the integrator when Y_P + Y_FF change and this is the 

motive therefore it is called dynamic anti-wind-up. Always in the appendix we can find the code used 

to do this. 

 

2.6  Voltage limiter 

Done always in code, thanks this limiter, we are sure to remain in the linear zone of the inverter, so 

if we want to pass from the linear zone to the overmodulation zone and square wave (six steps 

control) we have to remove it. Are been implemented two types of it, one using Pitagora theorem 

and triangles similarity, the other using trigonometric theory. For the implementation in C-script is 

been selected the geometric one because it doesn’t need of trigonometric form that are very heavy 

in terms of calculus for the DSP. Anyway in the appendix are reported both the codes. 
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2.7  Appendix  

a) Polyfit for MTPA  

%%   
 
iq=-150:150;  
 
%    dopo diverse pagine di conti, ho trovato la se guente equazione :  
%    -4 *m^2 +6p*flux*iq *m +9p^2(Ld-Lq)^2iq^4 = 0  
%    risolvendo l'equazione di secondo grado, si ar riva all'espressione  
%    della coppia come segue  
  
m=3/4*p*iq.*(flux_mg+sqrt((flux_mg)^2+4*(Ld-Lq)^2*i q.^2));  
  
%% 
  
%    esprimiamo adesso la iq in funzione di m ( che  e' proprio quello che  
%    ci interessa ) e lo si fa con una polyfit  
  
Cq=polyfit(m,iq,8);  
iq=(Cq(1)*m.^8 + Cq(2)*m.^7 + Cq(3)*m.^6 + Cq(4)*m. ^5 + Cq(5)*m.^4 + 
Cq(6)*m.^3 + Cq(7)*m.^2 + Cq(8)*m + Cq(9));  
  
Cq;     % coefficienti della polinomiale  
  

b) Polyfit for FW 

for  i=1:110  
  
    I_lim_MTPA=70+i/10-0.1;  
    Iq = linspace(0,I_lim_MTPA,100000);  
    A = ((Lq.*Iq).^2 + Ld^2*(I_lim_MTPA^2-Iq.^2) + flux_mg^2 -           
         2*Ld*flux_mg*sqrt(I_lim_MTPA^2-Iq.^2));    
    B = (2*R.*Iq.*(sqrt(I_lim_MTPA^2-Iq.^2).*(Lq-Ld ) + flux_mg));  
    C = (R*I_lim_MTPA)^2 - U_lim^2;  
    Delta = B.^2 - 4.*A.*C;  
    omega = (-B + sqrt(Delta))./(2.*A);   
     
     Kq = polyfit(omega,Iq,10);  
    
     Iq = (Kq(1)*omega.^10 + Kq(2)*omega.^9 + Kq(3) *omega.^8 +    
           Kq(4)*omega.^7 + Kq(5)*omega.^6 + Kq(6)* omega.^5 +    
           Kq(7)*omega.^4 + Kq(8)*omega.^3 + Kq(9)* omega.^2 +   
           Kq(10)*omega.^1 + Kq(11));  
   
     Kq(i,:)=Kq;  
     I_blocco_FW(:,i)=I_lim_MTPA(1,:);  
  
     KQ(i,:)=Kq(1,:);  
end  
  
I_blocco_FW  
KQ 
 

 



41 

 

c) Ki and Kp calculation 

%%%% calcolo dei K_I e K_P del regolatore PI degli anelli di corrente  
  
%% dati  
  
Fs=16e3;  
Ts=1/Fs;  
R=0.0951;  
L=211e-6;  
  
%% specifiche  
  
f_a=Fs/50;                       %frequenza di attraversamento [Hz]  
omega_a=2*pi*f_a;                %velocità di attraversamento  [rad/s]  
margine_di_fase_richiesto=60*(pi/180);     %margine di fase in radianti  
  
%% funzione di trasferimento GH per gli anelli di c orrente  
 % GH= K_I * (1+s*tr)/s * 1/(1+s*(3/2)*Ts) * 1/(R+s *L)  
  
%% calcolo K_I e K_P  
  
% margine_di_fase_richiesto= pi +  
% + [arctg(omega_a*tr)-(pi/2)-arctg(omega_a*3/2*Ts) -arctg(omega_a*L/R)]  
% trovo l'incognita tr  
  
tr=(1/omega_a)*tan(margine_di_fase_richiesto-
pi+(pi/2)+atan(omega_a*3/2*Ts)+atan(omega_a*L/R));  
  
% impongo |GH(jomega_a)|=1 con il valore di tr appe na trovato e trovo K_I  
  
K_I=R*sqrt(((omega_a)^2*(1+(3/2*Ts*omega_a)^2)*(1+( omega_a*L/R)^2))/(1+(ome
ga_a*tr)^2));  
  
% calcolo K_P  
  
K_P=K_I*tr;  
  
K_I  
K_P 
 

d) PI discretized with static and dynamic anti-wind-up 

function  ud_ref = R_id( U_lim, decoupling, id_err)  
  
%%%% controllore di corrente fatto in codice perche ' va meglio poi per la  
%%%% discretizzazione  
  
%% dati  
  
K_I=470.8638*0.3;  
K_P=0.3754*1.7;  
  
%% algorithm for ud_ref  
  
persistent  ud_int  
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if  ( isempty(ud_int) )  
    ud_int=0;  
end  
  
% discretizzazione di Eulero  
  
ud_int=ud_int + id_err*Ts;  
  
% anti wind-up dinamico  
  
if  K_I*ud_int+K_P*id_err-decoupling>U_lim  
   ud_int=(U_lim-K_P*id_err+decoupling)/K_I;  
end  
  
if  K_I*ud_int+K_P*id_err-decoupling<-U_lim  
   ud_int=(-U_lim+decoupling-K_P*id_err)/K_I;  
end  
  
% cosa fa il PI  
  
ud_ref=K_P*id_err+K_I*ud_int;  
  
%% anti wind-up statico  
%  
% if ud_ref >= U_lim  
%     ud_int=(U_lim-K_P*id_err)/K_I;  
%     id_ref=U_lim;  
% end  
%  
% if ud_ref <= -U_lim  
%     ud_int=(-U_lim-K_P*id_err)/K_I;  
%     ud_ref=-U_lim;  
% end  
 

e) Voltage limiter 

function  [ud_ref_lim, uq_ref_lim] = limitatore_U(ud_ref, uq _ref, U_lim)  
  
%%%%    calcolo del modulo (abs voltage value calcu lation)  
%% geometric method  
% k=modulo_U/U_lim;  
%  
%  
% if k>1  
%     ud_ref_lim=ud_ref/k;  
%     uq_ref_lim=uq_ref/k;  
% else  
%     ud_ref_lim=ud_ref;  
%     uq_ref_lim=uq_ref;  
% end  
%% trigonometric method  
modulo_U=sqrt(abs(ud_ref)^2+abs(uq_ref)^2);  
fase_U=pi+atan(uq_ref/ud_ref);  
if  modulo_U > U_lim  
   modulo_U=U_lim;  
end  
ud_ref_lim=modulo_U*cos(fase_U);  
uq_ref_lim=modulo_U*sin(fase_U);  
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Chapter 3: 

The switching frequency 
 

3.1  Introduction 

It’s necessary to discuss about the switching frequency and the modulation frequency index. 

Considering the fact that is simple filtering the high frequency harmonics, it is better to choose a 

switching frequency very high with the only disadvantage of the switching losses in the inverter. We 

have a good relation between the carrier signal and the control one, if the modulation frequency 

index M© is high. The limit therefore M© is considered big or small is M© = 21. 

µ¶ > 21  

The subharmonic amplitudes caused by an asynchronous PWM modulation are small for high values 

of M©. So, we can hold constant the carrier frequency while the frequency of the control signal is 

changing, and we have non-integer values of M©, like we can understand by the following formula. 

M© = ²<·8¸�¹8º�²�I¸I¨ 										(3.1) 

µ¶ < 21 

For small values of M©, the carrier and the control signal have to be synchronous. In order to reach 

this, the modulation frequency index M© has to be integer, if M© is not an integer number we 

subharmonics of the fundamental frequency that are unwanted. In this way the carrier has to 

change the frequency with the frequency of the control signal. In particular M© has to be also odd to 

have odd and half-wave symmetry. 

 

3.2  Variable switching frequency 

We have seen that when the speed of the motor increases, the modulation index of the frequency 

mf is very low, in particular when we are at full speed, the mf is around 12 and we can see clearly the 

subharmonics in the system. The theory said us that when the modulation index of the frequency is 

smaller than 21, it is better to work with the maximum odd integer value of mf. In this way we 

should see an improvement in the harmonic spectrum, so we have to write an algorithm that can 

change the switching frequency in a dynamic way to prove the theory. 

The maximum switching frequency of the inverter is 16 [KHz], so until the mf is smaller than 21 we 

can work with a constant switching frequency of 16[KHz], that is the best solution in terms of 

harmonics because we can modulate better (more times) our signal. The first step is to write an 

algorithm that calculate the modulation index mf and when this is smaller than 21, it finds the exact 

switching frequency that gives us the value of  mf  reached. The maximum current value of mf is 

calculated like follows: 
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²<·8¸�¹8º�_��» = 16000	[¼½]									(3.2) 

²�I¸I¨ = Ω�$2) 									(3.3) 

Because Ω_me is in [rad el/s]. 

M©_��» = ²<·8¸�¹8º�_��»²�I¸I¨ 										(3.4) 

So if mf is bigger that 21 we have: 

²<·8¸�¹8º� = ²<·8¸�¹8º�_��»										(3.5) 

M© = M©_��»										(3.6) 

For the case mf smaller than 21, we have written two algorithms: one that finds the switching 

frequency with the max integer odd value of mf, and the other one which finds the switching 

frequency necessary to have the max integer odd and multiple of 3 value of mf and they are been 

reported in the appendix of this chapter. 

Let’s start with the first one: 

When the value of mf is smaller than 21, we calculate the max integer closer to the current mf with 

the Matlab command ceil. Now we need that this integer is odd, so we divide the integer by two and 

we calculate the closer integer of it thanks the function round in Matlab. Well if the last two 

operations give the same number, it means that the previous number (the one calculated with the 

Matlab function ceil) was even and we need to sum 1, otherwise it means that the previous number 

was odd and so we can take it directly. Finally we have found the mf which we wanted and now we 

can calculate the switching frequency that corresponds to it with the inverse of the formula 3.1 like 

follows: 

²<·8¸�¹8º� = M© ∗ ²�I¸I¨										(3.7) 

The block in Simulink has Ω_me in input and f_switching in output calculated with the algorithm just 

described. 

The second algorithm that finds the switching frequency which gives an integer multiple of 3 and 

odd value of mf, it is composed only by two if cycles very easy to understand only watching the code 

in the appendix.  

The second step consists to find a way to convey at my carriers the variable switching frequency just 

calculated. We did it analogically using an electrical circuit in Plecs that we can observe in the 

following figure. 
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Figure 3.1 

The input is a constant C multiplied by 1 or -1 and later integrated, in fact the carrier is the integral 

of a square wave. The switch that controls the sign of the constant is controlled by a Flip-flop SR that 

orders the switch to limit the carrier between 1 and -1.  Now we have to find the relation between 

the ‘’constant’’ C and the variable switching frequency. It is a simple geometric relation and it is easy 

to understand watching the figure below of a triangular wave. 

 

Figure 3.2 

The ‘’constant’’ C is the max value of the square wave and it is equal to the rise inclination of the 

carrier. 
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 Let’s consider the triangle of the figure 3.3. 

 

Figure 3.3 

Well we can write: 

� = 	�(¾) = 2¿<2 = 4¿< = 4²<·8¸�¹8º�										(3.8) 

� = 4²<·8¸�¹8º�										(3.9) 

The 3.9 is the final relation reached between the switching frequency and the input for the electrical 

circuit that makes the carrier. 

The final scheme used in the simulation to have a variable switching frequency is the following. 

 

 

Figure 3.4 
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3.3  Best solution 

To verify what algorithm is better for our control, we observe the harmonic spectrum of the 

modulation of three sinusoidal signals modulated with the fixed frequency at 16 [KHz] and with the 

variable switching frequency just described. The period where we want to calculate the spectrum is 

the period of the fundamental of the motor at full speed. 

 

²�;;	�.//� = 19000							[À.M]									(3.10) 

Ω�I¸I¨ = 19000 ∗ 4 ∗ 2)	60 			~À³�$K�/° �									(3.11) 

²�I¸I¨ = Ω�I¸I¨2) 				[¼½]										(3.12) 

¿©2ÁÂÁÃ = 1²�I¸I¨ 			[�]											(3.14) 

 

We want to compare the three different spectrums in the case of the phase signals and in the case 

of the line to line signals both. To convert the phase signals in the line to line we have used the 

simple trick in the figure 3.5. 

 

Figure 3.5 

Where the inputs are the three different modulations of the phase signals and the outputs are the 

line to line modulations.  
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The scheme to verify what is the best algorithm is the one described in the figure 3.6. 

 

Figure 3.6 
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Now let’s see the results. 

The variable switching frequency calculated with the first algorithm and the fundamental frequency 

of the motor from zero to the full speed following the requirements of the project are presented in 

the figure 3.7 

 

Figure 3.7 

 

The variable switching frequency calculated with the first algorithm and the modulation frequency 

index M© are showed in figure 3.8. 
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Figure 3.8 

 

The variable switching frequency calculated with the second algorithm and the corresponding 

modulation frequency index  M©	 are showed in figure 3.9. 

 

Figure 3.9 
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From now in the figures, the first image of the figure will represent the modulation at constant 

frequency, the second the modulation done with variable switching calculated using the first 

algorithm and the third the other. Let’s consider a period at full speed of the three modulations of 

the phase signals. 

 

Figure 3.10 

 

In the figures 3.11 and 3.12 we can observe the FFT (Fast Fourier Transform) done until the 50
th

 

harmonic and 18
th

 respectively. 
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Figure 3.11 

 

Figure 3.12 
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 But what is really interesting for us is the behaviour of the modulations of the line to line signals, 

well it is proposed below. 

 

 

Figure 3.13 

 

We can observe that there isn’t a continue component and in the figures 3.14 and 3.15 we can 

observe the FFT (Fast Fourier Transform) until the 50
th

 harmonic and 20
th

 respectively. 
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Figure 3.14 

 

Figure 3.15 
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We can see clearly an improvement, in terms of harmonics, using the modulations with variable 

switching. In the last figure, we can see that the modulation done with an mf integer and odd 

presents a ninth harmonic and a little bit of seventh, but with the line to line signals, we didn’t 

expect harmonics of order multiple of three, so it is the harmonic caused by the switching. Instead 

the modulation done with a mf integer, odd, and multiple of three, presents the seventh and a little 

bit of fifth, so finally we will implement the first algorithm to control the switching frequency of our 

inverter. 

During the simulations done, the discontinuities of the switching frequency of figure 3.7 were 

damaging for the control, so we have decided finally to discretize all at the final switching frequency 

founded using the first algorithm that is equal to 13933.3 [Hz] and it guaranties a frequency 

modulation index at full speed equals to 11. 
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3.4  Appendix  

First algorithm and second (commented) 

function  [f_s_new,odd_int] = FS(f_fondamental)  
  
%%%% blocco che mi calcola la massima frequenza di switching tale per cui  
%%%% quando l'indice di modulazione mf e' minore di  21, esso sia il massimo 
intero dispari  
  
  
f_s_max = 16000; % hz frequenza massima di switching  
  
f_s_new = f_s_max;  
  
m_f_max = f_s_max/f_fondamental;   % massimo indice di modulazione  
  
m_f = m_f_max;  
  
m_f_new = m_f;  
  
if  m_f >= 21  
    f_s_new = f_s_max;    
else  
     
    m_f_new = ceil(m_f);                      
     
    m_f_pari = m_f_new/2;                    % mi serve per trovare mf                                                                   
dispari con  un  trucchetto  
     
    if  round(m_f_pari) == m_f_pari            
        m_f_new_dispari = m_f_new + 1;  
    else   
        m_f_new_dispari = m_f_new;    
    end  
     
    m_f_new = m_f_new_dispari-2;  
    f_s_new = (m_f_new_dispari-2) * f_fondamental;  
      
% % voglio che mf sia intero, dispari, e multiiplo di 3  
%  
%       if  m_f < 21  &&  m_f >= 15  
%           m_f_new = 15;        
%           f_s_new = m_f_new * f_fondamental;  
%       end  
%        
%       if  m_f < 15            
%           m_f_new = 9;            
%           f_s_new = m_f_new * f_fondamental;            
%       end  
end 
 
odd_int = m_f_new;  
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Chapter 4: 

Overmodulation, square wave and selective 

harmonics cancellation 
 

 

4.1  Introduction 

In this chapter we will analyse the behaviour of our motor controlling the inverter in overmodulation 

and successively in square wave. We have reached for some algorithms in the platform IEEE and we 

have found a very good article of the professors Silverio Bolognani and Mauro Zigotto entitled ‘’ 

Novel digital continuous control of SVM inverters in the Overmodulation range’’[1]. In this article is 

explained a smart way to do the transition of the PWM control from the linear zone to the 

overmodulation and the square wave. Using the modulation in square wave, the harmonics at low 

frequency make a lot of problems so we have proposed a selective harmonic cancellation algorithm 

always described in this chapter. 

 

4.2  Overmodulation 

The first thing to do to apply the overmodulation is removing the voltage limiter so that the 

regulators output can surpass the voltage limit if necessary. We define the modulation index like 

follows: 

q = mt2mÄÅ) = )mt2mÄÅ 										(4.1) 

where U_1 is the fundamental amplitude and U_DC is the DC-link voltage of our inverter. Now we 

consider the space vector of the voltages using the Clarke Transform. 

£��(#)��(#)��(#)n 											(4.2) 

We apply the Clarke Transform definition 

�(#) ≜ 23 ~��(#) + ��(#)/0FÇi + ��(#)/0}Çi �										(4.3) 

Now we consider a space vector of amplitude r and phase #t in a certain instant. When it turns and 

it remains inside the hexagon like we can see in the figure, we are sure to be in the linear zone of 

PWM, but when the amplitude of the space vector becomes bigger than the maximum radius of the 

circle inscribed in the hexagon, we are outside of the linear zone and we have to modify its 

trajectory. The maximum radius therefore we are outside of the linear zone is the following: 



 

Then if  

We have to apply our algorithm.

The space vector � is well represented from 0 to  

figure. 

We have a space vector of reference that is turning and it is the blue one, then we have the 

trajectory of the space vector reached that is the green one. So the algorithm that we have 

implemented does the followings things: 

Considering the first sector from 0 to 

green space vector is equal the b

À��» = mt = mÄÅ√3 										�4.4� 

q O )mÄÅ√32mÄÅ � 0.907										�4.5� 

ave to apply our algorithm. 

is well represented from 0 to  #t � ¾� like we can observe in the following 

Figure 4.1 

 

We have a space vector of reference that is turning and it is the blue one, then we have the 

e space vector reached that is the green one. So the algorithm that we have 

implemented does the followings things:  

Considering the first sector from 0 to  
Çi , until the reference space vector is inside the hexagon, the 

green space vector is equal the blue one,  so from   #t � 0   to  #t � ¾� we have 

� � �ÈÉ¶										�4.6� 
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like we can observe in the following 

 

We have a space vector of reference that is turning and it is the blue one, then we have the 

e space vector reached that is the green one. So the algorithm that we have 

, until the reference space vector is inside the hexagon, the 

we have  
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From   #t � ¾� to 	#t � Ç� we have that the reference space vector is outside the hexagon so we fix 

the green space vector at the phase #t � ¾� so we have 

� � Ê�ÈÉ¶Ê	/0�� 										�4.7) 

From 		#t = Ç�  to  #t = Çi − ¾� we have that the reference space vector is still outside from the 

hexagon, but now we fix our green space vector at the phase  #t = Çi − ¾� so we have 

� = Ê�ÈÉ¶Ê	/0(Çi6��)										(4.8) 

From  #t = Çi − ¾�  to  #t = Çi   the reference space vector is returned inside the hexagon, so the 

green one corresponds exactly with the blue one and we have again 

� = �ÈÉ¶										(4.9) 

For the others five sectors of the hexagon, we repeat the same things in a symmetric way and we 

obtain finally the upper figure 4.1. 

The green space vector that goes out from our algorithm has the following expression for the first 

sector 

� = |�|/0Ë										(4.10) 

With 

# =
wxy
xz#t																	²±À			0 ≤ #t ≤ ¾�				³ �			 )3 − ¾� ≤	#t ≤	)3	¾�																	²±À				¾�		 ≤	#t ≤			 )6																																												)3 − ¾�															²±À	 )6 		≤ #t ≤		)3 − ¾�																																												

n 										(4.11) 

 

With this algorithm we can do a continuous transition from the linear zone to overmodulation and 

the six step, in fact in the bottom there are the condition therefore we are in square wave: 

q = 1										(4.12) 

mt = 23mÄÅ 											(4.13) 

¾� = 0										(4.14) 
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The first thing to do to implement the algorithm is finding an expression of the angle ¾� in function 

of |�|	and the voltage of the DC-link. 

 

Figure 4.2 

 

 

Figure 4.3 

 

AB is the intersection between the side of the hexagon and the circle made from the reference space 

vector, OH is the apotema of the hexagon and the angle ¼ÌÍ¦ is equal to 
ÇF − Çi − ¾�. 

 

¦§ � 23mÄÅ6K8ºÎ										(4.15) 

Ì¼ = √32 ¦§										(4.16) 
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So the space vector OA has the followings coordinates: 

wxy
xz�� � �|�|F − ��F																																																								
�� � Ì¼ � √32 ¦§ = √32 23mÄÅ6K8ºÎ = mÄÅ6K8ºÎ√3

n										(4.17) 

Now let’s write the last system 4.17 in polar coordinates 

£À = |�|																																				À sin(#) = Ì¼ = mÄÅ6K8ºÎ√3 n										(4.18) 

Then 

sin# = 1√3mÄÅ6K8ºÎ|�| 										(4.19) 

Therefore 

# = arcsin ' 1√3mÄÅ6K8ºÎ|�| *									(4.20) 

But  

# = )2 − ¼ÌÍ¦ = )3 + ¾�										(4.21) 

So finally we have 

¾� = # − )3 = arcsin ' 1√3mÄÅ6K8ºÎ|�| * − )3 										(4.22) 

 

In the figure below is showed the Simulink block that do the algorithm and in the appendix of this 

chapter is reported the full code. 
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Figure 4.4 

 

We can see that we need of two transformations because the algorithm works in alfa-beta, while our 

control is in a rotating reference system d-q.  Now we want to show how the wave shapes of the 

voltages alfa-beta change during the simulation, from the linear zone of PWM to the 

overmodulation and square wave. In the followings figures are showed the alfa-beta voltages in the 

previous order. 

 

Figure 4.5: linear zone 
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Figure 4.6: overmodulation 

 

Figure 4.7: Square wave 
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The alfa-beta voltages in a X-Y plot represent very well what our algorithm does like we can see in 

figure 4.8. 

 

Figure 4.8 
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4.3  Harmonic voltage content analytical description 

Controlling the inverter in overmodulation and six step, we own more voltage from the DC-link, but 

we have a worse harmonic spectrum and moreover in six step we lose the ability to control the 

amplitude of the inverter voltage reference. So can be interesting doing an analytical description of 

the voltage harmonic content. The space vector can be expressed in Fourier series like follows: 

��#� � Ó Ôº/0ºÕÖ � Ó Ôº/0º×Ö¸
hØ

º→6Ø
hØ

º→6Ø
										�4.23) 

Where 

Ôº = 12)	Ú �(#)FÇ
� /60ºÕÖ 	�Ût										(4.24) 

Ût = >t											(4.25) 

And  >t is the angle speed of the fundamental.  

When |�(#)| is constant and the phase is redundant like it is in our algorithm we can write: 

#(Ût) = Ût + ∆#(Ût)									(4.26) 

Where #(Ût) and   ∆#(Ût)  are showed in the followings figures in function of Ût. 

 

Figure 4.9 
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Well 

Ôº � 12)	Ú |�(#)|/01FÇ
� /60ºÕÖ 	�Ût										(4.27) 

Become 

Ôº = 12)	Ú À	/0ÕÖ 	/0∆1FÇ
� /60ºÕÖ 	�Ût										(4.28) 

Ôº = 12)	Ú À		/0∆1FÇ
� /0(t6º)ÕÖ 	�Ût										(4.29) 

Now using the symmetry of the six sectors of the hexagon we have 

Ôº = 12) £Ú À		/0∆1Çi
� /0(t6º)ÕÖ 	�Ût +	Ú À		/0∆1FÇiÇi /0(t6º)ÕÖ 	�Ût + ⋯

+	Ú À		/0∆1FÇ
�Çi /0(t6º)ÕÖ 	�ÛtÝ										(4.30) 

Ôº = 12)Ó£	Ú À		/0∆1(Îht)ÇiÎÇi /0(t6º)ÕÖ 	�ÛtÞ�
Îß� 										(4.31) 

Now we set 

ÛF = Ût − à)3 										(4.32) 

So 

Ût = ÛF + à)3 										(4.33) 

�Ût = �ÛF										(4.34) 

And if   Ût = ÎÇi   then ÛF = 0 , and if Ût = (Îht)Çi   then ÛF = Çi , therefore 

Ôº = 12)Ó á	Ú À		/0∆1Çi
� /0(t6º)(Õ�hÎÇi )	�ÛFÝ										(4.35)�

Îß�  

Ôº = 12)Ó á	/0ÎÇi (t6º) Ú À		/0∆1Çi
� /0(t6º)Õ� 	�ÛFÝ�

Îß� 										(4.36) 
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But inside the integral there isn’t the k 

Ôº � 12)Ú À		/0(∆1hÕ�)Çi
� /60ºÕ� 	�ÛF Ó/0ÎÇi (t6º)�

Îß� 										(4.37) 

Now we can call 

ÛF = Ût										(4.38) 

Because the integral doesn’t change and finally we have obtained  

Ôº = 12)Ú À		/0(∆1hÕÖ)Çi
� /60ºÕÖ 	�Ût Ó/0ÎÇi (t6º)�

Îß� 										(4.39) 

But 

À		/0(∆1hÕÖ) = À		/01 = 	�(#)										(4.40) 

Ôº = 12)Ú �(#)Çi
� /60ºÕÖ 	�Ût Ó/0ÎÇi (t6º)�

Îß� 										(4.41) 

Now that we have obtained this expression, we remember that, using our algorithm, in the first 

sector #  is equal to 

# =
wxy
xz#t																	²±À			0 ≤ #t ≤ ¾�				³ �			 )3 − ¾� ≤	#t ≤	)3	¾�																	²±À				¾�		 ≤	#t ≤			 )6																																												)3 − ¾�															²±À	 )6 		≤ #t ≤		)3 − ¾�																																												

n 										(4.42) 

And substituting it in the following 

Ôº = 12)Ú À		/01Çi
� /60ºÕÖ 	�Ût Ó/0ÎÇi (t6º)�

Îß� 										(4.43) 

We obtain 

Ôº = 12) âÚ À		/01Ö��		
� /60ºÕÖ 	�Ût +	Ú À		/0��		

Ç�
��		 /60ºÕÖ 	�Ût +	Ú À		/0Çi6��		Çi6��		Ç� /60ºÕÖ 	�Ût

+	Ú À		/01Ö
ÇiÇi6��		 /60ºÕÖ 	�Ûtã × Ó /0ÎÇi (t6º)�

Îß� 										(4.44) 

Now we develop the integrals in the square brackets individually observing that #t = Ût, then 

Ú À		/01Ö��		
� /60ºÕÖ 	�Ût = Ú À		��		

� /0(t6º)ÕÖ 	�Ût = ÀA(1 −  ) C/0(t6º)��		 − 1D										(4.45) 
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Ú À		/0��		
Ç�

��		
/60ºÕÖ 	�Ût � −À/0��		

A  '/60ºÇ� − /60º��		*
� − ÀA  ~/0?��		6ºÇ�@ − /0�t6º���		�										�4.46) 

 

Ú À		/0Çi6��		Çi6��		Ç� /60ºÕÖ 	�Ût = −À/0(Çi6��)	A  '/60º?Çi6��		@ − /60ºÇ�*
= − ÀA  ~/0(t6º)?Çi6��		@ − /0?Çi6��		6ºÇ� @�										(4.47) 

 

Ú À		/01Ö
ÇiÇi6��		 /60ºÕÖ 	�Ût = Ú À		ÇiÇi6��		 /0(t6º)ÕÖ 	�Ût

= ÀA(1 −  ) '/0(t6º)Çi − /0(t6º)?Çi6��		@*										(4.48) 

Substituting these integrals in the complete formula we have 

																							Ôº = ÔºCÀ, ¾�		D 		= 12) ~ ÀA(1 −  ) C/0(t6º)��		 − 1D − ÀA  ~/0?��		6ºÇ�@ − /0(t6º)��		�
− ÀA  ~/0(t6º)?Çi6��		@ − /0?Çi6��		6ºÇ� @� + ÀA(1 −  ) '/0(t6º)Çi − /0(t6º)?Çi6��		@*�
× Ó /0ÎÇi (t6º)�

Îß� 										(4.49) 

 

																							Ôº = ÔºCÀ, ¾�		D
= À2)A × Ó/0ÎÇi (t6º)�

Îß�× o 11 −   ~C/0(t6º)��		 − 1D + '/0(t6º)Çi − /0(t6º)?Çi6��		@*�
− 1  ~/0?��		6ºÇ�@ − /0(t6º)��		 + /0(t6º)?Çi6��		@ − /0?Çi6��		6ºÇ� @�å										(4.50) 

This is the final formula that expresses the space vector of the nth harmonic in function of r (that is 

the amplitude of the complete space vector) and of the angle  ¾�		that is equal to 

¾� = # − )3 = arcsin ' 1√3mÄÅ6K8ºÎÀ * − )3 										(4.51) 
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Now it’s interesting calculating the space vector of the fundamental to understand how is the 

behaviour during the overmodulation zone. 

If    � 1	 we have: 

Ôt � 12)Ú �(#)Çi
� /60ÕÖ 	�Ût Ó/0ÎÇi (t6t)�

Îß� 										(4.52) 

  But 

Ó/0ÎÇi (t6t)�
Îß� = Ó/0ÎÇi 	� = 6�

Îß� 										(4.53) 

So 

																							Ôt = 62)Ú �(#)Çi
� /60ÕÖ 	�Ût

= 62) âÚ À		��		
� /0(ÕÖ6ÕÖ)	�Ût +	Ú À		/0C��	6ÕÖDÇ�

��		 	�Ût
+	Ú À		/0?Çi6��		@Çi6��		Ç� /60ºÕÖ 	�Ût +	Ú À		ÇiÇi6��		 /0(ÕÖ6ÕÖ)	�Ûtã
= 62) ~À¾�		 + À	/0��	A '	/60Ç� −	/60��	* + À		/0?Çi6��		@A '		/60?Çi6��		@ −	/60Ç� *
+ À¾�		�											(4.54) 	= 3À) æ2¾�		 + A		/0(��6Ç�) − 	A/0(��	6��		) + 	A/0(Çi6��6Çih��		) 				
− A/0(Çi6��6Ç�)ç										(4.55) 

= 3À) è2¾�		 + 2A /60(Ç�6��)	 − /0(Ç�6��)2 é										(4.56)																				 
= 6À) è¾�		 + /0(Ç�6��)	 − /06(Ç�6��)2A é										(4.57)																											 

And using Eulero we obtain: 

Ôt = 6À) [¾�		 + sin()6 − ¾�)]										(4.58) 

We can observe that is real so  

|Ôt| = mt										(4.59) 

And finally we have the following expression for the amplitude of the space vector of the 

fundamental 4.60. 
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mt � 6À) [¾�		 + sin()6 − ¾�)]										(4.60) 

 

In the paper of Prof. Bolognani, it’s observed that since the voltage gain characteristic of the SVM 

(Space Vector Modulation) with the proposed technique is almost linear, a least-squares linear 

approximation is obtained and it’s the following. 

mt(À) = 0.707À + 0.169mÄÅ 										(4.61) 

 

Now, remembering that  

¾� = arcsin ' 1√3mÄÅ6K8ºÎÀ * − )3 										(4.62) 

 

And substituting it in 4.60 we have: 

mt(À) = 6À) [arcsin ' 1√3mÄÅ6K8ºÎÀ * − )3 + sin ')6 − ³À°��  ' 1√3mÄÅ6K8ºÎÀ * + )3*	]		 						(4.63) 

 

We can normalize the two expressions of   mt(À)  with the DC-link voltage and write them in 

function of the amplitude r normalized either for the DC-link voltage   mÄÅ6K8ºÎ  and we have: mtmÄÅ6K8ºÎ = 0.707ÀmÄÅ6K8ºÎ + 0.169										(4.64) 

And mtmÄÅ6K8ºÎ = 6À)mÄÅ6K8ºÎ [arcsin ' 1√3mÄÅ6K8ºÎÀ * − )3+ sin ')6 − ³À°��  ' 1√3mÄÅ6K8ºÎÀ * + )3*	]										(4.65)		 
 

Now imposing for both curves the same initial value point (corresponding to			 ¨�êëì��íî = 0.577 , i.e. 

the onset of overmodulation) we have the following graphic 4.10. 
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Figure 4.10 

 

The red one is the approximation and the blue one is the ‘’original’’ and the maximum percentage 

error found is of 0.5% for À � FimÄÅ. 
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4.4  Square wave and selective harmonic cancellation 

When we are in the condition of square wave 4.12, 4.13 and 4.13 the reference space vector is 

moving only in the six vertices of the hexagon like we can observe in the figure 4.8. In this section we 

will explain how the low frequency harmonics caused by the square wave modulation can be 

neglected. 

Let’s consider the three-phase inverter in the underlying figure. 

 

Figure 4.11 

 

When we control the inverter in square wave, we have harmonics in low frequency like the 5
th

, the 

7
th

, 11
th

, 13
th

 ecc. In the paper titled ‘’Generalized Techniques of Harmonic Elimination and Voltage 

Control in Thyristor Inverter: Part 1-Harmonic elimination’’ of Hasmukh S. Patel and Richard G. 

Hoft[2], it’s proposed a very elegant technique to cancel the harmonics of a square wave in an 

analytical and selective way. 

It is possible to eliminate as many harmonics as the number of pulses per half-cycle of the waveform 

by constraining the size (in terms of width) and the position of the pulses. 

We define M the number of pulses per half-cycle, so the number of commutation per cycle is: 

 

ï � 2 ∗ 2 ∗ q = 4q										(4.66) 
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The following figure can clear the idea about the pulses in a square wave 

 

Figure 4.12 

 

The waveform can be represented by a Fuorier Series as follows: 

²�>	� � Ó[³º
Ø

ºßt
sin� >	� + ðº	cos	� >	�]											�4.67) 

Where 

³º = 1)Ú ²(>	) sin( >	) �(>	)FÇ
� 										(4.68) 

and 

ðº = 1)Ú ²(>	) cos( >	) �(>	)FÇ
� 										(4.69) 
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but since our waveform has odd quarter-wave symmetry, the Fourier coefficients are given by: 

³º � 4)Ú ²(>	) sin( >	)�(>	)									(4.70)ÇF
�  

for odd n 

and 

³º = 0										(4.71) 

for even n, while 

ðº = 0										(4.72) 

for all n, then we have: 

²(>	) = Ó³º
Ø

ºßt sin( >	)											(4.73) 

 

Now we observe that from the quarter-wave symmetry property we have the following relation for 

the chopping angles: 

¾Î = ) − ¾F:6Îht										(4.74) 

With 

à = 1,2,3……q										(4.75) 

Now we develop the formula of ³º coefficients in function of the commutation angles ¾Î: 
³º = 4)Ú ²(>	) sin( >	) �(>	)ÇF

� 										(4.76) 

 

But ²(>	) can be only 0 or 1 so we have 

³º = 4) [Ú sin( >	) �(>	) + Ú sin( >	) �(>	) +	�ó
�ô ……+	Ú sin( >	) �(>	) +	��

��ìÖ ]		��
�Ö  

= 4) ~−1  cos( >	) ǀ�Ö�� − 1  cos( >	) ǀ�ô�ó − ⋯− 1  cos( >	) ǀ��ìÖ�� �																															 
				= 4 ) [cos( ¾t) −	cos( ¾F) + cos( ¾i) − cos( ¾}) + ⋯+ cos( ¾:6t)− cos( ¾:)]											(4.77)						 
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So 

³º � 4 )Ó(−1)Îhtcos	( ¾Î):
Îßt 										(4.78) 

Where 

0 < ¾t < ¾F < ¾i < ⋯ < ¾:6t < ¾: < )2										(4.79) 

With the final formula, we have obtained the harmonics amplitude in function of the commutation 

angles in an analytical way, that is a very elegant way to resolve problems. 

Now that we have written the amplitudes of all the harmonics in function of the angles of switching, 

we want to see how the harmonics can be eliminated. The approach proposed in the paper is to set 

to zero the ³º so we have: 

²8(¾) = 4 8) Ó(−1)Îht cos( 8¾Î) = 0:
Îßt 										(4.80) 

for   � = 1,2,3……q   

that is a system of M  non-linear equations and the unique solution is the vector (¾t, ¾F, ¾i, … , ¾:6t, ¾:) therefore M harmonics are eliminated. To resolve that system, the paper 

suggest to use a numerical method, but we have thought at another approach to find the vector (¾t, ¾F, ¾i, … , ¾:6t, ¾:). 
Other way 

Instead to resolve a non-linear equation system problem, we can resolve an optimisation problem. 

To resolve the problem in this way we have to find a proper function therefore the vector that gives 

the minimum is our solution. If we want to eliminate the 5
th

 and the 7
th

 harmonics, our function can 

be: 

ö(¾t, ¾F) = |³�| + |³�|										(4.81) 

In this way if we find the minimum of the function, we obtain the vector (¾t, ¾F)	 therefore F is 

minimum and so we find (¾t, ¾F) therefore  

³� = ³� = 0										(4.82) 
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Problem 1 

How can we do in order to obtain a solution �¾t, ¾F� that fulfils the following restriction? 

  
0 < ¾t < ¾F < )

2           (4.83) 

Solution problem1 

If we want that  
0 < ¾t < ¾F < )

2           (4.84) 

We can write a new function G 

÷(¾t, ¾F) =  ö(¾t, ¾F) + 	t(¾t, ¾F)          (4.85) 

Where t1 is the expression that permits to respect the restriction 

	t(¾t, ¾F) = à ∗ ��M(³ð� ?(¾t, ¾F) − �±À	C(¾t, ¾F)D@          (4.86) 

 

Sort is a matlab function, for example sort(X) sorts the elements of the vector X in ascending order, 

and k is a scalar coefficient, it is like a weight if necessary. 

So until now we have 

÷(¾t, ¾F) = |³�| + |³�| + à ∗ ��M(³ð� ?(¾t, ¾F) − �±À	C(¾t, ¾F)D@          (4.87) 

Problem 2 

With only the correction function  	t(¾t, ¾F) could be that 

¾t = ¾F          (4.88) 

But we don’t want it 

Solution problem2 

This solution is not general because it resolves the problem only if we have 2 angles, but for now it is 

enough in fact we want to eliminate the 5
th

 and the 7
th

 harmonics only. So we have to write a new 

function still: 

¼(¾t, ¾F) =  ÷(¾t, ¾F) + 	F(¾t, ¾F)          (4.89) 

Where  

	F(¾t, ¾F) = 1
1 + |¾t − ¾F|          (4.90) 
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In fact we are searching the minimum of the function, so our algorithm will find a solution therefore 

t2 is minimum, but we can easily see that t2 is max when   
¾t = ¾F          (4.91) 

Then our method will avoid this condition. 

 

Finally the function that we want minimize is: 

¼(¾t, ¾F) =  ö(¾t, ¾F) + 	t(¾t, ¾F) + 	F(¾t, ¾F)          (4. .92) 

 

Now we have to choose the optimization algorithm to implement in order to obtain  (¾t, ¾F) 

therefore the function H is minima. During the course of Professor Alotto, we have studied a 

particular optimization method the DE (Differential Evolution) that is explained in the paper ‘’ Using 

Differential Evolution for Combinatorial Optimization: A General Approach’’ of Ricardo S. Prado  

Rodrigo C. P. Silva and Frederico G. Guimaraes, Oriane M. Neto[3]. 

Like other evolutionary algorithms, the original DE algorithm works with a population of candidate 

solutions randomly generated within the domain region of the problem, usually described as: 

X = ùú ∈ �º: úÎSab ≤ úÎ ≤ úÎSXü , à = 1, … ,  ý          (4.93)  
Where úÎSab and úÎSXüare respectively the low and upper limits of each variable. they adopt in this 

paper the notation ú�,8,0  such that g = 1, ... , G represents the generation counter;                                   

i = 1,...,þ represents the index of the individual in the population; and j = 1, ... , n represents the 

variable index. A given individual is represented by ú�,8 . New individuals are generated by using the 

differential mutation. The mutation is based on the difference between two individuals randomly 

chosen from the current population. This differential vector is multiplied by a constant and added to 

a third individual, called base vector (base solution), leading to the so-called mutant vector: 

��,8 = ú�, Ö̈ + öCú�, �̈ − ú�, ô̈D          (4.94) 

Where Àt ≠ ÀF ≠ Ài ∈ �1, . . . , þ� are mutually distinct random indices, and F is a differential weight, a 

scale factor applied to the differential vector. For each ú�,8 in the population a corresponding mutant 

solution ��,8 is generated. A trial vector ��,8 is produced through recombination of  ú�,8 and ��,8. In 

the basic DE algorithm, the discrete recombination with probability �» is used. In this way, F and �» 

represent control parameters of the algorithm. Finally, the trial vector ��,8 competes with the 

current solution ú�,8 based on their objective function evaluations. If the trial solution is better or 

equal than the current solution, it replaces the current solution, otherwise the current solution 

survives while the trial one is eliminated, as described below: 

ú�ht,8 = j ��,8          �²  ²(��,8) ≤ ²(ú�,8)
ú�,8          ±	ℎ/À���/                 n           (4.95) 

In the appendix of this chapter, can be find the code to implement this algorithm of optimization 

that is very short and easy to understand. 
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Now let’s see the elimination of the 5
th

 and the 7
th

 harmonics that are the most annoying in terms of 

disturb because they are at low frequency. If we want to eliminate two harmonics, the number of 

pulses per half-cycle M is: 

q � 2										(4.96) 

The formula of the amplitude of the harmonics in function of the chopping angles we saw to be: 

³º � 4
 )Ó(−1)Îhtcos	( ¾Î)

:

Îßt
										(4.97) 

So 

³� � 4
5) Ó(−1)Îhtcos	(5¾Î)

F

Îßt
										(4.98) 

³� � 4
7) Ó(−1)Îhtcos	(7¾Î)

F

Îßt
										(4.99) 

In this way the function F is: 

ö(¾t, ¾F) � |³�| + |³�|										�4.100) 

	ö(¾t, ¾F) � 4
5) |cos(5¾t) − cos	(5¾F)|+ 4

7) |cos(7¾t) − cos	(7¾F)|										(4.101) 

 

Let’s define t_1: 

	t(¾t, ¾F) � 1 ∗ ��M�³ð� ?�¾t, ¾F� − �±À	C�¾t, ¾F�D@										�4.102) 

and t_2: 

	F(¾t, ¾F) � 11 + |¾t − ¾F|										�4.103) 

Well the final function H that we want to minimize is: 

¼(¾t, ¾F) � 	ö�¾t, ¾F� + 	t�¾t, ¾F� + 	F�¾t, ¾F�										�4.104) 

¼(¾t, ¾F) � 4
5) |cos(5¾t) − cos	(5¾F)|+ 4

7) |cos(7¾t) − cos	(7¾F)| 	
+ 	��M�³ð� ?�¾t, ¾F� − �±À	C�¾t, ¾F�D@ 	+	 11 + |¾t − ¾F|										�4.105) 

 

Now if we apply the DE method to find the minimum of ¼(¾t, ¾F), we find the solution ú̅(¾t, ¾F) 

ú̅(¾t, ¾F) � [0.2693	;1.5260¥										(4.106) 
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That in degrees is: 

ú̅C¾t° 	, ¾F° D � r15.4297°	; 	87.4333°s											(4.107) 

The solution of the paper ‘’Generalized Techniques of Harmonic Elimination and Voltage Control in 

Thyristor Inverter: Part 1-Harmonic elimination’’ of Hasmukh S. Patel and Richard G. Hoft, was: 

ú���$¨��������C¾t° 	, ¾F° D � r15.4226°	; 	87.3949°s										(4.108) 

But instead to resolve a system of non- linear equation, we have resolved an optimization problem 

and the relative final error is of 0.04%. 

 

In the following figures there are the results of a simulation in square wave. 

 

Figure 4.13 
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The fft of the two waves to see if really the cancellation of the 5
th

 and the 7
th

 is happened is showed 

is figure 4.14: 

 

Figure 4.14 
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Finally let’s see how applying the cuts on the square wave in the simulation: 

When the speed is constant and we are using a square wave control, the signals that arrive at the 

inverter legs are square waves with a frequency equals to the frequency of the motor. To make the 

chops in the square wave, we use a programmed lookup table with the angles calculated before, 

that makes a wave that summed with the square wave, produces the final wave form that we want. 

Below there is an example only for the phase A where is showed the scheme to make the chopped 

wave. 

 

Figure 4.15 
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4.5  Appendix 

 

Overmodulation code 

function  [u_alfa_new, u_beta_new] = overmodulation(u_alfa, u_beta, 
U_lim_LL)  
 %%%% questo blocco fa il passaggio continuo da PWM zona lineare a 
overmodulation e onda quadra  
  
% calcoliiamo l'angolo teta  
u_alfa_new = 0;  
u_beta_new = 0;  
teta = 0;  
 if  u_alfa > 0  &&  u_beta >= 0     
    teta = atan(u_beta/u_alfa);    
end  
if  u_alfa > 0  &&  u_beta < 0     
    teta = atan(u_beta/u_alfa) + 2*pi;  
    end  
if  u_alfa < 0     
    teta = atan(u_beta/u_alfa) + pi;     
end  
if  u_alfa == 0  &&  u_beta > 0     
    teta = pi/2;     
end  
if  u_alfa == 0  &&  u_beta < 0     
    teta = 1.5*pi;     
end  
if  u_alfa == 0 && u_beta == 0     
    teta = 0;     
end  
teta;  
 %%%% procediamo con l'algoritmo  
 % calcoliamo il modulo di u_alfabeta  
if  sqrt(u_alfa^2 + u_beta^2) < 2/3*U_lim_LL     
    U_alfabeta = sqrt(u_alfa^2 + u_beta^2);    
else  
        U_alfabeta = 2/3*U_lim_LL;     
end  
U_alfabeta;  
apotema = U_lim_LL/sqrt(3);  % e' l'apotema dell'esagono di lato 1.5U_DC-
link  
if  U_alfabeta < apotema  
    u_alfa_new = u_alfa;  
    u_beta_new = u_beta;  
else  
    % calcoliamo l'angolo alfa_g come l'intersezione de lla circonferenza di 
raggio U_alfabeta e la retta u_beta=apotema dell'es agono  
    teta_g = asin(apotema/U_alfabeta);  
    alfa_g = teta_g - pi/3;  % vedi i calcoli su foglio  
    %% dividiamo la cosa per settori e partiamo dal  settore che va da zero 
a pigreco terzi  
    if  teta >= 0  &&  teta <= pi/3  
       if  teta >= 0  &&  teta <= alfa_g  
           u_alfa_new = u_alfa;  
           u_beta_new = u_beta;   
       end  
       if  teta > alfa_g  &&  teta <= pi/6  
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           u_alfa_new = U_alfabeta*cos(alfa_g);  
           u_beta_new = U_alfabeta*sin(alfa_g);  
       end  
       if  teta > pi/6  &&  teta <= (pi/3 - alfa_g)  
           u_alfa_new = U_alfabeta*cos(pi/3-alfa_g) ;  
           u_beta_new = U_alfabeta*sin(pi/3-alfa_g) ;  
       end  
       if  teta > (pi/3 - alfa_g)  &&  teta <= pi/3  
           u_alfa_new = u_alfa;  
           u_beta_new = u_beta;  
       end  
    end  
    %% settore che va da pi/3 a 2pi/3  
     if  teta > pi/3   &&  teta <= 2*pi/3  
       if  teta > pi/3  &&  teta <= (pi/3 + alfa_g)  
           u_alfa_new = u_alfa;  
           u_beta_new = u_beta;   
       end  
       if  teta > (pi/3 + alfa_g)  &&  teta <= pi/2  
           u_alfa_new = U_alfabeta*cos(pi/3+alfa_g) ;  
           u_beta_new = U_alfabeta*sin(pi/3+alfa_g) ;  
       end  
       if  teta > pi/2  &&  teta <= (2*pi/3 - alfa_g)  
           u_alfa_new = U_alfabeta*cos(2*pi/3-alfa_ g);  
           u_beta_new = U_alfabeta*sin(2*pi/3-alfa_ g);  
       end  
       if  teta > (2*pi/3 - alfa_g)  &&  teta <= 2*pi/3  
           u_alfa_new = u_alfa;  
           u_beta_new = u_beta;  
       end  
    end  
     %% settore che va da 2pi/3 a pi  
     if  teta > 2*pi/3   &&  teta <= pi  
       if  teta > 2*pi/3  &&  teta <= (2*pi/3 + alfa_g)  
           u_alfa_new = u_alfa;  
           u_beta_new = u_beta;   
       end  
       if  teta > (2*pi/3 + alfa_g)  &&  teta <= (pi - pi/6)  
           u_alfa_new = U_alfabeta*cos(2*pi/3+alfa_ g);  
           u_beta_new = U_alfabeta*sin(2*pi/3+alfa_ g);  
       end  
       if  teta > (pi - pi/6)  &&  teta <= (pi - alfa_g)  
           u_alfa_new = U_alfabeta*cos(pi-alfa_g);  
           u_beta_new = U_alfabeta*sin(pi-alfa_g);  
       end  
       if  teta > (pi - alfa_g)  &&  teta <= pi  
           u_alfa_new = u_alfa;  
           u_beta_new = u_beta;  
       end  
    end         
     %% settore che va da pi a pi+pi/3  
     if  teta > pi   &&  teta <= (pi + pi/3)  
       if  teta > pi  &&  teta <= (pi + alfa_g)            
           u_alfa_new = u_alfa;  
           u_beta_new = u_beta;   
       end  
       if  teta > (pi + alfa_g)  &&  teta <= (pi + pi/6)  
           u_alfa_new = U_alfabeta*cos(pi+alfa_g);  
           u_beta_new = U_alfabeta*sin(pi+alfa_g);  
       end  
       if  teta > (pi + pi/6)  &&  teta <= (pi + pi/3 - alfa_ g)  
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           u_alfa_new = U_alfabeta*cos(pi + pi/3 - alfa_g);  
           u_beta_new = U_alfabeta*sin(pi + pi/3 - alfa_g);  
       end  
       if  teta > (pi + pi/3 - alfa_g)  &&  teta <= (pi + pi/ 3)  
           u_alfa_new = u_alfa;  
           u_beta_new = u_beta;  
       end  
    end           
    %% settore che va da pi+pi/3 a 5/3pi  
     if  teta > (pi + pi/3)   &&  teta <= 5*pi/3  
       if  teta > (pi + pi/3)  &&  teta <= (pi + pi/3 + alfa_ g)  
           u_alfa_new = u_alfa;  
           u_beta_new = u_beta;   
       end  
       if  teta > (pi + pi/3 + alfa_g)  &&  teta <= 3*pi/2  
           u_alfa_new = U_alfabeta*cos(pi+pi/3+alfa _g);  
           u_beta_new = U_alfabeta*sin(pi+pi/3+alfa _g);  
       end  
       if  teta > 3*pi/2  &&  teta <= (5*pi/3 - alfa_g)  
           u_alfa_new = U_alfabeta*cos(5*pi/3 - alf a_g);  
           u_beta_new = U_alfabeta*sin(5*pi/3 - alf a_g);  
       end  
       if  teta > (5*pi/3 - alfa_g)  &&  teta <= 5*pi/3  
           u_alfa_new = u_alfa;  
           u_beta_new = u_beta;  
       end  
    end               
    %% settore che va da 5/3pi a 2pi  
     if  teta > 5*pi/3   &&  teta <= 2*pi  
       if  teta > 5*pi/3  &&  teta <= (5*pi/3 + alfa_g)  
           u_alfa_new = u_alfa;  
           u_beta_new = u_beta;   
       end  
       if  teta > (5*pi/3 + alfa_g)  &&  teta <= (2*pi - pi/6 )  
           u_alfa_new = U_alfabeta*cos(5*pi/3+alfa_ g);  
           u_beta_new = U_alfabeta*sin(5*pi/3+alfa_ g);  
       end  
       if  teta > (2*pi - pi/6)  &&  teta <= (2*pi - alfa_g)   
           u_alfa_new = U_alfabeta*cos(2*pi - alfa_ g);  
           u_beta_new = U_alfabeta*sin(2*pi - alfa_ g);     
       end  
       if  teta > (2*pi - alfa_g)  &&  teta < 2*pi  
           u_alfa_new = u_alfa;  
           u_beta_new = u_beta;        
       end     
    end                 
 end  
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Differential Evolution method DE 

function  [x_new] = DE(x,n_ind,dim,F,px,l,nodo)  
  
 %% mutazione  
  
for  i = 1:n_ind  
indice = randperm(n_ind,3);  
v(:,i) = x(:,indice(1)) + F*(x(:,indice(2)) - x(:,i ndice(3)));  
end  
  
%% ricombinazione  
  
for  i = 1:dim  
    for  j = 1:n_ind  
        s = rand(1);  
        if  s >= px  
            u(i,j) = x(i,j);  
        else  
            u(i,j) = v(i,j);      
        end  
         
        % correzione punti usciti dal dominio  
        
        if  u(i,j) < nodo(i)  
            u(i,j) = nodo(i)+l(i)/3;  
        end  
        if  u(i,j) > nodo(i)+l(i)  
            u(i,j) = nodo(i)+l(i)*2/3;  
        end       
    end  
end  
 
%% SELEZIONE - creazione di x_new  
  
for  i = 1:n_ind  
    if  funzione_francesco(x(:,i)) < funzione_francesco(u( :,i)')  
        x_new(:,i) = x(:,i);  
    else          
        x_new(:,i) = u(:,i);  
    end  
end  
 
end  
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Chapter 5: 

Proportional-resonant controllers 
 

 

5.1  Introduction 

In this chapter we will describe the proportional-resonant controllers (PR) used in the model to 

neglect the harmonics caused by the dead time basically. The theory of PR is well written in the 

papers ‘’Improved Design and Control of Proportional Resonant Controller for Three-Phase Voltage 

Source Inverter’’ of Mehdi Ebad and Byeong-Mun Song, Department of Electrical and Computer 

Engineering, Baylor University, Waco, Texas, USA [4] and ‘’ A Novel Current-Tracking Method for 

Active Filters Based on a Sinusoidal Internal Model’’ of Shoji Fukuda, Senior Member, IEEE, and 

Takehito Yoda [5]. Using the PR controllers, the converter reference tracking performance can be 

enhanced and previously known shortcomings associated with conventional PI controllers can be 

alleviated. 

 

5.2  Internal model principle 

The internal model is the theory principle of the proportional-resonant controllers. The internal 

model principle implies that, in a feedback system, the output of a control object follows its 

reference input without a steady-state error if the system satisfies the following two conditions: 

1) The closed system is asymptotically stable.  

2) The open-loop transfer function of the system includes a mathematical model which can generate 

the required reference input. 

Let us take a sinusoidal reference signal as an example and prove that the steady-state error will be 

zero, if the internal model principle is satisfied. Consider a simple feedback system, where the 

transfer functions of the compensator and the control object are ÷�(�) and ÷¨(�), respectively. Let ����, ��� and ®��� denote the reference, error, and output signal, respectively. Then, the open-

loop transfer function ÷���� will be given by 

÷���� � ÷����÷¨��� � ï����
�����										�5.1) 

For the sinusoidal reference 

À(	) � ¦°±��>�	�										�5.2) 

Appling the Laplace transform 

���� � ¦��F + >�F 										�5.3) 
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The error between ���� and ®��� can be expressed as follows: 

��� � ����1 + ÷��� � ���������
����� + ï� 	��� � ������� − þt��� − þt�… �� − þt�	

¦��F +>�F 										�5.4) 

assuming, for simplicity of arguments, that the þ8  are distinct. From condition 1), the poles of the 

closed system,þ8 	, must satisfy the following equation: 

�/�þ8� ≤ 0									²±À	� � 1,2,… ,M										(5.5) 

The error can also be expressed as 

(�) � ³t� − þt + ³F� − þF + ⋯+ ³�� − þ� + ðt� − A>� + ðF� + A>� 										�5.6) 

where the coefficients ðt	and ðF	are given by 

ðt,F � [�� ∓ A>�����]<ß±0×�
� ���±A>��
���±A>�� + ï��±A>��	

¦
2 										(5.7)	 

Since ÷�(�) has poles ±A>�	from condition 2), the denominator of ÷�(�) can be expressed as 

��(�) � ��F + >�F���� ���								�5.8) 

it follows that 

��(±A>�) � 0										(5.9) 

ï�(±A>�) ≠ 0										(5.10) 

ðt,F � 0										(5.11) 

Thus, the last two terms in (5.6) disappear, guaranteeing the reduction of the error to zero as time 

elapses. In a similar manner, it can be easily proved that the effects of an AC disturbance at the 

frequency >� can be eliminated. 
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5.3  PR 

Now that we have described the internal model principle, we can observe in detail the Proportional 

Resonant current control (PR). The employment of proportional resonant controller, compared with 

other conventional methods, gives the following advantages:  

a) There is zero steady-state error for sinusoidal waveforms having the same frequency as 	>� ; 

this feature can be exploited for harmonic compensation (HC), where the signal frequencies 

are well defined and practically constant (mains’ frequency and its multiples). 

b) The PR acts as a resonant filter, tuned on 	>�; in this way, multiple PRs with different 

resonance frequencies can operate in parallel without interfering with each other. 

The ideal PR control, which is based on an internal modern theory, is expressed as: 

÷< � «� + 2«8�
�F + 	>�F 										�5.12) 

Where 	>� is the fundamental frequency and «� and «8 represent proportional and resonant gains 

respectively. For «�, it is tuned in the same way as for a PI controller, and it basically determines the 

dynamics of the system in terms of bandwidth, phase and gain margin and «8 could be tuned for 

shifting the magnitude response vertically but this does not give rise to a significant variation in 

bandwidth. For fundamental frequency component, the PR control for the ac quantity in the 

stationary frame is equal to the PI control for the dc quantity in the synchronous frame. The Bode 

plots of this ideal PR control method are shown for example in figure 5.1. 

 

Figure 5.1:  ideal PR compensator 
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As it can be seen in Fig. 5.1, the ideal controller has a theoretically infinite gain at the AC frequency 

of 	>� enabling to eliminate the steady-state error to zero and no gain or phase shift at other 

frequencies. At the selected harmonic frequency, the PR control brings an infinite gain; while at the 

frequency not belongs to the harmonic range, the proportional resonant control has enough 

attenuation and the PR control would not affect the frequency not selected. In this case, the PR 

control realizes the elimination of harmonics and brings little influence to the feature of frequency 

domain of close loop. As the infinite gain may cause a series of stability problems, non-ideal form 

can be used instead of 5.12 with transfer function given in 5.13. 

÷< � «� + 2«8>��
�F + 2>�� + 	>�F 										�5.13) 

Its gain is now finite, but still relatively high for catching small steady-state error and good tracking 

performance for desired harmonics. The Bode plot of non-ideal PR control is shown in figure 5.2. 

 

Figure 5.2: non-ideal PR compensator 

 

Another preference of 5.13 is that, unlike 5.12 by adjusting	>� properly, the sensitivity towards slight 

frequency variation could be reduced while the bandwidth is widened. Smaller >� makes more 

selective transfer function and the peak of resonant controller is narrower. However, the smaller >� 

would make the filter more sensitive to frequency variations, thus the transient response is slower. 

In practice, >� values 5-15 [rad/s] are a good compromise. 
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In the paper ‘’ Rotating Transformation and Resonant Control based Feedback Control Strategy for 

Dynamic Voltage Restorer System’’ of Suxuan Guo, Dichen Liu, Member, IEEE [6] is proposed a 

control technique which is a frequency selective technique aims at compensating specific harmonic 

frequencies. The error signal is transformed from the stationary frame to the rotating frame, and 

then induced into the feedback control block based on the proportional resonant control. For the 

fundamental component, a proportional is tuned on the fundamental frequency and it is 

transformed into the DC component using a PI controller; for the couple of harmonics at (6à ± 1)>t 

harmonic frequencies, a single proportional resonant controller is tuned at the frequency 6à>t, two 

proportional resonant controllers in the stationary frame could be reduced to one controller in the 

rotating frame. 

 

5.4  Test in a continuous domain  

Finding the theory of the PR in the papers is not an easy task because in the papers it is rare that the 

theory is explained completely. Thus, we have done a test in continuous to verify if they work well 

before to implement them for our control in a discrete domain.  

To prove if they work, we compared the errors between a closed loop with only PI and one with also 

PRs in parallel, introducing a 7
th

 and a 13
th

 harmonics in abc reference and a constant error. The 7
th

 

and the 13
th

 harmonics became a 6
th

 and a 12
th

 in a rotating frame, so the regulator made by the two 

PR and the integrator is showed in figure 5.3 and its transfers function is represented by the bode 

diagrams in figure 5.4 like follows. 

 

Figure 5.3 
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Figure 5.4 

 

Now let’s show the results obtained comparing the two different regulators. In figure 5.5 we can see 

the two errors compared and it’s clear that the regulator with the PRs is much better than the other 

one which can’t compensate the 6
th

 and the 12
th

 harmonics effect.  

 

Figure 5.5 
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The harmonic spectrum in the last fundamental period (2)) of figure 5.5 is displayed in figure 5.6. 

 

Figure 5.6 

Like we can observe using PRs, we have neglected the 6
th

 and the 12
th

 harmonics.   

In figures 5.7 and 5.8 are showed the reference and measured signals using a simple PI and using 

also PRs in parallel respectively. 

 

Figure 5.7 
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Figure 5.8 

 

Now that we are sure that PRs work, we have implemented them in a discrete domain only to 

neglect the 6
th

 harmonic introduced by the dead time in a rotating frame. 

 

5.5 Discretization  

For the discretization of the PRs we have used the bilinear transform, also known as Tustin’s 

method, which is a first-order approximation of the natural logarithm function that is an exact 

mapping of the z-plane to the s-plane. When the Laplace transform is performed on a discrete-time 

signal (with each element of the discrete-time sequence attached to a correspondingly delayed unit 

impulse), the result is precisely the Z transform of the discrete-time sequence with the substitution 

of: 

½ � /<�										�5.14) 

/<� � /<�F
/6<�F

										�5.15) 

And using Taylor until the first order we have: 
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½ � 1 + � ¿2
1 − � ¿2

										(5.16) 

where 	¿  is the numerical integration step size of the trapezoidal rule used in the bilinear transform 

derivation, or in other words, the sampling period. The inverse of this mapping (and its first-order 

bilinear approximation) is: 

� � 1¿ ln�½�										�5.17) 

Using again Taylor until the first order of approximation we obtain 

� � 2
¿	½ − 1

½ + 1										�5.18) 

The Tustin or bilinear approximation yields the best frequency-domain match between the 

continuous-time and discretized systems. 

In our case it’s important to have a good dynamic at the resonant frequency, well we have used the 

Tustin method with frequency prewarping. This method ensures a match between the continuous- 

and discrete-time responses at the prewarp frequency. The Tustin approximation with frequency 

prewarping uses the following transformation of variables: 

� � >
tan ?>¿

2 @
½ − 1
½ + 1										�5.19) 

This change of variable ensures the matching of the continuous- and discrete-time frequency 

responses at the prewarp frequency ω, as we can observe by the following demonstration. 

½ � /0×�										�5.20) 

If we substitute the 5.20 in 5.19 we have: 

� � >
tan ?>¿

2 @
/0×� − 1
/0×� + 1											�5.21) 

� >
tan ?>¿

2 @
/0×�

F '/0×�
F − /60×�

F *
/0×�

F '/0×�
F + /60×�F *										�5.22) 

� >
tan ?>¿

2 @
'/0×�

F − /60×�
F *

'/0×�
F + /60×�F *

2
2A A										(5.23) 
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� A>
tan ?>¿

2 @

'/0×�
F − /60×�

F *
2A

'/0×�
F + /60×�F *

2

										(5.24) 

Using Eulero formulas we have: 

� A>
tan ?>¿

2 @
sin ?>¿

2 @
cos ?>¿

2 @
										(5.25) 

� A>
tan ?>¿

2 @
tan '>¿

2 *												(5.26) 

So finally 

� � A>										�5.27) 

 

Now let’s try to discretize a PR transfer function like the 5.13. 

close all  
clear all  
clc  
  
%%% esempio di di scretizzazione di una fdt di un P R mettendo a confronto 
Tustin e Tustin + frequenza di pre-warmap  
  
% definiamo 's'  
  
s=tf( 's' );  
C=0.5+20*s/(s^2+20*s+100^2);  
  
%% Tustin  
  
bodeplot(C)  
Cdz = c2d(C,0.01, 'tustin' );  
bodeplot(C,Cdz)  
legend( 'C' , 'Cdz' );  
  
%% Tustin + fwp  
  
discopts = c2dOptions( 'Method' , 'tustin' , 'PrewarpFrequency' ,3.0);  
Cdzp = c2d(C,0.001,discopts);  
bodeplot(C,Cdz,Cdzp)  
legend( 'C' , 'Cdz' , 'Cdzp' )  
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In the following figure we can observe the efficacy of the ’PrewarpFrequency’. 

 

 

Figure 5.9  
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Chapter 6: 

Simulation final results 
 

 

6.1  Introduction 

In this final chapter we can observe the final results obtained by the simulation. We will see that the 

requirements of the FACRI project for the part of control are been satisfied. The final scheme used 

for the control is made of all the algorithms described in the previous chapters and now we will 

show their results. 

 

6.2  Requirements 

Thanks a lookup table we make the requirements of speed and torque. To satisfy them, we have to 

be able to give that minimum torque for the wanted speed and they are represented in the 

following figure. 

 

Figure 6.1:  requirements 
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Thus, we have to produce a torque of 10.5 [Nm] until 9000 [rpm] and 5 [Nm] at full speed 19000 

[rpm], like we can observe in figure 6.1. 

 

6.3  MTPA  and Flux Weakening 

The inputs necessary to make the reference currents �4 and �5 are the mechanical-electrical speed 

reference >�$ and the maximum torque wanted M � 10.5	[ïM¥. In figure 6.2 is showed the 

Simulink scheme. 

 

Figure 6.2 

 

In the chapter 2, we have seen that in the upper green block are calculated the MTPA references 

before and the FW references later, so in figure 6.3 are showed the MTPA references and in figure 

6.4 the final currents in a XY plot. 

 

Figure 6.3:  MTPA references 
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Figure 6.4:  I_dq references 

 

Now let’s show the real currents measured in the output of the motor. 

 

Figure 6.5: I_dq real 
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6.4  Voltage references 

The voltage references are calculated by the PI and PR regulators form the errors between the 

reference currents and reals, like showed in the figure 6.6. 

 

Figure 6.6 

 

Now let’s see the references with the measures and the voltage outputs in the figures 6.7, 6.8, and 

6.9 respectively. 

 

Figure 6.7:  id_ref and id 
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Figure 6.8:  iq_ref and iq 

 

 

Figure 6.9:  voltage references 
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6.5  Overmodulation  

The voltage references are been calculated without any type of voltage limiter, thus we can apply 

the algorithm described in the chapter 4 to do overmodulation if necessary. In the following figure is 

reported the subsystem block where there is inside the algorithm. 

 

Figure 6.10 

 

The outputs are normalized with half DC-link and transformed in a,b,c coordinates to became the 

inputs of the modulator. Now let’s observe in figure 6.11 the carrier with the normalized voltage of 

the phase a. 

 

Figure 6.11 
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In figures 6.12 and 6.13 are reported the enlargements of the overmodulation zone in the upper 

figure and the full speed zone respectively. 

 

Figure 6.12 

 

Figure 6.13 
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6.6  Final results 

In this paragraph are showed the final results that are the most important. In figure 6.14 and 6.15 

are displayed the DC-link power and the mechanical power respectively. 

 

Figure 6.14 

 

Figure 6.15 
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Now let’s see if the requirements are been satisfied confronting them with the torque and the speed 

measured. 

 

Figure 6.16 

 

It’s important to observe that using the overmodulation we can stay more time in the MTPA 

condition because we can use more DC-link, thus the voltage limit is bigger and the FW is reached 

later.  

The phase currents are displayed below during the MTPA and during full speed conditions with the 

respectively harmonic spectrums. 
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Figure 6.17:  I_abc in MTPA condition 

 

Figure 6.18:  harmonic spectrum of I_abc_MTPA 
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Figure 6.19:  I_abc at full speed 

 

Figure 6.20:  harmonic spectrum of I_abc_full_speed 
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In figure 6.20 we can observe that there are the 9
th

 and the 13
th

 harmonics that are caused by the 

switching frequency equal to 13933.3 [Hz] like previously demonstrated in figure 3.15 of chapter 3. 
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Chapter 7  

Real components 
 

7.1 Introduction 

In the trade-off study different Power Electronics Converter (PEC) topologies have been compared 

with the aim of identifying, according to the project specifications, the most suitable configuration 

for the actual application. As already discussed, each PEC topology provides pros and cons, and a 

qualitative comparison has been provided to highlight the differences. According to the performed 

review and the conclusions achieved in it, the PEC topology chosen for the project is a 2-Levels full-

bridge configuration based on IGBTs power modules, whose schematic structure is depicted in 

Errore. L'origine riferimento non è stata trovata.. 

 

Figure 7.1:  Power Electronics Converter unit schematic structure 

 

7.2 Power electronic converter design 

Some initial requirements and constraints have been provided by FACRI for the PEC unit during the 

proceedings of the project. In this part we tried to collect and report them for the sake of 

completeness.  

Supply voltage 

- Main supply voltage (for PEC): 270V (235V-310V) 

- Secondary power supply (for control platform and auxiliaries): 28V (18V-36V) 

- Physical isolation between power supplies: 3000Vpk 

 

 



110 

 

Output current 

- Maximum output current: 85 A 

PEC protections 

- DC-Link pre-charge circuit 

- DC-Link Over-voltage shutdown 

- DC-link Under-voltage shutdown 

- Output phase over-current 

- PEC power module over-temperature shutdown 

- Machine over-temperature shutdown 

Machine position sensor: 

- Machine position sensor: sin-cos resolver. 

Dimensions: 

- Overall dimensions:  190mm*210mm*150mm (excluding connectors and supports) 

- Weight:  ≦ 5kg 

Operating temperatures and cooling: 

- Operating temperatures: -40°C / +70°C 

- Cooling method: forced air cooling 

 

Based on the converter output peak current (85A), the maximum operating temperature (70°C), the 

cooling method (forced air cooling), the DC-Link voltage (270V) and the selected devices technology 

(IGBTs), the core of PEC unit has been selected to be the Infineon IGBT power module 

FS200R07N3E4R. This choice has come after considering different power modules available on the 

market able to suit in the specific application and after considerations in terms of availability (lead 

times, costs, suppliers) and size (FACRI provided some stringent requirements in terms of size of the 

PEC unit, so the potential more compact structure has been selected). The selected power module 

has a maximum continuous current of 200A, a maximum reverse voltage of 650V and comes in a six 

pack arrangement, allowing to keep the overall design as compact as possible. The 650V maximum 

reverse voltage has been selected because of the reduced operating DC-Link voltage: using a 1.2kV 

module would have just led to higher switching and conduction losses (and thus to increase cooling 

requirements) without providing any additional benefit. Errore. L'origine riferimento non è stata 

trovata. and Errore. L'origine riferimento non è stata trovata. show the actual aspect of the 

selected power module and its internal structure. 
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Figure 7.2:  power module actual aspect 

 

 

Figure 7.3:  power module internal structure 

 

The FS200R07N3E4R power module has been simulated using the programs Simulink and PLECS to 

evaluate conduction and switching losses. Achieved simulation results present a total PEC losses of 

about 210W (60% switching, 40% conduction). 

Starting from the estimated power losses value (that can be considered valid with a relatively good 

degree of precision) a suitable heatsink has been selected using the online tool “R-Tools” available 

from the Canadian company Mersen. It provides for a basic thermal FE analysis where boundaries 

condition as ambient temperature, as well as source power and air flow can be selected. For the 

actual application, the maximum ambient temperature of 70°C has been set by FACRI and, in the 

absence of specifications about the available air flow, the value of 100CFM has been selected. The so 

obtained cooling system is depicted in figure 7.4. 
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Figure 7.4:  Actual cooling system for the PEC unit 

 

Finally, figure 7.5and Errore. L'origine riferimento non è stata trovata. show the actual prototype at 

the University of Nottingham, without and with the DC-Link capacitor board. In those figures, the 

final arrangement of the power layer and gate drivers can be seen, as well as the current sensors 

and their output connector. 

 

Figure 7.5:  PEC unit without DC-Link capacitors 
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Figure 7.6:  PEC unit with DC-Link capacitors 

 

 

7.3 DSP 

A digital signal processor (DSP) is a specialized microprocessor with its architecture optimized for the 

operational needs of digital signal processing. The controller platform for drives and converters used 

in the lab has the followings characteristics: 

 

 24x Fibre optics links 

 Intrinsically isolated 

 Each link configurable as output (power devices driving) or input (faults reading from power 

      layer or system) 

 Power supplies for the FPGA fabric banks 

 16x ADC channels with 14bit resolution and 2.5Msps sampling capability 

 Antialiasing pre-filters 

 Possibility to use oversampling to increase the number of bits (depending on the application 

      switching frequency) 

 Each channel configurable as unipolar or bipolar channel in order to fully exploit ADC range 

      with e.g. DC-link voltage sensors 

 High speed analogic comparators and digitally programmable voltage dividers for fast 

     detection of hardware faults (response time limited by sensors bandwidth) 

 Comparators output directly connected to FPGA fabric for fast shut-down in the event of 
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      faults 

 Carrier buffering and current limiting 

 Single ended or differential 

 Isolated digital interfaces 

 Isolated power supplies 

 

Figure 7.7 shows the DSP projected by Dr. Giovanni Lo Calzo and Dr. Andrea Formentini. 

 

 

Figure 7.7:  DSP 
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Conclusion 
 

 

The field of ‘’high speed’’ is actually always more studied because it has a lot of advantages in terms 

of power, volume, efficiency, costs etc. In this thesis I have analysed very important topics for the 

industrial drives. The most important chapter is the 4th where it is explained how is possible passing 

in overmodulation in a simple and very cheap way from the computational point of view. Using the 

overmodulation when it is necessary allows us to use better the DC-link and so increase the rated 

speed. Finally the requirements of the project have been satisfied and the results obtained in 

simulation seem to be promising. Unfortunately, before to do the experimental tests it will be 

necessary more time because the motor is still in the planning level and the DSP has to be finished to 

be implemented. The part of control has been entrusted to me and my supervisor Giovanni Lo Calzo, 

but we were not alones, in fact there was also an Italian company working on the control of the 

FACRI motor and we have worked in parallel all the time without any type of contact, finally will be 

selected the best control obviously. Personally, from this experience in the university of Nottingham 

I think that I have learned a lot from the technical point of view but not only, actually I have seen 

also how many differences there are between two country like Italy and UK. 
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