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Abstract

The thesis presents an aerodynamic optimisation of a morphing leading edge airfoil.
The NASA GA(W)-1 general aviation airfoil is allowed to morph between 0 and 25% of
its chord and is represented by the CST parameterization technique, employing an orig-
inal dedicated procedure to keep the curve arc length constant in the deformable part, in
order to limit the axial stress. Three validated aerodynamic tools are used: XFOIL, the
RANS Spalart-Allmaras model and the RANS transitional model γ − Reθ or Transition
SST.Anoptimisation loop based on genetic algorithms is applied to both single-objective
and multi-objective problems and is extended also to a three-dimensional morphing
leading edge wing. Results at varying the formulation, the optimiser settings and the
aerodynamic solver are presented and discussed. Finally, a meta-model based optimi-
sation is enquired, providing an approximation of the aerodynamic data obtained with
the three models. A meta-model assisted optimisation loop is also used to solve a pre-
viously known single-objective problem to compare the convergence performance.

La tesi presenta l’ottimizzazione aerodinamica di un profilo con bordo d’attacco defor-
mabile (morphing). Un profilo subcritico di tipo NASAGA(W)-1 è stato parametrizzato
con la tecnica CST, impiegando un’apposita procedura originale permantnerne costante
la lunghezza nella zona deformabile, estesa tra 0 e 25% della corda. Tre modelli aerodi-
namici validati sono stati impiegati: XFOIL, il modello RANS si Spalart e Allmaras ed il
modello di transizione RANS γ−Reθ o Transition SST. Un ciclo di ottimizzazione basato
su algoritmi genetici è stato applicato a problemi singolo- o multi-obiettivo, estenden-
dolo anche ad una configurazione tridimensionale, con un’ala a bordo d’attacco defor-
mabile. Per ciascuna formulazione proposta sono stati presentati e discussi i risultati
ottenuti con diverse impostazioni dell’ottimizzatore e differenti solutori aerodinamici.
Infine si è indagato l’uso di modelli surrogati all’interno del ciclo di ottimizzazione, che
forniscono un’approssimazione dei dati aerodinamici precedentamente ottenuti con i
tre modelli. Tramite un’ottimizzazione assistita da un meta-modello si è risolto un pro-
blema singolo-obiettivo già noto, al fine di comparare l’efficacia nella convergenza per i
due casi.
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Chapter 1

Introduction

The interest of men for flight has very ancient roots. The possibility of soaring into
the air and moving without limitations has always fascinated men and birds appear in
cave pictures or in bird-shaped neolithic statues. The mysterious geometries described
by birds in flight were associated to doom and prophesies and the ability of decoding
the significance of the animals’ behaviour was an art reserved to few people. One of the
first scientific observation of birds’ flight can be attributed to Leonardo Da Vinci, who
also proposed a flying machine on the basis of his understanding of the flight mech-
anisms that make possible for birds to soaring into the air. It is not surprising, then,
that the natural world was of main inspiration for the birth of modern aeronautics. The
first heavier-than-air aircraft with an engine, the Wright flyer, used cables to vary the
twist of wings in order to control roll, as observed in birds. The capability of natural
organisms to adapt their shape to different flight conditions, in order to exhibit the best
response to the environmental state, oriented the early years of aeronautic research to-
wards biomimetic strategies, based on flexible and highly deformable structures.

The development of more powerful engines and the increasing in flight speed and
payload capacity led tomore rigid frames, resisting the higher aerodynamic and inertial
loads, which, indeed, behave optimally only for a phase of the flight. In particular, each
aircraft is optimised to operate at best for a given flight condition, such us high speed
cruise for transportation aircraft or low speed loitering for surveillance UAVs. How-
ever, the starting and final phases of flight, the take-off and landing, require a different
behaviour of the aircraft, in order to guarantee high lift at low speed with minimum
drag at take-off and sufficient drag and high lift at landing. The demanding of such a
variation in the performance of airplanes motivates the use of slats and flaps to vary
the camber of the airfoils composing the wing. Thus, changing the shape of the wing
section is the most common way to adapt the performance of a system optimized for a
range of conditions, when operating outside this range.

Coming back to nature, the variation inwing shape during the flight is very accentu-
ated in birds and allows them tomovewith unsuspected agility in the air, executingma-
noeuvres not possible for a human artefact and landing precisely in a very short space.
This is illustrated in Figure 1.1. The ability of manipulating certain characteristics of a
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vehicle in order to better match the vehicle’s state to the environment and increase its
performance is referred to asmorphing [29]. Actually, there is not a complete agreement
about what shape change must be involved in order to speak about morphing, but it
can be stated that it always requires a modification of the geometry to improve the be-
haviour and the performance in a given state. In more recent times, a new interest to
the biomimetic paradigm has risen and the natural world can still have an influence on
the technology development, not only in aeronautics but also in many other disciplines,
starting for example from nanotechnology.

Figure 1.1: An example of morphing in eagle’s flight

Adapting the shape of the wings according to the flight phase is a strategy to inves-
tigate, in order to extend the optimal range of operation and achieve a better efficiency
also in off-design conditions. The Advisor Council for Aeronautics Research in Europe
(ACARE) is promoting the development of novel systems to meet the requirements of
VISION 2020 of emission per passenger kilometre CO2 < 50% , NOx < 80% and noise
< 50% [1]. Future aircraft will benefit of new solutions for fuel consumption reduc-
tion such us laminar flows, active flow control and low noise emission and in this path
morphing structures have been investigated in many European projects, e.g. the New
Aircraft Concepts Research (NACRE) project, the Smart High Lift Devices for Next Gen-
eration Wings (SADE), the Smart Intelligent Aircraft Structures (SARISTU) project, the
Novel Air Vehicle Configurations (NOVEMOR) project and the CHANGE project.

1.1 Objectives of the present thesis

This thesis is intended to set up a proper procedure to optimise the aerodynamic
response of a morphing leading edge device. Among several morphing concepts, this
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latter kind of adaptation is interesting thanks to the advantages that can potentially
show with respect to traditional high-lift systems. The discrete surface variation used
to increment the lift during take-off and landing, though effective in this task, leads to a
remarkable drag rise and has been identified as one of the main airframe noise source.
A gapless and smooth variation of the airfoil shape with the employment of deformable
skins can be helpful in eliminating this problem and enforcing a laminar flow at high
angles of attack, reducing the drag and improving the aerodynamic efficiency. The ob-
jective of the thesis, therefore, is to identify an optimisation framework able to deal with
a morphing leading edge geometry. Each functional block of the optimisation loop is
analysed: the parameterization technique, the aerodynamic analysis tool and the op-
timisation engine. A suitable parameterization method should be able to allow for a
local control of the shape and the computation of geometrical or structural quantities,
so as to limit the deformation occurring with the morphing. In order to evaluate the
aerodynamic performance of each candidate solution, validated aerodynamic tools are
required and their influence on the optimal shapes provided is object of investigation.
Moreover, the purpose of the study is also to check the ability of the optimisation al-
gorithm to handle different problems, both single and multi-objective, in presence of
non-linear constraints. After assessing the convergence at varying the objectives, the
constraints and the boundary conditions, an interest is also present in inquiring the
possible advantages that a meta-model assisted optimisation can have, with respect to
a standard loop.

1.2 Summary of the thesis

In this work a morphing leading edge concept was analysed. The aim of the study
was to set-up a procedure to efficiently parameterize a morphing shape, calculate its
aerodynamic performance and optimise it using a genetic algorithm. In a first step,
morphing systems were analysed referring to published researches, thus doing a liter-
ature review to understand what are the possible configurations available, their actual
readiness, how to model them and simulate within an optimisation framework. After
assessing the past studies on the topic, the attention focussed on the the aerodynamic
calculation and in particular to the validation of a model, able to correctly replicate ex-
perimental data collected on wind tunnel tests for a given airfoil. Three formulations
were individuated as the best behaving, a first one based on the panel solver XFOILwith
the eN transitionmodel, a second using Computational Fluid Dynamics (CFD) with the
fully turbulent Spalart-Allmaras model and a third using the Transition SST or γ − Reθ
model.

With all these available, the following task was to individuate a parameterization
technique suitable to deal with morphing. From a bibliographic research and by com-
paring several methods, the Class/Shape Transformation (CST) by Kulfan and Busso-
letti was chosen, because of its ability to prescribe smooth changes over a partial region
of an airfoil. In order to make it easier to deal with structural constraints, which appear
to be the real issue of a morphing architecture, a dedicated procedure to enforce the
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parameterization to produce a constant arc length, whenever was possible, was devel-
oped.

The optimisation framework built was based on a genetic algorithm as optimisation
engine, in the standard form present in the Matlab® Global Optimisation Toolbox. This
optimiser was linked with the parameterization block, employing the CST technique
with constant arc length, and then the aerodynamic evaluation of an individual was
carried out by one of the aforementioned tool. In particular, XFOIL was used in an ini-
tial survey, when the influence of the optimiser settings was widely analysed perform-
ing several runs with different initial populations and genetic operators. In a second
phase, when the behaviour of the optimiser appeared sufficiently known for the actual
case treated, ANSYS® Fluent was used for the aerodynamic analysis, with the software
Gambit v. 2.4.6 to mesh the domain. This surveying activity was performed for both a
single and a multi-objective problem.

Having individuated the set of parameters controlling the optimisation algorithm
whichwas able to produce a smooth convergence, a variety of problemswas faced, start-
ing from single-objective and then switching to multi-objective. Specifically, a SOOP
aiming atminimizing theCdwas solvedwith all the three aerodynamicmodels, compar-
ing their results in terms of shapes and performance. Also threeMOOPswere analysed,
with different formulations employing either XFOIL or the CFD. One of them replicated
a past activity aiming at optimising a multi-element high lift system based on slats and
flaps, according to some airworthiness specifications, but adapted to a morphing lead-
ing edge airfoil.

The step following an extensive analysis of a two-dimensional geometry was the ex-
tension of the knowledge acquired to a three-dimensional case, involving a 3D wing, a
portion of which could undergo morphing at its leading edge. The optimisation frame-
workwas adapted to this new situation, employing the same 2Dparameterizationmethod
for somewing sections and Gambit with Fluent to perform themesh generation and the
CFD computation.

Finally, the exploitation of meta-models into the optimisation was investigated. For
each aerodynamic model a regression method was built and the same single-objective
optimisation as before was performed with two approaches: a complete fitness replace-
ment for the XFOIL computation using anANNand ameta-model assisted loopwith an
ANN too for the Transition SST model, in which at each generation the approximation
was used in combination with a gradient based solver to locally refine the population.
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Chapter 2

Morphing Systems: an Overview

2.1 Introduction

The path of evolution of the aeronautic science has led us from lighter-than air un-
controlled ships to an intensive use of air vehicles for civil andmilitary purposes in a lit-
tle over one century. Impressive results have been achieved in aeronautics, passing from
wood and canvas first aeroplanes to supersonic composite planes of our days. The need
for higher cruise speed and heavier payloads favoured the establishment of a certain
paradigm in aircraft design, attaining maximum stiffness with lightweight structures to
perform best in a certain regime of flight. This leads to an inevitably compromise, in
which performance in various flight conditions is sub-optimal.

An attempt to match variable requirements in different phases is represented by
morphing aircraft. As previously reported in Chapter 1, according to a general def-
initions morphing is the ability of manipulating certain characteristics of a vehicle to
better match the vehicle’s state to the environment and increase its performance [7, 81].
This definition indicates as morphing all the systems aiming at improving the perfor-
mance and the efficiency by a modification of the vehicle, such us retractable gear and
deployable slats and flaps. In the scientific literature, morphing is often referred to as
the capability of a structure to adapt to the operational state by modifying its shape. In
this sense there are many examples of morphing aircraft, as reported thoroughly in [7,
76, 81].

2.2 Morphing concepts

The scheme in Figure 2.1 illustrates the possible mechanisms of wing morphing
[7]. Large modifications comprise variations in wing plane, like wing span morphing
or sweep changing, and out of plane, like twisting or dihedral angle variation. Small
changes include airfoil modification, like variation in camber or thickness distribution.
Figure 2.2 reports an overview of built aircraft with morphing elements. Excluding
ever-present traditional slats and flaps for camber variation, most known examples of
morphing are the variable sweep wings of the F-14 Tomcat or the Panavia Tornado, the
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Figure 2.1: Possible morphing mechanisms

Figure 2.2: An overview of aircraft with morphing devices [7]
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last one still operative. Referring to this morphing mechanism, it can be pointed out
that its employment has had a limited spread and more recent military aircraft achieve
equivalent or better performance at subsonic and supersonic regimes evenwithout vari-
able sweep wings. This example shows in a qualitative way how the use of morphing
devices needs to be carefully assessed. The adoption of morphing technology should be
demonstrated to bring to performance benefits, considering not only the aerodynamic
point of view, but the entire system in terms ofweight estimation for both structures and
actuators and energy requirement. Establishing whether morphing could be a valid so-
lution depends also on the mission profile and given the variety of mission type and
regime, such wide is the possibility in morphing strategy. Historically, morphing solu-
tions have met with an unfavourable cost/benefits ratio, due to an increase in weight,
complexity, cost and failure probability [81].

With current efforts to produce green and efficient aircraft, novel technologies such
usmorphing become interesting in that they can overcome the drawbacks of using stan-
dard rigid configuration with deployable attachments, to discretely vary the wing sec-
tion shape for additional lift or flight control. Moreover, morphing becomes more at-
tractive also for the new class of Unmanned Aerial Vehicles (UAVs). Adaptive wings
can allow to perform multi role missions expanding the flight envelope of a single air-
craft, which can remove the need for various vehicles. In order to match different re-
quirements, large shape variations in wings are required. Planform morphing can im-
prove the aircraft performance over a wide range of conditions and its benefits are more
apparent for UAV type missions, with several conditions of flight speed and payloads
[81]. Large spans allow an extended range and low drag, but limit manoeuvrability and
cruise speed. A variable span could guarantee high efficiency during cruise and good
manoeuvrability in targeting, while asymmetrical span can be used for roll control in
MALE UAVs [2]. Most span morphing concepts are based on a telescopic mechanism
with sliding skins, like the AdaptativeAspectRatio AdAR wing by Swansea University
[86]. Other concepts of wing morphing involves twist and dihedral angle variations. A
computational and experimental study of a wing with two outboard morphing parti-
tions that are variable in twist and dihedral angles is presented in [69]. An extensive
review of research in morphing systems can be found in [7].

Adapting the wing shape to flight conditions requires several aspects to be exam-
ined. Deformable structures allow to match the desired configuration without hinges
and sharp edges. Current high lift systems inducing discrete camber morphing are re-
sponsible for a penalty in performance, due to local source of turbulence which causes
noise and drag increase [66]. The adoption of morphing airfoils capable of modifying
their camber requires adaptive structures with highly deformable skins. These should
be able not only deform in the correct way without plasticity, exhibiting high deforma-
bility in the deployed configuration, but also have to bear aerodynamic loading without
any significant aeroelastic behaviour and provide stiffness to span bending. The ac-
tuation device can be the penalizing subsystem in morphing structures for the weight
impact on the system. The optimisation of themechanism tominimize the actuation en-
ergy can lower the power requirement and thus the size and the weight of the actuator,
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but the mechanism must provide sufficient locking when folded, in order to guarantee
a minimum deformation under pressure loads. Smart materials with embedded or dis-
tributed actuation can limit the additional weight with respect to traditional systems.
Fitting morphing devices to existing wings can shrink the potential of the technology,
giving results largely dependent on the system considered. According to [3], in order to
extend the design space of morphing devices and entirely exploit their benefits a new
design philosophy should be applied, including the device in the first step of the anal-
ysis, to remove existing constraints and enlarge the optimisation space.

2.3 Morphing airfoils

Since this work deals with a morphing airfoil, a general sight into this topic is here
proposed. As previously stated, morphing can involve a partial or total change in cam-
ber or a variation in thickness distribution. Camber represents the effective curvature of
an airfoil and its control has been performed from the origin of flight. Common aerody-
namic surfaces like slats and flaps are a way to vary the camber in low speed phases of
take-off and landing, where additional lift is required. Flaps are more spread because
changing the trailing edge results easier, since it dealswith deflecting a thin surfacewith
no other roles except control. Conversely, leading edge slats must stand higher aerody-
namics loads and potential impacts, confer stiffness to the wing, can host anti-icing de-
vices based on fluids. Discrete surfaces are however used in almost all vehicles and slats
are more spread in transportation aircraft. Research showed that a gapless and seam-
less continuous control of camber can lead to high L/D ratios in subsonic regimes [7].
Compliant structures with total camber variation aremore suitable for small or medium
aircraft like UAVs, since in other cases wings have not only aerodynamic functions and
host various other accessory subsystems.

Figure 2.3 shows four different concepts of morphing airfoil. Figure 2.3a depicts
a variable camber compliant wing (VCCW) by the Us Air Force Research Laboratory
described in [35]. Up to 6 % camber modification along span under aerodynamic load
was demonstrated using a bench top model. Variable camber wing allows to maximize
fuel reduction by adapting wing contour to a specific flight condition or configuration,
obtaining higher efficiency with respect to conventional flapped wing due to a lower
drag. The fundamental design requirement for the compliant mechanism was to use a
single actuation force for both the leading and trailing edge to deform the camber by 6%,
modifying the initial NACA 2410 profile to a NACA 8410. The wing deformation was
produced using a series of miniature electronic actuators and compliant mechanisms,
which acted independently to produce either uniform or nonuniform camber variation
along the span.

Figure 2.3b illustrates the final prototype realized of a morphing camber wing with
a rigid leading edge and a compliant mechanism with corrugated skin for trailing edge
deformation [51]. The model was the result of a multidisciplinary optimisation activ-
ity and was based on distributed compliance and smart piezoelectric actuators. It was
tested on wind tunnel, to validate the design tools and assess aero-servo-elastic effects,
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(a) Variable Camber Compliant Wing [35] (b) Morphing wing proposed in [51]

(c) Fish Bone Active Camber wing of [85] (d) Morphing trailing edge wing of [88]

Figure 2.3: Four examples of airfoil morphing in literature

and also in flight tests, showing a potential application for small and medium UAVs.
Figure 2.3c reports the FishBAC concept of Woods and Friswell [85]. The Fish Bone

Active Camber (FishBAC)morphing airfoil was an alternativemorphing camber design,
biologically inspired to achieve large and continuous changes of the profile. The struc-
ture consisted of a thin chordwise bending beam spine with stringers branching off to
connect it to a pre-tensioned elastomeric matrix composite skin surface. The Core and
the skin were designed to have almost zero Poisson’s ratio in spanwise direction and
their deformation was controlled via an antagonistic tendon system with a non back-
drivable pulley. The tendon system allowed a compliant deformation of the structure
and pretensioning provided out of plane stiffness and eliminated buckling in the lower
skin when morphing. Locking was guaranteed by the non backdrivable pulley without
energy input, even for chordwise bending stiffness under aerodynamic loads. The sys-
tem was prototyped and wind tunnel tested, showing an increase in L/D ratio of 20-25
% in the same regimes of use of conventional flapped airfoils [83].

Figure 2.3d shows the morphing trailing edge concept developed in [88]. It was
based on corrugated structures, which have high load bearing capability in the direc-
tion perpendicular to corrugation, whereas flexible deformation is possible in the cor-
rugation direction. The deflection was controlled by wire tension andwas possible only
in downward direction, imitating flaps. Due to the high anisotropy of the structure, a
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large deformation could be achieved with the use of only one actuator, like in the Fish-
BAC concept. Wind tunnel tests of a prototype proved the effectiveness of themorphing
system and a comparison with a standard reference wing with discrete flap showed an
extended linearity of Cl.

Another option available is a camber modification by a morphing leading edge.
Since it is the topic of this work, it will be treated separately in the next chapter.
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Chapter 3

Morphing Leading Edge Devices

3.1 Introduction to morphing leading edges

As previously seen in chapter 2, camber variation with compliant structures can be
used to continuously adapt the profile geometry in order to optimise the performance
among different flight conditions and various option are available to realize such an
adaptation. Morphing leading edge concepts occupy an important area of research in
that they could help overcoming some of the drawbacks of standard high lift slat sys-
tems.

High lift systems have been investigated starting from the first quarter of the 20th
century [32]. The evolution in aerodynamics and engine performance has progressively
led to faster cruise speed, representing the reference condition for the design, which is
thus optimised for high speed. In take off and landing the performance of the vehicle
can be penalised, requiring longer runways. In order to reduce the take off and landing
speed, higher lift coefficient are required and trailing edge flaps helped to achieve this,
while leading edge slats were found to delay the stall at higher angles of attack. In
the second half of the last century, the development in high lift systems led to very
complex solutions with double or triple slotted flaps, like in the Boeing 747. With the
enlargement of commercial aviation, new environmental issues like air pollution and
noise rose, inducing a new attention towards environment respect.

Extensive research in engine technology led to the actual state-of-the-art, consider-
ably reducing the impact of the propulsive system in air pollution and noise. In recent
years the adoption of high by-pass ratio engines has effectively limited the noise gener-
ation [66], focusing on other sources of disturbance. Leading edge slats and deployed
landing gear have been identified as the main source of noise during approach [13].
As reported in [58], there are basically two methods for noise reduction: the first is to
increase the distance between the noise source and the observer, the second is reduc-
ing the acoustic emission of the source. As regards this second option, an aeroacustic
driven design of high lift systems can collide with the aerodynamic performance re-
quired, leading to a penalisation of the system also in terms of complexity or weight.
Research in this topic was performed within the DLR projects LEISA [32, 82] and SLED
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[58], in which a single slotted slat optimisation showed a noise reduction up to 4 dB
for a 3D configuration. A comparison of conventional and morphing high lift devices
in noise terms can be found in [66], where numerical investigations were performed to
evaluate potential re-arrangements of slats with various types of fillers and also a droop
nose.

Traditional discrete leading edge systems have two main drawbacks. The first one
regards the deployed configuration, with the slat forming a gap with the wing remain-
der, which is source of noise and turbulence, inducing turbulent boundary layer and
drag increase [38]. The second problem occurs during the retracted configuration, due
to the presence of a dent in the location where the slat meets the remainder of the wing,
which still induces transition to turbulent boundary layer. The risen sensitivity towards
environmental issues, which leads to recommendations for civil aviation, like those of
ACARE [1], induces the need for novel solutions to efficiency improvement and noise
impact. Although modification of the current technology of slats could reduce their
noise by re-arranging the slat gap and increasing the chord, the slots remaining in the
airfoil do not complywith high quality surfaces required for future aircraft. For the pur-
pose of drag reduction, most experts agree that laminarization is the only technology
with potential for step changes in drag reduction within a suitable timeframe [38].

In this context, seamless and gapless morphing leading edge devices represent a
viable solution to overcome the drawbacks of actual high lift systems. Due to their
promising performance increase and environmental benefits, these devices received
a fair amount of research in the past and are currently being investigated in various
projects around the world. Future wings will probably benefit of higher aerodynamic
efficiency with high aspect ratio, slim profiles and smooth surface for laminar flow, like
the FNG wing produced by German ProHMS project, cited in [33] and used in various
other projects. The reduced space in the leading edge and the need for high quality sur-
faces for laminar flow indicate in seamless compliant structures a valid alternative to be
investigated.

A morphing leading edge requires a flexible skin which can adapt to the desired
shape and an actuation system which drives the skin into the correct position. Typical
technological challenges in realizing a morphing structure are: [67]

• Highly elastic skin capable of assuming the desired configuration without degra-
dation and withstanding air loads;

• Appropriate mechanism to deform the skin while transferring loads from it to the
carrying structure;

• Connection of mechanism to the elastic skin;

• Actuation systems integration in lumped or distributed configuration.

Designing a morphing leading edge is a multidisciplinary activity involving various
phases. The aerodynamic optimisation of the drooped nose should take into account
not only the aerodynamic indexes, but also structural constraints on the deformation
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capability of the skin and the reversibility of the process. Various approaches are avail-
able for the design and appropriate tools for optimisation were developed in the con-
text of European projects and academic research. After a suitable aerodynamic shape
has been individuated, a structural optimisation of the skin has to be done, in order
to guarantee that the desired configuration can be reached without plasticity and with
minimum actuation energy. A third phase in the design process is the choice of the
mechanism realizing the deformation, which can be a kinematic chain based on rigid
members pivoted together and hinged to the structure, or a compliant mechanismmade
up of a single deformable structure without linkages. The optimisation of the actuation
system can be performedwith different strategies and constraints and locking capability
and integration issues must be considered in a post process phase.

3.2 Morphing leading edge concepts

Even though research interest in smart Leading Edge (LE) devices has risen in last
two decades, conceptual solutions have been proposed and patented in last century,
inspiring futureworks ofmore recent times. [52] reports four patents of variable camber
airfoil from 1916 to 1980. One of the major problems in deformable airfoils is the design
of the skin. A downward rotation of the nose, indeed, causes the upper skin to stretch
while the lower to compress, a requirement contrasting the characteristic of an elastic
skin. Attempts to overcome this problem in the past led to slotted configuration, with the
lower part of the skin consisting of a fixed part in the aft, interfering with the rotating
nose skin, like visible in the Boeing patent of 1982 [14] in Figure 3.1a. Although this
solution solves the problem of the skin in the lower part, it collides with the need for a
high quality surface for laminar flow. A redistribution of the skinmaterial at the leading
edge is possible, for example in the form of bulging of the nose, increasing the tip radius.
This is a natural reaction of the structure, seeking for a minimum energy deformation,
and also a good strategy to control the pressure suction peak at high angles of attack
[31].

A well-known example of gapless and seamless mechanism is the Dornier patent of
1979 in Figure 3.1b [91]. The concept consisted of three flexible panels and an internal
framework with discrete struts and force introduction points, for transmitting the actu-
ator force into the flexible panels, for shape adaptation and the aerodynamic loads into
the front spar. It represented a quite advanced formulation, since it presented a con-
tinuous end-to-end skin, led in the deformation by guiding profiles moved by a single
lever-arm actuated by a rotary actuator. The thin skin in the tip transforms the compres-
sion load in the lower panel to an increase in tip radius. Nevertheless, the presence of
rigid parts ( 9 and 10 in the figure ) and the guided deformation induce high stresses and
strains in the skin, which instead should be designed to adapt naturally to the desired
configuration without forcing it.

Airbus developed a gapless slat for the high lift system of A350 XWB-900, based on a
rigid slat hinged at the bottom of the nose and able to rotate circularly, keeping a contact
with the upper part, as illustrated in Figure 3.2 . This design, adopted for the inboard
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(a) US patent 4553722, Boeing Company,
1982 [14]

(b) patent DE 2907912 A1, Dornier Com-
pany, 1979 [91]

Figure 3.1: Two different patents for droop nose devices

wing, was found to be a good choice from an aerodynamic and integration point of view
and was driven by the requirement of attaining a maximum L/D ratio in the second
segment climb at take-off, providing sufficient protection against flow separation also
in landing [72]. This solution is implemented in A380 too and represents a first step
towards operational employment of smart systems overcoming slotted slats drawbacks,
though still not based on morphing.

Figure 3.2: Airbus gapless high lift leading edge system of A350 [72]

As regards the choice of the mechanism, various solutions were proposed, based
both on rigid kinematic chains like those on Figure 3.1 and compliant mechanisms with
no linkages or pivots. The former are classical mechanisms based on rigid members,
linked together in order to move describing a certain path, connected to the skin by
appropriate joints to induce the desired deformation. An example of such a device is
reported in Figure 3.3a, illustrating the LeaTop prototype which makes use of a conven-
tional kinematic chain actuated by a linear actuator. The latter are a different class of
mechanisms based on compliance. According to [6], a compliant mechanism is a single-
piece structure designed to transmit motion and force mechanically relying solely upon
elastic deformation of its constituent elements. This kind of mechanism has to comply
between sufficient stiffness to support external loads and enough flexibility to deform
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under acceptable actuating inputs. The connection between themechanism and the skin
can be realized by stringers, in a way that a continuous deformation towards the correct
configuration is achieved with minimal errors. A save in weight and complexity is ob-
tainable through compliance [60], and an example of a morphing leading edge with a
compliant mechanism found in [79] is reported in Figure 3.3b.

(a) Kinematic chain mechanism [70] (b) Compliant mechanism [79]

Figure 3.3: Two different mechanisms for morphing leading edges

3.3 Morphing leading edge design

In this section the design process of morphing leading edge devices will be anal-
ysed basing on a literature review of past and current research. Aeronautical morphing
structures design is a multidisciplinary problem, which involves basically three major
areas:

• Aerodynamic design of the drooped configuration;

• Structural design and optimisation of the skin;

• Design of the actuating mechanism.
Each of these areas can be treated separately in the design process, starting from the
aerodynamic optimisation which produces a certain shape and then optimising the
thickness distribution of the skin for that shape and the mechanism, or they can be
considered in contemporary, identifying the relationship among them and including in
the optimisation some constraint, deriving from those relationships. In a literature sur-
vey, the second approach appeared to belong to well structured European or national
projects aiming at developing amorphing prototype, while the first appeared to bemore
related to independent academic research on specific topics of morphing, where an in-
tegral vision of the problem is not available.

3.3.1 Aerodynamic design

One of the main reasons about employing morphing wings is the potential aero-
dynamic performance increase, due to the capability of adapting to changing external
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conditions and providing more than one optimal operative points. The aerodynamic
design of the gapless droop nose device must therefore be led by aerodynamic param-
eters. Typical objectives of the design are the maximization of the L/D ratio at constant
Cl [27, 39, 85] or withCl as a constraint in the optimisation [19, 73] and alsomaximizeCl
at a constant condition [45]. While inmost works the aerodynamic shape is found via an
optimisation process, in other cases it is found parametrizing the airfoil and seeking for
the curve which satisfies certain conditions, such us a smooth link with the fixed part
of the profile and a constant girth [74] or the downward deflection an the tip radius in
the drooped configuration [53].

Another issue related to the aerodynamic design is including structural constraints
in the optimisation loop. Amore traditional approach considers the aerodynamics sepa-
rately from the structure, producing a target shape optimised for some flight conditions
and then a morphing system is produced that can deform the structure to match that
shape. The accuracy of the result will depend on the number of degrees of freedom of
the mechanism, which will match in an approximate way the target if too simple, but
could become excessively complex and heavy if stricter requirements to the target shape
are required, vanishing the benefit of an increased efficiency. In [27], for example, amore
integral approachwas considered inwhich rather than performing the aerodynamic op-
timisation and then designing the morphing system to obtain the required shape, the
morphing system was included in the loop, passing from a multiple single-objective
optimisation to a single multi-objective optimisation and obtaining a reduction in the
Pareto front. A similar philosophy appeared in [17, 19], where a two level optimisation
was used firstly to get the best aerodynamic shape with constraints on skin stress and
energy deformation, and secondly to design the compliant mechanism to deform the
airfoil via topology optimisation.

As regards the parametrization technique, several methods were found in literature.
In [74] a fourth order polynomial was used for the camber line expression and the thick-
ness. Ten coefficients needed were determined on the basis of some assumptions, such
us a constant tip radius and girth and smoothness of the link with the fixed part of the
airfoil. [73] used a linear superposition of a baseline function with type functions based
on the Hicks-Henne’s. In [25] the CST method was chosen to parametrize the entire
morphing airfoil, while for the same aim Radial Basis Functions are used in [27]. CST
were also used in [17, 19] where leading and trailing edges were morphing. In this case
the parametrization is based on four terms: a shape function, a class function and two
additional terms related to the aerofoil leading edge and trailing edge shapes. The cal-
culation of first and second order derivatives is very fast with this technique and can be
used to compute geometrical quantities, useful also for structural modelling.

Finally, Genetic Algorithms appear quite spread as optimisation method and were
used e.g. in [19, 27, 73]. SUPLEX method is found instead in [39], where no structural
constraint is reported during the aerodynamic analysis.
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3.3.2 Structural design

Structural design is the second phase of the design process of a morphing device.
Even though, as previously seen, structural constraints may already appear in the aero-
dynamic optimisation, it is here assumed that a certain target shape has been found
and is known. A morphing structure must exhibit conflicting properties: it should be
able to reach the deformed configuration with minimum actuating force and without
damaging, while it should also support aerodynamic loads with no relevant aeroelastic
deformation and confer torsional and bending stiffness to the wing, in this case. These
requirements pose serious questions about what structural configurations can satisfy
them, whatmaterials are eligible for the task, what kind of actuation is needed andwhat
it is a suitable design process. It is evident that these questions have to be answered in
a global approach: the structure arrangement varies with the material chosen and dif-
ferent sizing and optimisation techniques are required for different classes of materials.
The interaction between the actuation system and the morphing structure can change
the structural behaviour if forcing the deformation, so it should also be considered in
the loop. Moreover, the aeroelastic frame cannot be neglected and aerodynamic loads
appear in the structural analysis varying either the deformed shape or the actuation
force required. From these qualitative considerations, it appears how this second phase
is the core of the design chain; while the aerodynamic optimisation can always lead to
an optimal shape for given conditions, it is not direct that shape is achievable with a
certain structure. The high number of degrees of freedom in the choice of materials,
structural arrangements and actuation makes this phase of the design critical in that a
result can be obtained that vanishes the benefits of the morphing technology due to an
increased weight and complexity.

A review of morphing skins can be found in [75]. Although several concepts were
analysed in literature for adaptive structures in general, in the case of morphing leading
edge, realized prototypes show a preference for composite materials, due to their poten-
tial high anisotropywhich is required for the task. Since stiffness, elasticity and strength
are tensor properties in composites, it is possible to combine the required properties in
the need direction obtaining selective deformability. Selectively Deformable Structures
(SDS)were investigated for application in the European project SADE, as reported in [4].
Connecting properly elementary cells with high anisotropic behaviour, it is possible to
arrange a structure exhibiting high deformability and strain capacity in one plane, while
stiffness and strength in other directions. Two configurations were proposed, one with
the SDS filled with an elastomer to create a quite smooth surface and support the cells,
and one with the SDS arrangement covered by a flexible skin. This concept is similar to
those reported in [59], where a honeycomb was filled with polyurethane elastomer and
covered with flexible skins. The solution, indeed, seems more suitable for trailing edge
devices, where the structure can occupy the entire space and there are less problems of
integration an supplementary resistance needed for ice and impacts. In the SADE Euro-
pean project, in fact, a SDS was chosen for the trailing edge, while a glass fibre prepreg
tailored skin was optimised at the leading edge [39]. The structural design process re-
ported was based on a pre-sizing of the skin and an optimisation to determine the thick-
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ness distribution, the number and position of the support stations along the skin, the
kinematical hinge points and actuation angles at the support stations. A first thickness
distributions was chosen on the basis of the strain derived from the curvature differ-
ence between the baseline and drooped configuration. Constraints for manufacturing
like minimum skin thickness and distance for the stacking sequence of layers were ap-
plied. Once the optimisation, using a SIMPLEX scheme, had converged, a simplified
kinematic mechanism was designed basing on the position of the supports station and
an assumption of a circular motion of the hinge points. After completing the design of
both skin and actuator, a complete Finite Element Method (FEM) model was used to
assess the global behaviour also in presence of aerodynamic loads. The project ended
with a wind tunnel test campaign of a 5 m span prototype [37], like that in Figure 3.4.
In the same project SADE other concepts for structural design were investigated. In [54]

Figure 3.4: SADE Smart Leading Edge Concept for the ground test [37]

the same leading edge was designed with a glass fiber composite skin, reinforced by
eight I-shape stringers on both upper and lower part. An eccentric beam was proposed
as actuation system and is visible in Figure 3.5. In [76], instead, a variable stiffness com-

Figure 3.5: Eccentric beam actuator in neutral and deployed position [53]

posite skin was investigated within the same European project. Traditional laminate
composites are made up of a stacking sequence of unidirectional laminae, in which fi-
bres angles are the same within the same lamina. A spatial stiffness variation can be
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achieved changing the fibres orientation into a single lamina, thus enlarging the design
space and exploiting better the huge potential of composites, which allow for a large
number of degrees of freedom. Three possibilities were accounted for stiffness varia-
tion: changing the fibre angle with a thickness variation, changing the fibre angle with-
out a thickness variation and changing thickness keeping a constant fibre angle. The
skin parametrization by lamination parameters allowed to consider these three options
and in order to reduce the design variables a symmetric layup was chosen. Skin stiff-
ness optimisation was made in an aeroelastic framework, in which aerodynamic loads
were computed with an inviscid panel method and the fluid-structure static interaction
was included in the loop. The actuation system was then optimised through topology
optimisation and several solutions were proposed. The peculiarity of this work is that
static aeroelasticity is present in the optimisation process, where convergence is sought
between deforming pressure loads and internal elastic forces of the structure.

Interesting observation about applicative problems for morphing skins are reported
in [30], in which additional functions required to the skin in an operative environment,
such us impact resistance, de-icing, lightning protection and abrasion.shielding, are ex-
amined. The starting point was the morphing leading edge developed by the DLR in
the European project SARISTU. In order to avoid plastic bending of the skin, its thick-
ness needs to be as low as possible. There again, the aforementioned functions required
for airworthiness could require additional layers in the outer part, possibly leading to
exceed the strain capability. For this reason an hybrid laminate was investigated, with a
thin elastomeric layer achieving all the functions integrated in the GFRP laminate. Ex-
perimental tests on erosion-shielding and de-icing showed a 100% thick increase when
the required functions are integrated as additional layers, with a tremendous impact
on the strain in the outer surface. These results demonstrate how further steps in the
morphing structures have to be done, before reaching the level needed for applicative
implementations of the technology, in which accessory aspects can lead to reformulate
a whole assembly concept.

3.3.3 Actuation Mechanism design

After completing the aero-structural design, a proper actuation mechanism to drive
the structure in the desired deformed configuration is to be determined. As previously
seen in section 3.2, actuation systems can be loosely divided into two classes: kinematic
chains and compliant mechanisms, an example of which can be found in Figure 3.3.
The former typology is based on rigid members pivoted together and linked to the skin,
with the task of transmitting forces or displacements from an actuation input point to
output points, thanks to the degrees of freedom given by hinges. In this case mem-
bers are modelled in first assumption like rigid bodies and their deformation is unde-
sirable. Compliant mechanisms, instead, exploit structural flexibility to transmit forces
or deliver motion and are monolithic and jointless structures in which deformation is
necessary, though a certain stiffness is also required to support external loads. Some
advantages of compliance are a reduced number of manufactured parts, the absence of
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linkages associated to high stress and possible misalignments, the lower weight com-
pared to kinematic chains, the absence of relative moving parts needing lubrication.

A spread tool for designing actuation mechanisms is Topology Optimisation (TO).
The basic idea of a topology optimisation is to find the optimal region where material
should be present to achieve a certain target objective. Examples of use of this tool to
design compliant mechanisms for leading edge devices are [62, 73, 79, 80, 87], while
conventional kinematic chains for the same purpose are reported in [39, 40, 52, 70, 76].
A systematic analysis of optimisation tools and processes for compliant mechanisms for
morphing structures can be found in [46].

The objective of the optimisation is basically the minimization of the displacement
error between the deformed configuration driven by the actuation system and the target
configuration, often expressed in term of Least Square Error (LSE), with some structural
constraints for example in the strain level. In [87] TO with the Simple Isotropic Material
with Penalization (SIMP) method was used considering different fiber ply-orientation
for the mechanism. SIMP method varies the local density of the discrete element of the
design space, leading to a material distribution with denser area where the mechanism
should be and areas of void. A drawback of this method is the necessity of a post-
processing analysis because of “grey” areas. Filtering techniques are available to lead to
amore solid-void solution but an engineer’s view is often required to translate the result
into a feasible structure. [62] reports a comparison between two TOmethod, specifically
load path and density based SIMP. The first one is based on an initial parent lattice of
beam members to be determined a priori as a choice variable. The algorithm evaluates
the load paths made up of a connection of the beams which lead to the convergence
criteria on the objective function. Even though this method reduces the need for post
processing analysis, the solution is depending on the initial parent lattice grid. In the
reference cited a method to reduce the parameters for the description of the network of
beams was proposed, because an high number of nodes necessary to better match the
objective can lead to excessive degrees of freedom. A similar comparison between the
two aforementioned methods can be found in [73].

In the work reported in [79], as part of the European project NOVEMOR, a wingtip
morphing leading edge was designed following a three steps process: 1) the design of
the skin via Simplex based optimization; 2) the design of the compliant mechanism via
continuum gradient-based topology optimization and 3) the design of the support for
the compliant mechanism also via continuum gradient-based topology optimization.
The material selected for the compliant mechanism was aluminium 7075 alloy with a
thickness of 5 mm, while a linear actuator was chosen. LSE minimisation with con-
straints on the amount of material used was performed within a SIMP model for TO
and the MMA method as update scheme. The result of the mechanism optimisation
was then used to determine the boundary conditions for the support, which in turn was
optimised solving a minimummean compliance problem. The final prototype deriving
from this work is shown in Figure 3.3b.

TOwas used in an aeroelastic framework in [76], where several solutions for themor-
phing leading edge of the SADE project were proposed. The concept implemented in
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the prototype for ground tests was based on a kinematic chain made up of a main lever
from which four branches pivoted on it depart and are hinged to four omega stringers
reinforcing the skin. A bell crank lever was used for actuation. After the skin optimi-
sation, the kinematic chain was optimised varying the positions of the levers with their
bearing support, in order to minimize the actuation energy. The resulting system was
finally incorporated into the global FEM model of both skin and actuator to verify the
operational behaviour under aerodynamic loads. Results of displacements test also in
wind tunnel can be found in [37, 39], while a figure of the prototype with the kinematic
system visible is Figure 3.4. Another concept evaluated during the project is an eccentric
beam actuator (EBAM) [54], already proposed in Figure 3.5. The system was based on
an aluminium beam with five disks attached to the skin, shaped in order to convert a
rotational motion of the beam in a vertical displacement of the skin.

Figure 3.6: SARISTU drive chain actuation mechanism [40]

Starting from the results of the SADE project, a similar mechanismwas designed for
the SARISTU project within the activity stream “AS01 Enhanced adaptive droop nose
for a morphing wing” under the lead of DLR [40]. In this case a 3D wing section was
designed and the aim of the work was considering also integration problems like ad-
ditional protection against impacts, ice and lightnings, manufacturing and industrial-
ization. Dealing with a 3D wing section, the kinematics had to be optimised to reach
different shapes along thwing span, which actually are only slightly differing from each
other. The final choice was a drive chain in which the linear motion of the actuator was
translated via two hinges and one lever into a rotary motion. A single linear actuator
was used tomove amodular drive chain, to which at each wing station amain lever was
connected by a cross link. In this way a low weight solution was achieved, with only
one actuation point and a distributed system of hinges to convert the main bar transla-
tion into the rotation necessary for drooping the leading edge. Figure 3.6 illustrates the
concept presented.

Another European project aimed at designing, manufacturing and testing an actu-
ation system that could deform a morphing leading edge seamlessly was the LeaTop
project [16]. The actuation system designed via TO was a statically determinate kine-
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matic chain of rigid members which drove a thin aluminium skin into the desired de-
formed configuration. A proper design of the actuation system was required to make
sure that strains in the skin are low and that aerodynamic loads are transmitted to the
front spar of thewing through it, and not through the skin itself to avoid excessive strain
in the region near the fixed part of the airfoil. Experimental test conducted proved the
ability of the system to reach the desired deformationwhile providing sufficient stiffness
to support aerodynamic loads and the locking capability [70]. A technology readiness
level (TRL) of 3 was achieved and the system has been already shown in Figure 3.3a.
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Chapter 4

Aerodynamic Optimisation of a
Morphing Wing

As explained in previous sections, morphing airfoils are reported to be an interesting
technology to improve aircraft performance, particularly in take-off and landing phases,
where conventional discrete control surfaces are cause of a drag penalty and one of
the main airframe noise source. In the present thesis an aerodynamic optimisation of
morphing airfoil is performed. The current section presents the problem and gives an
overview on the structure of the thesis.

4.1 Problem statement

The problem faced in this work is part of a more generic procedure aimed at design-
ing amorphingwing. The nature of the problem requires a global perspective to be pur-
sued in order to guarantee that the technology considered leads to effective advantages
to the system it belongs to. The design is mainly led by the aerodynamic behaviour of
the device, but without considering its systemic role, the solution can be impracticable
to realize and integrate within the main system.

The presence of different requirements and trends when including considerations
of various areas, such us aerodynamics, aeroacoustic, structural mechanics, integration
and so on, suggests the need for an optimumdesignwhich, taking into account themain
objective and the principal constraints, can effectively represent the best compromise
against conflicting requirements. For example, considering simply the aerodynamic,
the optimal morphed leading edge could involve such a shape change to be achievable
only with a very strict structural optimisation, a large amount of material and a robust
mechanism which, in turn, vanishes the efficiency improvement of the aerodynamic
due to an increased complexity and weight. Starting from this basic consideration, the
design procedure of the morphing leading edge appears to be preferably optimisation
led, in order to take into account of the aforementioned problems. Of course the degree
of complexity of themodel used in the optimisation framework is limited and only some

23



constraints can be invoked; many other aspects will be assessed in successive iterations
of the design.

The purpose of this work was to set the first level optimisation chain which can pro-
duce an optimal aerodynamic shape, subdued to aerodynamic, geometric and structural
constraints. The aim of the study was to identify a suitable parameterization method,
able to handle the morphing geometry, asses the influence of the aerodynamic model
on the optimal shape, analyse the influence of the optimisation strategy and propose a
framework able to produce optimised shapes either for single or multi-objective formu-
lations. Several cases were analysed, with an increasing level of complexity. In a first
phase, a two-dimensional geometry was considered, in order to evaluate the perfor-
mance of the optimisation under different conditions and to set-up properly the optimi-
sation loop. In a second phase, the work focused on a more complex three-dimensional
shape, extending the previous tools to optimise a morphing leading edge wing. The
final phase dealt with possible improvements of the optimisation, by employing more
sophisticated algorithms and including meta-modelling as an optimisation strategy.

4.1.1 Reference configurations

In the initial phase of the study, a 2D geometry was chosen in order to set up the
optimisation loop and test its subsystems. The geometry consisted in a general aviation
airfoil designed by NASA, the GA(W)-1, for which experimental aerodynamic charac-
teristics are available in literature. The airfoil is depicted in Figure 4.1, in which the
morphing part is indicated in green and extends from 0 to 25% of the chord length.
For the 2D optimisation, the reference conditions considered are reported in next table
4.1. Further specifications regarding particular problems treated will be reported in the
proper section.

Figure 4.1: NASA GA(W)-1 general aviation purpose aerofoil

After assessing the optimisation in a 2D fashion, the frameworkwas extended to deal
with a 3D case. A portion of a reference wing was optimised. The geometry is depicted
in Figure 4.2. Being c the root chord, the wing had a wingspan of 2c and a chord of
c/2. The leading edge of the tip section was at the same abscissa of the trailing edge
of the root section, providing the wing a sweep angle of 26.565 [deg] for the leading
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Name Reynolds Mach AoA [deg]

DP1 6E+06 0.20 15

DP2 6E+06 0.20 5

Table 4.1: DPs considered

edge. Also a sweep was introduced from the hub to the tip for at most 1 [deg]. The
three-dimensional component of the flow field around the body appeared relevant, due
to the low aspect ratio, the sweep, the taper and the twist.

Figure 4.2: Three-dimensional view of the reference wing

4.2 Standard optimisation framework

The basic optimisation framework employed consisted in a standard optimisation
loop, written and executed in a Matlab environment. The chain was composed by three
main blocks: the geometry block, the aerodynamic block, the constraint evaluation block
and the optimisation engine block. Figure 4.3 synthetically illustrates a scheme of the
framework. The geometry block, surrounded by a dashed purple line in the figure, al-
lowed to generate the geometry, using the information derived from the optimisation
engine. It communicated with both the second and third block providing a paramet-
ric constant arc length geometry representation. The aerodynamic block, represented
with a dashed red line, received as input the geometry and computed the aerodynamic
indexes for the given boundary conditions. The meshing software Gambit generated
the grid, while an high fidelity CFD commercial software, ANSYS Fluent, was used to
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solve the flowfield. The information computedwas blended in the constraint evaluation
blocks, surrounded by a green dashed line, in which both geometric and aerodynamic
constraints were calculated, producing a penalised fitness value. This entered the opti-
misation engine block, orange in the figure, which manipulated the decision variables
and tried to improve the solution. The algorithm employed was a Genetic Algorithm
(GA). The loop was then repeated, unless some stopping criteria are satisfied. During
all the computations, in order to save time and polling the design space, a database
containing the decision variables already investigated and the related fitness was cre-
ated. This allowed to avoid to launch the CFD code if a design vector had been already
computed and was useful for a further approximation of the fitness landscape.

In the initial phase of the work, a panel solver was used instead of a CFD tool, for
the great benefit in terms of computational cost. This will be discussed more in detail
in chapter 6, but the reader should consider to replace the two sub-blocks in the figure,
inside the aerodynamic red-dashed block, with a single subsystem consisting in the
panel solver XFOIL.

4.3 Synthetic summary

A brief summary of next chapters is here reported:

• Chapter 5: Shape Parametrisation: an overview of shape parametrisation tech-
niques for 2D shapes is reported; the employedCSTmethod byKulfan is explained
and its performance in inverse fitting and airfoil morphing tested;

• Chapter 6: Aerodynamic analysis tool validation: the tools used for aerodynamic
analysis are presented and their results compared with experimental data from a
test case, in order to validate the model;

• Chapter 7: Two-dimensional Optimisation of a Morphing Leading Edge Air-
foil: the optimisation procedure is applied to a 2D geometry; results for different
problems and found with different models are discussed, also with regard to the
optimiser settings;

• Chapter 8: Three-dimensionalOptimisation of aMorphingLeadingEdgeWing:
the optimisation procedure is applied to a 3D wing geometry;

• Chapter 9: Meta-model Based Optimisation: the optimisation framework is en-
riched with a meta-model, in order to reduce the fitness evaluation time; results
are discussed at varying the regression methods as well as its application into the
loop;
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Figure 4.3: Synthetic scheme of the basic optimisation framework employed
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Chapter 5

Shape Parameterization

Performing a shape optimisation problem requires the exploration of the design
space where to search for the set of optimal solutions. The physical domain is explored
varying the basic shape within it, while satisfying some constraints. In order to pro-
duce a family of shapes it is necessary to have a representation of the model, which
can be controlled by altering the design variables. A parameterization consists in this
representation through a set of parameters, whose variation allows to explore the phys-
ical domain and to find the best solutions inside it. The choice of the parameterization
method has a large impact on the obtainable geometries and on the design space explo-
ration and it should be assessed also with respect to the optimisation strategy, before
performing it.

A valuable parameterization technique should have the following desirable proper-
ties [41, 61, 90]:

1. to provide high flexibility to cover the entire design space;

2. to have a small number of design variables as possible;

3. to produce smoothness and realisability of the shapes;

4. to have intuitiveness on the design parameters for geometrical and physical under-
standing by the designer in exploring the design space and setting up optimization
constraints.

It is unlikely that a parameterization method possesses all this properties and then a
selection of the most suitable strategy for the given problem should be made, consider-
ing potentials and drawbacks of each method. For example, a high number of design
variables is able to provide high flexibility in exploring the design space, at the cost of
an higher complexity of the optimisation loop, computational time and effort by the op-
timizer. Intuitive parameters allow for a well understanding of the design space and a
simpler setting of the constraints. With non intuitive parameterization, extra functions
can be needed to calculate the constraints, with an extra computational time and a possi-
ble reduced efficiency of the optimiser if they are not differentiable, such us in gradient
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based methods. Smoothness is not just related to the mathematical regularity of the
shapes, but affects also the general performance of the system in that it can influence for
example both the aerodynamic and structural performance.

5.1 Available parameterization methods

Existing parameterization methods can be grouped in eight classes [42, 61]:

• Basis Vector

• Domain Element

• Partial Differential Equations (PDE)

• Discrete points (mesh methods)

• Polynomial and Spline

• Analytical methods

• CAD-based

• Free Form Deformation (FFD)

5.1.1 Discrete methods

Discrete methods are based on using the mesh point as the design variables. They
are able to provide a wide design space and could possibly represent any shape. Un-
fortunately, since each point moves individually it is difficult to obtain smooth shapes,
unless using some kind of filtering to dynamically couple the points and obtain smooth
shapes and gradients. Although a high flexibility is achievable, the large number of
design variables required to achieve it generates a very high dimensional design space,
which can reduce the efficiency of the optimiser in searching for global optima at an
unaffordable computational cost. Moreover, intuitive parameters are difficult to set and
the result can be impracticable to manufacture.

5.1.2 Analytical methods

So called Analytical methods are based on a mathematical formulation to describe
a certain shape. In general they rely on a superposition of a baseline geometry yb(x)
with a linear combination of shape functions fi(x), whose combination coefficientsAKA
participating coefficients λi are the design variables:

y(x, λ) = yb(x) +

n∑
i=1

λi fi(x)
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Shape functions can be of various type, e.g. Hicks-Henne, Wagner, Legendre, Bernstein
or NACA series. A common analytical method was proposed by Hicks and Henne and
employs a series of bump basis shape functions in the form

fi(x) = [sin(πxβi)]
w

with βi = ln(0.5)/ln(xMi) and xMi defines the position of the peak of the i-th function
and w controls the width of the bump function. The technique has proved to be valid
in parametrising airfoils, but is not trivial to extend it to 3-dimensional shapes.

5.1.3 Polynomials and Splines

Polynomials allow to describe a curve in a very compact way, with a limited number
of control variables. The description of a shape in terms of elements of a power basis
of polynomials is common to many polynomial-based approach. Among these there is
the Bézier representation.

Bézier curves

A n-th degree Bézier curve can be expressed by

~Rg(u) =

n∑
i=0

~Pi Bi,n(u), 0 ≤ u ≤ 1

with ~Pi the control point, Bi,n Bernstein polynomials of order n and u ∈ [0; 1] the nor-
malized abscissa. The control points ~Pi describe a polygon approximating the curve
and containing it and are seen as the design variables. The first and last points are po-
sitioned exactly at the beginning and the end of the curve and the convex hull of Bézier
control polygon contains the curve, providing a way to set geometric constraints. The
Bézier form is effective and accurate for shape optimisation of simple curves, but com-
plex shapes require an high order p. Since the basis of polynomials is in power form
and its matrix representation is Vandermonde like, inverse fitting is accompanied with
numerical errors, which can badly affect the result.

B-spline

To limit the required degree, it is possible to use Bézier representation over a certain
number of intervals composing the curve. This approach leads to B-splines, which are
curves described as a sequence of Bézier curves, joined together at so called knot, using
piecewise polynomial interpolation. The mathematical formulation of a p degree B-
spline is in the form:

~R(u) =
n∑
i=0

~Pi Ni,p(u), 0 ≤ u ≤ 1
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where ~Pi is the control point and Ni,p(u) is the B-spline basis function. This basis func-
tion can be defined using the de Boor recursive algorithm:

Ni,0(u) =

{
1 if ui ≤ u < ui+1

0 otherwise

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u)

It is clear from the above formula that a set of ui is required in order to compute the
basis function. In fact, for a p order B-spline with n control points ~Pi, m = n + p + 1
knots ui are necessary. B-splines can provide a high flexibility in representing various
kinds of shapes and can be used also for local control, since the control points have only
a local effect on the curve.

A limit of polynomial based representation is the impossibility of accurately parametrise
implicit conic shapes, like circles, ellipsis and hyperbolas. To extend the employability of
these tools, rational formulation based on splines exist, namely Non-Uniform Rational
B-Spline (NURBS). They are used to represent both curves and surfaces and are present
in Computer-Aided Drafting (CAD) software, thanks to their flexibility and wide range
of applicability.

5.1.4 Other methods

CAD-based methods uses various representation to build completely mathemati-
cally defined solids. They can handle complex anddetailed geometries andhave become
a standard design tool in many areas, from aerodynamic to mechanics, providing con-
nectors for multiple purposes, significant for multi-disciplinary optimisation (MDO).
Intuitive parameters are also available to help in defining boundaries and constraints of
the design space. Nevertheless, incorporating CAD-based models into an optimisation
loop can be challenging and requires a well structured experience and competence.

PDE methods view the surface to represent as a boundary-value problem and pro-
duce the shape as the solution of PDE. Using PDE methods to parametrise existing
complex model is time consuming and costly and only a surface geometry can be rep-
resented. Together with Basis Vector and Domain Element techniques, the applicability
is suitable for problems involving a single discipline and simple shape changes.

5.2 Parameterization methods suitable for morphing

When facing a morphing problem, properties like local control on geometry and
smoothness of produced shape should be considered as binding when choosing the pa-
rameterization technique to be used for the optimisation. Only a portion of the initial
body must be varied, while maintaining a smooth surface and a certain regularity in
the joint, to avoid the vanishing of the benefits of morphing because of geometric dis-
continuities. Having to include in the optimisation also structural constraints, even in
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a first level survey in order to limit the possible solutions to those effectively manufac-
turable, a technique allowing to calculate derivatives and geometric properties, such as
arc length, curvature or section area, would make it easier to set these constraints.

Among the aforementioned classes, polynomial basedmethods seem topresent these
features and appear as natural candidates for the purpose of the work. B-Splines, for
example, have a local control property and the computation of derivatives can be made
analytically. As a drawback, because of their generality they do not provide intuitive
parameters. A more intuitive method to parametrise airfoil is the PARSEC, which com-
bines a polynomial representation with a set of eleven intuitive parameters. A local
control of the shape is, nevertheless, not immediate. Another polynomial based strat-
egy is theCST, combining the flexibility of Bézier curveswith a small number of intuitive
parameters, which can be anyway sufficient for the purpose of LE morphing.

Class/Shape function Transformation (CST) is an application of generalized Bezier
curve definition to adapt to any aircraft geometries, proposed by Kulfan and Bussoletti
[42]. The CST technique is based on merging two fundamental factors, plus other ad-
ditional terms to better represent specific shapes. The two factors are a Class function
C(ψ), which defines a certain class of geometries, and a Shape functionS(ψ), individuat-
ing unique geometrical properties of the parameterized body. It is applicable to a variety
of problems, both in 2D and 3D, and appears a powerful tool to be used in optimisation
problems. For the purpose of morphing, the characteristics of the CST method, such us
the C(2) regularity of the parameterization, the smooth filtering due to the shape func-
tion decomposition, the possibility of varying only certain portions of the shape and the
analytical availability of lower order derivatives, appear suitable.

5.2.1 CST formulation

The CST parameterization in two dimensions is generally defined as follows:

ζ(ψ) = C(ψ)N1
N2 S(ψ) (5.1)

where ψ = x/c and ζ = z/c are the normalized abscissa and ordinate of the body,
respectively.

The Class function is expressed by:

C(ψ)N1
N2 = ψN1 (1− ψ)N2 (5.2)

where N1 and N2 are two exponents that can be chosen to represent a certain class
of geometries. Table 5.1 shows different classes of geometries represented by various
couples of N1 and N2 exponents.

The Shape function is introduced to define unique properties of the represented
body by modulating the Class function, representative of a generic shape in the geo-
metric class. In Kulfan proposal the Shape function is expressed by a Bernstein polyno-
mial of order n, in which its components are weighted by so called curvature correction
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N1 N2 shape Figure

0.5 1 round nose, pointed aft end

0.5 0.5 elliptic airfoil

1 1 biconvex airfoil

0.75 0.25 low drag projectile

1 0.001 cone or edge airfoil

0.001 0.001 rectangle or circular rod

Table 5.1: Represented class of geometries with various Class function exponents

coefficients Ai. The formulation of the Shape function is, then:

S(ψ) =

n∑
i=0

Ai Ki,n ψ
i(1− ψ)n−i (5.3)

where
Ki,n =

(
n

i

)
=

n!

n!(n− i)!
is the binomial coefficient and Ai, i = 0, n are n+1 coefficients that determines the par-
ticular shape described, scaling each term of the Bernstein polynomial. Without this
weighting the Shape function would be a unit, because of the property of any Bernstein
polynomial of order n for which the sum of its n+ 1 terms over the interval [0;1] is one.
Figure 5.1 illustrates this property: with a unit Shape function a single parameteriza-
tion exists for a given class function. Varying the order n of the Bernstein polynomials
representing the Shape function, without scaling each term with the curvature correc-
tion coefficient Ai, produces the same unit S(ψ) and thus the same geometrical shape,
because the sum of the n+ 1 terms composing the Bernstein polynomials is always one
in the normalized interval [0;1] (partition of unity).

The location of the peaks of the component Shape functions, each of the n+ 1 terms
in the sum of equation (5.3), are equally spaced along the chord and defined by

(ψ)Smax,i
=
i

n
, i = 0, n (5.4)

The corresponding locations of the peak of the component airfoil are also equally
spaced and expressed by

(ψ)Zmax
=

N1 + i

N1 +N2 + n
, i = 0, n (5.5)
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Figure 5.1: Representation of the partition of unit property for the Bernstein polynomials
[41]

5.3 Airfoil representation through CST

For the parameterization of airfoils the N1 and N2 exponents of the Class function
must be set to 0.5 and 1 respectively (see table 5.1). With this choice, the decomposition
of the unit Shape function into components function and their scaling via the curvature
correction coefficients Ai, which are the weight in the linear combination of the n + 1
terms, allows to represent a generic airfoil. It is visible by the expression of the of the
Bernstein polynomials

B(ψ)n =

n∑
i=0

Ki,n ψ
i(1− ψ)n−i

that the components of order 0 and n assume the value of 1 at ψ = 1 and ψ = 0 respec-
tively, and the value of zero at ψ = 1 and ψ = 0, respectively. Thus, the coefficients A0

and An affect only locally the shape of the airfoil at its boundaries, while the other n− 1
coefficients affect the entire chord. This allows to control the features of the airfoil at
both leading and Trailing Edge (TE). Specifically,

A0 =

√
2RLE
c

(5.6a)

An = tan(β) + ZTE/c− ZLE/c (5.6b)
The formulation of the CST parameterization of an airfoil proposed in [42] is:

ζ(ψ) = C(ψ)0.51 S(ψ) + ψ ζTE (5.7)
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with ζTE = zTE/c an extra termused to include the trailing edge thickness andC(ψ),S(ψ)
according to equations (5.2) and (5.3) respectively. In this way it is possible to list all the
parameter controlling the shape of the airfoil because related to the curvature correction
coefficients. Before doing this, an alternative formulation is used, as suggested in [19],
in order to allow also for a leading edge deflection, which will be useful for the purpose
of morphing:

ζ(ψ) = C(ψ)0.51 S(ψ) + ψ ζTE + (1− ψ) ζLE (5.8)
with ζLE = zLE/c.

Figure 5.2 reports the geometric parameters of the airfoil as used in [19]. These pa-
rameters can be related to the curvature correction coefficients and to the constants ζLE
and ζTE .

Figure 5.2: Geometric parameters of the CST representation

In order to parametrise a non symmetric airfoil, the upper and lower curves are
treated separately and joined in the leading and trailing edge, thus equation (5.8) has
to be applied for both upper and lower curve. It is here assumed, because of the 2-
dimensional nature of the problem, that the LE is positioned at ζ = 0, by posing xLE in
the figure equal to zero. Table 5.2 summarizes the model variables of the CST method
in application to 2D airfoils.

ζLE = zLE/c, as already mentioned, allows to vary the vertical position of the LE
and it is obviously the same for the upper and lower surface.

ζTE =


zTE
c

+
∆ζTE

2c
upper curve

zTE
c
− ∆ζTE

2c
lower curve

includes the trailing edge position and thickness ∆ζTE .
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RLE is the leading edge nose radius. Normally it should be equal for both upper
and lower curve; if different, a discontinuity will appear at LE.

CFS and CRS are the normalized abscissae of the fixed front and rear spar of the
airfoil, delimiting the fixed portions when morphing. The leading and trailing edge
deflection can be computed by δLE = atan(zLE/CFS) and δTE = atan(zTE/(c− CFS)).

Vectors of n + 1 coefficients Al and Au are necessary to uniquely individuating the
shape described which, for the case of airfoils, is parameterized like the union of two
curves.

The order n of the Bernstein polynomial determines the number of weighting co-
efficients of the component Shape functions and thus is related to the accuracy of the
geometric reconstruction of a given body. This problem is to be treated in the next sec-
tion.

Parameter Meaning

c airfoil chord

ζLE normalized LE ordinate

ζTE normalized TE ordinate

RLE,u upper LE radius

RLE,l lower LE radius

∆ζTE trailing edge thickness

β angle of inclination of the TE

δ angle between the upper and lower curve at TE

CFS normalized front spar abscissa

CRS normalized rear spar abscissa

n Bernstein polynomials order

Au upper curve curvature coefficient

Al lower curve curvature coefficient

Table 5.2: Geometric variables in CST model
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5.3.1 Inverse fitting via CST

Up to now, the CST formulation for an airfoil parameterization has been exposed,
presenting the equation that defines an airfoil and the control variables, adjustable to
represent different shapes. Now the problem of inverse fitting, i.e. the parameterization
of an existing body expressed as a vector of l + 1 discrete point coordinates is treated.
While in the previous section the normalized abscissa ψ has been considered the in-
dependent variable and the ordinate ζ a function of it, ζ = ζ(ψ), now the l + 1 points
belonging to the body are known, and thus a vector of l + 1 normalized coordinates
x/c = ψ, z/c = ζ is available. The problem consists in determining the parameters in
equation (5.8) in order to parametrise the shape. As regards ζLE and ζTE , they can be
easily computed looking at the least and the maximum abscissa of the vector of coordi-
nates and taking the respective ordinate. Once computed the two coefficients, in order
to determine the n + 1 Ai coefficient for each side of the airfoil the problem must be
written in a matrix form. The order nmust be chosen. Starting from eq. (5.8), since the
unknown terms are in the right side, it is possible to rewrite the equation like:

[C(ψ)0.51 Bn] ~A = ζ(ψ)− ψ ζTE − (1− ψ) ζLE (5.9)

Let ~f(ψ) be the right side of eq. (5.9), a column vector of l+ 1 terms and C(ψ)0.51 Bn] an
(n+ 1) ∗ (l + 1) matrix [Tn] such that:

[Tn]i,j = ψj
0.5 (1− ψj)

(
n

i

)
(1− ψj)n−iψj i, 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ l + 1 (5.10)

and ~A a column vector of n + 1 unknown coefficients. Rearranging the linear equation
in

[Tn] ~A = ~f (5.11)

The above system is solvable with pseudo inversion, bymultiplying each term for [Tn]T ,
giving:

[Tn]T [Tn] ~A = [Tn]T ~f (5.12)

This equals solving for the least square error from the analytic shape and the given one.
The system matrix [Tn]T [Tn] suffers from ill-conditioning and the solution can be

affected by numerical errors. The QR decomposition method is therefore suggested so
as to limit this problem, which becomes more important at increasing the order n. With
the vector ~A of n+1 components all the curvature correction coefficients are determined
and the parameterization concluded.

The CST technique shows the following properties [42]:

1. any smooth airfoil can be represented with the chosen degree of accuracy;

2. the entire space of smooth airfoils can be captured;

3. every airfoil can be derived from the unit shape function;
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4. every airfoil is derivable from any other airfoil.

A survey on shape reconstruction with CST can be found in [12, 41, 42, 90]. As re-
gards the influence of BPO, at increasing n the parameterization accuracy improves,
until numerical errors highly affect the result and the system matrix becomes close to
singular. Thismeans that for a given set of pointsmore than one parameterization exists,
or vice versa two different parametrisations refer to practically the same shape. In fact,
the solution of the system is the one that minimizes the Least Square Error (LSE), be-
cause the systemmatrix is not square; for this reason, when stating the passage through
control points, this must be intended in the LSE sense. Figure 5.3 illustrates the RMS er-
ror between the parameterized airfoil and the starting one for aNACA4412 as a function
of BPO order n. Ordinate axis is logarithmic.

Figure 5.3: RMS error versus BPO n for NACA4412 airfoil

Following Figure 5.4a shows the parameterized NACA 4412 profile with control
points marked by circles. Figure 5.4b reports the error difference between the parame-
terization and the initial discrete shape, calculated at the control points. Note that the
control points used here are not the same of Figure 5.4a. A better fitting could also be ob-
tained with an LSE optimisation for N1 and N2 Class function exponents, as suggested
in [43].

5.3.2 Application of CST to morphing airfoils

One of the advantages of the CSTmethod is that it can handle morphing geometries
derived from a native one, as expressed by the aforementioned property 4. The problem
can be formulated in this way: given a parameterized airfoil with BPO n, some m over
n + 1 curvature correction coefficients Ai are perturbed, while maintaining a subset
of l + 1 control points in the normalized domain [0;1]. In order to force the airfoil to
conserve these control points, the other n − m + 1 coefficients must be scaled, in that
each component Shape function, different from the lowest and highest one (i = 0 and
i = n), affects the final shape in the entire interval. Perturbing m coefficients means
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(a) CST parameterized NACA4412 aerofoil (b) Residual difference of parameterization
at control points

Figure 5.4: Parameterization results for a NACA4412 with BPO = 10

assigning them a value and then the remaining unknowns are the n+ 1−m coefficients
to be determined, while imposing the passage through the control points. Thismeans to
solve a system similar to that of equation (5.11), in which the systemmatrix is extracted
from the original one and has dimensions (n−m+ 1) ∗ (l+ 1). Operatively it is derived
by deleting the columns corresponding to the perturbed m coefficients; this columns
multiplied per the scalar coefficient must then be subtracted from the right member.
Formally,

[Tn−m]i,j = ψj
0.5 (1− ψj)

(
n

i

)
(1− ψj)n−iψj i, 1 ≤ i ≤ n−m+ 1, 1 ≤ j ≤ l + 1 (5.13)

and

fj = −ψj ζTE − (1− ψJ) ζLE − C(ψj)
0.5
1

m∑
i=0

Ai Bi(ψj), j = 1, ..., l + 1 (5.14)

The linear system is finally:
[Tn−m] ~A = ~f (5.15)

and can be solved with pseudo-inversion and QR method as before.
The first and last curvature coefficient A0 and An are related to the LE radius and

the TE position and the deflection angle (eq. (5.6)). The other coefficients express their
influence over the entire domain, butmostly near the peak of their component airfoil (eq.
(5.5)) and then the coefficients to be perturbed can be selected relying on the position of
the peak with respect to the fixed subdomain, the latter being individuated by CFS and
CRS in Figure 5.2.

Figure 5.5 shows an example ofmorphing using the CST parameterization. The orig-
inal airfoil is a NASA HSNLF(1)-0213 (grey in the figure). The morphed profile, green
in the figure, results from a perturbation of the original curvature coefficients for both
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Figure 5.5: Morphing LE examplewith CST parameterization forNASAHSNLF(1)-0213
profile

the upper and lower side and a variation of ζLE . The fixed portion is between [0.25;1]
and the reduced system was solved to scale the free curvature coefficient and maintain
the passage through the control points, marked with dots in the figure. The BPO was
8; the reconstruction error in the fixed portions depends on the coefficients perturbed.
One can select which coefficients to perturb basing on the position of the component
peak (eq. (5.5) ) with respect to the subdomain. When introducing a variation in some
coefficient, the remaining ones scale in order to maintain the fixed portion unchanged.
Actually, since the inverse fitting is a Least Square Error approximation, the parame-
terized aerofoil will not pass exactly through the control points. This leads to a small
variation of the perturbed profile in the fixed region, with respect to the original pa-
rameterized profile. The difference between the unperturbed parametric airfoil and the
perturbed one in the fixed portion is presented in Figure 5.6, together with the error be-
tween the control points and the parametric unperturbed airfoil. It can be noted that the
maximum error in the latter set (dashed line), where no perturbation has occurred, is
below 2.5E-4, while in the former (continuous line) it raises up to 1E-03. Data have been
obtainedwith a BPO of 10. Increasing the order of Bernstein polynomials can reduce the
RMS value of the error, but results in a high conditioning number of the inverse fitting
system matrix, so n=10 appears to be the trade-off value. Through the perturbation of
the first three curvature coefficients A0, A1, A2 for n = 10, whose component peaks are
located at 0.0435, 0.1304, 0.2174 respectively, it is possible to obtain different morphed
shapes of the airfoil in the morphing subdomain [0;0.25]. Starting from an unperturbed
airfoil, the variation of the coefficients by multiplying each of them for a different scale
factor produces a family of curves exhibitingC(2) regularity. Obviously, not all possible
sets of three perturbed coefficients are admitted to preserve an airfoil like shape. Some
constraints can be introduced to discard those sets which violate them, for example to
limit the maximum error between the fixed control points and the perturbed airfoil or
the variation of area in the deformed region. Figure 5.7 presents the results for the afore-
mentioned procedure applied to a NASA GA(W)-1 airfoil, in which a LE deflection of
15 [deg] has been imposed. The original airfoil is drawn in grey and the fixed spar is
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Figure 5.6: Residual error between perturbed and original CST parametric NASA
HSNLF(1)-0213 profile in the fixed region

dashed at ψ=0.25.
The former figure shows the results of the perturbation, when only geometrical con-

straints are considered, but also structural ones should be introduced, in order to limit
strain or stresses in the morphed configuration. For this purpose it can be convenient to
pass from a parametric representation of the airfoil in term of normalized abscissa ψ to
an arc length representation.

Each side of the CST airfoil is expressed as a function

f : [0; 1]→ R, ψ 7→ f(ψ) = ζ

To turn the parametric representation into a normalized arc length one, it is necessary
to map the curve f(ψ) into the curve g(s), such that

g : [0; 1]→ R2, s 7→ (x(s), y(s))

and s is the arc length, who can be expressed as a function of t:

s(t) =

∫ t

0

√
1 +

(
dζ

dψ

)2

dψ (5.16)

The above relationship is explicit when passing from the adimensional parameter t to
the arc length s, but being non linear an inverse explicit formulation is not available
and recursive methods can be used to calculate the value of ψ corresponding to a given
value of s. Anyway, since in the rebuilding of a CST parameterized aerofoil a discrete
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Figure 5.7: An example of family of morphed LE for a NASA GA(W)-1 airfoil

number of points has to be used, it is possible to directly couple the ordinate, function of
a known ψ, to the corresponding value of s calculated for the same ψ using eq.(5.16). In
this way, since the number of points used are sufficiently high, no inverse computation
of ψ for a given s is required and the mapping can be made straightforward, simply
associating to a tabulated ψ its corresponding value of s.

5.4 Constant length curve parameterization with CST

The peculiarity of the problem treated requires a parameterization technique able to
ensure that the constraints present in the optimisation, which will be both geometrical
and structural, can be easily respected within the optimisation loop, thus avoiding for a
long search in the design variable space for feasible solutions. Constraints treatment is,
indeed, a big topic when dealing with optimisation and providing the shape generation
algorithm the capability of automatically satisfy some of them improves the efficiency of
the search for optimal feasible solutions. In this context, wheremorphed shapes are lim-
ited by the deformation the skin is able to bear, the generation, by the parameterization
subsystem, of a family of curves whose length, in themorphed region, remains constant
canmake it easier to respect structural constraints. For this aim, a specific procedure has
been individuated and tested.

The generation of a family of curves with constant length is not straightforward,
because of the nonlinear relationship between the length and the control variables of
the parameterization. Starting from the work of Bettadapura et al. [9] for Bézier curves,
a semi-analytic algorithm to obtain a constant length family has been set. It is based on
the observation of how the length of a CST parameterized airfoil varies at varying one of
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its curvature correction coefficients, while recalculating the others to keep the geometry
fixed in a region (as described in section 5.3.2). This relationship appears parabolic-
like, as shown in Figure 5.8. The graph refers to the relative variation in length against
the variation of the third curvature coefficient of the CST parameterization, when the
reduced system is solved imposing the first three coefficientsA0,A1,A2, with the former
two equal to those of the baseline shape and the third variable, A2 = A2 + ∆.

Figure 5.8: Relative variation of the length on the morphed region of an airfoil as a
function of the variation of the third curvature coefficient A2

In a first step, like in [9], an algorithmaimed at obtaining a curvewhose length differs
from the original one for a given quantity was developed. It is based on a parabolic
approximation of the curve shown in Figure 5.8. Starting from a zero value for ∆, the
relationship is locally approximated at second order by computing the length at three
points of the curve, [∆ − ε,∆,∆ + ε] and representing it as a parabola. Having a local
approximation of the function L(∆), the new value of ∆ to obtain a length equal to the
original one plus the imposed variation δL is computed. This procedure is recursively
repeated until the final length reached equals the desired one. In this way a curvature
coefficient is varied of the quantity ∆ until the curve length equals the value sought.
A qualitative scheme of the algorithm is shown in Figure 5.9. One coefficient must be
chosen to be varied in order to attain the desired length change.

If the procedure is applied when some coefficients of the parameterization are im-
posed and one is chosen to vary in order to keep the length constant, it is possible to
have a parameterization able to generate curves with constant length, given that this
can only occur if the imposed coefficients belong to a certain region. This is, indeed,
the second step. For example, the first two curvature correction coefficient are imposed.
The new curve length is computed and the third coefficient is changed, according to the
first step, in order to keep the length constant. The algorithm is summarized in Figure
5.10. From a practical point of view, the imposed coefficients are set by the optimizer,
while the one to be varied in order to keep the length constant is chosen at the beginning
by the user.

An example of a family of morphing LE airfoil with constant length is illustrated in
Figure 5.11, for a NASAGA(W)-1 airfoil, with fixed spar at 0.25c and the third curvature
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Figure 5.9: Scheme of the algorithm employed to obtain a new curve with imposed
length variation

Figure 5.10: Scheme of the algorithm employed to obtain a constant length curve when
some coefficients are imposed
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Figure 5.11: An example of morphing LE airfoil with constant length

correction coefficient chosen to keep a fixed length, while imposing A0, A1 and ZLE .
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Chapter 6

Aerodynamic Analysis Tool
Validation

In the computational loop, the evaluation of the performance of a geometry in terms
of aerodynamics has to be done using a numerical analysis tool. CFD offers awide range
of instruments to model and simulate a variety of fluid dynamics problems with possi-
bly an high level of accuracy. On the other hand, a CFD analysis can be very expensive in
terms of computational resources and its employment in an optimisation loop can result
into an unacceptably long time, especially when stochastic methods, broad-spectrum
but low efficiency, lead the search.

A powerful analysis tool in external aerodynamics problems is represented by panel
methods, based on velocity potential flows theory. When the hypothesis of the linearisa-
tion are valid and the velocity field can be expressed by the gradient of a scalar potential,
panel methods produce reliable results for the pressure and velocity distribution along
an aerofoil, at a meaningless computational cost. Linear methods are applicable for thin
bodies, at moderate angles of attack, when no extended separation is present and the
regime is subsonic. A popular code based on linear flow, combining a viscous BL in-
teraction to allow fixed or free transition prediction, moderate trailing edge separation
and lift and drag prediction up to Cl,max is Drela’s XFOIL [24]. This code is widespread
for external subsonic aerodynamic analysis, where its reliability and very low compu-
tational time makes it very competitive with CFD, given that the linear model remains
valid. For a wider list of theoretical references about XFOIL, see [23]. Many optimisa-
tions with morphing report the use of the open source tool [27],[85],[22] and in [84] a
comparison between XFOIL and a CFD code shows a bit difference between them for
the FishBAC concept already presented (fig.2.3c).

For the purpose of the work, the use of an aerodynamic analysis tool with validated
results is needed. Since a priori it is not possible to discard linearised flow methods,
whose employment would greatly reduce the computational resources, both a so called
high-fidelity CFD code and the low-fidelity XFOIL were tested and their results com-
pared, together and with an experimental test case chosen. In the next section the CFD
code set-up is reported and then outcomes obtained with both the tools are presented.
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6.1 CFD simulation set-up

The set-up of a CFD simulation requires a wide choice of parameters andmodels, as
well as a discrete representation of the domain. The models employed and the domain
mesh are here described.

6.1.1 Grid Generation

For the nature of the finite volume approximation a domain discretization is needed.
In general, the result can be largely affected by the mesh employed, because of both
physical and numerical issues (e.g. a geometric scale unable to capture fluid gradients
or a poor mesh elements quality). A grid generation for a CFD problem can be per-
formed using loosely three methods: structured, unstructured and hybrid grids. The
first ones are generated relying on some user defined background structures or scheme
to distribute the elements within the domain. There are some advantages in such an
approach, because it is quite controllable the orientation of the layers of elements and
their density. The nodes can be easily ordered in a connection matrix and their position
uniquely identified, so that a scheme can be easily replicated. Normally, elements used
are quadrilateral in 2D and hexahedrals in 3D.

Unstructured grids are generated by some algorithm to fill the domain with ele-
ments without using a user defined control structure. This results in the possibility of
meshing complex geometries in a quite fast way, with good quality and minimal user
post-processing. A control in element size and distribution can be achieved through
some function forcing the algorithm, but of course the exact orientation and density is
less controllable than the structured grids. Typically triangular elements are used in 2D
domain and tetrahedra in 3D.

A third option is hybrid grids, combining layers of structured elements connected
to zones with unstructured ones. In this way it is possible to properly resolve critical
areas by using structured elements, while filling the remaining parts with a less ordered
elements distribution. A typical example is the adoption of a structured grid in the
boundary layer, where the need for orthogonality and a precise control of cell height
and stretch factor are desired. The connection between two grids can be a critical area
if an excessive stretching and skewness are required. A proper setting of size functions
to control the unstructured grid can limit the post-process adjustment by the user.

For the purpose of the work, both structured C-grid and hybrid O-grid with struc-
tured BL were tested. The former are quite easy to build thanks to the domain regu-
larity but has shown to loosely match experimental data in CFD computation, unless
increasing the number of elements to a value which has been judged too expensive for
the computation and not leading to advantages with respect to the latter kind, actually
chosen. After several tests, the boundary layer was filled with 50 layers of quadrilateral
elements and the first cell height chosen to have an y+ < 1, in order to properly solve
the boundary layer without using wall functions. The software used for meshing was
ANSYS GAMBIT v.2.4.6. An overall view of the hybrid grid generated is depicted in
Figure 6.1, while in Figure 6.2 are illustrated some details of the mseh, at the leading
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and at the trailing edge of the aerofoil.

(a) Triangular grid (b) Mesh around the aerofoil

Figure 6.1: Details of the hybrid grid used

(a) Detail of the mesh around the LE (b) Detail of the mesh around the TE

Figure 6.2: Details of the hybrid grid used

6.1.2 Material Properties and Reference Quantities

The problem involved air as a fluid, with a free stream Mach number of 0.20 and a
Reynolds number of 6E+06. It was modelled with an ideal flow with molecular weight
Mm = 28.966 kg/kmol, particular gas constant ¯(R) = 287.058 J/kgK and constant spe-
cific heats ratio k = 1.4. The viscosity model used was Shuterland’s law with reference
temperature T0 = 273.11 K and reference viscosity µ0 = 1.716 10−5 kg/ms−1.

6.1.3 Flow equations

The CFD code is employed to solve the flow equations in the domain, by typically
using a discrete approximation of the quantities in order to numerically solve for them.
The equations describing the physical behaviour of a Newtonian fluid are the Navier-
Stokes equations, which are the meaningful and exact physical law for the motion of
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a fluid. Since no general integrated form of them is available, a numerical scheme is
adopted to solve them in practical cases. Moreover, the high non-linearity associated
with them gives rise to strange phenomena, in presence of certain boundary condi-
tions, one of which is turbulence. Turbulent flows exhibit rapid local fluctuations of
the mechanical and thermodynamic variables over a multi-scale level, resulting in an
instantaneous field not respecting the symmetry or the time invariance of the bound-
ary conditions. In order to properly solve a turbulent flow using Navier-Stokes exact
equations, the computational grid should be able to capture the very steep gradients
present in the domain, requiring an element size of the order of the Kolmogorov scale
η = (ν3/ε)1/4, where ν is the kinematic viscosity and ε the turbulent dissipation, pro-
portional to the specific power introduced into the fluid. Furthermore, the flowmust be
evolved also with respect to the time domain, requiring a time-step discretization. The
direct solution of the Navier-Stokes equations is referred to as Direct Numerical Simula-
tion (DNS). Being L0 a characteristic length of the material domain used as a reference,
the computational cost of a DNS is NP ×Nτ ∝ Re3, with NP the number of points over
a 3-D domain and Nτ the number of time-steps. This is due to the need of capturing
all the turbulent structures arising from the Kolmogorov scale, which is of an order of
magnitude of the molecular size, to a macro-scale which is of the order of magnitude
of the physical material domain. The outcome is a computational time of hundreds of
years for a high Reynolds flow over a large domain.

In an engineering and industrial approach, where computational resources are lim-
ited, as well as the time available, DNS are not employed. Instead, a different formula-
tion of the Navier-Stokes equations is adopted, based on the so calledReynolds average or
ensemble average. Thisway of averaging the flowquantities consists virtually in repeating
many times an experiment, without changing the boundary conditions, and registering
point by point all the physical quantities. After that, an average over the number of
the experiments is performed point by point, giving rise to a mean flow, exhibiting the
symmetry and time-invariance of the boundary conditions. In this way each quantity
can be decomposed as the sum of its mean value 〈u〉 = U (in a Reynolds sense) and a
turbulent fluctuation, proper of the turbulence motion u′: u = 〈u〉+ u′.

With this decomposition, the original Navier-Stokes equations become the so-called
RANS (Reynolds Averaged Navier-Stokes) equations:

~∇ · ~U = 0, ~∇ · ~u′ = 0 (6.1a)

∂~U

∂t
+ ~U · ~∇~U = −1

ρ
~∇P + 2ν ~∇ · ¯̄E − ~∇〈~u′~u′〉 (6.1b)

∂K

∂t
+ ~U · ~∇K = ~∇ ·

{
− P

ρ
~U + 2ν ¯̄E · ~U − ~U〈~u′~u′〉

}
− 2ν ¯̄E : ¯̄E︸ ︷︷ ︸

D

+ 〈~u′~u′〉 : ~∇~U︸ ︷︷ ︸
−P

(6.1c)

∂k

∂t
+ ~U · ~∇k = ~∇·

{
− 〈p

′~u′〉
ρ

~U + 2ν ¯̄e′ ·~u′−
〈
~u′ · ~u′

2
~u′
〉}
− 2ν ¯̄e′ : ¯̄e′︸ ︷︷ ︸

ε

−〈~u′~u′〉 : ~∇~U︸ ︷︷ ︸
P

(6.1d)
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where upper case denotesmean values and prime or lower case denotes turbulent quan-
tities.

The first equation expresses the conservation of the mass and is the continuity equa-
tion. The second equation is the balance of themomentum. The term ~̄E is the symmetric
part of the gradient of the mean velocity U . The tensor 〈~u′~u′〉 is the Reynolds stress ten-
sor, made up of the turbulent velocity components. The third equation is the energy
balance for the mean kinetic energy K = UiUi

2 , while the fourth is the energy balance
for the turbulent kinetic energy k =

〈u′iu′i〉
2 . The underlined terms represent meaningful

quantities for the RANS approach. D is the energy dissipation associated to the mean
flow and it is a quantity always lower than zero. It dissipates kinetic energy in the mean
flow through viscous stresses. The term P is the production of turbulent kinetic en-
ergy and is a quantity statistically positive. In theK equation it compares with a minus
sign, while in the k equation it has a plus sign. This can be interpreted as the fact that
for some conditions, the dissipation term activates, transferring energy from the mean
flow to the turbulent one, and thus creating the turbulence. The energy from the mean
flow is converted into turbulent energy and in this regime the term ε, which is negative,
dissipates it, creating turbulent structures over a multi-scale level, until the scale length
is sufficient to ensure that viscous forces can eliminate the energy introduced. This quite
strange and complex mechanism is due to the high non-linearity of the Navier-Stokes
equations, but in the RANS approach it is not simulated, it is modelled according to var-
ious formulations. Popular turbulence closures are the k − ε or the k − ω, but a variety
of models exists, always with a certain degree of arbitrary elements. The next subsec-
tion presents the turbulence closure employed for the 2-D simulations, chosen over the
models available in the CFD code employed.

Turbulence modelling

Turbulence closure for RANS equations is one of themain variablewhen solving tur-
bulent flows, because the result can be largely affected by the capability of the model to
replicate physical phenomena. The software used for the CFD calculation, ANSYS Flu-
ent, allows for a quite wide choice of turbulence closures. For aeronautical application
a common one is the Spalart-Allmaras (SA) model.

Spalart-Allmaras turbulence model [71] is a Boussinesq model, based on one trans-
port equation modelling the kinematic eddy viscosity νt. In the Boussinesq approach,
the Reynolds stress tensor is modelled in a similar fashion to the stress tensor due to
molecular viscosity transport and is expressed by:

− 〈u′iu′j〉 = −2

3
kδij + 2νtEij (6.2)

where curl brackets denotes ensemble average, prime quantities denote fluctuations
variables, k is the turbulent kinetic energy and E the symmetric part of mean velocity
deformation tensor.
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In SA model, the transport equation for νt is

∂

∂t
(ρνt) +

∂

∂xi
(ρνtui) = Gν +

1

σνt

[
∂

∂xj

{
(µ+ ρνt)

∂νt
∂xj

}
+ Cb2ρ

(
∂νt
∂xj

)2
]
− Yν + Sνt

(6.3)
whereGν is the production of turbulent viscosity, and Yν is the destruction of turbulent
viscosity that occurs in the near-wall region due to wall blocking and viscous damping.
σ2 and Cb2 are the constants and ν is the molecular kinematic viscosity. +Sνt is a user-
defined source term. Since the turbulent kinetic energy is not computed in the model,
in the previous Boussinesq formulation the symmetric part of the Reynolds stress de-
pending upon it is simply ignored.

The eddy viscosity is modelled as:

µt = ρνtfν1 (6.4)

with fν1 a viscous damping term given by:

fν1 =
χ3

χ3 + cν13
(6.5a)

χ =
νt
ν

(6.5b)

The production term is modelled as:

Gν = Cb1ρST νt (6.6)

with:
ST = S +

νt

k̃2d2
fν2 (6.7a)

fν2 = 1− χ

1 + χfν1
(6.7b)

Cb1, Cν1 and k̃ are constants and d is the distance from the wall. S is expressed by

S =
√

ΩijΩij (6.8)

with Ωij the deviatoric part of the mean velocity deformation tensor.
The destruction term is expressed by:

Yν = Cw1ρfw(
νt
d

)2 (6.9)

where:

fw = g

[
1 + C3

w3

gC + C6
w3

]16
(6.10a)

g = r + Cw2(r
6 − r) (6.10b)
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r =
νt

ST k̃2d2
(6.10c)

Reference values of the eight model constants Cb1, Cb2, σν , Cv1, Cw1, Cw2, Cw3, k̃ are
provided in [71] andpreloaded into Fluent. Themodel, designed specifically for aerospace
applications, has shown to provide good results for wall-bounded flows and adverse
pressure gradients boundary layers.

6.2 Test case validation

The calibration of the CFD settings was performed in order to obtain a result as close
as possible to an experimental test case, chosen to validate the numerical simulation.
The test case was a general aviation airfoil section, developed by NASA and described
in [49]. In a first step, the grid influence was evaluated, changing the element density
and the structured BL grid, until a good agreement with experimental data has been
achieved. The final hybrid O-grid employed, already shown in Figure 6.1, had about
60000 cells. Simulations were run to compute the lift coefficient variation with the angle
of attack, the Lift-Drag polar and the variation of the moment coefficient with the angle
of attack. Test conditions were a Reynolds number close to 6E06 with a Mach number
of 0.15, 0.20 and 0.28. The comparison of numerical and experimental data over this
range of Mach number allowed for a better assessment of the validity of the models
embedded in the simulation. For the sake of brevity, only one set of validation results
is here reported in following Figure 6.3 and Figure 6.4.

Figure 6.3: Cl − α validation results forM = 0.20, Re = 6.2× 106

The process of validation is, in general, time consuming, requiring an iterative pro-
cedure in which many variables can be chosen, starting from the grid, the turbulence
model and its coefficients and coming to the discretization scheme and advectionmethod.
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Figure 6.4: Lift-Drag polar validation results forM = 0.20, Re = 6.2× 106

For this work, many grids were tested, improving by time regions of themeshwhich ap-
peared still too coarse to capture the fluid gradients. The evaluation of the grid perfor-
mance was carried out by computing the entire polar for Cl, Cd and Cm and comparing
to the experimental data available. Once the trend of those data proved to be replicated
correctly, the target was trying to get as close as possible to the experimental charts. In
fact, though there was an accordance between the trends, as it is visible in the figures,
in particular for the drag the CFD plot was still biased with respect to the experimental
one, while for the coefficient of moment at low angles of attack the graphs were quite
different. In order to fill this gap, a huge effort was required, by refining the mesh,
changing turbulence closure, using different advection schemes and discretization or-
der. Notwithstanding this, a gap still persisted between the Lift-Drag polars and also
for a portion of the AoA-Moment polar, as explained later. Partial results obtained are
not reported in this text, but qualitatively speaking, the convergence to the actual out-
comes was rapid, while in many attempts of getting closer to the experimental data only
a slight change was obtained.

In order to deal also with a quantitative index, once individuated a good mesh a
successive refinement was performed, calculating the three polars each time and com-
puting the RMS error between the CFD chart and the experimental one:

RMSerror =
1

NoP

NoP∑
i=1

√
(yCFD − yExp)2

where yCFD is the data obtained by the CFD simulation, while yExp is the experimental
data. To compare the values in the same abscissa, since the starting datawere sampled, a
cubic spline interpolation was used. The trends in the RMS errors versus the number of
elements is illustrated in Figure 6.5. The boundary conditions and turbulencemodelling
were the same for all the cases. The number of elements changed from about 30’000 to
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120’000, refining each time the mesh around the airfoil and reducing the growth factor
starting from their side. No remarkable variation appeared; specifically, the AoA-Lift
residuals and the Lift-Drag residuals showed an opposite behaviour, with themaximum
of the first associated with a minimum of the second. For the AoA-Moment errors,
instead, the variation was negligible and the curve was very flat. In examining this
charts, let remember that they still have an indicative value, since the absolute RMS
error is by itself not meaningful for comparison. Nevertheless, such a report can help
choosing the best grid overall, considering the opposite effect of the refinement on all
the quantities enquired.

Figure 6.5: Variation of RMS residuals with the number of grid elements, computed for
M = 0.20, Re = 6.2× 106

Moreover, since the aim of this analysis stage was the practical implementation of
the grid model for the optimisation process, a variable taken into account was the time
of convergence. The absence of remarkable modifications of the polars at increasing
the number of cells suggested to pick the grid with a number of elements of 40’000,
providing practically the same outcomes of the other finer meshes, in order to speed up
the expensive optimisation session.

The analysis dealt also with changing the turbulence model. For this 2D case the
aforementioned Spalart-Allmaras model appeared a good candidate and simulations
were performed using it and the k − ω SST , which is also, generally speaking, well
behaving even for more complex flows. The tests revealed a better performance of the
Spalart-Allmaras, which was then chosen and employed, also for the results reported
above, about the influence of the grid resolution.

Furthermore, different flow solver strategies, schemes anddiscretizationswere tested.
It was found that convergence speed could be increased with non-segregated solver,
where all the equations are solved in a coupled way. The next Table 6.1 summarizes the
characteristics of the final hybrid grid chosen and the settings of the CFD solver Fluent.
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Cells 40194

Boundary Conditions Far-field (Mach, Pressure, Velocity)

Boundary Layer Rows 50 with growth ratio < 1.12

Turbulence Model Spalart-Allmaras

Pressure-Velocity Coupling Non-segregated solver

Gradient approximation Third order MUSCL

Table 6.1: Summary of CFD settings for the Spalart-Allmaras model

6.3 Comparison between CFD and XFOIL results

As previously stated, the employment of a panel method is preferable for its incom-
parably smaller computational time with respect to the CFD. The problem treated deals
with a subsonic flow around a slender aerofoil, at moderate angle of attack. Since no
extended stall was developed, the viscid-inviscid formulation of XFOIL could be able
to predict the velocity and pressure field with an acceptable accuracy. Indeed, from
Figure 6.6 it is visible a slight difference between CFD with SA model and XFOIL Cl-α
curve. Figure 6.7, instead, shows a similar trend for the CFD and XFOIL Drag-Lift polar.
Both curves were shifted with respect to the experimental one, positively for the CFD
and negatively for XFOIL. The latter appeared able to capture better the experimental
trend in the laminar bucket. As regards the moment coefficient, it is known that it rep-
resentation by a numerical code is even more difficult than that of the drag coefficient.
The actual grid employed was the best result obtained for all the three polars. Specifi-
cally, for the Cm−α graph in Figure 6.8 a very good agreement with experimental data
was achieved for α = 10 − 18 [deg] by the SA model, while for lower angles of attack
XFOIL seemed to better predict experimental data. These strange deviation of the CFD
for lower angles resulted low sensitive to the grid. A further effort was put in trying to
improve the CFD prediction, firstly by changing the mesh, but unfortunately the dis-
cordance appeared to be little responsive to the mesh kind itself. Finer discretizations
with a more filled boundary layer produced quite the same result in this regime, but
exhibited an increased deviation for higher angles, where the grid presented, instead,
worked quite well. Given that, the actual grid was the one which proved to lead to the
best result overall, in a Pareto fashion, for the combination of models and boundary
conditions reported in Table 6.1.

As a further check on the validity of the tools, also a simulation of a local distribution
was performed. Specifically, since among the experimental data also some pressure co-
efficients distribution were available, this parameter was computed by both the solvers
and the results are illustrated in Figure 6.9. A good agreement with the test points was
reached in both the cases, with the CFD giving a best result for the pressure side and
the suction side up to 0.15 c. From this point on, XFOIL had a slightly better agreement.
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Figure 6.6: Cl − α validation results forM = 0.20, Re = 6.2× 106

Figure 6.7: Cd − Cl polar validation results forM = 0.20, Re = 6.2× 106
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Figure 6.8: Cm − α validation results forM = 0.20, Re = 6.2× 106

Figure 6.9: Cp validation results for for CFD and XFOIL at M = 0.15, Re = 6.3 × 106,
α = 4.17 [deg]
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Potential flow solvers like XFOIL appears an efficient and inexpensive tool useful
for aerodynamic forces calculation and also transition analysis, but provides valid re-
sults only if the basic hypothesis allowing linearisation are satisfied. Due to the mod-
erate angle of attack and the variety of shapes tested in the current optimisation caus-
ing potentially non linear representable effects, such us extended stall and separation,
a CFD finite-volume based calculation was preferable. Notwithstanding some models
contained in the code are quite arbitrary, e.g. in turbulence closure, various phenomena
can be represented with a moderate level of uncertainty and if the code is validated us-
ing experimental data, the results produced can be an acceptable approximation of the
physics involved.

The slight difference between the two approaches shown for the test case suggested
the possibility of exploiting the speed of XFOIL in the first phase of the optimisation loop
set-up, when many runs were necessary to check the robustness of the loop and tune
the optimiser. This allowed also to inspect the design space and check the influence of
the constraints in the final result, in order to avoid non-linear constraints too strict or not
consistent. In a second phase, when the optimisation framework appeared robust and
efficient, the CFDwas used in place of XFOIL for the aerodynamic indexes computation.

The outcome from this second phase showed an unexpected difference between the
results produced by XFOIL and those of the CFD. This will be discussed in details in 7.6.
As a consequence of that discordance, several further attempts were made in changing
the CFD settings and verify the accuracy of the predictions, with respect to the exper-
imental data. The next section reports the activity performed for this aim, which was
carried out after comparing the optimised shape for a Single Objective Optimisation
Problem (SOOP) obtained with both XFOIL and Fluent, and it is here reported in conti-
nuity with the topic of the chapter.

6.4 Further validation activity

The lack of accordance between the CFD and XFOIL in producing optimised solu-
tions for a SOOP at DP1, notwithstanding the similar predictions for the baseline ge-
ometry, and the presence of a gap for the CFD data with respect to the experimental
ones suggested the opportunity to further push on the validation, by employing dif-
ferent strategies. In the previous phase a wide exploration of the possibilities had been
already performed, testingmany kinds of gridswith different levels of refinement, vary-
ing the discretization order, the advection scheme and checking most promising turbu-
lence models, the Spalart-Allmaras (SA) and the κ− ω SST .

Since a gap was still persisting and possibly affecting the 2-D optimisation results,
the process was continued, taking into consideration the use of structured grids. These
meshes are known to behave well, since the orientation of the elements is more regular
and controlled and the user can handle the grid generation by setting in a very precise
way the node distribution. An example of O-shaped structured grid is depicted in Fig-
ure 6.10. It is visible the regularity of the mesh, as well the presence of local refinements
in the wake region and in some parts of the airfoil, in order to keep the orthogonality of
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the elements detaching from the walls. Also in this case, the cells number was varied
from 43920 to 360220. The results in terms of adherence to the experimental data, in-
stead, showed no remarkable variation with respect to the hybrid mesh, employing the
same boundary conditions and models. The RMS residuals were always dominated by
those reported in Figure 6.5 for hybridmeshes. This datum indicated from one point the
goodness of the grid produced in the first validation process, which appeared to be the
best overall as regards the accordance obtained and the numerical behaviour. Actually,
structured grids suffered from difficult convergence at high angles of attack, where the
layers are no more orthogonal to the stream direction.

(a) Structured grid overview (b) Details of the structured grid around the
aerofoil

Figure 6.10: Details of a structured grid

From the other point, having excluded a grid issue, the influence of the turbulence
model was checked in a final attempt, employing not only the Spalart-Allmaras and
the κ− ω SST , the former behaving better also for structured grids, but also transition
models, accounting for the passage from laminar to turbulent boundary layer. The good
behaviour of XFOIL can be, in fact, associated with this capability, lacking inmost of the
common used turbulence models which consider the turbulence already developed at
the inlet.

6.4.1 Transition prediction

Transition from laminar to turbulent boundary layer is a quite complex research
field, making use of theoretical backgrounds coupledwith empirical correlations to pre-
dict the development of the boundary layer and the transition onset. The topic has been
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widely studied from the beginning of the modern aerodynamics, but it is still an in-
triguing issue, getting importance as the development of laminar flow airfoil for both
external aerodynamics and turbomachinery is spreading out. An overview of the lami-
nar to turbulence transition may possibly require a whole thesis and of course this goes
beyond the scope of the present work. A brief report of the phenomenological aspects of
the transitionwill be here presented, in order to properly deal with themodels available
in ANSYS Fluent.

Transition phenomenology

The transition itself is an instability phenomenon, inwhich an initially laminar bound-
ary layer evolves through a turbulent condition, because of some external forcing caus-
ing the flow field to jump to a different behaviour. There are many reasons why, from
a physical point of view, a laminar flow cannot be any more and a turbulent transition
occurs.

The first studied transition is the so-called natural transition, e.g. observed in the
classical example of the flat plate in a zero pressure gradient flow. The early research
was based on inviscid stability theory, suggesting that a boundary layer becomes un-
stable in presence of a flexural point in the velocity profile. Indeed, a laminar bound-
ary layer is proved to undergo transition because of the presence of viscous instability
waves, also referred to as Tollmien-Schlichting waves. When the freestream turbulence
level is low ( <1%) instability occurs beyond a critical Reynolds number, at which viscos-
ity destabilizes the waves and they start growing very slowly. The phenomenon evolves
very gradually, such that it can be completed also 20 times farther downstream the point
where initially transition developed. When the waves become non-linear and an invis-
cid mechanism has come into play, turbulence spots are born and they enlarge until
eventually coalescing into a turbulent boundary layer. A schematic of the natural tran-
sition process is shown in Figure 6.11. Even though this first kind of phenomenon sets
spontaneously, as a consequence of the propagation of the flow downstream from the
leading edge, it is still rather complex.

For the case of a swept wing, Tollmien-Schlichting waves are not the only source
of disturbances that can cause transition. When large sweep angles are present a 3D
boundary layer develops near the wall, having a significant component in the sweep
direction. This is referred to as cross-flow instability, which can cause transition to oc-
cur much earlier than would otherwise be the case of a pure Tollmien-Schlichting wave
growth.

At higher freestream turbulence levels (>1%), the first and possibly the further stages
of the natural transition are bypassed, in away that turbulent spots are producedwithin
the boundary layer by the influence of the freestream disturbances. This case is known
as the by-pass transition, which can actually occur also for turbulence injection into the
boundary layer (as in cooling holes for turbine blades) or in presence of roughwalls. The
instability arises when the skin friction deviates from the laminar value and turbulent
spots appear. Upstream, the fluctuations already present in the freestream are though
to cause pressure oscillations, inducing laminar fluctuations that grow similarly to T-S
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Figure 6.11: Scheme of the natural transition phenomenon over a flat plate

waves and eventually lead to the formation of spots.
Another kind of transition is referred to as the separation-induced and occurs when

a laminar boundary layer separates. In this situation, transition may occur in the shear
layer of the separated flow as a consequence of the inviscid instability mechanism. The
enhanced mixing cause by turbulence may also induce the flow to reattach, forming a
laminar-separation/ turbulent-reattachment bubble on the surface. Separation-induced
transition happens behind boundary layer trip wires or in presence of strong adverse
pressure gradients. The bubble length depends on the transition process within the
shear layer and may involve all of the stages listed for natural transition. The freestream
turbulence level plays a large role in determining the length of the separation bubble.
Traditionally, separation bubbles have been classified as long or short, based on their
effect on the pressure distribution around an airfoil. Short bubbles reattach shortly af-
ter separation and only have a local effect on the pressure distribution. Long bubbles
can completely alter the pressure distribution around an airfoil. Small changes in the
Reynolds number can have a huge impact on the length of a bubble, thus complicating
the already challenging prediction of their size. Separation induced transition can also
occur around the leading edge of an airfoil, if the leading edge radius is small enough.
The size of the leading edge separation bubble is a strong function of the freestream tur-
bulence intensity, the leading edge geometry, the angle of attack and to a lesser extent
the Reynolds number. The size of the leading edge, moreover, can alter the pressure dis-
tribution downstream, causing an adverse pressure gradient which is responsible for a
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lack of performance of many airfoils in off-design conditions.

Approaches for predicting transition

The important effects of laminar-turbulent transition is not included in most today’s
engineering CFD simulations. This is because of many reasons, the first of which is that
the phenomenon can arise in several ways, as previously described, and so modelling
does not offer the same wide spectrum of CFD-compatible model formulations, that
are currently available for turbulent flows. Furthermore, RANS equations do not lend
themselves to an easily description of transitional flows, where both linear and non-
linear effects are relevant, since Reynolds averaging filters the waves growth. Methods
based on linear stability, such us thewell-known enmethod by van Ingen [77] and Smith
and Gamberoni [68] are not compatible with general-purpose CFD codes. In fact, they
require an aprioristic knowledge of the geometry and the grid topology, involving in
addition numerous non-local operations that are difficult to implement in highly paral-
lelised solvers, such us computing integral boundary layer quantities or tracking along
streamlines.

The eN method represents, anyway, a widespread tool used for years in engineering
to predict the transition with a good confidence. It is based on the local linear stabil-
ity theory and the assumption of a parallel flow, in order to calculate the growth of the
amplitude of the perturbations from the neutral point of the boundary layer to the tran-
sition location. The solution requires three steps. The first step is to calculate the laminar
velocity and temperature profiles along the walls. Ths second step consists in comput-
ing the local growth rates of the unstable waves for each profile. Finally, in the third
step these local growth ratio are integrated for each streamline in order to determine
the N factor. Once the disturbance amplitude ratio eN exceeds the critical factor N the
transition is assumed to develop. For isolated airfoils the method has shown very good
agreement with experimental data, and it has been shown a certain accuracy also for
suction boundary layers [78]. The main problem with it is that the N factor represents
the amplification factor of an initial unknown amplitude in the boundary layer, related
to the external environment through a generally unknown interaction. For this reason,
N is not universal and must be determined from wind tunnel calibration. The method
is thus semi-empirical, which is very frequent when dealing with transitional flows.

Some attempts have been made to couple empirical correlations with the RANS de-
composition, using the Lagrangian approach to obtain local values of the interest quan-
tities and follow their evolution along the boundary layer. Notwithstanding the wide
effort in this area, similar strategies are based on structured grids and are available only
for certain geometries, while nowadays the CFD codes use an unstructured and parallel
approach, requiring a different solution.

Available models for general turbulence prediction in RANS are the Low-Reynolds
models, the Intermittency based models and the Laminar Kinetic Energy models [44].
The concept of intermittency has been derived by observing the oscillatory behaviour of
the flow in the transition region, where turbulent spots appear and convect downstream.
It is defined as the probability that a certain point is located inside the turbulent region
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or the fraction of time in which the boundary layer is turbulent and it is commonly
indicated by γ. Within this concept, two approaches are possible: so called Algebraic
intermittency models, for which the intermittency is propagated streamwise according
to some prescribed function, or intermittency transportmodels, using a transportmodel
to describe the evolution of this quantity. Whenever γ is invoked, the transition onset
location must be established via another model, typically an empirical correlation.

The algebraic intermittency is usually implemented by multiplying the eddy viscos-
ity by the intermittency itself. Upstream of transition γ is zero, so is the eddy viscosity
and the boundary layer is laminar. Once the transition onset occurs, the intermittency
is slowly increased from zero to one, until the transition is completed. Other models
base the intermittency on the ratio of the local boundary layer momentum thickness θ∗
Reynolds number Reθ to the starting and ending transition Reynolds number, derived
e.g via empirical correlations.

Another approach relies on a transport equation for γ, where the source terms are
modelled to mimic the behaviour of some algebraic equations. In this way the process
is modelled also across the boundary layer, having more chance to predict a realistic
transition. Such a strategy is used in the γ −Reθ model by Menter and Langtry [50].

So called Low-Re turbulence models, instead, employ damping functions that are
designed to predict the viscous sublayer behaviour and rely on the diffusion of turbu-
lence from freestream to the boundary layer and on the interaction of the former with
the model source terms.

Finally, there are the aforementioned Laminar Kinetic Energy Transport models,
based on the idea of modelling the laminar fluctuations all along the boundary layer
evolution. For example, the transition can occur when the laminar fluctuations reach a
certain level. Using a locally formulated transport equation for the laminar kinetic en-
ergy, representing the amplitude of non-turbulent streamwise fluctuations in the pre-
transitional boundary layer, and coupling this laminar kinetic energy equation to a tur-
bulent kinetic energy (κ) and a turbulent eddy frequency (ω) equation, it is possible to
predict the onset of the transition, without any intervention by the user and relying only
on local variables. Such an approach is employed in the k−kl−ω Transition byWalters
and Cokljat [36].

Fluent models for transitional flows

In ANSYS Fluent, the available transition models are the so called k− kl−ω Transi-
tion by Walters and Cokljat, the Transition SST or γ − Reθ by Langtry and Menter, and
the γ transition model. Each of the above models is based on different formulations
to describe the turbulent field and how it affects the internal solution. For example,
the first and the third are three-equation models, while the second is a four-equations
one. All of them rely on the k − ω interpretation of the RANS equation, with the Shear
Stress Transport switching between κ−ω and κ−epsilon for the near-wall and far-field,
respectively.

k − kl − ω Transition model by Walters and Cokljat [36] is a three-equation model,
based on the κ − ω framework and invoking a further transport equation to predict
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the magnitude of low-frequency velocity fluctuations in the pre-transitional boundary,
that have been identified as the precursors to transition. The transition process itself is
represented by an energy transfer from the laminar kinetic energy κL to the turbulent
kinetic energy κ. Conceptually, the latter is assumed to represent the magnitude of
the fluctuations that display the characteristics of fully turbulent flow, such as strong
three-dimensionality, multiple length and time-scales, energy cascading and significant
viscous dissipation. The former, instead, accounts for the low-frequency fluctuations
promoting the transition upstream its onset. The initiation of the transition process in
the model is based on local single-point flow conditions.

The Transition SST or γ − Reθ by Langtry and Menter [50] is a four equation model,
in which a transport equation for the intermittency and for the momentum thickness
Reynolds number are coupled with the κ − ω framework. The intermittency is used to
turn on the production term of the turbulent kinetic energy, downstream of the transi-
tion point in the boundary layer. This differs from the typical usage of intermittency,
where it is often used to modify the eddy viscosity. The authors argue that, from a
modeling standpoint, that approach has the advantage of capturing the effect of large
free-stream turbulence levels on laminar boundary layers and the related increase in the
laminar skin friction and heat transfer. The fourth transport equation for Reθ is neces-
sary to capture the non-local influence of the turbulent intensity, which changes due to
the decay of the turbulent kinetic energy in the freestream, as well as in changes in the
freestream velocity outside the boundary layer. This additional equation is an essential
part of the model, in that it links the empirical correlation to the onset criteria in the in-
termittency equation This additional transport equation is an essential part of themodel
as it ties the empirical correlation to the onset criteria in the intermittency equation, giv-
ing more chance to incorporate several formulations for different boundary conditions,
in order to obtain a general purpose and even customizable tool. The coupling with the
κ − ω SST is performed by modifying the production and destruction terms of the κ
equation of the original model.

The γ transition model is a proprietary formulation of ANSYS, representing a pos-
sible enhancement of the the γ−Reθ. Unlike the latter, it uses only a transport equation
for γ, avoiding the need for a fourth equation, reducing the computational effort, pro-
viding a capability for cross-flow instability. It is again a strictly local variables based
model, in which the source terms for the intermittency equation are based on empirical
correlations to trigger the transition onset.

6.5 Comparison of results for various turbulence models

After briefly introducing the intriguing and wide issue of transition, in this sec-
tion the results obtained employing different turbulence models embedding transition
prediction are presented, comparing them to those derived using more standard fully
turbulent models, like Spalart-Allmaras and κ − ω. As previously explained, in the
first stage of the validation activity a study on the mesh sensitivity and on the turbu-
lence modelling suggested that the Spalart-Allmaras turbulence model solved in an hy-
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brid mesh, with a structured boundary layer and an unstructured external domain, can
provide the best outcome overall, compared to other solutions employing structured
meshes or κ − ω/κ − ε formulations. Despite the acceptable level of accuracy between
experimental data and predicted ones, a very different optimised individual was found
by the optimiser for a SOOP, minimising the drag coefficient at an angle of attack of 15
[deg], using XFOIL, which enables transition prediction via eN model, and fully tur-
bulent CFD. The detailed description of this activity is documented in chapter 7. As a
consequence of such a discordance, the validation process for the CFD was continued,
by examining different turbulence closures, able to deal with transitional flows. It is
then interesting to compare the predictions of all the models tested, to see if it is possi-
ble to fill the gap between CFD data and the experimental data, present in Figure 6.3,
Figure 6.4, Figure 6.8. All the plots were derived using the same hybrid grid, whose
details are in Figure 6.1.

Figure 6.12: Cl − α polar comparison between various turbulence models, computed at
M = 0.20, Re = 6.2× 106

Figures 6.12, 6.13, 6.14 illustrate the polars computed with several models.
The Lift versus the angle of attack is depicted in Figure 6.12. It is immediately notice-

able howXFOIL and the κ−ω SST overpredicts and underpredicts the lift, respectively.
For the other models, the points were closer and the difference can be appreciated in the
zoomed figure, for α = 10 ÷ 18 [deg]. The Transition SST or γ − Reθ was closer to the
experimental Cl, except at 18 [deg], where Spalart-Allmaras behaves better. A wider
gap instead was present for the κ− κl − ω.

The Lift-Drag polar is shown in Figure 6.13. Here a more various behaviour can be
observed among the models. In general, it was not found a formulation able to capture
with excellent accuracy the experimental chart over the whole range of angles of attack.
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Figure 6.13: Lift-Drag polar comparison between various turbulence models, computed
atM = 0.20, Re = 6.2× 106

Figure 6.14: Cm − α polar comparison between various turbulence models, computed
atM = 0.20, Re = 6.2× 106

67



The Transition κ − κl was very good between -4 and 4 [deg], but lost accordance for
higher α. The Menter’s Transition SST provided a better fidelity for α = 4 ÷ 10 [deg],
while near the maximum lift condition, occurring at 18 [deg], all the models tended to
overpredict the drag, except for XFOIL. It is worth remarking how transition models
were all able to capture the laminar bucket, where the drag shows a little dependency
by the lift coefficient, which was not true for fully turbulent formulations.

An increased level of difficulty is dwelling in predicting themoment coefficient. Par-
ticularly, it resulted easier to match the experimental chart at higher angles of attack,
where the Cm versus α relationship is almost linear, as visible in Figure 6.14. Here, SA
confirmed to behave very good, and such was the Transition SST. For the other models,
especially for the standard SST, the accuracy was lower. Instead, for a zero incidence
condition XFOIL and the κ− κl behaved better.

The comparison of all the models tested led to some synthetic conclusions:

• No one model is able to provide an optimal accuracy over the entire extent of the
charts;

• The lift coefficient is well captured by all the models, with the Transition SST hav-
ing a better match and XFOIL and κ− ωSST a worse;

• The drag coefficient can be correctly predicted, by choosing the appropriatemodel
depending on the boundary conditions (AoA);

• The moment coefficient is captured with better accuracy at high angles of attack,
particularly by SA and Transition SST;

• The standard κ− ω SST performs worse, with respect ot the other models;

• The Transition SST and the Transition κ− κl are the most promising models.

On the basis of these observations, it was further investigated the γ − Reθ model,
which appeared to be more accurate at higher angles of attack, with which the optimi-
sation should deal. Specifically, the influence of the grid size and type and the boundary
conditions was assessed, in order to find the best configuration to employ in an optimi-
sation loop. Some of the outcomes are reported in Figure 6.15, Figure 6.16, Figure 6.17;
the same considerations as before can be made here, with none of the meshes able to
guarantee a full replication of the charts. Furthermore, the response of the model to a
variation in the cell size and numberwas different in different portions of the polars, this
resulting in the choice of a range to be better captured, penalising the prediction out-
side that range. Again, since the interest was focused toward high incidence angles, the
final choice was the mesh named ’Hyb-finer’, with about 60’000 elements. For details of
this mesh, refer to Figure 6.1 and Figure 6.2, since there is no remarkable difference, ex-
cept for a slightly denser distribution of points along the profile sides. Structured grids
showed a worse accuracy at an higher computational cost and so were discarded.

The boundary conditions employed for this second model are summarized in Table
6.2
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Cells 6E+04

Boundary Conditions Far-field (Mach, Pressure, Velocity)

Inlet turbulence quantities γ = 0.5, Intensity=0.5%, µ/µt = 1

Boundary Layer Rows 50 with growth ratio < 1.11

Turbulence Model Transition SST

Pressure-Velocity Coupling Non-segregated solver

Gradient approximation Second Order Upwind

Table 6.2: Summary of CFD settings for the Transition SST model

Figure 6.15: Cl−α polar comparison for different meshes, employing the γ−Reθ model,
computed atM = 0.20, Re = 6.2× 106
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Figure 6.16: Lift-Drag polar comparison for different meshes, employing the γ − Reθ
model, computed atM = 0.20, Re = 6.2× 106

Figure 6.17: Cm−α polar comparison for differentmeshes, employing the γ−Reθmodel,
computed atM = 0.20, Re = 6.2× 106
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Chapter 7

Two-dimensional Optimisation of a
Morphing Leading Edge Airfoil

In a qualitative way the optimisation procedure consists in a series of operations al-
lowing to change a configuration in order to attain a desired performance, bound to the
respect of some kind of constraints. In engineering application the procedure is typi-
cally recursive, since some explicit models of the problem are missing and a straightfor-
ward formalisation is not available. The procedure is then configured as a loop, invoked
several times, within which are present various “subsystems”, each one with a specific
function. The optimisation properly said is a part of this loop and is a mathematical
problem, whose formalisation will be given later. Translating an operative challenge
into a mathematical model is a necessary step for the optimisation and its result will be
obviously greatly affected by the hypothesis and approximations embedded in them.
High accuracy models can result in impracticably expensive computational resources
and a balanced formulation with a moderate number of assumptions and theories vali-
dated for the case in exam is always desirable.

7.1 Mathematical formulation of the optimisation problem

A general constrained multi-objective optimisation problem (MOOP) consists in:

minimize fi(x), i = 1, ..., n, x ∈ Ω

such that: Gj(x) = 0, j = 1, .., l

Hk(x) ≤ 0, k = 1, ...,m

where:

• x = (x1, ..., xn) is the vector of the decision variables;

• fi : Ω ⊆ Rn → R is the i-th objective (or fitness) function;

• Gj(x) is the j-th equality constraint function;
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• Hk(x) is the k-th inequality constraint function;

If i = 1 the problem is single objective. Note that looking for the minimum of f is
not restrictive, since each maximisation problem can turn into a minimisation one by
inverting the objective.

7.2 Optimisation algorithm

A variety of optimisation strategies are available in literature to solve the minimiza-
tion problem. The choice depends upon various aspects, in primis the level of knowledge
of the objective function and the fitness landscape. In the problem faced neither the re-
lationship between the decision variables and the objectives is known with an explicit
mathematical formulation, nor the feasible multidimensional region, where local min-
ima are likely to be present. Furthermore, non-linearity is present both in the objective
function, due to aerodynamic effects such us stall and separation, and in the constraints,
including geometrical and structural non linear quantities e.g. curvature. These factors
complicate the use of gradient-basedmethods and suggest the employment of a stochas-
tic search of the design space.

7.2.1 Genetic algorithms

Genetic algorithms (GA) are direct, parallel, stochastic methods for global search
and optimization, which imitate the evolution of the living beings. Unlike other meth-
ods, GAs treat a set of candidate solutions, forming a so called population. Following
bio-inspired evolution mechanism, the population is evolved many times until a con-
vergence criterion is reached. A brief summary of terminology used is here reported.

• gene: a representation of a scalar decision variable according to an encoding scheme
(e.g binary);

• chromosome: an encoding of a vector in the domain Ω consisting in a set of genes
and individuating a possible solution; it is a synonym of individual;

• population: a set of N chromosomes which will be evolved by the algorithm;

• generation: each iteration of the algorithm involving the evolution of a population;

• selection: the process of individuating n best candidates among apopulation, whose
information will be transmitted to the next generation;

• recombination: a process where couples of chromosomes (parents) are recombined
to form new ones (children) whose genes are the same of the parents but in a
different order; AKA crossover;

• mutation: a random change of some genes of a chromosome, due to transcript error
in nature, used to promote diversity in the population.
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Ageneral scheme of a GA is shown in Figure 7.1. The process of selection, crossover and
mutation occurs sequentially and there are different methods to perform each of them.

Figure 7.1: A general scheme for GA

Selection

As stated above, selection is a process in which the individuals, which will create
the offspring population are chosen, according to some criterion. The selection has two
main purposes:

1. to choose the most perspective individuals, which will take part in the generation
of next population or will be directly copied (elitism);

2. to give an opportunity to individuals with comparatively bad value of the fitness
functions to take part in the creation of the next generation. This allows us to pre-
serve the global character of the search process and not to allow a single individual
to dominate the population, bringing to local extrema.

For a single objective optimisation, a commonmethod of selection is the Roulette-wheel.
Qualitatively, individuals with an higher performance index, directly related to their
fitness value, which indeed has to be minimised, are given a larger probability of being
selected on a spin of the roulette wheel. Couples of individuals are chosen to form
children in the next recombination process.
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In a multi-objective problem, the concept of a dominating solution and Pareto front
must be invoked.

Definition 7.1. A vector v is said to dominate a vector u if

∀i = 1, ..., n fi(v) ≤ fi(v) and ∃j = 1, ..., n | fi(v) < fi(v)

In other words, v is giving one smaller value than u for at least one fitness function.

Definition 7.2. A vector x ∈ Ω is a Pareto optimal solution if and only if there is no
vector y ∈ Ω for which (f1(y), ..., fn(y)) dominates (f1(x), ..., fn(x)).

The set of Pareto optimal solutions forms a Pareto front. In Figure 7.2 a Pareto front
for two objective functions f1 and f2 is indicated by P,while Y denotes the feasible design
space, f∗1 and f∗2 are the optimal solutions for the corresponding fitness function. In a
multi-objective optimisation the main goal is not only to find a set of solutions as close
as possible to the Pareto optimal front, but also to find a set of solutions as diverse as
possible, to cover the entire front.

Figure 7.2: An example of Pareto surface

When selecting individuals among a population, a non-domination criterion can
be applied. In non-dominated sorting methods the population is sorted according to
an ascending level of non-domination. Once the first set of non-dominated solution is
found, it receives a rank 1 and is temporarily discarded. The remaining individuals are
sorted again and the non-dominant receives a rank 2 and are discarded. The process is
repeated until all the individuals are ranked. At this point a further parameter can be
assigned before operating selection itself, to take into account the distance between the
individuals belonging to the same non-dominated set. The selection operator is then
applied basing on both the non-domination rank and the distance. Roulette wheel or
tournament selection are popular. The latter consists in choosing at random pairs of
individuals and extracting a random number R+ ∈ [0; 1]. if R+ > r, 0.5 < r ≤ 1 than
the fitter of the two is selected, otherwise the less fit. r is a user-set number.
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When elitism is employed, some of the fittest individuals within a population are
selected to propagate in the next generation. This ensures that the “good genes” are
conserved and the solution proceeds monotonically towards a minimum. The rate of
elite chromosomes preserved in the generation can be set according to some indexes,
but care must be taken to avoid excessive polarisation of the population by the fittest
members, which can lead to a local optimum.

Recombination

The recombination allows to propagate the generation and evolve towards the opti-
mum. As previously mentioned, recombination is known as crossover, because of the
mechanism of reproduction of a pair of chromosome. In a single point crossover, a po-
sition is chosen for the recombination, then two children are produced, by cutting their
parents chromosomes in the position assigned and reassembling the individuals using
pieces of each parent. In scattered crossover a random binary string of the same chro-
mosome length is generated and then a gene from the first chromosome is chosen if the
corresponding bit in the random string is one, or a gene from the second chromosome
is chosen if the bit is 0. This method is valid only in case of non linear constraints. In
elitist methods the fraction of the new generation, other than elite children, produced
by crossover can be selected.

Mutation

Mutation occurs in nature because of transcription errors in the chromosomes repli-
cation. Although it can lead to devastating effects and produce meaningless genes, it is
part of a survive strategy to promote diversity among a species. Similarly, in GA mu-
tation is used to avoid polarisation in a population and guarantee a wide search of the
design space. Mutation simply consists in a bit flip when a binary encoding is used. In
constrained problems other strategies are used to ensure not to violate the bounds and
the constraints.

7.2.2 NSGA-II algorithm

TheMulti-ObjectiveOptimisation Problem (MOOP) has been solved inMatlab using
the Optimisation Toolbox, which provides a quite wide range of optimisation tools, for
both Single Objective Optimisation Problems (SOOP) and MOOP, with linear or non-
linear constraints and bounds. In particular, for multi-objective optimisation the algo-
rithm named NSGA-II by Deb [21] . It is a non-dominated sorting elitist MO genetic
algorithm, whose principles and basic steps will be presented below.

NSGA-II uses the concept of non-dominated sorting previously reported, together
with an explicit diversity-preserving mechanism, based on crowding distance. First of
all, an offspring population Qt is created starting from the parent population Pt. Then
the two populations are combined together to form an Rt population of size 2N, being
N the population size of Pt andQt. A non dominated sorting is thus used to classify the
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entire population and the new one is formed picking individuals from different non-
dominated fronts, until N new elements are chosen. Individuals picked from the last
non-dominated front contributing to form the new population are chosen according to
a niching strategy, in order to select elements residing in the least crowded region of
that front. The synthetic NSGA-II procedure reported in [21] is:

Step 1 Combine parent and offspring populations and createRt = Pt∪Rt. Perform non-
dominated sorting and form fronts Fi, i = 1, 2, ...

Step 2 Set new population Pt+1 = ∅ and counter i = 0. While size(Pt+1)+size( Fi)<N, do
Pt+1 = Pt+1 ∪ Fi and i = i+ 1.

Step 3 Apply the crowding-sort procedure to the current front and include the most
widely spacedN-size( Fi) solutions byusing crowdingdistance values in the sorted
Fi to Pt+1.

Step 4 Create offspring population Qt+1 from Pt+1 by using the crowded tournament
selection, crossover and mutation operators.

The lastmentioned crowded tournament operator is a pair tournament operator accord-
ing to which the solution iwins over solution j if i has a better rank, ri < rj or, if ri = rj ,
if di > dj .

Crowding distance is a parameter used to measure the distance of the individuals in
the fitness space, in order to promote the ones less crowded in the offspring population,
and to ensure a wide coverage of the Pareto frontier. The crowding distance assignment
procedure consists in:

Step 1 Assign di = 0 for each solution i = 1, ...l in F.

Step 2 For each objective function fm, m = 1, ...,M , sort the set in descending order of
fm.

Step 3 For m = 1, ...,M , assign dIm1 = dIml = ∞ and for all other individuals with j =
2, ..., l − 1 assign:

dImj = dImj +
f I

m
j+1 − f I

m
j−1

fmax
m − fmin

m

with Imj denoting the index of the j-th member in the list sorted for fm.

The crowding distance, in other words, measures the perimeter of the cuboidwhose op-
posite vertices are the two nearest solutions to the considered one. An advantage of this
approach is that solutions compete each other also in terms of how dense they are in the
fitness space, thus diversity is explicitly considered when forming the offspring popu-
lation. Furthermore, elitism is ensured by non-dominated sorting of both parents and
offspring and inclusion of non-dominated fronts in the new set Pt+1. A disadvantage
underlined by its author dwells in the possibility of a convergence failure if the number
of non-dominated solutions in the first ranked set is less than the population size N.
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The current elitist algorithm is implemented in Matlab with a slightly different for-
mulation, which responds to the problem of controlling elitism. This problem is related
to an important issuewhich always appearswhen employingGAs, the concept of explo-
ration versus exploitation. In NSGA-II elite solutions are emphasized by the crowded
tournament selection operator andwhen individuals from the nest non-dominated front
are picked to form the offspring population. Although in this procedure diversity along
the Pareto frontier is promoted by the crowded tournament, lateral diversity, i.e. the di-
versity along non-dominated fronts of different ranks, is rapidly lost. In order to avoid
this, a strategy could be to limit the number of individuals belonging to the first non-
dominated front and try to distribute individuals through higher ranked fronts accord-
ing to a defined distribution. The number of individuals in the best non-dominated
front is a user-defined, problem dependent parameter called Pareto Fraction. Different
values of it give rise to different Pareto frontiers, There should exist a value for which
the final front converges as closest as possible to the true, seldom known, front.

For more issues related to NSGA-II the reader is referred to [21] for theoretical as-
pects and to Matlab Documentations or also [65] for the implementation procedure.

7.3 Design variables

As a consequence of the parametrisationmethod employed, 5 or 7 decision variables
(DV) were individuated. It has to be kept in mind how the CST method describes the
airfoil, in order to properly understand what are the degrees of freedom available (see
chapter 5). Each component shape function expresses its influence mostly over a region
near to the shape component peak; this is because of the graph of Bernstein polynomials.
Since for n = 10, the chosen degree of the representation, the first three component
shape functions, controlled by coefficientsA0,A1,A2, have their peakwithin the interval
[0;Cfs = 0.25] these are the available degrees of freedom, towhich the ordinate of the LE
ZLE can be added. Given that, being each side of the airfoil represented by an explicit
function, the total number of degrees of freedom is 7: [A0, A1, A2]up, [A0, A1, A2]low and
ZLE . By varying them it is possible to obtain a family of curves, all maintaining the
same shape in the fixed region, as depicted for example in Figure 5.7.

In order to obtain a constant length parametrisation, instead, as explained in sec-
tion 5.4, it is possible to reduce the number of degrees of freedom from 7 to 5, being A2

determined in order to keep the length of the airfoil section in the morphing region con-
stant, for both upper and lower side. In this way the total number of DV is 5: [A0, A1]up,
[A0, A1]low andZLE . Except for the first unconstrained run, in all other cases the constant
length parametrisation was employed and thus the DVs were those 5 here presented.

7.4 Single objective optimisation using XFOIL

A Single Objective Optimisation (SOO) was firstly performed to enquire the deci-
sion variables space, the fitness landscape, the effects of constraints and genetic oper-
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ators. Furthermore, an initial SOO allows to check the consistence and correctness of
the problem formulation and to verify how the optimiser set-up afflicts the results. For
these purposes, a first optimisationwith 7DVs (no constant length parametrisation)was
carried out referring to the reference 2D configuration at DP1 (see Table 4.1). XFOILwas
used to evaluate the fitness Cd. The optimiser was Matlab® ga function with default op-
tions and a population size of 50 individuals. Constraints were only bounds on DVs to
avoid very distorted shape slowing down the run. The outcome after 50 generations is
depicted in Figure 7.3 and the quantitative indexes are reported in following Table 7.1.
Despite such a shape variation results infeasible in reality, the runwas intended to check
the correct operation of all subsystems in the loop and give a sort of benchmark on the
best allowable result for DP1.

Figure 7.3: Result for a SOO for minimum Cd at DP1, with only bounds on the DVs as
constraints

Index Baseline Optimised Relative variation [%]

Cd 0.03122 0.01401 -55.12

Cl 1.9416 2.0967 7.99

L/D 62.191 149.657 140.64

Table 7.1: Comparison between baseline and optimised aerodynamic coefficients for the
first SOO at DP1
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7.4.1 Single objective optimisation at DP1

In a second step, constraints were added and constant length parametrisation em-
ployed. The problem can be formalized as:

minimize Cd(x), x ∈ Ω

such that: |Lm − L0|/L0 ≤ 1e− 6

|Am −A0|/A0 ≤ 0.05

Cl,b − Cl ≤ 0

(Cm,b − Cm)/Cm,b ≤ 0.1

Ω = x ∈ R5|Lb ≤ x ≤ Ub

Upper and lower bounds on DVs were set in order to avoid the generation of very
distorted shapes, with no possibility of respecting the constraints. A bounding box on
the morphing region was built and all the geometries exceeding that were simply dis-
carded and no aerodynamic computation performed. Finally, the maximum error be-
tween fixed control points, from which the shape should pass outside the morphing
region, was monitored and included as a constraint, with a tolerance of 5e-04. This con-
straint showed to be violated only for geometries infeasible also at least with respect to
the other geometrical constraints, so it did not appear to be strict and represents only a
further indication on how good the shape generated is.

Influence of the genetic operators

Within the above formulation, several runs were performed still using XFOIL in or-
der to investigate the presence of local optima and to evaluate the effect of different initial
populations and genetic operators. Convergence to the samepointwas observed regard-
less the choice of operators and initial population; this allows to state that a global opti-
mum is likely to exist and was reached by the optimisation. Qualitatively, it appeared a
clear trend in the search direction who led to the aforementioned point. The results of
this analysis stage indicated that some genetic operators can produce a rapid vanishing
of the population diversity, if the initial one was low. The initialization of the popula-
tion was carried out by firstly generating a randomly distributed set within the domain,
delimited only by bounds on DVs. After that, two approaches were followed: retaining
only points without constraints violation or using a wider tolerance for constraints in
order to have a wider initial population. The former approach, indeed, showed that the
feasible domain is quite tight, thus the absolute average distance between individuals
is low. The latter, instead, allows to have a wider distributed population including also
non-feasible individuals. Different initial populations can be obtained if the number of
the points produced by the above process, whatever the constraint tolerance is, is greater
than the population size. By this method, the influence of the starting set on the ulti-
mate result was analysed, showing a global dependency between initial diversity and
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genetic operators used. Though for certain combinations the diversity rapidly vanished,
leading to a complete dominance of few individuals, the same optimum was reached.

For example, the following Figure 7.4 illustrates the variation of the mean fitness
of the population for two different mutation operators, starting from the same initial
population, whose elements are all feasible and initial distance between them is low,
because of the tight feasible region individuated. All other operators and parameters
were the same. The Gaussian mutation operator adds a random number taken from
a Gaussian distribution with mean 0 to each entry of the parent vector. The standard
deviation of this distribution is determined by the parameters Scale and Shrink. The
former determines the standard deviation of the first population and was set as 1. The
second controls how the standard deviation evolves through the optimisation:

σk = (σk−1 − Shrink × k/Max Gen.)

and was set to be 0.9. TheUniformmutation operator is a two-step process. First, the al-
gorithm selects a fraction of the vector entries of an individual for mutation, where each
entry has a probabilityRate of beingmutated. In the second step, the algorithm replaces
each selected entry by a random number selected uniformly from the range for that en-
try. Rate was set to be 0.01. With this latter operator the mean rapidly converged to the
best fitness of the current population, meaning that diversity had vanished. It is worth-
while to underline that both operators are not recommended for problems with bounds
or linear constraints, because they can produce individuals violating them. Notwith-
standing, for the runs considered Uniform mutation showed not to be able to preserve
diversity, leading indeed to a faster stop in 42 generations because of the stall in fit-
ness variation over last 15 iterations. Gaussian Mutation kept an higher diversity and
stopping criteria was that maximum generations (50) was reached. The final point was,
indeed, almost the same regardless the choice of operators.

Figure 7.4: Evolution of mean fitness with different mutation operators

As regards the influence of the crossover operator, various tests were conducted and
it has been observed that for all other conditions kept fixed, different crossover operators
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gave almost the same trend in the evolution of mean and best fitness and average dis-
tance between individuals. Another parameter investigated was the crossover fraction,
the number of children in a population generated by crossover. The crossover fraction
used in those runs was 0.65:0.85. For higher crossover fractions the convergence was
more rapid in the first iterations, while proceeding slowly towards the minimum; for
lower crossover fraction convergence was more linear towards the same minimum, as
expected. This is reported in Figure 7.5. For all the three cases the initial populationwas
the same, with a wider tolerance on constraints violation and a good distance between
individuals. The crossover operator was the intermediate, according to which children
are created by taking a weighted average of the parents:

child = parent1 + rand× Ratio× (parent1− parent2)

rand is a random number between 0 and 1. If ratio is in the same range, children lies on
the line between the two parents, while if Ratio is greater than one the child lies on the
same line, but also outside the connecting segment. For the cases illustrated Ratio was
set to be 1.5. The mutation operator chosen was the Adaptative Feasible, which randomly
generates directions that are adaptive with respect to the last successful or unsuccessful
generation. The mutation chooses a direction and a step length that satisfies bounds
and linear constraints. Elite count, the number of elite children preserved through each
generation, was set to 2 and the population size was 50.

(a) Average distance between individuals
with different Crossover fractions

(b) Best Fitness evolution with different
Crossover fractions

Figure 7.5: Influence of crossover fraction

Even for these cases, the same optimum was reached regardless the configuration
adopted.

Best result for SOO at DP1 using XFOIL

After reporting some of the investigations performed in order to better understand
how the genetic operators influence the evolution for the particular case examined, here
it is presented the best result obtained. Again, it is recalled that practically all the runs
produced the same final point. Figure 7.6 depicts the baseline and the optimised airfoil
together with the calculated Cp distribution for the optimised profile, while Table 7.2
reports the variations in the aerodynamic coefficients.
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Figure 7.6: Optimised airfoil at DP1with XFOIL andCp distribution (dashed = baseline)

Index Baseline Optimised Relative variation [%]

Cd 0.03122 0.02530 -23.4

Cl 1.9416 2.0582 6.00

L/D 62.191 81.340 30.79

Table 7.2: Comparison between the aerodynamic coefficients of the baseline and opti-
mised airfoil with XFOIL at DP1
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As it can be noticed, the results for aerodynamic coefficients variations are less ac-
centuated than those of the first unconstrained optimisation, though still promising.

7.5 Multi-objective optimisation using XFOIL

After successfully testing the algorithm for a SO case, the NSGA-II was applied to
a multi-objective (multi-point) optimisation. In this phase too, thanks to the affordable
computational cost of XFOIL, various runs were performed with the aim of evaluating
the change in Pareto front with different settings. The first problem solved was:

minimize Cd(x)@DP1, x ∈ Ω

minimize Cd(x)@DP2, x ∈ Ω

such that: |Lm − L0|/L0 ≤ 1e− 6

|Am −A0|/A0 ≤ 0.05

Cl,b − Cl ≤ 0

(Cm,b − Cm)/Cm,b ≤ 0.1

Ω = x ∈ R5|Lb ≤ x ≤ Ub

It was a multi-point optimisation with the same objective of the SO case, minimised
for two different conditions (see Table 4.1). Two population sizes were used, 50 and
100 individuals, both pre-initialized with a random search to obtain points within the
feasible region. Another parameter investigated was the Pareto fraction and its effects
on the final frontier.

Figure 7.7 illustrates three different Pareto fronts calculated for three different Pareto
fractions. The mutation operator was the Adaptative Feasible, the crossover Intermedi-
ate with a Ratio of 1.5 and the population size 50. The Pareto Front slightly changed
among the cases, and an higher difference in few points was noticeable for the first case
with the lowest Pareto Fraction.

It is also interesting to plot how the design variables were spread through the Pareto
fronts. This is helpful in discovering if a correlation exist and to verify that the front is
thoroughly caught. Figure 7.8 shows in ordinate the value of the first objective function
and in abscissa the component of the DV vector. It appears a possible correlation for
A0up and A1up, with their values quite evenly distributed along the frontier forming a
curve. For A0low and A1low, points are collocated in a narrow region, approximatively
vertical; this is true particularly for A1low. The ordinate of the leading edge, instead,
shows a wider variation and points are scattered along the front.

As regards the influence of population size (PS), Figure 7.9 depicts fronts for a pop-
ulation of 50 and 100 individuals. The Pareto Fraction (PF) varies in order to compare
fronts with the same number of individuals. Here again, the major difference between
the two sets occurs at one edge. As a general statement, the highest the population size,
the better; in a practical approach, 50 individuals are quite many when the fitness eval-
uation is made through a CFD, also compared to the number of DVs. From the analysis
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Figure 7.7: Three Pareto Fronts for a different Pareto Fraction
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Figure 7.8: Spread of the DVs along the Pareto Fronts for three PF
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reported, similar results were obtained by keeping the same number of individuals in
the first non-dominated front. Obviously, for an higher PF the lateral diversity will be
lower, with an higher risk of stalling against a local Pareto solution. Since all the fronts
obtained are comparable, this occurrence appears improbable.

Figure 7.9: Pareto Fronts for different population sizes

A last observation on the graphs reported deals with the improvement brought by
the optimisation, with respect to the baseline configuration. The original point in the
fitness space is indicated as the baseline in the figures. The best improvement in the
Pareto solutions for the first objective is -15.99%, giving a variation of the same trend
of that of the single objective optimisation (refer to Table 7.2). For the second objective
at DP2 the best improvement in the Pareto optimal solutions is -11.68%. The shapes
corresponding to these points at the edges of the frontier are similar to that of Figure 7.6
and are omitted. Since at DP2 the angle of attack is low, the shape forwhich the objective
at this DP is the minimum shows a slight change compared to the baseline one, while
for the other edge solution, for which the objective at DP1 is the overall minimum, the
variation is more evident, due to the higher angle of attack.

7.5.1 Application of a MOOP to a practical case

The algorithmpreviously described and implemented into amulti-point bi-objective
optimisationwas applied also to a practical case, specifically the optimisation of an high-
lift system, based on both slats and flaps. The procedure followed is similar to that
described in [48], which was adapted to a morphing LE aerofoil without flaps. In the
paper, a multi-objective optimisation was used to increase the performance of a multi-
element high-lift system of a regional aircraft. In the case study, the qualitative target
of the procedure applied was the reduction of the time-to-climb in the second climb
segment for the take-off (TO) and the reduction of the fuel burn in the final approach
phase of the landing (LDG). According to certification issues and airworthiness, this
resulted into defining six design points (DP) and minimizing a two objective function,
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subject to some aerodynamic constraints.

Problem statement

The formal statement of the problem reported in the paper is:

F (x) =

{
FTO(x) = −

(
0.271√
Cl
− Cd

Cl
3/2

)
|@TO−DP1

FLDG(x) = Cd|@LDG−DP1

subject to: 

Cl|@TO−DP1 ≥ Cl,baseline|@TO−DP1

Cl|@TO−DP2 ≥ Cl,baseline|@TO−DP2

Cl|@LDG−DP1 ≥ Cl,baseline|@LDG−DP1

Cl|@LDG−DP2 ≥ Cl,baseline|@LDG−DP2

−Cm ≤ −1.15 Cm,baseline

with the additional off-design post-check condition:{
Cl|@TO−DP3 ≥ Cl,baseline|@TO−DP3

Cl|@LDG−DP3 ≥ Cl,baseline|@LDG−DP3

In order to replicate the above formulation with the morphing leading edge aerofoil
so far treated, some assumptions were made to identify the analogous design point in
this latter case. In the paper, the design points (DP) derived from the application of
some airworthiness requirements fixing the maximum velocities for climb and descent
phases and are the result of the reference aircraft considered and an experimental cam-
paign. For the purpose of this work, none of this data were available, so the DP were
chosen by comparing the polars of the multi-element airfoil and the morphing one and
proportionally scaling the angles of attack. This simplifying assumption, strictly valid
only if the polar would be perfect linear, appeared to be the only way of replicating the
procedure reported. After all, the application of the optimisation loop built so far to a
practical case was performed for the sake of testing whether the framework is able to
handle a quite complex problem, which can hold in a practical implementation.

Table 7.3 indicates the design points at which the aerodynamic computation have
been performed.

Results

Similarly to previous cases, different initial populations and Pareto fractions were
tested among the optimisation sessions. Specifically, two couple of sets of 50 and 100 in-
dividuals were used to seed the optimiser, which operated with a Pareto Fraction of 0.5
or 0.35, an Intermediate crossover and aGaussianmutation. Unlike in the aforementioned
bi-objective problem with only the drag coefficient as objective, in this case the conver-
gence resulted less straightforward and the Pareto fronts produced in each run showed
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Name Reynolds Mach AoA [deg]

TO-DP1 20E+06 0.17146 10.13

LDG-DP1 20E+06 0.17146 5.26

TO-DP2 20E+06 0.17146 15.15

LDG-DP2 20E+06 0.17146 14

TO-DP3 20E+06 0.17146 18.06

LDG-DP3 20E+06 0.17146 16

Table 7.3: Design Points considered in the MOOP

a certain variation, indicating a difficulty of the optimiser to reach the true frontier. A
report of four fronts is presented in Figure 7.10. The red front run for 100 generations,
while the others for 50. It can be noticed how the front moves toward the left hand-
side when increasing the PS and the generations, indicating that convergence was not
reachedwith the 50 generations sessions, forwhich the front is non-convex. This instead
is less evident for the red-marked run, which has been obtained after 100 generations:
the front shows a tiny region of accentuated non-convexity, which is likely to be due to
the need of a local refinement of the solution, still not occurring notwithstanding the
quite long session. As regards the influence of the Pareto fraction (PF), two values were
set, as indicated in the figure, with the light-blue marked run employing PF=0.35, while
the remaining PF=0.5. A lower value was checked to see if promoting lateral diversity
could accelerate the convergence through the frontier, since it was observed that the
initial random population was quite scattered over a disperse region of the objective
space, thus a certain number of iterations were needed to get close to the frontier and
start filling all the slots in the first rank. The result depicted in the figure shows a lit-
tle dependency of the final Pareto front on the PF, thus no particular improvement was
noticed.

Observing the position of the Pareto fronts with respect to the baseline point, indi-
cated in the same figure, it appears that the optimisation led mainly to a reduction of
the FLDG objective, which underwent a percent decreasing up to -11.61%, while the first
objective FTO reduced at least of -0.6057%, proving also in this case the ability of mor-
phing of mostly diminishing the drag coefficient, while bringing a little improvement in
the lift, at least for the geometry so considered so far.

Figure 7.11 shows the convergence history for the longest run of 100 generations. The
Pareto front got gradually populated in the first fifteen generations and was close to the
final one just before the half of the iterations. After that, many more iterations were
needed to locally refine the front and eliminate most of the concavities, thus indicating
a certain effort to reach a stable solution.

As regards the coverage of the Pareto in terms of decision variables spread, this is
depicted by Figure 7.12. A correlation is quite evident for the first DV (related to the LE
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Figure 7.10: Pareto Fronts for different population sizes

Figure 7.11: Convergence history for an optimisation run with PS=100 after 100 genera-
tions
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radius of the suction side) and possibly also for the third (related to the LE radius of the
pressure side), while for the other the points appear more scattered. Some lower dense
areas for x(1) and x(3) can be associated with local non converged areas in the fronts,
such us the one non convex. The plot of x(1) = A0up =

√
2RLE/chord vs FTO can

be well represented by a 3-rd order polynomial regression with a resulting regression
coefficient R2 = 0.9941. A similar trend has been noticed while plotting the scatter of
the DVs against the second objective FLDG.
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Figure 7.12: Decision variables scatter along the Pareto front for two sessions with
PS=100

A final comment on the outcomes produced must deal with the off-design post-
check conditions reported above. The satisfaction of these criteria was very partial for
the points in the final Pareto fronts, as illustrated in next Figure 7.13, where the frontier
are those of the third run (PS=100, PF=0.35, Generations=50) and of the fourth (PS=100,
PF=0.5, Generations=100), already discussed. As it can be seen, only a few points in
the fronts passed the post-check, evaluated at the end of the optimisation. Moreover,
the conditions are satisfied without a precise pattern: there is a region in which Pareto
solutions that passed the check are located, but there is no a continuity along the front
and some points are isolated. This result could suggest the need of including the post-
check conditions as additional constraints for this particular case, which is, actually, not
thoroughly comparable with the reference case we are trying to adapt to a morphing
design, since traditional high lift systems are much more efficient in improving lift than
this morphing architecture, whose main benefit seems to be mainly a drag reduction,
according to both multi-objective and single-objective optimisation performed so far.

Finally, two airfoils corresponding to the bounds of the post-check feasible solutions
Pareto front for the longest run are reported in Figure 7.14. The original airfoil is de-
picted in magenta. Optimised profiles shows an upward leading edge deflection and a
slightly different shape for the suction side, while the pressure side remains very similar
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Figure 7.13: Off-design post-check conditions attainment for points in two Pareto fronts

in the two cases, with a flexural point typical of all the optimised shapes so far produced,
mainly due to the constant arc length parameterization.

7.6 Single objective optimisation using CFD

After completing an analysis phase on both a single objective and a multi-objective
optimisation using XFOIL to compute the aerodynamic performance, the following task
to be performed was to repeat the optimisation embedding the CFD solver instead of
the previous panel based. This stage was carried out in two steps, using two different
models. Initially, a validated CFD model was available for the purpose and was based
on the combination of an hybrid grid, with a structured boundary layer and triangu-
lar elements in the external field, and the Spalart-Allmaras (SA) turbulence model. The
model was compared with the experimental data and with XFOIL when computing the
lift, drag and moment coefficients over a variety of boundary conditions. This first vali-
dation activity is described in Section 6.2. The comparison showed a better accordance
for the CFD in replicating the lift and themoment at high angles of attack, with a poorer
prediction of the drag for both the solvers. The calculated and experimental charts pre-
sented a gap which was quite constant, with an overall trend among them appearing
acceptable. On this basis, a single objective optimisation at DP1 was performed, firstly
employing the CFD model based on the Spalart-Allmaras. The outcome of this is pre-
sented below.

By observing the optimal solution produced, there is a remarkable difference with
that indicated by XFOIL and shown in Figure 7.6. Such a discrepancy suggested to go
further with the validation activity, by examining other grids, specifically structured
grids, and turbulence closures. A second model has been individuated, still based on a
hybrid grid but embedding the transition prediction, the Transition SST [44]. The val-
idation is proposed in Section 6.4. Below it is presented the solution obtained in this
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Figure 7.14: Aerofoils at the bounds of the Pareto front attaining the post-check condi-
tions

second run, showing a good agreement with that of XFOIL and proving that the tran-
sition prediction is responsible for the difference in the two optimised shapes, which is
very relevant despite such a discordance did not appear in both global and local valida-
tion for the two models.

7.6.1 Single objective optimisation based on the Spalart-Allmaras model

By exploiting the enquiry on the optimiser settings presented above, when XFOIL
was used to calculate the aerodynamic parameters, the single objective optimisation at
DP1 as beforewas solved employing Fluent and the Spalart-Allmarasmodel, with a pop-
ulation size of 20 individuals, evolved for 40 generations. The final point was reached
within the 32th generation and was kept until the end of the session. It is depicted in
Figure 7.15, compared to the baseline geometry. It can be noticed that the shape is quite
different from that of Figure 7.6, whichwas obtained by XFOIL. Specifically, while in the
previous case the LE was morphed upward, producing a thickening of the suction side
and a flexural point in the pressure side, in this case the shape is smoother and the LE
is deflected downward. The pressure side shows a little hump because of the constant
arc length.

Table 7.4 reports the improvements in aerodynamic indexes brought by the optimi-
sation usingCFD. The drag coefficient decreases of about 9%,while the overall efficiency
Lift/Drag improves of about 10%. Compare to the outcomes of Table 7.2, the variations
are lower. This aspect is treated in more details in the next section.

In Figure 7.16 the pressure coefficient distribution is depicted for the baseline and the
optimised shape. A lower suction peak occurs for the optimised airfoil and the pressure
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Figure 7.15: Baseline (red) and optimised airfoil with CFD and SA at DP1

Index Baseline Optimised Relative variation [%]

Cd 0.040029 0.036433 -8.98

Cl 1.88586 1.89545 0.51

L/D 47.112 52.026 10.43

Table 7.4: Comparison between baseline and CFD-SA optimised airfoil aerodynamic
coefficients at DP1

recovery in the upper side is more gradual in the morphed region, up to 0.25 c. The
pressure side shows no remarkable variation and the curves are overlapped.

The computed Mach number distribution for both the cases is depicted in Figure
7.17. The maximum Mach number is reached in the point where the Cp is minimum,
of course, and it is visible from the picture that the optimised shape has a smaller area
for the suction peak, corresponding to a smoother Mach number distribution. The flow
remains fully subsonic, since the undisturbed Mach number is 0.2. Compressibility ef-
fects are limited to the portions of highest speed and for this reason the contours of other
mechanical and thermodynamic quantities, such us velocitymagnitude, static pressure,
static temperature anddensity are qualitatively similar to those illustrated in Figure 7.17.

Comparison between XFOIL and CFD results

In order to try to understand the difference between XFOIL and the CFD, a simple
cross check on the best solutions produced in the SOOP by both the tools was made.
Table 7.5 presents the comparison between the best solution obtained by XOIL and cal-
culated also with the CFD. Table 7.6 presents the same comparison, considering the best
solution obtained by the CFD. In the first table, the major difference occurs for the drag
coefficient, motivating why the best geometry produced by XFOIL was discarded in the
optimisation employing the CFD: theCd in this second case is 65.86% higher than in the
former. This is to look for in the different approximations embedded in the two tools.
During the validation, the CFD showed an overestimation of the drag for the baseline
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Figure 7.16: Baseline and optimised pressure coefficient distribution for SOO at DP1
using CFD with SA

Figure 7.17: Contours of Mach number for the baseline (lhs) and the optimised (rhs)
airfoil for SOO at DP1 using CFD with SA
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geometry, with respect to the experimental data, while XFOIL showed an underestima-
tion. This happens also for the case presented in Table 7.5, but the difference is much
higher. It is not straightforward to establish which one is wrong in computing the Cd,
but according to validation process following this discrepancy, the different prediction
may be caused by the absence of a transition modelling for the Spalart-Allmaras.

Index XFOIL CFD Relative variation [%]

Cd 0.02530 0.041946 65.86

Cl 1.90165 1.90794 0.33

Cm -0.07629 -0.07736 -1.39

Table 7.5: Comparison between the best solution obtained by XFOIL, calculated also
with the CFD and SA model

The comparison between the solvers for the best solution obtained by the CFD is
reported in Table 7.6. Here the difference is less accentuated, but the discordance is
present also for the Cm. The high-fidelity CFD should be able, in principle, to properly
dealwith high angles of attack, involvingpartial separation of the flowand adverse pres-
sure gradients in the boundary layer, with an higher accuracy with respect to XFOIL.
The result for this second case in terms of variations in the aerodynamic indexes is more
similar to the trends emerging from the validation. The reasonwhy the optimisation us-
ing the CFD chooses the shape of Figure 7.15 and the optimisation using XFOIL prefers
that of Figure 7.6 is due to the lack of accordance in evaluating the drag in this latter
case, indicating a diverging behaviour between the tools. A point in favour of the CFD
solver, besides its more general validity for the less restrictive hypothesis, is that in liter-
ature the optimisation of morphing LE wings, under similar conditions, is reported to
lead to downward deflections of the LE, which appears intuitive for an angle of attack
as high as 15 deg.

Index XFOIL CFD Relative variation [%]

Cd 0.03237 0.036433 12.55

Cl 1.8810 1.89548 0.77

Cm -0.0874 -0.10164 -16.29

Table 7.6: Comparison between the best solution obtained by CFD with SA, calculated
also with XFOIL

Of course, being available the experimental data only for the baseline geometry, one
must rely on the validation uniquely for this case. Even though it was carried out over
a variety of Mach numbers and for the entire extent of the polar, as reported in 6.2, it
is not strictly sure that the model remains valid also for morphed shape. Given this
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discrepancy and the lack of a good match for the validation data, it was decided to
further push on it, firstly by employing full structured grids, which could have a chance
of better approximating the flow field, and on the other hand using turbulence models
accounting for transition prediction. The results of this second validation activity are
described in 6.4, while in the next section it is discussed the optimisation performed by
using the Transition SST model.

7.6.2 Single objective optimisation based on the Transition SST model

The second SOOP solved was equal to the previous one, except for the aerodynamic
model used, which was now based on the Transition SST or γ − Reθ model by Menter
and Langtry. A population of 20 individuals was evolved for 35 generation, leading to
the optimal solution depicted in Figure 7.18.

Figure 7.18: Baseline and optimised airfoil by CFD with γ − Reθ at DP1

It is here visible how the optimised airfoil is very similar to that produced by XFOIL
in Figure 7.6. The leading edge deflection is positive, with a little concavity in the pres-
sure side. The resulting Cp distribution is reported in Figure 7.19. A plateau appeared
in the suction side near the leading edge and then the pressure recovery occurs quicker
then the baseline geometry until 0.25 c. From that point on, even though the shape re-
mains the same, because no morphing is allowed, the effect propagates downstream,
bringing to a smoother acceleration between 0.4 and 0.8 c, in an area where the bound-
ary is thickening and there is also awide recirculation of the fluid, as visible in following
contours. For the pressure side, the difference in the pressure distribution is less evi-
dent, although the stagnation point moves a little downstream.

It is interesting to plot the Mach number contours for the two airfoils, computed
using the same CFDmodel, as shown in Figure 7.20. A larger area of highMach number
is visible near the leading edge of the optimised airfoil for the suction side, as inferable
by the pressure distribution. This area, anyway, covers a portion of the airfoil where the
boundary layer is thin and thus does not affects the drag in a relevant way. Instead, this
leads to an higher pressure andmore lift and the perturbation propagates downstream,
in a way that the detachment and recirculation near the trailing edge is confined to a
narrower region, resulting in a lower drag.

Finally, in order to visualise the recirculation near the trailing edge and the wake,
the contour for turbulent kinetic energy is illustrated in Figure 7.21. The recirculation
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Figure 7.19: Baseline and optimised pressure coefficient distribution for SOO at DP1
using CFD with γ − Reθ

Figure 7.20: Contours of Mach number for the baseline (lhs) and the optimised (rhs)
airfoil for SOO at DP1 using CFD with γ − Reθ
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is evident for the left hand side baseline profile, where the wake area is thick and a
local peak of k starts from the trailing edge at the pressure side. For the right hand side
optimal profile, the wake is thinner and its contours more defined. The peak is no more
present and k appears smoother, showing that the aerodynamic behaviour is actually
better.

Figure 7.21: Contours of turbulent kinetic energy k for the baseline (lhs) and the opti-
mised (rhs) airfoil for SOO at DP1 using CFD with γ − Reθ

The variation in the aerodynamic indexes for the two profiles is reported in Table
7.7. The drag coefficient, the objective of the optimisation, undergoes the major change,
with a decreasing of 17.93% with respect ot the baseline. The constraint on the moment
coefficient was set to amaximum increasing of 10%, thus its increase of 8.47%within the
tolerance imposed. The L/D ratio augments of 30.85%, confirming that morphing is ca-
pable of producing an improvement in the aerodynamic behaviour for the case analysed
and that it mostly affects the drag, with a variation in the lift coefficient not comparable
with that of multi-element high lift systems.

Index Baseline Optimised Relative variation [%]

Cd 0.03418 0.02805 -17.93

Cl 1.8895 2.0288 7.35

Cm -0.08617 -0.0935 8.47

L/D 55.281 71.087 30.85

Table 7.7: Comparison between baseline and CFD with γ − Reθ optimised airfoil aero-
dynamic coefficients at DP1

97





Chapter 8

Three-dimensional Optimisation of
a Wing with a Morphing Leading
Edge

In order to test the optimisation procedure, a three-dimensional problem was also
solved, extending the methodology already applied to the 2D geometry and presented
in previous chapters. A wing model with a morphing leading edge was optimised to
validate the process and give a first insight into the effect of morphing in a real body. In
the next sections the geometry handling is reported, aswell as the optimisation properly
said and the outcomes obtained are discussed.

8.1 Reference geometry

The geometry analysed was a low aspect ratio wing, possibly replicating the shape
of a tail plane of a regional aircraft. The wing span was double the length of the chord
of the wing section at the wing root, while at the tip the section chord was one half of
the previous quantity. The wing was swept by 20 [deg] and had a negative twist of 1
[deg] at maximum, from the root to the tip, which had a lower incidence with respect to
the hub to avoid the tip to stall first. A planar view of the wing is shown in Figure 8.1.
The geometrywas described in terms of four stations, numbered from 1 to 4 as depicted.
Sections 1 and 4were fixed, while sections 2 and 3 could undergomorphing. This shape
was chosen in order to deal with the simplest 3D case, in a small computational domain
to reduce the computational time, but at the same time presenting an important level of
three-dimensionality. The combination of a low aspect ratio, a sweep angle and a little
twist, in fact, induces three-dimensional flows, which develop a velocity component in
the spanwise direction, giving a certain generality to the example discussed.
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Figure 8.1: Planar view of the reference wing, with the reference sections indicated

8.2 Geometry handling

The geometric representation of the 3D wing was obtained by specifying the four
aforementioned sections and then demanding the meshing software Gambit to rebuild
it, by lofting between the stations. This procedure allows a quite simple handling of
the geometry, which was interpolated between the specified shapes, without recurring
to a complete 3D parameterization, for example using NURBS, and without employing
further CAD software. From a practical point of view, it was necessary to communicate
Gambit the coordinates of the points of the sections from 1 to 4 and then instruct it to
form a skin surface, using as reference edges the pressure and the suction sides of the
four wing sections. While the first and the last were fixed in advance at the beginning
of the simulations, sections 2 and 3 were described using the same CST parameteriza-
tion employed for the 2D optimisation, since they lay on a plane. For each of them, 5
design variables were used, the same of 7.3, thus a total number of 10 DVs was needed
to completely describe the 3D wing. Even though it is usual to employ at least five sec-
tions to represent 3D shapes, since the aim of this study was to set up an optimisation
procedure for a morphing wing, an not to produce a ready-to-use result, it was chosen
to take only two sections, at the beginning, an then eventually increase their number in
a second step, when the behaviour of the optimisation loop was sufficiently known and
robust.
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Figure 8.2: Three-dimensional view of the reference wing

8.3 CFD solver overview

The aerodynamic performance of the wings generated during the optimisation pro-
cedure was computed by the CFD solver ANSYS Fluent, as well as in the 2D case re-
ported in Section 7.6. In that situation, two CFDmodels were tested by comparing their
predictions with the experimental data for the baseline geometry and then performing
a SOOP. The results obtained employing both of them have been already discussed in
Sections 6.2 and 6.4 as regards the validation and in Section 7.6, as regards the optimi-
sation. Switching to a three-dimensional case, a choice must be done on which model
to use. The Spalart-Allmaras turbulence model showed the best overall accuracy, with
respect to other fully turbulent models, but still presented a not negligible gap with the
experimental data and provided an optimal shape quite different from that of XFOIL,
due to the lack of a transition analysis. On the other hand, the Transition SST model
proved to give better accordance for the baseline polars and with the optimal shape of
XFOIL. This was true in a 2D case, while for a 3D flow any test data were available.
When using transition models in 3D domain, the presence of secondary fluid paths due
to the tridimensionality, for example a velocity component in the sweep direction or the
tip vortex, can cause the transition to occur in a different way from the corresponding
2D case; if the formulation employed does not have a robust crossflow transition pre-
diction capability, a correct distribution of the flow field can be kept only by chance, but
in general it is challenging to build a tool able to accurately predict the 3D development
of the boundary layer in presence of pressure gradients and secondary flows. For this
reason, since in principle and with the available data it was not possible to compare the
two models, the Spalart-Allmaras and the γ − Reθ, in 3D, it was chosen to use the first
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one. The SA is lighter in a computational sense, since it is a one equation model, while
the other is a four equation, and it is more stable, since it is fully turbulent and does not
deal with the computation of local quantities for assuming the transition onset.

With this in mind, now the results obtained in the 2D, for the validation and the
optimisation, can be exploited to go for a 3D case. Gambit v. 2.4.6 was used to rebuild
the geometry and generate the mesh. The grid was hybrid, with a structured O-shaped
boundary layer of parallelepipeds and an unstructured tetrahedral grid for the exter-
nal solution. This kind of meshes are able to provide good results without excessively
increasing the number of cells; since 3D simulations are very time-consuming, dealing
with a moderate number of elements can save days in the optimisation run. In this case
no experimental data were available, to compare the CFD results with. The work done
for the 2Dproblem could provide a suggestion on how to construct amesh providing ac-
ceptable predictions, even though the need to limit the mesh size prevented from using
a discretisation as fine as that employed in many two-dimensional grids tested. After
various attempts, it was found that a good numerical stability could be obtained by em-
ploying 4millions of cells, with a boundary layer of 30 rows and a growth ratio of 1.1. In
this case the wall function approach was preferred, because reaching a y+ < 1 would
have required a larger amount of rows, in order to prevent from having high skewed
cells in the transition region between structured and unstructured zone.

The domain is illustrated in Figure 8.3. Called c thewing root chord, the domainwas
a parallelepiped extending 7c upstream, 11c downstream, 8c in thewings span direction
and 7c upward and downward of the wing. Again, even though in 2D it is common to
collocate a pressure far-field condition at 20 chord lengths, here it was necessary to limit
the extent of the space to avoid an excessive computational cost.

8.4 Single objective optimisation

The first problem solved was a single objective optimisation, in the same form of
Section 7.6.1. An initial population of 20 individuals was evolved for 15 generations. In
order to accelerate the computational time, each individual was simulated on a remote
cluster, using 16 Intel Xeon E5-575 cores. An automatic procedure was developed, in
order to perform the optimisation and the mesh in a local computer and linking Matlab
with the Centos OS remote cluster, so as to execute there only the Fluent session. The
results of this initial iterations showed that the aerodynamic constraint on the lift coef-
ficient, desired to be at least as high as the baseline for each individual, was unlikely
to be respected, causing the optimiser to produce infeasible solutions and lose a prefer-
ential direction in the search. Because of this, the baseline wing was the optimum for
the formulation adopted, with other points exhibiting less drag but also a lower lift and,
therefore, causing the penalty function to activate. By examining the scatter graph of the
individuals simulated during the optimisation, it emerged a clear trend: the drag and
the lift coefficient appeared conflicting and the points formed a Pareto front, depicted in
blue in Figure 8.5, where the baseline point was also the one exhibiting the highest lift.
As a consequence of this outcome, in order to assess the relationship between the drag
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Figure 8.3: Illustration of the computational domain

and the lift coefficient, which appeared to be conflicting for the 3D case, since they both
tended to decrease despite the lift was desired to have a non-negative variation, a multi-
objective problem aiming at minimising the drag andmaximising the lift was solved for
the 2D case, where the optimal solution minimising the drag after 40 generations exhib-
ited a very moderate lift increment. After evolving a population of 20 individuals for
40 generations again, it appeared that for the two-dimensional geometry the drag and
the lift were not conflicting at all and thus a unique solution was found, that dominated
the one of the previous single-objective problem. The airfoil obtained is depicted in Fig-
ure 8.4. The shape is more similar to other droop-nose airfoils found in literature, with
the leading edge bent downward and a concavity in the pressure side. By comparing
it with that of Figure 7.15, the major difference appears for the lower side. Table 8.1 re-
ports the variation of the aerodynamic coefficients for the baseline and optimised airfoil
obtained with the 2D multi-objective optimisation. Its solution dominated the one pre-
viously presented for the single-objective problem. Indeed, in that case the convergence
stalled in the last 8 over 40 generations, the optimiser was not able to further refine the
minimum and a better point, like that found in the multi-objective formulation, was not

103



Figure 8.4: Baseline and optimised airfoil obtained with the 2D MOOP employing the
SA model

reached.

Index Baseline Optimised Relative variation [%]

Cd 0.04003 0.03616 -9.67

Cl 1.8859 1.9276 2.21

L/D 47.112 53.31 13.16

Table 8.1: Comparison between the aerodynamic indexes of the baseline and optimised
airfoil for the 2D multi-objective problem discussed

The conclusion of this 2D analysis revealed that in the single-objective problem of
Section 7.6.1, the process got stuck into a solution nearby the minimum, but still not the
best. Though in the multi-objective optimisation the final individual presented a little
improvement in terms of aerodynamic indexes, the airfoil was quite different in the
pressure side. This was likely to be due to the constant arc length parameterization, for
which two shapes always exist, that keep the length constant and they have an opposite
concavity. Which shape is chosen depends on the values of all the curvature correction
coefficients and probably between the single and multi-objective case for the lower side
a different concavity was produced. Coming back to the three-dimensional problem, a
different behaviour with respect to the 2D case was found, since the drag and the lift
resulted conflicting. The lack of agreement could be due to an insufficient model for
the 3D case or to an effective different physics involved, which causes a response of the
wing not assimilable to that of a single section of it.

8.5 Multi-objective optimisation

The Pareto front described by the set of individuals explored by the optimiser in the
3D SOOP brought to light the conflicting nature of the lift and the drag for the three-

104



dimensional case, suggesting to repeat the MO optimisation aimed at minimising the
Cd while maximizing the Cl. The synthetic formulation of the MOOP was:

minimize Cd(x), x ∈ Ω

maximize Cl(x), x ∈ Ω

such that: |Lm − L0|/L0 ≤ 1e− 6

|Am −A0|/A0 ≤ 0.05

(Cm,b − Cm)/Cm,b ≤ 0.5

Ω = x ∈ R5|Lb ≤ x ≤ Ub

The purpose was to further refine the Pareto described in the fitness function space
by the set of individuals simulated during the SO problem. Figure 8.5 illustrates the
scatter of the feasible individuals and highlights the initial Pareto, obtained with the
single-objective optimisation and drawn in blue, and the final frontier obtained after
evolving a population of 30 individuals for 10 generations in the MO approach. It is
visible how a slight change occurred between the two frontiers, with themajor variation
for the left edge, whilst the baseline point still remained the one exhibiting the highest
lift. Although some individuals with an higher lift were found by the optimiser, they
did not respect the constant arc length constraint and thus they do not belong to the
Pareto.

Figure 8.5: Pareto fronts obtained after the 3D SO problem (Initial Pareto) and after the
3D MO problem (Final Pareto)

The final shape obtained, minimising the drag coefficient, looked like that of Fig-
ure 7.15. In Figure 8.6 it is reported the airfoil lying on the section 2 of the wing. The
deformation in the spanwise direction resulted very smooth and the airfoil at section
3 bore a striking similarity with that of section 2. In terms of aerodynamic indexes,
the results are summarized in Table 8.2. The drag coefficient decreased of 3.73%, with
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Figure 8.6: Wing section at station 2 for the shape minimising the Cd in the MOOP,
compared to the baseline geometry

an overall L/D ratio increase of 1.174%. The variation was very modest, with respect
to the bi-dimensional case. The outcome of this activity showed that for the geometry

Index Baseline Optimised Relative variation [%]

Cd 0.14078 0.13553 -3.73

Cl 1.3976 1.3613 -2.60

L/D 9.9275 10.044 1.174

Table 8.2: Comparison between the aerodynamic coefficients of the baseline and opti-
mised airfoil for the 3D multi-objective problem discussed

considered the benefit produced by morphing was very limited. Actually, three aspects
should be considered when discussing these data. The first one is that the aerodynamic
model employed was not validated, due to the lack of experimental data in 3D, thus the
accuracy of the result cannot be ascertained. Secondly, the MO problem ran only for 10
generations and further iterations might lead to a better improvement. Thirdly, the aim
of this three-dimensional analysis was to test the procedure for an extended body and,
though the wing presented a certain degree of three-dimensionality and the flow field
as well, the geometry parameterization was kept very simple, with only two sections
directly controlled by the optimiser. Providing more flexibility to the shapes generated,
by using more stations to define the wing, may give a better chance to achieve an aero-
dynamic improvement closer to that of the 2D problems. Despite the modest increment
brought by morphing, this does not necessarily prove its ineffectiveness, since the out-
come was intended primarily to check the behaviour of the framework when dealing
with a wing. Finally, the indications provided by this process are useful in that they
can be used for a further development of the procedure. The algorithm written so as
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to automatically link Matlab and the Linux-based environment, common to many com-
putational servers, can be considered itself a step forward, allowing for a significant
increase in the computational efficiency.
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Chapter 9

Meta-model Based Optimisation

In previous chapters an optimisation framework has been presented, whichwas able
to solve either single objective ormulti-objective problems involving amorphing leading
edge. In Chapter 7 it is reported the procedure applied to a bi-dimensional geometry,
which was optimised to minimise the drag at one or two operating points. The evalu-
ation of the performance of the aerofoil was performed by relying firstly on the panel
solver XFOIL, which can calculate the aerodynamic of a 2D body in a very fast way and
with good accuracy, and in a secondmoment on aCFDmodel built inAnsys Fluent. The
employment of these aerodynamic tools, predicting in our case the lift, drag and mo-
ment coefficient, allows for the search of an optimal design, which is likely to be close
to the actual solution, if the model is well calibrated and validated. In fact, the aero-
dynamic optimisation is dealing with a model and we optimised a shape within that
model, not a physical object. It is only thanks to the validation described in Chapter 6
that our solutions have the chance to be close to the real best overall solution respecting
the constraints imposed. The aerodynamic model built was simulating a very compli-
cated physics, though the problem itself was not the most challenging, and embedded
some assumptions and hypothesis which allows to simplify the computation and, as
matter of fact, make it possible, because it is not even imaginable to solve directly the
Navier-Stokes equations for a large domain at high Reynolds number. This preamble
is meant to underline that we are dealing on a certain approximation of the reality in
our aerodynamic optimisation and that the results presented are not the truth, but a
hopefully good representation of a much more complex physics. In an engineering ap-
proach, this is the standard way of facing real world problems, for which the theory is
just sufficient to lead to working solutions.

Notwithstanding the simplifications embedded in the aerodynamic model, which
limit its applicability to a neighbourhood of the case treated, the computational effort
spent to compute the performance of each individual was still remarkable, especially
for the three-dimensional geometry described inChapter 8. The optimisation procedure
could be simplifiedmore, using a faster tool to calculate the fitness, by building a further
model that approximates the response of the CFD solver to the design variables. This
procedure is refereed to as meta-modelling or surrogate modelling, that is building a
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model of the model. A surrogate model can help in individuating the optimal regions
of the domain, without performing a large number of expensive simulation, which is
typical of evolutionary algorithms. In this chapter it will be briefly presented some
strategies used to build meta-models and some of them will be applied to the problem
treated in this work.

9.1 Application of surrogate models

A surrogate model (SM) is an approximation of a simulation used to construct sim-
pler and lower computational cost models [15]. It is built basing on the response of the
simulations to a limited amount of intelligently chosen points to capture the relationship
between the input and output variables. The original function f(~x) is then represented
as f̃(~x) = f(~x) + e(~x), with e(~x) the error between the original and modelled function.
f̃(~x) is the regression function, behind which is concealed the technique used: ratio-
nal functions, radial basis functions, Kriging models, support vector machines, artificial
neural networks, polynomial regression and splines are some of them.

Manríquez et al. [15] proposed a classification of the surrogate models application
based onhow they are employed in the optimisation loop. Substantially, two approaches
are available, the so calledDirect Fitness Replacement (DFR) or Indirect Fitness Replace-
ment (IFR). In DFR the solutions are evaluated with the SM and are assumed to be
comparable to those obtained by the real function. Of course, this is true only if the
meta-model (MM) has been constructed properly, using a large set of evenly distributed
data and assessing its prediction in other points, to verify that it behaves in the desired
way. Otherwise, the evolutionary algorithm (EA) is likely o converge to a false optimum
or a false Pareto front, vanishing the benefit of the simplification brought by the SM.

The evolution control, the way the SM deals with the original fitness functionwithin
the DFR approach can be: (i) No Evolution Control (NEC), (ii) Fixed Evolution Control
(FEC) and (iii) Adaptive Evolution Control (AEC). If No Evolution Control is used, the
SM simply replaces completely the original fitness function. The lack of a feedback can
lead to misleading solutions if for some reasons the MM fails in predicting the response
or is not enough accurate. Fixed Evolution Control foresees an alternation between the
original and surrogate function. Only some individual or generations can be evaluated
through the meta-model, and the remaining are calculated with the real function. In
this way, it is possible to update the model during the optimisation, improving its accu-
racy since it is fed with points belonging to the search region. This approach has been
successfully implemented in a variety of cases, leading to good results. The main issue
is the switchback process, which should be set to provide a meaningful stream of infor-
mation between the approximated and original model. The last options is the Adaptive
Evolution Control, which automatically chooseswhether to compute an individualwith
the surrogate or real function. according to some parameters. This implies a complex
optimisation framework with nested loops, but can overcome the drawback of the pre-
vious instance, if the fixed exchange mechanism between the two models occurs in an
misleading way.
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In the IFR method, the original fitness function is used during the iterations, while
one or more components are assessed in the surrogate model. A number of solutions
evaluated using the SM are then selected and delivered to the real function, using the
approximated fitness indirectly. Often the Evolutionary Algorithm (EA) is employed to
explore the design space, while theMMintervenes in a local search, providing candidate
solutions which are then assessed by the real function.

As already aforementioned, there exist a variety of regression techniques available to
generate the approximation of a function. For example, in the simplest case of a R→ R
function, polynomial fitting is used to interpolate small sets of data, while splines al-
lows for a good interpolation of large datasets. For multidimensional functions, these
simple methods are not applicable straightforwardly any more and more sophisticated
techniques have been developed. For example, starting from splines it is possible to
derive the Radial Basis Functions (RBF), which are real valued functions depending on
the distance between the input and their centre. Typical RBF are the linear, cubic, mul-
tiquadratics or Gaussian. It is possible to build a network of RBF to interpolate data in a
multidimensional environment, forming an artificial neural network (ANN). ANN are
networks of elementary units which exchange information, generating an overall model
which can be tuned to adapt to certain inputs. Kriging methods, AKA Gaussian Pro-
cess Regression (GPR) are a group of geostatistical tools based on mean squared error
to perform regression. They are employed in the DACE (Design and Analysis of Com-
puter Experiment)model, which extends the potentiality of Kriging tomanage three ore
more dimension. According to the application, the best method should be chosen, but it
is difficult to have an a priori knowledge of what model best fits the data. Some of them
are affordable only for small sets, other can handle a large number of samples. Statistical
methods, such us Kriging, are powerful, because they embed the concept of uncertainty
and give a better estimation of the error, but can be expensive in interpolating functions
of many variables. Below a tool quite commonly used in evolutionary optimisation is
presented, because it will be applied to the two-dimensional case geometry of Chapter
7, the artificial neural network.

As already aforementioned, there exist a variety of regression techniques available
to generate an approximation model of a function. According to the cardinality of the
problem, the dimension of the function as well as its nature (linear, non-linear, binary,
noisy, etc.) and the purpose of the regression a tool can perform better than others and
it is demanded to the analyst to interpret which one to choose, e.g. Polynomial Approxi-
mation, Linear or Non-Linear Regression, Generalized Linear Regression (GLR), Artifi-
cial Neural Networks (ANN), Radial Basis Functions (RBF), Gaussian Process Methods
(GPR or Kriging), Support Vector Regression (SVR) etc. All of these methods can be
embedded within an optimisation loop to construct a meta-model based optimisation.

Radial Basis Function are real-valued functions whose output depends on the dis-
tance between the input and the centre of the function itself. They can be used either
for interpolation or for regression, also in a network formulation. The function is ex-
pressed by the model as a linear combination of a Radial Basis Function φ(x) plus a
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trend function P (x):

ŷ(x) =
N∑
i=1

ωi φ(x) + P (x)

with ωi N unknown weights to be determined and φ(x) = φ(||x(i) − x), depending on
the distance metric between the observed point x(i) and the untried one x. The distance
is usually computed in an Euclidean sense, while the RBF can be Gaussian, Thin Plate,
Multiquadrics, Inverse-Multiquadrics and so on. The trend function is usually set to be
constant. If N is the number of samples, it is possible to solve the problem by either
imposing the exact interpolation at sample points or allowing for a smoothing effect,
which can be positive in presence of noisy data.

Gaussian Process Regression (GPR) or Kriging methods can be considered a partic-
ular case of RBF, in that they still attribute the value of the model basing on a weighted
sum of the points surrounding the input datum. The response is expressed by the sum
of a trend function fT (x)β plus a stochastic process which is a Gaussian random func-
tion: Z(x):

y(x) = fT (x)β + Z(x)

fT (x) is a set of the regression basis function and β their coefficients. The trend func-
tion is usually taken as a low-order polynomial, even constant. Z(x) is a stationary ran-
dom process with zeromean, variance σ2 and covariance Cov[Z(x), Z(x′)] = σ2 R(x, x′).
R(x, x′) is the correlation function , depending on the distance between zany two sites
x, x′ in the domain and other parameters. It is usually taken as a Gaussian exponential
function, such that Cov = Cov(||x − x′||2,θ,p), with θ,p the hyperparameters to be
tuned. The regression process is performed to minimise the mean squared error and
can bring also to an estimation of the uncertainty of the fit.

Support Vector Regression (SVR) is a tool derived from Support Vector Machines, a
supervised statistical learning method originally developed in the 90s at the Bell Labo-
ratories by Vapnik and others. In SVR, a non-linear function is learnt by a linear learning
machine in a kernel-induced feature space, while the capacity of the system is controlled
by a parameter which does not depend on the space dimensionality:

f(x) = 〈w, x〉+ b

The learning algorithmminimizes a convex functional and its solution is sparse, because
the computed weights wi do not depend above all the samples and all the training data
close to themodel prediction, within a threshold ε are ignored. SVRappears as a promis-
ing method that balances model simplicity and data fitting and is particularly suited ot
physical experiments, since the threshold can be tuned as the amount of experimental
uncertainty.

Artificial Neural Networks are a general class of mathematical tools relying upon
building an overall transfer function by combining several subunits, each one with a
specific representation and depending on tunable parameters. Theymimic the structure
of brains, in that the are composed by layers of neurons, exchanging informations each
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other. By selecting the network architecture and the neuron representation it is possible
to use ANN in several application within machine learning. Since ANNs have been
used to fit the aerodynamic data computed by XFOIL for the two-dimensional reference
geometry, they will be presented in more details below.

9.2 Artificial neural networks

An artificial neural network (ANN) is a mathematical tool employed in computer
science with many purposes: mimic the behaviour of physical systems, analyse of real
world data by classification, pattern recognition, clustering or regression, assistmachine
learning, control dynamic systems. An ANN is made up of elementary units, the neu-
rons, which are linked together and exchange information.

In Figure 9.1 a single neuron is depicted. Three different functional operations take
place in the neuron. First, a scalar input p is multiplied by the scalar weight w, forming
the product wp. Second, the product is added to the scalar bias b to form the net input
n. This latter is then applied to the transfer function f , which produces the output a.
The transfer function f of the neuron has to be set in advance and determines the kind
of the neuron. Several possibilities are available, common options are linear functions
or tangential sigmoid, but according to the problem one may use other sigmoids or
inverse functions, as well as radial basis functions. The weight function w and the net
input function, through the bias b in our case, represent the adjustable parameters of
the neuron, producing a different response to the same input. The idea below the ANN
is that each neuron can be set so as to produce a certain individual transfer function.
By coupling many neurons and let them communicate, sharing inputs and outputs, it is
possible to obtain an overall model which can be trained, i.e. changing each adjustable
parameter of every neuron, in order to fit to the problem.

Figure 9.1: Functional scheme of a single neuron

In this work, ANNs were used for regression, in order to substitute to the time-
consuming aerodynamic tools a function able to model their behaviour. Since we are
modelling the response of a model, the CFD code, this technique is referred to as meta-
modelling, that is a model of the model. When dealing with function approximation,
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there are some categories of ANNwhich are known to be more suitable. As previously
mentioned, an ANN is made up of a net of neurons, connected each other. Figure 9.2
shows a typical feed-forward network, composed by three layers of neurons. Each layer
takes information from upstream, elaborates it and send it downstream. No interaction
between the neurons of the same layer occurs, but each neuron of a layer communicates
with all the neurons of the following one. Notice that unlike the model of Figure 9.1,
here a neuron accepts an input vector. The weighting function, therefore, performs the
matrix product a = [W ]p. The bias vector b is then added to a and the sum processed by
the transfer function f. The relationship for a single layer is then a = f([W ]_p+ b) Each
output of a layer is the input of the following one. A layer receiving the first entry p is
called an input layer, while the last layer producing the output is called an output layer.
Intermediate layers are called hidden layers. A feed-forward neural network used for
function approximation has typically sigmoid hidden layers and linear output layers.

Figure 9.2: A feed-forward three-layer neural network

As previously highlighted, the weights and the biases represent the degree of free-
dom of an ANN, given a certain architecture and chosen the transfer function for each
layer. The process of tuning these parameters in order to fit the network to a certain
dataset is referred to as training. Training the network requires a set of sample points to
feed the net with and the corresponding sample data. The network can deal with multi-
dimensional data and can be trained to provide an approximation of the relationship
between an s × r input matrix, being s the dimension of the vector and r the number
of samples, and an q × r output matrix, with each row an output vector of dimension
q. Generally this process is performed in three steps: first, the data are preprocessed
and classified; second, the net is trained using a dedicated algorithm; third, the data
are postprocessed. The aim of the training can be to minimise the mean squared error
(MSE) between the targets ti and the response ai of the network:

MSE =
1

N

N∑
1

(ti − ai)2

, although other objectives are possible. In order to do that, the training algorithm up-
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dates the weights and the biases and computes the response for a subset of the sample
points. This subset is referred to as the training data. During the training, the MSE re-
ferred to the training data is expected to decrease. In order to evaluate the performance
of the network, a two further subsets are used: a validation subset and a test subset.
The MSE is computed for both of them too. Typically, the MSE for the former reaches
a minimum during the training and the final parameters of the network are those cor-
responding to the iteration in which that minimum occurred. The test subset is used to
further validate the network. Its MSE minimum should occur near to that of the vali-
dation subset, if data have been properly divided. The use of these three sets is needed
to verify that a good response is available also for those points which are not directly
involved in the training.

During the preprocessing, the data are divided into the three sets and eventually
normalized. This scaling avoids a saturation for certain transfer functions and makes
all the entries of a vector uniform and equally important. The division can be done in
a random way or following a more structured procedure, for example filling the sets at
the same time, picking the data and assigning each time to a different set, as in dealing
a deck of cards. The proportion of the elements in each subset is a rule of thumb and
generally the training data are the 70% of the total, while the remaining 30% is equally
divided between the other two sets.

The simplest training algorithm is the gradient descent, which updates the parame-
ters in the direction where the performance (e.g the MSE) decreases faster:

xk+1 = xk − αkgk

with xk the vector of currentweights and biases, gk the gradient andαk the learning rate.
Several methods are available and provides different performances, according to the
problem treated. The Levenberg-Marquardt algorithm is typically the first choice if the
dataset is not too large, but the Bayesian Regularization can provide better accuracy for
challenging problems. It is common to test many algorithms and then choose the best,
since no a priori knowledge is often available, except for the experience of the analyst.

9.3 Two-dimensional optimisationwith complete fitness replace-
ment by ANN

With the purpose of testing the performance of a surrogate model for the prediction
of the objective function in the optimisation loop, an artificial neural network was built
to replace the aerodynamic calculation of XFOIL with a faster regression function. In
order to check the ability of ANNs to approximate the relationship between the design
variables and the fitness, the database filled during the several optimisation runs per-
formed and containing for each individual its aerodynamic indexes, the drag, the lift
and the moment coefficient, was used. This database had a large number of entries and
allowed for a wide exploration of the design space. As previously underlined, when
applying an ANN to fit samples, it is worthwhile to pre-process them in order to realize
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a good coverage of the fitting space, discarding points which are too far from the sub-
domain of interest, and to form the threes sets for training, validation and testing in a
proper way. Having to deal with this, two approaches were used: the first one operates
in the design variables space, the second in the fitness landscape.

The first approach is typical of the design of experiment (DoE) methodology, in
which a poll of a function is performed, by choosing a priori some sample points and
evaluating the function there. This way is somehow the only option when no infor-
mation on the fitness landscape is available and the optimum position is completely
unknown. The second approach exploits the large database build during the optimi-
sations performed, which allows to look where the best points lie, and it comes after
the first, because a there is certain knowledge of the objective space. Both these meth-
ods have been employed and evaluated. Since in general the non-linear regression of a
function produces bad predictions when extrapolating values, operating using samples
produced by a previous optimisation is expected to produce better quality of the ap-
proximation, since we are operating nearby the subdomain which will be investigated
by the optimiser when employing the surrogate model. In order to compare the re-
sults produced by several ANNs, trained using different datasets, a sample of about 800
points generated during a previous optimisation run was used to test the ANN and see
whether it is able to accurately predict the response when applied to a real optimisation.
In the following section the outcomes of this procedure will be presented and compared
each other.

9.3.1 ANN training

The individuation of a good surrogate model to be used into an optimisation loop
is, in general, an iterative process. When dealing with ANNs, the analyst has many
degrees of freedom to play with, in order to improve his model: the neuron transfer
function, the number of neurons in each layer, the network architecture. The presence
of somany variables has led to the development of dedicated procedures to optimise the
neural network itself. For the purpose of this work, such an advanced methodology has
not been applied and a try and catch search has been performed, using general rules.
A common architecture employed when using ANNs for function approximation is a
feed-forward network, with one input layer containing as many neurons as the number
of variables, e.g. five for our 2D case, one ormore hidden layers and an output layerwith
the size of the output parameters, e.g. three for our case, Cd, _Cl, _Cm. This last one has
linear neurons, while the other have tangential-sigmoid transfer function. Each layer
operates in sequence and no feedback is present. Having the number of neurons in the
input and output layer fixed and the transfer function for each layer, the only degree of
freedom is the number of hidden layers and their size. As a general trend, the highest
the number of neurons into an hidden layer, the highest the possibility of overfitting.
The attention of the analyst should be focussed in reproducing the results whit the best
accuracy, using theminimumnumber of neurons andhidden layers, to avoid overfitting,
which is one of the main drawbacks of ANNs. One hidden layer with ten neurons is
the starting point used, with twenty neurons representing the upper bound. For each
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ANN trained within this work, several attempts were made in order to obtain the best
compromise. According to the dataset, the number of hidden layers was varied from
three to five, with the neurons in each layer form six to sixteen.

In the processing of the samples, the standard division of 70%-15%-15% among the
training,validation and test set was used. The building of the model was performed
using the Neural Networks Toolbox™ of Matlab R2015a. As previously reported, two
approaches were followed to get the samples: the first was based on a latin hypercube
sampling (LHS) of the design variables space, the second was based on choosing some
data among previous optimisation runs. The subdivision of the data among the three
sets was based on a random process in the first case and on an interleaved method in
the second.

It is here described the results for three neural networks, trained using different basis
of data. Their features are described in the following Table 9.1. The network received as
input the five DVs and gave back as output the values of the three aerodynamic indexes.
For the sample data, they were obtained using XFOIL. The training algorithm was al-
ways the Levenberg-Marquardt, which produced better results compared to Bayesian
Regularisation or Scaled Conjugate Gradients.

NN ID Hidden Layer Size Samples MSE validation Regression coeff.

NN 1 [10 12 16] 1000 from
previous opt.

0.0038 1

NN 2 [8 6 7 6] 453 from LHS 0.0092 0.99818

NN 3 [8 6 7 6 8] 5574 from
previous opt.

0.0015 0.99996

Table 9.1: Features of the three ANNs presented

The firstANNwas trainedusing 1000 samples picked from the database of the points
explored in previous optimisation sessions. This points were selected by firstly sorting
all the points available according to their fitness value, the drag coefficient, and then
choosing one thousands among them to cover the whole interval. In general, the ANNs
showed to hardly deal with points at the bounds of the domain, corresponding to very
high drag values and low lift. The relative high value of the MSE for the validation
subset in all the three networks was mostly due to these points, which the networks are
not able to fit. The third network was trained using the same approach, but employing
a larger number of points to better cover the fitness landscape. The second network,
instead, was based on a latin hypercube sampling of the design space of 1000 samples.
Among them, since XFOIL was not able to converge for some distorted shapes and be-
cause of the constant arc length parameterization there was a great sensitivity of the
geometry to the value of the DVs, only converged points were retained and the other
discarded, leading to the number of 453 reported in Table 9.1.

After training each network with the sets indicated, their accuracy was tested by ap-
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plying them to a sample of 833 points, generated during a previous single optimisation
run (here again the number is due to the discarding of bad points). In this way it was
possible to see whether how the model built deals with a real optimisation in terms of
accuracy, without actually performing it. A fast response parameter to measure the ac-
curacy can be the number of samples between those of the test set, whose prediction is
inside a certain bound on the relative error between the real value and that computed
by the ANN. For example, in the first NN, NN 1, for the 31.93% of test points the drag
was predicted with a relative error beyond 10%; for the third NN, NN 3, this value was
7.08%, but for the second, trained using LHS sampling, was 78.75%. It is clear howusing
previous optimisation points can lead to a very good accuracy in estimating the aero-
dynamic indexes for a real new optimisation run, while LHS , which is more generic, is
susceptible of larger errors, because extrapolation is inefficient. As regards the lift and
the moment prediction, the performance of the three networks was more even, with the
worse result for the moment coefficient in NN 1, where almost 20% of the points vio-
lated the tolerance of 10% for the relative error but a better prediction for all the other
case, with less than 10% of points exceeding the bound.

Figure 9.3 depicts the relative error between the real value and the value predicted
by the NN 1 when testing it using the 833 samples from an optimisation session. Since
these points were sorted according to their drag coefficient, it is evident from the bar
plot that at the bounds of the domain, where the drag becomes very high, tens of time
higher than the optimal, the lift decreases and the moment increases, the network was
not able to fit the data. Besides, by comparing the distribution of the points used for
training the network and those in which the test is performed, it is even more evident
that outside the domain used of training the performance degrades.

Figure 9.3: Bar plot on the relative error between test data and the prediction of NN 1
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The accuracy of a network can also be inspected by visualising the distribution of the
relative error between for the response of the network to the training data. In Figure 9.4,
for example, it is reported the distribution of the error for the training process of NN 2.
The LHS helps in having a good coverage of the design space, but the neural network
was not capable of fitting the data in a very accurate way, as proved by the spread of the
histogram plot. The other two networks, instead, showed a much narrower graph and
the value of the relative error does not exceed 6%.

Figure 9.4: Bar plot on the relative error between test data and the prediction of NN 1

9.3.2 Results of the optimisation sessions

After training the networks, theywere employed to solve a SOOP for a two-dimensional
case. Specifically, the problemwas the same of Chapter 7 (see Section 7.4), when the drag
coefficientwasminimised at DP1. Here, theNNhad completely replaced XFOIL in eval-
uating the aerodynamic performance, following the simplest approach of No Evolution
Control. For each neural network, three runs were launched. The initial population
was the same and made up of 50 individuals and has been evolved for 50 generations
in the first two runs and 100 generations in the third. At each run, the final optimal
point produced by meta-modelling was compared with those indicated by XFOIL. The
outcome of this procedure is summarised in the next two figures, Figure 9.5 and Figure.
in Figure 9.5 it is reported the difference in terms of the values of the design variables.
For the first, third and fifth design variable there seemed to be a good accordance with
among the values individuated with the meta-model and those produced without it,
employing directly XFOIL. For the second and the fourth, instead, an higher variation
was present, especially for the NN 2, trained using LHS.
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Figure 9.5: Comparison between the optimal solutions providedusingANNandXFOIL,
in terms of decision variables

In Figure 9.6, instead, the comparison is presented in terms of the aerodynamic coef-
ficients, which were approximated by the ANN. There was a good agreement between
them, with a maximum error of about 2% for the objective Cd and 4% for the Cm oc-
curring with the NN 2. In absolute terms, the third network, NN 3, reached the result
closest to the global optimum of the standard loop with XFOIL. This can be attributed
to the larger number of the training set and its derivation from previous optimisation
searches.

In the procedure described, the complete replacement of the “real” objective func-
tionwith a surrogatemodel based on an artificial neural network led to identify a neigh-
bourhood of the optimum, proving that an ANN can approximate the relationship be-
tween the design variables and the aerodynamic indexes with a good level of accuracy,
if the training set is adequate.

9.4 Approximation of the CFD data by a regression model

The complete replacement of XFOIL with an ANN showed that the original mini-
mumwas caught and thus the model was able to accurately represent the aerodynamic
behaviour of the individuals. The approximation of the relationship between the deci-
sion variables and the aerodynamic indexes was then performed also for the Spalart-
Allmaras and the Transition SSTmodels. The results obtained are presented below. The
metamodel built for the latter dataset was usedwithin an optimisation loop, solving the
same SOOP of the previous cases, to compare their solutions.
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Figure 9.6: Comparison between the optimal solution provided using ANN and XFOIL,
in terms of aerodynamic coefficients

9.4.1 Surrogate model for the Spalart-Allmaras dataset

The use of anANN tofit the data coming fromprevious optimisations and computed
by Fluent using the Spalart-Allmaras model revealed a poor accordance, inducing to
try to several techniques in order to identify the one with more chance to represent the
aerodynamic data. This activity can be summarized by the histograms of the relative
error distribution between the predicted value and the real one, for each model tested.
In Figure 9.7 this is illustrated for the drag value. Five models are present: an neural
network (ANN), a radial basis function interpolation (RBFInterp) a radial basis function
network (RBFNet), a support vector regression (SVR) and a Gaussian regression process
(RGP). Among all, the RBF interpolation was the unique providing an exact fit for the
training data and revealed to be the best, followed by the ANN, the SVR and the RBF
network. RGP, instead, gave a very disperse result. Notice that only a portion of the
intervalwhere the relative errors felt are displayed, for the sake of clarity. Indeed, higher
errors were obtained by all the models, though occurring for a very small amount of
points in the dataset.

As regards the prediction of the lift andmoment coefficient, the analogous histogram
as before is shown in Figure 9.8. For the lift, the RBF network provided the best accor-
dance, with the least dispersion, followed by the RBF interpolation and the RGP. The
moment coefficient was replicated with a lower variability and most of the points felt
between -2% and 2%, with only the RBF network error spread more evenly. Again, the
RBF interpolation and the SVR gave a good response.
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Figure 9.7: Histogram of relative error distribution for drag prediction of the SA using
different models

Figure 9.8: Histogram of relative error distribution for lift andmoment prediction of the
SA using different models

9.4.2 Surrogate model for the Transition-SST dataset

The last set of data which was tried to be approximated by a regression model was
that derived from the CFD computations with the Transition SST model. Here an ANN
was used with 650 training points, since it worked well for XFOIL and the two solvers
provided similar solutions for the SOOP. Other methods gave a poor accordance, lead-
ing to very disperse error distribution and unacceptable overfitting. Also in this case,
an effort was dedicated into finding the best network architecture. It was noticed that
in many cases the ANN output a constant response for some points at the bounds of
the domain, for which either the drag was much higher and the lift was lower. Though
normalization was performed both in pre and post processing, the networks appeared
saturated most of the times, regardless the transfer function used. Each network was
trained ten times, picking that giving the least MSE and number of relative error pre-
diction out of a specified threshold of 10%. After many attempts, a network wa found
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that was able to fit the data acceptably without exhibiting a flat response. It had 6 hid-
den layers of 8 neurons each. The model was then used into an hybrid optimisation
loop, which will be presented below.

9.5 Meta-model assisted optimisation

A meta-model assisted optimisation loop was built in order to exploit the meta-
model to perform a local refinement of the population. The loop had an hybrid ar-
chitecture, coupling a GA as a local explorer of the design space based on external CFD
computation and a surrogate model with a gradient based solver for a local improve-
ment. The scheme of the loop is depicted in Figure 9.9. Generally, the model can be
trained after performing some iterations with a standard global GA optimiser and exact
fitness evaluation, in order to generate a dataset. After that, the model is built and at
each generation the GA acts first, producing an offspring population. Each individual is
locally refined by exploiting the surrogate model with a gradient based (GB) solver, e.g.
the interior point algorithm. For improved robustness, the population is recomputed
using the CFD and only those individual effectively improved substitute their original
parent. This process is intended to use the GA for exploration, while exploiting its re-
sults for a local refinement based on gradient solvers, more suitable to deal with local
minima.
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CFD

Stop

Database

Global GA Optimiser
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Select Improved
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Stop
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Figure 9.9: Scheme of the surrogate model assisted optimisation loop
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The solution reached after 10 generations is presented in Figure 9.10. The shape was
similar to that of Figure 7.18, with a more accentuated deformation. In terms of aerody-
namic indexes, the results are reported in Table 9.2. The objective valuewas very close to
the one originally found (refer to Table 7.7) and the same was also for the other indexes.
Despite the higher number of CFD calls in each generation, since an individual refined
by the gradient solver was re-evaluated with the exact fitness, the overall convergence
time was lower, confirming the validity of the meta-model assisted procedure in lead-
ing the optimiser towards optimal points. The population diversity resulted preserved,
because the refinement was performed in the neighbourhood of each initial point.

Figure 9.10: Baseline and optimised airfoil found with the meta-model assisted loop

Index Baseline Optimised Relative variation [%]

Cd 0.03418 0.02829 -17.23

Cl 1.8895 2.0370 7.81

Cm -0.08617 -0.0946 8.90

L/D 55.28 72.00 30.24

Table 9.2: Comparison between the aerodynamic coefficients of the baseline and the
optimised airfoil, found with the metamodel assisted loop
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Chapter 10

Conclusions

The study provided an insight into morphing leading edge aerofoils, highlighting
some aspects which are required to be carefully inspected and proposing an optimisa-
tion frameworkwhich has been tested in a variety of situations to discover its drawbacks
and validate the procedure. The parameterization procedure developed proved to be
able to keep the constant arc length all over the optimisation, enforcing a constraint
which otherwise would be hardly respected, since only a precise implicit relationship
between the curvature correction coefficients must be respected, in order for it to hap-
pen, without the aforementionedprocedure. Though imposing a zero length change can
effectively limit the axial stress, the bending component due to the curvature variation
too should be considered. Because of the absence of a reference structural configuration
this was not included, although the availability of an explicit function describing each
side of the aerofoil, for which derivatives can be computed analytically, allow for a quite
easy implementation of a curvature constraint.

The influence of the aerodynamic model revealed itself to be crucial in determin-
ing the best solution and the inclusion of a transition prediction in the model, which
happened for XFOIL and the Transition SST model, appeared to be the main cause of
the difference in the shapes indicated by them and the Spalart-Allmaras model for the
single-objective optimisation. In a 3D fashion, the minimisation of the drag coefficient
was hampered by the constraint on the lift, required not to diminish with respect to
the baseline configuration. Since this did not occur during the optimisation, the initial
shape was already the best feasible solution found. In order to investigate this, a multi-
objective problemwas solved in 2D, aiming at minimising the drag andmaximising the
lift under the same boundary condition. The two objectives did not result conflicting,
providing a unique solution. Coming back to the 3D case, the same MO problem was
solved and the partial result obtained after 10 generations showed again that the baseline
wing exhibited the highest lift, while the best drag decrease was of -3.73%. The modest
improvement obtained with the 3D optimisation can be due to an effective different be-
haviour, for which a drag decrease is linked to a lift penalty, or to the inadequacy of the
aerodynamic model in describing the physics involved. Despite this result, the activity
was mainly intended to test the procedure in 3D and provided useful information that
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can be exploited to further develop the process.
A topic studied in the thesis was the effectiveness of the optimiser and possible im-

provements of the loop. The engines natively present in Matlab R2015 b are general
purposes tools, which are not thought specifically for engineering problems, though
widely used for this purpose. In the single-objective optimisations solved, the conver-
gence was more difficult when employing the CFDmodel. The global search capability
of the algorithm was evident, since it led towards the same point in all the several runs
performed, but a local refinement of the solution required quite an effort. A test with
the Particle Swarm algorithm in combination with the Spalart-Allmaras model revealed
a faster convergence and the use of another evolutionary paradigm is interesting to be
studied. The NSGA-II for the multi-objective optimisations showed a certain difficult
in individuating the dominant solutions particularly for the case study of the multi-
element high lift device optimisation. Also for this purpose more advanced tools are
available, specifically intended to attain the best compromise between exploration and
exploitation in a controlled way and the application of another engine to the problem
solved deserves to be further examined. The use of meta-modelling was also enquired
in the study, as a possible improvement to the framework. For the approximation of the
aerodynamic performance computed by XFOIL and the Transition SST model an arti-
ficial neural network proved to be suitable and led to a solution close to that originally
foundwithout any surrogatemodel. In order to promote an easier refinement capability
of the loop, a surrogate model assisted optimisation was performed, in which a gradi-
ent base solver exploited the surrogate model for a local refinement of each individual
at each GA generation. This procedure was able to generate a solution close to that
originally found with an exact fitness evaluation, but in a overall lower computational
effort.

The results provided by this study demonstrates the effectiveness of a morphing
leading edge aerofoil in substantially reducing the drag coefficient in the 2D problems
solved. The technology appears, from an aerodynamic point of view, suitable for the
purpose of improving the efficiency and overcoming the drawbacks of traditional high-
lift systems, though the lift generation in the cases analysed resulted not comparable to
those systems. Several still unsolved problems have, so far, limited the practical imple-
mentation of the technology to prototypes or demonstrators. The future research in this
topic should keep a global perspective and focus towards the aero-structural modelling
of morphing devices, in order to avoid for a useless effort in optimising one aspect and
obtaining a solution incompatible from another point of view. The design of natively
morphing architectures will definitively enlarge the optimisation space, removing some
existing constraints and allowing for a better exploitation of their benefits.
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