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When everything went to hell and the CPU began spewing out random bits,
the result, on a CLI machine, was lines and lines of perfectly formed but

random characters on the screenknown to cognoscenti as "going Cyrillic." But
to the MacOS, the screen was not a teletype, but a place to put graphics; the

image on the screen was a bitmap, a literal rendering of the contents of a
particular portion of the computer’s memory. When the computer crashed and
wrote gibberish into the bitmap, the result was something that looked vaguely

like static on a broken television set - a "snow crash."

— Neal Stephenson, Snow Crash





Abstract

The persistent increase in malicious files encountered in the digital realm has
posed an ongoing obstacle for security researchers from the advent of personal
computers to the present day. Malware infection is a threat, particularly in plat-
forms such as Android and Windows. These two OSs represent 64,25% of the
whole worldwide consumer market share. Windows, specifically, is the most
targeted platform. Researchers in cyber security must identify and categorize
malware strains as soon as they discover them to defend public institutions, busi-
ness organizations, and ordinary people. In the last few years, an effective way
to classify malicious files in their respective families has been using neural net-
works, particularly CNNs. Utilizing neural networks in sensitive domains such
as cyber security presents significant challenges in other fields like medicine and
autonomous vehicles. Two of the major ones, rarely explored in the literature,
are the problem of reproducibility and explainability of the results. In this thesis,
we aim to replicate state-of-the-art CNN models from existing literature while
employing class activation maps, a powerful and essential tool in explainability,
to provide insightful explanations for their results.

In this study, six contemporary Convolutional Neural Networks (CNNs)
were employed to assess the reproducibility and replicability within the field.
The research focused on identifying challenges encountered during this process.
Subsequently, HiResCAM was utilized to evaluate the CNNs performance and
explore the underlying reasons for varied interpretations of inputs by different
models. The findings from this analysis were combined with relevant metrics,
including SSIM, to explore the potential of employing explanatory techniques
to enhance emerging classifiers like the visual transformer.
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1
Introduction

The proliferation of malware has continued uninterrupted since the dawn
of the personal computer and has only increased with the advent of the in-
ternet. The variety of malware has also increased, and nowadays, malicious
files are categorized into classes based on targets, techniques used, or platforms
[13]. Navigating the web without the due precautions can be dangerous, and if
individuals find annoying the consequences of an infection, businesses and gov-
ernments cannot permit even a small breach in security. For this reason, in recent
years, there has been a substantial surge in investments directed toward cyber-
security, with a particular focus on developing robust anti-malware solutions.
This increased investment in cybersecurity can be attributed more specifically
to several factors. Firstly, the rising number of high-profile cyber attacks tar-
geting critical infrastructure, financial institutions, and large corporations has
highlighted the devastating impact of malware and the urgent need for effective
countermeasures. The significant financial losses, reputational damage, and po-
tential compromise of sensitive information associated with these attacks have
driven decision-makers to allocate substantial resources toward bolstering their
cybersecurity posture. Furthermore, the growing interconnectivity of digital
ecosystems, the proliferation of the Internet of Things (IoT), and the emergence
of transformative technologies such as artificial intelligence and blockchain have
heightened the intricacy and magnitude of cyber threats, demanding proactive
and all-encompassing security measures. Moreover, regulatory frameworks and
compliance requirements have been tightened in various industries, compelling
organizations to invest in robust anti-malware solutions to meet stringent se-
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1.1. CONTEXT

curity standards. The continuous growth of the global cybersecurity market,
which encompasses a wide array of services and solutions, including malware
analysis and detection, highlights the recognition of the gravity of the malware
threat and the commitment towards mitigating its risks. In this context, the
need for detection, identification, and analysis of malware samples is ever more
needed. A fundamental task in malware analysis is the categorization of mal-

Figure 1.1: Windows malware evolution

ware in families. This assignment is important because it helps categorize and
organize different types of malware based on their characteristics and behavior,
helping security researchers and analysts better understand how the malware
operates and develop effective countermeasures to prevent or mitigate its im-
pact. Malware classification can also help identify trends and patterns in the
types of malware being used by attackers. This information is used to develop
proactive measures to prevent similar attacks in the future. Malware classi-
fication differs from malware detection, identifying malware’s presence on a
system. While malware classification focuses on categorizing and organizing
different types of malware, malware detection focuses on identifying specific
instances of malware to prevent or mitigate their impact.

1.1 Context

In recent years, in addition to traditional signature-based approaches, more
contemporary methods rooted in machine learning and neural networks have
been incorporated into the defender’s toolkit, resulting in remarkable successes
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CHAPTER 1. INTRODUCTION

in countering malicious software. While traditional signature-based approaches
were effective at classifying known malware, they struggled to keep up with
modern threats’ rapid evolution and polymorphic nature. However, machine
learning algorithms, particularly neural networks, have revolutionized the field
by enabling the proactive detection and mitigation of previously unseen and
zero-day malware.

By training on extensive sets of labeled data, neural networks have demon-
strated exceptional abilities in learning intricate patterns and identifying subtle
indicators of malware presence. These models can even extract high-level fea-
tures from raw data, such as file behavior, network traffic, and system logs,
to distinguish between malicious strains. Through continuous learning and
adaptation, neural networks can dynamically update their knowledge base, ef-
fectively detecting emerging threats. Furthermore, integrating deep learning
techniques, such as convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), has further enhanced the accuracy and efficiency of anti-
malware systems [24] [43].

CNNs excel in capturing spatial and structural information from malware
samples [49], while RNNs are adept at modeling dependencies in sequential
code or network behavior[32]. Combining these techniques has enabled more
robust and comprehensive malware analysis, including advanced features like
the fusion of static and dynamic analysis, behavioral profiling, and anomaly
detection.

A widely used technique that harnesses the power of CNNs is visualization.
Researchers can generate an image with the data extracted from a malicious file
and use it as a sample for the CNN [49][19][71][18][40]. This technique takes ad-
vantage of the convolutional neural network models’ intrinsic qualities such as
robust feature extraction, spatial invariance, adaptation, and efficient processing.
One of the significant drawbacks of neural networks is the inherent challenge
of explaining the classification results. While neural networks excel in complex
pattern recognition tasks, their inner workings and decision-making processes
can be challenging to interpret and understand. Unlike traditional machine
learning algorithms, such as decision trees or logistic regression, which pro-
vide explicit rules or feature importance rankings, neural networks lack explicit
transparency [31]. This lack of openness arises from the highly interconnected
layers and numerous parameters within the network. As a result, determining
which specific features contribute to a particular classification decision can be
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elusive.
The absence of interpretability presents challenges, particularly in critical

domains like healthcare, legal systems, or cybersecurity, where the need for
explainability and transparency is paramount. The inherent difficulty in eluci-
dating the results of neural network classifications necessitates the development
of techniques and methodologies for interpretability. These methods should
enable researchers and practitioners to gain insights into the decision-making
processes of these intricate models, all while striking a balance between accuracy
and transparency. The demand for explainable outcomes is steadily growing,
especially among legislators who seek to ensure fairness and accountability in
the decisions made by artificial intelligence systems. A prime example of this is
the European Union’s General Data Protection Regulation (GDPR) [76], which is
European legislation aimed at safeguarding individuals’ privacy rights and gov-
erning the processing of their data. Among the key provisions outlined in the
document is the "Right to explain," which grants data subjects the right to avoid
decisions that are solely based on automated processing. Similar legislation is
being deliberated in the United States [35] and China [8].

The reproducibility of the results obtained by the best model is paramount,
especially in a crucial field like cybersecurity, in which millions are spent to get
the best results possible. In the context of malware analysis, where the com-
plexity of threats and the sophistication of cyber-attacks are constantly evolving,
reproducibility acts as a litmus test for the reliability of detection methods, clas-
sification algorithms, and mitigation strategies. Reproducible research allows
experts to scrutinize methodologies, identify potential biases, and validate the
effectiveness of proposed solutions. Furthermore, it fosters a culture of collab-
oration and knowledge-sharing within the research community, enabling the
collective development of robust and reliable tools to combat ever-changing
malware threats. Enabling the reproducibility of papers in malware analysis
not only bolsters confidence in research outcomes but also paves the way for
continuous innovation and advancements in cybersecurity practices, ultimately
safeguarding digital infrastructures worldwide.

With this study, we aim to tackle these two main challenges to model robust-
ness: reproducibility and explainability. We tested reproducibility by selecting
six of the best-performing CNNs found in the literature and implementing the
architectures using the information found online and in the papers presenting
them. We analyzed the issues that emerged in the implementation and studied

4



CHAPTER 1. INTRODUCTION

the results, comparing them to the ones reported. We employed a technique
called Class Activation Maps (CAM) to address the challenge of explainability.
In particular, we are the first to implement HiResCAM for accurately explaining
the state-of-the-art CNN used in developing malware scanners. HiResCAM
provides insights into the decision-making process of CNNs by highlighting
the regions of an input image that contribute the most to a specific classifica-
tion outcome. By visualizing the activation patterns learned by the network,
CAMs offer interpretability and shed light on the essential features or areas
that influenced the classification decision. This technique has proven particu-
larly valuable in applications such as image recognition and object detection,
allowing researchers and practitioners to understand the underlying reasoning
behind a CNN’s predictions.

In short, the objective of this thesis is to answer the following questions:

• RQ1: Can researchers reasonably reproduce or replicate the models pre-
sented in a paper?

• RQ2: What are the current issues affecting the field of malware image
visualization?

• RQ3: How can heatmaps help shed light on the functioning of CNNs in
visualizing malware, offering insights into their mechanisms?

• RQ4: Can these insights be extrapolated to enhance classifiers perfor-
mance?

1.2 Contribution

The main contributions of this paper are the following:

1. We carry out a reproducibility study on five high-quality papers in the
domain of malware image-based classification, highlighting the challenges
that researchers can have in the implementation of these models;

2. We study the comparability of results between papers produced by differ-
ent research groups;

3. We introduce an additional dataset with different characteristics from the
other two used in the study to further validate our results;

4. We implement the discussed models and show that visualization methods
can have optimal results in the field of malware classification;

5



1.3. OUTLINE

5. We produce heatmaps using two different CAM methodologies to shed
light on the process by which the individual neural networks are classify-
ing the samples;

6. We analyze the cumulative heatmaps to comprehend the way different
neural networks arrive at their final prediction and the errors they might
make;

7. We introduced a new and upcoming technique in malware visualization
called visual transformer and show how the study of CNNs heatmaps can
help improve classifiers results.

1.3 Outline

The rest of the paper is organized in the following way.

1. Chapter 1 we provided an introduction to the context in which this study
operates and the problems that we will address;

2. Chapter 2 introduces the fundamental concepts and techniques used in
malware analysis and the ideas to investigate the reproducibility and repli-
cability of models found in the literature. Additionally, here will be pre-
sented the notion of explainability and the reasons and theory behind its
use;

3. Chapter 3 summarizes a survey done on the malware image classification
domain, highlighting the particular gaps and blind spots of the field;

4. Chapter 4 advances the methodology used throughout the thesis and
justifies it in light of the questions that the survey brought up;

5. Chapter 5 presents a detailed description of the experiments and com-
ments on the results.

6. Chapter 6 concludes with the final takeaways and calls attention to future
questions.
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2
Background

2.1 Malware Analysis

Two main approaches divide malware analysis: static and dynamic. In static
analysis, malware is studied without executing it, involving examining code us-
ing disassemblers and decompilers. Researchers must comprehend the behavior
by analyzing indicators like opcodes, API calls, functions, and the overall struc-
ture of the executable. Suspicious code patterns can be identified and used as
signatures to detect other malware of a similar strain. This technique, known as
signature-based malware classification, constitutes the traditional method em-
ployed by antivirus software to identify malicious code. In contrast, dynamic
analysis, an alternative to static analysis, entails observing malware’s behavior
during its execution. Unlike static analysis, dynamic analysis necessitates run-
ning the malware in a controlled environment, such as a virtual machine, to
monitor its actions and detect malicious activities. Dynamic analysis circum-
vents common challenges associated with static analysis, such as obfuscated
code, anti-debugging mechanisms, or anti-virtualization measures.

2.1.1 Static Analysis

Static analysis is a method used in malware analysis to examine the code
or binary of the malicious program without executing it. It involves analyzing
the structure and content of malware samples to identify potentially malicious
activities and understand how the malware operates without seeing it in action.

7



2.1. MALWARE ANALYSIS

Some recognized tools used in static analysis are disassemblers, decompilers,
and debuggers. These tools help to reveal the instructions used by the malware
to perform its malicious activities, such as stealing data, modifying system
settings, or propagating to other systems. Additionally, static analysis can help
identify indicators of compromise that enable the detection of malware presence
on a system [50]. These can include file names, registry keys, network traffic
patterns, and other characteristics unique to the malware. During static analysis,
a researcher can extract signatures or marks of behavior from the malware’s
binary or code. One can use these signatures to detect malware on a system by
comparing them against a database of known malware signatures [82].

2.1.2 Dynamic Analysis

Dynamic analysis is a method used in malware analysis to examine the be-
havior of malware during its execution. Unlike static analysis, dynamic analysis
involves running the malware in a controlled environment to observe its behav-
ior and identify malicious activities. A sandbox or virtual environment executes
the malware during dynamic analysis, simulating a real-world operating sys-
tem. This allows the analyst to observe the malware’s behavior in a controlled
environment and monitor its interactions with the operating system and net-
work. Sandbox services, such as VirusTotal [74], Hybrid Analysis[30], Any.Run,
[3] Cuckoo Sandbox[15], and Joe Sandbox[33] offer a convenient way to perform
dynamic malware analysis and provide detailed reports on the malware’s be-
havior. The analyst can use various tools and techniques to monitor the sample’s
behavior, including system monitors, network monitors, and debuggers. These
tools can help identify the malware’s activities, such as creating files, modifying
system settings, or communicating with a command-and-control (C2) server.
Dynamic analysis can also help determine the malware’s evasion techniques,
such as anti-debugging or anti-virtualization techniques [12]. By observing the
malware’s behavior in a controlled environment, the analyst can better under-
stand the type and threat level of the malicious code. In the case of dynamic
analysis, the visualization approach. One can exploit the ideas in static analysis
by organizing the extracted information as an image when working with novel
data.
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2.1.3 Malware Visualization

Malware visualization is a technique used in malware analysis to visually
represent the behavior and characteristics of malware [43]. Visualization-based
malware detection is driven by the need to analyze and understand malware
behavior, detect anomalies, and mitigate threats. Key motivations include the
ability to analyze complex data and identify patterns of malicious activity. Visu-
alization enables comprehensive views of systems and networks, facilitating the
identification of relationships and potential attack vectors. It involves creating
graphical representations of various aspects of the malware, such as its network
activity, file activity, system calls, or the simple binary file. Analysts can use
malware visualization to represent the code structure of the malware, aiding in
the identification of the techniques used by the malware to evade detection and
the vulnerabilities it exploits. In addition to assisting in detecting and analyzing
malware, malware visualization can also help with the malware classification
task. Visualizing malware as images enables the differentiation of its compo-
nents. Malware developers often create new variants by making small changes
to the code, allowing for the identification of related malware strains. Visualiza-
tion techniques are effective in capturing minor malware alterations. Analysts
can identify similarities and differences between different malware strains by
representing the behavior and characteristics of malware in a visual format and
using machine learning methods. This can help with the classification of new
and unknown malware, as well as the identification of malware families and
variants. Unlike existing classification methods that necessitate disassembly or
execution, this approach eliminates the need for both yet exhibits remarkable
enhancements in performance. Moreover, it proves to be robust against preva-
lent obfuscation tactics like section encryption [71][80]. The pipeline used in
malware classification through malware visualization comprises the following
steps: information gathering, image generation, feature extraction and classifi-
cation.

Researchers can employ different methods to transform malware into an im-
age representation, with the first consideration being the information available
to them. This information can range from the raw bytecode of the malware to a
memory dump of the executed code from a sandbox. Generally, the techniques
described in this paragraph for generating malware images can be applied to any
type of information with some minor adaptations. Nevertheless, the type, quan-
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tity, and quality of information available during image creation can markedly
alter the results that a hypothetical classifier will yield at the end of the classifi-
cation pipeline.

Selecting an optimal technique for information representation is of utmost
importance, as it determines how the data will be organized visually. The
methods applied at this level strive to present the information as images while
preserving crucial characteristics, such as data interrelationships and connec-
tions. Researchers must balance achieving a robust image layout that can be
effectively utilized by feature extractors and classifiers while also considering
the potential loss of information that accompanies the transformation of data
representation. The standard methodology applied to transform a malware into
a grayscale image is the so-called line-by-line technique. A malware executable
can be depicted as a binary sequence of zeros and ones. This sequence can be
transformed into a matrix and interpreted visually as an image. Researchers
have noticed striking visual resemblances in the texture of images representing
malware from the same family. This phenomenon could be attributed to the
widespread practice of repurposing code to generate fresh malware iterations.
The next step in developing a reliable malware classifier using malware visu-

Figure 2.1: Example of grayscale images taken from two families found in the
MalImg dataset. Note the similarity in shape and content of the image inside a
specific class.

alization techniques is to extract relevant features from the generated image of
the executable. This is done by applying visual or textural feature extraction
methods to the images, which capture and transform features into a concise
representation for identifying patterns in a specific region of interest. These
techniques are used to distinguish between malware and benign files, as well as
between different malware families.

10
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The last step involves classifying the samples using the extracted features.
At this stage, any machine learning or deep learning classifiers commonly used
in other domains can be applied, as the information has been transformed and
synthesized into a format suitable for input into a classifier.

2.1.4 Machine Learning

Machine learning (ML) is increasingly used in malware analysis to auto-
matically classify and identify malicious software based on its behavior and
characteristics [69]. Machine learning, in general, forms the foundation for a
wide range of applications, spanning from image recognition and natural lan-
guage processing to medical diagnostics and autonomous vehicles. Rooted in
advanced statistical methods and computational algorithms, machine learning
empowers systems to learn from data, identify patterns, and make intelligent
decisions, all without explicit programming. The ability to process immense
datasets and unearth intricate patterns, which might be beyond human per-
ception, is a testament to its power. In machine learning, two fundamental
paradigms govern the learning process: supervised and unsupervised learn-
ing. The most commonly used algorithms in malware image-based analysis are
supervised.

In supervised learning, the algorithm is trained on a labeled dataset, meaning
it learns from input-output pairs. Given a set of input variables 𝑋 and corre-
sponding output labels 𝑦, the algorithm learns a mapping function 𝑓 (𝑋) → 𝑦.
Common supervised learning algorithms used in modern malware image clas-
sification include Support Vector Machine (SVM), Random Forests (RF) and
K-Nearest Neighbour (KNN) [22][65][78].

SVM is a robust supervised learning algorithm for classification and regres-
sion tasks. SVM finds the optimal hyperplane that best separates classes in the
feature space, maximizing the margin between classes; Random Forests are an
ensemble learning method that constructs multiple decision trees during train-
ing and outputs the individual trees’ mode (classification) or mean prediction
(regression). Another notable algorithm is KNN, a non-parametric, instance-
based learning algorithm for classification and regression tasks. Given a new
data point, KNN classifies it by identifying the ’k’ nearest neighbors from the
training data and determining the majority class or averaging the values of these
neighbors.
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Machine learning algorithms can also analyze malware features such as file
size, file type, file activity, system calls, network traffic, and other characteris-
tics to achieve optimal results. By analyzing these features, machine learning
algorithms can identify patterns and traits indicative of malware. For example,
during dynamic analysis, machine learning algorithms can analyze the behavior
of malware as it interacts with the system and network. Machine learning algo-
rithms can identify patterns that distinguish malicious behavior from legitimate
activity by monitoring the malware’s actions. Similarly, during static analysis,
machine learning algorithms can analyze the code and structure of malware to
identify patterns and characteristics associated with malicious software.

2.1.5 Deep Learning

In addition to traditional machine learning approaches, researchers applied
various types of neural networks to the malware classification problem with con-
siderable effort directed toward malware visualization [10][26]. In this particular
niche, the two major architecture explored have been CNNs and LSTMs. Their
application in malware analysis has demonstrated superior results compared
to traditional machine learning models. In the last decade, the application of
deep learning has skyrocketed, driven by exceptional results in multiple fields
such as NLP and image classification. Neural networks, particularly CNNs,
have been successfully applied to malware visualization, guaranteeing often
better results than classical machine learning models. Deep neural networks
hold immense promise for the future despite their significant requirements for
increased computational resources and larger datasets.

The advantage of using a CNN is present when treating spatially-structured
data. The origin of Convolutional Neural Networks has been attributed to LeCun
et al. [16]. CNNs utilize local connectivity and weight sharing to capture spa-
tial correlations in images efficiently. This is done by leveraging the concept of
convolution, which involves sliding a set of filters across the input and applying
element-wise multiplication and summation operations. They employ pooling
layers to downsample data while preserving important features. CNNs learn
hierarchical representations, extracting complex features from images. Addi-
tionally, they automatically learn discriminative filters, making them effective
for tasks like object recognition and image classification. Keeping in mind the
malware classification through visualization pipeline, it is essential to note how
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the application of a CNN essentially permits an end-to-end classification of the
samples, integrating feature extraction and classification in a single architec-
ture. The Long Short Term memory neural network is another commonly found
architecture in the literature. Even though the use of this type of model has
obtained its fame in the field of NLP, its application on malware analysis has
produced notable results

M/B
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Output

Layer

 Conv Layer

4x4

Figure 2.2: Example of CNN architecture

An additional deep learning architecture that is catching on more recently is
the use of transformers in the particular form of Visual Transformers (ViT) [20].
ViT could have disruptive consequences for the field because of its particular
inner working that differs substantially from the CNN. A Transformer is pri-
marily employed in Natural Language Processing (NLP) and relies heavily on
attention mechanisms, comprising two main components: an encoder and a de-
coder. The encoder processes the input sequence, capturing its salient features
through self-attention mechanisms, ultimately generating a set of context-rich
representations. The decoder, on the other hand, takes these representations
and incrementally produces the output sequence, ensuring accuracy through
self-attention. The synergy between the encoder and decoder empowers the
model to proficiently comprehend and generate sequential data. In computer
vision, transformers can weigh the importance of different image regions by
using self-attention, enabling them to capture complex spatial relationships and
long-range dependencies. Self-attention is a mechanism that permits a neural
network to weigh the significance of different parts within an input sequence
during its representation. Unlike traditional attention mechanisms, where the
attention weights are calculated based on the relationship between two sepa-
rate sequences, self-attention allows a sequence to focus on different parts of
itself. By considering all elements in the input sequence during processing,
self-attention enable the model to access global contextual information. This is
in contrast to traditional sequential models like RNNs, where information flow
is limited by the fixed order of processing.
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Figure 2.3: Visual Transformer Architecture [20]

In ViT, both its encoder and decoder utilize stacked self-attention and point-
wise fully connected layers. Unlike CNN, where properties such as locality,
two-dimensional neighborhood structure, and translation equivariance are in-
herently embedded within all layers, ViT primarily incorporates these traits
through Multi-Layer Perceptron (MLP) layers. These MLP layers are local and
exhibit translational equivariance. In contrast, ViT’s self-attention layers are
global, establishing comprehensive dependencies between input and output by
considering the entire input sequence [57].

2.2 Reproducibility

Few authors have asked themselves the question of reproducibility. The
preliminary study that is considered at the beginning of the majority of papers
presenting new models doesn’t usually include a discussion about the imple-
mentation of other models but often discusses only the results taken at face
value. The large majority of researchers’ lack of sharing of the codebases fur-
ther exacerbates this problem. The reproducibility problem has been studied
in depth in other fields. Borrowing from the advice given by researchers from
different domains, we can see how following some guidelines for implementing
models could help other authors verify and reproduce the research of other
groups. It is essential to understand that reproducibility has varied over time
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and can mean different things to different people. Daoudi et al. [17] have
helpfully defined three concepts to represent different ways researchers can im-
plement a model with various degrees of faithfulness. These three concepts are
repeatability, reproducibility proper and replicability. The difference between those
three lies in which team carries out the new experiment and which experimental
setup is used. If the same team performs the original experiment on the same
experimental setup, then researchers talk about repeatability. If another group
reproduces the experiment on the same setup, it is called reproducibility. If, in
the end, another team experiments on a different experimental setup, we are
talking about replicability. Reproducibility appears to be the key concern if the
scientific community wants to validate the results obtained by a research group.

The reproducibility of the results obtained by the best model is of paramount
importance, especially in the context of malware analysis, where the complex-
ity of threats and the sophistication of cyber-attacks are constantly evolving,
reproducibility acts as a criterion for evaluation for the reliability of detection
methods, classification algorithms, and mitigation strategies. Reproducible re-
search allows experts to scrutinize methodologies, identify potential biases, and
validate the effectiveness of proposed solutions. Furthermore, it fosters a cul-
ture of collaboration and knowledge-sharing within the research community,
enabling the collective development of robust and reliable tools to combat ever-
changing malware threats. Facilitating the reproducibility of research papers in
malware analysis enhances trust in research findings. It lays the foundation for
ongoing innovation and progress in cybersecurity practices, ultimately ensuring
the security of global digital infrastructures.

2.3 Explainability

The need for transparency and accountability in automated decision-making
systems has made explainability a crucial element in machine learning. Un-
derstanding and interpreting the rationale behind a machine learning model’s
predictions is particularly significant in healthcare, finance, and autonomous
systems. Explainability holds paramount importance in cybersecurity, where
ambiguity is unacceptable. Understanding how security systems make decisions
is crucial to prevent serious issues.Explainability makes systems more transpar-
ent by providing a deep understanding of how they work and highlighting
potential weaknesses or malicious activity. Although some machine learning

15



2.3. EXPLAINABILITY

algorithms inherently offer explanations for their outputs, widely used neu-
ral networks lack inherent explainability. This lack of transparency has raised
concerns and led to a demand for interpretability techniques to enhance trust,
mitigate bias, and ensure the ethical deployment of machine learning models.

The purpose of any explanation generally falls into one of two categories: (i)
providing insights into model training and generalization. These explanations
offer practitioners valuable information for decision-making in model training
and validation, such as the quantity of labeled data, hyperparameter values,
and model selection. The other category, (ii) explanations elucidating model
predictions, helps practitioners understand why the model made a specific pre-
diction, typically related to the input data. The explanations used in our research
fall into this category, enabling communication of model predictions, even to
non-experts. Analyzing individual predictions can reveal patterns in the overall
behavior of the model. In our case, dealing with image data, explanations take
the form of saliency maps or heatmaps. Saliency maps highlight crucial regions
in an image that influenced the network’s prediction. It’s important to note that
while heatmaps are a prevalent method for presenting model explanations, their
interpretation is subjective and dependent on the practitioner.

Figure 2.4: Example of HiResCAM heatmaps overlayed to their respective sam-
ples
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3
Related Work

This chapter serves as a comprehensive exploration into the cutting-edge
methodologies within the fields of machine learning and deep learning, specif-
ically tailored to the domain of malware image classification. As we delve into
the subsequent sections, our focus will shift distinctly into two pivotal areas: the
sophisticated algorithms of deep learning and the more traditional yet robust
machine learning techniques. By understanding the nuances and capabilities
of these two approaches and how researchers have taken advantage of them,
readers will gain invaluable insights into the diverse strategies employed to
identify, analyze, and classify malware from visual data, forming a critical foun-
dation for the discussions that follow. By conducting a thorough analysis of
these techniques, this chapter endeavors to give readers a nuanced comprehen-
sion of the state-of-the-art advancements in malware image classification while
spotlighting the inherent blind spots and knowledge gaps within the field. The
subsequent chapters will meticulously delve into these issues, dissecting and
exploring them in detail together with the solution developed as the thesis’
work.

3.1 Machine Learning

The introduction of machine learning techniques has been proven fruitful in
various domains and cybersecurity use is increasing [69].

In 2011 Nataraj et al. [49] introduced malware analysis and the use of visu-
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alization techniques, accompanying it with appreciable results in classification.
This paper used an algorithm to transform the binary file of malicious samples
in gray-scale images. GIST texture features have been extracted from the image
dataset to implement an SVM classifier. This approach aids in categorizing novel
and unfamiliar malware, as well as recognizing distinct lineages and versions
within malware families. The model’s overall accuracy has been tested on the
MalImg dataset presented in the same study. Over 9339 samples divided into
25 families, the classifier has obtained 97.18% accuracy.

In the case of visual malware analysis, a modern approach can be found in
[47] where authors use classifiers such as random forests, SVM, and decision
trees to obtain results over 90% accuracy depending on the feature extraction
method. The innovative idea presented in this paper is the use of an ensemble
of global (GIST) and local (D-SIFT) feature extraction techniques. They reduce
pattern dimensions through cluster assignment and regularization to address
computational issues. Results show the model achieves 98% accuracy on the
Malimg database but has a slightly slower runtime.

Fu et al.[23] presented a technique for visualizing malware both globally
and locally to achieve precise classification. Their approach involved repre-
senting malware as RGB-colored images and extracting global features through
the Gray-level Co-occurrence Matrix for texture and color moments for color at-
tributes. Additionally, they incorporated locally extracted special byte sequences
from code and data sections, transforming all these features into feature vectors
using Simhash. By integrating global and local features, they enabled efficient
classification using algorithms such as random forest, K-nearest neighbor, and
support vector machine. This approach resulted in the highest accuracy of
97.47% and the highest F-measure of 96.85% when tested on a dataset compris-
ing 7087 samples from 15 different malware families.

In [81] the authors presented two approaches to identify malware code.
The first solution involved solving malware classification through an integrated
learning method, demonstrating high accuracy in classification, particularly
with multi-model ensemble techniques. The second solution addressed the
visualization of feature matrices using the t-SNE algorithm to determine the
number of malware families, followed by clustering using the k-means algo-
rithm. The paper also introduced a novel concept called the visual character
matrix, which successfully determined the number of malware families. The
authors suggested future applications for these methods in detecting malicious
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code in IoT devices and wireless sensor networks.
Roseline et al. [60] proposed an anti-malware system that employs a layered

ensemble of random forests, mimicking deep learning techniques but with im-
proved performance. This approach doesn’t require hyperparameter tuning or
backpropagation and operates with reduced model complexity. The proposed
system achieved detection rates of 98.65%, 97.2%, for Malimg and BIG 2015,
outperforming other state-of-the-art.

Machine learning techniques have demonstrated a reasonable ability to de-
tect and categorize malware, with their notable strengths in efficiency and their
models’ inherent interpretability. Nonetheless, their utility has been overshad-
owed by deep learning methods’ increasingly prevalent and superior perfor-
mance. Furthermore, the requirement for meticulous feature extraction, of-
ten necessitating expert assistance, represents another vulnerability of machine
learning approaches.

3.2 Deep Learning

In addition to traditional machine learning approaches, more recently, neural
networks, particularly CNNs have been explored. Their application in malware
analysis has demonstrated superior results compared to conventional machine
learning models.

In [26], the authors improve the visualization technique by using an originally
designed CNN. The feature extraction has been done through the neural network
without the need for other algorithms. The overall model has improved accuracy
by 1.30% over the earliest Nataraj et al. model, proving the usefulness of CNNs.

In [34], authors explore the effectiveness of Convolutional Neural Networks
(CNNs) in this context. The proposed approach converts malware binaries into
grayscale images and trains a CNN for classification. Experiments conducted
on standard malware datasets (Malimg and Microsoft malware) show that the
method outperforms existing techniques, achieving accuracy rates of 98.52% and
99.97% on the respective datasets. In this case, as with the previously discussed
Gibert paper [26], the CNN proposed has been developed from scratch by the
authors.

Ni et al. [51] proposes a malware classification algorithm, Malware Classi-
fication using SimHash and CNN (MCSC), to tackle the task of malware clas-
sification using visualization. MCSC converts disassembled malware codes
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into grayscale images using SimHash and then utilizes CNNs to identify their
families. The algorithm incorporates multi-hash, major block selection, and
bilinear interpolation to enhance performance. Experimental results demon-
strate MCSC’s effectiveness in classifying malware families, even with unevenly
distributed samples. The algorithm achieves a classification accuracy of up
to 99.26% and an average accuracy of 98.86% on a dataset of 10,805 samples,
outperforming other compared algorithms.

In [66], the authors discuss the vulnerability of Internet of Things (IoT) de-
vices to cyberattacks, particularly Distributed Denial of Service (DDoS) attacks,
due to their lack of basic security measures. They propose a lightweight method
to detect DDoS malware in IoT environments. The approach similar to the pre-
viously discussed techniques converts malware binaries into grayscale images
and uses a convolutional neural network for classification. Experimental results
demonstrate that the system achieves 94.0% accuracy in distinguishing good-
ware and DDoS malware and 81.8% accuracy in classifying goodware and two
prominent malware families.

The model presented in [73] combines similarity mining and deep learning
architectures, using various distance measures to calculate similarities between
malware variants. These measures generate similarity matrices, and the dis-
tances between these images help identify malware families. Sequential Minimal
Optimization (SMO), Normalized Polynomial kernel plus Deep learning archi-
tectures in a bi-directional CNN achieves nearly 99% accuracy. The proposed
method is computationally efficient compared to traditional machine learning
techniques and can be continuously trained in real-time to handle new malware
threats.

In 2020 Vasan et al. [72] experimented with a slightly simplified version
of the VGG16 CNN. The authors utilized RGB images instead of gray-scale
ones by applying a simple colormap on the originals. They then employed
transfer learning and fine-tuning to obtain a competitive model. With transfer
learning, researchers recycle the CNN’s weights trained in another similar task,
in this case, the ImageNet challenge [61], and use them for the model they
are developing. Fine-tuning is a further improvement over transfer learning
because it enables the authors to re-train the neural network with the new
weights. Usually, to save on computational costs, only some layers are trained.
In the case of this paper, only the dense and the first convolutional layers are
trained. The final accuracy obtained for the MalImg dataset is 98.82%.
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In the same year, authors in [71], used an ensemble technique to harness the
power of different feature extractors in the form of different CNNs, and other
classifiers. The fine-tuned models employed in the study have been VGG16 and
ResNet50. The final accuracy result on the MalImg dataset has been 99.50%,
marking a big improvement over previous models and, most importantly, with-
out the need for complicated image generation procedures. In general, re-
searchers moved in two directions to improve the results of their model. The
first group moved towards improving classification by using better-performing
classifiers, mainly CNNs. The other group focused on better methodologies to
extract features and create images with more information. Despite the resource-
intensive nature and data requirements of deep neural networks, they hold great
promise for future advancements in the field.

In [48] Naeem et al. address the malware detection problem in the Industrial
Internet of Things (IIoT). Traditional malware detection techniques are unsuit-
able for IIoT devices due to their computing complexity and limited resources.
The authors propose an architecture integrating malware visualization into a
Deep Convolutional Neural Network (DCNN) model. The technique involves
converting APK and PE files into color images, which the DCNN model then
processes to extract dynamic image features of malware. The proposed method
achieves high detection accuracy, with 97.81% accuracy on the IIoT dataset and
98.47% accuracy on the Windows dataset.

In [80], the authors propose a visualization method using Colored Label
boxes (CoLab) to mark sections of Portable Executable (PE) files, emphasizing
section distribution information in converted malware images. A classification
method named Malware classification using CoLab image, VGG16, and Support
Vector Machine (MalCVS ) is developed. Experimental results using malware
datasets from Virusshare and the Microsoft Malware Classification Challenge
demonstrate MalCVS’s effectiveness. The approach achieves average accuracies
of 96.59% and 98.94% on the two datasets, respectively, indicating high accuracy
in classifying malware into families.

In [68], the authors propose a method utilizing Convolutional Neural Net-
works (CNNs), transforming bytes files into grayscale and RGB images for clas-
sification. They introduce a new technique called B2IMG for file transformation
and a CycleGAN-based data augmentation method to handle imbalanced data
sizes among malware families. Testing on BIG2015 and DumpWare10 datasets
showed significant improvements in classification accuracy, reaching 99.86% for
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BIG2015 and 99.60% for DumpWare10, demonstrating the effectiveness of the
proposed method.

In [64], the authors introduce a novel approach to malware detection by com-
bining static and dynamic analysis techniques. Traditional methods have limi-
tations, with static analysis being fast but unable to detect obfuscated malware
variants and dynamic analysis being effective but slow and resource-intensive.
The proposed method visualizes PE files as colored images, extracts deep fea-
tures using a fine-tuned deep learning model, and detects malware using sup-
port vector machines (SVM). Integrating deep learning and machine learning
eliminates the need for extensive feature engineering and domain knowledge.
Experimental validation involving 12 machine learning and 15 deep learning
models, conducted on various benchmark datasets, shows state-of-the-art per-
formance. The proposed framework achieved an accuracy of 99.06% on the
Malimg dataset and demonstrated statistical significance through rigorous test-
ing methods.

In [19], Deng et al. propose a malware classification method, Malware Clas-
sification based on Three-channel Visualization and Deep learning (MCTVD),
which employs small, uniform-sized malware images and a shallow convolu-
tional neural network. Experimental results demonstrate MCTVD’s effective-
ness, achieving an accuracy of 99.44% on Microsoft’s public malware dataset
under 10-fold cross-validation.

The current landscape of malware image-based detection is undeniably dom-
inated by deep learning methods, particularly Convolutional Neural Networks
(CNNs). Researchers have extensively proven that these complex architectures,
borrowed from diverse fields, or simpler ad-hoc models, consistently yield state-
of-the-art performance levels. Continuous refinement of CNNs is ongoing, with
ensemble techniques emerging as the preferred approach for achieving optimal
results. Simultaneously, the exploration of Recurrent Neural Networks (RNNs)
for malware visual classification is underway, with nascent yet promising efforts
in visual transformers. The remarkable results attained by neural networks have
established them as the preferred option for both researchers and businesses,
replacing conventional machine learning models. This transition has unques-
tionably improved the effectiveness of malware categorization. However, it has
also concealed the inherent transparency found in machine learning models,
leading to the emergence of a “black-box" approach in the field.

Despite the remarkable successes, there remains a significant challenge re-
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garding explainability. Few researchers have delved into the intricacies of why
specific choices are made, such as selecting the best-performing neural networks
for ensembling. This lack of clarity often leads to situations where combining
the top-performing neural networks does not consistently generate the best final
results. The field, therefore, grapples with the trade-off between superior per-
formance and the understanding of the decision-making processes underlying
these advanced models.

Table 3.1 contains the information about the classification of the model and
the ideas explored in the classification phase. Only the main contribution of
each paper is considered. The columns are: Paper - paper reference; D/C -
if the paper talks about detection of malware [D] or classification in families
[C]; DT/RF - if the paper uses a decision tree or random forest technique for
classification; KNN - if the paper uses a KNN classifier; SVM - if the paper uses an
SVM classifier; CNN - if the article uses a CNN as a classifier, it will be specified
which CNN architecture is used if it is a known architecture; RNN - if the paper
uses a RNN as a classifier, it will be specified which RNN architecture is used
if available; Other ML - all the machine learning techniques other the KNN,
DT/RF and SVM cateogries; Other DL - all the deep learning techniques that
do not fit in the CNN and RNN categories (ex. vision transformers); Split - the
training test split used to train the model, the notation is train/validation/test,
[f] indicates the use of k-fold cross validation instead of leave one out; E - if the
problems of explainability and interpretablity is dealt with.
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Table 3.1: Overview of Surveyed Research Papers in Malware Image-Based Detection: A Comparative Analysis of Methods
and Approaches

Paper D/C DT/RF KNN SVM CNN RNN Other
ML

Other
DL

Split E

[26] C ✓ 10f
[31] C ! 80/-/20, Grad CAM

80/20/-
[65] C RF ! ! !

[68] C DenseNet
121

80/-/20

10f
[54] D,C VGG3, 70/-/30

ResNet50
[6] D,C ! 5f

[4] C CNN,
CNN-
LSTM

80/-/20

CNN-
BiLSTM

[42] C Attention 80/-/20
+ CNN
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[1] C EfficientNet
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75/-/25

[67] C ResNet50 75/-/25
[2] D,C DenseNet
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70/-/30
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Linear-
SVM

[79] C BiLSTM 73/20/20,
62/20/20

!

[32] D SEResNet
50

BiLSTM 80/10/10,
70/15/15,
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[28] D AlexNet 50/-/50
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10f
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Inception
V3,
ResNet50

[45] C DT ! BiLSTM ! 80/-/20

[14] C Shallow-
CNN

70/-/30

[84] C Inception
V3

! 80/-/20 t-SNE

ResNet50
VGG16
Xception

[58] D DenseNet 75/-/25 t-SNE
EfficientNet
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MobileNet
ResNet
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4
Methodology

In this chapter, we delve into the methodology employed to meticulously
analyze and address the research questions posed in the introduction 1. Our
exploration commences with a comprehensive overview of the three datasets,
detailing the methods employed for data acquisition and emphasizing the nu-
ances that distinguish them. Proceeding from dataset elucidation, we meticu-
lously explicate the rationale underpinning our selection of six Convolutional
Neural Networks (CNNs) derived from five researched papers of high repute.
Each CNN undergoes a thorough dissection, delving deep into its architectural
intricacies and nuanced presentations. Following this dissection of the chosen
models, we describe the strategic choices we made in replicating these models,
illuminating the challenges faced and the decisions taken to ensure faithful repli-
cation. In our particular case, we tried to reproduce the model selected but the
task was impossible for the lack of information present in the papers. For this
reason, what we achieved in this thesis is more properly defined as replicability.
In the rest of the document, the two words are used interchangeably keeping
in mind that formally the work aims to replicate the models and not reproduce
them

Transitioning from replicability considerations, we introduce the array of
explainability tools utilized, predominantly focusing on CAMs, specifically
HiResCAM [21] and GradCAM. Our exploration navigates through their unique
implementations and distinctive features, shedding light on how these tools were
instrumental in our analysis. Furthermore, we introduce the Structural Simi-
larity Index (SSIM) metric and articulate its significance within the context of
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our research. Furthermore, we present the cumulative heatmap for a particular
malware class and cumulative-SSIM, essential metrics used to assess the CNNs’
ability to distinguish between different malware families.

Towards the chapter’s end, we clarify our rationale for adopting a Vision
Transformer (ViT) as a benchmark classifier. Additionally, we provide an in-
depth exploration of the ensemble architecture meticulously crafted to attain
the final results, offering a holistic view of our research methodology and its
intricacies.

4.1 Datasets

The most commonly used datasets in the literature are Big2015 and MalImg.
We decided to employ both of them to give meaningful results that prove the
robustness of our research. We added to these two a new and original dataset,
called VX-Zoo, that we created during the study of this project. The three
datasets are presented in detail in the following parts.

4.1.1 MalImg

MalImg stands out as the pioneering malware dataset exclusively designed
for image visualization. Despite its age, it remains a cornerstone in the realm
of Portable Executable malware image-based analysis, and it continues to be
widely utilized. Introduced by Nataraj et al. in their seminal paper [49] in
2011, this dataset sparked significant interest in malware visual classification.
Comprising 9,339 malware grayscale images categorized into 25 distinct classes,
this dataset is publicly accessible.

Sourced from the Anubis analysis system [5], MalImg transforms each mal-
ware sample into a grayscale image by mapping individual bytes to pixels.
Notably, the dataset contains a mix of packed and unpacked malware, with
specific families such as Yuner.A, VB.AT, Malex.gen!J, Autorun.K, and Rbot!gen
being packed using UPX [70]. Moreover, the dataset presents a notable imbal-
ance, ranging from 2,949 samples belonging to the Allaple.A family to merely 80
samples in the Skintrim.N family. The specific composition of the dataset can be
found in 4.1.
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Family Total Type
Adialer.C 125 Dialer
Agent.FYI 116 Backdoor
Allaple.A 2949 Worm
Allaple.L 1591 Worm
Alueron.gen!J 198 Trojan
Autorun.K 106 Worm
C2LOP.gen!g 200 Trojan
C2LOP.P 146 Trojan
Dialplatform.B 177 Dialer
Dontovo.A 162 Trojan DL
Fakearean 381 Rogue
Instantaccess 431 Dialer
Lolyda.AA1 213 Stealer
Lolyda.AA2 184 Stealer
Lolyda.AA3 123 Stealer
Lolyda.AT 159 Stealer
Malex.gen!J 136 Trojan
Obfuscator.AD 142 Trojan DL
Robot!gen 158 Backdoor
Skintrim.N 80 Trojan
Swizzor.gen!E 128 Trojan DL
Swizzor.gen!I 132 Trojan DL
VB.AT 408 Worm
Wintrim.BX 97 Trojan DL
Yuner.A 800 Worm

Table 4.1: MalImg Dataset

4.1.2 Big2015

The Microsoft Malware Classification Challenge Dataset, often called Big2015
or MMCC [59], is the second most cited repository in the field. This dataset en-
compasses a robust collection of 10,860 malware executables, categorized into
nine distinct families. Originating from the Microsoft Malware Classification
Challenge in 2015, participants were tasked with training their classifiers, of var-
ied types, on these 10,860 malware samples. The challenge required participants
to predict on a separate set, the results of which were evaluated remotely.

Each executable within this dataset possesses a unique identification, com-
prising a 20-character hash value and an integer signifying the malware family
name. To ensure the safety of researchers, the PE (Portable Executable) headers
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of all binaries were removed, rendering them inert and harmless. Furthermore,
the dataset includes metadata that captures diverse information extracted from
the binaries, including function calls, strings, and more. Assembly files associ-
ated with each binary are also provided.

It is imperative to note that the Big2015 malware dataset wasn’t originally tai-
lored for malware visualization tasks. Consequently, we had to extract grayscale
malware images from this dataset, employing a technique akin to that utilized
by authors in [49] for MalImg. The Big2015 files provide binaries in hexadecimal
form, enabling a swift translation into grayscale images through a straightfor-
ward script.

Similar to MalImg, Big2015 suffers from a pronounced imbalance in class
distribution and encompasses obfuscated malware, notably presented within the
Obfuscator.ACY class. Further details on the dataset composition are presented
in 4.2.

Family Total Type
Gatak 1013 Trojan
Khelios_ver3 2942 Virus
Khelos_v1 398 Virus
Lollipop 2478 Adware
Obfuscator.ACY 1228 Obfuscated Malware
Ramnit 1541 Trojan
Simda 42 Stealer
Tracur 751 Trojan
Vundo 475 Trojan

Table 4.2: Big2015 Dataset

4.1.3 VX-Zoo

The final dataset employed in this study is an original creation meticulously
explicitly crafted for this document. While Big2015 and MalImg possess unique
strengths and weaknesses, we recognized the necessity of introducing a new
and more contemporary malware set to establish additional benchmarks. The
fundamental principles guiding the development of this malware dataset in-
cluded:

1. Incorporating New Malware: Acknowledging the evolving malware land-
scape, we aimed to create a dataset that reflects the present-day scenario.
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Both MalImg and Big2015 have started to show signs of aging, and testing
on them may not provide a realistic perspective on new malware variants;

2. Year-wise Identification: Recognizing the significance of analyzing mal-
ware from the same class but across different years, we made an effort
to include malware samples from diverse years whenever possible. This
approach enables researchers to assess classifier performance when con-
fronted with malware that has undergone mutations over time;

3. Maintaining Imbalanced Characteristics: Emulating the natural vari-
ation observed in the wild, where malware classes are not evenly dis-
tributed, we preserved the imbalanced nature of sample distribution. This
decision aligns with the reality of cybersecurity threats, where certain
malware classes are widespread, while others are more niche;

4. Ensuring Variety in Malware Types: Following the precedent set by pre-
viously cited datasets, we aimed for diversity in the types of malware
classes represented. The goal was to create a classifier capable of identify-
ing malware in general, rather than being specialized for a specific type.
While ensuring variety, we maintained the ability of the classifier to dis-
tinguish between classes without overly emphasizing the differentiation
of malware types;

5. No Distinction Between Obfuscated and Non-obfuscated Malware: Un-
like some datasets that categorize all obfuscated malware into a single cate-
gory, we opted not to distinguish between obfuscated and non-obfuscated
malware. Our objective was for the classifiers to correctly identify malware
classes, regardless of whether the malware was obfuscated or not;

6. Increased Sample Size and Intermediate Class Count: In our endeavor
to enhance the datasets robustness, we aimed for a larger sample size
than both Big2015 and MalImg. Additionally, we settled on a number of
classes that fell between the extremes, striking a balance that allowed for
a comprehensive evaluation of classifier performance.

By adhering to these core principles, we aimed to create a dataset that not
only addresses the limitations of existing datasets but also serves as a valuable
resource for researchers in the field of malware classification and analysis.

To compile our samples, we accessed the malware binaries from VirusShare
[75], stored within Zip files available through torrents. Spanning a period of
eight years from 2015 to 2022. For each year, we randomly chose two Zip
files uploaded during that specific year, utilizing them as the foundational data
source for that particular time frame.

The labeling system utilized was based on the Kaspersky[37] nomenclature,
obtained from VX-Underground[77] . Leveraging these labels, we could discern
and filter out non-PE (Portable Executable) malware and benign files present
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within the zipped archives. This curation step was pivotal in ensuring the
dataset’s quality and relevance.

Subsequently, we honed in on malware families that exhibited consistency
across the eight years under consideration. Specifically, we focused on families
that appeared at least three times, except for three classes (Inject.ahqtx, Elkern.b
and Vtflooder.ekl). This criterion ensured the dataset’s integrity and relevance to
contemporary malware classifications.

The resulting dataset showcased the diverse characteristics of malware fam-
ilies over time. Some classes exhibited sporadic spikes in specific years, while
others displayed consistent patterns or concentrated occurrences in consecutive
years. This dynamic evolution of malware families was cataloged and is detailed
in Table 4.3 for a comprehensive reference.

Family Total ’15 ’16 ’17 ’18 ’19 ’20 ’21 ’22 Type
AntiFW.b 5777 2784 1419 1574 0 0 0 0 0 Trojan
Expiro.w 364 325 0 0 0 0 0 1 38 Virus
Lamer.cb 754 16 0 0 17 27 636 44 14 Virus
Parite.b 380 361 7 1 1 7 1 2 0 Virus
Sality.sil 855 809 7 1 10 15 11 2 0 Virus
Virut.ce 1612 849 11 5 7 15 647 39 39 Virus
WB.NA 908 885 0 0 2 1 1 12 7 Worm
Wabot.a 442 60 0 0 0 0 363 4 15 Bckdr
Vtfloder.ekl 465 465 0 0 0 0 0 0 0 0 Trojan
Alman.b 226 218 3 0 0 2 2 1 0 Virus
Elkern.b 219 219 0 0 0 0 0 0 0 Virus
Nimul.f 3044 37 0 0 4 2 7 2984 10 Virus
Debris.b 208 208 0 0 0 0 0 0 0 Worm
Inject.ahqtx 275 0 0 275 0 0 0 0 0 Trojan
VB.cuvt 130 0 0 0 0 0 120 4 6 Trojan

Table 4.3: VX-Zoo Dataset

4.2 Replicated CNN Models

4.2.1 Selection Methodology

To ensure the reliability of our research regarding the replicability of models
in malware image classification, we meticulously chose representative architec-
tures for implementation and testing. We opted for diversity in approaches over
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Figure 4.1: Diagram of the Replicability pipeline adopted in this thesis

rigid adherence to performance metrics, emphasizing a comprehensive repre-
sentation of the field. The following principles guided our selection criteria:

• High-Quality Papers: The chosen papers were required to meet stringent
quality standards, recognized in the field for their citations and prestigious
venue. Furthermore, these papers had to lack glaring errors or deficiencies
easily discernible by a malware analysis researcher;

• State-of-the-Art Results: The selected papers had to yield results compa-
rable to the best outcomes prevalent at the time of publication, ensuring
alignment with the contemporary state of the art;

• Known Datasets: The datasets used in these papers had to align with the
established benchmarks for malware image visualization, namely Big2015
or MalImg, ensuring a standardized comparison ground;

• Variety of Architecture: Diverse architectural approaches were a paramount
consideration. We focused on incorporating different types of architec-
tures for each model, encompassing a wide spectrum of CNNs commonly
employed in state-of-the-art malware visualization. This included well-
established models such as ResNet50, VGG15, DenseNet121, and Efficient-
NetB0, representing the core of our replicability research. Additionally, a
slightly modified neural network akin to a well-known model (in our case,
IMCFN, a modified version of VGG16) and a completely original CNN in
the form of the Gibert CNN were incorporated;

• Fine-Tuning and Transfer Learning: The selected CNNs were deliberately
chosen to include instances where fine-tuning and transfer learning were
applied, enhancing the depth and versatility of our analysis;
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• Different Years: To capture the evolutionary trajectory of neural network
models, our selection spanned across various years. Consequently, we
curated one CNN from 2018, three from 2020, and two from 2022, offering
a nuanced insight into the progression of techniques over time;

4.2.2 Classification Models

In this section, we will present the selected six models and the papers in
which they are described.

Gibert 2018

We chose the model presented in [26] as a representative example of a well-
established original CNN used in malware visual analysis. The authors metic-
ulously elaborate on the architectural decisions behind the CNN, allowing us
to effortlessly replicate the structure. The paper lacks specific hyperparameter
values, despite the authors mentioning their tuning efforts. The authors test the
model with two datasets, the already named Big2015 and MalImg, and input
image sizes. We opted to focus our analysis on 256 × 256 images instead of
128 × 128. This choice not only aligns more closely with other studies, which
all used 224 × 224 images, but also results in superior classifier performance.
The paper offers crucial information for reproducibilitythe model architecture.
While the absence of a comprehensive hyperparameter report hinders full replication,
the provided structure enables researchers to delve into the CNN’s nuances. The
authors calculate essential metrics like accuracy, precision, recall, and F1-score,
along with supplying detailed confusion matrices. However, an opportunity
is missed concerning the training’s evolution statistics, which could enhance the
paper’s comprehensiveness.

IMCEC 2020

We selected the study by Vasan et al. [71] due to its publication in a highly
regarded journal and its reputation as an exemplary ensemble architecture in
the field. The authors meticulously outline their approach, detailing the imple-
mentation of transfer learning and fine-tuning, specifically focusing on SVMs
and the fusion methodology employed for the results. The paper delves into
the Principal Component Analysis (PCA) to reduce features extracted from
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headless VGG16 and ResNet50 models. Crucially, the authors provide all hy-
perparameters, enhancing the reproducibility of their work. Despite initiating
with well-known and easily implementable CNNs like VGG16 and ResNet50,
Vasan et al.’s model incorporates various intermediate steps in constructing the
final model. While these complexities could pose challenges for replication,
the authors meticulously document each step, eliminating potential pitfalls for
researchers. In our replication efforts, we focused on implementing these inter-
mediate neural networks, omitting alterations to the CNN heads or the addition
of SVMs. This choice was motivated by our intention to assess the fundamental
architectures themselves rather than the ensemble technique as a standalone
entity. In this paper, it’s clear that “VGG16" and “ResNet50," while perhaps
not the most attention-grabbing aspects, unquestionably form the core of our
model. Their faithful reproduction forms the foundation upon which the rest
of the ensemble method stands. Consequently, these foundational models, with
their profound influence, represent the most critical aspect of the architecture.
Moreover, Vasan and colleagues enrich the reader’s by providing a comprehen-
sive array of metrics. In addition to those offered by Gibert 2018 and discussed
previously, they include ROC curves and training statistics, fostering a deeper
understanding of the model’s performance dynamics.

IMCFN 2020

The model discussed in [72] emanates from the same research group re-
sponsible for IMCEC 2020, sharing commonalities that reflects in the paper and
the provided information, notably the final result metrics and the training met-
rics. However, certain hyperparameters, notably dropout rates and momentum
values, are featured in IMCEC 2020 but remain conspicuously absent here. It can
be inferred that these parameters might echo their counterparts in IMCEC 2020
due to the resemblance between the CNN architectures. The original structure,
denoted as IMCFN 2020, represents an adaptation of VGG16 detailed by the
authors, making its replication feasible. Our research strategy, pivoted towards
grayscale images, deliberately ignoring the colormap augmentation. This delib-
erate exclusion aimed to ensure result comparability with other models under
consideration, thereby refining our analysis and providing a more streamlined
basis for evaluation. This model was also chosen because the fine-tuning is done
by keeping frozen all the layers except the last three.
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Tekerek 2022

Among the papers we scrutinized, [68] stands out for its meticulous detailing
of the utilized model and of the training and testing steps. The authors delve
deeply into the structure of the DenseNet121 CNN employed for classification,
providing an exceptionally comprehensive account. This paper emerged as the
most detailed among the ones analyzed, encapsulating all essential details nec-
essary for a comprehensive replicability study. A notable facet of this paper is the
authors’ transparency in sharing the framework employed for neural network
implementation. In alignment with our approach for the other models under
consideration, we made a conscious choice not to implement the augmentation
technique outlined in the paper, specifically Cycle GAN. The authors also present
results for the model without augmentations, affording us the opportunity to
continue our study along this trajectory. This decision, founded on method-
ological consistency, further solidifies the robustness of our research path and
ensures a meaningful comparison of results across the analyzed models.

Pratama 2022

Replicating the model introduced by Pratama and team in [55] was a fairly
straightforward process. Their study encompassed the entire EfficientNet CNN
family. For our analysis, we narrowed our focus to EfficientNetB0. Even though
it isn’t the top-performing CNN, it shares a common image input size with other
models we examined, namely 224 × 224. The authors thoroughly explain the
CNN architecture and techniques, making replication quite accessible. How-
ever, some hyperparameters like dropout, momentum, and weight decay weren’t
provided. It’s possible the authors chose default values from their framework,
hence the absence of specific numbers. The approach outlined in the paper is ro-
bust, despite it being a conference paper. It illustrates a trend observed in recent
years, where the field of malware image visualization has gained prominence
as a research area. Authors are increasingly meticulous in sharing implementa-
tion specifics and essential information necessary for accurate result replication.
This trend highlights a growing commitment within the research community to
enhance the transparency and replicability of their findings.

The differences and similarities between the models will be clarified and
dissected in the experiments Chapter 6.
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4.3 Models Interpretation

Figure 4.2: Diagram of the explainability pipeline adopted in this thesis

We aim to contribute significantly to the field by offering comprehensive
insights into the operational mechanisms of Convolutional Neural Networks
(CNNs) and highlighting distinctions between various models. This endeavor
is crucial for several reasons, all of which hold immense significance:

• Distinguishing Models based on Quality: CNNs, while highly effective,
often exhibit marginal differences in performance. It becomes essential to
discern between these models based on their quality to make informed
decisions about their application and efficacy;

• Addressing the Black Box Nature: CNNs, by their nature, function as
black boxes, making them susceptible to manipulation if researchers lack
clarity regarding their inner workings. Understanding the intricacies of
these models is pivotal to ensuring their robustness and integrity in real-
world applications;

• Leveraging CNNs to their Full Potential: Awareness of the limitations and
weaknesses inherent in CNNs empowers researchers to extract maximum
utility from these powerful tools. By recognizing and addressing these
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limitations, researchers can fine-tune CNNs, enhancing their accuracy and
reliability across various tasks;

• Addressing Specific Issues: Even a highly effective CNN may yield sat-
isfactory results overall but struggle with specific subsets of data. Un-
derstanding the intricacies of how the CNN functions within these sub-
sets enables researchers to pinpoint underlying reasons. Armed with this
knowledge, tailored solutions can be developed, bridging the performance
gap for these specific samples and aligning it with the overall CNN per-
formance.

In the context of explaining neural network models, especially those de-
signed for image analysis, employing heatmaps, specifically Class Activation
Maps (CAMs), emerges as an invaluable technique. CAMs, a well-recognized
method in computer vision, facilitate the discernment of crucial regions within
an image instrumental in predicting a specific class. Typically utilized for object
localization, CAMs pinpoint the location of an identified object within an image.
Our objective diverges slightly, as we aim to comprehend the areas considered piv-
otal by CNNs during the prediction process rather than identifying specific objects
within bitmap images.

The rationale behind this approach is identifying recurring image patterns prevalent
across all malware samples within a particular class. This understanding, in turn,
aids in discriminating one class from another. The utilization of CAMs becomes
pertinent in this context as they offer a nuanced insight into the neural net-
work’s decision-making process, shedding light on the specific image regions
influencing the classification outcome.

4.3.1 CAM Techniques

The process of extracting a CAM heatmap from a CNN involves several
steps. In instances involving simple CAMs, the neural network incorporates a
final convolutional layer succeeded by a dense layer with softmax activation. In
this thesis, we used two variants of CAM, GradCAM and HiResCAM with a
particular focus on HiResCAM. Now, we will explain why we chose these two
methods and why they are needed instead of classical CAM.

To visualize heatmaps by themselves, we also used the Kronecker product
[29] to upscale the resulting image instead of the classical resizing method. The
Kronecker product is a mathematical operation that combines two matrices to
create a larger matrix. Given two matrices 𝐴 and 𝐵, the Kronecker product,
denoted by 𝐴 ⊗ 𝐵, results in a block matrix where each element of matrix
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𝐴 is multiplied by the entire matrix 𝐵. The resulting matrix has dimensions
𝑚 × 𝑛(where 𝑚 and 𝑛 are the dimensions of matrices 𝐴 and 𝐵, respectively) and
its elements are formed by multiplying each element of 𝐴 with the entire matrix
𝐵.

GradCAM

Gradient-weighted Class Activation Mapping (GradCAM) is an extension of
the basic Class Activation Mapping (CAM) technique. While CAM provides
valuable insights into the regions of an image that contribute to a particular
class prediction, it has limitations. GradCAM addresses these limitations and
provides more accurate and detailed visualizations.

Unlike CAM, GradCAM incorporates gradient information to weight the
importance of the feature maps. It computes the gradients of the predicted
class score with respect to the activations in the final convolutional layer. These
gradients represent how sensitive the predicted class score is to changes in the
feature map activations. It then calculates the importance of each feature map by
taking the global average pooling (GAP) of the gradients as shown in Equation
4.1where 𝐷1 and 𝐷2 represent the height and width of the of the feature map.
This provides a weight for each feature map A 𝑓 , refer Equation 4.2, indicating
its contribution to the final prediction. The importance-weighted feature maps
are then combined to create the GradCAM visualization. GradCAM highlights
the important regions and provides a more localized and detailed visualization
compared to CAM. By incorporating gradient information, it can focus on more
precise regions within the activated feature maps, leading to sharper and more
accurate visualizations of object boundaries and parts. In Figure 4.3, we display
cumulative GradCAM images of example malware families.
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To summarize, the important improvements of GradCAM over CAM are:

• Incorporation of Gradient Information: As the main addition to CAM,
GradCAM incorporates gradients, which CAM does not. This gradient-
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based approach allows GradCAM to capture fine-grained details and more
precisely localizes essential regions.

• Sharper Object Boundaries: GradCAM can capture object boundaries
more accurately because of the gradient weighting. It can provide detailed
visualizations of object edges and parts, making it particularly useful for
tasks like segmentation.

• Reduction of Overemphasis on Discriminative Parts: CAM tends to
highlight large discriminative parts, which might include irrelevant back-
ground regions. GradCAM, by utilizing gradients, reduces the tendency
to overemphasize these areas, leading to more focused and relevant visu-
alizations.

Agent Khelios_Ver3 Rbot Skintrim Wabot

Figure 4.3: Example of GradCAM heatmap extracted from malware families

HiResCAM

In the realm of computer vision, Draelos et. al [21] investigated the dif-
ferences of GradCAM and HiResCAM and proved that HiResCAM is a more
general version of GradCAM, which is itself a more general version of CAM.
HiResCAM, like GradCAM provides detailed attention information over the
spatial dimensions of the input data, allowing for precise localization of impor-
tant regions used by the model for predictions. The idea stems from GradCAM’s
global average pooling step, which sometimes blurs the attention maps, limit-
ing their ability to show specific locations within the image that contribute to
predictions. The fundamental limitation HiResCAM addresses lies in Grad-
CAM’s handling of feature map importance weights and their interaction with
the feature map components. In Grad-CAM, each component of the final ex-
planation must match the relative magnitudes and patterns of the feature map.
This constraint leads to blurred visualizations as individual changes in the fea-
ture map (like rescaling or sign changes) are averaged out. HiResCAM preserves
rescaling and sign changes in the individual elements of the feature map, ensuring that
the high-resolution attention maps accurately reflect the model’s computations.
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By maintaining these fine-grained details, HiResCAM provides a visualiza-
tion that is not only high-resolution but also faithfully represents the model’s
decision-making process at the level of individual features. HiResCAM’s ability
to preserve fine-grained information is crucial for tasks where a detailed under-
standing of the model’s reasoning is necessary. Practically, the formulas used
by HiResCAM to calculate the attention map is Equation 4.3:

�̃�𝐻𝑖𝑅𝑒𝑠𝐶𝐴𝑀
𝑚 =

𝐹∑
𝑓=1

𝜕𝑠𝑚
𝜕A 𝑓

⊙ A 𝑓 (4.3)

Note how the formula is the same as the GradCAM, A 𝑓 is again the feature
map, but without the GAP multiplication step. The multiplication between the
feature map and the gradients is done element-wise as indicated with ⊙. Some
examples of extracted heatmaps can be seen in Figures 4.4.

Agent Khelios_Ver3 Rbot Skintrim Wabot

Figure 4.4: Example of HiResCAM heatmap extracted from malware families
using EfficientNetB0

4.3.2 SSIM

In our approach to comparing heatmaps and leveraging their information,
we employ the Structural Similarity Index (SSIM) [63], a perception-based model
designed for comparing distinct images. Originally used to assess image degra-
dations, distortions, and variations like contrast masking within different ver-
sions of the same image, SSIM evaluates perceived image quality by considering
closely situated pixels and the varying visibility of areas (lightness) across dif-
ferent input image versions. SSIM values range from -1 to +1, reaching 1 only
when two images are identical. Our method can be implemented with any deep
learning model equipped with convolutional layers and capable of utilizing
GradCAM or HiResCAM. This method was developed out of the imperative to
identify similarities and differences within heatmaps. A mathematical model is
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essential in objectively quantifying these distinctions, providing a structured ba-
sis for judges to assess similarity or dissimilarity. Particularly crucial in contexts
involving images, such as malware images, which are inherently incompre-
hensible to human interpretation, this approach allows for precise and reliable
evaluations, addressing the unique challenges posed by non-interpretable visual
data.

We chose to employ SSIM on cumulative heatmaps derived for each class
within our datasets. These cumulative heatmaps, formed by summing and
averaging the heatmaps of individual samples within a class, offer valuable
insights. They enable researchers to discern prevalent focus areas when clas-
sifying one family over another. The introduction of cumulative-SSIM allows
researchers to assess both quantitatively and qualitatively the similarity between
two cumulative heatmaps generated by distinct CNNs for the same family. This
approach allows researchers to measure how these two neural networks diverge
in assessing various elements within the same image during classification.

Analyzing cumulative SSIM along with the corresponding heatmaps em-
powers us to delve into the diverse strategies employed by the CNNs. This com-
prehensive approach allows us to draw insights and infer the reasons behind
specific outcomes observed during the training and testing phases. By compar-
ing these cumulative SSIM values and examining the associated heatmaps, we
gain valuable perspectives into the underlying mechanisms guiding the CNNs’
decision-making processes.

4.4 Classifier Improvement

In our academic inquiry, we sought to extend the utility of heatmaps beyond
their previously explained role as tools for elucidating Convolutional Neural
Networks’ (CNN) performance. Our objective was twofold: firstly, to demon-
strate that these heatmaps possess the potential to enhance classifiers’ inter-
pretability, and secondly, to explore their applicability in improving the overall
performance of diverse architectures. Specifically, our study aimed to illustrate
CNN’s capacity to augment not only its final prediction but also the predictive
capabilities of alternative architectures. We accomplished this by integrating the
CNN-produced heatmap into various techniques, such as ensemble methods,
thereby empowering classifiers to make more informed decisions. Through this
innovative approach, we aimed to showcase the ability of CNN guidance to

44



CHAPTER 4. METHODOLOGY

Figure 4.5: Diagram of the classification enhancement through HiresCAM
masks implemented

substantially enhance the decision-making processes of classifiers, surpassing
the outcomes attainable without such guidance.

4.4.1 Masks

In our study, we introduce a novel approach involving the concept of a mask
applied to malware image samples. The purpose of this mask is to selectively
cover specific regions of a malware image, rendering them inaccessible to the
classifier during the analysis process. This strategic masking prevents the clas-
sifier from being misled by anomalous patterns occurring in positions where
they typically do not appear.

Our method for creating these masks involves a fusion of two heatmaps gen-
erated independently by two distinct Convolutional Neural Networks (CNNs).
These individual heatmaps are integrated into a unified heatmap, through a
logical OR , which serves as the basis for determining the mask’s coverage areas.
To establish the boundaries of the mask, we set a threshold value of 0.3 on the
average heatmap. A heatmap can be conceptualized as a matrix of identical
dimensions to the sample it is derived from. In this matrix, each pixel corre-
sponds to a value ranging between 0 and 1. A pixel with a value of 1 signifies
its consistent utilization by the CNN in making predictions, while a value of 0
implies non-usage. We chose a threshold of 0.3 to exclude only the segments of
the image rarely utilized. Through empirical observation, we determined that
this threshold, on average, provided us with the desired level of precision.

Pixels within the heatmap exhibiting values above this threshold indicate
positions where the CNNs have identified relevant features essential for classi-
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fication. In such instances, these pixels remain exposed, allowing the classifier
to consider them during analysis. Conversely, pixels with values below the 0.3
threshold are considered non-essential for classification. Consequently, these
pixels are masked, ensuring that the classifier does not factor in information
from these regions, thus enhancing the classifier’s robustness against deceptive
patterns. Through this innovative masking technique, we mitigate the risk of
classifier manipulation, thereby advancing the accuracy and reliability of mal-
ware detection systems. Example of used masks can be seen in Figure 4.6.

Agent Khelios_Ver3 Rbot Skintrim Wabot

Figure 4.6: Example of mask of sample malware family

4.4.2 ViT Classifier

In our research, we utilized the newly created masked dataset to enhance
the classification efficacy of a Visual Transformer model. This implementation
followed the framework provided by [38], resulting in a minimalist architec-
ture that incorporates a scaled-down version of the Visual Transformer initially
introduced in [20].

It is imperative to clarify that our primary objective was not to achieve state-
of-the-art classification performance, but rather to enhance the outcomes of the
baseline classifier. An important question that might arise is why we opted for a
classifier that, in certain datasets, exhibits clearly inferior performance compared
to the CNNs under scrutiny. The rationale behind this choice stems from our
intention to explore a less-considered yet intriguing model within the realm of
malware image classification.

The decision to employ both transformers and CNNs is rooted in the fun-
damental disparities in how these models analyze images. By juxtaposing their
methodologies, we paved the way for future researchers to integrate these dis-
tinct approaches, potentially filling the blind spots inherent in each method.
Our study represents a foundational step in this direction, offering a prelim-
inary approach. We anticipate that future research endeavors will refine the
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methodologies and fundamental architectures underlying these experiments.
It is pertinent to mention that contemporary literature already showcases

researchers achieving cutting-edge results with more intricate and comprehen-
sive versions of the Visual Transformer architecture, surpassing the simplicity
of the model utilized in this study [57]. Despite its relative simplicity, our work
serves as a testament to the potential of these models when applied innovatively,
pointing toward promising directions for future advancements in the field.
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5
Experiments

In this chapter, we dive into our experiments aimed at answering the research
questions introduced earlier. We start by explaining our experimental setup, in-
cluding the tools and methods we used to replicate the selected models. Dealing
with missing or unclear information from the original papers, we address these
challenges effectively.

Next, we delve into the metrics employed for comparing our findings with
those presented in the original papers. To ensure an equitable comparison, we
make adjustments to the models to eliminate any biased advantages, ensuring
a fair competition.

Moving on, we explore the HiResCAM and GradCAM heatmaps, aiming
to understand how human researchers can interpret these visualizations. Our
analysis focuses on identifying meaningful patterns within the heatmaps, offer-
ing insights into the models’ inner workings.

To provide an objective perspective, we apply the Structural Similarity Index
(SSIM) to quantify the differences between the CNNs when analyzing different
malware families. This quantitative analysis helps us grasp the distinctions
between the models and their approaches to malware image classification.

Finally, we introduce an innovative technique involving visual transform-
ers. By incorporating masks generated from heatmaps, we evaluate how this
approach can enhance the performance of this architectural paradigm. Our ex-
periments led to the development of a prototype, demonstrating the potential of
this new method to significantly improve results in malware image classification.
List of experiments summarized:
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• E1: Tuning of the hyperparameters for the selected CNNs;

• E2: Replication of the model’s training;

• E3: Training on updated models;

• E4: Extraction of HiResCAM and GradCAM with corresponding analysis;

• E5: SSIM study on HiResCAM;

• E6: Training of ViT without enhancements;

• E7: Training of ViT with mask technique.

5.1 Reproduction

5.1.1 Environment

All models were implemented in Keras utilizing a Tensorflow backend, in
particular version 2.9.1. We had to use this Tensorflow version because of a
known problem with the compatibility of the later version and the Efficient-
NetB0 model. The training and evaluation processes were conducted on the
Google Colaboratory Pro+ plan, operating within a Python 3.7 environment.
The runtime used in Colab was always with High-RAM enabled and T4 GPU
Hardware accelerator. Data preprocessing, image creation, heatmap extractions,
and all the scripting to facilitate the training of multiple neural networks with
multiple datasets were carried out on an ASUS TUF Dash F15, running Windows
11. The laptop operates 16 GB of RAM and 12th Gen Intel Core i7.

5.1.2 Evaluation Metrics

In this thesis, we used accuracy, F1-score, recall, precision, false positive, and
receiver operating characteristics curve (ROC) for performance evaluation of the
implemented models. These evaluation metrics have been widely utilized in the
research community to offer comprehensive assessments of various methods.
In addition, we considered the prediction time to evaluate the time performance
of the models. Another fundamental tool used to investigate the performance
of the architectures is the confusion matrix. It summarizes the true positive,
true negative, false positive, and false negative predictions, providing a clear
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overview of the model’s accuracy and error rates. Finally, for best performing
models we also provide the graph to show the evolution of validation loss and
accuracy.

• True Positive: The model correctly identifies that a sample belongs to the
correct class among multiple classes;

• True Negative: The model correctly identifies that a sample does not
belong to the wrong class among multiple classes;

• False Positive: The model wrongly identifies that a sample belongs to the
wrong class among multiple classes;

• False Negative: The model wrongly identifies that a sample does not
belong to the correct class among multiple classes.

Accuracy =
Correct Predictions

Total Predictions (5.1)

Precision =
True Positives

True Positives + False Positives (5.2)

Recall = True Positives
True Positives + False Negatives (5.3)

F1-Score = 2 × Precision × Recall
Precision + Recall (5.4)

It has to be noted that in the context of an unbalanced dataset, where the number
of instances in different classes significantly varies, accuracy can be misleading
as an evaluation metric. As shown by the formula, accuracy simply measures
the overall correctness of the model by considering both true positives and true
negatives concerning all predictions. However, in unbalanced datasets, where
one class considerably outnumbers the others, accuracy can be high even if the
model predominantly predicts the majority class, ignoring the minority class
completely. This situation can lead to a false sense of model performance. On
the contrary, the F1-score, which combines both precision and recall, provides
a more balanced measure, making it sensitive to the performance of minority
classes. It provides a comprehensive evaluation, especially when identifying
the minority class instances is crucial, like in a sensitive task such as malware
classification.
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5.1.3 Hyperparameters Fine Tuning (E1)

To replicate the results outlined in the state-of-art papers, the initial crucial
step involves gathering substantial information about the environment used.
Regrettably, among the five papers scrutinized, only two provided clear and
detailed specifications regarding the software and hardware employed. This
glaring lack of comprehensive data and significant disparities in the software
and hardware configurations across the papers renders genuine reproduction
unattainable. The absence of essential information in some papers further exac-
erbates this challenge.

In light of these limitations, the study presented in this thesis leans more
toward replicability than strict reproducibility. Despite these hurdles, diligent
efforts were made to establish a standardized environment for each implemen-
tation. Specifically, this was achieved by utilizing the Colab cloud environment
offered by Google. This choice was made to ensure consistency and compara-
bility in the experimental setups, even in the face of the disparities and gaps in
the information provided by the analyzed papers.

Once we had compiled the necessary information about the environment and
settled on our hardware and software configurations, the next step involved delv-
ing into the intricacies of the architectures we intended to implement. Our ap-
proach at this stage was to emulate the methodology of a resourceful researcher.
We conducted a meticulous analysis of the papers, exhaustively scoured the in-
ternet for additional insights, and even reached out to the authors in an attempt
to obtain access to their source code. Unfortunately, our attempts to engage with
the authors yielded no response; none of the authors involved in this study pro-
vided any comments or assistance. Despite our proactive efforts, the outcome
of our internet research proved to be equally disappointing. We uncovered only
sporadic code snippets that lacked the depth of detail necessary for practical
implementation. These sparse pieces of code, although available, lacked the
detailed and practical information we needed to help significantly with our own
implementations.

We pinpointed the essential hyperparameters required for the implemen-
tations. The detailed values are presented in Table 5.1 and Table 5.2. For
unspecified hyperparameters, we adhered to the default settings provided by
the Keras model we utilized whenever possible. We deviated from this ap-
proach only for hyperparameters specified in at least one paper. For these, we
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developed a hyperparameter fine-tuning pipeline using Keras-tuner, especially
RandomSearchCV() [52].

In conclusion, the hyperparameter values found in the papers or tuned are
the following:

• Learning Rate (LR) is a hyperparameter determining the size of steps
taken during optimization; it profoundly influences training by balancing
the trade-off between rapid convergence and overshooting the optimal
solution, with a too-high learning rate leading to divergence and too low
leading to slow or stuck training progress;

• Dropout is a regularization technique where randomly selected neurons
are ignored during training, reducing overfitting; it influences training
by enhancing model generalization and preventing reliance on specific
features, ultimately leading to more robust and accurate predictions;

• Optimizers (Optim) are algorithms that adjust the model’s weights to
minimize the loss function; they influence training by determining the ef-
ficiency and speed of convergence, with different optimizers offering var-
ious strategies to navigate the complex, high-dimensional space of neural
network parameters, affecting the model’s accuracy and training time;

• Momentum (M) is a parameter in optimization algorithms like SGD, en-
hancing convergence by adding a fraction of the previous update to the
current update, which helps overcome local minima and speeds up learn-
ing by allowing the model to carry the momentum of earlier steps, leading
to more stable and efficient training;

• Weight Decay (WD) is a regularization technique that penalizes large
weights by adding a proportional term to the loss function, preventing
overfitting by encouraging the model to favor smaller weights, ultimately
leading to a more generalized and accurate neural network;

CNN Dim Dropout
VGG16 224 × 224 0.2
ResNet50 224 × 224 0.2
IMCFN 224 × 224 0.2
Gibert 256 × 256 0.3
EfficientNetB0 224 × 224 0.0
DenseNet121 224 × 224 0.3, 0.2

Table 5.1: Hyperparameters of the analyzed CNN regarding the architecture of
the neural network. Values in bold have been tuned or inferred

From Tables 5.1 and 5.2, it is evident that among the six models examined,
only one model required no hyperparameter tuning [68]. In the case of two
other papers [71], although the training-test-validation split was not explicitly
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CNN Batch LR Optim M WD Split
VGG16 32 5x10e-6 SGD 0.9 5x10e-6 63/07/30
ResNet50 32 5x10e-6 SGD 0.9 5x10e-6 63/07/30
IMCFN 32 5x10e-6 SGD 0.9 5x10e-6 63/07/30
Gibert 32 5x10e-6 Adam 0.9 2x10-e3 10f/100
EfficientNetB0 64 1x10e-4 Adam 0.9 2x10e-6 68/12/20
DenseNet121 32 1x10e-3 SGD 0.9 1x10e-6 10f/20

Table 5.2: Hyperparameters of the analyzed CNN regarding the training of the
neural network. Values in bold have been tuned or inferred

stated, all other essential hyperparameters for complete model implementation
were provided. Another citation lacked only one hyperparameter [55], leading
to speculation that the default value of the specific implementation library might
have been utilized, although this remains unconfirmed without explicit author
confirmation. Another model [72], attributed to the Vasan research group,
was missing dropout and momentum definitions; however, fine-tuning efforts
revealed consistent values with those found in other CNNs from the same
research group, serving as additional validation. Interestingly, one paper did
not provide any of the analyzed hyperparameters [26].

The analysis of hyperparameter tuning results indicates a significant gap in
the information provided by authors, particularly in the papers under review.
The findings suggest that crucial details essential for replicating a model are
often missing. Additionally, when available, the provided information is fre-
quently ambiguous, especially concerning aspects like the train-validation-test
split. Consequently, researchers aiming to replicate a state-of-the-art malware
image classification model face challenges as they need to adapt, infer, or fine-
tune a considerable portion of the required hyperparameters on their own.

5.1.4 Result Replication (E2)

In Table 5.3 and Table 5.4 are presented the results for the replication study
we did in during this thesis. The models provided by [55] and [68] were tested
on Big2015 while the models from [71] and [72] were tested on Malimg. The
architecture provided by [26] was tested on both. We can also see how not
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CNN Accuracy Precision Recall F1 Score
P R P R P R P R

VGG16 0.984 0.982 0.957 0.952 0.954
ResNet50 0.982 0.986 0.963 0.962 0.962
IMCFN 0.978 0.982 0.982 0.954 0.981 0.952 0.982 0.953
Gibert 0.948 0.998 0.965 0.962 0.958 0.962

Table 5.3: Performance metrics of replicated CNN models trained on MalImg. P
represents the value found in the paper while R represents the replicated value.

CNN Accuracy Precision Recall F1 Score
P R P R P R P R

EfficientNetB0 0.992 0.982 0.965 0.960 0.965 0.954 0.965 0.955
DenseNet121 0.997 0.985 0.950 0.951 0.960 0.950 0.960 0.950

Table 5.4: Performance metrics of replicated CNN models trained on Big2015. P
represents the value found in the paper while R represents the replicated value.

all the analyzed metrics are presented in some papers. Our findings revealed
disparities between the results obtained through implementation and those
reported in the papers, with deviations ranging from -0.029 to +0.004 when
considering the F1 score. It is evident that the replicated models consistently
underperformed in comparison to the claims made in the original papers. This
disparity underscores the challenge of replicating a model solely based on shared
hyperparameters, even in cases where these parameters are widely available.
The difficulty in accurate replication arises due to the absence of both code
and detailed architectural information. This situation emphasizes the necessity
for comprehensive code sharing as the sole viable solution to enable successful
model reproduction within the field.

We share the training graphs of some of our replicated models showing the
evolution of training accuracy and validation accuracy. 5.1 5.2 5.3 5.4.

5.1.5 Train Test Validation Problem (E3)

A significant challenge that surfaced during training preparation was the
inconsistency in dataset splitting and testing methodologies. This issue was not
unique to our study; Table 3.1 in Chapter 3 illustrates that many other analyzed
papers faced similar or worse problems.

For instance, in IMCEC and IMCFN, the authors partitioned the dataset into
train/test and train/validation sets, respectively. This introduced ambiguity
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Figure 5.1: DenseNet121 [68] Training evolution on Big2015

Figure 5.2: EfficientNetB0 [55] Training evolution on Big2015

Figure 5.3: VGG16 [71] Training evolution on MalImg

regarding the authors’ definition of “validation." If validation referred to the
final “test" split, a common but unfortunately vague convention in literature, it
raised questions about the appropriate size of the validation set. On the other
hand, if the authors intended a distinct validation split, the question raised is
about how to assess the final trained model. This confusion was particularly
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Figure 5.4: Gibert [26] Training evolution on MalImg

perplexing given that the authors of both papers were the same. To simulate a
realistic approach, we opted for a 70/30 split for training and testing, reserving
10% of the training set for validation.

The attention to detail in [55] and [68] papers greatly facilitated the training
and testing phases, specifying in detail the train/validation/test splits and the
training methodologies.

In the examined older paper, [26] employed an intriguing testing approach,
utilizing both 10- and 5-fold cross-validation for their model. However, what set
them apart was their final evaluation method. Instead of employing a leave-one-
out test set or showcasing results from one of the folds, they chose to evaluate
the model on the entire dataset. While this approach allowed a comprehensive
assessment of all samples, it introduced a fairness concern. Testing the model
on a dataset largely overlapping with the training set raised questions about the
usefulness of their findings.

This discovery raised doubts about other papers that lacked explicit specifi-
cations of the complete three-way split (train, test, validation) and only defined
two of these categories. While it’s not inherently wrong for an author to assess
their model on the total dataset it was trained on, clarity in the methodology is
crucial. Authors should transparently communicate their testing approaches to
maintain the integrity of their research findings.

After successfully replicating the results of the analyzed architectures, we
optimized the models to ensure fair and consistent comparisons. Specifically,
we adjusted the Gibert architecture [26] by adding two convolutional layers,
aligning the final layer’s dimensions with the rest of the considered models.
While this modification had a minor impact on the model’s performance, it
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CNN Big2015
Accuracy Precision Recall F1 Score

VGG16 0.965 0.940 0.922 0.930
ResNet50 0.979 0.959 0.944 0.951
IMCFN 0.973 0.954 0.946 0.950
Gibert 0.965 0.919 0.924 0.921

EfficientNetB0 0.983 0.965 0.957 0.961
DenseNet121 0.985 0.972 0.958 0.965

Table 5.5: Performance metrics of CNN models with split 70/30 on Big2015

CNN MalImg
Accuracy Precision Recall F1 Score

VGG16 0.982 0.957 0.952 0.954
ResNet50 0.986 0.963 0.962 0.962
IMCFN 0.982 0.954 0.952 0.953
Gibert 0.975 0.922 0.925 0.923

EfficientNetB0 0.990 0.974 0.973 0.973
DenseNet121 0.984 0.963 0.956 0.956

Table 5.6: Performance metrics of CNN models with split 70/30 on MalImg

enabled meaningful comparisons when extracting heatmaps, as elaborated in
the subsequent sections.

Crucially, we maintained consistency by training all models using identical
train/validation/test splits across all datasets. In particular, we used the split
used originally for IMCEC and IMCFN. This approach ensured comparable
results and eliminated external influences, guaranteeing a rigorous evaluation
of the models.

The conclusive findings regarding the replicability and reliability of the analyzed
models fond in Tables 5.5, 5.6, and 5.7 show how the metrics measured change,
even significantly when hyperparameters, in this case training-validation-test
split, are changed.

Our investigation revealed a consistent pattern in the superior performance
of specific models across various datasets. Notably, DenseNet121 and Effi-
cientNetB0 consistently outperformed other models in all datasets analyzed,
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CNN VX-Zoo
Accuracy Precision Recall F1 Score

VGG16 0.945 0.911 0.909 0.910
ResNet50 0.945 0.923 0.908 0.913
IMCFN 0.940 0.903 0.894 0.898
Gibert 0.950 0.920 0.915 0.916

EfficientNetB0 0.969 0.953 0.959 0.955
DenseNet121 0.966 0.955 0.956 0.955

Table 5.7: Performance metrics of CNN models with split 70/30 on VX-Zoo

CNN Datasets
Big2015 MalImg VX-Zoo

VGG16 0.302 0.585 0.437
ResNet50 0.464 0.253 0.399
IMCFN 0.422 0.418 0.401
Gibert 0.395 0.669 0.689

DenseNet121 0.459 0.344 0.231
EfficientNetB0 0.265 0.269 0.226

Table 5.8: Prediction timings of neural networks on the 3 datasets. Values in
seconds

reaffirming their status within the hierarchy of high-performing models. Fo-
cusing on these two models, it became evident that even minor alterations in
fundamental hyperparameters, such as the training-validation-test split, could
yield noteworthy impacts. For instance, within our implementation, a single
change in this parameter resulted in a notable increase of +0.011 and +0.01 in
the F1 score. These changes are substantial, considering that all classifiers under
consideration exhibited precision values within the range of 0.1 to 0.15.

We also tested all the models on all the available datasets in order to continue
with our research providing in particular result for our new dataset VX-Zoo 5.7

We provide the confusion matrices and ROC curves of the best models for
each dataset, in particular DenseNet121 for Big2015 Figures 5.6 5.8 and VX-
Zoo Figures 5.7 5.10, and EfficientNetB0 for MalImg Figures 5.5 5.9. The results
shown by this metrics are in line with what is found in the literature and provide
brand new results for the VX-Zoo dataset. Taking into consideration Vx-Zoo
we can see how even the best model struggles to distinguish between classes
9, 10 and 11 a situation analogous to Big2015, where two classes, in partiuclar
Swizzor.gen!E and Swizzor.gen!I cause the most trouble to researchers and their
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models.

Figure 5.5: Confusion matrix obtained from the training of DenseNet121 on
Big2015 dataset

5.2 Explainability

5.2.1 Extraction of CAMs (E4)

The objective of this section is to differentiate how various CNNs made
use of image patterns. To accomplish this, we utilized the GradCAM and

60



CHAPTER 5. EXPERIMENTS

Figure 5.6: Confusion matrix obtained from the training of EfficientNetB0 on
MalImg dataset

HiresCAM techniques mentioned earlier. We generated cumulative heatmaps
for each family across the datasets, enabling us to comprehensively analyze
heatmaps produced by any of the neural networks under examination for a
selected malware family.

Generating cumulative heatmaps for each class was crucial for understand-
ing whether diverse neural networks consistently utilized specific regions to
classify particular samples. By employing these techniques and meticulously
studying the heatmaps, we gained valuable insights into the underlying patterns
and decision-making processes of the CNNs under scrutiny.
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Figure 5.7: Confusion matrix obtained from the training of DenseNet121 on
VX-Zoo dataset

The decision to employ both GradCAM and HiResCAM stems from Grad-
CAM’s widespread recognition as the most prominent Class Activation Map-
ping (CAM) technique with extensive research backing its application. Grad-
CAM’s popularity is due to its proven usefulness across various fields, produc-
ing visually smoother images that are generally easier for humans to compre-
hend. However, in the domain of malware analysis, where images are inherently
cryptic even to experts, the clarity offered by smoother heatmaps is not as im-
pactful. Malware images are almost incomprehensible for humans, making the
interpretability of smooth heatmaps less relevant, especially when compared to
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Figure 5.8: ROC curve obtained from the training of DenseNet121 on Big2015
dataset

Figure 5.9: ROC curve obtained from the training of EfficientNetB0 on MalImg
dataset

situations involving everyday object recognition.
In response, we introduced HiResCAM as a complement to GradCAM.

HiResCAM shares similarities with GradCAM but eliminates the averaging step,
providing explanation heatmaps that, although less smooth, faithfully represent
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Figure 5.10: ROC curve obtained from the training of DenseNet121 on VX-Zoo
dataset

the specific areas effectively utilized by the CNNs under scrutiny.Our primary
aim in this project was to employ HiResCAM for faithful explanations of the
neural network models we scrutinized. Nonetheless, we intentionally paired
the HiResCAM analysis with GradCAM to showcase the substantial variability
in outcomes that different CAM techniques can produce.

This strategic pairing of techniques serves as a word of caution to researchers,
urging them to meticulously select the appropriate explanation technique, espe-
cially in fields like malware visual analysis, where even experts find it challeng-
ing to definitively evaluate an explanation heatmap. By showcasing the dispar-
ities between GradCAM and HiResCAM outputs, we emphasize the necessity
of careful consideration when choosing CAM techniques, ensuring accurate
interpretations in complex and cryptic domains like malware analysis.

The heatmaps produced are 7 × 7 matrices that represent the areas of the
feature map generated considering the last convolutional layer of the CNN. The
cumulative HiResCAM heatmaps of some of the best performing CNNs are
presented in A.1, A.2 and A.3. The analysis of heatmaps generated through
HiResCAM, presented in A, reveals discernible patterns, particularly within
specific malware families. For instance, in the AntiFW.b family, DenseNet121
and ResNet50 predominantly utilize the upper portion of the malware image
to predict this specific class, indicating a consistent strategy. In contrast, Ef-
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ficientNetB0 appears to employ a different approach for accurate classification
within the same family. Shifting focus to the previously mentioned Swizzor.gen!E
and Swizzor.gen!I families, the cumulative heatmaps exhibit striking similarity.
This observation corroborates our findings in the confusion matrix analysis con-
ducted with DenseNet121, reinforcing the reliability of our results.

An intriguing observation arises when examining the operation of the same
CNN across different classes within the same dataset. For instance, in the
case of the Rbot!gen.C and Yuner.A classes from the MalImg dataset, ResNet50
consistently directs its attention to the lower section of the image. This behavior
highlights the classifier ability to concentrate its focus on a specific subset of an
image, disregarding surrounding elements. This focused attention allows the
network to accurately classify the sample by concentrating on the distinctive
patterns unique to the specific family, thus showcasing the network’s capacity
to discern crucial features within localized sections of the input data.

5.2.2 SSIM (E5)

We computed each family’s cumulative Structural Similarity Index (cumulative-
SSIM) value in every dataset. Tables 5.12, 5.13 and 5.14 provides a summary
of these results for HiResCAM heatmaps, while tables and 5.9, 5.10, and 5.11
provides a summary of these results for GradCAM. The certain elements in
the tables are depicted in boldface to represent two CNN with low cumulative-
SSIM, while elements in italics represent higher cumulative-SSIM. We can see
the difference in cumulative-SSIM produced by using the two different methods
on the same dataset and CNNs.

Cumulative-SSIM values are determined through a systematic procedure.
Initially, for each class within a dataset, a cumulative heatmap is generated.
Subsequently, the researcher computes Structural Similarity Index (SSIM) values
between the heatmaps generated by different CNNs belonging to the same class.
This process yields a specific value, denoted as single-class-SSIM, signifying
how distinctively the analyzed CNN pairs interpret the same class. To obtain the
cumulative-SSIM value between two CNNs, all the individual single-class-SSIM
values are summed. Each single-class-SSIM value corresponds to a unique pair
of CNNs and represents the disparity in their interpretations across all classes
present in the dataset.

The cumulative SSIM values offer valuable insights into the comparability
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EfficientNetB0 1,5463
Gibert 2,169 1,617

IMCFN 1,852 1,585 2,215
ResNet50 3,357 1,405 2,394 1,828
VGG16 1,975 1,81 2,206 3,446 1,762

DenseNet121 EfficientNetB0 Gibert IMCFN ResNet50

Table 5.9: Cumulative GradCAM SSIM values extracted from the VX-Zoo dataset

EfficientNetB0 0.19
Gibert 0.6 0.612

IMCFN 1.353 0.86 0.808
ResNet50 2.293 0.63 0.93 1.925
VGG16 1.277 1.159 1.02 2.614 1.705

DenseNet121 EfficientNetB0 Gibert IMCFN ResNet50

Table 5.10: Cumulative GradCAM SSIM values extracted from the MalImg
dataset

EfficientNetB0 2.447
Gibert 1.225 1.865

IMCFN 1.786 1.568 1.584
ResNet50 2.137 2.528 1.419 1.46
VGG16 1.895 2.037 2.269 3.304 1.753

DenseNet121 EfficientNetB0 Gibert IMCFN ResNet50

Table 5.11: Cumulative GradCAM SSIM values extracted from the Big2015
dataset

EfficientNetB0 1.792
Gibert 2.829 2.31

IMCFN 2.152 1.921 3.04
ResNet50 2.925 1.344 2.688 1.975
VGG16 2.121 2.219 3.262 2.962 1.891

DenseNet121 EfficientNetB0 Gibert IMCFN ResNet50

Table 5.12: Cumulative HiResCAM SSIM values extracted from the VX-Zoo
dataset
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EfficientNetB0 2.23
Gibert 2.302 2.378

IMCFN 1.997 2.08 2.651
ResNet50 2.434 2.864 2.122 1.775
VGG16 1.791 1.717 2.282 2.398 1.635

DenseNet121 EfficientNetB0 Gibert IMCFN ResNet50

Table 5.13: Cumulative HiResCAM SSIM values extracted from the MalImg
dataset

EfficientNetB0 1.982
Gibert 2.701 2.396

IMCFN 2.382 2.318 3.273
ResNet50 2.193 1.813 2.404 1.909
VGG16 2.32 2.02 2.906 2.848 1.939

DenseNet121 EfficientNetB0 Gibert IMCFN ResNet50

Table 5.14: Cumulative HiResCAM SSIM values extracted from the Big2015
dataset

of CNNs’ heatmaps. A higher value indicates a greater similarity between
the heatmaps generated by two CNNs, signifying a shared interpretation of
malware families. Conversely, a lower value signifies divergent interpretations
between the heatmaps, indicating dissimilar comprehension of the malware
families. This crucial distinction will be explored further in the subsequent
chapter through the implementation of the previously discussed masking tech-
nique for Vision Transformers (ViTs).

5.3 Attention Ensemble Architecture

The heatmaps obtained from HiResCAM and GradCAM have the potential
to facilitate an exploration of a neural network’s internal processes. This explo-
ration, in turn, can offer valuable insights for crafting more advanced networks
that excel in both explainability and performance. Gaining a grasp of the in-
tricate internal mechanisms of a complex neural network can provide context
to the CAM results, highlighting areas in which architectural enhancements are
required.

We introduced another architecture, namely the ViT, that recently appeared
in the literature related to malware analysis [57] to probe the potential of an
innovative technique that, starting from CAM heatmaps might be a future help-
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ful tool for the malware analyst. The result of the ViT testing together with the
prediction using the masks presented in this chapter, can be found in Table 5.15

5.3.1 Baseline ViT implementation (E6)

As a first step to guage the potential of the masking methodology exploit-
ing HiResCAM heatmaps, we implemented a barebone version of the visual
transformer. The results of this classifier on our three datasets will work as the
baseline on which we will benchmark our ensamble methodology.

Figure 5.11: Confusion matrix obtained from the training of ViT on VX-Zoo
dataset without mask augmentation.
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Figure 5.12: Confusion matrix obtained from the training of ViT on MalImg
dataset without mask augmentation

The results for this step are presented in Table 5.15 together with the mask-
ing ensamble technique and in confusion matrices Figures 5.11, 5.12, and 5.13
for each analyzed dataset.T he attained results, while not reaching the state-of-
the-art levels achieved by the CNNs analyzed in the preceding chapters, remain
acceptable. Across all datasets, the accuracy consistently surpasses 0.9, and the
F1 score exceeds 0.8. This performance, although not exceptional, provides a
solid baseline against which to measure the effectiveness of the masking tech-
nique when applied to Vision Transformers (ViTs). Notably, the model performs
well on the MalImg dataset, achieving an F1 score of 0.929, comparable to the
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Figure 5.13: Confusion matrix obtained from the training of ViT on Big2015
dataset without mask augmentation

performance of the CNNs. In contrast, the disparities are more pronounced in
the other datasets, with a notable difference of 0.803 for Big2015 and a substan-
tial margin of 0.871 for VX-Zoo when considering the F1 score. Concerning the
confusion matrices, it is evident across all datasets that the inferior outcomes
stem from the model’s confusion within specific classes, rather than a broader
inaccuracy within the entire family of classes under consideration, exacerbating
a problem we found also with better performing classifiers.
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5.3.2 ViT implementation with ensamble masking (E7)

We employed the same methodology used for heatmap extraction to generate
masks applied to samples in each dataset. This approach aimed to demonstrate
the collaborative potential of CNNs and ViT at a profound level, transcending
mere result ensembles or feature extraction. Our goal was to demonstrate that
by leveraging the strengths of CNNs in conjunction with ViT, we could improve
the performance of the latter model.

In this approach, CNNs generated heatmaps and subsequent masks using
their unique strengths. These masks highlighted specific areas of significance.
Meanwhile, the ViT model, trained over the masked images, categorized the
newly filtered samples, leveraging its own strengths in the concentrated regions
pinpointed by CNNs. The intention was to encourage the ViT model to disregard
parts deemed irrelevant by CNNs and enhance its performance in areas where
it excelled, thereby optimizing the overall analysis process.

In the particular implementation we decided to use we combined heatmaps
generated by couples of CNNs, in particular EfficientNetB0+DenseNet121, and
EfficientNetB0+ResNet50. The first pair was decided because across the three
datasets those two CNNs were the best performing on average. The second cou-
ple was selected because the HiResCAM cumulative-SSIM between them was
the lowest in two of the three datasets. We decided to use pair couple because
a lower cumulative-SSIM means a greater difference between the heatmaps.
Consequently, the areas of the images the CNNs use to classify the malware. In-
terestingly, these were also the pair of CNNs with the highest cumulative-SSIM
in the third dataset. Consequently, we were even more motivated to test these
two to determine if this particular characteristic would be reflected in the results.
We choose to use heatmaps that look quite different instead of those that look
very similar because we don’t want to narrow down what the ViT can see too
much. Instead, we want to provide guidance on what areas to pay attention to
while keeping most of the image intact.

The results in Table 5.15 demonstrate a noticeable enhancement achieved through
our masking approach. Specifically, all combinations of applied masks outper-
form the baseline. In the case of Big2015, the ViT classifier exhibited improve-
ment with the mask derived from EfficientNetB0, resulting in a 0.09 increase
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Figure 5.14: Confusion matrix obtained from the training of ViT on
Big2015 dataset with mask augmentation generated with EfficientNetB0 and
DenseNet121

in the F1-score. This improvement is evident in the confusion matrix when
compared to the baseline. While the enhancements in other datasets are less
significant, they remain consistent, with a maximum improvement of 0.024 in
MalImg and 0.021 in VX-Zoo.
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Figure 5.15: Confusion matrix obtained from the training of ViT on Mal-
Img dataset with mask augmentation generated with EfficientNetB0 and
DenseNet121
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Figure 5.16: Confusion matrix obtained from the training of ViT on VX-
Zoo dataset with mask augmentation generated with EfficientNetB0 and
DenseNet121
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Figure 5.17: Confusion matrix obtained from the training of ViT on Big2015
dataset with mask augmentation generated with EfficientNetB0 and ResNet50
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Figure 5.18: Confusion matrix obtained from the training of ViT on MalImg
dataset with mask augmentation generated with EfficientNetB0 and ResNet50
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Figure 5.19: Confusion matrix obtained from the training of ViT on VX-Zoo
dataset with mask augmentation generated with EfficientNetB0 and ResNet50
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Dataset Metrics
Accuracy Precision Recall F1 Score

Big2015 0.907 0.884 0.802 0.803
Big2015 (ED) 0.954 0.942 0.877 0.892
Big2015 (RE) 0.939 0.927 0.830 0.833

MalImg 0.972 0.940 0.929 0.929
MalImg (ED) 0.982 0.953 0.955 0.953
MalImg (RE) 0.974 0.942 0.938 0.938

VX-Zoo 0.927 0.877 0.868 0.871
VX-Zoo (ED) 0.930 0.882 0.888 0.876
VX-Zoo (RE) 0.933 0.905 0.890 0.892

Table 5.15: Performance metrics of ViT with and without masking augmenta-
tion. In the Augmented Dataset column, ED means that the dataset has been
augmented with the masks generated through EfficientNetB0 and DenseNet121
and RE means that the dataset has been augmented with the masks generated
through EfficientNetB0 and ResNet50.
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Conclusions and Future Works

6.1 Summary of Results

This thesis delves into two crucial aspects: reproducibility and explainabil-
ity, which form the foundation for the future of deep learning in malware image
classification. Despite the development of highly accurate classifiers over the
years, it is imperative for researchers to shift their focus towards consolidating
existing state-of-the-art models documented in the literature. This consolidation
effort necessitates conscientious researchers who, in the process of developing
new architectures and presenting results, consider the broader scientific commu-
nity. They should provide sufficient information to enable other knowledgeable
parties to replicate their findings. The challenges encountered in ensuring re-
producibility and replicability are multifaceted. Variability in datasets used for
testing and training poses a significant obstacle. While it may not always be
feasible to test models on different datasets, authors must strive to experiment
with as many diverse datasets as possible. Another area requiring clarity is the
division of data for training, validation, and testing purposes. Since this choice
depends on specific variables, there is no universally “correct" way to split the
data. However, authors can enhance comparability by testing their preferred
method alongside commonly used approaches like the 70/30 split or 10-fold
cross-validation. Additionally, disclosing hyperparameters is fundamental for a
comprehensive study of any architecture. This disclosure ensures transparency
and allows for a more thorough evaluation of the research work.
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This thesis delves into the examination of explainability in black box models,
specifically focusing on Convolutional Neural Networks (CNNs). Employing
an explainability tool holds immense potential for both researchers and users,
providing invaluable insights into interpreting results and guiding subsequent
actions and decisions. Researchers can utilize the outcomes of explainability
studies to make informed modifications to their models, tailoring them to spe-
cific contexts. For users, understanding the rationale behind a model’s choices
and comprehending the advantages and disadvantages of established models
are paramount. Our study highlighted the impact of the choice of an explain-
ability tool on output data, underscoring the need for continued meticulous
experimentation in this area.

The cumulative heatmaps generated through High-Resolution Class Activa-
tion Maps (HiResCAM) offer an unprecedented glimpse into the inner workings
of the analyzed neural network. By comparing these heatmaps across different
CNNs, researchers can deduce reasons behind specific occurrences and under-
stand the varying performance of different architectures in specific scenarios.

Furthermore, our investigation delved into how model explanation can en-
hance the performance of different models. Surprisingly, it was evident that a
model does not necessarily need to propose predictions directly to aid another
model; leveraging its explanation alone can lead to performance enhancements.
Although our masking technique is still in its prototype stage, it has demon-
strated significant efficacy on certain datasets. This technique possesses the
potential to further enhance malware classifiers, establishing explainability as a
pivotal factor in their design.

6.2 Future Work

Further experimentation, particularly on a broader array of datasets and with
a focus on Convolutional Neural Networks (CNNs), is imperative. While specific
parameters can be chosen for CNN selection in replication efforts, the essential
need for extensive testing remains even without such specified parameters. An
intriguing avenue for progress lies in establishing guidelines for researchers to
ensure that their described models are replicable with a high degree of con-
fidence. This is especially crucial for widely-used datasets, where a standard
approach for training set division should be formulated and adopted by prac-
titioners. Although an uncomplicated solution would be the direct sharing of
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documented code, this method is not always accessible to researchers, thereby
necessitating the formulation of standardized rules.

On the front of explainability, conducting further testing using High-Resolution
Class Activation Maps (HiResCAM) and Gradient-weighted Class Activation
Mapping (GradCAM) can illuminate the relationship between how distinct neu-
ral networks discern malware families. Our hypothesis posits that the dissim-
ilarity in learning approaches between these networks, quantified in our study
using the cumulative Structural Similarity Index (cumulative-SSIM), can serve
as a valuable parameter for determining the most suitable neural network com-
bination.

In summary, a more competitive implementation of Vision Transformer (ViT)
warrants exploration. Investigating whether masking datasets during training,
employing our proposed method, not only leads to qualitative improvements
but also quantifiable enhancements in results is an area ripe for further study.
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Table A.1: HiResCAM Cumulative Heatmaps generated for Big2015
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Table A.2: HiResCAM Cumulative Heatmaps generated for MalImg
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