
UNIVERSITY OF PADOVA

SCHOOL OF ENGINEERING
MASTER’S DEGREE IN ICT FOR INTERNET AND MULTIMEDIA

PYTHON API FOR ALTAIR INSPIRE
STUDIO WITH FUNCTIONALITY OF

CAPTURING 3D MODELS FROM RGBD
SENSORS

Advisor: Prof. Pietro Zanuttigh
Coadvisor: Giampaolo Pagnutti

Student: Pier Angelo Vendrame
Student id 1171679

Padova, October 14th, 2019
Academic Year 2018-2019

ii

Abstract
The use of 3D modeling software is more and more important for the industry.
It offers new approaches to the design tasks and new perspectives to look at
projects, in a more realistic and easier way than 2D.

During the years, several software suites have been developed; some have
specialized for particular purposes, whereas some others have remained generic,
and offer a way to provide specific features, or to integrate with the rest of
productive process, through plugins.

This thesis shows how we implemented the Python support to write plugins
and to interact with Altair Inspire Studio, in addition to the C++ sdk they have
been offering for years.

Then, the thesis shows how we used this novel api to develop a plugin to
capture 3D models from reality, using rgbd sensors.

iii

iv

Contents

I Introduction 1

1 Contextualization 1

2 Altair Inspire Studio 3

II The Python PDK 7

3 Motivations 7

4 Requirements and constraints 9
4.1 Objectives . 9
4.2 Constraints . 9

4.2.1 Separation from the core . 10
4.2.2 Automation of the process 11

5 Python C API 13
5.1 The module system . 13
5.2 Essential concepts . 14

5.2.1 PyObject . 14
5.2.2 Reference count . 15
5.2.3 Exceptions and the NULL pointer 15

5.3 Operations of a compiled module 16
5.3.1 The initialization function 16
5.3.2 Creating a new type . 17
5.3.3 Exposing functions . 18

5.4 Practical limits . 19

6 Pybind11 and Binder 21
6.1 Boost.Python and Pybind11 . 21
6.2 Using Pybind11 . 22

6.2.1 Callbacks . 23

v

6.2.2 Python wrappers . 23
6.3 Automating the bindings . 24
6.4 SWIG . 25

7 The Python PDK 27
7.1 Binding the B-Rep geometry library 27
7.2 Binding Inspire Studio interfaces 28

7.2.1 Opaque pointers and nested classes 29
7.2.2 Templates . 31
7.2.3 Selection of trampolines . 32
7.2.4 Enumerations and custom callbacks 32
7.2.5 typedefs . 32
7.2.6 Changes in the output of Binder 33
7.2.7 Manual bindings . 34

7.3 The Python Interpreter in Inspire Studio 35
7.4 Updating the bindings . 36
7.5 The example tools . 37
7.6 Future developments . 41

III The Acquisition Plugin 43

8 Acquisition of 3D models 43

9 RGBD sensors 45
9.1 Depth acquisition techniques . 45

9.1.1 Stereo depth . 45
9.1.2 Time-of-flight . 47
9.1.3 Structured light . 47

9.2 3D reconstruction from depth . 47
9.3 Intel RealSense D415 . 49

9.3.1 D415 Limits . 50

10 The workflow 53
10.1 Kinect Fusion . 53

10.1.1 Depth map conversion . 54
10.1.2 ICP . 54

vi

10.1.3 TSDF . 55
10.1.4 Raycasting . 55

10.2 Marching cubes . 56
10.3 Other approaches . 56

11 Implementation of the plugin 59
11.1 Acquisition tool . 60

11.1.1 Setup . 60
11.1.2 Capture . 62

11.2 Refinement tool . 64
11.3 Mesh extraction tool . 65

12 Results 67
12.1 Parameters . 67
12.2 Problems of the plugin . 68
12.3 Datasets . 69
12.4 Comparison with Microsoft 3D Scan 74

IV Conclusions and future works 75

13 Conclusions 75

Appendices 77

A Samples of code written with Python C API 77
A.1 Module creation . 77
A.2 Custom type creation . 78
A.3 Exposing a function . 81

B Example of a Clang AST 82

Bibliography 85

vii

viii

Part I: Introduction

Chapter 1

Contextualization
Several industries have switched from 2D to 3D modeling, and more are transi-
tioning, because the latter has several advantages.

First, it is more efficient, as the model is unique, and the changes need to
be performed once. Moreover, many programs allow to project the 3D model to
obtain 2D representations.

Secondly, 3D helps to visualize objects, which is more difficult to do from 2D
draws, especially for non-technical personnel.

In addition to that, software that implements construction history allows to
edit a portion of the model and have the changes applied in cascade to all the
linked parts.

Many 3D modeling programs provide apis to write plugins.
A reason is to extend the file formats they can handle. In this way, 3D

modeling software can be inserted in a pipeline: with plugins, users can open files
created in previous stages, modify them, and then export them in a format to
proceed with further steps.

In many cases, plugins allow also to extend the 3D software itself, by adding
new functionalities, operations, custom commands and so on.

Traditionally, C and C++ were the programming languages used for these
purposes, because they have high performances and they allow to directly interact
with the hardware. However, the use of script languages for these purposes, in
particular Python, has been increasing.

The support for Python plugins and scripting in Altair Inspire Studio is one
of the main topic of this thesis. The other one is how we used it to write a plugin
that allows to scan 3D objects from reality using rgbd sensor, an inexpensive
way of doing reverse engineering, which is the creation of a 3D model starting
from an existing physical realization.

This practice began during 1990s, using lidar, that are laser-based scanners,
very precise, but still expensive nowadays.

Some of the techniques developed for these devices are used also with small,

1

consumer grade rgbd sensors (color cameras that include also a depth channel),
which started spreading around 2010: their precision is inferior, but in some cases
it is sufficient and the low cost factor prevails.

2

Chapter 2

Altair Inspire Studio
3D modeling software has several possible classifications.

One is history-based, or parametric modeling, and direct modeling. The former
allows the user to act on parameters of objects, such as lengths and angles. It is
also called history-based because when the user modify these data, the changes
are applied in cascade to all the linked or dependent parts of the scene. This
feature helps to create families of products, and, in general, parametric modeling
is structured and allows to have precise definitions.

On the other hand, direct modeling allows to manipulate the geometries of the
models, rather than edit their features. It is considered somehow more flexible,
but it makes impossible to go back to previous stages, modify the model and have
all the rest of the changes applied again in chain; in other words, every change is
definitive.

Another classification is about the geometry representation used. Boundary
Representation or B-Rep is a method for representing shapes using their limits,
and can be used to represent exact geometries, like spheres. A different repre-
sentation is based on polygons: it uses vertex positions and connections between
them. Some geometries may be only approximated in this way, and in general
better approximations require a higher number of vertices. In particular, it is
very common to use triangular representation, although quad-based representa-
tions are also remarkable; nurbs (Non-uniform rational B-spline) are a common
mathematical model for B-Rep, instead.

Altair Inspire Studio is a 3D modeling and rendering software developed by
Altair Engineering for designers. It allows free-form surface design, solid modeling
based on nurbs, and polygonal modeling with n-side polygons. All the objects
in the 3D scene are controlled by parameters and by construction history.

It is the new version of the program formerly known as solidThinking Evolve,
which has been used by many companies and individual artists to design several
kind of products.

Although Inspire Studio is a software rich of features, Altair also offers the
possibility to extend it, with a sdk, which they call pdk, or Plugin Development
Kit. Using this kit, developers can add functionatilities to the software: they
can add modeling tools, importers and exporters, with the same capabilities that
integrated tools would have.

3

Figure 2.1: A screenshot of Altair Inspire Studio.

Modeling tool is an Inspire Studio specific term that denotes any tool that can
be used to create objects and modify existing ones. Every button available on the
ribbon is linked to a modeling tool, an even the “move” and the “visualization
color” are special kinds of modeling tools.

Figure 2.2: All these icons on the ribbon bar are modeling tools, including the
move and the measure box.

There are many reasons to write custom commands. One might develop a
tool that outputs shapes often used in some applications, either to reduce the
time that would take to create them from simple geometries, or to link them to
some specific parameters.

As an example, one might develop a tool to create screws and threaded rods,
taking as input parameters the thread, the diameter and the length, or have
some presets for some commercially available items. A tool like this might even
interface to a database of products that are already in the inventory.

Indeed, integrating Inspire Studio with other services and tools used in a
company is another reason to write plugins: interfacing with computer-aided

4

manufacturing software, or creating and exporting a toolpath for a cnc router
are only some examples of what programmers can do.

Finally, the pdk is made especially for third parties, but having a robust
plugin api allows also specialized first party development teams to build tools
for Inspire Studio, without knowing how the kernel of the software works. For
example, a team for tools to work on metals, another team specialized in 3D
printing and so on.

5

6

Part II: The Python PDK

Chapter 3

Motivations
Python is a scripting language developed since 1991, first by Guido van Rossum
and now by the independent and no-profit Python Software Foundation.

It is considered very easy to learn; it focuses on code readability and on
constructs and structures that help programmers to write clear code and organize
projects efficiently and in an ordered fashion.

These are some of the reasons for which Python spread also to people that
traditionally were not involved in software development. Nevertheless, this lan-
guage is appreciated also by experienced programmers and used in some of the
biggest IT companies [29].

Being an interpreted programming language with dynamic typing, Python is
much slower than compiled languages [10]. However it features a C api [28], to
write some “glue code”, called bindings, to any library exposing a C interface, to
allow scripts to use it, as we will see on chapter 5.

This is exploited by some libraries, such as NumPy to provide a Python
api while performing all the heavy computations using native highly efficient
code, that can exploit advanced processor features such as simd extensions [31].
Another example is the TensorFlow machine learning framework, that features a
Python api to build models, that then are trained on gpus using Nvidia cuda.

The C api of Python also allows to embed it, even in commercial software,
thanks to its permissive open source license [26], and this is what has been done
in Inspire Studio.

There are many reasons to do that. The first one is the will to enlarge the
possible plugin developer audience and simplify the development.

The pdk is written is distributed as a collection of C++ header and library
files, with the documentation to use them. C++ is a lower level language; people
who wish to code in this language need to have a solid programming background.
Moreover, they need to have a C++ compiler or C++ development environment,
and the technical skills required to use them. On the contrary, writing a Python
plugin is easier and requires only a text editor, although more advanced tools are
helpful.

7

The lack of compilation process and of a formal project structure represents
another reason to have a Python pdk: it enables rapid prototyping and other
rapid development approaches. One might, for example, write a Python plugin
to isolate, develop and test a part of a bigger plugin, which may be written either
in Python or in C++.

Figure 3.1: The Python console in Altair Inspire, another software from the
Inspire lineup. The plan is to add a similar console also to Inspire Studio.

Another reason to develop the Python bindings is that they could provide a
programming interface to Inspire Studio, either with a console, or by running
scripts. Adding this feature would not require neither additional work for binding
developers, nor additional knowledge for users, because the bindings would be
unique, they do not need to be differentiated for the function they are used for.
The only difference is how the main program runs users’ code, i.e. by loading
automatically some files at the startup, or by having a file dialog asking the
user which script they want to execute, or by waiting for keyboard events on the
console.

Python has also some disadvantages. It is very slow [10], and in some cases
having a compiled support library is not a chance; in this case a C++ plugin
is the only choice. Another problem is that, although Python supports multi-
threading in its standard library, the reference implementation of the interpreter
is inherently single threaded, however there is no official support for concurrency
in Inspire Studio plugins, yet.

In any case, the Python pdk is supposed to be an alternative to the C++
pdk, not a replacement.

8

Chapter 4

Requirements and constraints
Like all projects, also ours has some requirements and constraints: we are ex-
plaining them in this chapter, along with some additional information on the
project itself.

4.1 Objectives
Inspire Studio pdk was the starting point for the bindings. It is written in C++,
and it uses several constructs and patterns of the object-oriented programming
(oop).

We may divide it in three parts:

1. a library of basic utilities, such as vectors and other math helpers, I/O
and so on;

2. the interfaces to interact with the program, its ui, its functionalities,
etc;

3. a library to create and modify geometries represented as B-Rep (bound-
ary representation).

Together, they are a few hundreds of classes, with the second part being many
times bigger than the other two.

The initial requirement for the Python port was to cover the interfaces to
create modeling tools and manage their parameters, the library for the B-Rep
geometries, and the utilities that these classes require, such as 2, 3, 4 dimensional
vectors and 4× 4 matrices used for transformations in homogeneous coordinates.

4.2 Constraints
The interfaces of Inspire Studio (the ones at point 2 of the previous list) com-
prise much more than that, for example there are also classes to customize the
photorealistic rendering, classes for the 2D sketching, classes to manage polygo-
nal geometries and much more. These sections were not required to work at the
initial phase of the project: we prioritized testing how the aforementioned parts
could be bound accordingly to some requirements and constrains.

9

4.2.1 Separation from the core
It has been decided that the bindings should not be part of the Inspire Studio
core.

One reason is that any problem with the bindings should not block the devel-
opment of the rest of the software.

We might consider as part of this constraint also the fact that the bindings
should use only code available in the pdk, without using additional core code.

Finally, we aimed at having the bindings as transparent as possible to the rest
of developers, i.e. modifying large or frequently used portions of the code base
was not an option.

We encountered some difficulties due to the inherent differences in the lan-
guages, e.g. methods accepting a C array, i.e. pair of arguments with pointer
to data and number of elements. Python, as many high level languages, does
not have the concept of pointer, but we did not modify these methods to receive
a C++ container, even though it would have been easier to interface to, with
bindings, because some workarounds existed and changing those functions would
have been a huge problem for the rest of the program.

However this was not a strict constraint, and eventually some small modifica-
tions have been made, especially if it could fix some bugs or improve the quality
of the C++ code itself.

For example, some methods had accepted parameters as C varargs, which
is a problem, because the C standard leaves some freedom of implementa-
tion to compilers, making it more difficult to convert call arguments from
Python to C for bindings. Therefore, those methods were converted to accept a
std::initializer_list instead.

Inspire Studio

PDK

Python interpreter
and bindings

PDK

Python scripts

Python API

Python console

C++
Plugins

Python
Plugins

Figure 4.1: The plugin architecture and the role of Python bindings in it.

10

4.2.2 Automation of the process
Binding the code manually, even in the restricted case, would take a very long
time, because there are too many classes to pass. Therefore we wanted to have
an automated mechanism.

As a worst case, we wanted to have at least something to run once to have
the most of the code bound, and then slowly refined manually.

Moreover, a part from a handful classes, the pdk is not standalone code
created only for plugins (e.g. some wrappers to the core code), but it is extracted
from the main codebase. The internal developers can mark code to make it
available for the pdk; because of that, some parts are very likely to change often
and quickly.

Therefore, the objective would be to have the automated tool able to run
again on the changed code, without destroying any manual fix.

However, we wanted to avoid using tag/macro based systems added to the
code to bind. First, because it would be against the transparency constraint, as
the other developers should be instructed on how to use them; second, passing
the code to add those tags would also take a long time.

This may seem in contrast with what is done for the C++ pdk, but it is not:
the tags for the scripting language would be more difficult to add, as they should
also take into account the language differences and try to smooth them out.

11

12

Chapter 5

Python C API
Python scripts need an interpreter to be run. The reference one is CPython;
it is developed by the Python Software Foundation, using the C programming
language, therefore the name.

CPython is released both as a standalone program and as a dynamic library.
The latter exposes some of the interpreter functions and of its data structures as
an api, to manage it, to extend it, and to execute Python code.

This chapter introduces some of the concepts of how the Python interpreter
works and shows how to do some operations with this api.

5.1 The module system
Python is a modular language by design, and native extensions are managed
in the same way as script units. Modules and packages are made available to a
script or to an interpreter context, entirely or just parts of them, using the import
statement.

The lookup of the item to load is made in this order [27]:

1. built-in modules and already loaded modules, which can be found in the
sys.modules object within a Python script;

2. the directory containing the input script, or the current working directory
when no file is specified, e.g. when running an interactive Python console;

3. a set of default paths that can be modified by changing the sys.path list
within a Python script.

For the first case, the modules have to be registered by calling either the
C function PyImport_AppendInittab, or the function PyImport_ExtendInittab

before the interpreter initialization function is run. Therefore the creation of
built-in module is useful especially for the embedding case, otherwise one would
need to distribute a modified and recompiled version of the interpreter.

For cases 2 and 3, the import machinery looks for:

• .py files: the normal Python files;

• .pyc files: the compiled bytecode files that are generated from .py files as
a cache to speedup the load of modules;

13

• directories with an __init__.py file: these are the packages, a way to group
modules together;

• compiled modules: dynamic libraries, with the standard .so extension for
posix systems, and the custom .pyd extension for Windows, although they
are valid .dll files.

5.2 Essential concepts
The Python C api represents both the minimum requirement and the limits of
native modules: everything a Python extension can do, can and needs to be done
with this code.

All the other ways of creating extensions and bindings depend on it. There-
fore, knowing its basics is very helpful, if not necessary, even when using a wrap-
per.

5.2.1 PyObject

PyObject is the most important data structure of this api. From the Python
documentation [28]:

it contains only the object’s reference count and a pointer to the corre-
sponding type object. Nothing is actually declared to be a PyObject,
but every pointer to a Python object can be cast to a PyObject*.

Although we are dealing with software programmed in C, we may think like
it has been developed as oop: in this scenario, we might think of PyObject as
the parent class of everything.

It is the equivalent of java.lang.Object of the Java programming language,
with the exception that, in Python, PyObject is the parent also of integers, of
floating point numbers, of boolean values and even of the None reserved keyword.

Also pieces of Python code can be cast to a PyObject *: it is the case of
modules, functions, type definitions, including classes (not only class instances,
even the class definitions themselves are PyObject).

The type objects pointed by PyObjects, which are accessed through the macro
Py_TYPE, since PyObjects are opaque pointers, give information about the prop-
erties of that object and the operations one can do with it, e.g. object members
and methods.

14

The interpreter always checks these information when running a script, but
also C extensions should do that, to avoid an undefined behavior, that might even
lead to crashes.

5.2.2 Reference count
All Python objects are passed by reference, i.e. shared: assigning an object to a
variable does not copy it, but makes the variable point to the same object and
increases its reference count. When a variable goes out of scope, or when another
value is assigned to it, the reference count is decreased.

Memory in Python is managed by the interpreter: the user does not need
to destroy objects and free the memory they used, or finalize objects, in Python
lexicon. The interpreter does the garbage collection: it periodically checks if some
reference counts reach 0, and in case finalize these objects.

This is automatic in scripts, but from the point of view of a C extension,
reference count increases and decreases need to be managed manually, and this
will be the focus of the rest of this section.

Usually, when calling a function that creates and returns an object, the callee
transfers the ownership to the caller, which means that the object reference count
is already at least 1.

At this point, the caller does not need to do anything else, until it does not
need the object anymore, in which case it has to decrease the reference count
with the Py_DECREF macro. But if it passes the ownership, e.g. to return that
object, it must not decrease the reference count.

When a function receives a parameter, it usually does not need to do anything:
the callee borrows the reference ownership from the caller, and when it returns,
it also returns the ownership. As an exception, when the callee needs to store
that object somewhere, to access it after it returns, it must increase the reference
count, using the Py_INCREF macro.

Sometimes, different ownership rules are used: it is important to always check
the documentation of a function to understand how it works.

An object might want to store a copy of itself: to do this, it has to increase its
reference count, the interpreter has a cycle detector to manage circular references
without problems.

5.2.3 Exceptions and the NULL pointer
In Python, using exceptions in case of error is very common. Exceptions are even
used for the interrupt signal (known also as SIGINT, or as Ctrl + C), and to

15

stop iterations on data structures.
C does not provide for the concept of exception, making another way of sig-

naling error conditions needed.
Since many functions, both in the api and in the prototypes of the callbacks

that developers have to specialize in their extensions, return a PyObject pointer,
it has been decided that they should return NULL to report that they have en-
countered an error. Moreover, they should set an exception with functions like
PyErr_SetString.

While going back on the call stack, functions must check if NULL was returned,
and, in case, return it themselves, but they should not change the already set
exception, unless they handled it and raised another one. Eventually, the inter-
preter will receive it and will look for the correct exception handler in the script.
In case it does not find one, it may just output the error and the call stack on
the standard error and kill itself.

Alternatively, a C function can handle exceptions using other functions start-
ing with PyErr_, such as the one to get the type of exception and the one to clear
the error status.

This means that NULL does not mean “no value” or “empty value”, within
the Python C api: functions should use the special None value, instead, managed
with the singleton Py_None in C.

Some functions do not return pointers, but other integral types. In these
cases, usually the −1 value is used instead of NULL.

5.3 Operations of a compiled module
Python modules do not have a strict, fixed structure. The initialization function
is the only required function, programmers can choose how to implement the rest.

However, some operations are included in almost all modules.

5.3.1 The initialization function
This is the entry point of a compiled module. It is the only function that needs
to be exported, and, when using C++, it needs to have C linking, i.e. it must be
exported only with its function name, instead of the mangled name, the technique
that C++ compilers use to encode additional information and solve problems such
as overloads.

In particular, for modules in dynamic libraries, the name of this function
should be in the format PyInit_modulename, and in Windows the function should

16

also be marked with the __declspec(dllexport) keyword. The api provides the
PyMODINIT_FUNC macro to handle all these needs.

With built-in modules, these traits are not compulsory anymore, since the
address of the initialization function is passed directly to the module registration
functions as second parameter, however the macro is still useful, because it pro-
vides also information about the return type – a PyObject * in Python 3, void
in Python 2.

The body of the initialization function comprises the check for validity of
the structure contents, the creation of the module and the initialization of its
attributes, including new types. Listing 10 shows this with actual C code.

5.3.2 Creating a new type
In an oop context, the possibility of creating new types is fundamental. Python
allows to do that by creating a custom structure to hold the data, and by popu-
lating a PyTypeObject struct with the type information, which include:

• tp_members, the table with the members of the data structure: it can be
used with numeric types (int, long, double, etc), and with PyObject *,
although it cannot have constraints on types for the latter;

• tp_getset, the table of getters and setters: it can be used, for example, to
handle types not registered to Python, and to enforce types of PyObjects;

• tp_methods, the table of type methods;

• optional custom callbacks, to allocate the memory, create, initialize and
finalize the objects etc.

This makes binding existing C++ classes possible; in doing that, there are
different approaches to keep their instances in memory and manage their life
cycle.

The first one is to have the instance entirely contained inside the Python
custom object structure. In this way, the interpreter is always the owner of the
instances, it decides when to allocate and to free the memory they use, and the
programmer should use a placement new in the tp_new and tp_init callbacks,
and explicitly call the destructor in the tp_dealloc one.

The advantage of this approach is that some class members can be registered
in tp_members. A disadvantage is that there is no way to tell if the instance is
valid, unless the data structure contains an additional flag to tell whether the
constructor has been called. Another problem is that whenever an instance is

17

needed in Python, it needs to be constructed and managed by the interpreter,
which might just not be a choice with some libraries.

An alternative is to store a pointer of the instance. This can be used to untie
C++ instances from Python instances, allowing, for example, the library to be
the owner of them, and to create different Python objects for the same C++
instance. The code of tp_new and tp_init would be easier, because there would
an easy way to check if the object has been instanced, i.e. by checking if the
pointer is NULL. However, in this case getters/setters become compulsory, and,
more importantly, the memory ownership management is more difficult.

With C++ library that uses smart pointers like std::shared_ptr, there is
also a hybrid approach: like the second one, method calls and member access are
done through the pointer, but Python would own and manage an instance of the
smart pointer.

Listing 11 contains an example code to expose a C++ class with the second
approach; it shows that this operation requires a substantial number of lines of
code, however also the other approaches would require a similar amount of lines
of code.

5.3.3 Exposing functions
Exposing module functions and type methods is done in a similar way: they both
require a callback with a prototype that matches the PyCFunction typedef, i.e.
they should be in the format PyObject *func_name(PyObject *self, PyObject

*args).
The first difference between module and type methods is the array of

PyModuleDef in which their information will be placed.
The second difference, is that type methods will likely have their specialized

type for the self argument, e.g. CustomType *self instead of PyObject *self.
This works without problems, but the callback pointer will need to be cast to
PyCFunction.

The cast is needed also when the methods accepts keyword arguments, because
the callback needs an additional PyObject * that holds the keyword arguments.

In general, the callbacks perform the following steps, as shown in Listing 12:

1. declare variables that will hold the unpacked arguments: args and kw con-
tain arguments packed into a Python container, such as a tuple for argu-
ments and a dictionary for the keyword arguments;

2. unpack the arguments, with PyArg_ParseTuple or
PyArg_ParseTupleAndKeywords: these functions are like scanf, they take

18

a format string with the types the caller expects to receive, and a series
of pointer of variables where to unpack these arguments; moreover these
functions raise exceptions if the types in the format and in the packed
arguments do not match;

3. process the arguments, if needed: check for validity of the domain, do some
cast etc;

4. call the actual function;

5. cast the result to return it to the Python script.

5.4 Practical limits
As seen in section 5.2, using this api it would be possible to create the bindings
of any C/C++ library. However, the amount of code generated is very high, as
shown in listings in Appendix A. Doing that manually would take a long time
even with a small quantity of classes to bind.

An automated tool would be helpful to create the bindings, but its output
would be hard to maintain, because each class would likely require thousands of
lines of code.

19

20

Chapter 6

Pybind11 and Binder
The code of Python extensions might become very long, and also very repetitive,
e.g. the getters of properties change only by the cast of the type they return.

When using C++, templates can help in this respect: they could be used
to create the callbacks to the functions, the getters/setters and also the custom
objects that store the actual C++ instance.

This chapter is about Pybind11, a library that uses this approach, and about
the other advantages it offers; finally we will briefly compare the solution we
found with the more established one, based on swig.

6.1 Boost.Python and Pybind11
Boost.Python [1] is a library part of the Boost project and developed since 2002.
Its objective is to reduce the code required for the creation of a type, of its
members and methods, to something like a call to a function for each item to
bind, taking as arguments, for example the pointer of the method to bind, and
the name to associate to it in Python.

Another aim of the library is to do that in a non-intrusively way, i.e. without
changing the C++ code and without having to manually create proxy functions.
All the required information, such as argument and return types, are inferred
using compile-time introspection.

They managed to reach their objective with template-based metaprogram-
ming, and with a layer of libraries, based on C++ advanced techniques, that
guarantee a wide compiler compatibility.

The C++11 version of the C++ standard made much of this layer unneces-
sary anymore: they improved the capabilities of templates, by adding variadic
templates, i.e. templates with a variable number of arguments, and introduced
concepts like lambda functions, tuples and type traits.

All these features, and rtti (RunTime Type Information, available also in
previous C++ standards) are used by another project, called Pybind11 [16], that
provides a syntax and usage similar to Boost.Python, but without having addi-
tional dependencies, apart from the C Python api and the C++ stl (Standard
Template Library).

Thanks to this, it is a header only library, thus it becomes part of the software

21

that uses it, but this is not a problem, because it is released under a permissive
bsd-style license.

Using Pybind11 simplifies the work of the compiler and improves dramatically
the build performance, with respect to Boost.Python: PyRosetta, the Python
interface to the Rosetta molecular modeling suite, switch from the latter to the
former, and noticed a compilation time improvement of 5.8 times, and a reduction
of binary size by 5 times [20].

6.2 Using Pybind11
Pybind11 creates a sort of declarative language made of C++ instructions to
create bindings.

1 class Example {

2 public:

3 void a_method(int i, int j);

4 double some_number;

5 const int some_constant = 42;

6 }

7

8 PYBIND11_MODULE(example, m) {

9 pybind11::class_<Example>(m, "Example", "The documentation of the Example class")

10 .def(py::init<>())

11 .def("a_method", &Example::a_method)

12 .def_readwrite("some_number", &Example::some_number)

13 .def_readonly("some_constant", &Example::some_constant);

14 }

Listing 1: The code to create a Python module with a new classs, using
Pybind11.

Listing 1 shows that creating a new type with Pybind is easier and much
shorter than using the C api, as shown on Listing 11.

Some of the steps described in section 5.3 are still visible, e.g. the module
initialization function, hidden by the macro PYBIND11_MODULE, and the need for
explicit Python names passed as strings. Some other steps, typically the low
level mechanisms, are still present, but invisible and managed by Pybind11: the
callbacks for methods, the getters and setters, the argument unpacking and check
steps etc.

However, when needed, Pybind11 allows some manual control, about mem-
ory management, ownership, and other matters. Thanks to C++11 type traits,
in particular std::is_pointer and std::is_reference, Pybind11 can under-
stand if a function returns a pointer or a reference, and by default it takes the
ownership. In almost all cases, we needed to keep the ownership, which can be

22

done simply by passing a flag as argument to def. Pybind11 provides also more
advanced ownership models, such as object dependency, useful, for example, to
create iterators on containers.

6.2.1 Callbacks
The example of Listing 1 is very simple, but also more expressive constructs from
oop can be exposed in an easy way, such as method overloads, operators and in
particular class inheritance.

1 class Car {

2 public:

3 void accelerate();

4 }

5

6 class ConvertibleCar : public Car {

7 public:

8 void openHood();

9 };

10

11 PYBIND11_MODULE(example, m) {

12 pybind11::class_<Car>(m, "Car", "A basic car")

13 .def(py::init<>())

14 .def("accelerate", &Car::accelerate)

15 .def("brake", &Car::brake);

16 pybind11::class_<ConvertibleCar, Car /* this is the parent */ >(m, "ConvertibleCar", "A convertible

car")↪→

17 .def("open_hood", &Car::openHood);

18 }

Listing 2: The code to create a class and a children class.

This feature is very important because it is a way to implement callbacks in
C++, used also in Inspire Studio.

Pybind11 allows that to call Python from C++ with classes that they call
trampolines: they contain only the methods that can be overridden in Python,
and the body of each of these C++ methods is intended to be just a call either
to the macro PYBIND11_OVERLOAD or to PYBIND11_OVERLOAD_PURE.

However, we had to rewrite these macros, because they made Python callbacks
take the ownership of objects returned by pointer, whereas we needed to make
the Inspire Studio kernel keep their ownership.

6.2.2 Python wrappers
To implement our custom trampoline methods, we exploited the C++ wapper to
the C api, part of Pybind11, in addition to the code for the extensions.

23

Start

End

Yes NoDoes the Python class
implement the method?

Call the Python method

Cast the result and return it

Yes
NoIs the method pure virtual?

Throw a C++ exception
Call the C++ method
of the parent class

Figure 6.1: The flow of the method bodies of trampolines.

They provide a pybind11::object class, that encapsulates a PyObject *, per-
forms automatic reference count with C++ constructors and destructors, and has
some operator overloads, like operator(), which is used to call the callable objects
(functions, types to instance them, etc), and which we used in the trampoline
methods.

Pybind11 wraps also some classes from the standard Python library,
such as pybind11::list, pybind11::dict, and also some abstract ones, like
pybind11::iterable. They were useful to us because Pybind11 has a mecha-
nism of implicit conversions, which we used to allow Python programmers to
use Python native types instead of some classes normally used with the C++
pdk: to enable this behavior, we had to write some proxy methods, taking these
C++-Python interfaces as arguments.

We used them also when we implemented some C++ functions to be used
only by the bindings: if they needed a container, we made them accept any
generic iterable with pybind11::iterable, instead of requiring a precise type,
like pybind11::list or a container from the Inspire Studio utilities.

Finally, Pybind11 offers also some utilities to embed the Python interpreter,
which allow, for example, to manage its life cycle as a normal member of a class.
Moreover, by changing the PYBIND11_MODULE macro on the initialization function
with the PYBIND11_EMBEDDED_MODULE macro, the bindings automatically become
a built-in module.

6.3 Automating the bindings
Although Pybind11 has many advantages, it has also a considerable limit: it
needs the developers to write all the code manually.

24

The authors of PyRosetta encountered the same problem, which they solved
by writing a tool called Binder [19], based on Clang libTooling, “a library to
support writing standalone tools based on Clang” [7].

Binder creates Pybind11 code by analyzing some header files first. It can be
configured through command line arguments and through a configuration file,
to make it generate the bindings for some classes, namespaces, functions, or to
avoid them to be automatically flagged as to be bound. LibTooling based tools
can also pass arguments directly to the Clang compiler, a feature that is useful,
for example, to define macros, that in turn can be checked to enable or disable
code sections.

To achieve its result, Binder performs three steps:

1. it invokes the Clang compiler to build the abstract syntax tree, or ast
(Listing 13 is an example of that), which is then used to parse the desired
C++ declarations and to automatically resolve and bind their dependencies;

2. it transforms the gathered data in C++ code;

3. it outputs some .cpp files, ready to be passed directly to the compiler.

The output files are easily understandable, which helps in finding the causes
of errors, but the correct way to do definitive changes, to make the process re-
peatable without deleting modifications, is to use the configuration file, which
offers also the possibility of calling custom binding code for classes and functions.

Binder is not a perfect tool, it has also some problems, but it is an open source
project released under the permissive mit license, therefore we could modify it
to tune it to our needs. We will see more details about that, and about what
we could achieve in chapter 7, when we will discuss about the results of the pdk
bindings.

6.4 SWIG
Being born in 2016, Binder is a young project. Boost.Python had a similar
approach, based on gcc xml, and on a Python script called Pyste, to convert its
output to Boost.Python C++ code.

Another traditional way to create bindings is to use swig (Simplified Wrapper
and Interface Generator) [2].

Established in 1996, this project has a wider aim, than the aforementioned
ones. It focuses on automating the process, with its own C/C++ parser, and
on targetting a high number of languages, including Python, C#, Java, Perl,
Tcl/Tk, possibly with a few changes in inputs for each language.

25

For us, these features were disadvantages, rather than advantages. First, when
we tried to use swig 3.0.12 (the version 4.0.0 had not been released, yet), we
could not have its parser working on our files, in particular it had problems with
templates. Indeed C++ is constantly evolving and becoming more complicated:
using a major compiler as foundation might be just a stronger and more reliable
option.

Secondly, a problem with having many target languages is that some decisions
are taken in a way that they are good for all of them, instead of having many
specialized options for every language.

As an example, not all of the languages supported by swig are object-oriented,
but all of them have a C api, therefore it flattens the oop structure to create an
intermediary C version of the code to bind. With Python, by default this flattened
code is bound in a library based module, then the class structure is recreated in
a script module, adding more overhead; however this behavior can be disabled
with the command line argument -builtin, to have better performances.

Thirdly, the output of swig is a single C++ file, ready to be compiled, and
intended not to be modified: it is very long, and comprises a common boilerplate,
the binding entirely made with the Python C api, and the customization passed
as input, if any.

Modifying that file is difficult, and not recommended: there are other ways to
do customization and avoid losing with subsequent runs of the process. However
having readable files is important even just to understand what the bindings are
doing, and debug them.

Microsoft presented the topic of C++ extensions for Python in the official
documentation of Visual Studio: they recommend Pybind11 for C++ extensions
and comment that swig is an “excessive overhead if Python is the only target”
[25].

26

Chapter 7

The Python PDK
The information presented in chapters 5 and 6 is the result of a preparatory work
we made to understand the Python extension world. During this stage, we also
created some toy models to understand the feasibility and what we could expect
from the project.

In this chapter, we will see how we passed from the preparatory stage to
have the final bindings, the problems we encountered and how we enhanced the
workflow.

7.1 Binding the B-Rep geometry library
As already mentioned in section 4.1, the pdk is divided in three parts: the first
is interfaces to Inspire Studio, its ui and its features in general, the second is a
B-Rep geometry library, and the third is a collection of utilities independent from
Studio.

We decided to start from the second one, because it is smaller and simpler in
several aspects:

• in an absolute sense: it is a normal, single, quite small dynamic library;

• in dependencies: this library has been projected to depend only on some
utilities from the third part of the pdk, and on Parasolid, the geometry
kernel used in Inspire Studio;

• in variety of programming techniques and patterns used: use of class in-
heritance is the most advanced technique the library use.

In particular, the first two points allowed us to try the bindings with a Para-
solid sandbox application that we already had, before dealing with the additional
problem of loading and starting the Python interpreter inside Inspire Studio.

Although we started without creating an advanced configuration, both Binder
and the compiler succeeded without reporting any issue, but we could not import
the compiled module in a Python script, because it failed in runtime.

The problem, simplified in Listing 3, was easy to resolve, but it was meaning-
ful, because we did not expect the possibility of a success in compile time and a
failure in runtime: it might be a concern in a more automated scenario.

27

1 #include <pybind11/pybind11.h>

2 #include <pybind11/embed.h>

3 namespace py = pybind11;

4

5 struct Parent {

6 enum En {A, B};

7 };

8

9 struct Child : public Parent {

10 enum En {C, D}; // This is completely unrelated to Parent::En

11 };

12

13 PYBIND11_EMBEDDED_MODULE(example, m) {

14 py::class_<Parent> p(m, "Parent");

15 py::enum_<Parent::En>(p, "En");

16 py::class_<Child, Parent> c(m, "Child");

17 py::enum_<Child::En>(c, "En"); // py::enum_<Child::En>(c, "ChildEn"); would work

18 }

19

20 int main()

21 {

22 py::scoped_interpreter guard{};

23 py::module::import("example"); // This will fail with "ImportError: generic_type: cannot initialize

type "En": an object with that name is already defined"↪→

24 }

Listing 3: A simplified example of the situation we had in the geometry library:
we had two enums with the same name, one in a class and one in a child class.
It compiles, as it is valid C++ code, but it does not run, because Python raises

an ImportError exception in runtime. Renaming the enum, even just in
Python, is a way to solve this problem.

In any case, after having solved also this issue, our test scripts worked flaw-
lessly, and we decided to start the binding of the other parts.

7.2 Binding Inspire Studio interfaces
Our next step was trying to bind the classes that allow to create modeling tools
and to manage their parameters. Since we already had the B-Rep geometry
library, with the conclusion of this phase, we expected to be able to create some
simple plugins that could actually do something in the Inspire Studio scene.

However, the creation of the bindings of this part of the pdk was more in-
volved than the previous part, and we had to make changes in Binder, because
its authors did not take some cases into account, or to make it more suitable to
our requirements.

28

7.2.1 Opaque pointers and nested classes
When Binder finds and adds a function prototype or a class declaration to the
list of candidates to bind, it checks also for dependencies:

• the types of the arguments and the return type, for functions and methods;

• the public member types and public parents, for classes;

• template arguments, for template classes, whereas template function invo-
cations are ignored.

All these dependencies are added to another list, the one of needed types, unless
they were disabled in the configuration.

The process is iterative: the first time, only the declarations that match the
configuration are added to the candidate list, then dependencies are moved to
the candidate list and the pass is repeated, starting from the candidates found
so far. The loop exits when the candidate list stops growing.

We had a pair of problems with this mechanism. The first one is that Binder
cannot handle correctly opaque pointers: they are created with forward decla-
rations, that are added to the dependency list, but they will never be moved to
the candidate list, because classes are added to the latter list only when their

Start

End

Add declarations from the
configuration to the candidate list

Yes
No

Has the candidate list
grown?

Look for the dependencies of
declarations of the candidate list

Move the dependencies to the
candidate list, unless disabled

NoYes
Are there unresolved

dependencies?

Create the C++ code
Exit with a failure status

Issue a warning on the stderr

Figure 7.1: A simplification of how Binder works, without the interface with
LibTooling. The original behavior (“exit with a failure status” and the dashed

line) was a problem with us, so we changed it.

29

1 #include <pybind11/pybind11.h>

2 namespace py = pybind11;

3

4 // These two structs can be everywhere in the codebase

5 struct Opaque;

6

7 struct Example {

8 Opaque *ptr;

9 }

10

11 // This implementation can be made visible only to the bindings code

12 struct Opaque {

13 void *placeholder;

14 };

15

16 PYBIND11_MODULE(example, m) {

17 py::class_<Example>(m, "Example")

18 .def_readwrite("something", &Example::ptr);

19 py::class_<Opaque>(m, "Opaque");

20 }

Listing 4: This works and can be used without any problem. The opaque object
will be created and managed within C++ code, but Python scripts will be able

to pass it to functions or copy it to variables, if needed.

implementation is found. The behavior of Binder for these cases was to stop and
call exit before creating the output.

In fact, Pybind11 can handle opaque pointers, with a code like the one in
Listing 4; the opaque type still needs to be registered, however it is sufficient to
pass a class or struct created just for the purpose to pybind11::class_, then
everything works, because, although the content of the opaque class will be likely
different, rtti does not differentiate them. To be more precise, accordingly to
our experience, for this to happen with the Microsoft Compiler, it is important to
be consistent with the usage of keywords struct and class: a forward declared
class cannot have a dummy struct, and vice versa.

Therefore we decided to modify Binder to issue a warning instead of an error,
and let the process finish, so we can fix the problem manually if needed, action
that does not always involve writing code.

Nested classes in the ast are children of the containing class (see Listing
13): when the latter is not bound, Binder does not visit neither its node, nor its
children nodes, therefore it cannot find nested classes and treat them as forward
declarations.

We could not obtain the bindings of a class that was a child of another class
nested in a third class (see Figure 7.3), which we did not enable in the con-
figuration. Initially, we could not figure out why this happened, but when we

30

Class1

Class3

Class2

Extends

N
ot

 e
na

bl
ed

 in
 th

e
co

nfi
gu

ra
tio

n

Sk
ip

pe
d

in
 th

e
AS

T

Figure 7.2: Nested classes cannot be bound, if their containing class is not
enabled. Any child class will not be bound, as well.

understood the problem, we just added the containing class in the configuration
file and everything worked as expected.

7.2.2 Templates
Thanks to the Clang infrastructure, Binder can deal with any template, but they
need to be instantiated, which happens, for example, when they are members of
a function, but not when they are used only in function arguments.

Indeed, we did not have some templates in bindings because they were used
but never instantiated, so we made Binder issue warnings when this happens. We
then rely on this information to create some code, specifically a dummy structure
with them as members, with the only purpose of forcing their instantiation.

With this requirement met, template classes are bound as they were normal
classes.

However, to make their name unique, Binder adds the argument values to
it, but in this way it might become very long. typedefs are commonly used to
solve this problem, but Binder does not export them. Since they are parsed and
inserted in the ast, as shown in Listing 13, we added an handler for them, as we
will see on Section 7.2.5.

Another problem with names was that Binder did not take into account that
also pointers can be used as template arguments, therefore it did not have a filter
for the *, which would be included in Python type names, although this is not
legal, thus we had to add some code to replace the *.

31

7.2.3 Selection of trampolines
As already stated, the pdk uses many interfaces, in the oop sense, i.e. the
headers contain many abstract classes made only of pure virtual methods, and
the actual realization is resolved in runtime, instead of being linked in compile
time.

However, there is no way to understand if this is the logical function of an
interface, or if it is made to make a callback structure available, or anything else.

The decision of Binder authors was to create the trampoline structure when-
ever it found an abstract class. Therefore, after the first time we ran Binder, we
found a lot of trampolines in its output.

We decided to enable customization: we added the possibility of having tram-
polines enabled or disabled by default, and of having a granular configuration,
i.e. enabling or disabling the trampolines for each class.

7.2.4 Enumerations and custom callbacks
In the rewriting from Evolve to Inspire Studio, several constants have been
switched from C macros to both scoped and unscoped enumerations. While
the former need to be explicitly passed with their type, the latter can be cast to
integral types.

Some functions of the pdk that logically accept constant from unscoped enu-
merations, have int in their prototypes, but Binder cannot mark the correct enums
automatically as dependencies, in this way. Thus, we added also the possibility
to specify enums to bind in the configuration, at least as a temporary solution to
use while the prototypes have not been fixed.

Some other constants are still implemented as macros, therefore we added
them using a custom C++ function that takes the module PyObject, and we
added the possibility to specify the name of callbacks to call from the module
initialization function in the configuration.

7.2.5 typedefs
Some parts of the pdk use templates, especially in the utilities, and in some cases,
some templates are even nested, resulting in names longer than 40 characters
and no mnemonic at all. In many cases, if not all, commonly used template
specializations in the pdk have typedefs to make them meaningful and their use
easier, so we decided to automate a similar mechanism also in Python.

Python does not actually have typedefs, because it does not need them: as
discussed in Section 5.2, types are also objects, and, as objects, they are attributes

32

1 class a_very_long_class_name:

2 pass

3 alias = a_very_long_class_name

4 print(alias, type(a_very_long_class_name()), type(alias()), isinstance(alias(),

a_very_long_class_name)) # <class '__main__.a_very_long_class_name'> <class

'__main__.a_very_long_class_name'> <class '__main__.a_very_long_class_name'> True

↪→

↪→

1 class SomeCppClass {};

2 PYBIND11_MODULE(example, m) {

3 pybind11::class_<SomeCppClass>(m, "a_very_long_class_name");

4 m.attr("alias") = m.attr("a_very_long_class_name");

5 }

Listing 5: The way to create typedefs in Python, and the equivalent version
with Pybind11. The Python example shows also that the

a_very_long_class_name class is an attribute of the module __main__.

of something else, in general of a module or of another class, and they can be
copied to another variable.

Therefore we added to Binder some code to do the same in C++: take the
context where the typedef is, create a new attribute there, named as the typedef
identifier, and assign the original type to it.

Listing 13 shows how to create a type alias in Python, and how to do the
same in C++ with Pybind11.

To be sure that all the types have been registered when this alias creation is
run, we added it at the end of the module initialization function. However, in
this context we do not have the objects of the created types, thus we need to
traverse the whole hierarchy of types and of where the aliases will be, including
nested classes, if necessary.

7.2.6 Changes in the output of Binder
We were not satisfied with the structure of the output created by Binder: they
were divided by input header file, and then the bindings of each header were split
so that the size of each output file would not exceed a certain threshold. In this
way, finding a certain class was hard.

We decided to have a file for each class, instead. This solved the unpredictabil-
ity, made files easier to manage, and also sped up the building process in certain
cases, e.g. when only one class had been modified. In some other cases, e.g. a
clean build, it slowed down the process, because some common code is built in
each compiled unit.

C++ names are case sensitive, whereas file are not, in Windows, thus, since

33

we had some classes that had the same name with different cases, eventually we
grouped them in the same file.

Another characteristic that we did not like, is that Binder always put the
explicit cast of the function pointer in the def calls. In fact, it is needed only
with methods that have overloads, which most often is not our case. Since it
makes the files quite longer and harder to read, we decided to leave the casts only
when strictly needed.

Finally, we modified Binder to let Pybind11 handle default values for function
arguments, instead of creating a lambda with less parameters, and leaving the
task to embed default values to the C++ preprocessor. The original strategy
had the advantage that when default values changed, it was only necessary to
recompile the bindings, instead of running Binder again. The disadvantages were
that it made the code longer, harder to understand and that it did not fully
exploit Python potentialities, shown in Listing 6.

Getting from the ast the default value of an argument is not a trivial task: it
involves traversing and correctly combining an arbitrary number of nodes, i.e. all
the descendants of a ParamVarDecl node. We handled several cases, e.g. numeric
constants, unary and binary operations, parentheses, other kind of combinations,
but we could not handle some cases, for which we left the original behavior.

1 void method(int a = 5, char b = 'x', int c = 7, int d = 42);

2 // To change only c, a anb b also needs to be specified:

3 method(5, 'x', 15);

1 def method(a=5, b='x', c=7, d=42):

2 # Do something

3 # Can specify only the value of c, using it like a kwarg:

4 method(c=15)

Listing 6: Difference in how C++ (the listing at top) and Python (the listing at
bottom) treat default arguments.

7.2.7 Manual bindings
Even with these customization, eventually we had to implement some binding
code manually.

Sometimes it was because of language differences, hard to address in an auto-
matic way. It is the case of functions that use pointers as arrays, or the functions
that use reference parameters to return multiple values. In Python we used
generic iterables and multiple packed return values, respectively.

34

In other cases, we wrote manual code to make Python developers feel writing
code with the pdk more natural.

7.3 The Python Interpreter in Inspire Studio
When the code of the bindings was ready, we had to face the problem of inte-
grating the Python interpreter in Inspire Studio. In particular, we absolutely
wanted to avoid the interpreter to be finalized when Python code was still in use
or referenced, because this would crash the program.

The best way to solve this problem would be to do it in the core of the
application, but we preferred using the C++ plugin architecture, both to satisfy
the requirement of keeping the bindings separate, at least at the beginning, as
described in Section 4.2.1, and to have more agility in testing.

Indeed, the basics of C++ plugins are that they are dlls loaded into the
program, and that they must implement a class to register their components.
Although it is not endorsed as a feature, an instance of that class is kept alive
as singleton and destructed only when Inspire Studio exits. For test purposes,
we decided to keep a pybind11::scoped_interpreter as member of this class,
and to use the same dynamic library also to keep the bindings, that are loaded
as built-in modules.

This choice had also another advantage: we used the C++ plugin also to
register components (modeling tools, importers and exporters) written in Python,
and to instance them, when needed.

In particular, we wrote a Python modeling tool that adds a file dialog to
choose any Python script, and a button to run it.

At this stage of the project, we also encountered some problems with the
building process.

The first one is that all the metaprogramming structure used by Pybind11
makes the process very slow: a clean build in release mode took almost 11 minutes.
On the same computer, a clean build of Inspire Studio 2019.3 in release mode
takes slightly more than 22 minutes: adding the bindings to the main build would
increase the time to complete it by 50%.

Templated code can become quite large also in size: we had to increase the
number of sections in the .obj files with the /bigobj switch in Visual Studio [21].
We even needed to change the 32bit toolchain, used by default by Visual Studio
also to build 64bit executables and libraries, with the native 64bit one, otherwise
the linker would have crashed. In release mode, with many optimizations enabled,
it needed more than 5GB of ram at peak.

35

Figure 7.3: One of the tools we wrote: it allows to load and run any Python
script. The tool itself is written in Python, thanks to the importlib module.

Another problem is that sometimes understanding the causes of building er-
rors is hard, because Visual Studio does not report all the substitutions it has
performed to arrive from the templates to the final code that is compiled. In some
cases, even with such list, it would be difficult to understand the whole process,
because the chain of replacements might become very long, and Pybind11 uses
very advanced features of C++. We used only Microsoft Visual Studio 2015; we
do not know how more recent versions of the msvc compiler and Clang treat
errors.

We encountered many linking problems due to the way symbols are exported
from dlls with __declspec(dllexport), especially with implicit constructors,
destructors and assignment operators, which we often resolved by expliciting
them or by marking them as deleted.

In other cases, the bindings triggered the compilation of templated code that
had never been used before, uncovering errors that had never appeared.

Both situations were solved by modifying Inspire Studio code. However, this
required a new revision of the pdk, and the temporarily removal of some features
from the bindings.

7.4 Updating the bindings
The pdk is extracted from the Inspire Studio codebase, therefore each build of
the software has its own pdk, both identified with an identical version number.
For the bindings to work with a certain version, they need to be updated and
rebuilt for it.

36

Figure 7.4: We use a specialized software to check the differences between the
old bindings and the new output; in particular we chose to use WinMerge. This

screenshot comes from the application website.

In our workflow, this is done by running Binder again on the updated headers,
and then integrating the changes of its output, using a specialized software to
compare the new files with the ones already in the project directory.

With this in mind, we tried to make Binder output as repeatable as possible,
by having one class for file, as discussed in Section 7.2.6, and also by removing
the declaration line number from the comments that Binder automatically adds
to its output, because they very likely change, from a version to another.

This does not reduce the compilation time, because many units are built again
even when they have not been modified, if some of the headers they depend on
have. The real reason we did this, is to track the changes more easily, and to be
able to identify the origin of new errors, if any, or to check if some modifications
to the configuration or some manual bindings are needed.

We updated the bindings several times, since their first version, and with this
workflow, everything worked almost flawlessly. Indeed, we observed that having
a solid Binder configuration is helpful.

7.5 The example tools
Before starting the bindings development, we created some C++ examples on
how to use the pdk, because the api of Inspire Studio is very different from the
one of SolidThinking Evolve, therefore old samples were not useful anymore.

37

Figure 7.5: This simple modeling tool is an example about the various ui
elements that parameters can be associated to: the guide bar at top, the

modeling tool panel on the right, graphical handles and micro dialogs on the
scene. It also shows that the same body can be created as a wire, sheet, or

extruded, with our without top/bottom faces, thanks to the geometric library.

The examples show how to create plugins, modeling tools, importers and
exporters, how to interact with the 3D scene, create and update objects, how
to interact with the rest of the ui, how to create parameters and handle their
changes, etc.

Once the bindings were ready, we tried to rewrite the examples in Python, as
a first serious test to understand what the bindings were capable of. Eventually,
the logic of the tools was not changed, and the work consisted in adapting the
code from C++ constructs to Python ones. Many parts were refactored just with
the search and replace tool of the text editor.

The only exception to this was the Brep Creation tool: in C++, it needed
many big switches, whereas the Python version could exploit the dynamic cre-
ation of function arguments in runtime, and the dynamic typing applied to func-
tions with different prototypes, to create a table with a row for each possible

38

Figure 7.6: Brep Creation allows to create a lot of different shapes, but it need
to keep the ui updated accordingly.

Doing this in Python was easier than in C++ and Python code for the tool is
much more compact than the C++ code for the equivalent one.

In the figure, there are shapes with the respective parameters, except for the
circle through 3 points, since the points are moved directly in the 3D scene.

39

1 # The real creation functions, similar to these ones, are actually part of the PDK module, they are

listed here just to show their signatures↪→

2 def create_square(edge_length):

3 # ...

4 def create_circle(radius):

5 # ...

6 def create_rectangle(width, height):

7 # ...

8 def create_rhombus(edge_length, angle):

9 # ...

10

11

12 class Shape:

13 def __init__(name, callback, need_height=False, need_angle=False):

14 # Save the params

15

16 shapes = [

17 Shape('Square', create_square),

18 Shape('Circle', create_circle),

19 Shape('Rectangle', create_rectangle, True),

20 Shape('Rhombus', create_rhombus, need_angle=True),

21]

Listing 7: B-Rep Creation manages output shapes in a similar way. The Shape

objects are used to handle several features of the modeling tool, such as the
output creation, the shape list selector, etc. Doing something like that in C++

is more involved and requires templates.

Figure 7.7: Like C++, Python allows also to create tools that are just helpers
and do not create or modify anything, like this one, that make the user pick

some objects, and then shows a bounding box around them and its sizes.

40

output shape.
To load the Python modeling tools, we exploited the same plugin that embeds

the interpreter, we have not implemented a more generic loader, yet.
From an operating point of view, C++ example tools and Python example

tools are indistinguishable: they work in the same way and have the same features.

7.6 Future developments
Inspire Studio is available both for Microsoft Windows and for Apple macOS,
and the pdk is meant to be a platform agnostic way to create plugins for both
the operating systems, with the same code.

We tested the Python bindings only in Windows, however we expect the
bindings to work also in macOS with no modifications at all, or with a few
changes, but even in this case, we think that we would be able to find an automatic
way keep do them in further revisions.

A build on macOS should be one of the first steps to do before continuing
with other developments.

After that, we should make the core of Inspire Studio aware of the Python
support: we could keep the integration in a dynamic library, but instead of being
a plugin, it should be internal, and have the proper calls for initialization and
finalization. This is already planned, as is the Python console and another way
of loading Python plugins.

Then we should do further tests, also to extend the coverage of features that
are known to work.

Documentation is another important problem: at the moment, the C++ pdk
is documented with Doxygen. An idea is to make it include also the Python
documentation, as the OpenCV project does, since the Python api and the C++
one are almost identical. Another approach would be to use Sphinx, the tool that
many major Python projects use; when we tried to use it, we did not manage to
make it load all the binary dependencies of the bindings.

It would be also helpful to have a feedback from pdk user, to understand
what are its weaknesses. In case, we could try to make the api more comfortable
to Python developers.

About Binder, our changes include many trials and errors, therefore our mod-
ifications are not ready to become a pull request for them. However in future we
might try to formalize them and request to have them merged.

41

42

Part III: The Acquisition Plugin

Chapter 8

Acquisition of 3D models

A way to design 3D models is to start from a blank scene and draw everything
from scratch, or by taking inspiration from 2D images, if needed.

Another approach is to start from existing 3D models, or even from physical
objects.

There are many reasons to do that:

• building a component that fits with an existing product, such as a replace-
ment or a compatible new part;

• improving or changing the design of existing products;

• recreating legacy projects that have been lost;

• creating parts that would be very difficult, or impossible, to create from
scratch, like some organic shapes.

Different steps may be involved in the process:

1. scan of the model: this stage needs some specialized device, like a 3D
scanner or a depth camera, its output is usually a point cloud, i.e. a set of
points that do not have connectivity information;

2. clean of the data: in this step, the acquired data is cleaned, and, if needed,
transformed in some other geometric representation, e.g. a triangle mesh;

3. parameterization: one might be interested in a mathematical model of
the object, e.g. a nurbs based one, rather than a polygonal model, however
this step is optional, because sometimes a polygonal model is enough.

Our plugin allows to do a scan from an existing model with a rgbd camera,
then it creates a triangle mesh which includes also color information, but it does
not create a nurbs model from that.

43

44

Chapter 9

RGBD sensors

rgbd sensors are cameras that provide at least a color stream (rgb), and a
depth stream (d), although some have also other features, e.g. infrared capture
and audio acquisition.

Typically, all this data requires an interface with an enough high throughput,
such as usb 3. Sometimes a gray stream is preferred to colors, because it needs
a lower bitrate, or in some other cases only the depth stream is enabled, since it
is enough for reconstructing 3D models as point clouds.

In this chapter, we will see three types of depth sensors, then we will show
how to use depth data to reconstruct a 3D scene, and finally we will introduce the
Intel RealSense D415 Depth Camera, the device we support in our acquisition
plugin.

9.1 Depth acquisition techniques
Traditionally, 3D have been done with lidar, Light Detection and Ranging.
Thanks to lasers, it can be very precise, its error is in the same order of magnitude
as the light wavelength, but lidar scanners are also expensive.

During years, alternative techniques to measure depth with other cameras
have been developed, for use cases that need less precision and that can benefit
from affordability. Some examples are stereo depth, time-of-flight, and structured
light.

A common limit in all of these approaches is that very reflective objects alter
the measurements. For this reason, it is important also to choose adequate back-
grounds: matte ones are preferred, especially if they are highly textured, because
they interfere less with the acquisition.

9.1.1 Stereo depth
This technique is very similar to what human eyes do. It employs two cameras,
whose distance, or baseline, is known, and allows to compute the depth using
the correspondences from one image to the other. More precisely, the depth is
inversely proportional to the difference in distance of corresponding image points
and their camera centers [32].

45

P

O O'

z

B (baseline)

x x'

f

B + x - x'

Figure 9.1: The simplified case of parallel cameras. x and x′ are the distances
between points in image plane corresponding to P and their camera center.

Figure 9.1 represents the simplified case in which cameras have parallel optical
axes, and the corresponding points are only translated [13]; the generic case is
similar, but it should take also rotations into account.

We can exploit the similarity between the two triangles (same angle in P, and
two corresponding angles in parallel lines), from which it follows:

z

B
=

z − f

B + x− x′ =
z − f

B + d
(9.1)

where d is the disparity, that is defined as d = x− x′. With some computations,
we obtain

z =
Bf

d
. (9.2)

This technique can work with any pair of normal cameras, indeed OpenCV
has a module [32] for stereo vision.

However, specialized hardware, like the Intel RealSense Depth Camera D400-
Series, include asics (Application Specific Integrated Circuit) to find correspon-
dences in hardware, and perform depth acquisition in realtime, up to 30FPS.

Moreover, the D415, D435 and other specialized cameras work on infrared
wavelengths, to allow adding some texture with a noise projector, which can
improve the measurements, without influencing the color data.

The advantages of stereo vision are that it is more robust to ambient illumi-
nation, therefore it can work also outside, with direct sunlight, and that multiple
devices can operate together, without any interference.

Some disadvantages are that it needs two sensors that need to be calibrated
together, and that repetitive structures can make the determination of correspon-
dences ambiguous. Computational complexity, due to correlation algorithms, is
another disadvantage, although asics are a solution to this problem.

46

9.1.2 Time-of-flight
Time-of-flight, or tof, involves measuring the time that a wave, or a particle,
takes to reach a target and come back. With a model of the motion equation, it
is possible to compute the length of the traveled path from these duration values.

tof is a generic term: this method works with any kind of wave, e.g. acoustic
or electromagnetic, but, usually, 3D scans employ ir sensors.

The advantages of tof depth sensors are that transforming the received signal
to a depth measure involves just some simple computations, and that sensors are
very compact, indeed phone producers have started to include them in their
flagship smartphones.

A first disadvantage is that they are not normal cameras, but specialized
chips. Another problem is that they are influenced by background illumination,
therefore many of them perform poorly outside, and multiple sensors may disturb
each other. They also suffer from the indirect paths problem, i.e. they may
provide incorrect results because some rays might be reflected more than once.

The second generation of the Microsoft Kinect relies on a tof sensor.

9.1.3 Structured light
The structured light approach requires a projector and a camera. The former
projects a known pattern on the scene, whereas the latter, since it has another
point of view, detects deformation of the pattern made by the surfaces: by ana-
lyzing them, the system can compute the depth.

Varying the pattern during time allows the capture of more details. Also,
changing parameters of the pattern may produce different results.

Structured light shares many of the disadvantages of tof: interference from
ambient background light and multi-device interference. They also suffer from
multi-path effects, but in a lesser extent, with respect to time-of-flight.

However, as an advantage, the structured light can achieve a higher precision,
especially when merging several frames.

The first generation of the Microsoft Kinect is a structured light camera.

9.2 3D reconstruction from depth
For reconstruction purposes, depth is the most important stream: by knowing its
intrinsic parameters, i.e. the focal length and the principal point position, and
by knowing the units of the sensor (e.g. 1 unit is 1mm), the depth data alone

47

Optical center

Δx

z
(d

ep
th

)

f x

Δu

x

z

Figure 9.2: A simplified model of a pinhole camera, that does not take
distortions into account, with the XY plane being the focal plane, and with the

optical center in the origin, projected on the XZ plane. ∆x is in real world
units, as z, whereas ∆u and fx are measured in pixels. On the YZ plane, the
situation is similar. Refer to [12] for a complete and detailed discussion of the

camera model.

is sufficient to obtain a 3D representation of what the sensor is looking at, as a
monochromatic point cloud.

With Figure 9.2 as a reference, ∆x can be found exploiting the triangle sim-
ilarity: we have two right triangles (by construction), with equal angles at the
principal point (vertically opposite angles). Therefore,

∆x

z
=

∆u

fx
⇒ ∆x = z

∆u

fx
(9.3)

and, in a similar way, we obtain

∆y = z
∆v

fy
. (9.4)

By doing these computations for each pixel of a depth frame, it is possible
to build a point cloud. With fixed intrinsic parameters, ∆u

fx
and ∆v

fy
are constant

terms for each pixel. Therefore, it is possible to build a matrix with these val-
ues, and exploit array programming to improve performances when elaborating
multiple frames, e.g. for realtime rendering of what the sensor sees.

Also, a simple form of triangle mesh can be obtained by linking points that
comes from adjacent pixels, if their distance is below a certain threshold, although,
as we will see, to completely reconstruct an object, it is necessary to integrate
several frames. This is needed to have data also on occluded parts of the object,
and to reduce the error; some algorithms have been designed for this purpose.

The color data can be applied to the point cloud, to make it more realistic,
but it can be also required for reconstruction purposes, in addition to the depth
data, e.g. in rgbd odometry algorithms.

48

In any case, being physically different sensors, color and depth images have
different extrinsic parameters, and in some cases they have also different sizes,
aspect ratio and field of view. Registration is the post processing step that allows
to overlap them; usually, it is done in the host via software, by calling some
function provided by the sensor sdk.

9.3 Intel RealSense D415
We wanted to offer the possibility of interfacing a depth camera to scan objects
directly in Altair Inspire Studio.

Our first requirement was to support a device that was still in production,
so that if the plugin will be released to public, interested people will be able to
obtain a device to use it. This excluded the Microsoft Kinect 2 immediately.

Another requirement was that the cost of the device should be adequate to
what it offers.

Eventually, we chose the Intel RealSense D415, because of its technical fea-
tures and also because it is very compact, therefore also maneuverable.

Figure 9.3: The Intel RealSense D415 Depth Camera. Photo by Intel.

It provides color data at 1920 × 1080 pixels, and depth data at a maximum
resolution of 1280 × 720 pixels at 30FPS. The depth is computed with stereo
vision in the ir, and the device includes an ir projector as well, that can be
enabled or disabled.

An advantage of the solution by Intel is that it provides also some useful
features in the sdk, such as a filter to preserve edges, or a temporal filter to
improve the depth data persistence.

Another benefit is that Intel provides official support also for macOS. Al-
though it is not as complete as Windows and Linux ones, the stream capabilities
work as intended.

49

9.3.1 D415 Limits
The D415 allows the depth scale to be set either to 1mm or to 100µm. Since the
value of each pixel is a 16bit unsigned integer, the theoretical maximum depths
are 65.535m, or 6.5535m, depending on the depth scale. However there are also
other factors that limit the bounds of what can be measured [11].

The first one is that the Intel RealSense Vision Processor D4, the asic of
the D415, can look for correspondences in a window of 126 pixels. This window
can be moved, with the parameter that the sdk calls disparity shift: the default
window is from 0 to 126, with a disparity shift of 10px, the window goes from 10
to 136.

Given a certain disparity value d (e.g. 126, or 10, or 136), by knowing the
baseline B (55mm, for the D415), the width w of a frame (e.g. 1280px) and the
horizontal field of view F (65°, for the D415), the corresponding depth z can be
computed with the following formula:

z(d) =
fB

d
, f =

w

2 tan
(
F

2

) . (9.5)

Equation 9.5 connects any disparity value to a z value, and it makes possible to
compute the minimum and the maximum depths that the RealSense can measure.
In particular, by default, at the maximum resolution, the minimum z is about
44cm, which can be far for some applications. One way to reduce it is to decrease
the stream resolution, but this increases the error on z. Another way is to change
the disparity shift: this reduces also the maximum depth, which might be not a
problem, considering that many applications already have a threshold, and that
with the default value, theoretically the maximum depth is unlimited (we would
have 0 at the denominator, in Equation 9.5, but, as we will see, in practice there
are also other limiting factors).

As Figure 9.4 shows, setting disparity shift to a value like 41px might be a
good tradeoff, because it allows to scan everything in the 33cm-134cm range, but
setting it to a value like 95px to arrive to 25cm of minimum depth reduces the
maximum depth to 58cm, that might be too low, to comfortably move around an
object.

An additional reason to stay closer to the object to scan is that the rms error
on depth grows with the square of z:

e =
sz2

fB
(9.6)

where s is the subpixel rms error, which is “virtually independent of distance to
the target” [14], and can be measured with a specific software.

50

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
10

100

1000

10000

Maximum and minimum Z

maxz minzDisparity shift

Z
 v

al
ue

s
(c

m
, l

og
 s

ca
le

)

(a) Maximum and minimum depth in function of the disparity shift. The scale
is logarithmic to include both the values in the same graph.

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

550

Minimum Z and length of usable data

minz delta mingainDisparity shift

Le
ng

th
 (

cm
)

(b) The length of the usable area is in red, and the additional minimum depth,
with respect to disparity shift = 0 is in yellow. To gain a few centimeters of

minimum depth, it is necessary to lose a lot of usable range.

Figure 9.4: Plots of the Equation 9.5, for the parameters of the D415 and
1280px of width.

51

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

RMS error, as a function of the distance

Distance (cm)

R
M

S
 E

rr
or

 (
m

m
)

Figure 9.5: rms error, with the same parameters as above, and 0.08 as subpixel
rms error

Distance is not the only factor that introduces errors, but there are also many
others, e.g. wrong exposition or interference of reflective materials.

Indeed, the D400 series has many parameters that can be tuned to enhance
the results, but some of them are not documented, because they are intended to
be set through the presets offered by the sdk, that are optimized for a certain
purpose, using machine learning [6].

52

Chapter 10

The workflow
During years, the problem of interfacing with real world scenes, objects and envi-
ronments, for many different purposes, has been studied: several workflows and
techniques have been developed and improved. Some of the proposals published
in literature have also available software implementations.

We chose Kinect Fusion [23] [15]: as its name states, it was designed for the
Microsoft Kinect, but it needs only depth frames and the implicit parameters of
the camera, data that any depth sensor can provide. In this chapter, we will
briefly see how this pipeline works.

10.1 Kinect Fusion
Actually, Kinect Fusion is based on previous techniques: its authors started from
icp (Iterative Closest Point) [4] and tsdf (Truncated Signed Distance Function)
[8], which they adapted to exploit the parallel computation power offered by
gpus, to process subsequent depth frames in realtime.

The reason is that the objective of Kinect Fusion is to build a complete re-
construction while acquiring the data, without further processing.

To achieve this, the movements of the camera should be small and smooth,
because icp, as we will see, needs the point of view of each frame to be close to
the previous one. A fast algorithm is helpful, because longer times correspond to
larger movements.

Like all the tsdf-based methods, Kinect Fusion represents the acquired scene
as a voxelized point cloud. In a first setup step, an empty volume is created, then
an iterative and incremental update procedure, that takes only the depth frame
as input, performs the following steps, for each frame:

1. depth map conversion: the frame is preprocessed to reduce noise and
converted to a point cloud;

2. camera tracking: with icp, a rigid transformation, i.e. rotation and
translation, is computed and then applied to the point cloud, to match it
with the rest of the volume;

3. volumetric integration: the point cloud is voxelixed and integrated in
the existing volume;

53

4. raycasting: the new volume is rendered from the last camera position, to
create a synthetic depth map, passed to icp on the next frame.

10.1.1 Depth map conversion
The first steps are preprocessing of the frame: first a threshold of maximum
depth is applied, which, accordingly to our experience, can speed up the next
phases. Then a bilateral filter is applied, to reduce the noise while preserving the
discontinuities. At this point, each pixel is transformed to a point, as described
in Section 9.2.

In the parallel implementation, each compute unit calculates the coordinate
of a single pixel, and its normal vector from its neighbor points, needed by the
point-to-plane optimization of icp [30].

10.1.2 ICP
Iterative Closest Point is an algorithm for scene registration.

Given two point clouds P and Q, that are already roughly aligned, it looks
for correspondences K = {(p,q)}, and it builds a linear system from them to find
a transformation matrix T.

Then T is applied to points of Q, and the process is repeated, to find an
improved matrix. The exit conditions are given by a target energy function
E(T), that the algorithm minimizes, and by an iteration counter.

In the original icp implementation, called also point-to-point icp, this energy
function is:

E(T) =
∑

(p,q)∈K

∥p − Tq∥2 (10.1)

whereas, in the point-to-plane icp it is:

E(T) =
∑

(p,q)∈K

((p − Tq) · np)
2 (10.2)

and it is the only difference between the two methods.
Thanks to, p and q are detected as correspondences if ∥p − Tq∥ ≤ d, where d

is a threshold. Several workflows perform registration with methods that exploit
feature vectors, or 2D algorithms like sift or orb, or similar methods, and then
they run icp as a refinement.

Kinect Fusion uses only icp, which simplifies the operations, because other-
wise at each update, new feature vectors should be computed, but it is also a
strong assumption. This is the main reason for the camera movements to be
small and smooth.

54

Kinect Fusion was designed to run online, therefore, if the camera tracking
fails, the user should be warned and they should go back to a working pose.

10.1.3 TSDF
The volumetric integration is made on a uniformly sampled grid of voxels, whose
size and pitch can be chosen accordingly to the application.

Each voxel has two properties associated: a truncated signed distance, av-
eraged through the various frames, and a weight, which is the times a voxel
appeared in a frame.

For Kinect Fusion, the signed distance is the difference between the distances
of point and of surface to camera. A positive sdf means that the vertex is in
front of the surface, whereas it is negative if the vertex is behind the surface, thus
zero crossings define the surface.

Only the pixels whose sdf is within a certain threshold are considered in the
update, and, for this reason, this method is also called Truncated Signed Distance
Function.

The advantages of this kind of representation are that it encodes uncertainty
in the data, it allows to merge multiple measurements easily, and to fill holes
thanks to them. Moreover, with the distances it is possible to do interpolation,
to place points or vertices with subvoxel precision, when extracting a point cloud
or a triangle mesh.

The parallel implementation employs a computing unit for each (x, y), which
sweeps along the z-axis.

To improve speed, the grid is stored as a linear array, which guarantees higher
performances than hierarchical structures, in gpus, even though the latter are
much more memory efficient. A voxel needs at least a 32-bit float (16-bit half
precision floats might be sufficient, however many consumer grade gpus do not
support them) and a 16-bit integer for the weights. Depending on resolution, the
grid can occupy from a few MB, e.g. 100 elements in each direction, to some GB,
with more than 1000 elements in each direction. In fact, memory is the main
limit to volume space and resolution.

10.1.4 Raycasting
Running icp between two subsequent frames might produce bad results, as some-
times frames have a high ratio of missing data due to indecision of the sensor,
or errors due to artifacts. Therefore, at the end, the update procedure creates
a target cloud for the next update: this synthetic data is less noisy, and more

55

globally consistent.
With this information, the procedure creates also a 2D rendering of the sur-

face, that can be displayed to the user, to show whether the camera tracking is
working correctly.

This operation runs in parallel, as well: each computing unit cast a ray and
finds a single vertex/render pixel.

10.2 Marching cubes
Kinect Fusion does not have any finalization step: after any volume integration,
the reconstructed data that it can offer is ready.

However, besides being memory inefficient, generally a voxel grid like that one
is not supported by 3D modeling software.

A first approach is to convert it to a point cloud, i.e. take only the voxels on
the border of the surface, interpolate their coordinates using distances, and put
them in a point list.

However, the marching cubes algorithm [18] can work directly on that kind
of data and generate a triangle mesh, that can be used with almost all software.
To keep the same terminology of its introductory article, 0 is our “user-specified
value”, and the signed distance is the “vertex data-value”, in this way it finds the
zero crossings.

This algorithm is very simple and can be implemented in a very efficient way
without parallel computations.

A disadvantage of marching cubes is that it does not simplify the generated
mesh in any way: its vertex will be sampled like the original grid, and an addi-
tional simplification step might be desirable in the pipeline, to save memory and
because a simpler model often implies better performances.

10.3 Other approaches
tsdf based algorithms, like Kinect Fusion, understand which regions of space
are empty, thanks to visibility information, but many other approaches to surface
reconstruction [3].

Some assume that the scanned scene meets some geometric properties, such
as surface and volume smoothness, and exploit them to provide a reconstruction.
Others try to reconstruct the scene as a set of simple geometric shapes, like cubes,
spheres etc. Another category is the one of data driven algorithms, that try to

56

reconstruct single objects, by composing them as parts of existing models, or by
using them to complete missing parts in the scan.

57

58

Chapter 11

Implementation of the plugin
We decided to implement the scan functionality with a single plugin, that offers
three modeling tools:

1. acquisition: this tool interacts with the RealSense, saves the captured
frames and in the meantime runs also Kinect Fusion, to create an initial
reconstruction. It also warns the user in case the camera tracking fails;

2. refinement: this is an optional stage that runs again Kinect Fusion on the
already acquired data to obtain a more precise tracking;

3. mesh extraction: this modeling tool converts the point cloud obtained
with Kinect Fusion to a standard triangle mesh.

In the rest of the chapter, we will see how we implemented them, the problems
we encountered and how we solved them.

CameraManager KinectFusionPipeline PreviewUI

Extends ExtendsExtendsExtends

Acquisition tool Refinement tool

Extends

Extends

AcquisitionSetup AcquisitionCapture Refinement

C
la

ss
es

To
ol

s

Figure 11.1: The structure of the acquisition and of the refinement classes and
tools. As we will see, they are very similar, and share several portions of code.

59

11.1 Acquisition tool
This tool is the most complex of the three, and the one that has to provide most
of the functionalities.

First, the users choose parameters such as the object dimension and position,
then they start the actual scan, that provides a first reconstruction of the object,
as a point cloud.

11.1.1 Setup
In this phase, the users set the various parameters, and a preview of what the
sensor sees is displayed in the scene, as a triangle mesh, created with the simple
algorithm explained in Section 9.2.

To make the target area more visible and more distinguishable, we show the
volume bounding box and we apply some transparency to the parts that are
outside it. Users can move the target region by dragging its center with the
mouse in this preview, or by inserting its coordinates in the modeling tool panel.

Then, users are asked for a path where they want the tool to save the param-
eters file and the frames.

We chose to save the parameters in a json file, which contains the volume
properties, and the information about the dataset, i.e. the intrinsic parameters
of the camera, the depth scale, and the transformation matrices, once they are
available.

For color and depth frames we chose the jpeg and the png formats, respec-
tively; both will have a numeric suffix, and files with the same numbers, e.g.
color_00001.jpg and depth_00001.png, are to be considered a single aligned

(a) Front view (b) Top view

Figure 11.2: The preview of what the RealSense is framing. The plugins
supposes that the user is looking at the front, indeed, the top view does not

have much data. The small orange dot is the handle to move the cube.

60

Figure 11.3: The parameters that can be set on the preview. Notice that the
“Start capture” button is gray because the file has not been set yet.

1 {

2 "depthScale": 9.999999747378752e-05,

3 "failed": [1093, 1094, 1095, 1096, 1098, 1099, 1100],

4 "initialPose": [

5 1.0, 0.0, 0.0, -0.16353767363786697,

6 0.0, 1.0, 0.0, -0.16087585596046448,

7 0.0, 0.0, 1.0, 0.2821944129562378,

8 0.0, 0.0, 0.0, 1.0],

9 "intrinsic": [

10 928.3314208984375, 0.0, 638.6371459960938,

11 0.0, 927.9815673828125, 352.825927734375,

12 0.0, 0.0, 1.0],

13 "maxDepth": 10000.0,

14 "minDepth": 0.0,

15 "online": true,

16 "size": [1280, 720],

17 "transforms": [[

18 1.0, 0.0, 0.0, 0.0,

19 0.0, 1.0, 0.0, 0.0,

20 0.0, 0.0, 1.0, 0.0,

21 0.0, 0.0, 0.0, 1.0],

22 null],

23 "volSize": 0.30000001192092896

24 }

Listing 8: An example of parameters file. Notice that the transformation of the
second frame is null but it is not in the failed array: it means that it has been
skipped, which may happen, since they are the result of the realtime tracking,

as the online attributes shows. The file contained also the other transformation
matrices, even though they have not been shown here.

61

frame.
While the volume parameters can be left to defaults, if they make sense, the

output directory is compulsory, and the button to start the recording remains
disabled, until the user provides it.

11.1.2 Capture
The capture receives frames from the RealSense, saves them, calls the Kinect
Fusion update, and if the camera tracking fails, it warns the user.

Apart from the interface with the sensor, we decided to do these tasks with
the OpenCV library: image input/output is one of its basic functionalities, and it
provides an implementation of Kinect Fusion (cv::kinfu, [24]), already optimized
to exploit gpus via OpenCL.

During the capture, we also update a point cloud on the Inspire Studio scene.
However, we noticed that it is not the best way to show if the capture is working
correctly, because neither Studio, nor OpenCV support colored clouds.

Therefore we decided to display the color stream, with the depth
stream overlapped as a heatmap, for which we call cv::addWeighted and
cv::applyColorMap, respectively.

In another window we display the Kinect Fusion render, that helps to under-
stand whether the tracking is working, because its point of view should be the
same as the one detected for the camera.

Both the RealSense sdk and OpenCV offer Python bindings: we tried to
write the tool in Python, but eventually we had to do that in C++. The first
problem was that, as shown on Listing 9, in the Python version, the intrinsic
camera parameters of KinFu are a read-only matrix, and without changing them,
it is impossible to run the algorithm.

Although we managed to modify the source code and make it possible to set

1 struct CV_EXPORTS_W Params {

2 // ...

3 CV_PROP_RW Size frameSize;

4 /** @brief camera intrinsics */

5 CV_PROP Matx33f intr;

6 // ...

7 };

Listing 9: This is an extract of the struct that contains KinFu parameters.
OpenCV automate the bindings with a tag based system. This listing shows
that frameSize is marked as a read and write property, whereas the intrinsic

matrix is just read-only.

62

(a) Color and depth, blended together. (b) The partial render of Kinect Fusion.

(c) How a point clouds is shown by Inspire Studio.

Figure 11.4: We display two other windows, in addition to the main Inspire
Studio one, for the acquisition, to make it more clear for the user whether the

sensor is able to compute depth information and whether the camera tracking is
working correctly. They are easier to understand, than the point cloud.

this matrix from Python, in some cases our scripts crashed because the KinFu
update function threw some std::runtime_exception, that were not converted
to Python exceptions, and this issue proved to be critical.

But the most problematic aspect is that the capture needs at least three
threads: one to interface with the camera, one for the Kinect Fusion update
(although it runs on the gpu, the call provided by OpenCV is blocking) and
one to save images. When we tried to do this in Python, we encountered many

63

problems, both with the threading and the multiprocessing modules. The
former had fairness issues, whereas the latter had problems with the inter process
communication.

Indeed, for plugins with purposes like this one, i.e. hardware interfacing, and
realtime processing, C++ remains a better option.

Even with native code and with the OpenCL optimization enabled, our test
machine, which had a 6 year-old Nvidia Quadro K3100M, was not enough fast to
elaborate all the frames and the tracking always failed.

Thus, for this stage, we decided to save as many frames as possible, and to
check if the camera tracking is working by setting coarser parameters to icp,
and a bigger voxel size, rather than attempting a perfect reconstruction while
capturing.

Therefore, we employ a simple lock to synchronize the acquisition and the
volume update, because it needs just the last frame and the critical section is
limited. In detail, the frame is kept in memory as a cv::Mat, and when it is
instantiated with the copy constructor, the new object will share the same buffer
of the source, rather than having its own. Thus, in the critical section, we just
copy a pointer and increase an integer, used as reference count.

Instead, the file output thread needs all the frames, therefore, we synchronize
it with the acquisition with an open source, lock-free queue, based on atomic
operations, released under the bsd license [9].

Saving frames is slow, and we noticed that it continues also for some seconds
after having stopped the acquisition. However, rather than the additional time,
that may be considered as an “acqusition finalization”, memory usage might be
problematic: frames that are waiting to be written are kept in ram, but in our
tests they never exceeded 200MB-300MB, which is acceptable.

11.2 Refinement tool
As a second, optional step, users can run a tool to execute again Kinect Fusion
on an existing dataset. Since it does not have to interact with the camera, it is
not time constrained, and it can run icp with parameters tuned to obtain more
precise transformation matrices.

Moreover, the refinement tool is device independent, so any existing dataset
that can be converted to our format, can be reconstructed with our plugin, which
is possible also because this tool does not use existing transformation matrices.

We designed it this way to allow users to change the volume properties, if
needed, which is useful to reconstruct objects from datasets that had wrong vol-

64

Figure 11.5: The refinement tool is very similar to the capture one. Indeed both
have the possibility of setting the center of the volume and its size, but the
former shows the first frame on the preview, whereas the latter shows a live

preview.

ume position or size, without having to capture them again.
From a technical point of view, this tool is very similar to the acquisition

tool, therefore we decided to share all the code that we could, and it resulted in
a structure similar to the one represented in Figure 11.5.

11.3 Mesh extraction tool
The final step of our pipeline is the mesh extraction: from the tsdf volume, we
extract a triangle mesh.

Initially, for this tool, we encountered two problems.
The first was that in the OpenCV implementation the tsdf data is not acces-

sible: one can obtain only a point cloud, as list of vertex coordinates and normals.
The KinFu class is abstract, and the actual implementations are not available in
the headers.

The second problem was that OpenCV does not manage vertex color data.
To resolve both the problems, we copied the OpenCL kernel of the integration,

and we modified it to handle also colors: we assign to each vertex the average of

65

Figure 11.6: The parameters of the mesh creation tool. Volume size is fixed
from the previous tools, and the voxel size depends on the resolution, as the two

different screenshots show.

the colors which that vertex had in each frame in which it appeared.
Since we handle the modified kernel, we also have to manage its memory, and

so we can access the tsdf data. In addition to this memory space, we pass the
matrices computed with the first or the second tool.

For marching cubes, we modified an implementation based on lookup tables
[5], to make it directly use the signed distance stored in our grid as surface value.

In our implementation, we added an index buffer and we made it reuse ver-
tices, if they have already been checked and added, so that the output mesh
is connected, which is important for many purposes, including retopology algo-
rithms.

As an optional step, we allow to simplify the mesh. For this, we found a
Python module version of an open source project called Instant Meshes [17].
Users can specify a certain target number of triangles they want in their output,
and this algorithm reparametrizes the mesh.

Moreover, they can run this step many times, until they are satisfied, without
the need to run the extraction from the grid again, because the original model is
always kept in memory, therefore this operation is quite fast.

Since we did not have the same performance requirements like the ones of the
acquisition tool, we wrote this tool in Python.

In the next chapter, we will show some reconstructed models, both before and
after the simplification step.

66

Chapter 12

Results
To test the plugin, we tried to scan some objects.

In this chapter, first we will see some generic considerations about the recon-
struction parameters and about the limits of the workflow. Then we will see the
reconstructions of a couple of datasets. Finally, we will compare our implemen-
tation decisions, with the ones of Microsoft 3D Scan [22], a free software available
in the Windows 10 Store.

12.1 Parameters
We noticed that the most important factor to obtain a good scan is to keep the
scan volume as big as the object. E.g. if the object fits in a cube of 25cm on
each size, it is better set the volume size to 30cm on each dimension, rather than
1× 1× 1m.

This is helpful for two reasons: first, with smaller volumes, it is possible to keep
a high precision with a smaller grid resolution, thus faster computation times.
Secondly, we observed that smaller volumes produce better reconstructions: we
think that, in this way, icp is forced to look for correspondences mainly in the
target object.

The RealSense preset was another crucial setting: we switched from high
accuracy to high density, contrarily to what the official documentation suggests
[6]. Accordingly to our experience, the implementation of Kinect Fusion from
OpenCV works with the latter, whereas, with the former, it almost always lost
the camera tracking at a certain point, in our experiments.

However, one of the first datasets we captured with this preset had issues: the
target object was duplicated with an offset, as shown in Figure 12.1, but we are
not sure that the error was strictly connected to the preset.

As Figure 11.6 shows, we exposed also two other parameters: the truncation
value for the signed distance and the resize factor for the frames. The former
depends on the object that is being reconstructed: a lower value produces a model
with sharper edges, but also with more holes, whereas a higher value corresponds
to more rounded edges and to more filled holes.

The resize factor influences mostly the time of reconstruction, rather than the
results, accordingly to our experience. We set the stream size to 1280 × 720px,

67

(a) The heatmap of the depth. (b) The corresponding rgb frame.

Figure 12.1: In the depth frame, the shoe model is double, whereas the color
frame is just a bit underexposed. We do not know if the problem was caused

the preset or by another error with the device: the previous 15 depth frames of
the same dataset were like the camera was still, whereas the corresponding color

frames show movement.

and we observed that we could use 0.5 as size factor without any problems. Since
each side is resized, with 0.5 as factor, the amount of data is reduced by 4 times,
therefore the mesh extraction is faster.

12.2 Problems of the plugin
We managed to produce quite good scans of the objects, but we observed some
problems in all the datasets.

The first one is that sharp edges tend to become round, dependently on the
distance truncation value. We also tried to apply a median and a bilateral filter,
but we could not solve this problem.

Another characteristic of all the datasets is that small details, that are avail-
able in a single frame or in a restricted number of frames, disappear in the final
reconstruction, even when the voxel resolution is enough small to include them.
We think that a reason might be that in the final reconstruction they are treated
as errors, maybe because they are not aligned correctly, since the transformation
matrices likely have errors. Also, the averaging procedure implicitly smooths the
model.

This is visible especially in Figure 12.2: the object that was being scanned
was an electronic board, and the render of Kinect Fusion shows the integrated
circuit and some other electronic components that were on it, whereas the final
reconstruction does not.

Sometimes, reducing the voxel size helps to include more details.
We also encountered a technical problem with the visualization of the models

68

(a) The partial render of Kinect Fusion. (b) The final reconstruction.

Figure 12.2: These two pictures represent the detail of a scene, that included an
electronic board. On the left, the partial reconstruction made with raycasting is

very detailed, it is possible to see, for example an integrated circuit. On the
right, with the reconstruction process, these details have been lost.

with their color. In the scene mode, we could not apply lightning to the visualiza-
tion with materials, therefore it becomes slightly difficult to understand correctly
the model, and in many cases the default material is clearer.

12.3 Datasets
With the first dataset, we tried to reconstruct a wooden model of shoe, used by
artisans. The second dataset is about the instant camera that was the objective
also of screenshots in Chapter 11.

All these pictures show that the reconstruction resembles the real objects in
a close manner, but it is quite difficult to obtain a clean scan without any kind
of noise.

Moreover, the objects cannot be placed directly in a broader scene, or 3D-
printed, but they likely need to be cleaned manually, first.

(a) A side of the model. (b) The other side of the model.

69

(c) The front of the model. (d) A detail of the sole.

(e) View with colors. (f) One of the rgb frames.

Figure 12.2: The reconstruction of this other model. Again, there are some
problems with the sharp edges. There is also some noise on the back of the

shoe, due to the non optimal background of the acquisition environment, but it
is disjoint from the model, therefore it is easy to remove it using other tools

that Inspire Studio offers.

(a) Vertices of the reconstructed model. (b) Zoom on a region of the previous image.

70

(c) The model after the simplification. (d) Vertices of the simplified model.

Figure 12.2: We tried to reconstruct the model with a resolution of 500, and a
voxel size of 0.6mm in each dimension, which resulted in more than 1 million

vertices (in blue) and more than 2 million triangles. The third figure is a
simplified model of the previous one, with 20 000 triangles, i.e. one hundredth
of the original model. The simplified model is still understandable, it is just
smoother and without the texture that it is possible to see on Figure 12.2.

(a) The front of the camera. (b) One of the rgb frames.

Figure 12.3: This picture shows the front perspective of the reconstruction, and
that holes for the lens and for the viewfinder have been detected. It is also

possible to see that there is noise under the protective cover. A cause of this
might be that some data could be missing, because we had to capture all the

frames from the a certain angle, as the right image shows, to avoid including a
glass surface on the background, which would have added a high quantity of

noise.

71

Figure 12.4: The side and back of the camera, and the attached string, which is
very thin. The reconstruction contains also the shutter, but the area under has

many holes.

(a) Truncation value of 1.5cm. (b) Truncation value of 0.3cm.

Figure 12.5: This pictures show what changes by changing the value of signed
distance function truncation. On the left, we can see that the holes of Figure
12.4, which had a truncation value of 1cm, have been closed, as well many the

holes of the cover. On the contrary, on the right there are many holes, but edges
are sharper.

72

(a) Front view. (b) Back view, with also the string.

(c) Left view. (d) Right view.

Figure 12.6: Simplification of the model to 20 000 triangles, which is about one
tenth of the original triangle count. The simplified model is smoother than the
original, that had a sort of textures, visible in all the previous pictures. Some of

the details remain, it is the case of the lens and the string, as well as the
problem with the edges of on the right view, whereas the hole for the viewfinder
is evident. The simplification also filled some of the holes that were under the

shutter.

73

12.4 Comparison with Microsoft 3D Scan
3D Scan [22] is a free application, developed by Microsoft and available in the
Windows 10 Store, that allows to scan objects and save a 3D model using a Kinect
2 or Kinect for Xbox One.

Its procedure is similar to ours: first, the user setups the data of volume to
scan, then they scan the object by going around it, then the software creates of
a point cloud from which it extract a triangle mesh.

However, 3D Scan does not limit the volume size: it asks for the maximum
threshold of depth, which is used to filter the data that is acquired, but not to
limit the volume, that is dynamic, instead. Moreover the software has a minimum
threshold of depth fixed to 50cm, therefore it is likely for the volume to become
big, which, accordingly to our experiments, might be a problem.

These differences are reflected in the setup step: it is performed on a 2D view,
on which the user can set the width and height of the scan area, and the depth
threshold is shown as color, i.e. what is within is colored, whereas what is outside
is grayed. Setting the volume in the 3D scene is easier and clearer, in our opinion,
although we can do it because we have a fixed volume.

(a) Front and right. (b) Back and left.

Figure 12.7: The reconstruction of the instant camera from 3D Scan.
Accordingly to our experience, the reason for this result was that the scan

volume was too big.

74

Part IV: Conclusions and future works

Chapter 13

Conclusions

For this thesis we worked with and on the plugin development kit of Altair Inspire
Studio. We managed to create a Python api that resembles the C++ existing
one. We also designed an automated pipeline to keep it updated, requiring human
intervention only to verify that it worked as expected, or to handle manually the
few features based on incompatible differences between the languages.

We used the new api to create some example plugins, and we found that doing
it starting from the C++ examples was quite immediate. We did not encounter
problems, however the pdk exposes many functionalities, and we could not test
all of them.

For the future, we would like to receive feedback from third parties, to under-
stand what they think that could be improved.

We should also enhance the documentation, and we would like to create more
involved example projects. A candidate is represented by the 3D acquisition
plugin which we discussed about in the thesis.

This plugin is different from what Inspire Studio offers. It was helpful both
as a starting approach to mew functionalities and to understand some of the
technical limits of the pdk.

The resulting scans were not perfect as lidar ones can be, and they included
some noise, but they were good enough for our purposes and for what rgbd
sensors can do, considering also that they are much cheaper than lidar scanners.

In the future, we would like to resolve the problems we encountered, to im-
prove the quality of the results, e.g. by computing the normals and using them
as weight for the colors average, and to extend the supported devices and add
advanced tuning of sensor-specific parameters.

75

76

Appendix A

Samples of code written with
Python C API

A.1 Module creation

1 static PyMethodDef mymodule_methods[] = {

2 // Methods definitions will be here; no methods, for the basic example

3 {NULL} // Sentinel, closes the list

4 };

5

6 static struct PyModuleDef mymodule = {

7 PyModuleDef_HEAD_INIT, // A macro that initialize some fields to defaults

8 "mymodule", // The name of module

9 "Module documentation string", // May be NULL

10 -1, // The module keeps state in global variables

11 mymodule_methods // The array that contains the methods of the module

12 };

13

14 PyMODINIT_FUNC PyInit_mymodule(void)

15 {

16 // Checks to the structures will be here, before the module initialization

17

18 PyObject *m = PyModule_Create(&mymodule);

19 if (!m) {

20 // As described before, if a function fails, we should also fail

21 return NULL;

22 }

23

24 // The rest of the registrations will be here

25

26 return m;

27 }

Listing 10: The code to create a minimal module.

77

A.2 Custom type creation

1 // The class we want to bind

2 class Example {

3 public:

4 std::string cpp_string; // A C++ std::string we will bind with custom getter/setter

5 };

6

7 struct ExampleObject {

8 PyObject_HEAD // Fields that allow the cast to a PyObject

9 Example *real_object; // The real C++ instance of the class

10 double double_val; // An example double value

11 int int_constant; // An example integer constant

12 const char *str_val; // An example to show that Python can manage strings

13 PyObject *object; // An example of Python object without type enforcing

14 };

15

16 /* Create a new object.

17 Needed, otherwise the creation will be disabled (e.g. to use factories), however Python provides also a

PyType_GenericNew function, which just calls tp_alloc.↪→

18 This is called once, to create the object. */

19 static PyObject *Example_new(PyTypeObject *type, PyObject *args, PyObject *kwds)

20 {

21 ExampleObject *self;

22 // type may be a subclass of Example

23 self = (ExampleObject *) type->tp_alloc(type, 0);

24 if (self != NULL) {

25 // Constants usually are initialized on the new, accordingly to Python docs

26 self->int_constant = 42;

27 // Defer the rest of the initialization to tp_init

28 }

29 return self;

30 }

31

32 /* Initialize an object.

33 This can be called many times, exactly each time __init__ is called on the Python side. */

34 static int Example_init(ExampleObject *self, PyObject *args, PyObject *kwds)

35 {

36 // For this example, ignore parameters, however they work as normal function, which we will see on

next section↪→

37

38 /* The most critical part is the pointer to the C++ instance.

39 We have to remember to delete it, but only if the new allocation does not fail. */

40 Example *new_instance = new Example();

41 if (!new_instance) {

42 PyErr_NoMemory();

43 return -1;

44 }

45 if (self->real_object) {

46 delete self->real_object;

47 }

48 self->real_object = new_instance;

49

50 // Initialize also all the other members

51

52 // One should be careful also with PyObject *, because of the reference count

53 PyObject *new_object = PyUnicode_FromString("hello");

78

54 PyObject *old_object = self->object;

55 self->object = new_object;

56 Py_XDECREF(old_object);

57

58 return 0;

59 }

60

61 // We have the pointer to the object, we need to delete it at finalization

62 static void Example_dealloc(ExampleObject *self)

63 {

64 delete self->real_object;

65 Py_TYPE(self)->tp_free((PyObject *) self);

66 }

67

68 // Getter for Example::cpp_string

69 static PyObject *Example_getcppstring(ExampleObject *self, void *closure)

70 {

71 return PyUnicode_FromString(self->real_object->cpp_string.c_str());

72 }

73

74 // Setter for Example::cpp_string

75 static int Custom_setcppstring(ExampleObject *self, PyObject *value, void *closure)

76 {

77 if (value == NULL) {

78 PyErr_SetString(PyExc_TypeError, "Cannot delete the cpp_string attribute");

79 return -1;

80 }

81 if (!PyUnicode_Check(value)) {

82 PyErr_SetString(PyExc_TypeError, "The cpp_string attribute value must be a string");

83 return -1;

84 }

85 const char *string = PyUnicode_AsUTF8(value);

86 if (!string) {

87 return -1;

88 }

89 self->real_object->cpp_string = string;

90 return 0;

91 }

92

93 // The members of ExampleObject that Python can manage directly

94 static PyMemberDef Example_members[] = {

95 // name, type, offset in the struct, flag (can be 0 or READONLY), documentation string

96 {"double_val", T_DOUBLE, offsetof(ExampleObject, double_val), 0, "A double value"},

97 {"int_constant", T_INT, offsetof(ExampleObject, int_constant), READONLY, "An integer constant"},

98 {"str_val", T_STRING, offsetof(ExampleObject, str_val), 0, "A (readonly) C string"}, // T_STRING

implies READONLY↪→

99 {"object", T_OBJEXT_EX, offsetof(ExampleObject, object), 0, "Any Python object"},

100 {NULL} // Sentinel

101 };

102

103 // Casts to getter and setter are needed because they take their specialized object, whereas

PyGetSetDef expects functions taking generic PyObject *↪→

104 static PyGetSetDef Example_getsetters[] = {

105 // name, getter, setter, documentation, value to pass as closure parameter to getters and setters

106 {"cpp_string", (getter) Example_getcppstring, (setter) Example_setcppstring, "Documentation for

cpp_string", NULL},↪→

107 {NULL} // Sentinel

108 };

109

79

110 static PyMethodDef Example_methods[] = {

111 {NULL} // Sentinel, no methods for the example

112 };

113

114 static PyTypeObject ExampleType = {

115 PyVarObject_HEAD_INIT(NULL, 0)

116 .tp_name = "mymodule.Example", // The qualified name of the type

117 .tp_doc = "Binding of the Example class plus other example members", // Documentation string

118 .tp_basicsize = sizeof(ExampleObject), // Size of the object, for the default allocator function

119 .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, // Allow this class to have children

120 .tp_new = Example_new,

121 .tp_init = (initproc) Example_init,

122 .tp_dealloc = (destructor) Example_dealloc,

123 .tp_members = Example_members,

124 .tp_methods = Example_methods,

125 .tp_getset = Example_getsetters,

126 };

127

128 PyMODINIT_FUNC PyInit_mymodule(void)

129 {

130 // Checks for the validity of the structure and set some defaults

131 if (PyType_Ready(&ExampleType) < 0)

132 return NULL;

133

134 PyObject *m = PyModule_Create(&mymodule);

135 if (!m) {

136 return NULL;

137 }

138

139 // Finally register the example type

140 Py_INCREF(&ExampleType);

141 PyModule_AddObject(m, "Example", (PyObject *) &ExampleType);

142

143 return m;

144 }

Listing 11: The code to create a custom type. For clarity of exposure, in this
example we use direct initialization; although it is standard in C, it will be

standardized only in the next version of C++ (known as C++20, at the
moment).

80

A.3 Exposing a function

1 // The convention is to call the function modulename_functionname.

2 // All these helper functions do not need to be called from outside, therefore they can be static

3 static PyObject *module_custom_method(PyObject *self, PyObject *args, PyObject *kw)

4 {

5 // Declare variables to hold arguments

6 PyObject *arg1;

7 char *arg2;

8 int arg3;

9 ExampleObject *arg4;

10 // etc

11

12 // Define the keywords and unpack the arguments

13 char *keywords[] = {"kw1", "kw2", /* etc */};

14 if (!PyArg_ParseTupleAndKeywords(args, kw, "format", keywords, &arg1, &arg2, &arg3, &arg4 /*, etc

*/)) {↪→

15 // As always, return NULL if it fails; the exception is already set by PyArg_ParseTupleAndKeywords

16 return NULL;

17 }

18

19 // Process the arguments, if needed, e.g. check for validity of the domain, do some cast

20 if (arg3 < 0) {

21 PyErr_SetString(PyExc_ValueError, "The third argument cannot be negative");

22 return NULL;

23 }

24

25 // Call the actual function

26 real_function(arg2, arg3, arg4->real_instance);

27

28 // Cast the return value and return it

29 // return PyLong_FromLong(123); // E.g. this returns a Python int

30 // return PyFloat_FromDouble(123.4); // This returns a Python float

31 /* or */ Py_RETURN_NONE; // If a C function returns void, the callback has return None, as NULL is

used only for exceptions↪→

32 }

33

34 static PyMethodDef methods[] = {

35 {

36 "custom_method", // Method name

37 module_custom_method, // Pointer to the callback

38 METH_VARARGS | METH_KEYWORDS, // Our callback accepts both varargs and kwargs

39 "Documentation string for the function"

40 },

41 {NULL} // Sentinel

42 };

Listing 12: The code to expose a function.

81

Appendix B

Example of a Clang AST
1 class A {

2 public:

3 class B {

4 void method1() {}

5 };

6 typedef std::vector bvec;

7 enum C {v1, v2, v3};

8 int method2(int a, int b)

9 {

10 return a + b;

11 }

12 int mMember;

13 };

1 class A definition

2 |-DefinitionData pass_in_registers aggregate standard_layout trivially_copyable pod trivial literal

3 | |-DefaultConstructor exists trivial needs_implicit

4 | |-CopyConstructor simple trivial has_const_param needs_implicit implicit_has_const_param

5 | |-MoveConstructor exists simple trivial needs_implicit

6 | |-CopyAssignment trivial has_const_param needs_implicit implicit_has_const_param

7 | |-MoveAssignment exists simple trivial needs_implicit

8 | `-Destructor simple irrelevant trivial needs_implicit

9 |-CXXRecordDecl 0x31ede38 <col:1, col:7> col:7 implicit class A

10 |-AccessSpecDecl 0x31edec0 <line:3:1, col:7> col:1 public

11 |-CXXRecordDecl 0x31edee8 <line:4:2, line:6:2> line:4:8 referenced class B definition

12 | |-DefinitionData pass_in_registers empty aggregate standard_layout trivially_copyable pod trivial

literal has_constexpr_non_copy_move_ctor can_const_default_init↪→

13 | | |-DefaultConstructor exists trivial constexpr needs_implicit defaulted_is_constexpr

14 | | |-CopyConstructor simple trivial has_const_param needs_implicit implicit_has_const_param

15 | | |-MoveConstructor exists simple trivial needs_implicit

16 | | |-CopyAssignment trivial has_const_param needs_implicit implicit_has_const_param

17 | | |-MoveAssignment exists simple trivial needs_implicit

18 | | `-Destructor simple irrelevant trivial needs_implicit

19 | |-CXXRecordDecl 0x31edff8 <col:2, col:8> col:8 implicit class B

20 | `-CXXMethodDecl 0x31ee0c8 <line:5:3, col:19> col:8 method1 'void ()'

21 | `-CompoundStmt 0x31eea28 <col:18, col:19>

22 |-TypedefDecl 0x31ee578 <line:7:2, col:25> col:25 bvec 'std::vector':'std::vector<A::B,

std::allocator<A::B> >'↪→

23 | `-ElaboratedType 0x31ee4c0 'std::vector' sugar

24 | `-TemplateSpecializationType 0x31ee480 'vector<A::B>' sugar vector

25 | |-TemplateArgument type 'A::B'

26 | `-RecordType 0x31ee460 'std::vector<A::B, std::allocator<A::B> >'

27 | `-ClassTemplateSpecialization 0x31ee370 'vector'

28 |-EnumDecl 0x31ee5c8 <line:8:2, col:20> col:7 C

29 | |-EnumConstantDecl 0x31ee680 <col:10> col:10 v1 'A::C'

30 | |-EnumConstantDecl 0x31ee6d0 <col:14> col:14 v2 'A::C'

31 | `-EnumConstantDecl 0x31ee720 <col:18> col:18 v3 'A::C'

32 |-CXXMethodDecl 0x31ee900 <line:9:2, line:12:2> line:9:6 method2 'int (int, int)'

33 | |-ParmVarDecl 0x31ee788 <col:14, col:18> col:18 used a 'int'

34 | |-ParmVarDecl 0x31ee800 <col:21, col:25> col:25 used b 'int'

82

35 | `-CompoundStmt 0x31eead8 <line:10:2, line:12:2>

36 | `-ReturnStmt 0x31eeac8 <line:11:3, col:14>

37 | `-BinaryOperator 0x31eeaa8 <col:10, col:14> 'int' '+'

38 | |-ImplicitCastExpr 0x31eea78 <col:10> 'int' <LValueToRValue>

39 | | `-DeclRefExpr 0x31eea38 <col:10> 'int' lvalue ParmVar 0x31ee788 'a' 'int'

40 | `-ImplicitCastExpr 0x31eea90 <col:14> 'int' <LValueToRValue>

41 | `-DeclRefExpr 0x31eea58 <col:14> 'int' lvalue ParmVar 0x31ee800 'b' 'int'

42 `-FieldDecl 0x31ee9c0 <line:13:2, col:6> col:6 mMember 'int'

Listing 13: An example of some C++ declaration and the corresponding ast,
dumped by running Clang with the option -ast-dump.

83

84

Bibliography

[1] David Abrahams and Stefan Seefeld. Boost.Python. url: https://www.

boost.org/doc/libs/1_71_0/libs/python/doc/html/index.html

(visited on 2019-08-26).

[2] David M. Beazley. “SWIG: An Easy to Use Tool for Integrating Script-
ing Languages with C and C++”. In: Proceedings of the 4th Conference
on USENIX Tcl/Tk Workshop, 1996 - Volume 4. TCLTK’96. Monterey,
California: USENIX Association, 1996, pp. 15–15.

[3] Matthew Berger et al. “A Survey of Surface Reconstruction from Point
Clouds”. In: Computer Graphics Forum (2016), p. 27. doi: 10.1111/cgf.
12802. url: https://hal.inria.fr/hal-01348404.

[4] Paul J. Besl and Neil D. McKay. “A method for registration of 3-D shapes”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 14.2
(1992-02), pp. 239–256. doi: 10.1109/34.121791.

[5] Paul Bourke. Polygonising a scalar field. url: http://paulbourke.net/
geometry/polygonise/ (visited on 2019-09-17).

[6] Shirit Brook et al. “D400 Series Visual Presets”. In: librealsense Wiki.
url: https://github.com/IntelRealSense/librealsense/wiki/D400-
Series-Visual-Presets (visited on 2019-09-26).

[7] The Clang Team. LibTooling. url: https : / / clang . llvm . org / docs /

LibTooling.html (visited on 2019-08-27).

[8] Brian Curless and Marc Levoy. “A Volumetric Method for Building Com-
plex Models from Range Images”. In: Proceedings of the 23rd Annual Con-
ference on Computer Graphics and Interactive Techniques. SIGGRAPH
’96. New York, NY, USA: ACM, 1996, pp. 303–312. isbn: 0-89791-746-4.
doi: 10.1145/237170.237269.

[9] Cameron Desrochers. A single-producer, single-consumer lock-free queue for
C++. url: https://github.com/cameron314/readerwriterqueue (visited
on 2019-09-15).

[10] Isaac Gouy. The Computer Language Benchmarks Game. url: https://
benchmarksgame- team.pages.debian.net/benchmarksgame/fastest/

python3-gpp.html (visited on 2019-08-22).

[11] Anders Grunnet-Jepsen. Tuning D435 and D415 cameras for optimal per-
formance. 2018.

85

https://www.boost.org/doc/libs/1_71_0/libs/python/doc/html/index.html
https://www.boost.org/doc/libs/1_71_0/libs/python/doc/html/index.html
https://doi.org/10.1111/cgf.12802
https://doi.org/10.1111/cgf.12802
https://hal.inria.fr/hal-01348404
https://doi.org/10.1109/34.121791
http://paulbourke.net/geometry/polygonise/
http://paulbourke.net/geometry/polygonise/
https://github.com/IntelRealSense/librealsense/wiki/D400-Series-Visual-Presets
https://github.com/IntelRealSense/librealsense/wiki/D400-Series-Visual-Presets
https://clang.llvm.org/docs/LibTooling.html
https://clang.llvm.org/docs/LibTooling.html
https://doi.org/10.1145/237170.237269
https://github.com/cameron314/readerwriterqueue
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/python3-gpp.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/python3-gpp.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/python3-gpp.html

[12] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Com-
puter Vision. 2nd ed. New York, NY, USA: Cambridge University Press,
2003. isbn: 0521540518.

[13] James Hays. Stereo intro and Camera Calibration. url: https://www.cc.
gatech.edu/~hays/compvision/lectures/09.pdf (visited on 2019-09-11).

[14] Intel. Intel® RealSense™ Camera Depth Testing Methodology. url: https:
/ / www . intel . com / content / dam / support / us / en / documents /

emerging - technologies / intel - realsense - technology / RealSense _

DepthQualityTesting.pdf (visited on 2019-09-12).

[15] Shahram Izadi et al. “KinectFusion: Real-time 3D Reconstruction and In-
teraction Using a Moving Depth Camera”. In: Proceedings of the 24th An-
nual ACM Symposium on User Interface Software and Technology. UIST
’11. Santa Barbara, California, USA: ACM, 2011, pp. 559–568. isbn: 978-
1-4503-0716-1. doi: 10.1145/2047196.2047270.

[16] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 — Seam-
less operability between C++11 and Python. url: https://github.com/
pybind/pybind11 (visited on 2019-08-26).

[17] Wenzel Jakob et al. “Instant Field-Aligned Meshes”. In: ACM Transactions
on Graphics (Proceedings of SIGGRAPH ASIA) 34.6 (2015-11). doi: 10.
1145/2816795.2818078.

[18] William E. Lorensen and Harvey E. Cline. “Marching Cubes: A High Res-
olution 3D Surface Construction Algorithm”. In: Proceedings of the 14th
Annual Conference on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’87. New York, NY, USA: ACM, 1987, pp. 163–169. isbn: 0-89791-
227-6. doi: 10.1145/37401.37422.

[19] Sergey Lyskov. Binder. url: https : / / github . com / RosettaCommons /

binder (visited on 2019-08-27).

[20] Sergey Lyskov. “PyRosetta-4”. In: RosettaCon. 2016. url: https : / /

graylab.jhu.edu/RosettaCon2016/PyRosetta-4.pdf (visited on 2019-
08-26).

[21] Microsoft Corporation. “/bigobj (Increase Number of Sections in .Obj file)”.
In: Visual Studio 2015 Documentation. url: https://docs.microsoft.
com / en - us / cpp / build / reference / bigobj - increase - number - of -

sections-in-dot-obj-file?view=vs-2015 (visited on 2019-08-30).

[22] Microsoft Corporation. 3D Scan. url: https://www.microsoft.com/en-
us/p/3d-scan/9nblggh68pmc (visited on 2019-09-20).

86

https://www.cc.gatech.edu/~hays/compvision/lectures/09.pdf
https://www.cc.gatech.edu/~hays/compvision/lectures/09.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/RealSense_DepthQualityTesting.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/RealSense_DepthQualityTesting.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/RealSense_DepthQualityTesting.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/RealSense_DepthQualityTesting.pdf
https://doi.org/10.1145/2047196.2047270
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
https://doi.org/10.1145/2816795.2818078
https://doi.org/10.1145/2816795.2818078
https://doi.org/10.1145/37401.37422
https://github.com/RosettaCommons/binder
https://github.com/RosettaCommons/binder
https://graylab.jhu.edu/RosettaCon2016/PyRosetta-4.pdf
https://graylab.jhu.edu/RosettaCon2016/PyRosetta-4.pdf
https://docs.microsoft.com/en-us/cpp/build/reference/bigobj-increase-number-of-sections-in-dot-obj-file?view=vs-2015
https://docs.microsoft.com/en-us/cpp/build/reference/bigobj-increase-number-of-sections-in-dot-obj-file?view=vs-2015
https://docs.microsoft.com/en-us/cpp/build/reference/bigobj-increase-number-of-sections-in-dot-obj-file?view=vs-2015
https://www.microsoft.com/en-us/p/3d-scan/9nblggh68pmc
https://www.microsoft.com/en-us/p/3d-scan/9nblggh68pmc

[23] Richard A. Newcombe et al. “KinectFusion: Real-time dense surface map-
ping and tracking”. In: 2011 10th IEEE International Symposium on Mixed
and Augmented Reality. 2011-10, pp. 127–136. doi: 10.1109/ISMAR.2011.
6092378.

[24] The OpenCV Team. “cv::kinfu::KinFu Class Reference”. In: OpenCV 4.1.1
Documentation. url: https://docs.opencv.org/4.1.1/d8/d1f/classcv_
1_1kinfu_1_1KinFu.html (visited on 2019-09-15).

[25] Joshua Partlow. “Write C++ extensions for Python”. In: Visual Studio
2017 Documentation. url: https : / / docs . microsoft . com / en - us /

visualstudio/python/working-with-c-cpp-python-in-visual-studio

(visited on 2019-08-27).

[26] Python Software Foundation. “History and License”. In: Python 3 Docu-
mentation. url: https://docs.python.org/3/license.html (visited on
2019-09-20).

[27] Python Software Foundation. “Modules”. In: Python 3 Documentation. url:
https://docs.python.org/3/tutorial/modules.html (visited on 2019-
08-23).

[28] Python Software Foundation. Python/C API Reference Manual. url:
https://docs.python.org/3/c-api/index.html (visited on 2019-08-
22).

[29] Python Software Foundation. Quotes about Python. url: https://www.
python.org/about/quotes/ (visited on 2019-08-22).

[30] Szymon Rusinkiewicz and Marc Levoy. “Efficient variants of the ICP algo-
rithm”. In: Proceedings Third International Conference on 3-D Digital Imag-
ing and Modeling. 2001-05, pp. 145–152. doi: 10.1109/IM.2001.924423.

[31] The SciPy Community. “Linear algebra”. In: NumPy v1.17 Manual. url:
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

(visited on 2019-08-22).

[32] Maksim Shabunin, Ryan Fox, and Alexander Alekhin. “Depth Map from
Stereo Images”. In: OpenCV 4.1.1 Documentation. url: https://docs.
opencv.org/4.1.1/dd/d53/tutorial_py_depthmap.html (visited on
2019-09-11).

87

https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/ISMAR.2011.6092378
https://docs.opencv.org/4.1.1/d8/d1f/classcv_1_1kinfu_1_1KinFu.html
https://docs.opencv.org/4.1.1/d8/d1f/classcv_1_1kinfu_1_1KinFu.html
https://docs.microsoft.com/en-us/visualstudio/python/working-with-c-cpp-python-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/python/working-with-c-cpp-python-in-visual-studio
https://docs.python.org/3/license.html
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/c-api/index.html
https://www.python.org/about/quotes/
https://www.python.org/about/quotes/
https://doi.org/10.1109/IM.2001.924423
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.opencv.org/4.1.1/dd/d53/tutorial_py_depthmap.html
https://docs.opencv.org/4.1.1/dd/d53/tutorial_py_depthmap.html

	I Introduction
	Contextualization
	Altair Inspire Studio

	II The Python PDK
	Motivations
	Requirements and constraints
	Objectives
	Constraints
	Separation from the core
	Automation of the process

	Python C API
	The module system
	Essential concepts
	PyObject
	Reference count
	Exceptions and the NULL pointer

	Operations of a compiled module
	The initialization function
	Creating a new type
	Exposing functions

	Practical limits

	Pybind11 and Binder
	Boost.Python and Pybind11
	Using Pybind11
	Callbacks
	Python wrappers

	Automating the bindings
	SWIG

	The Python PDK
	Binding the B-Rep geometry library
	Binding Inspire Studio interfaces
	Opaque pointers and nested classes
	Templates
	Selection of trampolines
	Enumerations and custom callbacks
	typedefs
	Changes in the output of Binder
	Manual bindings

	The Python Interpreter in Inspire Studio
	Updating the bindings
	The example tools
	Future developments

	III The Acquisition Plugin
	Acquisition of 3D models
	RGBD sensors
	Depth acquisition techniques
	Stereo depth
	Time-of-flight
	Structured light

	3D reconstruction from depth
	Intel RealSense D415
	D415 Limits

	The workflow
	Kinect Fusion
	Depth map conversion
	ICP
	TSDF
	Raycasting

	Marching cubes
	Other approaches

	Implementation of the plugin
	Acquisition tool
	Setup
	Capture

	Refinement tool
	Mesh extraction tool

	Results
	Parameters
	Problems of the plugin
	Datasets
	Comparison with Microsoft 3D Scan

	IV Conclusions and future works
	Conclusions
	Appendices
	Samples of code written with Python C API
	Module creation
	Custom type creation
	Exposing a function

	Example of a Clang AST
	Bibliography

