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Introduction

In 1917 Abram Besicovitch was studying a problem in Riemann integration.
He wanted to know if, given f : R2 → R Riemann integrable there exists a system of

coordinates such that the Riemann integral
∫
R f(x, y)dx exists for all y and

∫
R f(x, y)dx

is Riemann integrable.
The answer is negative because we can create a counterexample using the fact that

there exists a set of measure zero in the plane that contains a segment of length one
parallel to every direction.

He managed to construct it in 1919. Moreover he understood that with little effort he
could do the same to find a Kakeya set which is a set of as small area as one wants where
we can continuously move a unit segment from a certain direction to the same one with
reversed orientation.

In our work we will build the Besicovitch set adding another result about its existence
and showing that in higher dimension there is more regularity so the analogue set can not
exist.

We will follow the book from Stein and Shakarchi [5] for the regularity and the book
from Falconer [2] for the construction of the Besicovitch set.

The information comes also from a paper of Falconer himself written in 1979 [6].
Moreover in the part about regularity we will introduce the Radon transform defined

as in the paper from Oberlin and Stein done in 1982 [3].
In our work we will start with regularity in dimension greater or equal to three. The

main theorem states that for a set of finite n-measure the function that gives the n − 1-
measure of the intersection of the plane orthogonal to a certain direction and at a certain
distance from a given point, is continuous in the distance for almost every direction.

To obtain this we will need some lemmas about Radon transform. In particular in one
of them it will be fundamental that the dimension is greater or equal to three which is the
reason why the same arguments do not work in the plane.

Finally we will prove a stronger version of the theorem where the function is much
more general and it is not necessarily the one that measures the slices described.

Moreover we will also show that a Besicovitch set must have Hausdorff dimension two
using a tool similar to the Radon transform. We will also slightly change the results used
in the previous part.

About this topic there is also the Kakeya conjecture which is an important open
problem in mathematics. It states that a set which contains a segment parallel to every
direction in Rn(the analogue of Besicovitch set in higher dimension) must have Hausdorff
dimension n.
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Then we will introduce the Besicovitch set as the natural consequence of the fact that
in the plane the previous result does not hold.

Before constructing the set itself we will show a stronger result where the Baire’s lemma
will be fundamental.

In a square of side one we take the set of the subsets of the square made of segments
from one side of the square to the opposite one and that contain a segment of length one
parallel to every direction. The subset of this set made of the Besicovitch sets is dense
with the Hausdorff distance.

In the end we will give the construction of a Besicovitch set with the Perron tree
method.

More precisely we will divide a triangle and we will move its parts onto each other
infinitely many times and then with a converging argument we will obtain our Besicovitch
set.
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Chapter 1

Regularity

1.1 Theorems

We want to show that, intersecting a measurable set of finite measure with all the hyper-
planes perpendicular to a given direction, we obtain a continuous function for almost all
the directions. We have a system of coordinates in Rn and we define

Definition 1. Pt,γ = {x ∈ Rn : x · γ = t} is the plane at signed distance t from the origin
perpendicular to γ ∈ Sn−1.

Now let E be a measurable set of finite measure, then we define

Definition 2. The section of E cut by the plane Pt,γ is defined as

Et,γ = E ∩ Pt,γ

Definition 3. fγ : R → R+ by fγ (t) = mn−1 (Et,γ) where mn−1 is the n− 1-dimensional
Lebesgue measure naturally carried by the plane Pt,γ.

We claim that

Theorem 4. For all n ≥ 3 for almost every direction γ ∈ Sn−1 we have:
Et,γ is measurable for all t ∈ R
fγ (t) is Hölder continuous with exponent α for all α ∈]0, 12 [.

When we say for almost every direction, intuitively, we intend with respect to the
standard surface measure on Sn−1.

Definition 5. The standard surface measure is defined as

σ (A) = n ·mn

(
{x ∈ Rn :

x

|x|
∈ A, 0 ≤ |x| < 1}

)
We have an obvious corollary which is not true for n = 2 and the counter-example

proves that Theorem 1 is false for n = 2.

Corollary 6. For all n ≥ 3 if E ⊆ Rn has measure 0 then for almost every direction γ
we have that mn−1 (Et,γ) = 0 for all t ∈ R
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The fact that this is false for n = 2 is due to the existence of Besicovitch sets.

Definition 7. A Besicovitch set is a compact set in R2 of measure 0 which contains a
segment of length(1-dimensional Lebesgue measure) 1 for every direction in the plane.

If Theorem 4 were true for n = 2 then we would have fγ (t) = 1 for some t and if fγ
were continuous then close to t we would have fγ (t) >

1
2 a contradiction since fγ (t) = 0

for all t ∈ R for almost every γ.
Moreover we have that

Theorem 8. A compact set in the plane which contains a segment of length 1 parallel to
every direction has Hausdorff dimension 2.

Where Hausdorff dimension is defined as

Definition 9. The Hausdorff dimension of a set A is defined as inf{α,Hα (A) = 0} =
sup{α,Hα (A) = +∞}.

We have that Theorem 8 for n ≥ 3 is an open problem.

Theorem 10 (Conjecture). For all n ≥ 3 a compact set in Rn which contains a segment
of length 1 parallel to every direction has Hausdorff dimension n.

In order to prove Theorem 4 and Theorem 8 we have to introduce the Radon transform.

1.2 The Radon transform

Definition 11. Let f be a function on Rn. Then the Radon transform R(f) : R×Sn−1 →
R is defined by

R(f)(t, γ) =

∫
Pt,γ

f

We see that R(f)(t, γ) could be defined almost everywhere for f measurable. Moreover
if E is a measurable set we have R(χE)(t, γ) = mn−1(Et,γ) for all γ for a.e. t.

Definition 12. We want also the superior in t of the Radon transform

R∗(f)(γ) = sup
t∈Rn

R(f)(t, γ)

We state this theorem:

Theorem 13. Let f be a continuous function with compact support on Rn, n ≥ 3. Then
there exists c such that∫

Sn−1

R∗(f)(γ) dσ(γ) ≤ c(∥f∥L1(Rn) + ∥f∥L2(Rn))

Moreover for all α ∈]0, 12 [ we have∫
Sn−1

sup
t1 ̸=t2

|R(f)(t2, γ)−R(f)(t1, γ)|
|t2 − t1|α

dσ(γ) ≤ c(∥f∥L1(Rn) + ∥f∥L2(Rn))
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To show this theorem we need some lemmas.

We introduce the Fourier transform of f(x) by f̂(ξ) =

∫
Rn

f(x)e−2iπx·ξ dx .

Lemma 14. If f is continuous and has compact support, then we have R̂(f)(s, γ) = f̂(sγ)
∀γ ∈ Sn−1 where R̂(f)(s, γ) is the Fourier transform with respect to s.

Proof. We take a coordinate system with γ = en.

We have

∫
Pt,γ

f =

∫
Rn−1

f(x′, t) dx′

We have by Fubini-Tonelli and because x · γ = t

f̂(sγ) =

∫
Rn

f(x)e−2iπx·sγ dx =

∫ +∞

−∞

∫
Rn−1

f(x′, t)e−2iπ(x′,t)·sγ dx′ dt =

=

∫ +∞

−∞

(∫
Pt,γ

f(x)

)
e−2iπst dt = R̂(f)(s, γ).

In the following lemma we will use the Plancherel formula from Fourier theory and the
formula to change to polar coordinates in Rn (see [1, page 182] and [2, page 279] for more
details).

Lemma 15. As in the previous lemma let f be a continuous function with compact support,
we have ∫

Sn−1

(∫ +∞

−∞
|R̂(f)(s, γ)|2|s|n−1 ds

)
dσ(γ) = 2

∫
Rn

|f(x)|2 dx

Proof. By the Plancherel formula we have that

∫
Rn

|f(x)|2 dx =

∫
Rn

|f̂(ξ)|2 dξ

Now we change the coordinates from ξ to (s, γ) ∈ R× Sn−1 with ξ = sγ

∫
Rn

|f̂(ξ)|2 dξ =

∫
Sn−1

(∫ +∞

0
|f̂(sγ)|2sn−1 ds

)
dσ(γ)

We change the variable s → −s and we obtain, since Rn → Rn and −Sn−1 = Sn−1∫
Rn

|f̂(ξ)|2 dξ =

∫
Sn−1

(∫ −∞

0
|f̂(s(−γ))|2(−s)n−1(−1) ds

)
dσ(γ) =

=

∫
Sn−1

(∫ 0

−∞
|f̂(s(γ))|2(−s)n−1 ds

)
dσ(γ) .

Summing up the last two equations we obtain

2

∫
Rn

|f(x)|2 dx = 2

∫
Rn

|f̂(ξ)|2 dξ =

∫
Sn

(∫ +∞

−∞
|R̂(f)(s, γ)|2|s|n−1 ds

)
dσ(γ) .
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Lemma 16. Let F : R → R be a function that satisfies the Fourier inversion formula

F (t) =

∫ +∞

−∞
F̂ (s)e2iπts ds . If there exist A,B ∈ R such that

sup
s∈R

|F̂ (s)| = A

and ∫ +∞

−∞
|F̂ (s)|2|s|n−1 ds = B2

then there exist c, cα ∈ R such that

sup
t∈R

|F (t)| ≤ c(A+B)

and
|F (t2)− F (t1)| ≤ cα|t2 − t1|α(A+B)

for all t1, t2 ∈ R, α ∈]0, 12 [

Proof. First we show sup
t∈R

|F (t)| ≤ c(a+ b)

|F (t)| ≤
∫
|s|≤1

|F̂ (s)e2πist| ds +

∫
|s|>1

|F̂ (s)e2πist| ds ≤

≤ A

∫
|s|≤1

ds +

(∫
|s|>1

|F̂ (s)|2|s|n−1 ds

) 1
2
(∫

|s|>1
|s|1−n ds

) 1
2

where we have used the Cauchy-Schwarz inequality on |F̂ (s)||s|
n−1
2 and |s|

1−n
2 and the fact

that |e2πist| = 1.

We see that

∫
|s|>1

|s|1−n ds < +∞ ⇔ 1 − n < 1 ⇔ n > 2 as we are supposing, so we

have

|F (t)| ≤ c(A+B)

For the second inequality

|F (t2)− F (t1)| ≤
∫ +∞

−∞
|F̂ (s)||e2πist2 − e2πist1 | ds ≤

We see that

|e2πist2 − e2πist1 | ≤ |e2πist1 ||e2πis(t2−t1) − 1| ≤ 1 · 2π{|s(t2 − t1)|} ≤
≤ 2π{|s(t2 − t1)|}α ≤ 2π|s|α|t2 − t1|α

where 1
2 ≤ α < 1 and {x} is the fractional part of x. We see that |e2πix − 1| ≤ 2π|x|

for |x| ≤ 1 because the length of an arc is greater than the length of the correspondent
segment between the same two points. Resuming the chain of inequalities
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≤ c

∫
|s|≤1

|F̂ (s)||s|α|t2 − t1|α ds + c

∫
|s|>1

|F̂ (s)|s|α|t2 − t1|α ds ≤

≤ cαA|t2 − t1|α + c

(∫
|s|>1

|F̂ (s)|2|s|n−1 ds

) 1
2
(∫

|s|>1
|s|1−n+2α ds

) 1
2

|t2 − t1|α ≤

≤ cα(A+B)

using Cauchy-Schwarz on |F̂ (s)||s|
n−1
2 and |s|

1−n
2

+α and because∫
|s|>1

|s|1−n+2α ds ≤ +∞ ⇔ 1− n+ 2α < −1 ⇔ n > 2 + 2α.

Proof of Theorem 13. By Lemma 16 we have, choosing

F (t) = R(f)(t, γ), A(γ) = sup
s∈R

R̂(f)(s, γ) and B(γ) =

(∫ +∞

−∞
|R̂(s, γ)|2|s|n−1 ds

) 1
2

,

that R∗(f)(γ) ≤ c(A(γ) +B(γ)) or R(f)(t2,γ)−R(f)(t1,γ)
|t2−t1|α ≤ cα(A(γ) +B(γ))

In fact R(f)(t, γ) satisfies the Fourier inversion formula because f ∈ L1(Rn) ⇒
R(f)(·, γ) ∈ L1(R) for a.e. γ ∈ Sn−1

We have, by lemma 14

R̂(f)(s, γ) = f̂(sγ) ⇒ A(γ) = sup
s∈R

R̂(f)(s, γ) = sup
s∈R

f̂(sγ) =

= sup
s∈R

∫
Rn

f(x)e−2πisγ·x dx ≤ sup
s∈R

∫
Rn

|f(x)| dx = ∥f∥L1(Rn).

Moreover we have, since
√
x is a concave function, by Jensen inequality and by Lemma

2, that there exists c such that∫
Sn−1

B(γ) dσ(γ) =

∫
Sn−1

√
B(γ)2 dσ(γ) ≤ c

√∫
Sn−1

B(γ)2 dσ(γ) =

= c

√∫
Sn−1

∫ +∞

−∞
|R̂(f)(s, γ)2|s|n−1 ds dσ(γ) = c

√
2

∫
Rn

|f(x)|2 dx =
√
2c∥f∥L2(Rn)

where c is greater than
√
σ(Sn−1).

So we have∫
Sn−1

R∗(f)(γ) dσ(γ) ≤ c

∫
Sn−1

A(γ) dσ(γ) + c

∫
Sn−1

B(γ) dσ(γ) ≤

≤ c
(
∥f∥L1(Rn) + ∥f∥L2(Rn)

)
.

We can perform the same argument with sup
t1 ̸=t2

|R(f)(t2, γ)−R(f)(t1, γ)|
|t2 − t1|α

instead of

R∗(f)(γ) and we obtain the other part of the theorem.
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All we have said holds for n ≥ 3 but for n = 2 we can obtain similar results using a
function similar to the Radon transform.

Definition 17. Let Rδ(f)(t, γ) be the average of R(f)(t, γ) in the strip of width 2δ around
the line Pt,γ

Rδ(f)(t, γ) =
1

2δ

∫ t+δ

t−δ
R(f)(s, γ) ds =

1

2δ

∫ t+δ

t−δ

(∫
Ps,γ

f

)
ds =

1

2δ

∫
t−δ≤x·γ≤t+δ

f(x) dx .

Definition 18. We want also the analogue of R∗(f)(γ)

R∗
δ(f)(γ) = sup

t∈R
|Rδ(f)(t, γ)|

We will show the analogue of theorem 13.

Theorem 19. If f is continuous function with compact support on R2, then there exists
c such that for all δ ∈]0, 12 ]∫

Sn−1

R∗
δ(f)(γ) dσ(γ) ≤ c

(
log

1

δ

) 1
2

(∥f∥L1(R2) + ∥f∥L2(R2))

Lemma 20. Let Fδ : R → R be the function

Fδ(t) =

∫ +∞

−∞
F̂ (s)

(
e2πi(t+δ)s − e2πi(t−δ)s

4πisδ

)
ds

If we have that there exist A,B ∈ R such that

sup
s∈R

|F̂ (s)| = A

and ∫ +∞

−∞
|F̂ (s)|2|s| ds = B2

then there exist c, cα ∈ R such that

sup
t∈R

|Fδ(t)| ≤ c

(
log

1

δ

) 1
2

(A+B)

Proof. Let 2πts = m and 2πsδ = n then we have

e2πi(t+δ)s − e2πi(t−δ)s = cosm cosn− sinm sinn+ i(sinm cosn+ cosm sinn)−
− cosm cosn− sinm sinn+ i(− sinm cosn+ cosm sinn) =

= −2 sinm sinn+ 2i cosm sinn = 2i sinn(cosm+ i sinm) = 2i sinneim =

= 2i sin(2πsδ)e2πits
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We can say, since | sinx
x | ≤ min{1,

∣∣ 1
x

∣∣}, and using Cauchy-Schwarz as in Lemma 3, that∫ +∞

−∞
F̂ (s)

(
e2πi(t+δ)s − e2πi(t−δ)s

4πisδ

)
ds ≤

∫ +∞

−∞
F̂ (s)

∣∣∣∣sin(2πδs)2πsδ
e2πits

∣∣∣∣ ds ≤

≤
∫
|s|≤1

|F̂ (s)| ds +

∫
1<|s|≤ 1

δ

|F̂ (s)| ds +
c′

δ

∫
|s|> 1

δ

|F̂ (s)||s|−1 ds ≤

≤ cA+

(∫
1<|s|≤ 1

δ

|F̂ (s)|2|s| ds

) 1
2
(∫

1<|s|≤ 1
δ

|s|−1 ds

) 1
2

+

+
c′

δ

(∫
|s|> 1

δ

|F̂ (s)|2|s| ds

) 1
2
(∫

|s|> 1
δ

|s|−3 ds

) 1
2

≤ c

(
log

1

δ

) 1
2

(A+B)

Proof of Theorem 19. We use the same arguments of Theorem 13 but instead of Lemma
16 we use Lemma 20. In fact

1

2δ

∫ t+δ

t−δ
R(f)(s, γ) ds =

1

2δ

∫ t+δ

t−δ

∫ +∞

−∞
R̂(f)(ξ, γ)e2πiξs dξ ds =

=
1

2δ

∫ +∞

−∞

∫ t+δ

t−δ
R̂(f)(ξ, γ)e2πiξs ds dξ =

∫ +∞

−∞
R̂(f)(ξ, γ)

(
e2πi(t+δ)ξ − e2πi(t−δ)ξ

4πisδ

)
dξ .

So we can choose Fδ(t) = Rδ(f)(t, γ) and we know

Rδ(f)(t, γ) =

∫ +∞

−∞
R̂(f)(ξ, γ)

(
e2πi(t+δ)ξ − e2πi(t−δ)ξ

4πisδ

)
dξ

so we obtain ∫
Sn−1

R∗
δ(f)(γ) dσ(γ) ≤ c

(
log

1

δ

) 1
2

(∥f∥L1(R2) + ∥f∥L2(R2))

1.3 Proofs

The proof of Theorem 4 will follow as a particular case of the following

Theorem 21. For n ≥ 3 and f bounded and vanishing outside a set of finite measure,
for a.e. γ ∈ Sn−1 we have that

1.f is integrable on the plane Pt,γ ∀t ∈ R
2.R(f)(t, γ) is continuous in t and is Hölder continuous with exponent α, ∀α ∈]0, 12 [

We see that, with f = χE we have that χE is bounded and vanishing outside a set of
finite measure, since E is measurable of finite measure and therefore Et,γ is measurable
for all t ∈ R and mn(Et,γ) is continuous and Hölder continuous with exponent α, for all
α ∈]0, 12 [.
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Proof. Step 1. Let A be an open and bounded set and assume f = χA. Then A ∩ Pt,γ is
open and bounded in Pt,γ so it is measurable.

Let fd be a sequence of non-negative continuous functions with compact support such
that fd(x) is increasing and fd(x) → f(x) for a.e. x.1

By Beppo-Levi theorem we have, sinceR(f)(t, γ) =

∫
Pt,γ

f , thatR(fd)(t, γ) → R(f)(t, γ)

for all t, γ.
We find t such that R∗(f)(γ)−R(f)(t, γ) < ϵ and d such that R(f)(t, γ)−R(fd)(t, γ) <

ϵ so R∗(f)(γ)−R(fd)(t, γ) < 2ϵ. So R∗(f)(γ) ≤ lim
d→+∞

R∗(fd)(γ)

Moreover we have thatR(fd)(t, γ) ≤ R(f)(t, γ) ⇒ R(fd)(t, γ) ≤ R∗(f)(γ) ⇒ R∗(fd)(γ) ≤
R∗(f)(γ) so we have R∗(fd)(γ) → R∗(f)(γ) for all t, γ and the first inequality of Theorem
4 holds for f .

Step 2.Now we take E bounded of measure 0. We can take a sequence (Ad)d∈N of open
sets such that E ⊆ Ad ∀d and mn(Ad) → 0.

If E′ =
⋂
d∈N

Ad we havemn(E
′) = 0 and E′∩Pt,γ is measurable since it is the intersection

of measurable sets(An ∩ Pt,γ). So we can say that R(χE′)(t, γ) and R∗(χE′)(γ) are well
defined.

R∗(χE′)(γ) ≤ R∗(χAd
)(γ) ⇒

∫
Sn−1

R∗(χE′)(γ) dσ(γ) ≤
∫
Sn−1

R∗(χAd
)(γ) dσ(γ) ≤

≤ c∥χAd
∥L1(Rn) + c∥χAd

∥L2(Rn) → 0

so R∗(χE′)(γ) = 0 for a.e. γ ⇒ mn−1(E∩Pt,γ) = 0 ∀t ∈ R for a.e. γ ∈ Sn−1 since E ⊆ E′.
When E has measure 0 but is not bounded it can be seen as the countable union of

bounded sets yielding to the same result.
This also proves Corollary 6.

Step 3. Now let f be a function as in the statement of the theorem. Then we find a
sequence (fd)d∈N of continuous functions with compact support uniformly bounded (the
same bound M of f) and non-vanishing only in a set where f is non-vanishing (this set
will be called H), that converges to f a.e.

We have that for a.e. γ ∀t fd(x) → f(x) except in a set of measure 0(E ∩ Pt,γ in the
step 2) in Pt,γ with respect to mn−1 since fd(x) → f(x) except in a set of measure 0(E in
the step 2) by what we have just proved in step 2.

Since we can take MχH as a dominant, by the dominated convergence theorem we
have R(fd)(t, γ) → R(f)(t, γ) for a.e. γ ∀t.

We have also that ∥fd−f∥L1(Rn), ∥fd−f∥L2(Rn) → 0 so we find a subsequence (dk)k∈N
such that ∥fdk − f∥L1(Rn) + ∥fdk − f∥L2(Rn) ≤ 2−k.

1We know that we can find a sequence of compact sets (Kd)d∈N such that mn(A \ Kd) < 1
2d

and
Kd ⊆ Kd+1 ⊆ A (if this doesn’t hold we take Kd+1 ∪Kd) so by Urysohn’s lemma we can find a continuous
function fd with support contained in A and equal to 1 in Kd. We see that we can choose it increasing
because if fd(x) < fd−1(x) for some x we can take f1

d (x) = max{fd(x), fd−1(x)} which is continuous.
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Figure 1.1

By Theorem 13 and from what we know about integration on series we have∫
Sn−1

+∞∑
d=1

R∗(fdk − fdk−1
)(γ) dσ(γ) =

+∞∑
d=1

∫
Sn−1

R∗(fdk − fdk−1
)(γ) dσ(γ) ≤

c
+∞∑
d=1

2−k < +∞ ⇒ sup
t∈R

+∞∑
d=1

|R(fdk)(t, γ)−R(fdk−1
)(t, γ)| ≤

≤
+∞∑
d=1

sup
t∈R

|R(fdk)(t, γ)−R(fdk−1
)(t, γ)| < +∞

for a.e. γ ∈ Sn−1.
For such γ we have therefore that R(fdk)(t, γ) converges uniformly to R(f)(t, γ). Since

R(fdk)(t, γ) is continuous in t because fd is continuous, then R(f)(t, γ) is continuous.
In fact fd(x) has compact support so also its intersection with Pt,γ is compact and for

all ε there exist δ such that for |t− s| < δ we have

|fd(tγ)− fd(sγ)| < ε ⇒ |R(fd)(t, γ)−R(fd)(s, γ)| =

∣∣∣∣∣
∫
Pt,γ

fd −
∫
Ps,γ

fd

∣∣∣∣∣ < εmn−1(Cn−1)

where, since the support of fd can be put in a n-cube Cn with a side orthogonal to γ,
its intersection with Pt,γ gives a n− 1 cube Cn−1 with finite measure(Figure 1.1).

We can repeat the same argument with |R(f)(t2,γ)−R(f)(t1,γ)|
|t2−t1|α in place of R∗(f)(γ) and

we obtain the Hölder condition of the theorem.
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Proof of Theorem 8. The inequality of theorem 19 can be extended to functions of L1(Rn)∩
L2(Rn) since we can find a sequence (fd)d∈N of continuous function with compact sup-
port that converges to f in the L1 norm so their integral in the subset of Rn given

by
⋃

s∈]t−δ,t+δ[

Ps,γ must converge to the integral of f in the same set so Rδ(fd)(t, γ) →

Rδ(f)(t, γ) ⇒ R∗
δ(fd)(t, γ) → R∗

δ(f)(t, γ).
Let us take F a Besicovitch set. We will show that for all α ∈]0, 2[ every covering of

F with balls (Bi)i∈N satisfies
+∞∑
i=0

ωα

(
diam(Bi)

2

)α

≥ cα > 0 so the Hausdorff dimension

of F is necessarily greater than or equal to 2 and so it is 2.
We take Bi such that diam(Bi) < 1. Then we call Nk the number of balls Bi such

that 2−k ≤ diam(Bi) ≤ 2−k+1 which is finite (otherwise

+∞∑
i=0

(diam(Bi))
α = +∞ and our

job is done).

We will show that there exists k0 such that Nk02
−k0α ≥ cα so

+∞∑
i=0

(diam(Bi))
α ≥ cα.

We define

Fk = F ∩

 ⋃
2−k≤diamBi≤2−k+1

Bi


and

Gk =
⋃

2−k≤diamBi≤2−k+1

B̂i

where B̂i is the ball with same center as Bi and whose diameter is twice the diameter of
Bi.

We have m2(Gk) ≤ ω2Nk

(
2−k+2

2

)2
= ω2Nk2

−2k+2.

We call sγ one of the segments of length 1 which is in F . Then we chose a sequence

(ak)k∈N such that ak = (1− 2−ε)2−εk. We see ak ≥ 0 and

∞∑
k=0

ak = (1− 2−ε)
1

1− 2−ε
= 1.

Since sγ ∈ F there exists k such that m1(sγ ∩ Fk) ≥ ak otherwise 1 = m(sγ ∩ F ) ≤
+∞∑
k=1

m1(sγ ∩ Fk) <

+∞∑
k=1

ak = 1.

We have that for this k there exists t0 ∈ R such that sγ ⊆ Pt0,γ so

R∗
2−k(χGk

)(γ) ≥ 1

2−k+1

∫
]t0−2−k,t0+2−k[

(∫
Pt,γ

χGk

)
dt ≥ 1

2−k+1
ak2

−k+1 = ak

since m1(sγ ∩ Fk) ≥ ak and every point with distance less than 2−k from Fk is in Gk

because Gk is a union of balls centered in the same point of balls centered in a point of
Fk. These balls cover completely Fk itself and the balls of Gk are of diameter of length at
the least 2−k+1 (Figure 2).

Now we take Ek = {γ : R∗
2−k(χGk

)(γ) ≥ ak}.
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Figure 1.2

Necessarily S1 =
+∞⋃
k=1

Ek.

Since σ(S1) = 2π we have that there exists k0 such that σ(Ek0) ≥ 2πak0 otherwise

σ(S1) ≤ ≤
+∞∑
k=0

σ(Ek) <

+∞∑
k=0

2πak = 2π.

Now 2πa2k0 ≤ σ(Ek0)ak0 =

∫
Ek0

ak0 dσ(γ) ≤
∫
S1
R∗

2−k0
(χGk0

)(γ) dσ(γ) .

By theorem 19 we obtain

a2k ≤ c

(
log

1

2−k0

) 1
2 (

∥χGk0
∥L1(Rn) + ∥χGk0

∥L2(Rn)

)
We see ∥χGk0

∥L2(Rn) ≤ (cNk02
−2k0+2)

1
2 = c′N

1
2
k0
2−k0+1.

Since for the characteristic function of a setA of finite measure we have that ∥χA∥L1(Rn) =

mn(A) and ∥χA∥L2(Rn) =
√

mn(A), since for all k the distance of a point in Gk from F
is less than 1 since Gk is a union of balls centered in a point of F of diameter less than 1
and F is compact, ∥χGk0

∥L2(Rn) is bounded and so we have

∥χGk0
∥L1(Rn) = ∥χGk0

∥L2(Rn)∥χGk0
∥L2(Rn) ≤ c′′N

1
2
k0
2−k0+1

Since ak = (1− 2−ε)2−εk we have

(1− 2−ε)22−2εk0 ≤ c′′′(log(2k0))
1
2N

1
2
k0
2−k0+1 ⇒

⇒ 2−αk0Nk0 ≥ 2−2(1− 2−ε)42−4εk0+2k0

c′′′2k0 log 2
2−αk0 ≥ cα

as long as 2 − α − 4ε > 0 ⇔ α < 2 − 4ε because we have that 2−2(1−2−ε)42−4εk0+2k0

c′′′2k0 log 2
2−αk0

tends to +∞ for k0 → +∞ so it has a positive minimum.
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Chapter 2

Besicovitch sets

2.1 Density of the sets in R2

Let us take a square of side 1 in the plane R2. We define L the set of the sets made of
segments that begin in a point of a side of the square and end in a point of the opposite
side, that contains a segment of length 1 parallel to every direction We claim that the
subset T ⊆ L of sets of measure 0 is dense in L with the Hausdorff distance.

Figure 2.1

First we define the Hausdorff distance.
In order to do this we define the δ-neighborhood

Definition 22. Let A ⊆ R2, we have for all δ ≥ 0

Aδ = {x : ∃y ∈ A : |x− y| < δ} = {x : d(x,A) < δ}

Definition 23. The Hausdorff distance d of two compact sets A and B is defined as

d(A,B) = min{δ : B ⊆ Aδ, A ⊆ Bδ}
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We note that the distance is well defined and it cannot be +∞ since A and B are
compact.

The Hausdorff distance satisfies the properties of a distance.
1.d(A,B) = 0 ⇔ B ⊆ A, A ⊆ B ⇔ A = B.
2.d(A,B) = d(B,A). It is obvious by the symmetry of the definition.
3.We want to show that d(A,B) = δ, d(B,C) = δ′ ⇒ d(A,C) ≤ δ + δ′. We have

A ⊆ Bδ, B ⊆ Cδ′ ⇒ {x ∈ Bδ ⇒ δ ≥ d(x,B) ≥ d(x,Cδ′)} ⇒ Bδ ⊆ Cδ+δ′ ⇒ A ⊆ Cδ+δ′

In the same way we can show that C ⊆ Aδ+δ′ .
Moreover this theorem holds.

Theorem 24. The set of the compact subsets of R2 with the Hausdorff distance is a
complete metric space.

Proof. We take a Cauchy sequence of compact sets (Ki)i∈N.
We want to show that the sequence converges to

K =
+∞⋂
n=1

∞⋃
i=n

Ki

We see that K is closed. Moreover K is bounded because there exists n0 such that for all
n ≥ n0

d(Kn,Kn0) ≤ ε ⇒ Kn ⊆ Kε
n0

⇒
∞⋃
i=n

Ki ⊆ K2ε
n0

and so K is compact and since K is the intersection of decreasing sets and we can take

a sequence xn ∈
∞⋃
i=n

Ki ∀n ≥ n0 that converges up to a subsequence to a point in K, K

itself is non-empty.
Let ε > 0 be fixed. We want to prove that there exists n1 such that for n ≥ n1 we

have d(Kn,K) < 2ε. In order to do that we will show the two inclusions in Definition 23.
We see that for all n ≥ n1 we have that for all i ≥ n

Ki ⊆ Kε
n ⇒

∞⋃
i=n

Ki ⊆ Kε
n ⇒

∞⋃
i=n

Ki ⊆ K2ε
n ⇒ K ⊆ K2ε

n

We define Tn =
∞⋃
i=n

Ki. We want to show that d(Tn,K) → 0. In fact in that case there

exists n1 such that for all n ≥ n1 d(Tn,K) < ε and for all i ≥ n

Kn ⊆ Kε
i ⇒ Kn ⊆

+∞⋃
i=n

Kε
i =

(
+∞⋃
i=n

Ki

)ε

⇒ Kn ⊆

+∞⋃
i=n

Ki

ε

= T ε
n ⇒ Kn ⊆ T ε

n ⊆ K2ε

In fact

x ∈ Kε
i ⇒ d(x,Ki) < ε ⇒ d(x,

+∞⋃
i=n

Ki) < ε ⇒ x ∈

(
+∞⋃
i=n

Ki

)ε
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and

x ∈

(
+∞⋃
i=n

Ki

)ε

⇒ ∃i : d(x,Ki) < ε ⇒ x ∈ Kε
i ⇒ x ∈

+∞⋃
i=n

Kε
i

If we assume by contradiction that d(Tn,K) does not tend to 0 there exists ε′ > 0 and
(Tnk

)k∈N such that d(Tnk
,K) > ε′. So we can take xnk

∈ Tnk
such that d(xnk

,K) > ε′.
Since Tn ⊆ Tm for all m ≤ n we have that xnk

∈ T1 for all k and because T1 is compact
we can assume xnk

→ x ∈ T1 (otherwise we take a subsequence).
However for all k0 such that nk0 ≥ n0, ∀k ≥ k0 we have that xnk

∈ Tnk0
so x ∈ Tnk0

since Tnk0
is compact.

Since this holds for all k0 large enough and Tnk0
⊆ Tn for all n ≤ nk0 we have that

x ∈ Tn for all n so we can say that x ∈ K, a contradiction because d(x,K) ≥ ε′.

Now we define L as

Definition 25. Let L be the set made by closed subsets K of [−1
2 ,

1
2 ] × [0, 1] with the

following properties:
1.K is made of segments from a point in [−1

2 ,
1
2 ]× {0} to a point in [−1

2 ,
1
2 ]× {1}.

2.For all α ∈ [−π
4 ,

π
4 ] K contains a segment that makes an angle α with the y-axis.

Now we are ready to enunciate the theorem.

Theorem 26. The subset of L of closed sets of measure 0 is dense in L with the Hausdorff
distance.

We see that adding the set made of the rotation of an angle π
2 of all the sets in L and

calling L′ this new set we have that
•⋃

K∈L,K′∈L′

{K ∪K ′} contains a dense subset of L ∪ L′

of sets of measure 0 that contains a segment parallel to every direction.

In fact we note that
•⋃

K∈L,K′∈L′

{K ∪ K ′} is the set of subsets of [12 ,
1
2 ] × [0, 1] which

contains a segment parallel to every direction from one side to the opposite one.
In order to give the proof of the theorem we are going to prove a weaker version and

then we can use Baire’s Lemma.

Definition 27. Take y0 ∈ [0, 1] and let L(y0, ε) be the subset of L of the elements K in
L such that for all y ∈ [y0 − ε, y0 + ε] we have that there exists η such that

m1({x : (x, y) ∈ Kη}) < 3ε

Then we have

Theorem 28. We have that for all y0 ∈ [0, 1], for all ε > 0 L(y0, ε) is open and dense in
L.

Lemma 29 (Baire’s Lemma). The intersection of countably many open and dense subsets
of a complete metric space A is dense in A.
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Proof. Let (An)n∈N be a sequence of open and dense sets in A(not necessarily different

each one from all the others). We take G =
+∞⋂
n=1

An.

If B(x, r) is an open ball, we want to show that G ∩B(x, r) ̸= ∅.
We have that A1 ∩B(x, r) ̸= ∅ since A1 is dense.
Let x1 be a point in this intersection. Since A1 and B(x, r) are open we have that

there exists r1 such that B(x1, r1) ⊆ B(x, r) ∩A1. We ask also r1 <
r
2 (we can take r1 as

small as we want).
In the same way we build a sequence (xn)n∈N where we take xn ∈ B(xn−1, rn−1) ∩An

(An dense) and rn such that B(xn, rn) ⊆ B(xn−1, rn−1) ∩An, rn < rn−1

2 .
We have that rn < r

2n ⇒ d(xm, xn) < d(xm, xm+1) + ... + d(xn−1, xn) <
r

2m−1 for all
m < n ⇒ (xn)n∈N is a Cauchy sequence. So xn → z ∈ X (X complete) for n → +∞.

We see that for all n0 the sequence (xn)n≥n0 is in B(xn0 , rn0) ⊆ An0 because of the
way we have built the sequence. In fact we have xn ∈ B(xn0 , rn0) for all n ≥ n0. So
z ∈ B(xn0 , rn0) because the set is closed and z ∈ B(x, r).

Therefore we have just shown that z ∈ An ∀n ⇒ z ∈ G. So for every ball we find z
such that z ∈ G ⇒ G is dense in X.

Proof of Theorem 26. We take

T =

+∞⋂
M=1

M⋂
m=1

L

(
m

M
,
1

M

)
By Theorem 28 we know that L

(
m
M , 1

M

)
is open and dense and by Baire’s Lemma then T

is dense in L.
We must show that the elements in T have measure 0.
We define Ky as

Ky = {x : (x, y) ∈ K}
We see by the definition of L

(
m
M , 1

M

)
that

m1 (Ky) ≤
3

M

for all y ∈
[
m−1
M , m+1

M

]
for all K ∈ L

(
m
M , 1

M

)
.

Moreover

m1 (Ky) ≤
3

M

for all y ∈ [0, 1] for all K ∈
M⋂

m=1

L

(
m

M
,
1

M

)
.

Since this holds for every M we have that

m1(Ky) ≤
3

M

for all M , for all y ⇒ m1(Ky) = 0 so we obtain by Fubini’s theorem that m2(K) = 0 for
all K ∈ T .
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Proof of Theorem 28. Step 1. We first show that the set is open.
We will prove that, given K ∈ L(yo, ε), there exists ε′ > 0 such that for every K ′ ∈ L

such that d(K,K ′) < ε′ we have that K ′ ∈ L(yo, ε).
We see immediately that, since there exists η such that

m1({x : (x, y) ∈ Kη}) < 3ε

for all y ∈ [y0 − ε, y0 + ε], if ε′ < η
2 we have that K ′ η

2 ⊆ Kη by the triangular inequality

(d(K ′ η
2 ,K) ≤ d(K ′ η

2 ,K ′) + d(K ′,K) ≤ η).
So we have that

m1({x : (x, y) ∈ K ′ η
2 }) < 3ε

for all y ∈ [y0 − ε, y0 + ε].
So we have that K ′ ∈ L(y0, ε).
Step 2. We want to show that L(y0, ε) is dense in L.
Given K ∈ L we want to build a set K ′ which is in L(y0, ε) and whose distance from

K is at most some fixed δ.
We take the square of Definition 25. From now on by lines we will mean the segments

from a side to the opposite one.
First we take N ∈ N and we consider all the intervals[

n

N

π

4
,
n+ 1

N

π

4

]
n = −N, ..., N − 1.

For each interval there is a line ln ⊆ K whose angle with the y-axis is 2n+1
2N

π
4 (we call B

the set of these lines). For all n we add to K ′ this line ln and all the lines that pass trough
the point {(x, y0) : x ∈

[
−1

2 ,
1
2

]
} ∩ ln and whose angle with the y-axis is in

[
n
N

π
4 ,

n+1
N

π
4

]
.

For all n the set of these lines is the union of two triangles. We see that it could be
possible for these triangles not to be in [−1

2 ,
1
2 ] × [0, 1] but we can chose N such that all

their points are closer than δ
2 from the square so we can translate the triangles of δ

2 in
order to put them inside the square.

Then we want to add to K ′ some lines that are close to the points of K (so K ′ is close
enough to K).

We see that taking
⋃
l⊆K

lδ, it is an open covering of K compact (K is closed and

bounded) so we can take a finite subcovering of K. We add to K ′ each line l such that lδ

has been taken by the subcovering (and we call A the set of these lines).
We see that K ′ contains the lines with angle α for all α ∈

[
−π

4 ,
π
4

]
and that K ⊆ K ′δ

because K ′δ ⊇
⋃
l∈A

lδ ⊇ K.

We must show that K ′ ⊆ Kδ.
We see that l ∈ B ⇒ l ⊆ K. Moreover the triangles associated to l ∈ B have sides

adjacent to {(x, y0) : x ∈
[
−1

2 ,
1
2

]
} ∩ l whose angle with the y-axis is less than π

4 + 1
N

π
8

and more than −π
4 − 1

N
π
8 . So the third side can be small how much we want choosing N

properly.
So the triangle can be in lδ and therefore K ′ ⊆ Kδ.
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Now we want to show that K ′ ∈ L(y0, ε), that is there exists η such that m1({x :
(x, y) ∈ Kη}) < 3ε for all y ∈ [y0 − ε, y0 + ε].

We see that m1({x : (x, y) ∈ (
⋃
l∈A

l)η}) ≤ 2
√
2dη for all y where d = |A| (because the

lines form an angle in [π4 ,
3π
4 ] with the x-axis).

We must find m1({x : (x, y) ∈ K ′η}), y ∈ [y0 − ε, y0 + ε]. We see that for each double
triangle T , m1({x : (x, y) ∈ T η}) is less than the measure of the union of the projections
on the x-axis of the two basis of the triangles cut at y = y0 + ε and y = y0 − ε (similar to
the original ones) adding a segment of measure η on each side (Figure 2).

Figure 2.2

We see that these bases have length less than 2ε sin( π
4N ) ≤ 2ε π

4N . In fact building the
circumscribed circle of the triangle we have that it has diameter less than 2ε since the
angle with the y-axis of the sides is in [−π

4 ,+
π
4 ].

1

So we have that

m1({x : (x, y) ∈ K ′η}) ≤ (2ε
π

4N
+ 2η)N =

επ

2
+ 2ηN

In the end we can chose η such that

επ

2
+ 2Nη + 2

√
2dη < 3ε

So we have that
m1({x : (x, y) ∈ K ′η} < 3ε

for all y ∈ [y0 − ε, y0 + ε].

1Let the triangle be BCD in the figure 3. Then we build the diameter AB and we intersect y = y0 with
AD obtaining H. Since m1(HD) = ε and ˆADB ≤ π

4
we have m1(BD) ≤

√
2ε. Similarly m1(CB) ≤

√
2ε.

Since ˆACB ≤ π
4
, we have m1(AB) ≤

√
2ε and so ˆABC = π

2
⇒ m1(AC) ≤ 2ε
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Figure 2.3

2.2 Example of a Besicovitch set

We will first show that moving parts of a triangle we can obtain a figure as small as we
want (small 2-measure) containing a segment parallel to all the directions. Then we will
intersect open sets containing these figures and we will show that its 2-measure is 0.

(1) Given a triangle T1 we divide its base in two parts of equal length l obtaining two
new triangles (V1 and V2) with bases of equal length. Then we move one of the triangles
(we suppose the right one in the figure) partially over the other one, of a vector parallel
to the base and of length 2(1− t)l with 1

2 < t < 1.

Figure 2.4

We can do this so that the new figure is made of a triangle T2, homothetic to T1 and
two other triangles with, taking t large enough, very small area.

In particular
m2(T2) = t2m2(T1)

and, calling S the new figure we have that

m2(T1)−m2(S) = m2(T1)(3t− 1)(1− t)

In fact we have that T2 is homothetic to T1 and 2l−2(1−t)l
2l = t is the ratio between the
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bases and

m2(S) = m2(T1)−m2(V3) = m2(T1)−m2(T2) +m2(W1) +m2(W2)

where W1 and W2 are the two small triangles homothetic to V1 and V2 respectively that
we can see in the figure. Moreover V3 is the intersection of V1 and V2 after the translation.

m2(S) = m2(T1)

(
1− t2 +

(
l − 2(1− t)l

l

)2

· 2 · 1
2

)
⇒

⇒ m2(T1)−m2(S) = m2(T1)(t
2 − 4t2 + 4t− 1) = m2(T1)(1− t)(3t− 1)

(2)Now we take an open set A containing T and whose area is as near to the area of
T as we want.

We divide the base of T in segments whose length is less than ε where ε is the distance
between AC (closed) and T (compact). We know that this distance exists.

Now we work only on one of the triangles built on one of the segments taken previ-
ously(the opposite vertex is the same of T ) and for the others it will be the same. We call
T1 this triangle.

We can choose t and k such that, dividing the base of T1 in 2k segments of equal length,
we can build a figure with small area.

First we call T i
1 the triangles created by the segments, with i = 1, 2, ..., 2k.

By induction we take two consecutive figures S2i−1
j , S2i

j (at the first step they are the
triangles) with bases of length l (a in the figure) and we move the right one over the left
one of a vector parallel to the base and of length 2l(1− t)(b).

Then we move each figure just created of a vector parallel to the base so there is no
space between the bases of two consecutive new figures (Si−1

j+1, S
i
j+1), i.e. their bases have

exactly one point in common.
In the end we have created the figures Si

j+1, i = 1, 2, ..., 2k−j(c).

Figure 2.5

We see that at every step the number of the figures we consider is half the number of
the figures in the previous step.

Now we focus on the triangle contained in this figures. As we have seen before after
the first step the figure Si

2 (from S2i−1
1 = T 2i−1

1 and S2i
1 = T 2i

1 ) is made of a triangle T i
2

homothetic to the previous one and two other triangles.
T i
2 has its sides (the left one and the right one) parallel respectively to the right side

of T i−1
2 and the left side of T i+1

2 since the four triangles T 2i−2
1 , T 2i−1

1 , T 2i
1 and T 2i+1

1 are
consecutive.
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By induction we see that this is true at every step since the figure Si
j is made of a

triangle T i
j and another part we are not interested in. In fact T i

j is created due to the

overlapping of T 2i−1
j−1 and T 2i

j−1 as seen before.
Let us give and esteem of the area.
At the first step the area of all the figures is such that

m2(T1)−m2

2k−1⋃
i=1

Si
2

 = m2(T1)(1− t)(3t− 1)

and this is the reduction of the area.
On the following steps we see that at the least the area reduces of the area that reduces

from the overlapping of T 2i−1
j and T 2i

j for all i so at the least of

2k−j∑
i=1

m2(T
2i−1
j ∪T 2i

j )(1−t)(3t−1) =

2k−j∑
i=1

m2(T
i
1)t

2j−2(1−t)(3t−1) = m2(T1)t
2j−2(1−t)(3t−1)

So we have that the area at the last step (k-th step) is at the most

m2(T1)− (1− t)(3t− 1)(1 + t2 + ...+ t2k−2)m2(T1) = m2(T1)

(
1− (3t− 1)(1− t2k)

t+ 1

)
It is clear that, choosing t close enough to 1 and then k great enough, the area is as

small as we want.
Moreover all the segments from the bases to the opposite vertex have not been divided

in any step so we can find them in the final figure.
The figure is also contained in A since every point has been moved of less than ε.
We see also that the final figure is a union of 2k triangles overlapping because each of

the triangles in the initial figure have only been translated and not ’broken’ in any way.
(3)Finally we want to create a set of measure 0 which contains a segment parallel to

every directions from −2π
3 to −π

3 from an equilateral triangle. Adding five copies of it
rotated in the obvious way we obtain our Besicovitch set.

Let T1 be an equilateral triangle whose side has length 1.
We take an open set A1 such that T1 ⊆ A1, m2(A1) ≤ 2m2(T1) and m2(A1) < 2m2(A1)

(we can because A1 contains T1 and we can choose A1 itself so that it and its closure are
contained in a ball of radius small enough). From this triangle we create a figure T2 of
area less than 2−2 contained in A1 as we have seen in step (2).

This figure can be seen as an union of triangles with the same height of T1.
Now we take an open set A2 such that T2 ⊆ A2 ⊆ A1, m2(A2) ≤ 2m2(T2) and

m2(A2) < 2m2(A2).
We can do this due to the properties of the Lebesgue measure and because if A2 is

not a subset of A1 we can intersect A2 with A1 obtaining an open set with the desired
properties.

We proceed like this and at every step n we will apply step (2) to the triangles of
the figure Tn−1 and we will obtain a figure Tn, with area less than 2−n, and which is the
union of triangles and an open set An ⊇ Tn such that An ⊆ An−1, m2(An) ≤ 2m2(Tn)
and m2(An) < 2m2(An).
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We have that A1 ⊇ A2 ⊇ A3 ⊇ ....
We take C =

⋂+∞
i=1 Ai. This is the intersection of closed sets so it is closed. Moreover

m2(C) ≤ 2m2(Ai) ≤ 4m2(Ti)∀i ⇒ m2(C) = 0

We take a segment parallel to every direction in every figure Ti (they exist due to our
construction in (2)).

So, for every direction, we can create a sequence of segments (li)i∈N. Taking the dis-
tance between two of these segments as the distance between the points of these segments
which are in the bases of the correspondent figure we have that we can take a subsequence
of segments (lki)i∈N such that the distance between two of them converges to 0. For every
line parallel to the base of T1 (and of all the figures) we can intersect it with the segments
so we have a convergent sequence of points.

Since C is closed the points converge to a point in C. This is true for every line and
we see that the points of convergence form a segment parallel to all the segments in the
sequence.

So this segment is in C and therefore C contains a segment of length 1 parallel to every
direction.

So we have our Besicovitch set.
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