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Summary

The present work is the result of a traineeship experience, which took

place at the European Commission under the Directorate-General for Com-

munications Networks, Content, and Technology (DG CONNECT). The study

has been conducted on the Digital Economy and Society Index (DESI) - 2022

edition, using the most recent version available of the Index (published in

July 2022, European Commission 2022). The results obtained through the

statistical assessment have been used for the formulation of the DESI 2023

edition.

Chapter 1 lays the groundwork by delving into the realm of composite

indicators, clarifying their linkage to the concept of homogeneity. The chapter

further underscores the signiőcance of digitalization as a latent measure and

explores the role of DESI in capturing this multifaceted phenomenon.

Then Chapter 2 describes the methodological choices related to the com-

putation of DESI 2022 scores while Chapter 3 introduces the tools instru-

mental in evaluating the internal consistency of DESI 2022. Notably, Cron-

bach’s alpha, Principal Component Analysis (PCA), the robustiőed variant

ROBPCA, and the Pearson Correlation Coefficient are unveiled as the key

statistical methodologies that play a pivotal role in observing the index co-

herence.

Chapter 4 contains the internal consistency analysis conducted across

the various dimensions of DESI. This analysis is a precursor to justifying

the aggregation rules employed in score computation. Moreover, a series of

proposed adjustments to the dimensional frameworks is presented, with the



20

overarching aim of optimizing the internal consistency of the index. Chapter

5 aims at showcasing the subtle impact of the proposed adjustments on the

dimensional scores of DESI. Additionally, this chapter undertakes the task

of addressing the weight allocation challenge posed by the introduction of

novel sub-dimensions within existing dimensions. To tackle this, sensitivity

analysis over sub-dimensional weights is employed.



Chapter 1

Introduction

Composite Indicators (CIs) are synthetic indices of individual indica-

tors often used to rank countries in various performance and policy areas

(Freudenberg 2003b). A CI is a summary measure that combines multiple in-

dicators or variables to provide a single measure of a concept or phenomenon.

To achieve this, aggregation is involved, which refers to the process of com-

bining the individual measures into the aggregate measure. In essence, a

composite indicator can represent a complex system comprised of multiple

components, which can be easier to comprehend as a whole rather than de-

composing into its individual parts (Greco et al. 2019). The indicators or

variables used to construct a composite indicator should be relevant to the

concept being measured. Thus, the selection of indicators or variables and

the chosen method for aggregation are of primary importance in a composite

indicator and can have a signiőcant impact on the őnal scores.

1.1 Building a CI

In recent times, the number of existing CIs has risen exponentially, due to

their increased popularity in many research őelds and to the high availability

and complexity that data have assumed in the last decade. This big success
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did not come without any criticism. Since the most relevant attribute of a CI

is its ability to integrate large amounts of information into a single and easy-

to-interpret score, the main concerns arising from the aggregation process

are intuitive:

1. How to select and correctly aggregate together the individual indicators

involved?

2. How is the őnal score obtained?

3. How well will the őnal score represent the underlying latent concept

that we are interested in capturing?

All three listed questions are somehow interrelated.

In the following sections, different methodologies for building compos-

ite indicators will be discussed, related to both the aggregation approaches

adopted and the CI structure. The Digital Economy and Society Index

(DESI) - 2022 edition (European Commission 2022) will be taken as our

test case. The reason DESI 2022 is chosen as the reference CI is twofold: it

includes the lack of a previous methodological assessment of the index and

DESI relevance in multiple policy areas. In fact, the main purpose of the fol-

lowing analysis is to conduct a statistical assessment of DESI, by addressing

its structure through consistency proofs within its components, which justify

the methodological aggregation choices. By using performance measures, i.e.

impact analysis, the inŕuence of framework updates suggested by the internal

consistency analysis will be measured. Instead, a sensitivity analysis will be

used in some cases to evaluate the uncertainty derived from testing different

sets of weights on the newly deőned framework components.

1.1.1 Conceptual framework and selection of individual indica-

tors

Starting from the őrst concern, individual indicators should be organized

under a conceptual framework which deőnes the concept being measured and
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helps in identifying the indicators or variables used to capture it. For these

reasons, it should be based on a clear understanding of the assessed phe-

nomenon and the context in which it occurs. Thus, a CI should be developed

in consultation with experts in the őeld, stakeholders, and potential users of

it, as well as the collection of the individual indicators that are organized

under it (Freudenberg 2003a). To better visualize the conceptual framework

(see Figure 1.1), őrst, a hierarchical structure must be deőned where the

key dimensions of the main concept are identiőed and then individual in-

dicators are selected and arranged below those. More levels of complexity

might exist in a conceptual framework, where higher levels (dimensions) re-

late to fairly general areas and provide a basis for the speciőcation of lower

levels (sub-dimensions), from where it is then easier to identify the indica-

tors. Given that the conceptual framework should specify the relationships

between the dimensions and indicators, and should identify any interactions

between them, the őnal score is obtained from this structure.

Figure 1.1: Example for the hierarchical structure of the conceptual framework of

a CI

1.1.2 Weigthing and aggregation

Once the conceptual framework has been deőned and individual indica-

tors are brought to the same measurement scale through a normalization

step, aggregation under the same construct is possible. The second concern
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on CIs can then be answered. In fact, there are multiple ways of aggregating

individual indicators and weight for them to obtain the őnal score.

The selection of weights can signiőcantly affect the rankings of units in

the CI, presenting a challenge in the construction of composite indicators

known as the index problem (Rawls 1971). Moreover, the assigned weight

has a twofold meaning (Nardo et al. 2008): an explicit one, which refers to

the weight assigned to each criterion in the composite index; an implicit

one, which instead relates to the trade-off between pairs of criteria during

aggregation. Thus, selecting a weighting scheme always turns into a subjec-

tive choice, even when equal weighting (EW) is used. Accordingly to EW,

no weights are assigned to the indicators thus it is also called an ‘attributes-

based weighting system’ in Slottje (1991). This approach suffers from some

problems, i.e. double counting, which occurs when combining indicators that

are highly correlated. (Freudenberg 2003b; Nardo et al. 2008). Additionally,

since EW can be applied hierarchically, in case the indicators are grouped

into a higher order, such as a dimension, and weights are distributed equally

dimension-wise, it does not imply that the individual indicators will have

equal weights (Nardo et al. 2008). Thus, the actual weight will depend on

the number of individual indicators in each dimension. The literature offers a

variety of methods alternatively to the EW, some of which are participatory

methods, i.e. budget allocation process (BAP), or data-driven ones, i.e. factor

analysis (FA) (Greco et al. 2019). The BAP method is based on a group of ex-

perts selection: a speciőc group of decision-makers is provided with a certain

number of points to distribute among the indicators or groups of indicators,

such as dimensions. The őnal weighting scheme of the composite indicator

is based on the average of the allocation choices made by the members of

the expert panel (Custance and Hillier 1998). The BAP is for instance used

by the European Commission for the creation of the e-Business Readingness

Index (Pennoni et al. 2006) and the Internal Market Index (Tarantola et al.

2004). Instead, the FA method is reported in the context of CIs as an example

of a data-driven technique (Decancq and Lugo 2013). Once the conceptual
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model has been set, FA is used for weight elicitation, by grouping individual

indicators according to their degree of correlation (Nardo et al. 2008).

Finally, when the weighting system has been decided, the aggregation

method allows us to obtain the őnal score. According to Nardo et al. (2008),

aggregation methods can be divided into three categories: linear, geometric,

and multicriteria. Each aggregation leads to different compensation and al-

lows the weights to be a measure of importance, in the case of non-compensatory

aggregation methods. Compensability refers to the existence of trade-offs

and the use of weights with the intensity of preference originates compen-

satory aggregation methods and gives the meaning of trade-offs to weights

(Munda 2012). For instance, strong compensability allows for outstanding

performance in some aspects to balance the weaknesses in others and vice-

versa. Thus, the compensatory nature between indicators varies depending

on the aggregation used, according to Munda (2008). In this way, the pre-

vious categorization translates in compensation terms as full (correspond-

ing to linear aggregation), partial (in the case of geometric methods and

partially-compensatory multicriteria methods), and zero (in the case of non-

compensatory multicriteria decision making (MCDM) techniques). A fully

compensatory aggregation function has to be justiőed by a satisfactory inter-

nal consistency level within and across sub-dimensions and across dimensions

(Decancq and Lugo 2010; Seth 2009; El Gibari et al. 2018). When using stan-

dard linear composite aggregation rules, compensability among the different

individual indicators is always assumed which implies complete substitutabil-

ity among the different components of the CI. The MCDM literature instead

advocate non-compensatory and non-linear aggregation rules as an alter-

native to this approach. In the context of multi-criteria, different methods

are available providing with fully or partial non-compensatory techniques,

namely the counting method proposed by Alkire and Foster (2011) or purely

multi-criteria approaches based on partial order (Annoni 2007; Annoni and

Brüggemann 2009; Brüggemann and Carlsen 2012).
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1.1.3 Measures of performance

While we can select the individual indicators that best correlate to the

underlying latent variable capturing the phenomenon of interest, it is hard to

say how well a CI approximates that latent variable. This point refers to the

third concern about CIs. In fact, by deőnition, a latent factor is a latent vari-

able that cannot be observed, and thus can’t be directly measured. Instead,

what is possible to test for, and also helps in answering the question about the

performance of a CI, is homogeneity among the observable individual indica-

tors. In this context, many statistical methods for testing homogeneity and

thus multivariate correlation have been developed, namely Cronbach’s alpha

(Cronbach 1951), Principal Component Analysis (PCA -Jolliffe (2002)), and

Factor Analysis (FA - Fabrigar et al. (1999)). These methods are used to test

for unidimensionality within indicators of the same sub-dimensions, within

sub-dimensions of the same dimension, and ultimately, between dimensions.

Finally, a robustness analysis of the methodological choices can be used to

assess the impact that changes have on the őnal scores. By serving as a qual-

ity assurance tool, this will demonstrate the index sensitivity to any changes

made during its construction process, which will signiőcantly decrease the

chances of conveying any misleading information (Saisana et al. 2005). The

őrst instrument used in the context of robustness analysis is impact analysis

(IA), which is used to test for the robustness of the őnal scores, by changing

some of the inputs. Alternatively, sensitivity analysis (SA) quantiőes the ex-

tent to which uncertainties contribute to the variation in the overall output,

as stated by Saisana et al. (2005).

1.2 On digitalization and composite indicators

The concept of digitalization is becoming increasingly important within

socio-economical changes discourse and takes a prominent position in pro-

moting a human-centric, sustainable vision for a digital society. At the same

time, digitalization is multifaceted and hard to capture, also due to its contin-
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uous evolution in the digital era. Measuring the digital divide of the Member

States of the European Union and deőning digitalization components are pri-

mary steps within Europe’s Digital Decade (European Commission 2021), a

comprehensive framework that will guide all actions related to digital in Eu-

rope towards 2030. The aim of the Digital Decade is to ensure all aspects of

technology and innovation work for people. Within the Digital Decade frame-

work, targets have been set, which are measurable goals for each of the four

deőned areas: Connectivity, Digital Skills, Digital Business, and Digital Pub-

lic Services. To achieve its digital goals and aims, the European Commission

intends to expedite and simplify the initiation of multi-country initiatives,

involving large-scale projects that individual Member States could not inde-

pendently undertake.

These initiatives have the potential to:

1. Pool investments from sources including the EU budget, the Recovery

and Resilience Facility, Member States, and private sector entities.

2. Address deőciencies in critical capacities within the European Union

that have been identiőed.

3. Promote a Digital Single Market that is interconnected, compatible,

and secure.

The DESI composite indicator arises from the need to track digital progress,

and thus the effectiveness of the Digital Decade policy investments and syn-

ergies, by ranking the 27 Member States according to their level of digi-

talization. Since its introduction in 2014, its framework has been updated

yearly. In the following dissertation, we refer to the most recent update, the

2022 edition. Nevertheless, DESI combines a relevant number of indicators,

33, classiőed into 4 dimensions, corresponding to the four cardinal points of

the Digital Decade. Moreover, each dimension contains a different number of

sub-dimensions, a total of 10, representing different sub-aspects of the same

dimensional domain (see Chapter 2 for more on DESI structure).
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In addition to DESI, presented by the European Commission, several

institutions, and organizations have been developing proposals for digitaliza-

tion proxy concepts measurement. The őrst composite indicator measuring

the Digital Divide was introduced in 2001 by the United Nations, the Technol-

ogy Achievement Index (TAI) and described in detail in the Human Develop-

ment Report (United Nations 2001), followed the same year by the Networked

Readiness Index (NRI - World Economic Forum (2019)). TAI 2001 contains

8 individual indicators, divided into 4 dimensions, i.e.Creation of technology,

Diffusion of recent innovations, Diffusion of old technologies, and Human

skills development. No lower hierarchical structure exists for this CI (absence

of division into sub-dimensions). NRI 2001 instead, contains 53 individual in-

dicators which are respectively divided into 4 dimensions (and 12 dimensions

total), namely Environment (Political and regulatory, Business and Infor-

mation), Readiness (Infrastructure, Affordability, Skills), Usage (Individual,

Business, Government), Impact (Economic, Social).

Despite some differences, the three CIs described share three key aspects

related to ICT:

1. the development of ICT infrastructure, which includes connection net-

works infrastructure, internet connection quality, and users’ access to

the service;

2. ICT skills, which refer to users’ abilities and knowledge in using com-

puter devices and internet services;

3. ICT usage, which highlights the various ways in which internet services

are used by individual users, private companies, and public organiza-

tions.

DESI, released in 2014, is relatively innovative compared to those primordial

composite indicators. In fact, it incorporates individual indicators that cap-

ture a wider spectrum of the digital. In fact, differently from the other two,

DESI integrates with information of Cloud and Artiőcial Intelligence (AI)

under the digital business domain dimension and also includes a dimension
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that captures the demand and supply of e-government as well as open data

policies. This structure is in line with its more recent story and falls under the

Digital Decade policy. However, having individual indicators that capture a

larger range of the digital does not necessarily translate into an accurate CI.

In fact, if individual indicators do not reach a satisfactory level of internal

consistency within the same construct, the őnal score may give misleading

information when non-compensatory aggregation functions are used, as in

the case of DESI 2022.

In terms of standardization and aggregation, DESI uses min-max stan-

dardization and a hierarchical approach for aggregation: it applies a weighted

arithmetic mean to aggregate individual indicators within each sub-dimension,

followed by a weighted arithmetic mean of sub-dimensional scores for each

dimensional score, that is aggregated with a simple average into the őnal

overall score. While NRI has a similar hierarchical structure to DESI, TAI

quite differs from it. In fact, in terms of framework, TAI holds two levels

of complexity only, the dimensional and the overall one. Moreover, TAI is

much less informative, including only 8 simple indicators compared to the

33 of DESI and 53 of NRI. Further, TAI aggregates indicators using a sim-

ple arithmetic mean at both sub-dimensional and dimensional levels. In fact,

Saisana et al. (2005) shows that, in the case of the TAI, changing the weights

of certain indicators seems to affect several of the units evaluated, especially

those that are ranked in middle positions. DESI individual indicators weights

are instead based on the 2030 Digital Compass targets (European Commis-

sion 2021): target indicators are double-weighted within their sub-dimensions.

Also, sub-dimensions scores are aggregated according to weights assigned by

experts while the four dimensions of the Digital Compass are of equal im-

portance, thus the arithmetic mean is used for their aggregation. Finally, the

three CIs use a common aggregation approach, namely the arithmetic mean

with equal weights, at an overall level, which implies a strong compensability

of dimensions.

We can conclude that DESI power, compared with previous proposed CIs,
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resides in extending the digital domain by considering novel technologies and

more reőned elements, and not in its methodological approach to weighting

and aggregation.

The internal consistency analyses performed on the DESI 2022 framework

will thus reveal whether a wider structure leads to a satisfactory measure of

the current digital domain.

1.3 Measures of homogeneity

As previously mentioned, the internal consistency of indicators within and

across sub-dimensions/dimensions is a necessary property of CIs when using

compensatory approaches for aggregation. In fact, if a satisfactory level of ho-

mogeneity is not reached, composite indicators scores may return misleading

results. Internal consistency can be seen as a proxy to test for homogeneity

of CIs, where a homogeneity analysis in its broader sense is deőned in Giő

(1990) as: ’A class of criteria for analyzing multivariate data in general, shar-

ing the characteristic aim of optimizing the homogeneity of variables under

various forms of manipulation and simpliőcation’. Homogeneity can thus help

in deőning which individual indicators are the most appropriate to capture

latent variables and contribute in the same direction for the same concept.

In the literature, we can őnd extensive use of homogeneity techniques. In the

CIs context, for instance, PCA can serve the purpose of examining the un-

derlying nature of the data and exploring whether their different dimensions

are statistically well-balanced. In the absence of a conceptual model, within

a deőned framework PCA can be used within dimension/sub-dimension to

test for internal consistency of individual indicators. An example is the ICT

Development Index (IDI - International Telecommunication Union (2017)),

a CI published from 2009 until 2017. IDI is made of three main dimensions

and within each, PCA is applied to őnd the most consistent indicators and

eliminate the ones that are not. Additionally, IDI uses factor loadings of the

őrst component of PCA as a weight elicitation technique, to serve as weights
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for the indicators (Greyling and Tregenna 2017). However, when the őrst

principal component is not able to explain an adequate portion of the vari-

ance of the indicators, more components are needed. Nicoletti et al. (2000)

develop indicators of product market regulation, illustrating how these can

be accomplished using FA. In order to reduce the number of indicators with

high loadings on each component, the authors used the principal component

method for factor extraction and rotated the components according to the

varimax method. By examining the factor loadings of all retained factors,

as described in Nicoletti et al. (2000), they were able to preserve the largest

proportion of variation in the original dataset.

Finally, what we would like to achieve with this project is assessing the

homogeneity of dimensional/sub-dimensional structures within DESI 2022

framework. This assessment is essential to validate two key methodological

choices related to the composite indicator, being the major objectives:

• The use of compensatory rules for aggregation;

• The inclusion of detailed individual indicators to capture a wider spec-

trum of the digital domain while aligning with the Digital Decade policy

objectives.

Additionally, following the experts’ decision of not correcting for univari-

ate outlying behaviors of certain countries for DESI 2022, we will compare the

Classical PCA method with its robustiőed version (ROBPCA - Rousseeuw

1984). This comparison will be carried out at both the overall CI level, con-

sidering all individual indicators in DESI 2022, and at the dimensional level.

The comparison aims to accomplish two minor objectives:

• Test the robustness of the PCA procedure against outliers;

• Detect possible outlying countries at the overall or dimensional level

by employing measures of multivariate outlyingness.

While the őrst listed insight deriving from the robust PCA analysis mostly

addresses statistical considerations, the second can provide valuable insights
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for policy purposes. Indeed, identifying measures of multivariate outlying-

ness can justify further in-depth analyses of countries that exhibit distinct

behaviours.



Chapter 2

DESI 2022: data collection, descrip-

tive analysis and aggregation

This chapter provides an overview of the conceptual framework of the

DESI 2022 and the individual indicators included in its computation (Para-

graph 2.1). Additionally, we delve into the data sources and the methods

employed for the imputation of missing data (Paragraph 2.2). A descrip-

tive analysis of individual indicators is presented in Paragraph 2.3, offering

valuable insights into their characteristics. Furthermore, we detail the data

normalization procedures (Paragraph 2.4) and the aggregation methods uti-

lized in the DESI computation (Paragraph 2.5). These essential components

collectively form the foundation of our study, enabling a comprehensive anal-

ysis of the DESI 2022.

2.1 Conceptual framework

As previously mentioned, DESI 2022 composite indicator should help a

country to assess its position relative to others, possibly in order to bench-

mark policies. Thus, its need for redeőnition in the digital age calls on pol-

icymakers to take a new look at the current digital achievements. While
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acknowledging that many elements make up a country’s digital achievement,

the index suggests that an overall assessment is more clear based on a sin-

gle composite measure. Like other existing CIs, DESI 2022 is suggested for

summary purposes, to be followed by individual analysis of the underlying

indicators.

The DESI 2022 focuses on 33 individual indicators measured in the 27

EU member countries. The indicators are divided into the four main di-

mensions of digital development, which are in turn split into respective

sub-dimensions. The DESI dimensions are:

• Human Capital (HC): the human capital dimension assesses both

the internet user skills of citizens and the advanced skills of special-

ists. For this reason, two sub-dimensions are used to capture the two

domains, respectively called Internet user skills, labeled as 1a, and Ad-

vanced skills and development (1b).

• Connectivity (CN): the connectivity dimension considers both őxed

and mobile broadband through indicators measuring the supply and

the demand side as well as retail prices. The connectivity spectrum is

then divided into four sub-dimensions, namely Fixed broadband take-

up (2a), Fixed broadband coverage (2b), Mobile broadband (2c), and

Broadband prices (2d).

• Integration of Digital Technology (IDT): this dimension captures

the extent to which countries enable access to digital services for all cit-

izens, to maintain their digital prosperity. This is performed by captur-

ing 3 main concepts, which correspond to three deőned sub-dimensions,

namely the use of different digital technologies at an enterprise level,

corresponding to Digital Intensity (3a) sub-dimension, take-up of se-

lected technologies, named Digital technologies for businesses by en-

terprises (3b) and e-commerce, contained in e-Commerce (3c) sub-

dimension.
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• Digital Public Services (DPS): describes the demand and supply

of e-government as well as open data policies, without any internal

division. The unique sub-dimension, corresponding entirely to the di-

mension, is called e-Government (4a).

The DESI three-level structure is exhaustively depicted in Table 2.1,

where the 33 included individual indicators are divided into the respective

sub-dimensions and dimensions.

Dimension Sub-dimension Indicator

1 Human capital 1a Internet user skills 1a1* At least basic digital skills

1a2 Above basic digital skills

1a3 At least basic digital

content creation skills

1b Advanced skills 1b1* ICT specialists

and development 1b2* Female ICT specialists

1b3 Enterprises providing

ICT training

1b4 ICT graduates

2 Connectivity 2a Fixed broadband take-up 2a1 Overall őxed broadband

take-up

2a2 At least 100 Mbps

őxed broadband take-up

2a3 At least 1 Gbps take-up

2b Fixed broadband coverage 2b1 Fast broadband

(NGA) coverage

2b2* Fixed Very High Capacity

Network (VHCN) coverage

2b3 Fibre to the Premises

(FTTP) coverage

2c Mobile broadband 2c1 5G spectrum

2c2* 5G coverage
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2c3 Mobile broadband take-up

2d Broadband prices 2d1 Broadband price index

3 Integration of 3a Digital intensity 3a1* SMEs with at least a

digital technology basic level of digital

intensity

3b Digital technologies 3b1 Electronic information

sharing

for businesses 3b2 Social media

3b3* Big data

3b4* Cloud

3b5* AI

3b6 ICT for environmental

sustainability

3b7 e-Invoices

3c e-Commerce 3c1 SMEs selling online

3c2 e-Commerce turnover

3c3 Selling online cross-border

4 Digital public 4a e-Government 4a1 e-Government users

services 4a2 Pre-őlled forms

4a3* Digital public services

for citizens

4a4* Digital public services

for businesses

4a5 Open data

Table 2.1: DESI structure

In total, there are ten sub-dimensions, differently distributed among the

four dimensions of DESI. Additionally, 11 of the DESI 2022 indicators mea-

sure the Digital Decade targets and each dimension contains a different num-

ber of EU-level targets, called Key Principal Indicators (KPIs - noted

with ∗ in Table 2.1).
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For each of the 33 individual indicators the respective description, unit

of measure, source of collection, and authority of reference, can be found in

Figures B.1, B.2, B.3, B.4 of Appendix B.

2.2 Data sources, quality and availability

The data used to construct the DESI are obtained from relevant authori-

ties of the Member States by the European Commission (Directorate-General

for Communications Networks, Content and Technology as well as Eurostat)

and from ad hoc studies launched by the Commission. In Appendix B, Fig-

ures B.1, B.2, B.3 and B.4 contains more information about each indicator

data source, while Table B.1 lists the authorities in charge of those.

The data used for calculating DESI 2022 is collected one year prior to its

publication. Therefore, when referring to 2021 data, we are speciőcally re-

ferring to the data used for the computation of DESI 2022 edition, and the

same principle applies to the previous publications.

DESI 2022 was computed for 27 countries, for which data were partially

available and of acceptable quality. However, it is important to note that

data availability is not always guaranteed, and some countries may not have

provided certain data points due to reasons such as non-delivery by the au-

thority responsible for data collection. In such instances, these data points

are considered as missing. Additionally, there were cases where the data

quality was disputed after collection. Speciőcally, for certain countries, the

authority responsible for data collection provided data that did not align

with the country-speciőc time series of individual indicators. This resulted

in anomalies, such as a drastic drop in a particular time point, leading to

inconsistencies within the expected time evolution of the indicator, and af-

fecting the country’s score for that year. To address this issue, post-cleaning

procedures were carried out at the discretion of DESI experts after data col-

lection. The primary goal of these procedures was to substitute problematic

data points with imputed data. During this process, the data in question
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were censored to ensure the accuracy and integrity of the resulting DESI

scores and rankings. This allowed for more reliable and meaningful compar-

isons between countries and facilitated the generation of a comprehensive

and consistent assessment of their digital performance.

For DESI 2022, both in the case of missing or censored data points, the

two main imputation methods are based on 2020 data, which were already

cleaned and imputed for the computation of DESI 2021. The two methods

are following described:

• Imputation using the growth rate: the method involves calculating the

EU average growth rate of the xi indicator between the years 2020 and

2021 (rate2021−20). This growth rate is then multiplied by the data point

for the same indicator in the year 2020 (xi,c|2020) corresponding to the

country (indexed with c) and indicator of interest (xi). The formula to

obtain the imputed data point x̂i,c|2021 is

x̂i,c|2021 = rate2021−20 × xi,c|2020. (2.1)

The resulting value is used as an imputed data point for the missing

or disputed data, providing an estimate for the indicator value in the

speciőc year where data were unavailable or of poor quality. This ap-

proach allows for a reasonable estimation of the indicator’s value in a

consistent and standardized manner across the countries in the study.

• Imputation using the rank : this method addresses missing or disputed

data points by employing rank-based information. This method aims

to estimate the values of speciőc indicators for a particular country

and year where data is not available or of questionable quality. To im-

plement this method, the researchers őrst determine the rank of the

country of interest (indexed with c) for the individual indicator xi in

the year 2020. This rank is denoted as ranki,c|2020 and indicates the

country’s relative position in the data distribution for the speciőc in-

dicator in 2020. Next, the researchers identify two countries for which
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data is available in the year 2021: one corresponding to the rank im-

mediately below the country of interest (indexed as ranki,c|2020 − 1),

denoted as country c′, and another corresponding to the same rank as

the country of interest in 2020, denoted as country c′′. Subsequently,

the researchers calculate the average value of the indicator xi for coun-

try c′ and country c′′ in the year 2021. This average value is then used

to impute the missing data point for the country of interest (c) and

indicator (xi) in the year 2021.

The formula to obtain the imputed value x̂i,c|2021 is in this case

x̂i,c|2021 =
1

2
(xi,c′|2021 + xi,c′′|2021). (2.2)

As per the DESI experts, when employing each imputation method, spe-

cial consideration is given to whether the imputed data point aligns with

the overall trend and evolution of the indicator’s time series for the speciőc

country in question. In other words, after performing data imputation using

the designated methods, the DESI experts thoroughly assess whether the

estimated values logically őt into the historical progression of the indicator

for the chosen country. This assessment is crucial to ensure that the imputed

data points accurately reŕect the trend and behaviour of the indicator over

time, thus maintaining the coherence and reliability of the őnal score. Addi-

tionally, the assessment helps in picking an imputation method. In fact, for

each missing or censored data point, the method is chosen in an arbitrary

manner by selecting the one that offers the most accurate őt of the data

point within the time series of the individual indicator.

2.3 Descriptive analysis

The statistics for the data with imputed values are given in Appendix A.

For each raw indicator, xi, several statistics are measured that are:

- % of missing values: counts the percentage of missing data or censored

data;
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- average: compute the individual indicator average (µxi
);

- standard deviation: compute the individual indicator standard devia-

tion (σxi
);

- coefficient of variation: deőned as the ratio of the standard deviation

to the average (
σxi

µxi

). It measures for the individual indicator dispersion,

the higher the coefficient of variation the higher the dispersion;

- skewness : computes the sample skewness of the individual indicator xi

using the formula 1
n

∑

i((xi − µxi
)3)/(σ3

xi
);

- kurtosis : computes the sample kurtosis of the individual indicator xi as
1

n

∑
i((xi−µxi

)4)

σ4
xi

;

- skewness correction: it is a dummy variable that indicates whether it

is necessary to correct for an asymmetry. When the absolute value of

skewness is larger than 2 and kurtosis is larger than 3.5, the data include

outliers, which are treated;

- maximum value: takes the maximum value of the individual indicator;

- country corresponding to maximum value: shows the country label hold-

ing the maximum value for the indicator;

- minimum value: takes the minimum value of the individual indicator;

- country corresponding to minimum value: shows the country label of

the country corresponding to the minimum.

Except for the % of missing values statistics, all the summary statistics

in Appendix A were computed on the data as used for the computation of

the őnal DESI 2022, thus on the data set with imputed data. As is commonly

understood, for the computation of the missing value statistic a different data

set was used, which contained the missing and censored data. The summary

statistics contained in Appendix A help in having a őrst idea of countries’
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behaviour within each individual indicator. Following, for each dimension in

DESI 2022, individual indicators missing patterns and asymmetry will be

discussed.

For HC dimension, looking at line % of missing values in Table A.2, we

can observe that the only indicator having missing data is "ICT graduates"

(1b4), with 3.70% of missing values. The rate corresponds to Czech Republic

and the data point was imputed using the growth rate method. Relatively to

asymmetric behaviors of individual indicators, Tables A.1 and A.2 instead,

show that for the HC dimension the data do not exhibit a particularly high

dispersion, since all the individual indicators in the HC dimension hold a

quite low coefficient of variation. Kurtosis is high for most of the indicators

but skewness does not cross the threshold value of 2 for any, thus no skewness

correction is applied to outliers of any indicator.

In the CN dimension, we őnd in Table A.4 that the percentage of missing

values is 3.70% for "At least 1 Gbps take-up" (2a3) indicator. In this case,

Croatia is the country corresponding to the missing data but imputation was

not performed. In fact, the missing data was later suggested to be equal to

0 by Croatia itself. Referring to Tables A.4, A.5 and A.6 we can note that

the data does not show signiőcant dispersion, as all the simple indicators in

CN have relatively low coefficients of variation. In this dimension, for one

indicator, i.e. "At least 1 Gbps take-up" (2a3), both kurtosis and skewness

cross the threshold values. However, for this indicator, upon the decision of

DESI experts, no correction was applied. In fact, outlying observations, cor-

responding to countries France and Hungary, were considered representations

of excellent performances, thus very relevant in their respective őnal score

computations.

Concerning the IDT dimension instead, a larger number of individual

indicators show missing values as we can see by looking at the % of miss-

ing values in Tables A.9 and A.10. "ICT for environmental sustainability"

(3b6), where the missing values for Cyprus and Malta were imputed using

the rank method; "e-Invoices" (3b7) has a missing value for Greece, that was
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imputed using the growth rate method; "e-Commerce turnover" (3c2) indi-

cator where the missing values for Finland, Luxembourg, and Poland were

all imputed using the growth rate method. By Tables A.8, A.9 and A.10,

indicators "AI" (3b5) and "e-Invoices" (3b7) exhibit the highest coefficient

of variation. However, no indicator was corrected for skewness.

Finally, the DPS dimension does not contain any missing value for the

2021 data, and the summary statistics contained in Tables A.12, A.13 show

that while kurtosis crosses the 3.5 threshold for indicators "e-Government

users" (4a1) and "Digital public services for businesses" (4a4), skewness is

low on those thus no correction is applied.

While missing values have been treated, according to imputation methods

in Section 2.2, no correction for skewness was adopted even though some

outlying behaviors of single indicators were observed. However, the adoption

of Robust PCA (Hubert, Rousseeuw, and Vanden Branden 2005) in Chapter

4 will help with this choice by addressing the two minor goals of the work,

i.e. testing the robustness of Classical PCA against outliers and detecting

outlying countries in a multivariate space.

2.4 Data normalization

Normalization is a crucial step in the construction of composite indicators

as it allows for the comparison and aggregation of indicators with different

measurement scales. In DESI 2022, the method used to reduce data to the

same scale before aggregating into the őnal CI is Min-Max scaling (Nardo

et al. 2008). The method normalizes indicators to have an identical range

[0, 1]. In fact, for all original individual indicators xi, with i = 1, . . . , p, the 0

value in the normalized scale is anchored to the minimum value, xmin,i, in the

indicator original scale, and the value 1 in the normalized scale was anchored

to the maximum value, xmax,i, in the indicator’s scale. All the individual

indicators are then normalized, in order to be positively oriented with levels

of digital development. The normalised value Xic, for country c on indicator
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xi, is obtained according to the following transformation:

Xic =







xic−xmin,i

xmax,i−xmin,i
if indicator xi is positively oriented

1−
xic−xmin,i

xmax,i−xmin,i
if indicator xi is negatively oriented

for i = 1, . . . , p, and c = 1, . . . , n, with n the total number of observed

countries.

Extreme values or outliers could distort the transformed indicator. On

the other hand, depending on the choice of minimum and maximum values,

min-max normalization could widen the range of indicators lying within a

small interval, increasing the effect on the composite indicator more than

the z-score transformation (Nardo et al. 2008). To allow for interśtemporal

comparisons of index scores in the case of time-dependent studies, the minima

(xi,min) and maxima (xi,max) across countries for the normalization of each

indicator, are calculated for a reference year (usually the initial time point).

In DESI 2022 (source Methodological Note, European Commission 2022),

minimum and maximum values were őxed based on the 2019 data and were

computed as follows:

• Minimum: actual minimum value in the basket multiplied by 0.75.

• Maximum: actual maximum value in the basket multiplied by 1.25.

The multiplicators ensure that actual values do not go below the minimum

and above the maximum values over time. Minimum and maximum values

have not been updated based on the 2020 and 2021 data to avoid updating

2019 őgures. The indicator "Broadband price index" (2d1) is normalized to

a score between 0 and 100, where 100 is the best performance.
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2.5 DESI 2022: weights and scores computation

A composite indicator using an additive method, based on weighted mean

as aggregation technique, as the case of DESI 2022, takes the form

I =

p
∑

i=1

WiXi, (2.3)

where I indicates the őnal composite index, Xi the ith normalised variable;

Wi the corresponding weight at the overall score level, with
∑p

i=1Wi = 1 and

0 ≤ Wi ≤ 1, i = 1, . . . , p and p the total number of involved variables.

The őnal weights Wi, for each individual ith indicator, are computed in

three steps, following the hierarchical structure of DESI 2022:

• At a sub-dimensional level, each KPI of the Digital Decade is ini-

tially assigned a weight of 2, while all other individual indicators receive

a weight of 1, denoted as wi,init, where i = 1, . . . , p and k represents

the sub-dimension to which the indicator belongs. This choice aims at

giving double importance to KPIs when compared to the other individ-

ual indicators within the same sub-dimension. Next, the initial weights

wi,init of each individual indicator are normalized within their respec-

tive kth sub-dimension, ensuring that they collectively sum up to 1.

This process yields the normalized weight for each indicator wi,sub=k:

wi,sub=k =
wi,init

∑

i∈k wi,init

. (2.4)

with 0 ≤ wi,sub=k ≤ 1.

• At a dimensional level, each sub-dimensional ith indicator weight

wi,sub=k is multiplied by the weight assigned to the kth sub-dimension

of the jth dimension, usub=k,dim=j, where
∑

k∈j usub=k,dim=j = 1. The

sub-dimensional weights are differently assigned: EW is used for sub-

dimensions in HC, while in the other dimensions, sub-dimensions are

differently weighted according to the experts’ opinion. In this way the

dimensional ith indicator weight is obtained as:
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wi,dim=j = usub=k,dim=j × wi,sub=k (2.5)

The wi,dim=j weights, with 0 ≤ wi,dim=j ≤ 1, sum up to 1 in the respec-

tive jth dimension.

• In the end, at the overall level, the dimensional ith indicator weight

wi,dim=j is multiplied by the weight assigned to the dimension, udim=j,

through EW. In fact, all the j = 1, . . . , 4 dimensions have equal impor-

tance at the DESI level. This step is returning the overall weight Wi,

such as:

Wi = udim=j × wi,dim=j (2.6)

It holds that 0 ≤ Wi ≤ 1 and
∑p

i=1Wi = 1.

In the same way, the country-speciőc scores can be computed at three

different levels of complexity, expressed as the aggregation of the individual

indicators:

• At a sub-dimensional score level, scores can be obtained separately

for each kth sub-dimension, with k = 1, . . . , 10, as

isub=k =
∑

i∈k

wi,sub=kXi,k, (2.7)

with wi,sub=k deőned in 2.4 and Xi being the ith normalized individual

indicator.

• At a dimensional score level, a score is computed for each jth

dimension, with j = 1, . . . , 4, as

idim=j =
∑

i∈j

wi,dim=jXi,k, (2.8)

with wi,dim=j deőned in 2.5 and Xi being the ith normalized individual

indicator.
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• At a overall level, the score computed for DESI, I, is obtained as in

formula 2.3.

Finally, formula 2.3 can be rewritten in terms of dimensional scores ad-

ditive aggregation as

I =
4∑

j=1

udim=jidim=j, (2.9)

with the jth dimensional score idim=j deőned in 2.8 and udim=j = 25%. Thus,

in the őnal score computation, the aggregation method turns into a simple

average, allowing for full compensation of dimensions.

In Appendix B we can őnd Table B.2 containing all the necessary quanti-

ties for the score computation at the sub-dimensional and dimensional level

of complexity ofDESI 2022. Speciőcally, we have that:

- Sub-dim. weight : corresponds to the previously deőned weight assigned

to the kth sub-dimension of the jth dimension, usub=k,dim=j;

- Weight : is the aforementioned wi,init and it takes value 2 if the ith

individual indicator is a KPI, 1 otherwise;

- Normalized Weight : corresponds to wi,sub=k deőned in formula 2.4.



Chapter 3

Methodology

This chapter contains all the methods involved in testing for internal con-

sistency and outlier detection in the process of deőnition of DESI 2022. In

Section 3.1 a deőnition of homogeneity is provided, and the internal consis-

tency concept is explained, followed by the methods employed in the testing.

The theoretical frameworks of those methods and their application to DESI

2022 are provided in Section 3.2 for Cronbach’s alpha and in Section 3.3

for Principal Component Analysis (PCA). Then, a robust version of PCA

(ROBPCA) is introduced in Subsection 3.3.4 for the detection of outlying

observations in a multivariate setting. Finally, Factor Analysis (FA) and

PCA are compared in Section 3.4, speciőcally in the context of detecting

latent variables. By undertaking this comparison, we aim to shed light on

the suitability of these techniques within the realm of DESI 2022.

3.1 Homogeneity and Internal consistency

The homogeneity idea is closely related to the picture that different vari-

ables may measure the same concept (Giő 1990). It can be studied at different

degrees of complexity. One of those is through internal consistency which es-

timate refers to item homogeneity, namely the extent to which items within a

group measure various aspects of the same characteristic or construct (Hen-
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son 2001).

In the context of composite indicators, and speciőcally for DESI 2022, the

interest is to test for mono-dimensionality and internal consistency within

existing dimensions and sub-dimensions. The statistical methods employed

to test for that and assess the validity of each indicator belonging to the

respective dimension/sub-dimension are:

• Correlation analysis between pairs of indicators/sub-dimensions;

• Cronbach’s alpha, a reliability coefficient that provides a method of

measuring internal consistency of indicators (Cronbach 1951).

• Principal Component Analysis, used in an exploratory way for account-

ing multivariate correlation between indicators, thus accounting for

their internal consistency (Jolliffe 2002).

While correlation analysis is a bivariate exploratory method to test the

consistency of pairs of simple indicators, PCA is a more comprehensive

method that provides information regarding the contribution that each in-

dicator gives to the same latent construct, captured by the dimension/sub-

dimension. Instead, Cronbach’s alpha is a simpler statistic that only mea-

sures the average correlation between indicators in the same dimension/sub-

dimension.

Additionally to the aforementioned methods, in section 3.4 Factor Anal-

ysis is compared to PCA, to show how the two substantially diverge in an

internal consistency analysis setting, focusing on the reasons why the two

methods should not be exchanged.

3.2 Cronbach’s alpha

In the realm of social and psychological measurement, particularly in the

evaluation of measurement instruments such as surveys and questionnaires,

the concept of reliability holds paramount signiőcance. Reliability, within the
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context of internal consistency analysis, pertains to the degree of coherence

and consistency exhibited by a set of items designed to gauge a common latent

construct or attribute. It reŕects the extent to which these items yield con-

gruent and stable outcomes upon repeated observations. This applies to the

CIs case too, where reliability assumes a critical role, underpinning the cred-

ibility and robustness of the synthesized measures. Speciőcally, it delineates

the degree to which the constituent indicators collectively and consistently

measure the underlying construct.

One widely employed method for gauging internal consistency is Cron-

bach’s Alpha Coefficient (Cronbach 1951). Cronbach’s alpha (α) is a simple

and the most common measure of internal consistency, which assesses the av-

erage intercorrelation among the constituent indicators. It generally ranges in

value from 0 to 1, the higher the score, the more reliable the generated scale

is. With negative correlations between some indicators, the coefficient alpha

can have a negative value. The larger the overall alpha coefficient, the more

likely that the indicators all contribute to a single and then reliable latent

construct. Nunnally (1978) has indicated 0.7 to be an acceptable value for

internal consistency detection of the Cronbach’s alpha, but lower thresholds

are sometimes used in the literature depending on the different disciplines.

Cronbach’s alpha is deőned as:

α =
p

p− 1

(

1−

∑p
i=1 σ

2
i

σ2
t

)

(3.1)

with p the number of indicators, σ2
i the variance associated with the ith

indicator, i = 1, . . . , p, and σ2
t the variance associated with the total score

obtained by summation of the single indicators. In the context of compos-

ite indicators, Cronbach’s alpha statistic quantiőes the degree to which the

score of an indicator is inŕuenced by general and group factors, rather than

country-speciőc factors (Taber 2018). Thus, Cronbach’s alpha measures how

well a set of indicators measures a single latent construct in a unidimensional

manner. When data have a multidimensional structure, Cronbach’s alpha will

usually be underestimated.
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Concerning DESI 2022, Cronbach’s alpha will be used at a dimensional/sub-

dimensional level to get an idea of the unidimensionality nature of the under-

lying dimensional/sub-dimensional construct, using 0.7 as a threshold value.

3.3 Principal Component Analysis

Let us assume that we observe the value of p indicators: X1, X2, . . . , Xp

on a set of n statistical units. These values are usually organized in a X(n,p)

matrix made by n rows and p continuous features. The total variance of

X(n,p) is deőned as the sum of the variances of the indicators X1, X2, . . . , Xp.

Principal Component Analysis (PCA - Jolliffe 2002) is a descriptive,

multi-variate method that aims at őnding a smaller dimensional space cap-

turing most of the total variance of the original one.

Algebraically, Principal Components (PCs) are weighted linear combina-

tions of the (standardized) original p indicators. Geometrically, these linear

combinations represent the selection of a new coordinate system obtained by

orthogonal transformation of the original system with X1, X2, . . . , Xp as the

coordinate axes.

Since p components are required to reproduce the total variance, and

PCs are inherently orthogonal, each PC is accountable for a percentage of

the explained variance, which expresses the percentage of total variance that

the kth principal component accounts for (k = 1 . . . , p). Additionally, by

construction, the variance explained by the őrst component is higher than

the one explained by the second one, and so on for the other components.

So, one looks for the k-dimensional subspace such that the projection of the

data on this subspace contains most of the information of the original data.

The score matrix, denoted as T (n,kmax), signiőes the values corresponding

to each original observation across the kth component. It can accommodate

up to a maximum of kmax components, constrained by the count of original

variables p. The relation between the original data and the őnal projection

can be written like this:
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T (n,kmax) = (X(n,p) − 1nµ̂
′)P (p,kmax), (3.2)

where P (p,kmax) is the loading matrix which contains the eigenvectors of the

estimated variance-covariance matrix, ê1, ê2, . . . , êkmax
and µ̂ is the center of

the data. The loadings of the PCs, contained by column in the p×kmax matrix

P , represent the coefficients of the linear combinations. Most importantly,

the loadings indicate the correlation between each simple indicator and the

component.

Thus, in a CI context, taking the őrst PC as an expression of the main

underlying latent factor, the e1j loading value is an expression of how the

jth simple indicator relates to the main latent concept, with j = 1, . . . , p. In

fact, the őrst PC represents the directions along the maximum variability of

the original indicators. Additionally, in p. 87 of Giő (1990), it is shown how

the objective of choosing scores and weights so as to maximize homogeneity

of simple indicators is one of the possible deőnitions of őnding the (őrst)

principal component. The subsequent PCs, similarly to the őrst, can be ex-

pressions of ulterior latent factors, still less relevant than the őrst. In fact,

by construction, those PCs capture decreasing portions of the total variance

of X(n,p), under the constraint to be orthogonal to the previous components.

Following, the loading matrix P (p,kmax) is computed, where the őrst col-

umn is made by

ê1 = argmax
∥e1∥=1

S(e′
1(x1 − µ̂), . . . , e′

1(xn − µ̂)), (3.3)

and the other jth columns with j = 2, . . . , kmax are deőned as

êj = argmax
∥ej∥=1,ej⊥ê1,...,ej⊥êj−1

S(e′
j(x1 − µ̂), . . . , e′

j(xn − µ̂)), (3.4)

where µ̂ and S are the location and scale estimators and xi are the p-

dimensional vectors of observations contained by row in X.

Wwhen the original variables are measured on different scales, data are

normalized to prevent variables with higher variance from dominating the
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őrst principal components. It should be noted that PCA is orthogonally

equivariant, meaning that the rotation of the data results in a corresponding

rotation of the PCs. However, in the case of a half-turn rotation, only the

signs of the loadings change and not the values, and thus the interpretation

doesn’t change. It is important to keep in mind that PCA is sensitive to vari-

able standardization and is therefore not affine equivariant. As a result, the

information provided by the PCs obtained from centered data and standard-

ized data will differ. In the case of DESI 2022, PCA with internal consistency

purposes has been applied over z-score normalized data.

Finally, when using PCA to test for internal consistency of indicators

within a dimension/sub-dimension, the number of components kmax to be

considered as the expression of kmax latent underlying factors has to be de-

termined. This concern is very similar to a central question arising in the

context of PCA used for data reduction, that is: how many components to

retain? Thus, methods from the literature used for selecting the number of

components, kmax, to retain will be applied to choosing the total number of

existing underlying latent dimensions. Typically, this number is much smaller

than the number of initial features p. There are various techniques to deter-

mine the exact number of components needed. One widely used approach is

the scree plot, also known as the elbow method, which visualizes the calcu-

lated eigenvalues after eigendecomposition on the principal components in

descending order, and searches for a drastically curving point (elbow) which

decides the maximum number of retained components (Cartell 1966). How-

ever, selecting a clear elbow sounds too abstract and does not provide com-

prehensible but rather ambiguous evidence (Ledesma et al. 2015). Another

widely-known criterion to choose kmax PCs is to look at the percentage of the

total variance explained by the retained kmax PCs. The popular rule-of-thumb

here is the Kaiser’s rule, suggesting that the PCs whose eigenvalues exceed

1 should be retained. The assumption behind the rule is that a component

explaining less variance than an original variable, equal to 1 when z-score

standardization is used, is not worth retaining (Kaiser 1960). However, this
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intuitive rule has also been criticized since the strict cut-off rule implies, for

instance, α component with 1.01 variance would be retained while β with

0.99 variances would not (Kaufman and Dunlap 2000).

In the assessment of DESI 2022, PCA has been utilized within each di-

mension and sub-dimension to assess internal consistency. Following the PCA

process, the Kaiser rule is employed to determine the count of latent variables

present within the analyzed component. Subsequently, after identifying the

number of measures that deőne the dimension or sub-dimensions, the loading

of each indicator is leveraged as a representation of the correlations between

individual indicators and the PCs of interest.

3.3.1 PCA: Eigendecomposition

PCA as its core employs eigendecomposition, a mathematical process that

uncovers the inherent structure of data. Eigendecomposition begins by cal-

culating the covariance matrix Σ, which captures the relationships and vari-

ability between different variables in the dataset. Through this matrix, we

extract eigenvalues and their corresponding eigenvectors. Eigenvalues sig-

nify the amount of variance present in each eigenvector’s direction, while

eigenvectors represent the orientation of maximum variance. The key lies in

selecting the most signiőcant eigenvectors, known as principal components.

These principal components deőne new coordinate axes that align with the

directions of maximum data variability, as noted in Formula 3.4.

A classical result for eigendecomposition used in a PCA setting is shown

in Johnson and Wichern (1998). Assuming that the real variance of the data is

available, namely Σ, its eigendecomposition is provides us with one factoring

of the covariance matrix into its canonical form. Let Σ have eigenvalue-

eigenvector pairs (λi, ei) with λ1 ≥ λ1 ≥ · · · ≥ λp ≥ 0. Then

Σ = Q(p,p)Λ(p,p)Q
′
(p,p) (3.5)

with Q the square matrix whose jth column is the eigenvector ej of Σ and

Λ is the diagonal matrix whose diagonal elements are the corresponding
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eigenvalues, Λjj = λj.

The Formula 3.5 can be translated in estimated quantities as shown by

Johnson and Wichern (1998), where instead the sample covariance matrix

is used. Let X denote a n × p matrix of the data, Σ̂ its sample covariance

matrix and µ̂ the sample p-dimensional mean vector. Let Σ̂ have eigenvalues-

eigenvector pairs (λ̂1, ê1), . . . (λ̂p, êp) where λ̂1 ≥ · · · ≥ λ̂p ≥ 0. By applying

an eigendecomposition to the symmetric estimated covariance matrix, Σ̂ is

factorized into its canonical form, which is

Σ̂ = V (p,p)Λ̂(p,p)V
′
(p,p), (3.6)

with V the square matrix whose jth column is the eigenvector êj of Σ̂ and

Λ̂ is the diagonal matrix whose diagonal elements are the corresponding

eigenvalues, Λ̂jj = λ̂j.

The jth principal component, is given by the n-dimensional vector

Yj = ê′
jX, j = 1, . . . , p. (3.7)

With this choices, it follows that

Var(Yj) = ê′
jΣ̂êj = λ̂j, j = 1, . . . , p,

Cov(Yj, Yk) = ê′
jΣ̂êk = 0, j ̸= k.

A fundamental result of PCA is that the sum of the principal component vari-

ances is equal to the sum of the estimated variances of the original variable,

thus

σ̂11 + σ̂22 + · · ·+ σ̂pp =

p
∑

i=1

Var(Xi) = λ1 + λ2 + · · ·+ λp =

p
∑

i=1

Var(Yi) (3.8)

Fixing k = kmax, with kmax < p, the subspace spanned by the loading

vector, the score matrix T (n,kmax) is obtained accordingly to Formula 3.2,

with T (n,kmax) = (Y1 . . . Ykmax
). Furthermore, every row of T (n,kmax) contains

the scores ti, which represents the ith observation in the kmax-dimensional

subspace spanned by the loading vectors.

If data are centered, the ith score is formuled as follows

ti = P ′
(kmax,p)(xi − µ̂). (3.9)
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where xi is a p-variate vector denoting the ith observation (ith row of X).

From Formula (3.2) and obtained P (p,kmax) from Σ̂ eigendecomposition (For-

mula 3.6), it follows that an estimate for matrix X, namely X̂, the n × p

predicted values matrix for each observation is given by

X̂(n,p) = T (n,kmax)P
′
(kmax,p). (3.10)

If data are centered, the prediction for the ith observation x̂i assumes the

following formulation

x̂i,kmax
= P (p,kmax)ti + µ̂

= P (p,kmax)P
′
(kmax,p)(xi − µ̂) + µ̂.

(3.11)

3.3.2 PCA: Singular Value Decomposition

In Wall et al. (2002) it is shown that instead of passing through the Σ̂

eigendecomposition for őnding eigenvalues-eigenvectors pairs, an alternative

is using a Singular Value Decomposition (SVD - Golub and Van Loan 1996)

on the centered data matrix.

Let Xc = (X − 1nµ̂
′) now denote the n× p matrix of the centered data.

The equation for singular value decomposition of Xc is the following:

Xc = U (n,r)D(r,r)V
′
(r,r), (3.12)

where U is a unitary matrix such that U ′U = Ir; D is the diagonal matrix

with elements on the diagonal d
1/2
j (j = 1, . . . , r) and r is the rank of X.

The columns of U are called the left singular vectors, the rows of V ′ contain

the elements of the right singular vector while the element of D are only

nonzero on the diagonal and are called the singular values. We know that

Σ̂ = 1
n−1

X ′

cXc and by substituting Xc decomposition as in (3.12), we get

that

Σ̂ = V
( D2

n − 1

)

V ′.

When p < n, SVD can provide computationally efficient methods to

őnd the PCs. However, when p >> n, deriving the eigenvectors from (X −
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1nµ̂)(X − 1nµ̂)
′ will take less computational time than performing SVD on

the centered data matrix.

In the case of DESI 2022, when PCA is applied at any dimensional/sub-

dimensional level, it always holds that p < n and thus SVD is the most

efficient method. The only case when SVD is not preferred is when PCA is

used over all p = 33 indicators of DESI, thus p > n and decomposing Σ̂ is

slightly more efficient than using SVD.

3.3.3 Classical Principal Component Analysis

Classical PCA (CPCA - Jolliffe 2002) centers X with its column-wise

mean vector µ̂, and uses the classical variance of the projected data ad the

scale measure in sections 3.3 and 3.4. Equivalently CPCA successively solves

maximize e′
jΣ̂ej (3.13a)

subject to

e′
jej = 1, j = 1, . . . , k, (3.13b)

e′
jei = 0, j>>2, i<j (3.13c)

where Σ̂ = 1
n−1

(X − 1nµ̂
′)′(X − 1nµ̂

′)′ is the sample covariance matrix of

the data. The eigenvalues are equal to the variance of the projections in the

corresponding directions. Considering Formula 3.12, one can also obtain the

PC solutions by using the SVD of the centered data matrix

X − 1nµ̂ = UDV ′. (3.14)

Then the squared jth diagonal element of D, divided by n − 1, i.e.
dj
n−1

, is

the jth eigenvalue of Σ̂, with the jth column of V as the corresponding PC

direction. The score of the ith observation is given by ti = u′
i, with u′

i the

ith row of U .
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3.3.4 Robust Principal Component Analysis

Robust statistics arise from the need of providing methods that are robust

against the possibility that some outlying behaviours may occur in the data.

In the context of composite indicators where there are very few observations

and each one is fundamental in computing each country score, researchers

may not be satisőed with removing outlying observations. Instead, in a mul-

tivariate setting a robust approach for PCA can help in detecting possible

outlying observations that are otherwise hidden in classical methods. Robust

PCA can also show the extent to which hidden outliers affect the classical

PCA outputs. In Hubert, Rousseeuw, and Vanden Branden (2005) it is ar-

gued the issue of anomalous observations in classical PCA and how it can lead

to unreliable latent factor detection. Speciőcally, it explains how the classical

variance and covariance matrix are sensitive to outliers, which can attract the

őrst components toward them and fail to capture the variation of regular ob-

servations. To address this issue, in this project the robust PCA methods are

compared to classical PCA in the internal consistency analysis of DESI 2022.

The aim of the comparative analysis is to detect outlying observations which

possibly affect the skewness of the PCA őrst components outputs. A lot of

work has been done on robust PCA models after the development of robust

location and scatter estimators. There are two main approaches to creating

robust PCA: the covariance-based PCA and the ROBPCA. Covariance-based

robust PCA and ROBPCA differ in their approach to handling outliers in

data analysis. While both methods aim to extract principal components,

covariance-based robust PCA employs a modiőed covariance matrix to re-

duce the impact of outliers on principal component estimation. In contrast,

ROBPCA employs robust statistics and optimization techniques explicitly

designed to detect and down-weight outliers, leading to more accurate and

reliable principal component extraction.

In a covariance-based PCA setting, as see in Subsection 3.3.1, the load-

ings of classical PCA are obtained by spectral decomposition of the covari-

ance matrix. On the other hand, a covariance-based robust PCA approach
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can be referred to as a plug-in method, where the empirical covariance matrix

is replaced with a robust multivariate scatter estimator, and then performs

spectral decomposition to get the robust loading vectors. Different robust

scatter estimators can be used, like multivariate S, MM-estimator, or Min-

imum Covariance Determinant (MCD) (see Hubert, Rousseeuw, and Aelst

2008 for additional information). The most popular and used estimator is

the MCD estimator (Rousseeuw 1984) in particular, involved when p << n.

This is the case of internal consistency within dimension/sub-dimensions of

DESI 2022, where the number of observed countries n remains őxed at 27,

and it is never exceeded by the number of individual indicators p in each

dimension/sub-dimensions.

The MCD method looks for the h observations (out of n) whose classical

covariance matrix has the lowest possible determinant. The MCD location

and scatter estimator is then the mean and the covariance matrix of those h

observations ([n + p + 1]/2 ≤ h ≤ n). The őrst k eigenvectors of the MCD

covariance matrix, sorted in descending order with respect to eigenvalues,

provide robust loadings for the PCA procedure. MCD is affine equivariant,

so the estimator transforms well under any non-singular reparametrization

of the space of initial data. Consequently, data can be rotated, translated, or

rescaled without affecting the outlier detection diagnostics. Moreover, MCD

can reach a breakdown value of 50% by taking h = [n + p + 1], where the

If α is the percentage of total observations considered: α = h/n, we reach

a breakdown value equal to 50% when α = 0.5, where the breakdown value

signiőes the minimum proportion of impurities within a sample that leads the

estimator to malfunction, resulting in it yielding values that are arbitrarily

unfavorable or lack meaningful interpretation (Hubert and Debruyne 2009).

Thus, the breakdown value is a popular measure of the robustness of an

estimator against outlying observations and a higher breakdown value implies

greater robustness, as the procedure can withstand a larger percentage of

contaminated data while still producing reliable results. In this work, we

take α = 0.75 which gives accurate results if the dataset contains at most
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25% of deviant values, which is a reasonable assumption for most datasets

(Verboven and Hubert 2005). One of the main goals of robust statistics is to

őnd a trade-off between robustness and efficiency. The efficiency of the MCD

estimator increases with an increment of α, but at the expense of robustness.

In fact, the breakdown value decreases with an increasing α, the percentage

of total observations considered within the estimate. Yet, existing methods

i.e. reweighted MCD estimator, assure high efficiency of the MCD method

while guaranteeing a high breakdown value (Gervini 2003).

However, in a high-dimensional setting (p > n), it is not possible to use

the MCD estimator because the determinant of a covariance matrix of h < p

observations will always be zero and thus cannot be minimized. This applies

to DESI 2022 when robust PCA is used over all p = 33 simple indicators,

while n is őxed to 27 countries. The robust PCA, ROBPCA method (Hu-

bert, Rousseeuw, and Vanden Branden 2005), circumvents this problem by

combining projection pursuit ideas in the high-dimensional space with MCD

estimation in a lower-dimensional subspace.

3.3.5 Outlier detection

To detect outliers in a robust PCA analysis, plots based on two different

kinds of distances are built, namely the score distance and the orthogonal

distance (Hubert, Rousseeuw, and Vanden Branden 2005).

Any PCA model will result in estimates of the location µ̂, a loading

matrix P (p,kmax) a score matrix T (n,kmax) and a diagonal matrix Λ(kmax,kmax)

with the eigenvaules λkmax
in decreasing order as the kth diagonal elements.

With these values, one can predict an observation xi using its orthogonal

projection on the PCA subspace: x̂i = P (p,kmax)ti+µ̂ = P (p,kmax)P
′
(kmax,p)(xi−

µ̂)+µ̂ (see Equation 3.11). The score distance (SD) measures the robust sta-

tistical distance from the scores for a speciőc observation to the center within

the k-dimensional subspace. When CPCA is performed, the distance corre-

sponds to the Mahalanobis distance. For an observation xi, the score distance
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is deőned as

SDi =

√
√
√
√

kmax∑

j=1

(tij)2

λj
=

√

t′iΛ
−1ti, (3.15)

where tij is the jth component of the score vector ti of observation xi.

The orthogonal distance (OD) measures the Euclidean distance of an

observation to the estimated PCA subspace. For an observation xi, the or-

thogonal distance is deőned as

ODi,kmax
=∥ xi − x̂ i,kmax

∥=∥ xi − (P (p,kmax)ti + µ̂) ∥ (3.16)

The diagnostic plot, or outlier map, developed by Hubert, Rousseeuw, and

Vanden Branden (2005) is a useful tool to identify multivariate outliers. It

plots the score distances on the horizontal axis and the orthogonal distances

on the vertical axis with two corresponding cut-off lines. The cut-off value on

the horizontal axis is cSD =
√

χ2
k;0.975, with χ2

k;0.975 the 97.5% quantile of a

chi-squared distribution with k degrees of freedom. It is justiőed by the fact

that the score distances are approximately normally distributed and so the

squared distances are approximately χ2
k-distributed. As for the orthogonal

distance, Box (1954) proposed that the unknown distribution of the squared

orthogonal distances can be well approximated by a scaled chi-squared dis-

tribution g1χ
2
g2

with g2 degrees of freedom. The unknown parameters can

be estimated by the method of moments (Nomikos and MacGregor 1995).

Based on the Wilson-Hilferty approximation for a chi-squared distribution,

Hubert, Rousseeuw, and Vanden Branden (2005) proposed to approximate

the distribution of orthogonal distances to the power 2/3 with a normal dis-

tribution with mean µ = (g1g2)
( 1
3
)(1 − 2

9g2
) and variance σ2 =

2g
2
3

1

9g
1
3

2

and use

cOD = (µ̂MCD+ σ̂MCDz0.975)
( 3
2
), with z0.975 the 97.5% quantile of the standard

normal distribution, as the cut-off value on the vertical axis, where µ̂MCD and

σ̂MCD are the estimates of µ and σ by the univariate MCD estimator of lo-

cation and scale where there are possible outliers.

On the left side of Figure 3.1 is shown a spatial representation of a set

of observations (not related to DESI 2022), the plane that is orthogonal to
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those, their orthogonal distances to the plane and their projections on it. On

the respective diagnostic plot, see Figure 3.1 (on the right), one can identify

three different types of outliers: the good leverage points, the bad leverage

points, and orthogonal outliers.

The good leverage points are the observations close to the PCA subspace

while their scores are outlying within the PCA subspace, i.e. with OD ≤ cOD

but SD > cSD (observations 1 and 2 in Figure 3.1). The bad leverage points

are deőned as the observations with both outlying orthogonal distances and

score distances, i.e. with SD > cSD and OD > cOD (observations 4 and 5

in Figure 3.1). Finally, the orthogonal outlier are observations which are far

from the subspace but can not be identiőed within the subspace, i.e. with

SD ≤ cSD and OD > cOD (observations 3 in Figure 3.1). We call the good

leverage points good because they only inŕuence the estimates of location and

scatter measure within the k-dimensional subspace. However, the orthogonal

outliers and bad leverage points will shift or tilt the estimated subspace away

from the k-dimensional subspace which őts the true data structure.

Figure 3.1: Types of outliers with respect to a two-dimensional estimated plane

from a three-dimensional dataset. (Hubert, Rousseeuw, and Vanden

Branden 2005)



62 Methodology

In our analyses, score distances and orthogonal distances for both CPCA

and ROBPCA are juxtaposed when using diagnostic plots. In fact, CPCA

could either treat outliers as part of the natural variability or be less ef-

fective in detecting them compared to ROBPCA. Comparing the two plots

helps in recalling which and in which ways countries affect the estimated

subspaces. In fact, with the ROBPCA procedure, the estimated principal

components result in being less inŕuenced by outliers, helping in shedding

light on countries, i.e. orthogonal outliers, representing cases that might ex-

hibit behaviour not captured by the main principal components. They could

indicate distinct subgroups or unexplained variations. Countries detected as

good leverage points, instead only exert a modest inŕuence on the principal

components, thus slightly affecting the direction and magnitude of the prin-

cipal components (this is reŕected by comparing the ROBPCA and CPCA

results). Finally, when bad leverage points are spotted in the ROBPCA di-

agnostic plot but not in the CPCA, that might be an indication of poor

robustness and sensitivity of the CPCA estimates, thus of inferior efficacy of

the classical procedure for latent factors detection.

We can conclude that the ROBPCA procedure leads to identifying outly-

ing measurements that are otherwise hidden in classical methods. In reality,

researchers may not be satisőed with removing outlying observations, espe-

cially in the context of CIs, where the dataset consists of a limited number

of observations (in the case of DESI, n = 27) and the prohibition of missing

values for any country requires imputation. In contrast, the DESI experts

could express interest in ŕagging these atypical observations. This approach

would serve the purpose of pinpointing countries with outlier data for report-

ing to the relevant authorities responsible for data collection in subsequent

years. Moreover, the identiőcation of these outlier countries opens avenues for

a more thorough analysis of the individual indicator performances. Through

nuanced examinations across various levels of complexity, it becomes possible

to discern the underlying reasons behind these deviations.
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3.4 Latent variable analysis: PCA vs FA

In a latent variable analysis, one tries to estimate the number of potential

latent variables in an observable response pattern, i.e. exploratory analysis,

or to test hypotheses about expected latent variables in a response pattern,

i.e. a conőrmatory analysis (Gruijters 2019). Given the composite indicators

domain, FA and PCA methods are here discussed and analyzed to investigate

their appropriateness in a homogeneity analysis setting, with a particular

focus on DESI 2022.

The essential purpose of FA is to describe the covariance relationship

among many items in terms of a few underlying, but unobservable, quantities

called factors. The factor model is motivated by the following argument:

suppose indicators can be grouped by their correlations. That is, suppose all

indicators within a particular group are highly correlated among themselves

but have relatively small correlations with indicators in different groups. Then

it is conceivable that each group of indicators represents a single underlying

construct or factor, that is responsible for the observed correlations. It is this

type of structure that FA seeks to conőrm.

PCA is instead concerned with explaining the variance-covariance struc-

ture of a set of indicators through a few linear combinations of those indica-

tors (see 3.3). Thus PCA often reveals relationships that were not previously

suspected and might be highly explanatory, and hard to detect by looking at

correlation only. In the context of composite indicators, PCA can be consid-

ered a useful method to test for the internal consistency of simple indicators

when a conceptual framework to rely on is missing. In fact, PCA uses its

purely exploratory nature through components, that allow for the detection

of potential latent variables, without assuming any model. Considering that

latent variables are commonly attributed as the underlying causes behind

observable data patterns, such as indicator correlations when using PCA

such interpretation on components is lost. This is because PCA methodol-

ogy frames constructs as being causally inŕuenced by indicators, rather than
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the conventional viewpoint where indicators are inŕuenced by latent variables

(Edwards and Bagozzi 2000).

FA instead is more suitable in case of validation purposes, as endowed with

a more interesting casual interpretation, that is, the latent variable is concep-

tualized as a cause of response variation on observable indicators. Moreover,

factor rotation allows őnding the most suitable conőguration for data, so

that they are consistent with a prescribed structure. For these reasons, FA is

properly used when validating psychological scales but caution must be paid

in the context of internal consistency of composite indicators. In fact, in this

context, if no conceptual model is given, PCA serves the purpose of testing

for dimensional/sub-dimensional homogeneity without the need for a factor

latent model and factor rotation, which are instead the main features of FA.

3.5 Factor Analysis

Factor analysis is here described just to understand the previously pre-

sented intrinsic differences with PCA, thus not applied to DESI 2022. Differ-

ent methods of estimation exist for parameters of the factor model, the most

popular are the principal component method and the maximum likelihood

method. The solution from either method can be rotated in order to simplify

the interpretation of factors. Following, we will only report the PC method

since our aim is to compare FA to PCA method.

Let’s assume the same model for data as in section 3.3. For each of the

observed n statistical units, a p × 1 random vector X exists, with p com-

ponents, mean µ and covariance matrix Σ. The factor model (Johnson and

Wichern 1998) postulates that X is linearly dependent upon a few unob-

servable random variables F1, F2, . . . , Fm, called common factors, and p ad-

ditional sources of variation ε1, ε2, . . . , εp called speciőc factors. In particular,

the factor analysis model is reported in matrix notation as

X(p,1) − µ(p,1) = L(p,m)F (m,1) + ε(p,1) (3.17)
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The coefficient lij is called the loading of the ith variable on the jth factor,

so the matrix L is the matrix of factor loadings; matrix F contains the in-

dependent variables representing the common factors. The random variables

F1, F2, . . . , Fm, ε1, ε2, . . . , εp are unobservable and thus require some assump-

tions for direct veriőcation of the factor model. We assume that

E(F ) = 0(m,1), Cov(F ) = E[FF ′] = I(m,m)

E(ε) = 0(p,1), Cov(ε) = E[εε′] = Ψ(p,p) =










ψ1 0 . . . 0

0 ψ3 . . . 0
...

...
. . .

...

0 . . . ψp










and that F and ε are independent, so

Cov(ε,F ) = E[εF ′] = 0(p,m).

These assumptions and the relation 3.17 constitute the orthogonal factor

model (OFM). The OFM implies that

Σ = LL′ +Ψ (3.18)

and also

Cov(X,F ) = L. (3.19)

From 3.18 follows that the total variance for the ith variable Var(Xi) =

σii, the ith element on the diagonal of Σ, can be split into two components:

σii = l2i1 + l2i2 + · · ·+ l2im
︸ ︷︷ ︸

communality

+ ψi
︸︷︷︸

specific variance

(3.20)

• communality : the portion of variance contributed by the m common

factors;
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• speciőc variance: the portion of variance due to the speciőc factor.

Given m the number of common factors, with m > 1, there is always some

inherent ambiguity associated with the factor model. Let T be any m ×m

orthogonal matrix, so that TT ′ = T ′T = I. Then the expression 3.17 can

be written

X − µ = LF + ε = LTT ′F + ε = L∗F ∗ + ε (3.21)

Since

E(F ∗) = T ′E(F ) = 0

and

Cov(F ∗) = T ′Cov(F )T = T ′T = I

it is impossible, on the basis of observations on X, to distinguish the load-

ings L from the loadings L∗. That is, the factors F and F ∗ have the same

statistical properties and even though the loadings L and L∗ are in general

different, they both generate the same covariance matrix Σ. That is,

Σ = LL′ +Ψ = LTT ′L′ +Ψ = (L∗)(L∗)′ +Ψ

This ambiguity provides the rationale for factor rotation since orthogonal

matrices correspond to rotations of the coordinate system of X. Usually,

rotation is determined by some ease-of-interpretation criterion.



Chapter 4

Internal consistency assessment

4.1 An homogeneity assessment of DESI 2022

The DESI 2022 CI design reŕects two speciőc concerns. The őrst concern

is related to comparing the effectiveness of the Digital Decade policy across

all countries, regardless of their level of digital development, by referring to

the EU-level targets, which are the Key Principal Indicators (KPIs). This

goal is outlined by choices of political nature and reŕected by the weighting

system used for individual indicators, recalled in the initially assigned weight

of 2 for KPIs and 1 for the rest of individual indicators (Section 2.5). In this

work, no further investigation of the Digital Decade KPI is done. While the

initially assigned weights are kept őxed as in DESI 2022, it is further investi-

gated through sensitivity analysis (SA) the assigned sub-dimensional weights

when a framework update of sub-dimensions is introduced. The application

of different sub-dimensional weighting sets during the aggregation process

allows for evaluation of the extent the őnal scores and rankings are affected

by those, thus the efficacy of the Digital Decade policy. Indeed, as a measure

of digital advancement, DESI will yield distinct country scores and rankings

in response to each variation (see Chapter 5).

The second concern is to comply with the four cardinal points under
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which the KPIs are arranged. These cardinal points are represented by the

four dimensions of digital capacity, i.e. Human Capital (HC), Connectivity

(CN), Integration of Digital Technologies (IDT), and Digital Public Services

(DPS). To achieve this second objective, in Chapter 4 we take the compen-

satory aggregation rules described in Section 2.5 for DESI 2022 as őxed, i.e.

Equal Weighting (EW) of dimensions and different weighting schemes based

on experts’ opinions at the sub-dimensional level. Then, we validate the ag-

gregation methodological choice through an internal consistency analysis over

sub-dimensions of DESI 2022. In fact, when a solid conceptual framework is

lacking, as in the case of DESI 2022, it is expected for the CI reliability to

increase with the internal consistency among components, i.e. individual in-

dicators of the same construct and sub-dimensions of the framework. Instead,

when internal consistency is tested at an overall level among all individual

indicators, we dispute the existence of the four cardinal points. Therefore,

when reframing individual indicators into sub-dimensions/dimensions we are

helping to optimize the internal consistency of DESI and lessening compen-

sation issues due to aggregation (őrst major objective). To this aim, updates

of the DESI 2022 framework are introduced and help in addressing the sec-

ond major objective of the project that relates to whether to include more

detailed individual indicators to capture a wider spectrum of the digital do-

main. Additionally, this chapter contains a comparison of the classical PCA

(CPCA) method with its robust version (ROBPCA), to address the two

minor objectives of the work: the robustness of CPCA as a latent factor

detection method against outlying observations, and countries outlying diag-

nosis in a multivariate setting. For this purpose, the number of PCs to retain

must be selected for both the classical and robust methods, to compute or-

thogonal distances (OD) and score distances (SD) of each observation and

consequently ŕag outliers.

The following sections contain, for each of the four dimensions of DESI

2022, an internal consistency analysis of the single dimensions (see Section

4.2 for HC, Section 4.3 for CN, Section 4.4 for IDT, and Section 4.5 for
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DPS) and sub-dimensions as deőned in DESI 2022 (the łstatus-quož scenario,

depicted in Table 2.1). Speciőcally, CPCA is őrstly applied over all the in-

dividual indicators contained in each dimension, to detect the number of

possible latent dimensions that exist, that should correspond to hierarchical

lower components, i.e. sub-dimensions. CPCA used for internal consistency

purposes comes along with the ROBPCA method, to test for the robustness

of the CPCA procedure and to detect possible outlying countries at the di-

mensional level. At the dimensional level (p << n), the ROBPCA will be

directly using the MCD estimator. Following, CPCA is applied separately

over each sub-dimension, to check whether a single construct underlies each

of them, which is one of the requirements when constructing a CI. We ex-

pect high internal consistency within each sub-dimension. The same holds

for internal consistency across sub-dimensions, measured using correlation

when the number of sub-dimensions is just two, otherwise using Cronbach’s

alpha. In fact, the correlation coefficient is the most straightforward method

for testing internal consistency in the case of the bidimensionality of com-

ponents. Additionally, according to the internal consistency results, different

scenarios suggesting adjustments to the "status quo" are proposed. Those

adjustments have the aim of improving both the within and the across inter-

nal consistency of sub-dimensions, by re-organizing existing sub-dimensions

(framework adjustment) and/or excluding/including indicators (framework

updating).

After verifying the internal consistency of each dimension and the respec-

tive sub-dimensions, the last step (Section 4.6) considers applying CPCA

over all indicators (p = 33) and all observations (n = 27), to check whether

the four-dimensional structure of DESI holds. The robustness of the CPCA

method towards outlying observations in a high-dimensional setting (p > n)

is tested here by using ROBPCA as a comparative method.
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4.2 Human Capital dimension: Internal consistency

analysis

The HC dimension of DESI 2022 consists of two sub-dimensions: basic

(1a) and advanced (1b) digital skills (see Table 2.1 for more information on

how individual indicators are divided). We expect high internal consistency

within each of the two sub-dimensions and across sub-dimensions, even if con-

sistency across sub-dimensions is generally lower than within sub-dimensions.

For the "status quo" analysis, Cronbach’s alpha coefficient for the HC di-

mension is equal to 0.84, which is over the set threshold value of 0.7, meaning

that internal consistency among all indicators is acceptable. Instead, Cron-

bach’s alpha within sub-dimensions is 0.97 and 0.59, respectively for sub-

dimensions 1a and 1b, suggesting a low internal consistency of the latter.

The scree plots for the CPCA and the ROBPCA analysis of the "status

quo" scenario over all indicators in HC dimension are shown in Figure 4.1(a)

and Figure 4.1(b) respectively.

(a) (b)

Figure 4.1: Scree plots showing the őrst 7 PCs with (a) ROBPCA; and (b) CPCA

over HC indicators

It is clear that the two scree plots quite differ: while having only the őrst

PC explaining more variance than the unit value threshold according to the
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(a) (b)

Figure 4.2: Outlier maps of the 27 countries obtained with (a) ROBPCA (k=1);

and (b) CPCA (k=2)

Kaiser rule, for the ROBPCA method (Figure 4.1(a)), looking at the CPCA

scree plot (Figure 4.1(b)) the Kaiser rule would consider both the őrst and

the second PC to be retained. What appears clear from the scree plots is

that apparently there are some observations shifting the estimated subspace

away from the one-dimensional subspace which őts the true data structure.

It might be ideal then to look at the outlier maps of both the classical and

robust methods to see if this is the case. Fixing the number of retained PCs k

to 1 for the ROBPCA and to 2 for the classical PCA according to the Kaiser

rule, the outliers maps are shown in Figure 4.2(a) and Figure 4.2(b).

The CPCA method (Figure 4.2(b)) ŕags outlying observations corre-

sponding to the Czech Republic (5) and Romania (24), respectively as orthog-

onal outliers and good leverage points. Instead, according to the ROBPCA

diagnostic plot (Figure 4.2(a)), 4 outliers with a substantially increased score

or orthogonal distances are detected. Observations 3, 21, and 24, correspond-

ing to Bulgaria, The Netherlands, and Romania, are ŕagged as orthogonal

outliers, while observation 11 (Finland) represents a good leverage point. Ad-

ditionally, Romania (observation 24) is ŕagged as an outlier by both robust

and classical PCA, indicating that the data point exhibits extreme behav-

ior consistently across the two methodologies. This suggests that Romania
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point represents an anomaly within the HC dimension. No bad leverage point

is detected either by using CPCA or ROBPCA, and the two outlier maps

slightly differ. As a result, the classical approach can be retained for con-

ducting internal consistency analysis while being not overly inŕuenced by

outliers. Nevertheless, ROBPCA suggests that uni-dimensionality is a more

representative choice for the HC structure.

Indicators PC1 PC2 PC3

1a1 0.47 -0.09 -0.10

1a2 0.46 -0.03 -0.27

1a3 0.45 -0.12 -0.06

1b1 0.42 0.12 0.16

1b2 -0.03 0.73 -0.66

1b3 0.40 -0.11 -0.03

1b4 0.18 0.65 0.68

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 4.19 59.88

2 1.4 19.98

3 0.56 7.98

4 0.51 7.22

5 0.22 3.12

6 0.11 1.60

7 0.02 0.24

(b) Variances for each component

Table 4.1: Results of CPCA on HC dimension

The CPCA scree plot in Figure 4.1(b) clearly shows the existence of one

main latent sub-dimension of Human Capital, holding almost 60% of the total

explained variance, followed by a minor sub-dimension that explains approx-

imately 20% (colored in yellow). This is in line with the current framework

of the HC dimension of DESI 2022, where two sub-dimensions exist.

Further analyses examine the loading values in Table 4.1(a) that show

how the individual indicators in the HC dimension contribute to the main

underlying latent variables. The values that cross the 0.4 threshold are colored

in green and signify a high contribution of the individual indicator to the őrst

PC. Looking at PC1 column in Table 4.1(a), we notice that all indicators have

a positive loading except for 1b2 "Female ICT specialists", which does not

contribute to the őrst and most important PC. Additionally, indicator 1b4

"ICT graduates" slightly contributes to the őrst PC. It seems that one main
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latent component exists and is supported by individual indicators within the

HC dimension. We then decided to test a possible removal of the indicator

"Female ICT specialists" in a successive adjustment of the Human Capital

dimension (Subsection 4.2.2). Moreover, still looking at PC1 in Table 4.1(a),

we notice that indicator 1b3 "Enterprises providing ICT training" has a

loading of 0.4, which is closer to the values of indicators in sub-dimension

1a. Thus, it appears to be more correlated with those indicators than with

the ones in sub-dimension 1b. We then tested indicator 1b3 "Enterprises

providing ICT training" in the sub-dimension 1a.

4.2.1 Internal consistency analysis over sub-dimensions of HC

In the second part of the "status quo" scenario analysis, we apply CPCA

to the two groups of indicators separately.

(a) (b)

Figure 4.3: Scree plots for (a) sub-dimension 1a; and (b) sub-dimension 1b

The results for sub-dimension 1a are optimal both for the loadings and the

variances, as shown in Table 4.2(a) and 4.2(b). In fact, the loadings for the

őrst component are all positive and high while the őrst component explains

more than 95% of the total variance. Cronbach’s alpha for sub-dimension 1a

is 0.97, well above the 0.7 threshold.

On the other hand, results for sub-dimension 1b are not so satisfactory.
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Indicators PC1 PC2 PC3

1a1 0.59 -0.04 0.81

1a2 0.57 -0.68 -0.45

1a3 0.57 -0.73 -0.38

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 2.85 95.08

2 0.13 4.24

3 0.02 0.68

(b) Variances for each component

Table 4.2: Results of CPCA on sub-dimension 1a of HC

Indicators PC1 PC2 PC3

1b1 0.67 -0.15 -0.04

1b2 0.13 0.75 -0.65

1b3 0.59 -0.38 -0.33

1b4 0.44 0.52 0.69

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 1.92 48.06

2 1.32 32.94

3 0.54 13.49

4 0.22 5.51

(b) Variances for each component

Table 4.3: Results of CPCA on sub-dimension 1b of HC

The őrst PC accounts for only 48% of the total variance with the second

one contributing to almost 33% of it. The őrst PC loading of indicator 1b2

"Female ICT specialist" is again the lowest one (0.13) (Table 4.3(a)). The

analysis, therefore, suggests a low internal consistency of sub-dimension 1b

that is attributable to indicator 1b2. In line with the CPCA results, Cron-

bach‘s alpha is 0.59, below the 0.7 threshold.32

Figure 4.4 relates the values of "ICT specialists" (1b1) with "Female ICT

specialists" (1b2). By isolating this particular relationship, we can effectively

highlight and investigate the gender dynamics within the ICT workforce and

study the correlation between the two individual indicators. The cloud of

points, each representing one of the 27 member states, has no shape that

deőnes any correlation between the two, according to their correlation value

of 0.03 in Table A.3, Appendix A. Due to all considerations made, the indi-
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Figure 4.4: Plot of z score of "ICT specialists" against z score of "Female ICT

specialist" indicators.

cator of "Female ICT specialists" (1b3) shows inconsistency within both the

1b sub-dimension and HC dimension, thus removed.

As a őnal step of the "status quo" analysis, correlation is measured across

the two sub-dimensions, holding a value of 0.63, which is a signiőcant correla-

tion value and denotes the existence of across-dimension internal consistency.

Thus, the proposed adjustment attempts to raise the internal consistency

of sub-dimension 1b, while preserving a high correlation degree among sub-

dimensions.

4.2.2 Proposed adjustment for HC

The second step of the analysis investigates the possibility of adding two

new indicators (source Eurostat), after the removal of the indicator "Female

ICT specialists" (1b3):

• Internet use (Eurostat code: ISOC_CI_IFP_IU; year of reference 2021)

which we will refer to as indicator "Never used internet", which has a

negative direction, i.e. where lower is better;
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• Frequency of internet access: at least once a week, including every day

(Eurostat code: ISOC_CI_IFP_FU/I_USE; year of reference 2021),

called "Frequency of use" indicator, with a positive direction, accord-

ingly with the indicators already included in HC dimension.

CPCA is applied to all the indicators of the "status quo" scenario but

"Female ICT specialists" (1b2) plus the two new indicators to be tested.

We expect the indicator "Never used internet" to have loadings with an

opposite sign, given its opposite direction. In this case, the opposite sign is

an indication of a positive multivariate correlation.

Indicators PC1 PC2 PC3

1a1 0.40 -0.26 0.30

1a2 0.38 -0.26 0.31

1a3 0.38 -0.26 0.28

1b1 0.38 0.12 -0.12

1b3 0.34 -0.20 -0.22

1b4 0.17 0.78 0.55

Never used

internet
-0.36 0.28 -0.48

Frequency

of use
0.38 0.23 -0.38

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 5.49 68.62

2 1.02 12.81

3 0.66 8.25

4 0.44 5.46

5 0.21 2.59

6 0.12 1.55

7 0.04 0.49

8 0.02 0.23

(b) Variances for each component

Table 4.4: Results of CPCA on revised HC dimension

Table 4.4(b) shows the existence of one PC explaining almost 69% of the

variance. Looking at Table 4.4(a) instead, the new two indicators - "Never

used internet" and "Frequency of internet use" - both contribute to this

component to an extent that is similar to the indicators in sub-dimension 1a.

In this case, the value of Cronbach’s alpha coefficient is equal to 0.93, which is

over the threshold value of 0.7, indicating a good internal overall consistency.
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While the uni-dimensionality of HC dimension is suggested both here and

from the ROBPCA analysis (Section 4.2), the proposal is to revise the two

existing sub-dimensions. This choice allows for alignment with organizational

objectives, i.e. having the two sub-dimensions of basic and advanced ICT

skills divided. Moreover, the proposal of dividing into two sub-dimensions is

less conservative while allowing for separated countries’ performance analysis

within the two sub-dimensions. The proposal is therefore to include in the

revised sub-dimensions:

• 1a new: 1a1 "At least basic digital skills", 1a2 "Above basic digital

skills", 1a3 "At least basic digital content creation skills", 1b3 "Enter-

prises providing ICT trainings", "Never used internet" and "Frequency

of internet use".

• 1b new: 1b1 "ICT specialists", 1b4 "ICT graduates". In fact, based

on Table A.3 in Appendix A, 1b1 is the individual indicator exhibiting

the highest correlation value (0.41) with 1b4, the less őtting individual

indicator in PC1 of Table 4.4(a), suggesting the belonging to another

latent construct.

Finally, CPCA is applied to the revised sub-dimension 1a new. Table

4.5(b) shows that the percentage of variance explained by the őrst component

is 77%, which is a clear indication of the existence of a unique latent factor for

the sub-dimension. Looking at the loadings of component 1 (Table 4.5(a)), all

the indicators contribute in a balanced way to this őrst, major component.

Accordingly, Cronbach’s alpha value is 0.94.

Correlation across the two new sub-dimensions is measured too and is

equal to 0.73, thus conőrming internal consistency across sub-dimensions.

In Appendix B, Table B.2 summarizes the proposed revision concerning

the postulated sub-dimensions for Human Capital while following, Table 4.6

contains the internal consistency within and across sub-dimensions measures.
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Indicators PC1 PC2 PC3

1a1 0.44 -0.35 -0.15

1a2 0.42 -0.35 -0.19

1a3 0.42 -0.31 -0.23

1b3 0.37 -0.04 0.92

Never used

internet
-0.38 0.62 -0.18

Frequency

of use
0.41 0.52 -0.07

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 4.62 77.04

2 0.76 12.73

3 0.42 7.06

4 0.13 2.12

5 0.05 0.75

6 0.02 0.31

(b) Variances for each component

Table 4.5: Results of CPCA on revised sub-dimension 1a new of HC

CPCA:

First component

explained variance

Cronbach’s

alpha within

sub-dim.

Correlation

among

dimensions

Status quo 1a 95% 0.97 0.63

1b 48% 0.59

Proposed

adjustment
1a new 77% 0.94 0.73

1b new 70% 0.58

Table 4.6: Summarized measures of internal consistency for HC

The summarized outcomes displayed in Table 4.6 demonstrate notable

patterns. In the context of within internal consistency, the őrst sub-dimension

experiences a decrease in the percentage of variance explained by the initial

PC from 96% to 77%. This decrement, however, maintains a satisfactory

level. Conversely, the second sub-dimension exhibits a signiőcant increase

from 48% to 70%. Meanwhile, the reliability of Cronbach’s alpha remains rela-

tively consistent between the two. Notably, the internal consistency between
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sub-dimensions, as indicated by the Pearson correlation coefficient, grows

from 0.63 to 0.73. Consequently, the proposed adjustment results to be a less

conservative choice compared to the result-supported uni-dimensionality of

HC dimension. However, while leading to a reduction in internal consistency

within the őrst sub-dimension of basic digital skills (but still satisfactory) it

concurrently yields a distinct enhancement in internal consistency within the

second sub-dimension and across sub-dimensions. Thus, overall the adjust-

ment avoids compensability issues.

4.3 Connectivity dimension: Internal consistency anal-

ysis

The CN dimension of DESI 2022 consists of four sub-dimensions: Fixed

broadband take-up (2a), Fixed broadband coverage (2b), Mobile broadband

take-up and coverage (2c), and Broadband prices (2d) (see Table 2.1 for more

information on the individual indicators). Analyzing the "status quo" of CN

dimension, Cronbach’s alpha coefficient among all indicators is equal to 0.4,

well below the threshold value of 0.7, showing the poor overall internal con-

sistency within the dimension. Also, Cronbach’s alpha within sub-dimensions

reŕects poor internal consistency results, with values of 0.36 within 2a sub-

dimension, 0.5 within 2b, and 0.46 within 2c. Results of internal consis-

tency of sub-dimension Broadband prices (2d) are not reported since the

sub-dimension is made of one indicator only, i.e. "Broadband price index"

(2d1).

The scree plots for the CPCA and the ROBPCA analysis of the "status

quo" scenario over all indicators in the CN dimension are shown in Figure

4.5(a) and Figure 4.5(b) respectively.

It is clear that the two scree plots slightly differ: in fact, looking at both

scree plots (Figure 4.5(a) and Figure 4.5(b)), the őrst two PCs explain sub-

stantially more variance than the unit value threshold according to the Kaiser

rule. Instead, the third PC is more explicative in the case of the classical pro-
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(a) (b)

Figure 4.5: Scree plots showing the őrst 10 PCs with (a) ROBPCA; and (b) CPCA

over CN indicators

cedure than for the ROBPCA one, where it narrowly crosses the 1 threshold.

This is an indication of the existence of outliers in CN dimension that inŕates

the third eigenvalue estimate of CPCA. The next step consists of looking at

the outlier maps of both the classical and robust methods if outlying coun-

tries are detected. Fixing the number of retained PCs k to 3 for both CPCA

and ROBPCA, according to the Kaiser rule, the outliers maps are following

shown.

(a) (b)

Figure 4.6: Outlier maps of the 27 countries obtained with (a) ROBPCA (k=3);

and (b) CPCA (k=3)
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The CPCA method (Figure 4.6(b)) does not ŕag any observations as

outlying while according to the ROBPCA diagnostic plot (Figure 4.6(a)), 6

outliers with an increased score or orthogonal distances are detected. Obser-

vations 2, 11, and 12, corresponding respectively to Belgium, Finland, and

France are good leverage points while observations 9, 13, and 24, correspond-

ing to Greece, Croatia, and Romania, are detected as orthogonal outliers. No

bad leverage points are detected, however, CPCA results are biased since

the outliers map differs signiőcantly between ROBPCA and classical PCA,

which might indicate that the presence of outliers has a strong inŕuence on

the results of the analysis. Additionally, the outlying orthogonal observations

detected with ROBPCA are a sign of underlying latent factors not captured

by the retained PCs. Anyhow following considerations on the internal con-

sistency of the dimension/sub-dimension will be based on the classical PCA

procedure, for consistency with the methods used within the work.

The results of the CPCA analysis on all indicators are shown in the

following tables. In Table 4.7(a), indicators that are positively related and

mostly contribute to the őrst PCs are highlighted in green. The others are

either counter-related or do not contribute to the őrst component but to the

second one (orange-coloured).

The CPCA scree plot in Figure 4.5(a) shows the existence of multiple

sub-dimensions in Connectivity. Table 4.7(b) and Figure 4.5(a), show that

the őrst three principal components account for a signiőcant portion of the

total variance, crossing the unit value set by the Kaiser rule. This deviates

from the current framework of the CN dimension of DESI 2022, where four

sub-dimensions exist. Additionally, apart from some exceptions, the distri-

bution of the indicators in the different sub-dimensions, as deőned in DESI

2022 framework, does not correspond to what is suggested by the CPCA (Ta-

ble 4.7(a)). Besides, the two 5G indicators ("5G spectrum" (2c1) and "5G

coverage" (2c2)) describe a sub-dimension that is anti-related to the rest (as

can be deducted by their loadings sign that is opposite to the others). In

fact, a negative loading value indicates a negative correlation between the
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Indicators PC1 PC2 PC3

2a1 -0.01 0.56 -0.02

2a2 0.49 0.21 0.12

2a3 0.11 -0.05 0.53

2b1 0.04 0.44 -0.37

2b2 0.53 0.12 0.04

2b3 0.48 -0.16 0.10

2c1 -0.26 0.11 0.43

2c2 -0.33 0.12 0.44

2c3 0.15 0.39 0.39

2d1 0.19 -0.48 0.14

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 2.77 27.66

2 2.35 23.48

3 1.35 13.52

4 0.95 9.48

5 0.79 7.86

6 0.69 6.92

7 0.38 3.84

8 0.35 3.48

9 0.2 1.97

10 0.18 1.78

(b) Variances for each component

Table 4.7: Results of CPCA on CN dimension

variable and the principal component, which in this case captures the main

latent variable.

4.3.1 Internal consistency over sub-dimensions of CN

In the second part of the "status quo" scenario analysis, we apply the

CPCA to the sub-dimensions separately. In all the cases the internal con-

sistency is not optimal. By looking at the variance tables for each sub-

dimension, Table 4.8(b), Table 4.9(b) and Table 4.10(b), we can see that

none of the sub-dimensions is described by a unique latent construct, which

is also conőrmed by looking at the scree plots in 4.7. In fact, all the eigen-

values for sub-dimensions 2a, 2b, and 2c are very close to the unit Kaiser

threshold, meaning that the 3 PCs contribute in a balanced way to each

sub-dimensional construct when unidimensionality is instead expected. As

previously mentioned, the CPCA results are conőrmed by Cronbach’s alpha

value, which is respectively 0.36, 0.5, and 0.46, all below the 0.7 threshold.
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(a) (b) (c)

Figure 4.7: Scree plots for (a) sub-dimension 2a; (b) sub-dimension 2b; and (c)

sub-dimension 2c (the red lines correspond to the threshold value 1 set

by the Kaiser rule)

The Cronbach’s alpha across the four sub-dimensions is -0.33. This is an

indication of anti-relation between the four sub-dimensions of CN, accorid-

ngly to the loading values of Table 4.7(a). By deőnition, Cronbach’s alpha

assumes negative values whenever the average correlation among the indi-

cators is negative (Ursachi et al. 2015). This result leads to compensability

issues among sub-dimensions of CN.

Given the low internal consistency showed within and across sub-dimensions,

the proposed adjustments of CN dimension aim at:

• Reframing sub-dimensions into more consistent constructs that better

reŕect the latent dimension within CN;

• Lessen the compensability effect among sub-dimensions.

Additionally, based on the CPCA results and on what was suggested by

experts in DG CONNECT, who have been constantly consulted on the anal-

ysis results and possible ways forward, the following indicators are excluded

from the analysis:

• 2a1 "Overall őxed broadband take-up": not őtting the CPCA and con-

ceptually overlapping with the other indicators in sub-dimension 2a

(2a2 "At least 100 Mbps őxed broadband take-up");
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Indicators PC1 PC2 PC3

2a1 0.47 0.75 -0.46

2a2 0.70 -0.004 0.71

2a3 0.53 -0.66 -0.53

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 1.34 44.58

2 0.99 32.96

3 0.67 22.46

(b) Variances for each component

Table 4.8: Results of CPCA on sub-dimension 2a of CN

Indicators PC1 PC2 PC3

2b1 0.10 0.96 -0.28

2b2 0.72 0.13 0.69

2b3 0.69 -0.27 -0.67

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 1.66 55.27

2 1.03 35.09

3 0.29 9.63

(b) Variances for each component

Table 4.9: Results of CPCA on sub-dimension 2b of CN

Indicators PC1 PC2 PC3

2c1 0.59 -0.52 -0.61

2c2 0.66 -0.13 0.74

2c3 0.46 -0.84 -0.27

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 1.46 48.61

2 0.90 29.92

3 0.64 21.47

(b) Variances for each component

Table 4.10: Results of CPCA on sub-dimension 2c of CN

• 2a3 "At least 1 Gbps take-up": the distribution of this indicator across

the 27 countries is highly negatively skewed (due to the presence of

two outliers Hungary and France with values equal to 0.22 and 0.27

respectively). This is typical behaviour for an indicator of this type,

describing the taking-up of an advanced type of őxed broadband. This

indicator is put on-hold and will be reconsidered once new data becomes
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available.

• 2b1 "Fast broadband (NGA) coverage": not őtting the CPCA and it is

a too basic indicator according to CONNECT experts.

4.3.2 Proposed adjustment for CN

The second step of the analysis investigates the possibility of adding a

new indicator:

• 5G stations in the 3.6 band : number of 5G base stations in the 3.4/3.8

GHz band, per 1000 inhabitants (COCOM, year of reference 2022).

This indicator is added to describe the quality of the 5G services, as

it focuses on the 3.6 GHs band. We will refer to this new indicator as

"5G stations".

The new indicator presents 4 missing values, corresponding to Estonia, Fin-

land, Luxemburg, and Sweden. This data characteristic required an adjust-

ment of the indicator weights for these countries (for the weights to always

sum to 1, see Section 5.3).

Also, the latest version of data has been provided and used for indicators:

• 2a2 "At least 100 Mbps őxed broadband take-up" (updated data to be

reassessed in 2023);

• 2d1 "Broadband price index" (updated data sent on 09/11/2022).

CPCA results on this revised set of indicators are displayed in Table

4.11(a) and Table 4.11(b). These results will help in deriving an understand-

ing for re-framing the CN dimension into new and optimal sub-dimensions.

Table 4.11(b) suggests the presence of three latent sub-dimensions ac-

cording to the Kaiser rule. Anyway, the third dimension explains a very

small percentage of total variance, approximately 13%, thus we decide to

retain only the őrst and second PCs that respectively explain 38% and 21%

of the total variance. This hypothesis is supported by the loading values too.
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Indicators PC1 PC2 PC3

2a2

(new data)
0.49 0.00 -0.16

2b2 0.53 0.20 -0.18

2b3 0.45 0.07 0.15

2c1 -0.29 0.38 0.06

2c2 -0.22 0.37 0.59

2c3 0.16 0.55 -0.15

2d1

(new data)
0.37 -0.13 0.74

5G stations 0.03 0.60 -0.06

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 3.11 37.90

2 1.71 20.83

3 1.12 13.62

4 0.97 11.83

5 0.50 6.13

6 0.31 3.78

7 0.26 3.21

8 0.22 2.7

(b) Variances for each component

Table 4.11: Results of CPCA on new CN dimension

In fact, by looking at Table 4.11(a), the PC1 column suggests the existence

of two opposite groups of indicators:

• Group 1 (Fixed and broadband price sub-dimension): indicators with

a positive and high value of loadings of the őrst PC (green coloured),

including "At least 100 Mbps őxed broadband take-up (new data)"

(2a2), "Fixed Very High Capacity Network (VHCN) coverage" (2b2),

"Fibre to the Premises (FTTP) coverage" (2b3) and "Broadband price

index (new data)" (2d1);

• Group 2 (Mobile sub-dimension): with a negative or low value for the

őrst component of the CPCA (in Table 4.11(a), orange coloured) and

a high value on the second component of the CPCA (in Table 4.11(a),

purple coloured), including indicators "5G spectrum" (2c1), "5G cov-

erage" (2c2), "Mobile broadband take-up" (2c3) and "5G stations".

The next step is to apply CPCA separately to the two new revised sub-

dimensions. For the "Fixed" sub-dimension, we both consider the case with
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the Broadband price index excluded and then re-included, to assess its impact

on the internal consistency of the "Fixed" sub-dimension.

Fixed sub-dimension without Broadband price index

(First proposal)

Here CPCA is applied to the "Fixed" sub-dimension with the "Broad-

band price index" excluded. In this case, 75% of the percentage of variance

is accounted for by the őrst component (Table 4.12(b)). All the indicators

contribute in a balanced way to this őrst, major component (Table 4.12(a)).

Accordingly, Cronbach’s alpha value is 0.8, above the 0.7 threshold. These

results clearly indicate the existence of a unique latent factor.

Indicators PC1 PC2 PC3

2a2

(new data)
0.57 -0.65 -0.50

2b2 0.60 -0.08 0.79

2b3 0.56 0.76 -0.34

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 2.25 75.11

2 0.47 15.51

3 0.28 9.38

(b) Variances for each component

Table 4.12: Results of CPCA on new "Fixed" sub-dimension 2c without broadband

price index

Fixed sub-dimension with Broadband price index included

(Second proposal)

Results slightly deteriorate for the analysis of the "Fixed" sub-dimension

with the "Broadband price index" included, even if they remain satisfactory.

The percentage of variance accounted by the őrst component is now 64%

(Table 4.13(b)) and all the indicators contribute at the same level and in

the same direction to this őrst, major component (Table 4.13(a)). It is of

interest to observe that the indicator "Broadband price index" (2d1), even if
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őtting well with the others in the őrst component, contributes to the largest

part of the second principal component (purple colored in Table 4.13(a)).

This suggests that, as expected, the price indicator is less consistent with the

other indicators in this sub-dimension. The Cronbach’s alpha value is in this

case 0.81, still well above the 0.7 threshold.

Indicators PC1 PC2 PC3

2a2

(new data)
0.52 -0.30 -0.64

2b2 0.54 -0.38 0.04

2b3 0.50 0.01 0.74

2d1

(new data)
0.40 0.88 -0.21

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 2.55 63.88

2 0.73 18.17

3 0.45 1.26

4 0.27 6.69

(b) Variances for each component

Table 4.13: Results of CPCA on new "Fixed" sub-dimension with broadband price

index

Mobile sub-dimension

Table 4.14(b) shows that the percentage of variance explained by the őrst

component is 43%, while the second and the third component respectively ac-

count for 25% and 21%. All the loadings of the őrst principal component have

comparable values and the same sign (Table 4.14(a)). Cronbach’s alpha value

is 0.55, below the 0.7 threshold, as expected given the relatively low share

of variance accounted by the őrst component. The "Mobile" sub-dimension

is less performant than the "Fixed" ones but, considering the nature of the

indicators here, internal consistency can be still considered satisfactory. In

fact, when individual indicators come from different surveys, as in the case of

indicators 2c1, 2c2, 2c3, and "5G stations" (see Figure B.2, Appendix B), a

lower internal consistency is expected but can be attributed to diverse popu-
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lations, scale heterogeneity, data quality, etc., not further investigated in this

work.

Indicators PC1 PC2 PC3

2c1 0.48 -0.63 -0.14

2c2 0.51 -0.19 0.72

2c3 0.46 0.75 0.15

5G

stations
0.55 0.09 -0.66

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 1.69 42.70

2 0.99 25.00

3 0.83 21.00

4 0.45 11.30

(b) Variances for each component

Table 4.14: Results of CPCA on new "Mobile" sub-dimension

To determine which of the revised "Fixed" sub-dimension to retain, we

regard the across sub-dimension internal consistency, since the internal con-

sistency within is satisőed for each proposed "Fixed" sub-dimension and can

be considered equal. In fact, it is preferred a "Fixed" sub-dimension hav-

ing a higher correlation with the "Mobile" sub-dimension. Thus, correlations

between the scores of the "Fixed" sub-dimension without price index, the

"Mobile" sub-dimension, and the "Broadband price index" are compared in

Table 4.15. The correlation between "Fixed" scores, "Mobile" scores without

price, and "Broadband price index", shows that there is a positive correla-

tion between the "Broadband price index" and the "Fixed" sub-dimension

(0.44), while the correlation is negative but close to 0 with the "Mobile" sub-

dimension (-0.05) (Table 4.15). Thus, it is proved that the "Broadband price

index" is consistent within the "Fixed" sub-dimension, while not affecting

much the across sub-dimensional internal consistency. Also, the correlation

between "Fixed" with price index included and "Mobile" is lower (-0.29) than

of "Fixed" without price index and "Mobile" (-0.31). None of the two pro-

posals solves for the compensability issue between sub-dimensions, but the

second proposal mitigates it more than the őrst. Those are additional justi-

őcations, together with the CPCA results, for the second proposal where the
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"Broadband price index" is included in the "Fixed" sub-dimension.

Indicators

Indicators Fixed Mobile

Broadband

price

index

Fixed 1.00 -0.31 0.44

Mobile 1.00 -0.05

Broadband

price index
1.00

Table 4.15: Correlation between sub-dimension "Fixed" and "Mobile" with

"Broadband price index"

CPCA:

First

component

explained

variance

Cronbach’s

alpha

within sub-

dimension

Cronbach’s

alpha

across

sub-dim.

Corre-

lation

among

sub-dim.

Status

quo
2a 45% 0.36 -0.33 ś

2b 55 % 0.5

2c 49 % 0.46

2d ś ś

First

proposal
Fixed 75% 0.83 -0.91 -0.31

Mobile 43% 0.55

Second

proposal
Fixed 64% 0.81 -0.81 -0.29

Table 4.16: Summarized measures of internal consistency for CN
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In Appendix B, Table B.2 summarizes the proposed revision concerning the

two proposals for Connectivity.

Results of internal consistency, both for the "status quo" and the two

proposals, are summarized in Table 4.16. In this case, while internal consis-

tency is improved within sub-dimensions, internal consistency across does

not hold either for sub-dimensions in the őrst or second proposal, thus the

compensability problem remains unsolved. In fact, in both cases, the two

sub-dimensions are negatively correlated.

4.4 Integration of Digital Technology dimension: In-

ternal consistency analysis

The IDT dimension of DESI 2022 consists of three sub-dimensions: Digital

intensity (3a), Digital technologies for businesses (3b), and e-Commerce (3c).

For the łstatus-quož assessment, the CPCA is applied őrstly over all the

eleven indicators of the IDT dimension. Then separate analyses are applied

to sub-dimensions 3b and 3c, to check whether a single construct underlies

each of them. Sub-dimension 3a is excluded from any internal consistency

analysis since it includes just one indicator.

Starting from the reliability measures, Cronbach’s alpha coefficient is

equal to 0.9, well above the 0.7 threshold, indicating an optimal level of

internal consistency across all indicators of IDT. Cronbach’s alpha values are

also high, 0.79 and 0.87 within sub-dimensions 3a and 3b respectively. Fi-

nally, Cronbach’s alpha across the three original sub-dimensions has a value

of 0.86, which is a clear indication of across-dimension internal consistency.

Thus, based on Cronbach’s alpha results only we acquire some indication of

overall good internal consistency within/among components of IDT dimen-

sions. PCA results will instead help detect the number of latent dimensions

existing and spotting outlying individual indicators.

The scree plots for the CPCA and the ROBPCA analysis of the "status

quo" scenario over all indicators in IDT dimension are shown.
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(a) (b)

Figure 4.8: Scree plots showing the őrst 10 PCs with (a) ROBPCA; and (b) CPCA

over IDT indicators

Looking at the two scree plots in Figure 4.8(a) and Figure 4.8(b), we

notice that they do not differ much: in fact, for both, the őrst PC explains

substantially all the variance while the second and the third slightly cross

the unit value threshold according to the Kaiser rule. We double-check the

robustness of the CPCA method by looking at the outliers map of both

classical and robust, őxing k = 3.

(a) (b)

Figure 4.9: Outlier maps of the 27 countries obtained with (a) ROBPCA (k=3);

and (b) CPCA (k=3)

The CPCA method (Figure 4.9(b)) does not ŕag any observation as out-
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lying while the ROBPCA diagnostic plot (Figure 4.9(a)), detects 1 outlier,

corresponding to observation 16 (Italy) with increased orthogonal distance.

Thus no bad leverage point is detected in the case of the robust procedure and

CPCA is considered robust enough toward outliers for the IDT dimension,

given the similarity of the two outliers map.

The results of the CPCA analysis over all indicators are shown in the

following Tables 4.17(a) and 4.17(b).

Indicators PC1 PC2 PC3

3a1 0.40 0.08 0.12

3b1 0.26 0.38 -0.33

3b2 0.35 0.28 -0.02

3b3 0.32 0.04 -0.22

3b4 0.36 -0.09 0.35

3b5 0.32 0.32 -0.01

3b6 -0.01 0.55 0.21

3b7 0.20 -0.07 0.74

3c1 0.32 -0.34 -0.18

3c2 0.28 -0.47 -0.01

3c3 0.32 -0.14 -0.28

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 5.66 51.50

2 1.33 12.12

3 1.15 10.47

4 0.94 8.52

5 0.61 5.53

6 0.55 5.03

7 0.34 3.11

8 0.17 1.53

9 0.14 1.28

10 0.07 0.62

11 0.03 0.29

(b) Variances for each component

Table 4.17: Results of CPCA on IDT dimension

The analysis clearly indicates the existence of a single, main latent di-

mension in IDT, followed by two minor latent constructs. In fact, by looking

at Table 4.17(b) we can see how the őrst principal component explains most

of the total variance (52%), followed by the second (12%) and the third

(10%). The positive and balanced loadings shown in the őrst column of Ta-

ble 4.17(a) (green coloured) are consistent with a conceptual framework of a

single dimension, well described by all the indicators but one, the "ICT for

environmental sustainability" (3b6) indicator, which has a negative loading
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value (orange coloured). This result is in contrast with the conceptual frame-

work of DESI 2022, where three sub-dimensions within IDT are outlined.

4.4.1 Internal consistency over sub-dimensions of IDT

In the second part of the "status quo" scenario analysis, we apply CPCA

on sub-dimensions 3b and 3c separately.

(a) (b)

Figure 4.10: Scree plots for (a) sub-dimension 3b; and (b) sub-dimension 3c

Indicators PC1 PC2 PC3

3b1 0.37 0.42 -0.22

3b2 0.46 0.10 -0.04

3b3 0.42 0.02 -0.35

3b4 0.45 -0.37 0.14

3b5 0.44 0.23 0.08

3b6 0.01 0.57 0.73

3b7 0.27 -0.55 0.52

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 3.5 50.03

2 1.14 16.22

3 1.07 15.32

4 0.58 8.24

5 0.46 6.63

6 0.16 2.31

7 0.09 1.24

(b) Variances for each component

Table 4.18: Results of CPCA on sub-dimension 3c of IDT
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Indicators PC1 PC2 PC3

3c1 0.10 0.96 -0.28

3c2 0.72 0.13 0.69

3c3 0.69 -0.27 -0.67

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 1.66 55.27

2 1.03 35.09

3 0.29 9.63

(b) Variances for each component

Table 4.19: Results of CPCA on sub-dimension 2b of CN

The results for internal consistency inside the sub-dimensions are satisfac-

tory in both cases. Each sub-dimension describes a unique latent construct

(Table 4.18(b) and Table 4.19(b)) with all the indicators well behaving in

their own sub-dimension apart from the indicator 3b6 "ICT for environmen-

tal sustainability" (Table 4.19(a)). Cronbach’s alpha values are also high,

respectively 0.79 and 0.87. Cronbach’s alpha across the three original sub-

dimensions has a value of 0.86, which is a clear indication of across-dimension

internal consistency.

The proposed adjustment then considers taking out indicator 3b6 "ICT

for environmental sustainability". Instead, we can combine all the other in-

dicators into a new, cohesive dimension called the "revised IDT" dimension.

4.4.2 Proposed adjustment for IDT

Table 4.20(b) shows that the variance accounted by the őrst principal

component increases to 57%, when indicator 3b6 is removed. The loadings

from Table 4.20(a) are now all balanced and with concordant signs.

In this case, the value of Cronbach’s alpha is of 0.89, still well above the

0.7 threshold.
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Indicators PC1 PC2 PC3

3a1 0.40 0.03 0.15

3b1 0.26 0.54 -0.08

3b2 0.35 0.29 0.14

3b3 0.32 0.20 -0.09

3b4 0.36 -0.2 0.32

3b5 0.32 0.27 0.10

3b6 0.20 0.37 0.66

3c1 0.32 -0.32 -0.41

3c2 0.28 -0.48 -0.29

3c3 0.32 -0.07 -0.39

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 5.66 56.64

2 1.22 12.20

3 1.12 11.23

4 0.62 6.23

5 0.56 5.62

6 0.35 3.49

7 0.20 1.96

8 0.15 1.53

9 0.08 0.77

10 0.03 0.33

(b) Variances for each component

Table 4.20: Results of CPCA on revised IDT dimension

The main results of the internal consistency assessment across and within

sub-dimensions are shown in Table 4.21.

CPCA:

First

component

explained

variance

Cronbach’s

alpha

within sub-

dimension

Cronbach’s

alpha across

sub-dim.

Status quo 3a ś ś 0.86

3b 50% 0.79

3c 79% 0.87

Proposed

adjustment

No sub-

dim.
57% 0.89 ś

Table 4.21: Summarized measures of internal consistency for IDT

From Table 4.21 we can see that the internal consistency for the proposed
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"revised IDT" dimension, corresponding to the Proposed adjustment line, is

high enough both in terms of variance explained by the őrst component (57%)

and Cronbach’s alpha value (0.89). Additionally, the simpliőed framework for

IDT, where no sub-dimension is outlined, prevents from any possible trade-off

effect between sub-dimensions.

4.5 Digital Public Services: Internal consistency anal-

ysis

The DPS dimension of DESI 2022 consists of one sub-dimension only,

which is called e-Government. Denoted as sub-dimension 4a, it describes the

demand and supply of e-government as well as open data policies.

For the łstatus-quož assessment, the CPCA is applied over all the őve

indicators of the DPS dimension, to check whether a single construct under-

lies the e-Government sub-dimension. No internal consistency analysis across

sub-dimension is performed since only one sub-dimension is deőned at the

łstatus quož level. A őrst indication of good internal consistency within the

DPS dimension is provided by Cronbach’s alpha coefficient value, which is

equal to 0.8, well above the 0.7 threshold.

Then, the scree plots for the CPCA and the ROBPCA analysis of the

"status quo" scenario over all indicators in dimension are shown in Figure

4.11(b) and 4.11(a) respectively. This analysis will help in testing for latent

variable detection within the DPS dimension and eventually notice outlying

individual indicators.

Looking at the two scree plot in Figure 4.11(b) and Figure 4.11(a) we

notice that they quite differ: while for the classical procedure (Table 4.11(b))

the őrst PC explains substantially all the variance and the second PC holds

a lower value, looking at the robust scree plot (Table 4.11(a)), the őrst and

second PCs have closer values while both crossing the unit value threshold

set with the Kaiser rule. It seems like the CPCA scree plot is skewed towards

a unique latent vector dimension. Thus, it is legit to double-check the ro-
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(a) (b)

Figure 4.11: Scree plots showing the őrst 10 PCs with (a) ROBPCA; and (b)

CPCA over DPS indicators

bustness of the CPCA method by looking at the outliers map and checking

whether bad leverage points affect the estimates. K is őxed at 2 for both

classical and robust procedures, according to the Kaiser rule the őrst two

eigenvalues cross the unit value in both cases.

(a) (b)

Figure 4.12: Outlier maps of the 27 countries obtained with (a) ROBPCA (k=2);

and (b) CPCA (k=2)

The CPCA method (Figure 4.12(b)) ŕags one observation 9 (Greece) as an

orthogonal outlier while observation 24 (Romania) is ŕagged as a good lever-

age point. The ROBPCA diagnostic plot (Figure 4.12(a)) detects the same
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outlying points, with respectively increased orthogonal and score distances.

This is an indication that Greece and Romania stand out as true anomalous

points within the context of the DPS dimension. In any case, no bad leverage

point is found and CPCA can be considered robust toward outliers since the

outliers maps for the two methods are similar (Figure 4.12(b) and 4.12(a)).

As a consequence, CPCA can be used to test for internal consistency of the

dimension/sub-dimensions.

The results of the CPCA analysis on all indicators are shown in the

following tables.

Indicators PC1 PC2 PC3

4a1 0.47 0.10 0.87

4a2 0.49 -0.07 -0.151

4a3 0.526 -0.17 -0.26

4a4 0.51 0.02 -0.37

4a5 0.07 0.98 -0.13

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 3.10 62.02

2 1.02 20.34

3 0.40 8.00

4 0.36 7.09

5 0.13 2.49

(b) Variances for each component

Table 4.22: Results of CPCA on DPS dimension

The analysis clearly shows the existence of a single, main latent dimension

in DPS, followed by a minor latent dimension, according to the Kaiser rule.

In fact, by looking at Table 4.22(b) we can see how the őrst principal com-

ponent explains most of the total variance, 62%, while the second accounts

for the 20%. The positive and balanced loadings shown in the őrst column

of Table 4.22(a) (green coloured) are consistent with a conceptual frame-

work of two sub-dimensions, well described by all the indicators but one, the

"Open data" (4a5) indicator. The latter holds an uninŕuential loading value

(orange coloured) for the őrst component, while it accounts for most of the

second one (purple coloured), clearly indicating its contribution to a differ-

ent latent factor than the one captured by the main PC. This is in contrast
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with the DESI 2022 uni-dimensional structure of DPS, where all individual

indicators contribute to one latent construct within the dimension. Instead

of eliminating the "Open data" indicator or splitting the existing individual

indicators into two sub-dimensions Ð one for "Open data" exclusively and

the other encompassing all remaining individual indicators Ð the suggested

modiőcation involves expanding the structure of Digital Public Services. This

expansion is achieved by breaking down the current individual indicators into

their "National" and "Cross Border" counterparts.

4.5.1 Proposed adjustment for DPS

The second step of the analysis investigates the possibility of deőning two

sub-dimensions within the DPS dimension, one which captures "National"

services and one "Cross-Border" (CB) services. In fact, under consultation

with DESI experts, the DESI 2022 structure was considered to be a too sim-

plistic representation of the DPS domain. This approach instead acknowl-

edges that the DPS dimension can be multifaceted, encompassing various

aspects of both national and cross-border service provision. By separating

these sub-dimensions, we anticipate the potential to reveal insights into how

countries perform and engage differently in each of these service types.

Indicators 4a3 "Digital public services for citizens" and 4a4 "Digital pub-

lic services for businesses" are removed. In fact, in DESI 2022 both indicators

are computed as the equal-weighted arithmetic mean of online availability

and cross-border online availability, respectively for citizen life event (4a3)

and for businesses life event (4a4). To better separate the DPS dimension

into national and cross-border sub-dimensions, the score for online availabil-

ity and the score for CB Online availability are separately introduced in the

DPS dimension, for both citizen and businesses life event. The data source

is the e-Government Benchmark, 2022 Reports

These four indicators replace original indicators 4a3 and 4a4. Following

the same logic, new indicators coming from the same data source are added

to the national and CB sub-dimensions:
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• Mobile friendliness: the extent to which services are provided through

a mobile-friendly interface (Score - 0 to 100);

• User Support : the extent to which online support, help features, and

feedback mechanisms are available (Score - 0 to 100);

• Transparency : the extent to which services are designed with user in-

volvement and users can manage their personal data (Score - 0 to 100);

• CB User Support : the extent to which online support, help features,

and feedback mechanisms are available for users from other European

countries (Score - 0 to 100).

The summary statistics for the newly introduced indicators of the pro-

posed adjustment for DPS are contained in Appendix A, Tables A.16 and

A.17.

The revised framework that we propose consists of two sub-dimensions,

one containing only national-level indicators and the other with only cross-

border indicators. Indicator 4a5 "Open data" is instead excluded as non-

őtting. CPCA results on this revised set of indicators are displayed in Table

4.23(a) and Table 4.23(b).

The analysis shows the presence of one main latent dimension, with all

the indicators (old and new) contributing approximately to the same extent

and with the same orientation to the őrst principal component which explains

almost 63% of the total variance (Table 4.23(b) ). The positive and balanced

loadings shown in the őrst column of Table 4.23(a) are consistent with the

conceptual framework of a single dimension. This does not contrast with the

possibility of two sub-dimensions, national and cross-border services, and it

is in line with a conceptual framework that keeps the two concepts separated

(see Section 5.5).

Finally, CPCA is applied to the newly deőned National and CB services

sub-dimensions individually.

Table 4.24(b) shows that the percentage of variance explained by the

őrst component goes up to 65% when restricted to the National services
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Indicators PC1 PC2 PC3

4a1 0.30 -0.13 -0.40

4a2 0.34 0.21 -0.08

Public services

for citizens

(national)

0.34 0.28 -0.32

Public services

for businesses

(national)

0.31 -0.30 -0.38

Mobile

friendliness
0.32 0.01 -0.14

User

Support
0.20 0.72 0.26

Transparency 0.36 0.17 0.19

CB online

availability

citizen

0.36 -0.16 0.24

CB online

availability

businesses

0.34 -0.32 -0.15

CB User

Support
0.26 -0.30 0.62

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 6.22 62.16

2 1.22 12.21

3 0.90 9.00

4 0.45 4.51

5 0.38 3.84

6 0.28 2.80

7 0.24 2.40

8 0.17 1.67

9 0.09 0.86

10 0.06 0.64

(b) Variances for each component

Table 4.23: Results of CPCA on revised DPS dimension

sub-dimension, which is also a clear indication of the existence of a unique

latent factor for the sub-dimension. Looking at the loadings of PC1 (Table

4.24(a)), all the indicators contribute in a balanced way to this őrst, major

component. Accordingly, Cronbach’s alpha value is 0.91.
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Indicators PC1 PC2 PC3

4a1 0.36 -0.35 -0.32

4a2 0.42 0.11 0.15

Public

services for

citizens

(national)

0.43 0.05 -0.33

Public

services for

businesses

(national)

0.35 -0.50 -0.11

Mobile

friendliness
0.38 -0.10 0.85

User

Support
0.27 0.76 -0.06

Transparency 0.42 0.18 -0.17

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 4.54 64.83

2 1.08 15.41

3 0.44 6.25

4 0.37 5.29

5 0.26 3.69

6 0.20 2.90

7 0.12 1.64

(b) Variances for each component

Table 4.24: Results of CPCA on National services sub-dimension

Indicators PC1 PC2 PC3

CB online

availability

citizen

0.60 -0.35 0.72

CB online

availability

businesses

0.59 -0.42 -0.70

CB User

Support
0.54 0.84 -0.04

(a) Loading for the őrst three principal

components

Components
Total

variance

% of

Variance

1 2.48 82.63

2 0.39 12.83

3 0.14 4.54

(b) Variances for each component

Table 4.25: Results of CPCA on CB services sub-dimension
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Concerning the CB sub-dimension, the results are optimal. In fact, the

variance explained by the őrst component is 83% (Table 4.25(b)), and load-

ings for the őrst component are all high and positive (Table 4.25(a)), giving

a clear indication of the existence of a unique dimension.

Cronbach’s alpha across the two new sub-dimensions is measured too

and holds a 0.76 value, thus conőrming internal consistency across sub-

dimensions.

In Appendix B Table B.3 contains the summary table of the proposed

adjustment while Table 4.26 contains the summary measures of internal con-

sistency of both the "status quo" and the proposed revision.

CPCA:

First component

explained

variance

Cronbach’s

alpha within

sub-dim.

Correlation

among

sub-dim.

Status quo 4a 62% 0.8 ś

Proposed

adjustment

National

services
65% 0.91 0.79

CB services 82 % 0.89

Table 4.26: Summarized measures of internal consistency for DPS

Both the "status quo" and the proposed adjustment reach optimal internal

consistency within and across sub-dimensions. Therefore, they do not lead

to compensability issues within the DPS dimension.

4.6 CPCA and ROBPCA over all indicators

To verify the presence of the four latent dimensions within DESI 2022, an

exploratory analysis is conducted considering all the 33 available individual

indicators (p = 33) and the 27 observations (n = 27), corresponding to

the EU member states. Data are scaled to have unit variance. We start by
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Components ROBPCA CPCA

Eigenvalue % Variance Eigenvalue % Variance

1 11.98 36.32 12.46 37.75

2 4.11 12.44 3.93 11.90

3 2.50 7.60 2.70 8.17

4 1.91 5.80 1.79 5.42

5 1.61 4.88 1.69 5.13

6 1.37 4.14 1.56 4.72

7 1.23 3.72 1.37 4.14

8 0.85 2.59 1.29 3.92

9 0.36 1.10 1.12 3.38

10 0.18 0.55 1.00 3.03

Table 4.27: Eigenvalues and Cumulative Percentage of Variance Explained by the

őrst 10 PCs using ROBPCA and CPCA.

performing a ROBPCA (Hubert, Rousseeuw, and Aelst 2008) analysis on the

scaled high-dimensional data (p > n) with a default value of α = 0.75.

Figure 4.13(a) visualizes the eigenvalues of the components obtained from

the ROBPCA procedure versus the number of the components. As mentioned

earlier in section 3.3, the Kaiser rule is primarily used to determine the

number of principal components to retain. In fact, the focus is on checking

the robustness of the CPCA method against outliers.

We examine the eigenvalues of each component to apply the Kaiser rule,

thereby gaining insight into the number of subspaces to retain. Referring

to Table 4.27, for both the ROBPCA and CPCA, the őrst three principal

components consistently explain more variance than the threshold of unity

dictated by the Kaiser rule. However, in the case of ROBPCA, from the

fourth to the tenth PC possesses eigenvalues ranging between 2 and 1. Simi-

larly, employing the CPCA method, the őfth, sixth, and seventh components

exhibit eigenvalues of 1.61, 1.37, and 1.23, respectively. In scenarios where

several components possess eigenvalues just above 1, a more conservative ap-
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(a) (b)

Figure 4.13: Scree plots showing 10 PCs with (a) ROBPCA; and (b) CPCA

proach is recommended, such as employing the elbow method. According to

the elbow method, as depicted in Figure 4.13(a) for ROBPCA, a suggestion

arises to retain four principal components, aligning with the interpretation

found in Figure 4.13(b) for CPCA, where the elbow corresponds to the fourth

eigenvalue. Both estimates of the underlying dimensions align well with the

structure of DESI 2022, which encompasses the four core dimensions, i.e. Hu-

man Capital, Connectivity, Integration of Digital Technologies, and Digital

Public Services. Based on this last criterion, we decide for both ROBPCA

and CPCA to retain k = 4 components for outlier analysis.

The CPCA method (4.14(b)) does not ŕag any outliers. Just observa-

tions 8 and 16, corresponding to Estonia and Italy, lie close to the orthogonal

threshold while observations 11 and 12, corresponding respectively to Finland

and France, have a high score distance. On the other hand, the ROBPCA

procedure detects 6 outliers with a substantially increased score or orthog-

onal distances. Observations 2, 18, and 20, corresponding respectively to

countries Belgium, Luxembourg, and Malta, are regarded as good leverage

points since they lie close to the PCA subspace but far from the regular ob-

servations, whereas observations 11, 12, and 24, corresponding respectively

to Finland, France, and Romania, are classiőed as orthogonal outliers be-

cause of their large orthogonal distance to the PCA subspace (see Figure
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(a) (b)

Figure 4.14: Outlier maps of the gait dataset obtained with (a) ROBPCA (k=3);

and (b) CPCA (k=4)

4.14(a)). In both cases, no observations are found to be bad leverage points.

The most noticeable outcome of the comparative analysis is that the outliers

map quite differ. In fact, most of the mentioned observations are found to

be good leverage points or orthogonal outliers in ROBPCA but CPCA, the

classical method is not robust against outliers. Thus ROBPCA is more reli-

able in this setting, and according to Figure 4.13(a) it conőrms the existence

of 4 latent dimensions.

4.7 Conclusions

The internal consistency assessment over the dimensions and sub-dimensions

of DESI 2022 is crucial to justify the compensatory rules employed in the ő-

nal computation of DESI 2022 scores. Results concerning the "status quo"

analyses were found to be not homogeneus among dimensions. In fact, in

some cases, the initial framework already had a good level of internal con-

sistency while in others, it started from a lacking consistency ground. As

a consequence, the proposed adjustments would represent minor or major

improvements in the respective dimension. Following, chapter őndings are

summarized by dimension:
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• Human Capital dimension: analyzing the HC dimension revealed high

internal consistency for the "status quo" analysis over all indicators,

and within subdimension 1a measuring basic ICT skills, while poor in-

ternal consistency was found for the sub-dimension measuring advanced

ICT skills (1b). The comparative analysis of CPCA and ROBPCA over

all indicators showed the existence of potential outliers that shift the es-

timated subspace from the one-dimensional structure identiőed by the

ROBPCA. Particularly, Romania is identiőed as an outlier by both

robust and classical PCA implying that the data point signiőes an

anomaly. The proposed adjustment introduces a less conservative ap-

proach than the uni-dimensionality suggested by ROBPCA. In fact,

it preserves the separation between the two sub-dimensions of basic

and advanced ICT skills, while removing indicator 1b4 "female ICT

specialist". Moreover, two new indicators "Never used interned" and

"Frequency of use" are added and the sub-dimensions are reorganized

according to the PCA loading results. The proposed adjustment leads

to a reduction in internal consistency within the őrst sub-dimension

of basic digital skills, while being still satisfactory, enhancing both the

1b sub-dimensional and HC dimensional robustness against compens-

ability issues. Thus the use of compensatory aggregation rules and the

inclusion of a higher number of indicators is here justiőed.

• Connectivity dimension: exploring the CN dimension globally, Cron-

bach’s alpha showed a poor overall consistency within the dimension ,

which is also reŕected within sub-dimensions. Retained principal com-

ponents offered consistent insights into the true dimensional structure.

The comparative analysis shows that CPCA results are biased since the

outlier map of the classical procedure does not őnd outlying observa-

tions, while ROBPCA does. However, the results of the CPCA analysis

on all indicators validate the existence of two latent sub-dimensions

within the "status quo" of the CN dimension, which is in contrast with

the DESI 2022 structure that formulates four sub-dimensions. The two
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detected latent dimensions within CN exhibit a negative correlation

with each other. Thus, the proposed adjustment aims at solving for

both the poor internal consistency within and across sub-dimensions of

CN dimension. Following that, indicators 2a1 "Overall őxed broadband

take-up", 2a3 "At least 1 Gbps take-up, 2b1 "Fast broadband (NGA)

coverage" are removed, and the "5G stations" indicator is added to the

analysis. The proposed two adjustments, both framing a "Mobile" and

"Fixed" sub-dimension, keep the "Mobile" sub-dimension őxed while

modifying the "Fixed" one, by excluding (őrst proposal) or including

(second proposal) the "Broadband price index" (2d1) indicator. At the

same level of internal consistency, the second proposal is preferred since

less negatively correlated with the "Mobile" sub-dimension. However,

even if an optimal level of internal consistency within the "Fixed" and

"Mobile" sub-dimensions is reached, the use of compensatory aggre-

gation rules among sub-dimensions is not validated within the CN di-

mension. In fact, the two sub-dimensions are negatively correlated in

both proposals. Additionally, it is shown that a simpliőed framework

for the CN dimension is preferred, which encloses a lower number of

individual indicators compared to the "status quo". The simpliőed sub-

dimensional structure contains only 2 sub-dimensions compared to the

initial 4.

• Integration of Digital Technologies dimension: Cronbach’s alpha relia-

bility measure over all indicators in the IDT dimension shows an op-

timal level of internal consistency, as well as within sub-dimensions,

measuring respectively for Digital technologies for businesses (3b) and

e-Commerce (3c). Sub-dimension 3a is excluded from any internal con-

sistency analysis within the sub-dimension since it contains only one

indicator. The scree plots of both CPCA and ROBPCA highlight the

dominance of the őrst principal component in explaining the total vari-

ance. The CPCA procedure seems to be robust towards outliers since

outliers maps of the robust and classical procedure are very similar,
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except for one outlying observation corresponding to Italy, detected by

ROBPCA. However, the results of the CPCA analysis on all indicators

validate the uni-dimensionality hypothesis, well described by all the

indicators but one, the "ICT for environmental sustainability" (3b6)

indicator. This result is in contrast with the conceptual framework of

DESI 2022, which instead formulates three sub-dimensions. The pro-

posed adjustment involves the exclusion of the 3b6 indicator and the

creation of a unique "revised IDT" dimension, under which all the

remaining indicators are contained. The proposal contributes to main-

taining a high level of internal consistency within IDT, reŕecting the

true dimensional structure detected with CPCA while thwarting po-

tential trade-offs between sub-dimensions. Compared with the "status

quo" of IDT, the dimensional framework has been simpliőed, and the

number of individual indicators reduced.

• Digital Public Services dimension: The "status quo" of the DPS di-

mension does not contain sub-dimensions, thus internal consistency is

tested only at an overall level. Starting from reliability coefficients,

Cronbach’s alpha over the DPS dimension shows a satisfactory level

of internal consistency among individual indicators. Additionally, by

comparing CPCA and ROBPCA it seems like the CPCA scree plot is

skewed toward a unique latent vector while ROBPCA supports the ex-

istence of a double dimensionality within DPS. Both methods identify

the same outliers, corresponding to Greece and Romania. This result

holds a double meaning: that CPCA is robust towards outliers since can

identify outlying observations similarly to ROBPCA, and that Greece

and Romania stand out as true anomalous points within the context of

the DPS dimension. Finally, as previously supported by the ROBPCA

scree plot, CPCA loading estimates show the existence of two latent

sub-dimensions within IDT. The result shows that the "Open data"

(4a5) indicator contributes mainly to the second PC, while the other

indicators capture the őrst PC. The proposed adjustment, which cap-
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tures separately the "National" and "Cross-Border" services, reaches

optimal results both in terms of within and across sub-dimension inter-

nal consistency. Moreover, it captures the bi-dimensional structure of

the DPS dimension, which was not accounted for by the "status quo".

Regardless, both the "status quo" and the proposed adjustment reach

optimal levels of internal consistency and do not incur in compensabil-

ity issues.

As a last step of the internal consistency assessment, the quadri-dimensional

structure of DESI is tested and both the results from CPCA and ROBPCA

support the existence of 4 dimensions within DESI 2022.

Overall, the compensatory rules are justiőed, both at the sub-dimensional

and dimensional levels. The only case in which a satisfactory level of internal

consistency is not reached is for Connectivity, where sub-dimensions of the

proposed adjustments are negatively correlated.
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Chapter 5

Impact of the proposed adjustments

on DESI 2022

5.1 Robustness analysis

This chapter undertakes a comprehensive analysis to assess the impli-

cations of various dimensional adjustments proposed in Chapter 4, on the

scores and rankings of DESI 2022. Speciőcally, it delves into an in-depth ex-

amination using Impact Analysis (IA) and, in some speciőc cases Sensitivity

Analysis (SA), for each dimension of DESI.

The impact analysis serves as a critical tool for evaluating the robustness

of the őnal scores and rankings. By subjecting speciőc inputs to variations,

i.e. the dimensional structure and the individual indicator weights that will

change accordingly, we gauge the resilience of the composite indicator out-

comes. Notably, the IA examines the overall impact, encompassing both di-

mensional scores and rankings, when the proposed adjustments are applied

to compute DESI. A comparative analysis is then performed between these

results and the corresponding outcomes in DESI 2022. The performance mea-

sures involved in examining the repercussions of the framework updates are

QQ-plots, which may help to see how the obtained score distribution differs
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from the original distribution according to DESI 2022, and a ranking differ-

ence measure, which for each country computes the difference between the

original ranking position and the new one, to highlight how differently are

countries impacted by the proposed adjustment.

Additionally, in speciőc scenarios, a sensitivity analysis is employed to

quantify the additional uncertainty stemming from testing diverse weight

sets on newly deőned sub-dimensional components. For example, within the

context of the DPS dimension, where the adjustment introduces new sub-

dimensions and necessitates the allocation of weights, SA is employed. This

aims to discern the inŕuence of distinct sub-dimensional weight conőgura-

tions on the őnal scores. By maintaining the framework consistent with the

proposed DPS adjustment, varying weight sets are examined, revealing the

relative variability in scores. In contrast, the Connectivity dimension does

not undergo the SA process on sub-dimensional weights, as the newly pro-

posed sub-dimensions (Cross-Border and National services) are conceptually

regarded as equivalent by DESI experts and, hence equally weighted.

In essence, this chapter employs IA to offer a comprehensive panorama

of the collective uncertainty associated with the CI. It takes into account

a multitude of variance sources and their cumulative effects. On the other

hand, SA is designed to isolate and quantify the inŕuence of speciőc input

variations, such as sub-dimensional weights, on the dimensional composite

score. Importantly, for each dimension, the DESI 2022 dimensional scores

and rankings are upheld as benchmarks. When updates introduce new indi-

cators within the framework, the computation of dimensional scores entails

assigning a weight of either 1 or 2 to each new indicator. This allocation

is conducted while maintaining the remaining weights unchanged and sub-

sequently normalizing within each sub-dimension to ensure a sum of 1 (see

Table B.3 in Appendix B).
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5.2 Impact analysis on Human Capital

The Human Capital proposed adjustment assumed two newly deőned

sub-dimensions:

• 1a new containing indicators 1a1, 1a2, 1a3, 1b3, "Never Used Internet"

and "Frequency of use";

• 1b new including 1b1 and 1b4.

In the HC dimension, the newly introduced indicator "Never Used Inter-

net" was reversed to have an orientation consistent with the others. For this

indicator, the assigned dimensional weight was 1, since not related to the

KPIs. In Appendix B, Table B.2 shows the original weights and the mini-

mum and maximum values for indicators as in DESI 2022 while Table B.2

contains the new weights and the respective minimum maximum values. For

the reintroduced indicator, the minimum and the maximum value for nor-

malization are taken equally as in DESI 2020, that is the last version of the

DESI where those indicators were included.

(a) QQ-plot: Original scores vs revised scores

at dimension level

(b) Ranking differences at HC dimension level

Figure 5.1: Impact of the proposed adjustment on the scores (a) and rankings (b)

of HC
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A direct observable consequence of the adjustment for most of the coun-

tries is that the revised dimension scores are lower than the original ones

(Table 5.1(a)). This is attributable to the fact that "Never used internet"

indicator has opposite orientation with respect to the rest of the indicators,

thus lower scores are the result of adding it to the new HC dimension. A

common phenomenon is that countries taking middle positions in the score’s

distribution are more sensitive to rank changes than the countries positioned

on the tails of the distribution. For example, Greece’s revised score is re-

markably lower than the original one (Figure 5.1(a)) but its ranking shifts

by only 3 positions (Figure 5.1(b)). On the contrary, Croatia with a score

close to the average, loses 7 positions while having a loss in score comparable

to Greece. Additionally, Croatia is the country mostly negatively impacted

by the proposed adjustment while Checz Republic is the one gaining more

positions, by up scaling 4 positions in the ranking.

5.3 Impact analysis on Connectivity

For the Connectivity dimension, we previously proposed two adjustments,

each having a "Fixed" and a "Mobile" sub-dimension. While the "Mobile"

sub-dimension, which includes indicators 2c1, 2c2, 2c3, and "5G stations",

remains unchanged between the two proposals, the "Fixed" sub-dimension

changes. In the case of the őrst proposal, "Fixed" is deőned by indicators

2a2, 2b2, and 2b3, while for the second proposal indicator 2d1 "Broadband

price index" is added to the "Fixed" sub-dimension previously described.

In the CN dimension, indicator weights at a sub-dimensional level are

computed for both proposals by assigning to the "5G stations" indicator an

initial weight of 1. The "Mobile" sub-dimension, where the indicator "5G sta-

tions" is added, presents an additional complexity because of missing values

for four countries. For each of these countries, the score for the Mobile sub-

dimension is calculated only over indicators 2c1, 2c2, and 2c3, and weights

are renormalized accordingly, leading to respectively 25%, 50%, and 25% as
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weights.

In Appendix B, Table B.2 shows the original weights and the minimum

and maximum values for indicators as in DESI 2022. Table B.3 shows the

new weights for respectively the őrst and second proposals, and the respective

minimum maximum values.

Equal weighting for the "Fixed" and "Mobile" sub-dimensions is used for

the computation of the őnal Connectivity scores for both proposals. This

choice allows for the full compensability of the two sub-dimensions. For indi-

cator normalization, the minimum and maximum values as in DESI 2022 are

always used. For the newly introduced "5G stations" indicator, the minimum

is taken equal to 0 while the maximum is equal to 1.14, which is double the

maximum value recorded in 2022 (relative to Latvia).

(a) QQ-plot: Original scores vs revised scores

at dimension level

(b) Ranking differences at CN dimension level

Figure 5.2: Impact of the first proposed adjustment on the scores (a) and rankings

(b) of CN
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(a) QQ-plot: Original scores vs revised scores

at dimension level

(b) Ranking differences at CN dimension level

Figure 5.3: Impact of the second proposed adjustment on the scores (a) and rank-

ings (b) of CN

The effect on scores and ranks is very similar in the two cases (Figure 5.2 and

Figure 5.3). Overall, the impact on scores is rather limited: the correlation

coefficient between the original and revised scores is measured and is almost

0.9 in both cases. As expected, the effect on ranks is higher, especially for

the countries with middle scores. In particular, the most affected by the two

proposals countries are the same. Speciőcally, the one gaining more positions

in the ranking is Latvia, which for the őrst proposal increases by 9 positions

while for the second of 11, and the country that is most negatively impacted

is Cyprus that for both proposals loses 9 positions.

5.4 Impact analysis on Integration of Digital Tech-

nologies

The proposed adjustment for IDT considered taking out indicator 3b6

"ICT for environmental sustainability" from the original IDT dimension and

create a unique cohesive "revised IDT dimension", eliminating the need for

sub-dimensions.

The IA is performed by comparing the original scores and rankings from
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IDT dimension of DESI 2022 to the new ones at the dimension level. Figure

5.4(a) compares the original IDT scores versus the revised ones, while Figure

5.4(b) shows the ranking differences.

(a) QQ-plot: Original scores vs revised scores

at dimension level

(b) Ranking differences at IDT dimension

level

Figure 5.4: Impact of the proposed adjustment on the scores (a) and rankings (b)

of IDT

Both őgures show that the impact of the proposed adjustment is limited

and again, more effective on the observations that are central in the origi-

nal IDT score distribution. The highest negative impact on the rankings is

experienced by Portugal (Figure 5.4(b)), which loses 6 positions, while all

other observations are comparable in terms of ranking differences, which has

a maximum of 3. This clearly shows how adjustments, even when applying

limited framework updates, can have a different impact on different coun-

tries. This is due both to the country’s position in the score distribution

and to how badly/well the country performs in the removed or more/less

weighted individual indicator. For instance, in Figure 5.5 we can see the dif-

ferent values of 3b6 "ICT for environmental sustainability" by country, which

was removed in the proposed adjustment of IDT. It shows that the country

corresponding to the highest value is Portugal, i.e. the country losing more

positions compared to the DESI 2022 IDT ranking (see Figure 5.4(b)).
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Figure 5.5: 3b6 indicator original values

5.5 Impact analysis on Digital Public Services

Within the DPS dimension, the proposed adjustment was introduced aim-

ing at capturing the National and Cross Border (CB) services separately. In

fact, two new sub-dimensions were assembled, respectively including:

• "National services" sub-dimension: 4a1 "e-Government users", 4a2 "Pre-

őlled forms", "Online availability citizen", "Online availability busi-

nesses", "Mobile friendliness", "User support", "Transparency";

• "CB services" sub-dimension: "CB Online availability citizen", "CB

Online availability businesses", "CB User support".

The IA of the new proposed adjustment on the original scores from DESI

2022 is performed by comparing the original scores to the ones obtained using

equal weights on National and CB sub-dimensions.

The new indicator weights are computed by assigning to each of the new

indicators in the respective sub-dimension a weight equal to 1, keeping the

other weights őxed to the original value, and then by normalizing inside each

sub-dimension, so that they sum up to 1. The only exceptions are the four

indicators: "CB Online availability for citizens" and "CB Online availability
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for businesses", which are all double weighted since obtained by decomposing

the KPIs 4a3 and 4a4 (see Section 4.5.1). Minimum and maximum values

for the newly introduced indicators were obtained by following the same

approach as in DESI 2022. In fact, based on the 2019 data, the minimum was

computed as the actual minimum value multiplied by 0.75 and the maximum

as the actual maximum value multiplied by 1.25.

The evaluation of the robustness of rankings and scores to different weight-

ing sets, i.e. SA, for sub-dimensions, is performed here. Speciőcally, SA is

employed for weighting allocation purposes, when uncertain whether to at-

tribute the two new sub-dimensions equally importance (see Table B.3 in

Appendix A to check the weighting sets choices).

Figure 5.6: Scores of DPS dimension only using different sets of weights for the

newly deőned sub-dimensions

First, the variability of the DPS scores due to the 4 different sets of weights

is measured and shown in Figure 5.6. We can notice that for some countries

such as Greece and Romania, changing the set of weights used for weighting

the sub-dimensions within DPS has a bigger impact, while for countries like

Estonia and The Netherlands, different weighting systems have little or zero

impact. Countries with little to no impact from varying weights may suggest
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that the speciőc sub-dimensions within DPS contribute relatively equally to

their overall performance. Conversely, countries with larger score variations

could indicate that certain sub-dimensions have a more signiőcant inŕuence

on their DPS scores. These results underscore the importance of involving

relevant stakeholders, including experts and policymakers, in the weight as-

signment process. Engaging stakeholders can lead to a more balanced and

representative choice of weights, minimizing potential bias and ensuring that

the composite indicator accurately reŕects the dimension importance.

Figure 5.7: Score growth when using equal weighting

In fact, the separation between the national and the cross-border con-

struct, when using equal weighting, leads to giving much more importance

to indicators of the CB sub-dimension than it was done in the łstatus quož.

Further exploration in Figure 5.7 identiőes the countries most prominently

affected by this adjustment. These countries experience the greatest shifts

in scores due to the reconőguration of weight distribution, highlighting their

heightened sensitivity to the new approach.

The outcome stresses the potential implications of redeőning the rela-

tionship between national and cross-border dimensions within the composite

indicator framework, emphasizing the importance of careful consideration

and stakeholder engagement when implementing such adjustments.
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Figure 5.8: Impact of equal weighting on scores and ranks of DPS (left) compared

to DESI 2022 (right)

Figure 5.9: Impact of ’60%-40%’ weighting on scores and ranks of DPS (right)

compared to equal weighting (left)
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Figure 5.10: Impact of ’70%-30%’ weighting on scores and ranks of DPS (right)

compared to equal weighting (left)

Figure 5.11: Impact of ’80%-20%’ weighting on scores and ranks of DPS (right)

compared to equal weighting (left)



5.5 Impact analysis on Digital Public Services 125

In the second part of the SA, we compare the single pairs of weighting

sets scores and rankings. The equal weighting scenario for National and CB

services sub-dimensions is opposed to the sets of weights 60%-40% (Figure

5.9), 70%-30% (Figure 5.10) and 80%-20% (Figure 5.11), with the higher

weights always assigned to the National services sub-dimension. In terms of

score impact, from Figure 5.8 we can observe that the proposed adjustment

when using equal weighting, has a very high impact on most of the countries.

The countries that have achieved high scores on CB indicators, such as

Belgium (Figure 5.12(a)), Malta (Figure 5.12(b)), and Luxembourg (Figure

5.12(c)), show the most signiőcant increase in scores.

(a) (b)

(c)

Figure 5.12: CB and National scores for (a) Belgium; (b) Malta; (c) Luxembourg

Conversely, the countries with the lowest scores on the CB dimension,

such as Poland (Figure 5.13(a)), Lithuania (Figure 5.13(b)), and Sweden
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(Figure 5.13(c)) experience the most considerable decrease in scores. The

pronounced shifts in scores among these countries underscore the sensitivity

of the composite indicator to changes in weight distribution.

(a) (b)

(c)

Figure 5.13: CB and National scores for (a) Poland; (b) Lithuania; (c) Sweden

On the contrary, the impact of diverse sub-dimensional weighting sets

appears to be less substantial, as evidenced in Figures 5.9, 5.10, and 5.11.

These őndings collectively suggest that equal weighing could emerge as the

most suitable option for interpretative endeavors. Moreover, equal weighting

among sub-dimensions may yield a clearer and more intelligible interpretation

of the composite indicator. The relatively minor ŕuctuations in scores under

varying weight distributions emphasize the stability and consistency achieved

through equal weighting, which can facilitate a more straightforward and

intuitive understanding of the composite indicator implications.
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5.6 Conclusions

In this chapter, impact and sensitivity analyses are employed to assess

the effects of proposed adjustments to the DESI framework, highlighting

the complexity of such adjustments and their varying impacts on different

countries and dimensions. What is observed is that adjustment of dimensions

and weights can lead to changes in country rankings. As a general behaviour,

middle-ranked countries tend to be more sensitive to these changes compared

to those at the higher and lower extremes of the ranking distribution.

Dimension-wise, for the HC dimension the inclusion of an indicator with

an opposite orientation to the rest of the indicators results in lower scores for

most countries within the HC dimension. Further, Croatia shows to be the

country mostly negatively impacted by the proposed adjustment, and Czech

Republic is the one gaining more positions.

In the CN dimension instead, for both proposals, it is observed that Latvia

reaches the highest increment in ranking positions while Cyprus experiences

the most elevated negative impact on the rankings.

Within the context of the IDT dimension, Portugal encounters a notable

inŕuence on its rankings, resulting in a decline of 6 positions due to the intro-

duced adjustment. This inŕuence can be attributed to its high performance in

the removed indicator "ICT for environmental sustainability." In contrast,

other countries exhibit deviations in rankings limited to a maximum of 3

positions in comparison to the DESI 2022 ranking.

Lastly, the sensitivity analysis on the DPS dimension shows that Greece

and Romania are the countries with the highest variability, thus a bigger im-

pact, on their DPS score when changing sub-dimensional weight sets. While

on Estonia and The Netherlands, varying weight systems have little to no

impact on their scores. This is attributable to the fact that for some coun-

tries the two new sub-dimensions count equally. In terms of score impact, we

observed that the proposed adjustment when using equal weighting, has a

very high impact on most of the countries. In fact, the separation between the
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national and the cross-border constructs leads to giving much more impor-

tance to indicators of the CB sub-dimension than it was done in the łstatus

quo".

The cumulative implications across dimensions affirm the thesis that

changes made to the framework lead to varying effects based on speciőc

country characteristics. This conőrms the concept that enhancing internal

consistency within the framework results in corresponding shifts in rankings,

effectively capturing new trends stemming from the adjusted framework.



Concluding remarks

The Digital Economy and Society Index has been a reference instrument,

since its creation in 2014, to benchmark EU Member States within the Digital

Decade policy programme. As such, its need for redeőnition is argued every

year by different stakeholders (EU Commission, EU Member States, National

Governments, Industry and Businesses, etc.) whose focus is set on trying to

keep pace with the Digital Era. This results in the correspondence of the

structure of DESI with the underlying phenomenon it seeks to capture being

relegated to the background.

Lacking a strong conceptual framework, assessing the internal consistency

of dimensions within DESI becomes a crucial step for two reasons: aligning

the conceptual framework with the intended phenomenon of digitalization,

and justifying the use of compensability rules involved in the computation of

the scores. In fact, the CI uses an equal-weighted arithmetic mean among di-

mensions, and weighted arithmetic means for sub-dimensions within the same

dimension. These aggregation rules allow respectively for full compensability

of dimensions, and strong compensability (depending on the sub-dimensional

weights) of sub-dimensions. Compensatory aggregation rules rely on the as-

sumption of trade-offs between indicators. Thus, verifying internal consis-

tency in this setting helps to conőrm that DESI scores accurately represents

the way in which different individual indicators contribute to the overall es-

timate.

The assessment conducted in Chapter 4 on DESI 2022 holds paramount

importance in validating two crucial methodological choices integral to the
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composite indicator framework, while addressing this work major objectives:

1. The utilization of compensatory rules for aggregation.

2. The inclusion of detailed individual indicators to comprehensively cap-

ture the diverse facets of the digital domain.

Additionally, Chapter 4 confronts the DESI experts’ decision to not cor-

rect for univariate outlying behaviours of individual indicators of DESI 2022.

Thus, to ensure the robustness of the methods employed in redeőning the

DESI framework, a comparison was made between Classical PCA and its

robustiőed counterpart (ROBPCA) at both the overall composite indicator

level and dimensional level. This comparison addressed two minor objectives:

1. Testing the robustness of PCA against outliers.

2. Detecting potential outlying countries through measures of multivariate

outlyingness.

Yet, at the end of Chapter 4, another focal point is confronted, which

centers around the adherence of DESI to the cardinal points, encompassing

the four dimensions of digital capacity: Human Capital (HC), Connectivity

(CN), Integration of Digital Technologies (IDT), and Digital Public Services

(DPS).

The following conclusions are derived concerning the major and minor

objectives set forth:

• In the Human Capital dimension, the proposed adjustment, compared

to the "status quo" leads to a reduction in internal consistency within

the new sub-dimension of basic digital skills, while being still satis-

factory, enhancing both the advanced sub-dimensional and HC dimen-

sional robustness against compensability issues. Additionally, the new

dimension supports the inclusion of a higher number of indicators. The

comparative analysis of CPCA and ROBPCA instead shows the exis-

tence of potential outliers that shift the estimated subspace away from
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the one-dimensional structure identiőed by the ROBPCA. Anyway, re-

sults show that CPCA can be considered robust.

• For the Connectivity dimension, the internal consistency analysis of

the "status quo" showed poor overall consistency. The proposed adjust-

ments lead to an optimal level of internal consistency within the two

new sub-dimensions, "Fixed" and "Mobile". However, the use of com-

pensatory aggregation rules among those is not validated since the two

new sub-dimensions are negatively correlated in both proposals. Addi-

tionally, the new proposals suggest a simpliőed framework for the CN

dimension, where a lower number of individual indicators is present. Fi-

nally, the comparative analysis between CPCA and ROBPCA showed

that the classical procedure is not robust against outlying observations.

• Within Integration of Digital Technologies dimension, the "status quo"

internal consistency analysis provided with optimal results. However,

the proposed adjustment is more in line with the uni-dimensionality

hypothesis suggested by the results. The proposal contributes to main-

taining a high level of internal consistency while preventing potential

trade-offs between sub-dimensions. In this case, the dimensional frame-

work has been simpliőed, and the number of individual indicators re-

duced. The CPCA is considered robust and there are no outlying ob-

servations that are consistently outlying among the two procedures.

• The Digital Public Services reaches a satisfactory level of internal con-

sistency in the "status quo" analysis. The proposed adjustment, which

captures separately the "National" and "Cross-Border" services, reaches

optimal results of internal consistency while capturing the bi-dimensional

structure of the DPS dimension which was not accounted for by the

"status quo". This leads to preventing compensability issues. Addi-

tionally, the comparison of CPCA with ROBPCA shows that the clas-

sical procedure is robust towards outliers In fact, it identiőes the same

outlying observations as the robust procedure, thus identifying true
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anomalous points.

Additionally, the internal consistency assessment conőrms the existence of 4

latent dimensions within DESI 2022, that align with the four cardinal points.

In summary, the internal consistency assessment results show that the pro-

posed adjustments lead to an improvement of the conceptual framework ro-

bustness towards compensatory effects, except in the case of Connectivity.

In fact, for the latter, sub-dimensions of the proposed adjustments are nega-

tively correlated and lead to unreliable Connectivity scores. Hence, a policy

advice is to look at the scores and rankings of Connectivity sub-dimensions

separately, to avoid the information stemming from each being covered by

trade-off effects.

In the concluding stages, Chapter 5 undertakes an evaluation of the reper-

cussions stemming from the proposed adjustments on dimensional scores and

rankings. It becomes evident that modiőcations in dimension weights can ex-

ert an inŕuence on the rankings of countries. However, the alteration in scores

and rankings does not exhibit uniformity across dimensions. The cumulative

effects spanning various dimensions validate the hypothesis that alterations

introduced into the framework yield divergent outcomes contingent upon dis-

tinct country attributes. This substantiates the notion that augmenting the

intrinsic coherence within the framework gives rise to corresponding shifts in

rankings, adeptly encapsulating emerging trends stemming from the adapted

framework. It’s worth noting that while this inŕuence reverberates through

the individual dimensions, its resonance at the overarching DESI level ap-

pears to be of a relatively lesser magnitude.

In summary, this comprehensive analysis provides a thorough understand-

ing of the composite indicator framework across dimensions. Methodological

choices have been scrutinized, and the framework robustness has been vali-

dated. Outliers effects vary across dimensions, with some dimensions show-

casing more sensitivity than others. Overall, these őndings contribute to a

comprehensive understanding of digital progress, enabling policymakers to

make informed decisions in line with the Digital Decade objectives.
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Summary statistics

A.1 Human Capital Indicators

Indicator name

1a1 At

least

basic digital

skills

1a2

Above

basic

digital

skills

1a3 At least

basic digital

content

creation

skills

1b1

ICT

specialists

% of missing values 0.00 0.00 0.00 0.00

average 0.56 0.28 0.67 0.05

standard deviation 0.12 0.10 0.11 0.01

coefficient of variation 0.21 0.36 0.16 0.28

skewness -0.27 0.35 -0.60 0.71

kurtosis 3.24 3.12 3.06 2.73

skewness correction no no no no

orientation positive positive positive positive

maximum value 0.79 0.52 0.83 0.08
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country correspon-

-ding to maximum

value

FI NL NL SE

minimum value 0.28 0.08 0.41 0.03

country correspon-

-ding to minimum

value

RO BG RO RO

Table A.1: Univariate summary statistics for indicators 1a1, 1a2, 1a3, 1b1 in HC

Indicator name

1b2

Female

ICT

specialists

1b3

Enterprises

providing

ICT training

1b4 ICT

graduates

% of missing values 0.00 0.00 3.70

average 0.20 0.21 0.05

standard deviation 0.04 0.08 0.02

coefficient of variation 0.19 0.36 0.38

skewness 0.77 0.08 0.66

kurtosis 3.25 2.66 2.96

skewness correction no no no

orientation positive positive positive

maximum value 0.28 0.38 0.09

country correspon-

-ding to maximum

value

BG FI IE

minimum value 0.10 0.06 0.01

country correspon-

-ding to minimum

value

CZ RO IT
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Table A.2: Univariate summary statistics for indicators 1b2, 1b3, 1b4 in HC

Indicators

Indicators 1a1 1a2 1a3 1b1 1b2 1b3 1b4

1a1 1.00 0.96 0.95 0.73 -0.13 0.71 0.26

1a2 1.00 0.87 0.71 -0.01 0.66 0.25

1a3 1.00 0.69 -0.15 0.65 0.24

1b1 1.00 0.03 0.73 0.41

1b2 1.00 -0.12 0.38

1b3 1.00 0.16

1b4 1.00

Table A.3: Correlation Table for indicators in HC
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A.2 Connectivity Indicators

Indicator name

2a1 Overall

őxed

broadband

take-up

2a2 At

least 100

Mbps őxed

broadband

take-up

2a3 At

least

1 Gbps

take-up

2b1 Fast

broadband

(NGA)

coverage

% of missing values 0.00 0.00 3.70 0.00

Average 0.79 0.40 0.04 0.92

standard deviation 0.09 0.18 0.06 0.07

coefficient of variation 0.12 0.44 1.78 0.08

skewness -0.34 0.22 2.58 -1.04

kurtosis 2.38 2.05 8.96 3.33

skewness correction no no no no

orientation positive positive positive positive

maximum value 0.97 0.72 0.27 1.00

country correspon-

-ding to maximum

value

NL ES FR CY

minimum value 0.61 0.09 0.00 0.74

country correspon-

-ding to minimum

value

FI EL AT FR

Table A.4: Univariate summary statistics for indicators in 2a1, 2a2, 2a3, 2b1 CN
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Indicator name

2b2 Fixed Very

High Capacity

Network

(VHCN)

coverage

2b3 Fibre

to the

Premises

(FTTP)

coverage

2c1 5G

spectrum

2c2 5G

coverage

% of missing values 0.00 0.00 0.00 0.00

Average 0.58 0.56 0.46 0.88

standard deviation 0.24 0.33 0.32 0.06

coefficient of variation 0.27 0.41 0.59 0.70

skewness -0.83 -0.41 -0.28 0.25

kurtosis 3.11 2.09 1.99 1.75

skewness correction no no no no

orientation positive positive positive positive

maximum value 1 0.89 1.00 1.00

country correspon-

-ding to maximum

value

MT LV DE IT

minimum value 0.20 0.10 0.00 0.00

country correspon-

-ding to minimum

value

EL BE EE LV

Table A.5: Univariate summary statistics for indicators 2b2, 2b3, 2c1, 2c2 in CN

Indicator name

2c3 Mobile

broadband

take-up

2d1

Broadband

price

index

% of missing values 0.00 0.00

Average 72.73 0.73
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standard deviation 0.06 11.21

coefficient of variation 0.07 0.15

skewness -0.14 0.16

kurtosis 2.49 2.12

skewness correction no no

orientation positive positive

maximum value 0.98 96.52

country correspon-

-ding to maximum

value

IE RO

minimum value 0.73 56.25

country correspond-

-ing to minimum

value

BG BE

Table A.6: Univariate summary statistics for indicators 2c3, 2d1 in CN
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Indicators

Indicators 2a1 2a2 2a3 2b1 2b2 2b3 2c1 2c2 2c3 2d1

2a1 1.00 0.22 0.01 0.49 0.09 -0.19 0.07 0.08 0.43 -0.58

2a2 1.00 0.25 0.22 0.70 0.49 -0.17 -0.35 0.36 0.04

2a3 1.00 -0.22 0.07 0.15 0.03 0.09 -0.01 0.06

2b1 1.00 0.19 -0.1 -0.07 0.07 0.08 -0.40

2b2 1.00 0.65 -0.3 -0.32 0.38 0.17

2b3 1.00 -0.18 -0.37 0.05 0.38

2c1 1.00 0.33 0.11 -0.21

2c2 1.00 0.22 -0.06

2c3 1.00 -0.20

2d1 1.00

Table A.7: Correlation Table for indicators in CN

A.3 Integration of Digital Technologies Indicators

Indicator name

3a1 SMEs

with at least

a basic level

of digital

intensity

3b1

Electronic

information

sharing

3b2

Social

media

3b3

Big

data

% of missing values 0.00 0.00 0.00 0.00

average 0.55 0.37 0.30 0.14

standard deviation 0.16 0.11 0.11 0.08

coefficient of variation 0.29 0.29 0.37 0.55

skewness -0.11 -0.09 0.19 0.67

kurtosis 2.54 2.24 2.13 2.08

skewness correction no no no no
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orientation positive positive positive positive

maximum value 0.86 0.57 0.51 0.30

country correspon-

-ding to maximum

value

SE BE FI MT

minimum value 0.61 0.09 0.00 0.74

country correspon-

-ding to minimum

value

FI EL AT FR

Table A.8: Univariate summary statistics for indicators 3a1, 3b1, 3b2, 3b3 in IDT

Indicator name
3b4

Cloud
3b5 AI

3b6

ICT

for

environmental

sustainability

3b7

e-

Invoices

% of missing values 0.00 0.00 7.41 3.70

average 0.37 0.08 0.67 0.30

standard deviation 0.16 0.05 0.09 0.23

coefficient of variation 0.45 0.65 0.13 0.76

skewness 0.38 1.09 0.09 1.50

kurtosis 2.25 4.07 2.16 4.30

skewness correction no no no no

orientation positive positive positive positive

maximum value 0.69 0.24 0.86 0.95

country correspon-

-ding to maximum

value

SE DK PT IT

minimum value 0.20 0.01 0.54 0.10
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country correspon-

-ding to minimum

value

EL RO DK BG

Table A.9: Univariate summary statistics for indicators 3b4, 3b5, 3b6, 3b7 in IDT

Indicator name

3c1

SMEs

selling

online

3c2 e-

Commerce

turnover

3c3 Selling

online cross-

border

% of missing values 0.00 11.11 0.00

average 0.21 0.12 0.09

standard deviation 0.08 0.05 0.03

coefficient of variation 0.38 0.41 0.36

skewness 0.43 0.22 0.25

kurtosis 2.1921 2.4687 2.0635

skewness correction no no no

orientation positive positive positive

maximum value 0.38 0.22 0.16

country correspon-

-ding to maximum

value

DK IE AT

minimum value 0.09 0.03 0.04

country correspon-

-ding to minimum

value

LU LU BG

Table A.10: Univariate summary statistics for indicators 3c1, 3c2, 3c3 in IDT
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Indicators

Indicators 3a1 3b1 3b2 3b3 3b4 3b5 3b6 3b7 3c1 3c2 3c3

3a1 1.00 0.55 0.89 0.66 0.90 0.65 0.03 0.48 0.66 0.50 0.65

3b1 1.00 0.62 0.44 0.31 0.63 0.02 0.10 0.30 0.22 0.46

3b2 1.00 0.65 0.74 0.56 0.08 0.29 0.49 0.28 0.55

3b3 1.00 0.61 0.64 -0.15 0.14 0.52 0.41 0.47

3b4 1.00 0.56 -0.08 0.64 0.58 0.56 0.51

3b5 1.00 0.17 0.35 0.42 0.37 0.48

3b6 1.00 0.01 -0.06 -0.15 -0.06

3b7 1.00 0.22 0.32 0.17

3c1 1.00 0.76 0.76

3c2 1.00 0.53

3c2 1.00

Table A.11: Correlation Table for indicators in IDT

A.4 Digital Public Services Indicators

Indicator name

4a1 e-

Government

users

4a2 Pre-őlled

forms

4a3 Digital public

services for

citizens

% of missing values 0.00 0.00 0.00

average 0.71 64.49 74.63

standard deviation 0.19 20.87 13.73

coefficient of variation 0.27 0.32 0.18

skewness -1.01 -0.37 -0.29

kurtosis 3.6802 2.0815 2.4098

skewness correction no no no

orientation positive positive positive
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maximum value 0.93 94.32 99.64

country correspon-

-ding to maximum

value

SE NL MT

minimum value 0.17 19.05 44.24

country correspon-

-ding to minimum

value

RO RO RO

Table A.12: Univariate summary statistics for indicators 4a1, 4a2, 4a3 in DPS

Indicator name

4a4 Digital

public

services for

businesses

4a5 Open

data

% of missing values 0.00 0.00

average 81.71 0.81

standard deviation 13.59 0.15

coefficient of variation 0.17 0.18

skewness -1.31 -0.93

kurtosis 4.8820 2.5951

skewness correction no no

orientation positive positive

maximum value 100.00 0.98

country correspon-

-ding to maximum

value

IE FR

minimum value 42.27 0.50
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country correspon-

-ding to minimum

value

RO SK

Table A.13: Univariate summary statistics for indicators 4a4, 4a5 in DPS

Indicators

Indicators 4a1 4a2 4a3 4a4 4a5

4a1 1.00 0.62 0.66 0.64 0.14

4a2 1.00 0.75 0.66 0.06

4a3 1.00 0.85 -0.03

4a4 1.00 0.13

4a5 1.00

Table A.14: Correlation Table for indicators in DPS
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A.5 New Indicators: summary statistics

Indicator name

Never

Used

Internet

(2021)

Frequency

Internet

Use

(2021)

2a2 At least

100 Mbps

őxed

broadband

take-up

(new data)

5G

stations

in the

3.6 band

% of missing values 0.00 0.00 0.00 0.00

average 7.93 88.00 0.16 0.47

standard deviation 5.22 6.23 0.16 0.20

coefficient of variation 0.66 0.07 0.96 0.43

skewness 0.46 -0.39 1.30 0.03

kurtosis 2.61 2.56 2.07 4.02

skewness correction no no no no

orientation positive positive positive positive

maximum value 20.00 98.00 0.57 0.83

country correspon-

-ding to maximum

value

EL IE LV ES

minimum value 0.00 74.00 0.00 0.09

country correspon-

-ding to minimum

value

IE BG NL EL

Table A.15: Univariate summary statistics for newly introduced/updated indica-

tors of HC and CN
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Indicator name

Public

services for

citizens

(national)

Public

services for

business

(national)

Mobile

friendliness

User

Support

% of missing values 0.00 0.00 0.00 0.00

average 88.98 97.28 93.27 92.83

standard deviation 8.59 3.72 6.54 6.55

coefficient of variation 0.10 0.04 0.07 0.07

skewness -1.43 -1.98 -0.98 -1.38

kurtosis 4.76 10.61 2.71 3.11

skewness correction no no no no

orientation positive positive positive positive

maximum value 100.00 100.00 100.00 100

country correspon-

-ding to maximum

value

MT CZ FI EL

minimum value 64.50 83.70 77.20 71.40

country correspon-

-ding to minimum

value

CY RO RO CY

Table A.16: Univariate summary statistics for newly introduced indicators of DPS

Indicator name Transparency

Cross-

border

Online

Availability

citizens

Cross-

border

Online

Availability

businesses

Cross-

border

User

Support

% of missing values 0.00 0.00 0.00 0.00

average 62.82 61.87 67.39 70.78
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standard deviation 16.29 20.39 22.93 19.23

coefficient of variation 0.26 0.33 0.34 0.27

skewness 0.13 -0.08 -0.97 0.09

kurtosis 2.41 2.26 3.82 1.95

skewness correction no no no no

orientation positive positive positive positive

maximum value 97.95 100.00 100.00 100

country correspon-

-ding to maximum

value

MT MT IE LU

minimum value 30.57 24.25 8.33 33.33

country correspon-

-ding to minimum

value

CY RO EL PL

Table A.17: Univariate summary statistics for newly introduced indicators of DPS
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Appendix B

Data sources and weights

Data source Data collection process

Eurostat Data collected and veriőed by the

national statistical offices or by Eurostat.

Communications Committee

(COCOM)

Data collected and veriőed by the national regu-

latory authorities (by data experts appointed by

the members of the Communications Committee

in every Member State).

Broadband coverage studies Data collected by IHS Markit, Omdia and Point

Topic and veriőed by the national regulatory

authorities (by data experts appointed by the

members of the Communications Committee.

Retail broadband prices studies Data collected by Empirica and veriőed by the

national regulatory authorities (by data experts

appointed by the members of the Communica-

tions Committee in every Member States).

e-Government benchmark Data collected by Capgemini and veriőed by

relevant ministries in every Member State.

Survey of businesses on the use

of digital technologies

Data collected by Ipsos and iCite, survey results

have been reviewed by the Digital Single Market
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Strategic Group

European data portal Data collected by Capgemini from representatives

appointed by the relevant ministries in every

Member State

Table B.1: Data sources and the role of national authorities
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Figure B.1: Data sources for indicators in the HC dimension taken from DESI 2022

Methodological Note (European Commission (2022))
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Figure B.2: Data sources for indicators in the Connectivity dimension taken from

DESI 2022 Methodological Note (European Commission (2022))
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Figure B.3: Data sources for indicators in the IDT dimension taken from DESI

2022 Methodological Note (European Commission (2022))
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Figure B.4: Data sources for indicators in the DPS dimension taken from DESI

2022 Methodological Note (European Commission (2022))
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Dimension
Sub-

dim.

Sub-

dim.

weight

Indicator Weight

Norma-

lized

weight

Min-

Max

1
Human

capital
1a 50% 1a1* 2 50%

0% -

100%

1a2 1 25%
0% -

66%

1a3 1 25%
25% -

100%

1b 50% 1b1* 2 33.33%
0% -

10%

1b2* 2 33.33%
0% -

10%

1b3 1 16.67%
0% -

50%

1b4 1 16.67%
0% -

10%

2 Connectivity 2a 25% 2a1 1 33.33%
50% -

100%

2a2 1 33.33%
0% -

100%

2a3 1 33.33%
0% -

50%

2b 25% 2b1 1 25%
25% -

100%

2b2* 2 50%
0% -

100%

2b3 1 25%
0% -

100%

2c 40% 2c1 1 25%
0% -

100%
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2c2* 2 50%
0% -

100%

2c3 1 25%
25% -

100%

2d 10% 2d1 1 100%
25 -

100

3

Integration

of digital

technology

3a 15% 3a1* 2 100%
20% -

100%

3b 70% 3b1 1 10%
0% -

60%

3b2 1 10%
0% -

60%

3b3* 2 20%
0% -

75%

3b4* 2 20%
0% -

75%

3b5* 2 20%
25% -

75%

3b6 1 10%
30% -

100%

3b7 1 10%
0% -

100%

3c 15% 3c1 1 33.33%
0% -

50%

3c2 1 33.33%
0% -

33%

3c3 1 33.33%
0% -

25%
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4

Digital

public

services

4a 100% 4a1 1 14.29%
0% -

100%

4a2 1 14.29%
0-

100

4a3* 2 28.57%
35 -

100

4a4* 2 28.57%
45 -

100

4a5 1 14.29%
0% -

100%

Table B.2: Weights and min-max values for indicators in DESI 2022
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Dimension
Sub-

dim.

Sub-

dim.

weight

Indicator Weight

Norma-

lized

weight

Min-

Max

1
Human

capital

1a

new
50% 1a1* 2 28.57%

0% -

100%

1a2 1 14.29%
0% -

66%

1a3 1 14.29%
25% -

100%

1b3 1 14.29%
0% -

50%

Never

Used

Inter-

net

1 14.29%
0% -

45%

Fre-

quency

of use

1 14.29%
40% -

100%

1b

new
50% 1b1* 2 66.67 %

0% -

10%

1b4 1 33.33%
0% -

10%

2

Connect-

ivity

őrst

proposal

Fixed

sub-

dim.

50% 2a2 1 25%
0% -

100%

2b2* 2 50%
0% -

100%

2b3 1 25%
0% -

100%
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Mobile

sub-

dim.

50% 2c1 1 20%
0% -

100%

2c2 2 40%
0% -

100%

2c3 1 20%
25% -

100%

5G

stations

in the

3.6 band

1 20%
0 -

1.14

2

Connect-

ivity

second

proposal

Fixed

sub-

dim.

50% 2a2 1 20%
0% -

100%

2b2* 2 40%
0% -

100%

2b3 1 20%
0% -

100%

2d1 1 20%
25% -

100%

Mobile

sub-

dim.

50% 2c1 1 20%
0% -

100%

2c2 2 40%
0% -

100%

2c3 1 20%
25% -

100%
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5G

stations

in the

3.6 band

1 20%
0 -

1.14

3

Integration

of digital

technology

No

sub-

dim.

100% 3a1* 2 14.29%
20% -

100%

3b1 1 7.14%
0% -

60%

3b2 1 7.14%
0% -

60%

3b3* 2 14.29%
0% -

75%

3b4* 2 14.29%
0% -

75%

3b5* 2 14.29%
25% -

75%

3b7 1 7.14%
0% -

100%

3c1 1 7.14%
0% -

50%

3c2 1 7.14%
0% -

33%

3c3 1 7.14%
0% -

25%

4

Digital

public

services

Natio-

nal

services

50%

60%

70%

80%

4a1 1 7.69%
0% -

100%

4a2 1 7.69%
0 -

100
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Online

availab.

cit.

2 15.38%
44 -

100

Online

availab.

bus.

2 15.38%
54 -

100

Mobile

friend.
1 7.69%

56 -

100

User

supp.
1 7.69%

57 -

100

Trans-

parency
1 7.69%

22 -

100

CB

services

50%

40%

30%

20%

CB

Online

avail

cit.

2 40%
18 -

100

CB

Online

avail

bus.

2 40%
6 -

100

CB

User

support

1 20%
25 -

100

Table B.3: Weights and min-max values for the new proposed adjustments (red

horizontal line in CN means that one of the two proposals must be

chosen; matching colors in DPS sub-dimensional weights corresponds

to the set of proposed weights for the SA)
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