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Introduction

Gentle algebras constitute an important and rather large subclass of finite-dimensional
path algebras, characterised by particularly nice bound quivers. Their study is the
main topic of this Master’s thesis. Gentle algebras are of great interest since they en-
joy a favourable representation theory: they are indeed tame algebras and their finite-
dimensional representations are completely classified. Thanks to their tractable nature,
gentle algebras represent an optimal class of examples for the testing of theoretical con-
jectures or for inspiring new ideas. For this reason, the study of gentle algebras is a highly
active area of research, with links between representation theory and different areas of
mathematics. Their wide importance in the theory of cluster algebras is noteworthy, where
they occur as surface algebras. In representation theory, an important class of modules
are the support Ä -tilting modules, introduced by Adachi, Iyama and Reiten in [AIR14],
as a generalisation of tilting modules, where Ä stands for the Auslander-Reiten transla-
tion. As the name may intuitively suggest, Ä -tilting theory connects two very important
branches in representation theory: tilting and Auslander-Reiten theory. The authors also
showed that support Ä -tilting modules are in one-to-one correspondence with two-term
silting complexes in Kb(proj Λ). This implies that two-term silting complexes control
homological properties of Λ-mod and that they offer significant insights into Kb(proj Λ).

Therefore the aim of this thesis is not only to introduce and to study the properties
of modules over gentle algebras, but we will also give a complete classification of their
two-term silting complexes.

In Chapter 1, we fix our notations and we describe the setting where we will be working
throughout this thesis, presenting some basic concepts of general representation theory.
We always consider a basic finite dimensional algebra over an algebraically closed field.
Bearing in mind that our goal is to provide a complete classification of the two-term
silting complexes, in this chapter, we also study the association between modules and
their minimal projective presentations. This is aimed at understanding the structure of
Λ-mod by looking at K [−1,0](proj Λ), since this is the environment where the two-term
silting complexes live and where we may naturally study Ä -tilting theory.

The second chapter of this project lays the foundations of the theory regarding gentle
algebras. In this introduction we give a brief and informal summary of these concepts.

Definition 2.3.1. A gentle quiver Q := ((Q0,Q1), I) is a bound quiver, i.e. a directed
graph with relations, such that:
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6 Introduction

• each vertex v ∈ Q0 has at most two incoming and two outgoing arrows,

• I is generated by paths of length exactly two,

• for any arrow ´ ∈ Q1, there is at most one arrow ³ ∈ Q1 such that t(³) = s(´)
and ´³ /∈ I, and there is at most one arrow ³′ ∈ Q1, such that t(³′) = s(´) and
´³′ ∈ I,

• for any arrow ´ ∈ Q1, there is at most one arrow µ ∈ Q1 such that t(´) = s(µ) and
µ´ /∈ I and there is at most one arrow µ′ ∈ Q1 such that t(´) = s(µ′) and µ′´ ∈ I.

The algebra Λ = kQ
I

associated to a gentle bound quiver is called a gentle algebra.

We call a composition of direct and inverse paths of the quiver a string, and to every
string É, we associate a string module M(É). We can visualise every string as a diagram
of the form:

where the direct (resp. inverse) path are the one pointing to the right (resp. to the left).
Intuitively the peak vertices are the one colored in red, while the deep are the blue ones.

Revisiting a more general proof made by Crawley-Boevey in [Cra98], we will show
that each homomorphism between string modules corresponds to a linear combination
of partial maps between their respective strings. In this way we associate a fact about
modules to the structure of the strings that generate them, making it also easier to
visualise. In general, being able to visualise objects makes them easier to understand,
hence we will follow the same idea throughout the project: whenever possible, we will
link our statements to a combinatorial phenomenon occurring in the string.

Moreover, we also prove that string modules are indecomposable. This result is im-
portant because the categories Λ-mod and Kb(proj Λ) both satisfy the Krull-Schmidt
property, namely each object can be uniquely decomposed into a finite direct sum of in-
decomposable objects. Thus, understanding the indecomposables is fundamental, which
is why the study of indecomposable objects will be a recurring theme across this thesis.

We conclude Chapter 2 by proving how, given a string É, one can compute the min-
imal projective presentation P (É) of the respective string module. To reach this result,
it is necessary to examine the indecomposable projective modules in proj Λ and the ho-
momorphisms between them. These modules correspond bijectively to the vertices of the
gentle quiver and they turn out to be string modules. Namely, for a vertex a ∈ Q0, we
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show that the string generating the indecomposable projective module Pa consists of the
two maximal-length paths starting from a, with a as the unique peak vertex of the string.

The indecomposable objects of Kb(proj Λ) of a gentle algebra Λ have been classified by
Bekkert and Merklen in [BM03]. Using the computation, that we have just determined,
and their classification, we will show that every minimal projective presentation of a string
module corresponds to one of the indecomposable objects of Kb(proj Λ).

For the last two chapter of this thesis we will focus on the two-term silting complexes.

Definition 3.0.1. Let P in Kb(proj Λ). We call P silting if

• HomKb(proj Λ)(P, P [i]) = 0 for any i > 0 and

• thick(P ) = Kb(proj Λ),

where thick(P ) is the smallest full subcategory of Kb(proj Λ) which contains P and is
closed under cones, shifts, direct summands and isomorphisms. If only the first condition
is satisfied, then we call P presilting. If P is a silting object in K [−1,0](proj Λ), then it is
a two-term silting object.

In Chapter 3, in a general context, we present characterisations of these complexes
and describe several of their properties. Following [AIR14], we show all the necessary
steps to establish the previously mentioned bijection between these complexes and the
support Ä -tilting modules.

In Chapter 4, we show how, by enlarging our gentle algebras, we can more naturally
describe the minimal projective presentation P (É) = P 1 → P 0 of a string module M(É).

We introduce the so-called blossoming quiver QR, which is constructed by adding specific
arrows to the original quiver Q. This construction is not limited to the quiver alone,

we also expand the set of strings. The blossoming string ÉR is created by adding a
blossoming cohook at both the beginning and the end of the original string É. Then P 0

(resp. P 1) corresponds to the direct sum of the projective indecomposable modules of
the peak vertices (resp. the deep) of the blossoming string. Therefore, the combinatorial

information given by ÉR is sufficient to compute P (É).

We can now characterize presilting minimal projective presentation of string modules
over a gentle algebra, with the following original result.

Proposition 4.2.3. A minimal projective presentation of a string module M(É) is a two-

term presilting complex for Λ if and only if the relative blossoming string ÉR does not
kiss itself.

We say that two strings are kissing if there exists a common substring following certain
rules. Thus, with this proposition, we successfully link the combinatorial data arising from
the string to an algebraic property. We present, below, an example of two kissing strings,
where the "kiss" is highlighted in green:
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We will conclude this Master’s thesis by providing a complete classification of the two-
term silting complexes over gentle algebras. This classification is made possible by the
results achieved in the previous chapters, the bijection between support Ä -tilting modules
and two-term silting complexes, as discussed in Chapter 3, and the classification of support
Ä -tilting modules, made in [PPP21] and [Brü+20].



Chapter 1

Preliminaries

Before entering into the more important topics discussed in this thesis, it is essential to
recall basic preliminary concepts. Therefore, following consistently the first three chapters
of [ASS06], we will provide an overview of the basic definitions, results, and techniques
related to the study of the theory of modules over finite-dimensional algebra. Since the
preliminaries in the first sections of this chapter may already have been studied during
a Master’s course in homological algebra, we have chosen to omit certain details or even
entire proofs. This decision allows us to focus more on the general construction of the
projective resolution, of which we will present an important application in Chapter 2,
that will be the starting point of the main result stated and proved in Chapter 4. In
Sections 1.3 and 1.4 we introduce the concept of triangulated categories and prove some
of their properties. We will return to them in Chapter 3. Despite recalling very elementary
concepts of finite-dimensional algebra, we have chosen not to include a review of category
theory. This is on the assumption that the reader already has sufficient knowledge of these
concepts, and also because category theory is not the main focus of our work. For a full
background, the readers, who may not be familiar with this theory, can refer to [Mac98].
This chapter also serves to establish the notations that will be employed throughout the
project.

1.1 Finite-dimensional algebras

A ring is a triple (R,+, ·) consisting of a set R and two binary operations: addition and
multiplication, such that (R,+) is an abelian group, with zero element 0 ∈ R, and such
that multiplication is associative and left and right distributive over the addition. We
will consider only rings with identity. A ring homomorphism f : R→ R′, is a map which
preserves addition and multiplication.

Throughout this thesis K denotes an algebraically closed field, i.e. a commutative divi-
sion ring, where any nonconstant polynomial p(x) in one indeterminate x with coefficients
in K has a root in K.

Definition 1.1.1. A K-algebra is a ring Λ with an identity element such that Λ has a
K-vector space structure compatible with the multiplication of the ring.

9



10 Chapter 1. Preliminaries

A K-algebra Λ is said to be finite-dimensional, if the dimension of the K-vector
space is finite. An algebra Λ is connected if it is not a direct product of two algebras. A
K-subalgebra of Λ is a K-vector subspace Λ′ having the same identity of Λ and closed
under multiplication. A K-vector subspace I of the K-algebra Λ is a right ideal (or left
ideal) if xa ∈ I (or ax ∈ I, respectively) for all x ∈ I and a ∈ Λ. A two-sided ideal of Λ
(or simply an ideal of A) is both a left and a right ideal.

A K-algebra homomorphisms is a ring homomorphism, which is also a K-linear map.

Definition 1.1.2. A left Λ-module consists of an abelian group M and an operation
· : Λ×M →M , called the action of Λ over M , such that for all a, b ∈ Λ and m,m′ ∈M ,
we have :

• a · (m+m′) = a ·m+ a ·m′;

• (a+ a′) ·m = a ·m+ a′ ·m;

• (aa′) ·m = a · (a′ ·m);

• 1 ·m = m.

We will often omit the symbol ·. Right modules are defined similarly, but since we
primarily focus on left modules, we may sometimes omit the term ‘left’ when the context
is clear. Note that the reference we follow, [ASS06], works with right modules instead, so
all results are dual to the ones in the book.

A submodule M ′ of M is a K-vector subspace closed under the action of Λ, namely
am belongs to M ′, for each a ∈ Λ and m ∈ M ′. A submodule M ′ of M is maximal
if it is different than M and for each N submodule of M such that M ′ ¦ N , then N is
isomorphic to M .

A Λ-module M is said to be indecomposable, if M is non-zero and has no direct
sum decomposition M ≃M ′·M ′′, where both M ′ and M ′′ are non-zero Λ-modules. A Λ-
module M is said to be finite-dimensional if the dimension of the underlying K-vector
space is finite. Unless otherwise specified, we will mostly deal with finite-dimensional
modules. A Λ-module M is said to be simple, if M is non-zero and any submodule is
either zero or M itself.

For our purposes, the most important submodule of a left Λ-module M is the Jacob-
son radical: denoted with radM . It is defined as the intersection of all the maximal
submodules of M . The Jacobson radical is a crucial concept that we will frequently
utilize. Observe that the radical of a finite-dimensional module M can be computed as
radM = radΛ ·M . The quotient topM = M

radM
is called the top of M , and is a left

Λ
radΛ

-module.

Definition 1.1.3. Let M,N be two left Λ-module. A Λ-module homomorphism

f :M → N

is a K-linear map such that, for all m ∈M and a ∈ Λ, we have f(a ·m) = a · f(m).
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With Λ-Mod we denote the abelian category of all left Λ-modules, whose morphisms
are Λ-module homomorphisms. We denote with Λ-mod, the full subcategory of Λ-Mod
whose object are finite-dimensional left Λ-modules. To simplify, we call HomΛ-Mod(M,N)
= HomΛ(M,N) the set of Λ-module homomorphism from M to N . Observe that it is a K-
vector space, which is moreover finite-dimensional if both M and N are finite-dimensional.

A surjective Λ-module homomorphisms is also called epimorphism, while an injective
Λ-module homomorphisms will be called monomorphism.

The following theorem, see [ASS06, Theorem I.4.10], is of vital importance for the
representation theory of finite-dimensional algebras and moreover it shows the reasons
why we will focus on indecomposable modules.

Theorem 1.1.1 (Unique decomposition theorem). Let Λ be a finite-dimensional K-
algebra. Every module M in Λ-mod has a decomposition

M ≃M1 · · · · ·Mn,

where M1, . . . ,Mn are indecomposable modules. This decomposition is “unique” in the
sense that if M ≃ M1 · · · · ·Mn ≃ N1 · . . . Nm, where Mi and Nj are indecomposable
then m = n and there exists a permutation Ã of {1, . . . , n} such that MÃ(i) ≃ Ni for each
i = 1, . . . , n.

We also refer to this results saying that the category Λ-mod satisfies the Krull-Schmidt
property.

1.1.1 Idempotents

To fully describe the theory of finite-dimensional algebras, we need to introduce particular
elements of Λ, known as idempotents. An element e ∈ Λ is called an idempotent if e2 = e.
Two idempotents e1 and e2 are called orthogonal if e2e1 = e1e2 = 0. An idempotent e is
said to be primitive if it cannot be expressed as a sum e = e1 + e2, where e1 and e2 are
non-zero orthogonal idempotents of Λ.

Every algebra Λ has two trivial idempotents, 0 and 1, and if e is an idempotent, then
1− e is also an idempotent of Λ.

Observe that, given a primitive idempotent e, eΛe is a ring with identity e. For any
left Λ-module M , eM is a left eΛe-module. The action of eΛe over eM , is defined as
eae · em = eaem, for each m ∈ M and a ∈ Λ. Similarly, one can prove that Λe is a
right eΛe-module. Hence, we have that HomΛ(Λe,M) is a left eΛe-module. The action
is defined as eae · f(be) = f(beae), for each a, b ∈ Λ and f ∈ HomΛ(Λe,M).

We can now state the following useful result.

Lemma 1.1.2. Let Λ be a K-algebra, e a primitive idempotent and M a left Λ-module.
We have an isomorphism of left eΛe-modules:

HomΛ(Λe,M) ≃ eM.

Moreover, it induces a natural equivalence between functors HomΛ(Λe,−) : Λ-Mod →
eΛe-Mod and e(−) : Λ-Mod→ eΛe-Mod.
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Proof. We prove that the K-linear map ϕ : HomΛ(Λe,M) → eM , which associates to
f ∈ HomΛ(Λe,M), ef(e) ∈ eM , is an isomorphism of left eΛe-modules. Let a, b ∈ Λ and
m ∈ M . Firstly, this is a well-defined homomorphism between left eΛe-modules, since
eae · ϕ(f) = eae · ef(e) = eaef(e), while ϕ(eae · f) = f(e · eae) = f(eeae) = f(eae).
Because f is a homomorphism of left Λ-module eaef(e) = f(eaee) = f(eae). We prove
that ϕ is an isomorphism by proving that there exists an inverse. Consider the K-linear
map

ϕ′ : eM → HomΛ(Λe,M)

defined by the formula em → fem, with fem : Λe → M such that fem(ae) = aem. Then
fem is a well-defined homomorphism of left Λ-modules, since bfem(ae) = baem = fem(bae).
While ϕ′ is an homomorphism between left eΛe-modules since (eae · ϕ′(em))(be) = eae ·
fem(be) = fem(beae) = beaem and ϕ′(eae · em)(be) = ϕ′(eaem)(be) = feaem(be) = beaem.
Lastly, ϕϕ′(em) = ϕ(fem) = efem(e) = eeem = em, and ϕ′ϕ(f)(ae) = ϕ′(ef(e))(ae) =
fef(e)(ae) = aeef(e) = af(e) = f(ae), where the last equality is due to the fact that f is
a left Λ-module homomorphism. Thus, they are inverse to each other, and with this we
can conclude that ϕ is an isomorphism of left eΛe-module.

To prove that it is also functorial on the variable M , we just need to prove that, given
f ∈ HomΛ(M,N) the following commutes

HomΛ(Λe,M) eM

HomΛ(Λe,N) eN

ϕ

Hom(Λe,f) ef

ϕ

.

Let h ∈ HomΛ(Λe,M), then ϕHom(Λe, f)(h) = efh(e), while ef(ϕ(h)) = ef(eh(e)) =
efh(e), thanks to the definition of ef , which sends an element em ∈ eM to ef(m) ∈
eN .

Consider a set {e1, . . . , en} of primitive pairwise orthogonal idempotents of Λ, if more-
over 1 = e1 + · · · + en, the set is called complete, and it induces a decomposition
Λ = Λe1 · · · · · Λen with indecomposable left modules Λe1, . . . ,Λen.

We list some properties, see [ASS06, Proposition I.4.4 and Proposition I.4.5] which
show the interconnection between the notion of idempotents and the one of Jacobson
radical:

Proposition 1.1.3. Let Λ be a finite-dimensional algebra. Let B = Λ
radΛ

.

• Every right ideal I of B is a direct sum of simple right ideals of the form Be, where
e is a primitive idempotent of B.

• Any module N in B-mod is isomorphic to a direct sum of simple right ideals of the
form Be, where e is a primitive idempotent of B.

• If e ∈ Λ is a primitive idempotent of Λ, then topΛe is simple and rad(Λe) =
(radΛ)e ¢ Λe is the unique maximal proper submodule of Λe.
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This proposition implies that, given Λ = Λe1 · · · ·Λen a decomposition of Λ into
indecomposable submodules, every simple left Λ-submodule is isomorphic to one of the
modules

S(1) = topΛe1, · · · , S(n) = topΛen

Thus there exists a bijection between a complete set of primitive orthogonal idempotents
and a complete set of pairwise non-isomorphic simple Λ-modules given by

ej → topΛej.

1.1.2 Projective modules and projective resolutions

Now that we have covered some basic concepts, we can start to look at the so-called pro-
jective modules and construct the projective resolution. These objects and their relative
properties will be used often throughout our thesis project.

A left Λ-module P is projective if, for any epimorphism g : M → N and any f ∈
HomΛ(P,N), there is f̃ ∈ HomΛ(P,M) such that the following diagram is commutative:

P

M N 0.

f̃
f

g

It is known that the category Λ-mod has enough projectives, namely for every left
Λ-module there is an epimorphism f : P → M with P projective. Moreover, we have
another equivalent characterization of projective module, indeed a module is projective if
and only if is a direct summand of Λn, for some natural number n g 0. This implies that
Λe is a projective left Λ-module for any idempotent e.

We define a projective resolution of a left Λ-module M to be a chain complex

· · · −→ P n dn−→ P n−1 → · · · → P 1 d1−→ P 0 −→ 0 −→ . . .

of projective Λ-modules together with an epimorphism P 0 d0→ M of left Λ-modules such
that the sequence is exact, namely Ker dn = Im dn−1 for any n > 0. Since Λ-mod has
enough projectives, any module M has a projective resolution.

A Λ-submodule M ′ of M is superfluous if for every submodule X of M the equality
L +X = M implies X = M . The Jacobson radical radM of a module M , for instance,
is a superfluous submodule.

A Λ-epimorphism h : M → N in Λ-mod is minimal if Kerh is superfluous as a
submodule of M . An epimorphism h : P →M in Λ-mod is called a projective cover of
M , if P is a projective module and h is a minimal epimorphism.

Lemma 1.1.4. An epimorphism h : P → M is a projective cover of an Λ-module M if
and only if P is projective and for any Λ-homomorphism g : N → P the surjectivity of
hg implies the surjectivity of g.



14 Chapter 1. Preliminaries

Proof. Let h : P →M be a projective cover ofM and let g : N → P be an homomorphism
such that hg is surjective. We want to show that P = Kerh + Im g. Let x ∈ P . Since
Im(hg) = Im(h) = M , we have that h(x) belongs to Im(hg), so there exists y ∈ N such
that h(x) = hg(y). This implies that h(x − g(y)) = 0. Then x = x − g(y) + g(y), where
x − g(y) belongs to the kernel of h, while g(y) belongs to the image of g. The other
inclusion is clear. Since Kerh is superfluous, then g is surjective.

Conversely, we need now to prove that if h has the stated property, then it is a
projective cover. Since hg is surjective, then h is surjective. Let N be a submodule of P
such that N + Kerh = P . Let ϵ : N → P be the natural inclusion, then hϵ : N → M
is surjective, so also ϵ must be surjective. This implies that ϵ is an isomorphism and so
Kerh is superfluous.

A sequence in Λ-mod

P 1 d1→ P 0,

together with an epimorphism P 0 d0→ M is called a minimal projective presentation
of a Λ-module M , if the Λ-module homomorphism d0 is a projective cover, while d1 is the
composition of the projective cover of Ker(d0) and its natural inclusion into P 0.

P 1 P 0

Ker(d0) M

d1

d0

A projective resolution of M is called minimal if dj : P
j → Im dj is a projective cover

for all j g 0.
The next result shows that any module M in Λ-mod admits a minimal projective

presentation and a minimal projective resolution in Λ-mod.

Theorem 1.1.5. Let Λ be a finite-dimensional K-algebra and let {e1, . . . , en} be a com-
plete set of primitive orthogonal idempotents of Λ. For any Λ-module, M there exists a
projective cover h : P (M)→M → 0 where

P (M) ≃ (Λe1)
s1 · · · · · (Λen)

sn

and s1 g 0, . . . , sn g 0. The homomorphism h induces an isomorphism P (M)
radP (M)

≃ M
radM

.

Proof. Set B = Λ
radΛ

and let Ä : Λ → B the natural projection and ej = Ä(ej). Because
{e1, . . . , en} is a complete set of primitive orthogonal idempotents of Λ and Ä is a Λ-
module epimorphism, {e1, . . . , en} is a complete set of primitive orthogonal idempotents
of B and B = Be1 · · · · · Ben is the induced indecomposable decomposition. We have
that, for each j, the epimorphism Äj : Λej → topΛej is a projective cover of topΛej, since
its kernel radΛej is superfluous and Λej is projective.

Let M a Λ-module. Then, topM = M
radM

is a module over B. By Proposition 1.1.3,
any object in B-mod is isomorphic to a direct sum of left B-modules of the type Bej.
Namely,

topM≃(Be1)
s1 · · · · · (Ben)

sn ≃ (topΛe1)
s1 · · · · · (topΛen)

sn ,
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for some s1 g 0, . . . , sn g 0.
Set P (M) = (Λe1)

s1 · · · · · (Λen)
sn . This is a projective Λ-module. We choose this

because topP (M) = top((Λe1)
s1·· · ··(Λen)

sn) ≃ (topΛe1)
s1·· · ··(topΛen)

sn ≃ topM .
So, if we consider the canonical epimorphisms Ã : P (M) → topP (M) and Ã′ : M →

topM , by the projectivity of the module P (M), there exists a Λ-module homomorphism
h : P (M)→M , making the following commute:

P (M)

M topM 0

h ϕÃ

Ã′

It follows that h is surjective. Moreover Kerh ¦ Ker Ã = radP (M).
Since radP (M) is superfluous in P (M), Kerh is also superfluous in P (M). Therefore,

the epimorphism h is a projective cover of M .

Note that the proof is constructive, and later in the thesis, we will apply the technique
provided by the theorem to construct projective covers specifically in the context of gentle
algebras

Corollary 1.1.6. Let Λ be a finite-dimensional K-algebra. Any module M in Λ-mod
admits a minimal projective presentation and a minimal projective resolution in Λ-mod.

Proof. Let M be in Λ-mod and let P 0 := P (M)
d0→ M its projective cover. Then

Ker d0 ¦ P 0 is a finite-dimensional submodule, hence it exists its projective cover P 1 :=

P (Ker d0)
d′0→ Ker d0. Considering the natural inclusion ϵ0 : Ker d0 → P 0, set d1 := ϵ0d

′
0 we

have that P 1 d1→ P 0 d0→ M → 0 is a minimal projective presentation of M . By induction,
we can continue with the same reasoning and obtain a minimal projective resolution of
M in Λ-mod.

· · · P2 P 1 P 0 M

Ker d1 Ker d0

d2 d1 d0

Given its crucial role in constructing the minimal resolution, and thereby the minimal
presentation, we refer to the kernel of the projective cover d0 : P 0 → M as the syzygy
of M , denoted with Ω(M).

Corollary 1.1.7. If P is a projective module in Λ-mod, then the canonical epimorphism
Ã : P → topP is a projective cover of topP and there exists an isomorphism

P ≃ (Λe1)
s1 · · · · · (Λen)

sn

for some s1 g 0, . . . , sn g 0.
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This result implies that, given a decomposition of Λ into indecomposable submodules
Λ = Λe1 · · · ·Λen, a complete list of the indecomposable projective finite-dimensional
Λ-module is given by

P (1) = Λe1, P (2) = Λe2, . . . , P (n) = Λen.

The dual notion of projective modules are the so called injective modules. The
injective cover and the injective resolution are then constructed similarly.

1.2 Quivers and path algebras

A quiver is just a directed graph, a very simple mathematical object. Nevertheless,
as we will show in this section, there is a strong connection between quivers and the
representation theory of finite-dimensional algebras. Moreover, working with quivers offers
the important advantage of dealing with objects that can be visualised. These are just
some of the reasons why the main application of our work, which will be presented in the
next chapter, focuses on a particular type of algebra derived from quivers. Therefore, we
need to outline some basic definitions and properties of quivers, their algebras and their
representations, highlighting how they can be seen as an application of the result shown
in the previous section. For instance, we show how the projective and simple modules are
computed.

Definition 1.2.1. A quiver Q = (Q0,Q1, s, t) is a quadruple consisting of two sets: Q0

(whose elements are called vertices) and Q1 (whose elements are called arrows), and
two maps s, t : Q1 → Q0 which associate to each arrow ³ ∈ Q1, its source s(³) ∈ Q0 and
its target t(³) ∈ Q0, respectively.

An arrow ³ ∈ Q1 of source a = s(³) and target b = t(³) is usually denoted by
³ : a→ b. A quiver Q = (Q0,Q1, s, t) is usually denoted briefly by Q = (Q0,Q1) or even
simply by Q.

Thus, a quiver is nothing but an oriented graph without any restriction as to the
number of arrows between two points, to the existence of loops or oriented cycles.

A quiver Q is said to be finite if Q0 and Q1 are finite sets. The underlying graph Q
of a quiver Q is obtained from Q by forgetting the orientation of the arrows. The quiver
Q is said to be connected if Q is a connected graph.

From now on, unless otherwise specified, when we talk about a quiver, we always imply
that it is connected and finite.

When drawing a quiver, we agree to represent each vertex by a dot, and each arrow
will be pointing towards its target, as showed below.

Let Q = (Q0,Q1, s, t) be a quiver and a, b ∈ Q0. A path of length l greater or
equal than 1 with source a and target b (or, more briefly, from a to b) is a sequence
³1, ³2, . . . , ³l, where ³k ∈ Q1 for all 1 f k f l, and we have s(³1) = a, t(³k) = s(³k+1)
for each 1 f k < l, and finally t(³) = b. Such a path is denoted briefly by ³1 . . . ³l and
may be visualized as follows:

a = a0
³1→ a1

³2→ a2 → · · ·
³l→ al = b.
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Example 1.2.1. In Figure 1.1, we list some examples of finite connected quivers. Then
¶´³ is a path of QA of length 3, ¶µ³ is a path of QB of length 3, µµ´³¿¿¿ is a path of
QC of length 7,´³′ is a path of QD of length 2.

1

2

3 4

³ ´

µ ¶

QA

123

4 5 6

³´

¿µ

µ¶

Λ

QB

1 2 3³ ´
¿ µ

QC

1 2 3³

³′

´

´′

QD

Figure 1.1

We denote by Ql the set of all paths in Q of length l . We also agree to associate with
each point a ∈ Q0 a path of length 0, called the trivial path and denoted by ea Thus,
the paths of lengths 0 and 1 are in bijective correspondence with the elements of Q0 and
Q1, respectively. A path of length l g 1 is called a cycle whenever its source and target
coincide. A cycle of length 1 is called a loop. A quiver is called acyclic if it contains no
cycles. If there exists in Q a path from a to b, then a is said to be a predecessor of b,
and b is said to be a successor of a.

Definition 1.2.2. The path algebra KQ of Q is the K-algebra whose underlying K-
vector space has as its basis the set of all paths of length l g 0 in Q and such that the
product of two paths ³1, . . . , ³l and ´1, . . . , ´k is equal to zero if t(³) ̸= s(´1) and is
equal to the composed path ³1, . . . , ³l, ´1, . . . , ´k, if t(³) = s(´1). The product of basis
elements is then extended to arbitrary elements of KQ by distributivity.

Example 1.2.2. • If Q is the Jordan quiver

1
³

then KQ ≃ K[x], the polynomials in one variable.
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• If Q is the quiver of type An, with n− 1 arrows and n vertices:

1 2 n− 1 n³1 ³n

then KQ is isomorphic to the lower triangular matrices of M(K)n.

The arrow ideal of KQ is the ideal Arr generated by the arrows of Q. A two-sided
ideal I of KQ is admissible if there exists m g 2 such that Arrm ¦ I ¦ Arr2.

The pair Q := (Q, I) is then called a bound quiver and the quotient KQ
I

is a bound
quiver algebra. We will call the generators of the set I, relations and if two arrows are in
a relation, we will then visualise it, with a dotted lined, as in the following example.

Example 1.2.3. We add some relations in the quivers QA and QB of example 1.2.1:

1

2

3
4

³ ´

µ ¶

IA =< δγ >

1
2

3

4
5

6

³´

¿µ

µ¶

¼

IB =< βα, δγ >

The following result show the profound interconnection between finite-dimensional
algebra and quivers. For the proof one can refer to [ASS06, Corollary II.2.12, Theorem
II.3.7 ].

Theorem 1.2.1. Given Q a finite connected quiver and I an admissible ideal, the bound
quiver algebra KQ

I
is a basic and connected finite-dimensional algebra with an identity,

having Arr
I

as radical and {ea | a ∈ Q0} as a complete set of pairwise orthogonal primitive
idempotents, where ea is the residual class of the trivial path ea in KQ modulo I.

Conversely, let Λ be a basic connected finite-dimensional K-algebra. There exists a
unique quiver QΛ and an admissible ideal I of KQΛ such that A ≃ KQΛ

I
.

Definition 1.2.3. Let Q be a finite quiver. A K-linear representation or, more briefly, a
representation M of Q is defined by the following data:

• To each vertex a in Q0 is associated a K-vector space Ma,

• To each arrow ³ : a→ b in Q1 is associated a K-linear map ϕ³ :Ma →Mb.

Such a representation is denoted as M = (Ma, ϕ³)a∈Q0,³∈Q1
or simply M = (Ma, ϕ³).
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Example 1.2.4. We list examples of representation of the quivers QC and QD, of Example
1.2.1.

K
3

K
2

K

[

0 0 1
1 0 0

]

[

1 0
]





0 0 1
1 0 0
0 0 0



 0

K K
2 0

[

1 0
]

[

1 1
]

0

0

A representation is finite-dimensional if each Ma is finite-dimensional. The above
representations are all finite-dimensional.

Let M = (Ma, ϕ³) and M ′ = (M ′
a, ϕ

′
³) be two representations of Q. A morphism

(of representations) f : M → M ′ is a family f = (fa)a∈Q0
of K-linear maps (fa :

Ma → M ′
a)a∈Q0

that are compatible with the structure maps ϕ³, that is, for each arrow
³ : a→ b, we have ϕ³fa = fbϕ³ or, equivalently, the following square is commutative:

Ma Mb

M ′
a M ′

b.

ϕα

fa fb

ϕ′α

Let f : M → M ′ and g : M ′ → M ′′ be two morphisms of representations of Q,
where f = (fa)a∈Q0

and g = (ga)a∈Q0
. Their composition is defined to be the family

gf = (gafa)a∈Q0
. Then gf is easily seen to be a morphism from M to M ′′. We have thus

defined a category Rep(Q) of K-linear representations of Q. We denote by rep(Q) the full
subcategory of Rep(Q) consisting of the finite-dimensional representations.

Let Q be a finite quiver and M = (Ma, ϕ³) be a representation of Q. For any non-
trivial path p = ³1³2 . . . ³l from a to b in Q, we define the evaluation of M on the
path P to be the K-linear map from Ma to Mb defined by ϕp = ϕ³1ϕ³2 . . . ϕ³l−1

ϕ³l
. The

definition of evaluation extends to K-linear combinations of paths with a common source
and a common target; thus let

q =
m
∑

i=1

¼ipi

be such a combination, where ¼i belongs to K and pi is a path in Q, for each i, then

ϕq =
m
∑

i=1

¼iϕpi .

We are now able to define a notion of representation of a bound quiver. Let thus
Q be a finite quiver and I be an admissible ideal of KQ. A representation M = (Ma, ϕ³)
of Q is said to be bound by I, or to satisfy the relations in I, if we have ϕq = 0,
for all relations q ∈ I. If I is generated by the finite set of relations {q1, . . . , qm}, the
representation M is bound by I if and only if ϕpj = 0, for all j such that 1 f j f m. We
denote by Rep

K
(Q, I) (or by rep

K
(Q, I) the full subcategory of Rep

K
(Q) (or of rep

K
(Q),

respectively) consisting of the representations of Q bound by I.
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Example 1.2.5. Here are presented some bound representations of the bound quivers
(QA, IA) and (QB, IB) of Example 1.2.3:

K
2

K
2

K
0

[

1 0
0 1

]

[

1 0
]

[

0 1
]

0

K
K

0

K
K

2
K

id0

id

[

0
1

]

[

0
1

][

1 0
]

0

Theorem 1.2.2. Let Γ = KQ
I

, where Q is a finite, connected quiver and I is an admissible
ideal of KQ. There exists an equivalence of categories between the category of Λ-mod
of finite-dimensional left Λ-modules and the category of finite-dimensional bound quiver
representations:

Λ-mod ≃ rep
K
(Q, I).

Even if we are not giving a complete proof of this theorem, for it one can refer to
[ASS06, Theorem III.1.6], we want to highlight the main idea behind, hence we show
how, from M a left Λ-module, we associate its equivalent representation. We set for each
a ∈ Q0, Ma = eaM , which is the vector space consisting of all eam, with m ∈M , and, for
any ³ : a → b arrow in Q1, let ³, be its class modulo I. Then for any x ∈ Ma, the map
ϕ³ :Ma →Mb is given by

ϕ³(x) = ³x.

As a consequence, rep
K
(Q, I) is abelian, has enough projective and injective objects,

and thus every object of rep
K
(Q, I) admits a projective and an injective resolution. In

view of the above, we will often use the words “module” and “representation” to mean the
same object.

Let a ∈ Q0; we denote by S(a) the representation (S(a)b, ϕ³) of Q defined as follows

S(a)b =











0 if b ̸= a,

K if b = a,

ϕ³ = 0 for all ³ ∈ Q1 .

Clearly, S(a) is a bound representation of (Q, I) (for any admissible I), and we have the
following lemma.

Lemma 1.2.3. Let Λ = KQ
I

be the bound quiver algebra of (Q, I).

• For any a ∈ Q0, S(a) viewed as a Λ-module is isomorphic to the top of the inde-
composable projective Λ-module Λea.
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• The set {S(a) | a ∈ Q0} is a complete set of representatives of the isomorphism
classes of the simple Λ-modules.

Proof. By definition, given a ∈ Q0, S(a) is one-dimensional, hence it is a simple represen-
tation and so, thanks to the equivalence in Theorem 1.2.2, is a simple Λ-module. Thus, it
must be isomorphic to one of the modules topΛej, which are simple by Proposition 1.1.3.
We have that HomΛ(Λea, S(a)) ̸= 0. Indeed, by Lemma 1.1.2, HomΛ(Λea, S(a)) ≃ eaS(a),
and, by Theorem 1.2.2, eaS(a) is isomorphic to S(a)a, which is different from zero. So we
have at least one homomorphism different from zero between Λea and S(a), which must
be an epimorphism, since S(a) is simple. This implies that S(a) ≃ topΛea.

If a ̸= b are two different vertices of Q0, it is clear that HomΛ(S(a), S(b)) = 0 and in
particular S(a) ≃ S(b). So, the simple modules S(a), a ∈ Q0, are pairwise non-isomorphic.
The last statement then follows, since we proved that each simple indecomposable Λ-
module is of the type topΛea for some a ∈ Q0.

Example 1.2.6.

0

0

K
0

0 0

0 0

The simple module S(2) of ΛA = KQA

IA
.

0
0

0

K
0

0

The simple module S(4) of ΛB = KQB

IB
.

The radical of a bound representationM of a quiver (Q, I) is described by the following
lemma:

Lemma 1.2.4. . Let M = (Ma, ϕ³) be a bound representation of (Q, I). Then radM =
(Ra, Ä³) with

Ra =
∑

³:b→a

Im(ϕ³ :Mb →Ma)

and
Ä³ = ϕ³

∣

∣

Ra

for every arrow ³ of source a.

Proof. Let Arr be the arrow ideal of KQ. For each ³ in Arr denote with ³ ∈ Arr
I

its
residual class modulo I. Then radM = radΛ · M = Arr

I
· M . So radM is generated

by the action of ³ over M for each ³ ∈ Q1, namely radM =
∑

³∈Q1
³M . Hence,

by the construction showed in Theorem 1.2.2, (radM)a = ea radM , which is equal to
ea

∑

³∈Q1
³M =

∑

³∈Q1 | t(³)=a ³M . Given an arrow ³ : b → a of target a, by the same
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construction, we have that ϕ³ is given by the right multiplication by ³, thus ³M =
³ebM = ³Mb = ϕ³(Mb) = Imϕ³. We can now conclude that

(radM)a =
∑

³∈Q1 | t(³)=a

Imϕ³.

Since radM is a submodule of M , the linear map Ä³ relative to the arrow ³ : a→ b is just
equal to the restriction of the map of M , namely Ä³ = ϕ³|(radM)a

for each ³ ∈ Q1.

We now show how to compute the indecomposable projective Λ-modules. Since Λ
is basic and {ea | a ∈ Q0} is a complete set of primitive orthogonal idempotents of Λ,
the decomposition Λ = ·a∈Q0

Λea is a decomposition of Λ as a direct sum of pairwise
non-isomorphic indecomposable projective Λ-modules. We wish to describe the modules
P (a) = Λea, with a ∈ Q0.

Lemma 1.2.5. Let (Q, I) be a bound quiver, Λ = KQ
I

, and P (a) = Λea, where a ∈ Q0.
If P (a) = (P (a)b, f³)b∈Q0,³∈Q1

, then P (a)b is the K-vector space with basis the set of all
the p path, not in a relation, from a to b. For an arrow ³ : b → c, the K-linear map
f³ : P (a)b → P (a)c is given by the left multiplication by ³.

Proof. From the construction in Theorem 1.2.2, the representation corresponding to Λea
is such that for each b ∈ Q0,

P (a)b = ebP (a) = ebΛea = eb
KQ

I
ea =

ebKQ ea
ebIea

.

Note that ebKQ ea corresponds exactly to the path algebra which has as vectors of a basis
the paths from a to b. Hence, ebKQ ea

ebIea
is generated by the paths p : a → b which are not

in a relation. Moreover, if ´ : b→ c is an arrow of Q, then ϕ´ : ebΛea = P (a)b → ecΛea =
P (a)c is such that if w is the residual class of a path w from a to b, then f´(w) = ´w,
namely it corresponds to the left multiplication, as we were looking for.

Example 1.2.7. In Figure 1.3, we present some examples of projective indecomposable
modules over the path algebras defined in the previous examples.

0

0

K
K

0 0

0 id

The indecomposable projective
ΛA-module P (3).

K

K

K
2

K

id

[

0
1

]

[

1
0

] [

0 1
]

The indecomposable projective
ΛA-module P (1).

Figure 1.2
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0
0

0

K
K

0

00

00

0id

0

The indecomposable projective
ΛB-module P (5)

K
K

0

K
K

2
K

id0

id

[

0
1

]

[

1
0

][

0 1
]

0

The indecomposable projective
ΛB-module P (1)

Figure 1.3

1.3 Standard functors

Let Λ be a finite-dimensional K-algebra. We denote with Λop the opposite algebra of Λ,
namely the K-algebra whose underlying set and vector space structure are just those of Λ,
but the multiplication “∗” in Λop is defined as a∗b = b ·a, where “ ·” is the multiplication
of Λ, as defined in Section 1.1. The left module over Λop can be viewed as right Λ-module.
Therefore, to indicate right Λ-module, we will also use Λop-module.

For instance, (KQ
I
)op = KQop

Iop
, where Qop is the quiver obtained from Q by reversing

each arrow and Iop is the admissible ideal obtained from I by reversing all paths, i.e if
p = ³1 . . . ³l belongs to I, then pop = ³l . . . ³1 belongs to Iop.

Definition 1.3.1. We define the contravariant functor

D : Λ-mod→ Λop-mod,

by assigning, to each left module M in Λ-mod, its dual K-vector space

D(M) = HomK(M,K).

This is well-defined, indeed D(M) is a right Λ-module, with the right action of Λ
over D(M) defined as (ϕ · a)(m) = ϕ(am), for any ϕ ∈ HomK(M,K), m ∈ M , a ∈ Λ.
Moreover, given M,N in Λ-mod, we have that HomΛ(M,N) ≃ HomΛop(DN,DM), i.e.
this action is compatible with functoriality of HomK(−,K) which means that it takes
Λ-homomorphisms to Λop-homomorphisms.

Similarly, one can define the quasi-inverse of D which associates to a right Λ-module
its dual K-vector space HomK(M,K), which has now a left Λ-module structure. It is
denoted with the same symbol of D: D : Λop-mod → Λ-mod, and one can prove that
there exists a natural equivalence such that

1Λ-mod ≃ D ◦D and 1Λop
-mod ≃ D ◦D. (1.1)
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We will refer to the functor D(−) as the standard duality. One can prove that every
indecomposable injective right A-module is isomorphic to one of the modules

D(Ae1), . . . , D(Aen).

Proposition 1.3.1. Let Λ be a K-algebra, e a primitive idempotent and M a left Λ-
module. We have an isomorphism of right eΛe-modules:

D(eM) ≃ (DM)e

It is, moreover, functorial on M .

Proof. Let M be a left Λ-module and e a primitive idempotent. Then e gives a decompo-
sition of M into eM·(1−e)M and so, by additivity of the Hom functor, DM ≃ D(eM)·
D((1−e)M). Since DM is a right Λ-module, we also get that DM ≃ DMe·DM(1−e).

Now we have:

(DM)e = {f ∈ DM | f(m) = 0 for all m ∈ (1− e)M}.

Indeed, if f ∈ (DM)e, by definition of the action of Λ over DM , there exists f ′ ∈ DM ,
such that f(m) = f ′ · e(m) = f ′(em) for all m ∈ M . Thus if x ∈ (1 − e)M , i.e. exists
m′ ∈ M such that x = (1 − e)m′, we get that f(x) = f ′(e(1 − e)m′) = f ′(0) = 0. If
f in {f ∈ DM | f(m) = 0 for all m ∈ (1 − e)M}, then for each m ∈ M , we have that
f(m) = f(em) + f((1− e)m) = f(em), hence f could be written as f = f ′ · e, with f ′ in
DM , i.e. it belongs to (DM)e. This proves that, as sets, D(eM) is the same as DMe.

This observation gives us the idea on how to construct an isomorphism ϕ of right
eΛe-modules between D(eM) and (DM)e. We define ϕ such that, given f ∈ (DM)e,
then ϕ(f) = f ′. This is, by what said above, well-defined, injective and surjective. It
preserves moreover the eΛe action, indeed ϕ(f)·eae(em) = f ′ ·eae(em) = f ′(eaem). While
f · eae = f ′ · e · eae = (f ′ · eae) = (f ′ · ea) · e, so ϕ(f · eae)(em) = (f ′ · ea)(em) = f ′(eaem)

The isomorphism ϕ induces also an equivalence of functors since it does not depend
on the variable m, making, given a Λ-module homomorphism f : M → N , the following
commute

(DN)e D(eN)

(DM)e D(eM)

ϕ

(Df)e D(ef)

ϕ

.

In fact, consider a map h′ : eN → k in D(eN) By the definitions of the functors D(−),
e(−), and (−)e, for any m ∈M , we have

D(ef)(h)(em) = h(ef(em)) = h(ef(m)) = h(f(em)),

where the last equality holds because f is a Λ-module homomorphism. Now consider
h = h′ · e ∈ (DN)e, we get that

(Df)e(h)(m) = h′f(em),

where h′ is the homomorphism in DN associated with h. Since ϕ(h) = h′, we conclude
that the map ϕ establishes a natural equivalence D(eM) ≃ (DM)e.
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If M is a left Λ-module, then the vector space HomΛ(M,Λ) becomes a right Λ-module
via (f · a)(m) = f(a ·m). So we can consider the dual functor

HomΛ(−,Λ) : Λ-mod→ Λop-mod .

We observe that given Λe a projective left Λ-module, with e a primitive idempotent, then,
by Lemma 1.1.2, HomΛ(Λe,Λ) ≃ eΛ is a projective right Λ-module. The additivity of the
Hom functor, implies that HomΛ(−,Λ) induces a duality between the category proj Λ of
projective left Λ-modules, and the category proj Λop of projective right Λ-modules.

We can finally define the so called Nakayama functor as the composition of the
standard duality D(−) and HomΛ(−,Λ). Formally:

Definition 1.3.2. The Nakayama functor ¿ is defined to be the endofunctor

¿ = DHomΛ(−,Λ) : Λ-mod→ Λ-mod .

Lemma 1.3.2. Given P a projective left Λ-module, there is an equivalence of functors
Λ-mod→ Λ-mod:

DHomΛ(−, ¿P ) ≃ HomΛ(P,−).

Proof. Start by considering a projective indecomposable left Λ-module P = Λe, with
e ∈ Λ primitive idempotent. We proved in Lemma 1.1.2 that there exists a functo-
rial isomorphism HomΛ(Λe,M) ≃ eM . Dually, we have that HomΛop(eΛ,M) ≃ Me.
Moreover, thanks to the same isomorphism, we get ¿Λe = DHomΛ(Λe,Λ) = D(eΛ).
Being D(−) a duality functor, if we have M in Λ-mod and N in Λop-mod, we get
HomΛ(M,DN) = HomΛop(N,DM). By using this and Proposition 1.3.1, we obtain that

eM ≃ e(D(DM)) ≃ D((DM)e) ≃ D(HomΛop(eΛ, DM))

≃ D(HomΛ(M,D(eΛ)) ≃ D(HomΛ(M, ¿Λe)),

where each isomorphism is functorial. We conclude thanks to the additivity of the functors
Hom and D(−).

This result also implies that HomΛ(−, ¿P ) ≃ DHomΛ(P,−).

1.4 Homotopy category of chain complexes

Let proj Λ, be the full subcategory of Λ-mod, whose objects are the finite-dimensional
projective modules. A chain complex of proj Λ , also referred with just complex, consists
of a sequence of finite-dimensional left projective Λ-modules and a sequence of Λ-module
homomorphisms between consecutive modules such that the image of each homomorphism
is included in the kernel of the next. Formally:

Definition 1.4.1. A chain complex C• = (C i, di)i∈Z is a sequence of left projective Λ-
modules C i ∈ proj Λ connected by Λ-homomorphisms di : Ai → Ai+1 such that di+1 ◦di =
0.
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We often write a complex as

· · · C i C i+1 · · · C−1 C0 C1 · · ·di d−1 d0

Note that we sometimes omit the bullet at the top if it does not cause more confusion
and if it is clear that we are talking about complexes. The object C i will be referred to
as the term of C in degree i.

A chain map f • between chain complexes A• = (Ai, ai)i∈Z and B• = (Bi, bi)i∈Z
is a sequence of left Λ-module homomorphism f i : Ai → Bi for each i ∈ Z such that
bi ◦ f i = f i−1 ◦ ai. Namely, in the diagram:

· · · Ai Ai+1 · · · A−1 A0 A1 · · ·

· · · Bi Bi+1 · · · B−1 B0 B1 · · ·

ai

f i f i+1

a−1

f−1

a0

f0 f1

bi b−1 b0

all square commutes.
The category of chain complexes C(proj Λ) is the category whose objects are chain

complexes and whose morphisms are chain map.
We introduce an equivalence relation between chain maps. Let f •, g• be chain maps

between chain complexes A• = (Ai, ai)i∈Z and B• = (Bi, bi)i∈Z, f and g are chain homo-
topic (or simply homotopic), written f ∼ g, if there exists a homotopy h, i.e. a sequence
of Λ-homomorphism hi : Ai → Bi−1 such that hi+1ai + bi−1hi = f i − gi.

The homotopy category of chain complexes K(proj Λ) is then defined as fol-
lows: its objects are the same as the objects of C(proj Λ), namely, chain complexes. Its
morphisms are “maps of complexes modulo homotopy”, namely

HomK(proj Λ)(A
•, B•) =

HomC(proj Λ)(A,B)

∼

We denote with Kb(proj Λ) the full subcategory of K(proj Λ) whose objects are the
bounded complexes, namely An = 0 for |n| >> 0. Define K [−1,0](proj Λ) as the full
subcategory of Kb(proj Λ), consisting of chain complexes with at most two non-zero ob-
jects, which appear in degrees 0 and −1.

Given a left Λ-module M , its minimal projective resolution is defined as a complex

P •
M = · · · −→ P n dn−→ P n−1 −→ · · · → P 1 d1−→ P 0 −→ 0 −→ . . . ,

with an epimorphism d0 : P 0 → M . This complex is an object in K(proj Λ), with the
convention that in degree −i there is the term P i. Note that, when we will refer to the
projective resolution of a module, we will mean the complex, but the map d0 is always
implicitly understood. Equivalently, when discussing the minimal projective presentation
P 1 → P 0, we treat it as an object in K [−1,0](proj Λ), with the existence of the projective
cover d0 : P

0 →M implied.
This association turns out to be functorial; namely, there exists a well-defined functor

k : Λ-mod → Kb(proj Λ), such that k(M) = P •
M . This came from the fact that, given
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two different projective resolutions of the same module, there exist a homotopy between
them.

Due to this correspondence, the homotopy category serves as a powerful tool in the
study of module theory over finite-dimensional algebras. Moreover, K [−1,0](proj Λ) is pre-
cisely the category where the two-term silting complexes, mentioned in the introduction,
live. These are some of the reasons why, we have introduced it.

Throughout this thesis, we denote Kb(proj Λ) by K, and K [−1,0](proj Λ) by K[−1,0].

1.4.1 Triangulated structure and its properties

Contrary to what one might have initially thought, myself included, the homotopy cate-
gory is not abelian. Instead, it has a triangulated structure, which generalizes the concept
of exact sequences, a fundamental aspect of the theory discussed so far. In this section, we
follow the notations and definitions from [Hap88]. This reference also provides a helpful
background on the general theory of triangulated structures for anyone interested.

We define a triangle T in K as a sextuple of elements (A,B,C, ³, ´, µ), where A,B,C
are in K, ³ : A → B, ´ : B → C and µ : C → A[1]. The shift A[1] = (A[1]i, diA[1]) of

A = (Ai, diΛ) is the complex in K defined as A[1]i = Ai+1 and diA[1] = −d
i+1
Λ .

We will denote a triangle as

A
³
→ B

´
→ C

µ
→ A[1].

K is a triangulated category, namely the set of triangles satisfy the following axioms:

(TR1) Every sextuple isomorphic to a triangle is a triangle. Every morphism f : A → B

in K can be embedded into a triangle A
f
→ B → C → A[1] and A

id
→ A→ 0→ A[1]

is a triangle.

(TR2) If A
³
→ B

´
→ C

µ
→ A[1] is a triangle, then the two rotated triangle B

´
→ C

µ
→

A[1]
−³[1]
→ B[1] and C[−1]

−µ[1]
→ A

³
→ B

´
→ C are also triangles.

(TR3) Given two triangles A
³
→ B

´
→ C

µ
→ A[1] and A′ ³′

→ B′ ´′

→ C ′ µ′

→ A′[1], and
morphisms f : A→ A′, g : B → B′, such that the following commutes

A B

A′ B′.

³

f g

³′

Then it exists h : C → C ′, making (f, g, h) a morphism between triangles, that is
the following commute:

A B C A[1]

A′ B′ C ′ A′[1].

³

f

´

g

µ

h f [1]

³′ ´′ µ′
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(TR4) Given triangles:

A
u
−→ B

j
−→ C ′ k

−→ A[1],

B
v
−→ C

l
−→ A′ i

−→ B[1],

A
vu
−→ C

m
−→ B′ n

−→ A[1],

there exists a triangle C ′ f
−→ B′ g

−→ A′ h
−→ C ′[1] such that l = gm, k = nf, h =

j[1]i, i[−1]g[−1] = un[−1], fj = mv. Namely the following diagram has commuting
squares and the third row is a triangle:

B′[−1] A A

A′[−1] B C A′ B[1]

C ′ B′ A′ C ′[1]

A[1] A[1].

n[−1]

g[−1]

id

u vu

i[−1] v

j

l

m

i

id j[1]

f

k

g

n

h

id

In K, we can embed any morphism between complexes A = (Ai, diΛ), B = (Bi, diB)
f : A → B into a triangle, thanks to the following construction: define the complex
Cf := (Ai+1 · Bi, diCf

) in K, with differentials

diCf
=

[

−di+1
A f i+1

0 diB

]

: Ai+1 · Bi → Ai+2 · Bi+1.

Cf is called the mapping cone of f . Then A
f
→ B

ϵB→ Cf
ÃA[1]
→ A[1] is a triangle, where

ϵB is the natural injection and ÃA[1] is the natural projection.

Not only is K a triangulated category, but also it satisfies the Krull-Schmidt the-
orem, namely every object decomposes into a finite direct sum of objects having local
endomorphism rings, which are called indecomposable. This result comes from a more
general one, combination of Theorem 6.1 of [Sha23] and Theorem 3.4 of [Sch11].

We now present and demonstrate some implications of the axioms of triangulated
categories.

Proposition 1.4.1. Let A
u
→ B

v
→ C

w
→ A[1] be a triangle. For any Q in K, there are

two long exact sequences:

· · · Hom(Q,A[n]) Hom(Q,B[n]) Hom(Q,C[n]) Hom(Q,A[n+ 1]) · · · ,

· · · Hom(C[n], Q) Hom(B[n], Q) Hom(A[n], Q) Hom(C[n+ 1], Q) · · · .

Hom(Q,u[n]) Hom(Q,v[n]) Hom(Q,w[n])

Hom(v[n],Q) Hom(u[n],Q) Hom(w[n],Q)
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Proof. Fix an integer n and take f in HomK(Q,A[n]). The commutative diagram,

Q Q 0 Q[1]

A[n] B[n] C[n] A[n+ 1],

id

f

0

u[n]f

0

u[n] v[n] w[n]

can be completed into a morphism between triangles, thanks to the third axiom (TR3).
The construction is shown below:

Q Q 0 Q[1]

A[n] B[n] C[n] A[n+ 1].

id

f

0

u[n]f

0

0 f

u[n] v[n] w[n]

This implies that vuf = 0, namely 0 = Hom(Q, v)((Hom(Q, u)(f))) for any f ∈
Hom(Q,A[n]), hence the image of Hom(Q, u) is contained in the kernel of Hom(Q, v).
To prove the other inclusion, we follow the same reasoning. Let g be in the kernel of
Hom(Q, v), i.e. vg = 0. This implies that the following is a commutative square:

Q Q 0 Q[1]

A[n] B[n] C[n] A[n+ 1]

id 0

g

0

0

u[n] v[n] w[n]

and so, by the third axiom (TR3) combined with the second (TR2), the diagram can be
completed to a morphism between triangles:

Q Q 0 Q[1]

A[n] B[n] C[n] A[n+ 1].

id

f

0

g

0

0 f [1]

u[n] v[n] w[n]

This implies that g = uf for some f in Hom(Q,A[n]), i.e. g belongs to the image of
Hom(Q, u). This concludes the proof of the exactness in Hom(Q,B[n]). The exactness in
the other degree of the sequence is given by the second axiom (TR2).

The exactness of the second long sequence can be proved similarly.

Proposition 1.4.2.

(1) Let

A B C A[1]

A′ B′ C ′ A′[1]

u

f

v

g

w

h f [1]

u′ v′ w′

be a morphism of triangles. If f and g are isomorphism, then the same is true for
h.
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(2) If one of the vertices of a triangle is 0, then the map between the other vertices is
an isomorphism.

(3) Given A → B → C → A[1] and A′ → B′ → C ′ → A′[1] two triangles, then
A· A′ → B · B′ → C · C ′ → A[1]· A′[1] is a triangle.

(4) One of the side of a triangle is the 0-morphism, A
0
→ B, if and only if the third

vertex is isomorphic to B · A[1].

Proof. (1) Thanks to Proposition 1.4.1, there are long exact sequences,

Hom(Q,A) Hom(Q,B) Hom(Q,C) Hom(Q,A[1]) Hom(Q,B[1])

Hom(Q,A′) Hom(Q,B′) Hom(Q,C ′) Hom(Q,A′[1]) Hom(Q,B′[1]),

u◦

f◦

v◦

g◦

w◦

h◦

u[1]◦

f [1]◦ g[1]◦

u′◦ v′◦ w′◦ u′[1]◦

where the morphisms between the sequences are induced by the ones between the triangles.
We had denoted f◦ = Hom(Q, f), we will use this notation when the object Q we refer
to is obvious and can be omitted.

Since f and g are isomorphisms, also f [i]◦ and g[i]◦ are isomorphisms for any i g 0.
Thus, due to the Five lemma, Hom(Q, h) is an isomorphism for each Q in K. In particular,
if we choose Q = C and consider idC′ in Hom(C ′, C ′), exists h′ ∈ Hom(C ′, C) such that
hh′ = idC′ , namely, we found a right inverse. The left inverse can be found by looking at
the sequence Hom(−, C ′). The same reasoning applies.

(2) Thanks to the second axiom (TR2), we can assume, without loss of generality,

that we have a triangle of the type A
f
→ B → 0 → A[1]. We have obvious commutative

squares of the type

0 A B 0

0 A A 0

f

id

id

and
0 B B 0

0 A B 0.

id

id

f

Thanks to the second and third axioms (TR2), (TR3), there exist h and g, which
complete the following commutative diagram:

B B 0 B[1]

A B 0 A[1]

A A 0 A[1].

id

g id

f

id h

id

So fg = idB and hf = idA, namely g is the right inverse, while h is the left one.
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(3) Let A
f
→ B → C → A[1] and A′ f ′

→ B′ → C ′ → A′[1] be two triangles. The map

[

f 0
0 f ′

]

: A· A′ → B · B′

can be fitted into a triangle

A· A′ → B · B′ → Q→ (A· A′)[1] (1.2)

by the first axiom (TR1). Note that (A · A′)[1] = A[1] · A′[1]. Consider the natural
projections ÃA, ÃA′ , ÃB, ÃB′ . We can complete the commutative squares

A· A′ B · B′ Q (A· A′)[1]

A B C A[1]

ÃA ÃB
and

A· A′ B · B′ Q (A· A)[1]

A′ B′ C ′ A′[1]

ÃA′ ÃB′

into morphisms of triangles:

A· A′ B · B′ Q (A· A′)[1]

A B C A[1]

ÃA ÃB ϕ
and

A· A′ B · B′ Q (A· A)[1]

A′ B′ C ′ A′[1].

ÃA′ ÃB′ ϕ′

The induced map ϕ and ϕ′ give rise to a morphism ϕ′′ : Q → C · C ′′, thanks to the
universal property of the direct sum, such that the following is a commutative diagram:

A· A′ B · B′ Q (A· A′)[1]

A· A′ B · B′ C · C ′ A[1]· A′[1].

id id ϕ′′ id (1.3)

Following quite the same reasoning as in (1), we prove that ϕ′′ must be an isomorphism.
Observe that we can not use (1) directly, since we do not have two triangles, as in the
hypothesis of (1). We have, by Proposition 1.4.1, two long exact sequences for any Q in
K:

Hom(Q,A) Hom(Q,B) Hom(Q,C) Hom(Q,A[1]) Hom(Q,B[1]),

Hom(Q,A′) Hom(Q,B′) Hom(Q,C ′) Hom(Q,A′[1]) Hom(Q,B′[1]),

and due to the additivity of the functor Hom, we get the long exact sequence:

Hom(Q,A· A′) Hom(Q,B · B′) Hom(Q,C · C ′)

Hom(Q,A[1]· A′[1]) Hom(Q,B[1]· B′[1]).
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The commutative diagram 1.3 gives rise to morphisms between this latter long exact
sequence and the one arising from the triangle 1.2. Then, by using the Five Lemma,
we obtain that ϕ′′ must be an isomorphism. Hence, A· A′ → B · B′ → C · C ′ →
A[1]· A′[1] is a triangle since it is isomorphic to one.

(4) Let A
0
→ B

u
→ C

v
→ A[1] be a triangle associated to the 0-morphism. Consider

the trivial triangles A→ 0→ A[1]→ A[1] and 0→ B → B → 0. Using (3), we get that

A
0
→ B → B · A[1]→ A[1]

is a triangle.
Then we have a commutative square,

A B C A[1]

A B B · A[1] A[1],

0

id

u

id

w

0

which can be completed in a morphism of triangles by the third axiom (TR3):

A B C A[1]

A B B · A[1] A[1].

0

id

u

id

w

ϕ id

0

Since the first two map are isomorphisms, then also ϕ is an isomorphism by (1).

1.5 Minimal right approximations

During the first section, we encountered the concept of minimal projective covers. In
some sense, projective covers constitute the best way to approximate a left Λ-module as
a projective one. Now, we will try to generalize this idea.

Let P = (P1
dP→ P0) be in K[−1,0] and call addP the full subcategory of K[−1,0] whose

object are direct summands of direct sum of P , namely it is the smallest full subcategory
of K closed under isomorphisms, direct sums and direct summands containing P . Then

addP is covariantly finite, i.e. for any N = (N1
dN→ N0) in K[−1,0], there exists a right

addP -approximation of N , namely there exists a complex morphism f : P ′ → N where
P ′ is in addP , such that the map HomK[−1,0](Q, f) : HomK[−1,0](Q,P ′)→ HomK[−1,0](Q,N)
is surjective for any Q in addP .

Consider {fi = (f 1
i , f

0
i )}

n
i=1 a K-basis of the K-vector space HomK[−1,0](P,N), so, for

any i, f 0
i ◦ dP = dN ◦ f

1
i . In order to prove that addP is covariantly finite, we will show

that the map
f =

[

f1 f2 . . . fn
]

: P n → N

is a right addP -approximation of N .
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Let g in HomK[−1,0](Q,N). Since Q is in addP , there exists Q′ in K such that Q·Q′ =
Pm for some m natural number m. Call Ãq the natural projection Pm → Q, and ϵq the
natural injection Q→ Pm.

Then g ◦ Ãq is in HomK[−1,0](Pm, N) and g ◦ Ãq = (g ◦ Ãq)
m
i=1, such that, for ev-

ery i, (g ◦ Ãq)i is in HomK[−1,0](P,N). Then (g ◦ Ãq)i =
∑n

j=1 ¼
i
jfj. So for every p =

(p1i , p
0
i )
m
i=1 in Pm, g ◦ Ãq(p) =

∑m
i=1

∑n
j=1 ¼

i
jfj(p

1
i , p

0
i ) =

∑m
i=1

∑n
j=1 ¼

i
j(f

1
j (p

1
i ), f

0
j (p

0
i ))) =

∑m
i=1

∑n
j=1(f

1
j (¼

i
jp

1
i ), f

0
j (¼

i
jp

0
i )) =

∑n
j=1(f

1
j (
∑m

i=1 ¼
i
jp

1
i ), f

0
j (
∑m

i=1 ¼
i
jp

0
i )) = f(L·p1, L·p0) =

f(L · p), where

L =





¼11 . . . ¼m1

¼1n . . . ¼mn





.

Then g ◦ Ãq ◦ ϵq(q) = g(q) = f(L · ϵq(q)), where L · ϵq is in HomK[−1,0](Q,P n). This is
the module homomorphism, preimage of g through HomK[−1,0](Q, f), that we were looking
for.

Note that the same reasoning could be repeated if P was in K or in Λ-mod, but also if
we consider subcategories closed under isomorphisms, direct summands and direct sums.

We call a morphism f ∈ HomK(A,B) right minimal, if for any g ∈ EndK(A) such
that fg = f , then g is an isomorphism.

In [KS98], as an application of the dual statement of Proposition 1.2, the authors
prove that any morphism in a Krull-Schmidt category has a minimal version and that,
given a morphism f : A→ B in this category, there exists a decomposition f = (f ′, f ′′) :
A = A′ · A′′ → B such that f ′ is right minimal and f ′′ = 0.

So not only does there always exist and addP -approximation, but also a minimal one.

Note that, as introduced at the start of this section, projective covers are minimal
right approximations from the category Λ-Mod of the full subcategory proj Λ.

Let C be a subcategories of K closed under isomorphisms, direct summands and direct
sums, then minimal right C-approximation are unique up to isomorphism. Indeed let
f : C →M, f ′ : C ′ →M be two minimal right C-approximations of M in K. Then, since
both are right C-approximations, we have that there exists h : C → C ′, h̃ : C ′ → C,
making the following diagram commutative:

C M

C ′

f

h

h̃

f ′
.

Then fh̃h = f ′h = f , so since f is minimal, h̃h = idC , and, equivalently, hh̃ = idC′ .
Namely, h is the inverse of h̃. So h is an isomorphism.

We denote with A∗B the collection of objects C of K such that exists a triangle of the
type A→ C → B → A[1]. Observe that, due to the octahedral axiom (TR4), A∗(B∗C) =
(A ∗B) ∗C. Indeed, let X in (A ∗B) ∗C, then we have triangle A

a
→ Y → B → A[1] and

Y
b
→ X → C → Y [1]. We can then create a triangle A

ba
→ X → Cba → A[1], by putting
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Cba as the cone of the composition ba. Then we have a triangle B → Cba → C → B[1],
i.e. X also belongs to A ∗ (B ∗ C). To prove vice versa, one follows the same reasoning.

In general this collection is not closed under direct summands, but we have the fol-
lowing sufficient condition:

Lemma 1.5.1 ([IY08]). Given two subcategories of K, X , Y closed under summands,
directs sums and isomorphisms, such that HomK(X, Y ) = 0 for any X ∈ X and Y ∈ Y,
then X ∗ Y is closed under summands.

Proof. LetX
a
→ T

b
→ Y

c
→ X[1] be a triangle, withX ∈ X and Y ∈ Y , and let T = T1·T2

be a complex in K. Then a is a right X -approximation, i.e. HomK(Z, a) : HomK(Z,X)→
HomK(Z, T ) is an epimorphism for each Z in X . Indeed, thanks to Proposition 1.4.1, we
get the following long exact sequence,

HomK(Z,X)
HomK(Z,a)
−→ HomK(Z, T )→ HomK(Z, Y ),

and the last item of the sequence is zero if Z belongs to X , by hypothesis.
Let a′ be the minimal right X -approximation induced by a, namely a = (a′ 0) :

X = X ′ · X ′′ → T . Consider the natural projection Ãi : T → Ti for i = 1, 2, then
Ãia

′ : X ′ → Ti is a right X - approximation. Indeed, let f ∈ HomK(Z, Ti), we get that ϵif ,
with ϵi : Ti → T the natural inclusion, belongs to HomK(Z, T ). Thus exists f̃ making the
following diagram commute:

Z Ti T

X ′

f

f̃

ϵi

a′
.

So a′f̃ = ϵif , and Ãia
′f̃ = Ãiϵif = f . Hence, Ãia

′ is a right X -approximation for i = 1, 2.
Now we can decompose Ãia

′ into (ai 0) : X
′ = Xi ·X

′
i → Ti, such that ai : Xi → Ti

is a minimal right X -approximation.
The map

a1 · a2 =

[

a1 0
0 a2

]

: X1 ·X2 → T1 · T2

is still a minimal right X -approximation, thanks to the additivity of the functor Hom.
Indeed, let Z in X , Hom(Z,X1) · Hom(Z,X2) = Hom(Z,X1 · X2) and Hom(Z, T1) ·
Hom(Z, T2) = Hom(Z, T1·T2), so if Hom(Z, ai) is an epimorphism between Hom(Z,Xi)→
Hom(Z, Ti), then Hom(Z, a1·a2) = Hom(Z, a1)·Hom(Z, a2) is an epimorphism between
Hom(Z,X1 ·X2) and Hom(Z, T1 · T2).

We now show that a′ is isomorphic to

[

a1 0
0 a2

]

and so X ′ ≃ X1 ·X2. Since they are

both right X -approximation, there exist f and f̃ making the following diagrams commute:

X ′ T

X1 ·X2

a′

f a1·a2

and
X1 ·X2 T

X ′

a1·a2

f̃ a′
.
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The commutativity of these diagrams implies that a′f̃f = (a1 · a2)f = a′.

X1 ·X2 T

X ′

a1·a2

f̃

f

a′

Since a′ is minimal, f̃f ≃ idX′ . Equivalently ff̃ ≃ idX1·X2 .
Call X3 the minimal decomposition of a, then X ≃ X1·X2·X3. We have triangles:

X1
a1→ T1 → C1 → X1[1],

X2
a2→ T2 → C2 → X2[1],

X3→0→ X3[1]
id
→ X3[1],

where Ci is the mapping cone of ai, for i = 1, 2.
Using Proposition 1.4.2, the direct sum of these triangles is a triangle and is isomorphic

to X
a
→ T

b
→ Y

c
→ X[1]. So Y ≃ C1 · C2 ·X3[1] and thus Ti belongs to X ∗ Y .
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Chapter 2

String and gentle algebras

A gentle algebra is a path algebra arising from a quiver Q, as defined in Chapter 1, together
with a set of relations so that the algebra has particularly nice properties. Gentle algebras
and string algebras are particularly interesting in representation theory because, thanks
to how the set of relations is chosen, they have a well-understood module category; indeed,
the representations of gentle algebras can often be described in terms of combinatorial
data associated with the quiver and its relations. We mostly follow the notation of [BR87],
the only difference being that we are not dealing with algebras arising from the opposite
quiver as the author does, but from the original one.

The first sections introduces the notions of string algebras and outlines the initial
properties of their modules. The final section is, instead, dedicated to detailing all the
steps necessary to achieve a complete description of the construction of the projective
presentation of a string module.

2.1 First definitions

Definition 2.1.1. A string quiver Q := (Q, I) is a bound quiver such that:

(S1) each vertex v ∈ Q0 has at most two incoming and two outgoing arrows,

(S2) for any arrow ´ ∈ Q1, there is at most one arrow ³ ∈ Q1 such that t(³) = s(´) and
³´ /∈ I, and there is at most one arrow µ ∈ Q1 such that t(´) = s(µ) and ´µ /∈ I,

(S3) for any arrow ´ ∈ Q1, there is some bound n(´) such that any path ³1, · · · , ³n(´)
with ³1 = ´ contains a subpath in I and there is some bound n′(´) such that any
path ³1, · · · , ³n′(´) with ³n′(´) = ´ contains a subpath in I.

The algebra Λ = KQ
I

associated to a string bound quiver is called a string algebra.

Example 2.1.1. The path algebras arising from the bound quivers defined in 1.2.3 are
string algebras.

37
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By what was said in Theorem 1.2.1, Λ is a basic and connected finite-dimensional
algebra, having {ea | a ∈ Q0} as a complete set of pairwise orthogonal primitive idempo-
tents. where ea is the residual class of the trivial path ea in KQ modulo I. If the context
is clear, we will omit the line over ea and just refer to the trivial path as ea.

Given an arrow ´ ∈ Q1, we define its formal inverse as, ´−1, such that s(´−1) = t(´)
and t(´−1) = s(´). Then ´−1−1

= ´, thus (−)−1 is an involution between the set of arrows
and the set of formal inverses of arrows of Q. We extend this involution to the set of all
paths by further setting e−1

a = ea for all vertices a ∈ Q0. Moreover ³−1³ = et(³) and
³³−1 = es(³).

Using the convention of concatenating paths from right to left, a string of length
l g 1 is a sequence of arrows É = ³ϵ11 , · · · , ³

ϵl
l , such that

• ³i belong to Q1 and ϵi ∈ {1,−1}, for each 1 f i f l;

• ³ϵii ̸= (³i+1)
−ϵi+1 , for each 1 f i < l;

• s(³
ϵi+1

i+1 ) = t(³ϵii ) for each 1 f i f l − 1;

• there is no subpath ³ϵii ³
ϵi+1

i+1 . . . ³
ϵi+k

i+k such that neither it nor its inverse ³
−ϵi+k

i+k . . . ³−ϵi
i

belongs to I;

• É is reduced, in the sense that no factor ³³−1 or ³−1³ appears for any ³ ∈ Q1.

Note also that we could have, by convention, strings of length 0. Indeed, for each
vertex a in Q0 we have an arrow of length zero ea and so we include the trivial strings
É = ea and É = e−1

a . Moreover, the string could also have infinite length.
The following notation will be useful for dealing with strings. For a given string

É = ³ϵ11 , · · · , ³
ϵl
l , we draw É as follows:

• draw all arrows ³ϵ11 , · · · , ³
ϵl
l from left to right,

• draw all arrows pointing downwards.

Example 2.1.2. Consider the string bound quiver (QA, IA), an example of a string of
length 7 is ÉA = ¶´³µ−1´³µ−1, which is visualized as:

4

3

2

1

3

2

1

3

¶

´

³ µ ´

³ µ
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If, instead, we consider the string bound quiver (QB, IB), ÉB = µ−1µ³¿−1µ−1µ´−1¼−1

is a string of length 8, visualized as:

6

5

2

1

6

5

2

3

4

µ µ

³ ¿

µ µ ´

¼

The strings ea of length zero are depicted simply as one vertex. Be aware that even if
the string is depicted linearly from left to right, it might have cycles since some substrings
can be repeated along the string.

2.2 String modules

Definition 2.2.1. Let É = ³ϵ11 , · · · , ³
ϵl
l be a string for a string algebra Λ = KQ

I
. The

string module M(É) is the left Λ-module defined as a representation of Q as follows:

• let, for each vertex a in Q0, Ia = {i | s(³
ϵi
i ) = a} ∪ {0 if t(³ϵ11 ) = a}

• For each vertex a ∈ Q0, let M(É)a be the vector space with basis given by {zi | i ∈
Ia}

• For each arrow ´ : a → b of Q1, the K-linear map ϕ´(É) : M(É)a → M(É)b is
defined on the basis of M(É)a by

ϕ´(É)(zi) =











zi−1 if ³i = ´ and ϵi = 1,

zi+1 if ³i+1 = ´ and ϵi+1 = −1,

0 otherwise.

The action of Λ on M(É) is then defined for a non trivial path p = ´1 . . . ´l, from a to
b and z = (za)a∈Q0

∈ ·a∈Q0
Ma as ϕ´1(É) ◦ · · · ◦ ϕ´l(É)(za) . The action is then extended

by K-linearity.
It follows from the definition, that, for any string É, the string modules M(É) and

M(É−1) are isomorphic. This suggests that we include a relation on the set of strings,
such that É ∼ É−1. Hence, from now on in this thesis, strings had to be considered up to
their inverses.

It is easy to see, from the definition, that the simple module S(a), as described in
Lemma 1.2.3, associated to a vertex a in Q0, is generated by the string of length zero ea.

If the string has finite length, then the module associated will be finite-dimensional.
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Example 2.2.1. We compute the modules arising from the strings in Example 2.1.2.
From these examples one could see that, in some sense, the string module maintains the
structure of the string.

K
2

K
2

K
3

K

[

1 0
0 1

]





1 0
0 1
0 0









0 0
1 0
0 1





[

1 0 0
]

The ΛA-module M(ÉA)

K
K

2

K

K
K

2
K

2

[

1
0

]

[

0 1
]

[

0
1

][

1 0
0 1

]

[

1 0
0 1

]

0

id

The ΛB-module M(ÉB)

2.2.1 Module homomorphisms between string modules

We have described what a string algebra is and introduced an important class of modules
over it, those generated from a string. Not only are they easy to visualise, but their
importance lies in the fact that they are indecomposable. As seen in Theorem 1.1.1,
Λ-Mod is a Krull-Schmidt category, so it is essential to understand the indecomposable
modules. To prove this important result, we adapt a more general proof of [Cra98],
involving not only finite strings, but also modules generated by possibly infinite strings.

We start by looking at the homomorphisms between string modules. It turns out that
they can be computed just by looking at the maps between the relative strings. To see
this, we need to formally define what we mean by a map between the strings.

Given a string É = ³ϵ11 . . . ³
ϵk
k = É1 . . . Ék, the quiver ΓÉ = (ΓÉ,0,ΓÉ,1), which has k+1

vertices, ΓÉ,0 = {0, . . . , k} and k arrows

ΓÉ,1 = {µi : i→ i− 1 if Éi is direct, µi : i− 1→ i if Éi is inverse | i = 1 . . . k},

the quiver underlying the string.
Observe that this construction can be computed also for strings of infinite length.

Moreover, note that ΓÉ, by definition, is a connected quiver, has no cycles, even unori-
ented, and it is uniquely defined.

We call a vertex i of a finite string s of length l a peak if it is a source in the underlying
quiver, i.e. one of these hold

• wi is direct and wi+1 is inverse;
• i = 0 and w1 is inverse;
• i = l and wl is direct.

With the same idea, we call a vertex zi of s a deep if it is a sink in the underlying quiver.
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Example 2.2.2. In the following string we have highlighted in red the peak vertices and
in blue the deep ones.

We define a map between quivers: FÉ : ΓÉ → Q such that

FÉ(i) =

{

s(Éi) if i ̸= 0,

t(É1) if i = 0
and FÉ(µi) = ³i.

Note that for a vertex a ∈ Q0, Ia, as defined above, is equal to F−1
É (a), indeed zi is a

basis vector of M(É)a if and only if i belongs to Ia, i.e. s(Éi) = a or, if i = 0, t(É1) = a,
but this actually means that FÉ(i) = a. We will often indicate a basis element of MFω(i)

as zi.
Then FÉ is unramified, meaning that for each vertex i ∈ ΓÉ and arrow ³ ∈ Q with

head, resp. tail, at FÉ(i) = a, there is at most one arrow µ ∈ F−1
É (³) with head, resp.

tail, at i. Observe also that no path in ΓÉ is sent to a path occurring (with non-zero
coefficient) in any element of I. The map FÉ can be represented by labeling each vertex
and arrow of Γ with its corresponding image in Q, doing so we essentially recover the
original string. Thus FÉ also provides a formal description of the passage from the string
to its graphical representation. Consequently, FÉ serves as a tool to distinguish between
the elements of the string, important because they are part of the string, and the actual
arrows they represent in the quiver. This distinction is crucial for avoiding confusion and
clarifying the discussion, especially when dealing with maps between string modules and
the corresponding partial maps.

Definition 2.2.2. By a partial map between two strings Θ : É ⇝ É′, we mean an
isomorphism Θ : DΘ → RΘ satisfying FÉ′ ◦ Θ = FÉ|DΘ

, where DΘ ¦ ΓÉ is a non-empty
full connected subquiver of ΓÉ which is closed under predecessors, and RΘ ¦ ΓÉ′ is a
non-empty full connected subquiver of ΓÉ′ which is closed under successors.
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Example 2.2.3. We show a partial map Θ colored in cyan, between the string ÉB =
µ−1µ³¿−1µ−1µ´−1¼−1 and the string É′

A = ¿−1µ−1µ³.

6

5

2

1

5

2

3

4

µ µ

³ ¿

µ
µ
´

¼

1

5

1

¿

µ µ

³

Given vertices r ∈ ΓÉ and s ∈ ΓÉ′ , we write r ⇝ s to mean that there is a partial map
Θ : É ⇝ É′, and such that r ∈ DΘ and s ∈ RΘ and s = Θ(r). We list some properties of
this relation:

Lemma 2.2.1 (First properties of partial maps). Let É, É′, É′′ be three strings with vertices
r ∈ ΓÉ, s ∈ ΓÉ′ , t ∈ ΓÉ′′.

(i) There is at most one partial map Θ : É → É′ inducing r ⇝ s.

(ii) If r ⇝ s⇝ t, then r ⇝ t.

(iii) If r ⇝ s and s⇝ r, then the corresponding partial maps are inverse isomorphisms
between ΓÉ and ΓÉ′. In particular ΓÉ ≃ ΓÉ′.

Proof. (i) Given r ∈ ΓÉ and s ∈ ΓÉ′ , let Θ : DΘ → RΘ and Θ′ : D′
Θ → R′

Θ be two partial
maps such that both Θ(r) = s and Θ′(r) = s.

Let p be in DΘ. By construction of the underlying quiver and the map related, there
exists a substring of É, É̃, such that either FÉ(p) is the head of this substring and FÉ(r) its
tail, or p is the tail and r its head. Without loss of generality, we can assume FÉ(p) = s(É̃)
and FÉ(r) = t(É̃). So É̃ = Ér+1 . . . Ép.

If Ér+1 is inverse, then the arrow of ΓÉ, µr+1 is between r + 1→ r, and both DΘ and
DΘ′ are closed under predecessors, so r + 1 belongs to them. Moreover, by definition of
partial map, FÉ(s(µr+1)) = FÉ(r + 1) = FÉ′(Θ′(r + 1)) = FÉ′(Θ(r + 1)). Since FÉ′ is
unramified, there exists at most one arrow µ′ in ΓÉ′ with tail at Θ(r) = s = Θ′(r). This
implies that Θ(r + 1) = Θ′(r + 1), since they are quiver isomorphism.
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If Ér+1 is direct, then s = s(Θ(µr+1)) = s(Θ′(µr+1)) ∈ RΘ. Since both RΘ, RΘ′ ¦ ΓÉ′

are closed under successors, t(Θ(µr+1)) belongs to RΘ and t(Θ′(µr+1)) belongs to RΘ′ .
Then Θ−1(t(Θ(µr+1))) = t(µr+1) = r+1 = Θ′−1(t(Θ′(µr+1))) belongs to alsoDΘ andDΘ′ .
In any case, r+1 belongs to D′

Θ. By definition of partial map, FÉ(t(µr+1)) = FÉ(r+1) =
FÉ′(Θ′(r+1)) = FÉ′(Θ(r+1)). Since FÉ′ is unramified exists at most one arrow µ′ in ΓÉ′

with head at Θ(r) = s = Θ′(r). This implies that, again, Θ(r + 1) = Θ′(r + 1).
By induction, repeating the same reasoning, r + l belongs to DΘ′ and Θ(r − l) =

Θ′(r − l), for each 1 f l f p− r.
Equivalently, one can prove the converse, namely that if p′ is in DΘ′ , then it is also in

DΘ and Θ′(p′) = Θ(p′). Hence, the two partial maps are the same.
(ii) Call Θ : ΓÉ → ΓÉ′ , resp. Θ′ : ΓÉ′ → ΓÉ′′ , the partial map inducing r ⇝ s, resp.

s ⇝ t. Then Φ = Θ′ ◦ Θ|DΘ∩Θ−1(D′

Θ) is the partial map inducing r ⇝ t. Indeed, D′
Θ is

closed under predecessors and Θ is a quiver isomorphism, then Θ−1(D′
Θ) is closed under

predecessors. Since s belongs to D′
Θ and Θ−1(s) = r, then r belongs to Θ−1(D′

Θ). So r
is in DΦ = DΘ ∩ Θ−1(D′

Θ). Intersection of connected quivers closed under predecessors,
resp. successors, is closed under predecessors, resp. successors, moreover also the image
of a quiver closed under predecessors, resp. successors, is closed under predecessors, resp.
successors. So the domain of Φ = DΦ is closed under predecessor and the codomain
RΦ = Θ′ ◦Θ(DΘ) ∩Θ

′(D′
Θ) = Θ′(RΘ) ∩RΘ′ is closed under successors. This implies that

Φ is a partial map. Obviously Φ(r) = Θ′(Θ(r)) = t and F ′
É ◦ Φ = FÉ. Then we proved

the existence of the partial map inducing r ⇝ t.
(iii) Let r ∈ ΓÉ and s ∈ ΓÉ′ , such that exists Θ : ΓÉ → ΓÉ′ inducing r ⇝ s, and

exists s ⇝ r induced by Θ′ : ΓÉ′ → ΓÉ. Then the construction of (ii), gives a partial
map, Φ = Θ′ ◦Θ|DΘ∩Θ−1(D′

Θ) , inducing r ⇝ r. The identity is another partial map which

induce r ⇝ r, then, by (i), Φ = idΓω . Equivalently Θ ◦Θ′|D′

Θ∩Θ′−1(DΘ) = idΓω′
. Thus, the

partial maps Θ and Θ′ are inverse to each other.

A partial map Θ : É ⇝ É′ induces a linear map fΘ : M(É) → M(É′), between their
respective strings modules defined as the map which sends zi to zΘ(i), if i ∈ DΘ, to zero
otherwise. The construction of fΘ is then extended by K-linearity on the other elements
of M(É).

To prove that is a Λ-module homomorphism, we need to show that fΘ(´m) = ´fΘ(m),
for m in M(É) and ´ in Λ. Without loss of generality, we can assume that m = zi for
some basis vector of MFω(i) and ´ : a→ b to be an arrow in Q1.

By definition of the action of Λ over M(É), If ´ is not trivial, we have that

´zi = ϕ´(É)(zi) =











zi−1 if ³i = ´ and ϵi = 1,

zi+1 if ³i+1 = ´ and ϵi+1 = −1,

0 otherwise.

. We can rephrase this, in terms of the underlying quiver:

´zi =

{

zj if there exists µ : i→ j | FÉ(µ) = ´,

0 otherwise.
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In particular it implies that FÉ(i) = a and FÉ(j) = b.
Then

fΘ(´zi) =

{

zΘ(j) if there exists µ : i→ j ∈ ΓÉ | FÉ(µ) = ´ and j ∈ DΘ,

0 otherwise.

While

´fΘ(zi) = ´ ·

{

zΘ(i) if i ∈ DΘ,

0 otherwise.

=

{

zj′ if there exists µ′ : Θ(i)→ j′ ∈ ΓÉ′ | FÉ′(µ′) = ´ and i ∈ DΘ,

0 otherwise.

If there exists µ : i → j such that FÉ(µ) = ´ and j ∈ DΘ, then since DΘ is closed
under predecessors, i also belongs to DΘ. Then, by definition of partial map, we have
that Θ(µ) : Θ(i) → Θ(j) ∈ ΓÉ′ and FÉ′(Θ(µ)) = ´. Since FÉ′ is unramified, Θ(µ) is the
unique arrow in ΓÉ′ , with head in Θ(i) and such that its image through FÉ′ is equal to ´.

Conversely if there exists µ′ : Θ(i)→ j′ | FÉ′(µ′) = ´ and i ∈ DΘ, then Θ(i) is in RΘ,
which is closed under successors. Hence j′ belongs to RΘ, namely there exists j′′ such
that Θ(j′′) = j′ and the same holds for µ′, i.e. there exists µ′′ ∈ ΓÉ such that Θ(µ′′) = µ′.
Moreover, since Θ is a quiver isomorphism µ′′ : i→ j′′ and, by definition of a partial map,
FÉ(µ

′′) = FÉ′(µ′) = ´. Since FÉ is unramified, µ′′ is the unique arrow with head in i and
with image through FÉ equal to ´.

This implies that fΘ(´zi) ̸= 0 if and only if ´fΘ(zi) ̸= 0 and, in this case, µ′ = ¹(µ)
and j′ = Θ(j). Hence, fΘ(´zi) = ´fΘ(zi), so we showed that fΘ is a left Λ-module
homomorphism.

Let m be in M(É), we denote with cs(m) the coefficient of zs in m. Now we are ready
to give a characterisation of the module homomorphism between string modules.

Lemma 2.2.2. Let É, É′ be two strings and M(É), M(É′) be their relative string module.
Then any Λ-module homomorphism f : M(É) → M(É′) can be written uniquely as a
(possibly infinite) linear combination

f =
∑

Θ:É⇝É′

¼ΘfΘ

with ¼Θ ∈ K, such that for each vertex r ∈ ΓÉ, there are only finitely many non-zero ¼Θ
with r ∈ DΘ. In particular, if cs(f(zr)) ̸= 0 then r ⇝ s.

Proof. Let r be a vertex of ΓÉ and s be a vertex of ΓÉ′ , such that cs(f(zr)) ̸= 0. We aim
to construct a partial map Θ that induces r ⇝ s. To do this, we must define a domain
DΘ, closed under predecessors, and a codomain RΘ, closed under successors. For each
p ∈ DΘ, we must then define Θ(p) ∈ RΘ.

Since cs(f(zr)) ̸= 0, it implies that FÉ′(s)) = FÉ(r), indeed let a := FÉ′(s) and consider
the trivial path ea. Since f is a Λ-module homomorphism, f(eazr) = eaf(zr). Hence
cs(f(eazr)) = cs(f(zr)) ̸= 0. In particular it implies that eazr = zr. Thus FÉ(r) = a.
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We say that a vertex v of ΓÉ and a vertex v′ of ΓÉ′ are matching if

cv′(f(zv)) = cs(f(zr)) ̸= 0 and FÉ′(v′) = FÉ(v).

For what proved above, s and r are matching.
Claim: If there exists an arrow µ : a → b in ΓÉ and b is matching with a vertex b′ in
ΓÉ′ , then there exists a unique arrow µ′ : a′ → b′ in ΓÉ′ such that a is matching with a′.
Moreover FÉ′(µ′) = FÉ(µ).

Proof of Claim 1. Since b is matching with b′, we have that cb′(f(zb)) = cs(f(zr)) ̸= 0.
Call ³ := FÉ(µ), then, by definition, ³za = zb. Since f is a Λ-module homomorphism,
f(³za) = f(zb), then cb′(f(³za)) ̸= 0. This implies that there exists a vertex a′ in ΓÉ′ ,
such that ³za′ = zb′ and ca′(f(za)) = cs(f(zr)) ̸= 0. Then, since ³za′ = zb′ , there exist an
arrow in ΓÉ′ , µ : a′ → b′, such that the image, through FÉ′ , is equal to ³. Because FÉ′

is unramified, we have that µ is unique with those properties. This implies that a and a′

are matching.

Claim: If there exists an arrow µ′ : a′ → b′ in ΓÉ′ and a′ is matching with a vertex a in
ΓÉ, then there exists a unique arrow µ : a → b in ΓÉ such that b is matching with b′.
Moreover FÉ′(µ′) = FÉ(µ).

Proof of Claim 2. Since a is matching with a′, we have that ca′(f(za)) = cs(f(zr)) ̸= 0.
Call ³ := FÉ′(µ′), then, by definition, ³za′ = zb′ . Since f is a Λ-module homomorphism,
f(³za′) = f(zb′), then cb′(f(³za′)) ̸= 0. This implies that ³za′ ̸= 0. Thus, there exist an
arrow in ΓÉ, µ : a → b, such that the image, through FÉ, is equal to ³. Because FÉ is
unramified, we have that µ is unique with those properties. This implies that b and b′ are
matching.

Thanks to these claims, it is now possible to define RΘ and DΘ. To construct such
sets, we will describe a recursive process involving two different types of steps: steps (a)
and (b). In the following, we will outline the ideas behind this recursion

Process (a) We begin this step with a deep matching vertex x, along with a direct
predecessor y in ΓÉ. We then consider all the predecessors of y, that
are in a finite number by (S3). Let z be the predecessor of x that has
no other predecessors. By the first claim, there exists a set of matching
vertices in ΓÉ′ . Now, consider the matching vertex x′ corresponding to
x.

If x′ has no other successors, we stop. Otherwise, if x′ has another
successor, say x′1, we proceed to Step (b) with the pair of vertices (x′, x′1).

Process (b) In this step, we start with a peak matching vertex y′, along with a direct
successor x′ in ΓÉ′ . We consider all the successors of x′, that are in finite
number by (S3). Let z′ be the successor of x′ that has no other successors.
By the first claim, there exists a set of matching vertices in ΓÉ. Now,
consider the matching vertex x corresponding to x′.
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If x has no other predecessors, we stop. Otherwise, if x has another
predecessor, say x1, we proceed to Step (a) with the pair of vertices
(x, x1).

We need to start this process with the matching vertices s and r. However, we do not
know whether s or r are peak or deep vertices. So, in general, we cannot directly start
with one of the two steps.

• If s has no successors, set f = 0 and g = 0.

• If s has at least one direct successor, choose one and call it s1 and consider the set
of vertices in ΓÉ′ , {s1, . . . , si0}, where sj+1 is a direct successor of sj, for 1 f j f i0,
and si0 has no successors. Observe that i0 must be a natural number different
from infinity, due to condition (S3). By the first claim, we have matching vertices
{r1, . . . , ri0} in ΓÉ, where rj matches with sj for 1 f j f i0. If ri0 has no direct
predecessor other than ri0−1, we set f := i0 and stop. If ri0 has a direct predecessor
different from ri0−1, we continue. Observe that we have just described how to
perform Step(b), following the mechanism outlined before, and starting with the
pair (s, s1), even if s is not a peak vertex.

Now, denote by {ri0+1, . . . , ri0+i1}, the set of vertices of ΓÉ, such that ri0+j+1 is a
direct predecessor of ri0+j for 1 f j f i1, and ri0+i1 has no predecessors. Again,
due to condition (S3), we have i1 ̸= ∞. By the second claim, we have matching
vertices {si0+1, . . . , si0+i1} in ΓÉ′ , such that si0+j matches with ri0+j for 1 f j f i1.
If si0+i1 has no direct successor other than si0+i1−1, set f := i0 + i1. If si0+i1 has
other predecessor, then we continue. We have just described how to compute Step
(a), following Process (a).

We can now repeat this process, alternating between Step (a) and Step (b). We
will stop after defining f =

∑

j ij, when if, after a step of type (a), sf has no direct
successor other than sf−1, or if, after a step of type (b), rf has no other prede-
cessors direct other than rf−1. Note that this process could theoretically continue
indefinitely, as strings can have infinite lengths. In that case we can set f =∞.

• If s has no direct successors different from s1, set g = 0

• If s has two direct successors, then it has a direct successor different from s1. Denote
the successors by {s−1, . . . , s−l0}, where s−j−1 is a direct predecessor of sj for −1 g
j g −l0, and s−l0 has no successors. Observe that l0 must also be a natural number
different from infinity due to condition (S3). By second claim, matching vertices
exist in ΓÉ. As before, we can continue alternating between Step (b), starting with
(s, s−1), and Step (a). We will stop after defining: −g =

∑

j −lj, if, after a step of
type (a), s−g has no direct successor other than s−g+1, or if , after a step of type
(b), r−g has no other predecessors direct other than r−g+1. Notice that, again this
process could theoretically continue indefinitely, as strings can have infinite lengths.
In this case g =∞.
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We will follow the same steps, but starting with vertex r. In particular, if it exists a
predecessors r̃1, we start with Step (a) with the pair (r, r̃1). If another predecessor r̃−1

exists, we restart Step (a) with the pair (r, r̃−1).
By alternating between Step (a) and Step (b), as described before, we will define a set

of vertices {r̃j | −g̃ g f̃}, closed under predecessors, with matching vertices in ΓÉ′ . If r
has no predecessors, set f̃ = 0 and g̃ = 0, and if it has only one predecessor, set g̃ = 0.

Thus, we can set

DΘ = {rj | −g f j f f} ∪ {r̃j | −g̃ f j f f̃}

and
RΘ = {sj | −g f j f f} ∪ {s̃j | −g̃ f j f f̃}.

By construction, DΘ is closed under predecessors, and RΘ is closed under successors. Each
element v ∈ DΘ has a matching element v′ ∈ RΘ, such that

cv′(f(zv)) = cs(f(zr)) ̸= 0 and FÉ′(v′) = FÉ(v).

Therefore, we define Θ(v) = v′. Then Θ is a partial map inducing r ⇝ s.
So we proved that if r ∈ ΓÉ and s ∈ ΓÉ′ are vertices with cs(f(zr)) ̸= 0, then there is

a partial map Θ inducing r ⇝ s and with ¼Θ = cΘ(t)(f(zt)) = cs(f(zr)) for each t ∈ DΘ.
Observe that by Lemma 2.2.1, there exists a unique partial map inducing r ⇝ s.

Now, for each r in ΓÉ, we have

f(zr) =
∑

s∈Γω′ |cs(f(zr)) ̸=0

cs(f(zr))zs =
∑

s|r⇝s

cs(f(zr))zs.

And this is equal to say:

f(zr) =
∑

Θ:É⇝É′|r∈DΘ

¼ΘzΘ(r)

Since this is true fron any r in ΓÉ, we have that:

f =
∑

Θ:É⇝É′

¼ΘfΘ

Now we prove uniqueness. By contradiction, let f have two different decomposition:

f =
∑

Θ:É⇝É′

¼ΘfΘ =
∑

Θ′:É⇝É′

¼Θ′fΘ′ .

Let r a vertex in ΓÉ. Then, since we are summing over the same group and the partial
map fΘ depends only on Θ, we get

f(zr) =
∑

Θ:É⇝É′, r∈DΘ

¼ΘfΘ(zr) =
∑

Θ:É⇝É′, r∈DΘ

¼Θ′fΘ(zr),

so
∑

Θ:É⇝É′, r∈DΘ

¼ΘzΘ(r) =
∑

Θ:É⇝É′, r∈DΘ

¼′ΘzΘ(r).

By Lemma 2.2.1, there exists a unique partial map Θ inducing r ⇝ Θ(r), so
cΘ(r)(f(xr)) = ¼Θ = ¼′Θ. By arbitrariness of Θ, we conclude.
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The importance of this lemma extends beyond just providing a basis for the K-vector
space of module homomorphisms between string modules; it also offers a way to visualize
these morphisms. Indeed, by simply looking at the string, we can determine the computa-
tions needed to construct such a morphism. This will prove to be very useful throughout
this project, allowing us to create figures that will serve as a guide and as an example to
follow in order to better understand the proofs and constructions, which will come later.

2.2.2 Indecomposability of the string modules

Finally, to conclude this section on string modules, we will prove that they are indeed
indecomposable, as was mentioned at the beginning. However, to prove this result, we
need to first demonstrate the validity of the following statement, as it plays a relevant
role in the proof of the theorem.

Lemma 2.2.3. The ring K[x, x−1] has no non-trivial idempotents.

Proof. This follows from the fact that there exists a natural inclusion from K[x, x−1] into
the field of rational functions K(x). This field consists of all rational functions in the

variable x with coefficients in K, where each rational function is of the form p(x)
q(x)

, with

p(x), q(x) ∈ K[x] and q(x) ̸= 0.
Since K[x, x−1] is included in the field K(x), it is an integral domain. Consequently,

the ring of Laurent polynomials has no non-trivial idempotents, since idempotents in a
domain are either 0 or 1.

During the development of this thesis, we proved this fact in an alternative way.
We showed that K

[

[x]
]

has non-trivial idempotents and that there exists an injective
ring-homomorphism from K[x, x−1] into K

[

[x]
]

. Thanks to this we arrive at the same
conclusions. For further details, see Appendix A.0.1.

We can now state and prove the indecomposability of the string modules.

Theorem 2.2.4. [Cra98] Given a string É, possibly of infinite length, then M(É) is an
indecomposable Λ-module. If É′ is another string, then M(É) ≃M(É′) if and only if there
is a quiver isomorphism Θ between ΓÉ and ΓÉ′ such that FÉ′ ◦Θ = FÉ.

Proof. Let G be the group of automorphisms of ΓÉ over Q, consisting of those quiver
automorphisms g of Γ with FÉ ◦ g = FÉ, i.e.

G = {g ∈ Aut(ΓÉ) | FÉ ◦ g = FÉ}.

This is a group since composition of automorphisms g ◦ h is still an automorphism, and
FÉ ◦ g ◦ h = FÉ. Note that each elements of G is a partial map Θ : É ⇝ É, but not every
partial map is an element of G. We prove that if É is finite or aperiodic, the only element
of G is the identity, while if É is infinite and periodic, then G is isomorphic to Z.

• If É is finite, let Θ : É ⇝ É be an isomorphism between ΓÉ and itself, i.e. an
element of G. If it sends the vertex 0 ∈ ΓÉ,0 to itself, then, for 2.2.1, Θ is the
identity. Observe that, since we are assuming that the string É = É1 . . . Ék is finite,
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there are only two vertices, 0 and k, that have just one arrow, respectively µ0 and
µk, linked to them. Since Θ is a quiver isomorphism, we have s ◦Θ = Θ ◦ s and
t ◦Θ = Θ◦t, then Θ(0) must be equal to k and either both vertices are the start of
the respective arrow, or the tails. For the same reason, Θ(µ0) = µk and Θ(1) = k−1.
Using induction we get that k must be even, and Θ(µl) = µk−l and Θ(l) = k − l for
k
2
g l g 1. By definition of a partial map, FÉ ◦ Θ = FÉ, so FÉ(µk−l) = FÉ(µl) and

FÉ(k − l) = FÉ(l) for k
2
g l g 1. This means that ΓÉ is symmetric with respect to

the vertex k
2
. Hence, by construction of the underlying quiver, the string is equal to

É = É1 . . . Ék = ³ϵ11 . . . ³
ϵ k
2

k
2

³
−ϵ k

2
k
2

³−ϵ1
1 .

Note that this implies that É = É−1. Since we are considering strings up to inverses,
without loss of generality we can replace É with its inverse, Θ became the identity.

• If the string, É, is infinite and aperiodic, let p, s different vertices of ΓÉ and assume
Θ(s) = p. Denote n = |p − s|. The vertex s, resp. p, is linked with two arrows, µs
and µs+1, resp. µp and µp+1, if they exist. Then we could only have

(a) either Θ(µs) = µp,

(b) or Θ(µs) = µp+1.

Indeed Θ(µs) is the unique arrow, µx, belonging to F−1
É (FÉ(µp)), where x could be

either p or p+1, and Θ(µs+1) is the other one. If (a) happens, by induction and by
looking at the structure of the quiver ΓÉ, we get that

Θ(µs−l) = Θ(µp−l) and Θ(µs+l) = Θ(µp+l), if l g 1.

However this also implies that FÉ(µs−l) = FÉ(µp−l) and FÉ(µs+l) = FÉ(µp+l), if
l g 1, namely ³s−l = ³p−l and ³s+l = ³p+l. Hence the string w is equal to

. . . ³
ϵs+n

s+n ³
ϵs+1

s+1 . . . ³
ϵs+n

s+n ³
ϵs+1

s+1 . . . if p > s,

. . . ³
ϵp+n

p+n ³
ϵp+1

p+1 . . . ³
ϵp+n

p+n ³
ϵp+1

p+1 . . . if s > p.

Namely the string is periodic and this is a contradiction. So p = s and Θ = id.

If (b) happens, following quite the same reasoning, we get that n must be even and

Θ(µs−l) = Θ(µp+1+l) and Θ(µs+l) = Θ(µp+l−1), if l g 1,

and so the string w is equal to:

. . . ³
ϵs−1

s−1 ³
ϵs
s ³

ϵs+1

s+1 . . . ³
ϵs+n/2

s+n/2³
−ϵs+n/2

s+n/2 . . . ³
−ϵs+1

s+1 ³−ϵs
s ³

−ϵs−1

s−1 . . . if p > s,

. . . ³
ϵp−1

p−1 ³
ϵp
p ³

ϵp+1

p+1 . . . ³
ϵp+n/2

p++n/2³
−ϵp+n/2

p+n/2 . . . ³
−ϵp+1

p+1 ³−ϵp
p ³

−ϵp−1

p−1 . . . if s > p,

This implies that É = É−1. Again, up to replace the string É with its inverse, Θ is
the identity.
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Ép−1 Ép Ép+1 Ép+2

És−1 És És+1 És+2

Case (a)

Ép−1 Ép Ép+1 Ép+2

És−1 És És+1 És+2

Case (b)

• If É is infinite and periodic, then É is the infinite composition of the same finite
substring É̃, i.e É = . . . É̃É̃É̃ · · · =

∏

i∈Z É̃i. We can assume that É̃ = É̃1 . . . É̃k is
the period of É, i.e. is the substring of minimal length which is aperiodic. We,
firstly, rename the vertices and arrows of ΓÉ such that they match the period of
the string. Thus, the vertices of ΓÉ̃i

are renamed as i0, . . . , ik for each i ∈ Z and
also the names of the arrows follow the same idea: they will be µi1 , . . . , µik . Let
p, s be two different vertices of ΓÉ and Θ a quiver isomorphism, different than the
identity, such that Θ(p) = s and FÉ◦Θ = FÉ. We showed that the only isomorphism
between finite string is the identity, so if s = ia belongs to ΓÉ̃i

with i, a ∈ Z and
0 f a f k, then p = jb must belong to ΓÉ̃j

with i ̸= j and j, b ∈ Z and 0 f b f k,
and Θ|Γω̃i

= ΓÉ̃j
= idΓω̃

, i.e. a = b. Moreover, since Θ is a quiver isomorphism and

the string is connected, Θ(µik) = µjk , then Θ(i+10) = j+10. Hence, call n = i− j,
Θ(xa) = (x + n)a for each x ∈ Z. This gives us the idea of how to construct the
group homomorphism ϕ between G and Z: consider the vertex 0a in ΓÉ̃0 . and its
image through Θ ∈ G, Θ(0a) = na, with n ∈ Z. We then define ϕ(Θ) = n. Let Θ′

be in G, such that Θ′(0a) = n′
a, then (Θ ◦Θ′)(0a) = (n+ n′)a, this proves that ϕ is

a well-defined group homomorphism. It is then obviously surjective and injective,
namely it is a group isomorphism.

We now consider its group algebra KG. If G ≃ {id}, then KG ≃ K, since any element
a ∈ KG can be written as a =

∑

g∈G ¼gg = ¼id, with ¼ in K . Being isomorphic to a field,
KG has no non-trivial idempotents.

If G ≃ Z, then KG ≃ K[x, x−1], since any element a ∈ KG can be written as a =
∑

g∈G ¼gg =
∑

i∈Z ¼ii, that could be seen as a polynomial in one variable x:
∑

i∈Z ¼ix
i,

with ¼ in K. Namely, the group algebra is isomorphic to the Laurent polynomials. Due
to Lemma 2.2.3, also in this case, KG has no non-trivial idempotents.

Each element in G is, by definition, a partial map Θ : É ⇝ É, and we can link it with
its corresponding linear map fΘ : M(É) → M(É′). By Lemma 2.2.2, any module map
f : M(É) → M(É), i.e. f ∈ Aut(M(É)) can be written uniquely as f =

∑

Θ:É⇝É ¼ΘfΘ,
with ¼Θ ∈ K. This sum is equal to say

f =
∑

Θ:É⇝É
Θ/∈G

¼ΘfΘ +
∑

Θ∈G

¼ΘfΘ.
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Namely we can say that End(M(É)) = S · J , where

S = {f ∈ End(M(É)) such that f can be written as
∑

Θ∈G

¼ΘfΘ}

and
J = {f ∈ End(M(É)) such that f can be written as

∑

Θ:É⇝É
Θ/∈G

¼ΘfΘ}.

We can give a different, but equivalent, description of this decomposition which will be
very convenient later. Let s, r two vertices of ΓÉ, if there exists a partial map Θ inducing
s⇝ r and if cs(fΘ(zr)) ̸= 0, then r ⇝ s, by Lemma 2.2.1, then Θ is an isomorphism, i.e.
Θ belongs to G. Instead, if there exists a partial map Θ inducing s ⇝ r and such that
Θ /∈ G, then Θ(r) ̸= s, so cs(fΘ(zr)) = 0. So

J = {f ∈ End(M(É)) | cs(f(zr)) = 0, ∀ r, s, s⇝ r}.

Consider S, it is by definition isomorphic to KG, and is a subalgebra of End(M(É)),
since given f, g ∈ S, then f ◦ g = f(

∑

Θ∈G ¼
g
ΘfΘ) = (

∑

Φ∈G ¼ΦfΦ) ◦ (
∑

Θ∈G ¼ΘfΘ) =
∑

Φ,Θ∈G ¼Φ¼ΘfΦ ◦ fΘ =
∑

Ψ∈G ¼ΨfΦ, where Ψ = Φ ◦Θ is still an element of G and fΦ ◦ fΘ
correspond exactly to fΨ, while ¼Ψ = ¼Θ · ¼Φ.

Meanwhile, J is an ideal of End(M(É)), since given f in End(M(É)) and g in J , both
f ◦ g and g ◦ f belong to J . Indeed, let

f =
∑

Θ:É⇝É
Θ/∈G

¼ΘfΘ +
∑

Θ∈G

¼ΘfΘ and g =
∑

Θ:É⇝É
Θ/∈G

¼′ΘfΘ,

with ¼Θ, ¼
′
Θ ∈ K. Then we have

f ◦ g =
∑

Θ,Θ′:É⇝É
Θ,Θ′ /∈G

¼Θ¼
′
Θ′fΘ◦Θ′ +

∑

Θ:É⇝É
Θ/∈G,Θ′∈G

¼Θ¼
′
Θ′fΘ◦Θ′

If Θ,Θ′ : É ⇝ É and Θ,Θ′ ̸∈ G, then Θ ◦Θ′ is a partial map which does not belong to
G, sinceDΘ◦Θ′ = DΘ∩Θ

−1(DΘ′) which is different from all ΓÉ. The same reasoning applies
if Θ,Θ′ : É ⇝ É such that Θ /∈ G and Θ′ ∈ G. Then DΘ◦Θ′ = DΘ∩Θ

−1(DΘ′) ̸= ΓÉ, hence
Θ ◦ Θ′ is a partial map É ⇝ É not in G. This means that f ◦ g belongs to J . Similarly
also g ◦ f belongs to J .

Let now f ̸= 0 in End(M(É)), such that f 2 = f . Let f be the projection of f

into the quotient group EndM(É)
J

≃ S ≃ KG. Since the projection is a group morphism

f = f 2 = f
2
, i.e. f is still an idempotent element of KG, but KG has no non-trivial

idempotents, so f = 0 or f = 1. Without loss of generality, we can assume f = 0, if not
we consider 1− f which is still an idempotent. Then f belongs to J and is different from
zero, so ∃ r ∈ ΓÉ such that f(zr) ̸= 0, then f(zr) =

∑m
i=1 ¼izri for some ri vertices of ΓÉ

and cri(f(zr)) = ¼i ̸= 0 ∈ K, then r ⇝ ri and ri ̸⇝ r, this is due to Lemma 2.2.2 and by
the fact that f belong to J .
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Assume that rj ⇝ r1. Let Θ1 : D1 → R1 be the partial map inducing r ⇝ r1,
Θj : Dj → Rj be the partial map inducing r ⇝ rj, and Θ : DΘ → RΘ be the partial map
inducing rj ⇝ r1.

Since there exists a unique partial map inducing r ⇝ r1, it follows that

Θ ◦Θj

∣

∣

Θ−1
j (DΘ)∩Dj

= Θ1 ̸= 0.

In particular, D1 = Θ−1
j (DΘ) ∩Dj. This implies that if rj ⇝ r1, then D1 is a subquiver

of Dj. Now, consider the collection of domains {Di | Θi : Di → Ri}, partially ordered
by inclusion, and take the maximal one. Without loss of generality, assume that D1 is
maximal.

Hence, from the above reasoning, if rj ⇝ r1, the only possibility is that Dj = D1, and
therefore r1 ⇝ rj.

Since f 2 = f , then f(zr) = f(f(zr)) =
∑

i ¼if(zri). So, for some i, cr−1(f(zri)) ̸=
0, then ri ⇝ r1, but for our choice of r1, r1 ⇝ ri. However, since f belongs to J ,
cr−1(f(zri)) = 0, and this is a contradiction. Then M(É) has no non-trivial idempotent
endomorphisms, but this means that M(É) is indecomposable. Indeed, if M(É) = M1 ·
M2, then there exist the natural projection Ã1 and injection º1. Set f = º1Ã1, this is an
idempotent endomorphism different than zero.

Now we need to prove the second part of the theorem. Let M(É)
È
≃ M(É′). If r is

a vertex of ΓÉ, then, by Lemma 2.2.2, È(zr) =
∑

i ¼izri , with cri(È(zr)) = ¼i ∈ K and
ri vertices of ΓÉ such that r ⇝ ri. Then zr = È−1(

∑m
i=1 ¼izri) =

∑m
i=1 ¼iÈ

−1(zri) and
È−1(zri) =

∑

s ¼szs, where cs(È
−1(zri)) = ¼s ∈ K and s vertices of ΓÉ such that ri ⇝ s.

Then zr =
∑

i ¼i
∑

s ¼szs. Since zr is an element of a basis of a vector space, it must exist
at least one i, such that r ⇝ ri ⇝ r. By Lemma 2.2.1, it exists a quiver isomorphism
Θ : É ⇝ É′.

2.3 Projective presentations of a string modules

Gentle algebras are a particular class of string algebras where we need to put more rules
on the relations of the quiver such that, for instance, if an arrow has two arrows with
which it can be composed, one of them will be in a relation, while the other not. Formally
we have:

Definition 2.3.1. A gentle quiver Q := ((Q0,Q1), I) is a bound quiver, i.e. a directed
graph with relations, such that:

• each vertex v ∈ Q0 has at most two incoming and two outgoing arrows,

• I is generated by paths of length exactly two,

• for any arrow ´ ∈ Q1, there is at most one arrow ³ ∈ Q1 such that t(³) = s(´)
and ³´ /∈ I, and there is at most one arrow ³′ ∈ Q1, such that t(³′) = s(´) and
³´ ∈ I,
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• for any arrow ´ ∈ Q1, there is at most one arrow µ ∈ Q1 such that t(´) = s(µ) and
´µ /∈ I and there is at most one arrow µ′ ∈ Q1 such that t(´) = s(µ′) and ´µ′ ∈ I.

The algebra kQ
I

associated to a gentle bound quiver is called a gentle algebra.

Example 2.3.1. The following are examples of gentle quivers, we have also indicated the
generators of the admissible ideal.

1

2

0

3

4

³

´

µ ¶

¸

¼

Λ1 =
KQ1

I1
, with I1 generated by

´³, µ´, ³µ, ¶¸, ¼¸, and ¸¶.

1

2

3

4

¿ Ç

Ä»

Å µ

Λ2 =
KQ2

I2
, with I2 generated by

Å2, ¿», ÇÄ, µ2.

Since string algebras are a generalization of gentle algebras, everything we have proved
so far is still true for gentle algebras. For instance the string modules are indecomposable.
From now on, when we talk about strings, we will always consider strings to be gentle,
finite and up to inverses. Also the quivers will be always gentle, so Λ will corresponds to
a gentle algebra, i.e. is basic, connected and finite-dimensional.

Example 2.3.2. Referring to the gentle algebra Λ2 of the example above, we present a
gentle string and its string module associated.

1

4

3

3

2

1

» Ä

µ

Ç ¿

The string
É = »Ä−1µ−1Ç−1¿

K
2

K

K
2

K

[

0 1
] [

0 1
]

[

1
0

][

1
0

]

0

[

0 0
1 0

]

The left Λ2-module associated
M(É)

The aim of this section is to construct the projective presentation of a string gentle
module, and, in doing so, we will also see how to compute its projective resolution. We
will show that, given a string É, the combinatorial information provided by the string
is all we need to know in order to give a complete description of the relative projective
presentation.
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2.3.1 Projective indecomposable modules

Let a be a vertex of Q. We start by proving that P (a), the projective indecomposable
module corresponding to the vertex a is a string module. Firstly, we construct the string
p(a), which, as we will prove, generates P (a).

Construction of p(a).

By (S1), any vertex is the starting point of at most two arrows. If there is none starting
from a, then p(a) is the string of length zero p(a) = ea.

Consider the set S of all the possible path starting from a. If a is the starting point
of two arrows, call them ³1 and ³−1, then S = S1 ∪̇S−1, where S±1 is the subset of S
containing all the path starting from ³±1. If there is only one arrow starting from a, then
we can define, without loss of generality, S = S1 and S−1 = ∅.

We can order the element of S±1 by their length and, since there exists only a finite
number of paths starting with a, due to (S3), there exists a maximal path in S1, resp.
S−1 (if it is not the empty set), call it M1, resp. M−1. Any path with length greater than
zero and starting with a is either a subpath of M1 or a subpath of M−1, depending on
the starting arrow. In particular, this means that the maximal paths, if they exist, are
respectively unique.

Let na be the length of M1 and ma the length of M−1, condition (S3) ensures that na
and ma are natural number not infinite. Denote the maximal paths M1 = ³na³na−1 . . . ³1

and M−1 = ³−ma³−(ma−1) . . . ³−1, with ³i in Q1 for each −ma f i f −1, 1 f i f na.
Finally, we set:

p(a) =M1(M−1)
−1 =

= ³na³na−1 . . . ³1(³−ma³−(ma−1) . . . ³−1)
−1 = ³na³na−1 . . . ³1³

−1
−1 . . . ³

−1
−ma

= p(a)1p(a)2 . . . p(a)nap(a)na+1 . . . p(a)na+ma .

To summarize in a less formal and detailed way, p(a) consists of the two paths of
maximum length starting from a, which will become the unique peak vertex of the string.
From now on, the quiver underlying p(a) will be denoted with Γa and the relative map
by Fa.

na

na − 1

1

0

na + 1

na +ma − 1

na +ma .

Γa, the quiver underlying p(a)
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Proposition 2.3.1. For each vertex a in Q0, the projective indecomposable module P (a)
associated to that vertex is isomorphic to the string module M(p(a)) generated by the
string p(a).

Proof. We need to construct an isomorphism

ϕ :M(p(a))→ P (a),

where M(p(a)) = (M(p(a))b, f³)b∈Q0,³∈Q1
is the module generated by the string p(a), and

P (a) = (P (a)b, ·³)b∈Q0,³∈Q1
is the indecomposable projective module corresponding to the

vertex a as described in Lemma 1.2.5.
Let b be a vertex of Q, by the same lemma, P (a)b = eaAeb is the vector space with,

as a basis, the paths starting from a and arriving in b. Let q be an element of this basis,
i.e. is a path such that a = s(q) and b = t(q) of length j g 0. If it has length greater
than zero, it must be either a subpath of M1 or of M−1, starting with the same arrow
respectively i.e. q = ³j . . . ³1 or q = ³−j . . . ³−1. Then q corresponds also to a substring

of p(a) or p(a)−1, indeed q = p(a)na−j+1 . . . p(a)na or q =
(

p(a)na+1 . . . p(a)na+j

)−1
.

Define

ϕb(q) =











zna−j if q = ³j . . . ³1,

zna+j if q = ³−j . . . ³−1,

zna if j = 0,

with zi basis vector ofM(p(a))Fa(i). Observe that ϕb(q) is well-defined, indeed Fa(na−j) =
b if and only if s(p(a)na−j) = b, and if q = ³j . . . ³1, then t(p(a)na−j+1) = s(p(a)na−j) = b.
Equivalently also the other cases work. The construction of ϕ is extended by K-linearity
on the other elements of P (a)b.

Note that ϕb is an isomorphism of K-vector spaces for each vertex b ∈ Q0. Indeed,
by construction ϕb is a K-linear map and, just by looking at the definition, one can see
that is also injective, since we assign to each element of the basis of P (a)b an element
of the basis of M(p(a))b. We just need to prove that this correspondence works also in
the other sense, i.e. that ϕb is surjective. Let zk be a basis vector of M(p(a))b, then, by
definition, Fa(k) = b, namely b = s(p(a)k) if k ̸= 0, or b = t(p(a)k) if k = 0. So, if k < na,
then ³na−k . . . ³1 is a path in Q from a to b and ϕb(³na−k . . . ³1) = zk. While, if k > na,
then ³na+k . . . ³−1 corresponds to the preimage of zk and if k = na ϕb(ea) = zk. Thus,
we showed a one to one correspondence between elements of the basis, proving injectivity
and surjectivity of ϕb.

Now we just have to prove that ϕ = (ϕb)b∈Q0
is a morphism between representations,

i.e. given an arrow ³ : b→ c in Q1 the following commutes:

P (a)b P (a)c

M(p(a))b M(p(a))b.

·³

ϕb ϕc

fα
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By definition, given q, different from zero, basis element of P (a)b of length j, we have

f³(ϕb(q)) =











zna−j−1 if p(a)na−j = ³j+1 = ³,

zna+j+1 if p(a)na+j+1 = ³−1
−(j+1) = ³−1,

0 otherwise.

While

ϕb(q · ³) =











zna−j−1 if q · ³ = ³j+1 . . . ³1,

zna+j+1 if q · ³ = ³−(j+1) . . . ³−1,

0 otherwise.

and we can conclude, because if q · ³ is different from zero, then q · ³ is a path of length
j + 1 which starts with the same arrow as q.

From now on, the string p(a) that generates P (a) will be referred to as the projective
string associated with the vertex a. When the vertex is clear from context, we will simply
call it the projective string.

Example 2.3.3. We present here some projective modules over Λ2, as defined in 2.3.1,
and the respective projective strings.

4

1

1

2

3

3

2

»

Å

¿

Ä

µ

Ç

String generating P (4) in Λ2

3

3

2

2
µ

Ç

Ç

String generating P (3) in Λ2

K
2

K
2

K
2

K

[

1 0
0 0

] [

0 1
0 0

]

[

1
0

][

0
1

]

[

0 1
0 0

] [

0 0
1 0

]

P (4)

0

K
2

K
2

0

0

[

1 0
0 1

]

00

0

[

0 0
1 0

]

P (3)
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Partial maps between projective strings

Let a, b be vertices in Q0 and let p(a) = p(a)1 . . . p(a)nap(a)na+1 . . . p(a)na+ma , and p(b) =
p(b)1 . . . p(b)nb

p(b)nb+1 . . . p(b)nb+mb
be the projective strings related. Let Γa,Γb, be the

respective underlying quivers and Fa, Fb the relative maps.

It is well-known that there is a one-to-one correspondence between

{Basis elements of HomΛ(P (a), P (b))} ←→
1:1
{path in Q from b to a}

u→ p · u ←→ p.

Thanks to Lemma 2.2.2, we also have the following bijection:

{Basis elements of HomΛ(P (a), P (b))} ←→
1:1
{partial map between p(a) and p(b)}

fΘ ←→ Θ.

We now aim to explicitly demonstrate the correspondence between partial maps Θ :
p(a)⇝ p(b) and paths p : b→ a. To begin, we will describe in detail the possible partial
maps between p(a) and p(b).

Recall that a partial map Θ between p(a) and p (b) is a quiver isomorphism from DΘ ¦
Γa, closed under predecessors, to RΘ ¦ Γb, closed under successor. So, by construction of
p (a), DΘ must contain the vertex na of Γa for all Θ.

Let Θ be a partial map such that x ∈ Γb,0 = {0, . . . , nb +mb} is the vertex image of
na. By Lemma 2.2.1, given the image of a vertex, a partial map is defined univocally,
i.e. if it exists Θ partial map s.t. Θ(na) = x, this is unique. We denote this map Θx.
By definition of partial map Fb ◦Θx = Fa, then Fb(x) = a. Up to replacing p(b) with its
inverse, we can assume that x is less or equal than nb, without loss of generality.

If x = nb, then b = Fb(nb) = a, so p(a) = p(b) and Θ ∈ AutΓa. By Lemma 2.2.1, then
Θnb

is the identity, and its module homomorphism associated corresponds to the trivial
path. The partial map Θnb

is visualized below:

na

na − 1

1

0

na + 1

na +ma − 1

na +ma

na

1

0 na +ma

id
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Now, we consider the case when x ̸= nb. If x = 0, we observe that zero is a sink vertex
of Γb and na is a source vertex of Γa, so, since Θ is a quiver isomorphism, DΘ0 is made of
just the vertex na and RΘ0 is made of just the vertex zero. Namely, Θ0 sends the vertex
na to the vertex 0 of Γb and nothing else, as shown in the picture below.

na

na − 1

1

0

na + 1

na +ma − 1

na +ma

nb

nb − 1

1

0

nb + 1

nb +mb − 1

nb +mb

Θ0

If x ̸= 0, x is not a source vertex in Γb (indeed, by construction, nb is the only source
vertex), so x is the head of an arrow and the tail of another, while na is a source, i.e. is the
head of two arrows. Each vertex x−i for 1 f i f x is a successor of x in Γb, then x−i must
belong to RΘ for 1 f i f x. This implies, being Θ a quiver isomorphism, that either na+i
or na−imust belong toDΘ for 1 f i f x and moreover Θ(na±i) = x−i. Since Fb◦Θ = Fa,
p(b)1 . . . p(b)x = ´1 . . . ´x is equal to either (p(a)na+1 . . . p(a)na+x)

−1 = ³na+x . . . ³na+1 or
to p(a)na−x+1 . . . p(a)na = ³na−x+1, . . . ³na .

Observe that, by construction of p(b), ´1 . . . ´x is a maximal path of length x in Λ
starting from Fb(s(p(b)1)) = Fb(x) = a. However, as showed during the construction of
the string p(a), the maximal path starting from a are at most two and are respectively
unique. They correspond to ³1 . . . ³na and ³na+ma . . . ³na+1. This means that x could be
either equal to na or to ma. Refer to Figure 2.1.

Summarizing, let Θ : p(a) ⇝ p(b) be a partial map inducing na ⇝ x, then, up to
replacing p(b) with its inverse, x could only be equal to 0, na,ma; or nb if a = b, we
have no other possibilities.

Now, our goal is to link the Λ-module homomorphism fx = fΘx : P (a) → P (b)
associated to one of the above possible partial map Θx to the multiplication on the left
by a path in Λ with head in b and tail equal to a.

• If x = nb, we’ve already seen that a = b and the partial Θnb
map correspond to the

identity between the underlying quivers, then its associated module homomorphism
is the identity, which is linked with the trivial path ea.

In the other cases, consider the substring

p := p(b)x+1 . . . p(b)nb−1p(b)nb
= ´x+1 . . . ´nb−1´nb

,
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na

na − 1

1

0

na + 1

na +ma − 1

na +ma

nb

nb − 1

x+ 1

x

x− 1

1

0

nb + 1

nb +mb − 1

nb +mb

Θma

na

na − 1

1

0

na + 1

na +ma − 1

na +ma

nb

nb − 1

x+ 1

x

x− 1

1

0

nb + 1

nb +mb − 1

nb +mb

Θna

Figure 2.1
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which is a path in Q from b to a, since a = Fa(na) = Fb(Θx(na)) = Fb(x) = Fb(t(p(b)x+1)),
while Fb(nb) = Fb(s(´nb

)) = b.
Now we prove that the module homomorphism fx works the same as the multiplication

on the right by p.
Let c be another vertex of Q and q ∈ P (a)c = ecAea a path from a to c of length j g 0,

if j ̸= 0 then q = p(a)na−j+1 . . . p(a)na = ³na−j+1 . . . ³na or q = (p(a)na+1 . . . p(a)na+j)
−1 =

³na+j . . . ³na+1, if j = 0, q is the trivial path ea.

• If x = 0, p is a path of maximal length starting from b and ending in a. So the
multiplication on the right by p correspond to the map:

q · p =

{

p if j=0,

0 otherwise.

This corresponds to the module homomorphism f0 which sends zna in z0 and is zero
otherwise.

• If x ̸= 0 and x ̸= nb:

q · p =











p if j = 0,

qp if q = p(b)x−j+1 . . . p(b)x,

0 otherwise,

indeed, the multiplication is not zero if and only if q starts with p(b)x.

Since fx is defined with vector coordinates, we may use the isomorphism described in
Proposition 2.3.1, for which

ϕc(q) =











zna−j if q = p(a)na−j+1 . . . p(a)na ,

zna+j if q = (p(a)na+1 . . . p(a)na+j)
−1,

zna if j = 0,

and

ϕc(p(q)) =











zx if j = 0,

zx−j if q = p(b)x−j−1 . . . p(b)x,

0 otherwise.

Then we divide the last two cases remaining

• If x = na then p(a)1 . . . p(a)na = p(b)1 . . . p(b)x so

Θna(ϕc(q)) =











zna if j = 0,

zna−j if q = p(a)na−j+1 . . . p(a)na ,

0 otherwise,

=











zx if j = 0,

zx−j if q = p(b)x−j+1 . . . p(b)x,

0 otherwise.



Chapter 2. String and gentle algebras 61

• If x = ma, then (p(a)na+1 . . . p(a)na+ma)
−1 = p(b)1 . . . p(b)x and so

Θma(ϕc(´)) =











zma if j = 0,

zma−j if q = (p(a)na+1 . . . p(a)na+j)
−1,

0 otherwise,

=

{

zx if j = 0,

zx−j if q = p(b)x−j+1 . . . p(b)x,

With this, we showed how to link a partial map between indecomposable projective string
modules to a path.

The path p associated with the map Θx can be easily visualized by looking at the
strings, as shown below, where the partial map is colored in cyan and the path is high-
lighted in green:

na

na − 1

1

0

na + 1

na +ma − 1

na +ma

nb

nb − 1

x+ 1

x

x− 1

1

0

nb + 1

nb +mb − 1

nb +mb

Θna

We need to show that the correspondence we have just created also works in the
other sense. So, consider p a path in Q from b to a of length j > 0. It must start with
p(b)nb

or with p(b)−1
nb+1. Up to replacing p(b) with its inverse, we can assume, without

loss of generality, that it starts with p(b)nb
. Then p is a subpath of p(b)1 . . . p(b)nb

, in
particular, it must be equal to p(b)nb−j+1 . . . p(b)nb

. If j ̸= nb, by construction of the
string p(b), ´1 . . . ´nb+j is a maximal path starting with a, then it must be of length either
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ma or na. Thus, if j = nb − na, we have p = p(b)na+1 . . . p(b)nb
, if j = nb −ma, we get

p = p(b)ma+1 . . . p(b)nb
. So, all paths, with length other than zero or nb, from b to a are

of the type px+1 . . . pnb
, with x = na,ma. With this last observation, we can conclude.

Due to this one-to-one correspondence, we will use the term path to refer to both the
partial map and the module homomorphism associated when dealing with maps between
projective indecomposable modules.

2.3.2 Projective covers of string modules

Now that we understand how to compute projective indecomposables and the morphisms
between them, we will conclude this chapter by finally demonstrating the computations
necessary to fully describe the projective presentation of a string module. Be aware that
the following construction will be very detailed, often making it difficult and annoying
to follow. We therefore encourage the reader to refer to the accompanying figures for
guidance.

Proposition 2.3.2. Given É a finite string, the projective cover P (É) of the string module
M(É) is:

P (É) =
⊕

i peak vertices of É

P (FÉ(i))

Proof. Let É = É1 . . . Él a string and M(É) its associated module. The idea behind this
proof is to construct the projective cover following the recipe given in the proof of Theorem
1.1.5.

The following picture presents the notations we will use for the rest of this section, we
will after define it formally:

j1

j2

k1 k2

jt

ki

ji

l

l−1 l2 l−2 l−i l−t

Given a vertex a in Q0, set Ja := {j ∈ {0, . . . , l} such that FÉ(j) = a and j is a peak},
which is a subset of ΓÉ,0. Let J := ∪̇a∈Q0

Ja. Since the string is finite, J is a finite set, so we
can order its element and rename it such that J = {j1, . . . , jt}, where t = |J | =

∑

Ja ̸=∅ |Ja|.



Chapter 2. String and gentle algebras 63

With the same reasoning, define a subset of ΓÉ,0 as Ka := {k ∈ {0, . . . , l} | FÉ(k) =
a and k is a deep}. Let K := ∪̇a∈Q0

Ka. Set K̃ = K − {0, l}. If K does not contain

the indices 0 and l, K = K̃. Note that each deep vertex of the string, which belongs to
K̃, lies between two peak vertices. Hence we can order the elements of K̃ and rename
them such that K̃ = {k1, . . . , kt−1}, where ji < ki < ji+1 for i = 1, . . . , t − 1. Then K,
by definition, could be either {0, k1, . . . , kt−1}, or {0, k1, . . . , kt−1, l}, or {k1, . . . , kt−1} or
{k1, . . . , kt−1, l}.

For i = 1, . . . , t− 1 we call l−i = ki− ji and for i = 2, . . . , t li = ji− ki−1, while l1 = j1
and l−t = l − jt. Note that l1 and lt could also be zero if neither zero nor l are not deep
vertices, i.e if K = K̃.

Now our goal is to prove that T := top(M(É)) is equal to
⊕t

i=1 S(FÉ(ji)). In order
to do this, we start by looking at the radical of M(É). By Lemma 1.2.4, we know the
explicit description of radicals of any quiver representation, M . We recall it briefly:
R = rad(M) = (Ra, ¿³)a∈QO,³∈Q1

, where Ra =
∑

³:b→a Im(f³ : Mb →Ma) and ¿³ = f³|Ra

for every a in Q0 and ³ in Q1. Set R(É) = R(M(É)).
Since we are dealing with string quivers, by (S1), for any vertex there are at most two

arrows with it as a target. Let a be a vertex of Q and let, if they exist, ³ and ´ be the
two arrows for which t(³) = t(´) = a. Then R(É)a = Im(f³) + Im(f´). If one of them
(or both) does not exist, we could just set Im(f³), resp. Im(f´), to be zero.

We want to prove that

R(É)a =
⊕

i | Fω(i)=a and i/∈Ja

Kzi.

If a = FÉ(ji) for some ji in Ja, then zji is a base vector of M(É)a, but not of R(É)a.
Indeed, by definition, zji belongs to the image of f³ if and only if wi is inverse and ³ is
equal to (wi)

−1 or if wi+1 is direct and ³ is equal to wi+1. But since ji is a peak, this is not
possible. Equivalently, it is not in the image of f´. Conversely, if FÉ(h) = a and h /∈ Ja,
then, not only zh is a base vector of M(É)a, but also of R(É)a. Indeed, by definition,
h = t(Éh) = s(Éh+1) and since h is not a peak in Γh, either both Éh and Éh+1 have the
same direction or Éh is inverse and Éh+1 is direct, i.e. h is a deep vertex. If h is a deep
or if they are both direct, implies that a = t(FÉ(µh)) = t(Éh), so Éh is equal to ³ or ´,
while if they are both inverse Éh is the inverse of an arrow ending in a, namely ³ or ´.
And so zh is a basis vector of R(É)a.

By definition T = M
rad(M)

= (Ta, Ä³)a∈Q0,³∈Q1
, then for any vertex

Ta =

⊕

i | Fω(i)=a
Kzi

⊕

i | Fω(i)=a and i/∈Ja
Kzi

=
⊕

ji∈Ja

Kzi

and Ä³ = 0 for every arrow, since we are factoring through the image. This show that

T = S(FÉ(j1))· S(FÉ(j2))· · · · · S(FÉ(jt))

and for the construction presented in the proof of Theorem 1.1.5, we can conclude, ob-
taining

P (É) =
⊕

ji∈J

P (FÉ(ji)).
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To simplify notation, from now on, we denote for i = 1, . . . ,m, P (ji) = P (FÉ(ji))
generated by the projective string pi = pi1, . . . p

i
ni
pini+1 . . . p

i
mi+ni

. The vectors of the basis
of P (ji)Fω(h) will be called xih for h = 1, . . . , ni+mi. The simple module S(ji) = S(FÉ(ji))
is generated by the string of length zero si = eFω(ji), which will be also as we denote the
only vector of the basis of S(ji)Fω(ji).

Proposition 2.3.3. Given É a finite string, with the notations introduced before, the
epimorphism between the projective cover P (É) of the string module and the module itself
M(É) is:

dÉ = (fΘi
)i=1,...,t

where Θi is the partial map P (ji)⇝M(É), inducing ni ⇝ ji.

Proof. We want to describe the module homomorphism d = dÉ between M(É) and P (É).
By construction in Theorem 1.1.5, ϕ is the surjective module homomorphism which

makes the following diagram commute

P (É) M(É)

top(É)

d

Ä
Ã

where Ã and Ä are just the quotient projection. Since P (É) = ·ji∈JP (ji), d could be
seen as a vector of homomorphism (di)i, with di = d|P (ji)

: P (ji) → M(É). Since di is a
module homomorphism between string modules, by Lemma 2.2.2, di could be written in
a unique way as a linear combination of module homomorphisms associated to a partial
map Θ : pi ⇝ É, namely di =

∑

Θ:pi⇝É ¼ΘfΘ.
Moreover, we have that

Ãa :Ma =
⊕

i=0,...,l | Fω(i)=a

Kzi → Ta =
⊕

ji∈Ja

S(ji)

sends the element of the basis zji in si and is zero otherwise. Since Ãd = Ä, Ã−1(si) = {zji}
and d(xini

) = si, then d(xni
) = di(xni

) = zji .
By Lemma 2.2.1, there is a unique partial map Θi from the underlying quiver of P (ji)

to the underlying quiver of É, which sends ni in ji. We represent Θi (for i ̸= 0,m) in
Figure 2.2.

Note that even if there are other partial maps ¿ between pi and É, then ¼¿ , the
coefficient of ¿ in di =

∑

Θ:pi⇝É ¼ΘfΘ must be zero. Indeed, for any partial map ¿ : pi ⇝ É,
we have, since FÉ ◦ ¿ = Fpi and ¿ is a quiver isomorphism, ¿(ni) ∈ Ja. Call the image of
ni through ¿, j¿ . This means that di(xni

) = zji +
∑

¿ ¼¿zjν , with ¼¿ ∈ K for any ¿ partial
map. But then we get

∑

¿ ¼¿zjν = 0 and, since this is a linear combination of elements of
a basis, ¼¿ = 0.
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ji

ki−1 ki

ni

ni − li

0

ni + l−i

ni +mi

Θi

Figure 2.2

Hence di = fΘi
, for each i = 1, . . . , t, in particular, we showed that

d(xih) = zΘi(h) =











zh−(ni−li)+ki−1
if ni − li f h f ni,

zh−ni+ji if ni f h f ni + li−1,

0 otherwise,

for each i = 1, . . . , t.

Syzygies of string modules

Now call (Ω(É), º) the kernel of (P (É), d), this exists since we are in an abelian category.
Set Ω(É) = (Ω(É)a, n³)a∈Q0,³∈Q1

and º = (ºa)a∈Q0
, by definition º ◦ d = 0 and each ºa is

injective.

Let ³ : a→ b be an arrow, since º is a morphism between representations, the following
must commute:

Ω(É)a P (É)a

Ω(É)b P (É)b

nα fα

ºa

ºb

.
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Call, for i = 1, . . . , t− 1, ui = ni+1− li+1 and ri = ni + l−i. If ui ̸= 0, observe that the
substring pi+1

1 . . . pi+1
ni+1−li+1

of pi+1, by construction, correspond to a maximal path with

head in Fpi+1(xi+1
ni+1−li+1

) = FÉ(Θi+1(x
i+1
ni+1−li+1

)) = FÉ(ki). If ri ̸= ni+mi, the same is true

for the substring pini+l−i+1 . . . p
i
ni+mi

of pi, which correspond to an inverse of a maximal

path of Q with head in Fpi(x
i
ni−l−i

) = FÉ(Θi(x
i
ni−l−i

)) = FÉ(ki). They are of length ui,
respectively ri.

This implies that if we define

qi =



























































qi1 . . . q
i
ui
qiui+1 . . . q

i
ui+ri

:= pi+1
1 . . . pi+1

ni+1−li+1
pini+l−i+1 . . . p

i
ni+mi

if ui ̸= 0 and ri ̸= ni +mi,

qi1 . . . q
i
ui
:= pi+1

1 . . . pi+1
ni+1−li+1

if ri = ni +mi,

qi1 . . . q
i
ri
:= pini+l−i+1 . . . p

i
ni+mi

if ui = 0,

eFω(ki)

if ui = 0 and ri = ni +mi,

then qi corresponds to the string generating P (ki).

We showed that, for i = 1, . . . , t− 1, d(xih) = 0 and so xih belongs to the image of º for
0 f h f ni−li−1, if ni−li ̸= 0, and ni+l−i+1 f h f ni+mi, if ni+l−i ̸= ni+mi. Moreover,
we have Θi(ni + l−i) = Θi+1(ni+1 + li+1), or equivalently d(xini+l−i

) = d(xi+1
ni+1−li+1

) = zki ,

so also xini+l−i
− xi+1

ni+1−li+1
belongs to the image of º.

We will address the case when both ri ̸= ni +mi and ui ̸= 0, as it is the most general
scenario. The other cases can be derived in a similar manner, requiring only adjustments
to the indices.

Thus, denote,

yiui = º−1(xi+1
ni+1−li+1

− xini+l−i
),

yih = º−1(xi+1
h ) if 0 f h f ui − 1,

−yih = º−1(xini+l−i+h−ui
) if ui + 1 f h f ui + ri,

where, by the definition of the kernel of a morphism between representations, each yih is
a vector basis element of Ω(É)Fpi+1 (h) if 0 f h f ui, or of Ω(É)Fpi (ni+l−i+h−ui) if ui + 1 f
h f ui + ri.
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Let ³ : a→ b be an arrow, then

f³(º(y
i
h)) =











f³(x
i+1
h ) if 0 f h f ui − 1,

f³(−x
i
ni+l−i+h−ui

) if ui + 1 f h f ui + ri − 1,

f³(x
i+1
ni+1−li+1

− xini+l−i
) if h = ui,

=































xi+1
h−1 if 1 f h f ui − 1 and ³ = qih,

−xini+l−i+h−ui+1 if ui + 1 f h f ui + ri − 1 and ³−1 = qih+1,

−xini+l−i+1 if h = ui and ³−1 = qiui+1,

xi+1
ni+1−li+1−1 if h = ui and ³ = qiui ,

0 otherwise.

By the commutativity of the diagram above, we can describe how n³ works, indeed:

yih xi+1
h yih −xini+l−i+h−ui

yih−1 xi+1
h−1 yih+1 −xini+l−i+h−ui+1

ºa

nα fα

ºa

nα fα

ºb ºb

i.e.

n³(y
i
h) =











yih−1 if 1 f h f ui and ³ = qih,

yih+1 if ui f h f ui + ri − 1 and ³−1 = qih+1,

0 otherwise.

Observe that we have just described the module P (ji), namely, P (ji) is a direct sum-
mand of Ω(É) for i = 1, . . . , t− 1. Given that the proof may be challenging to follow due
to the various indices and names, refer to Figure 2.3 for clarity, in order to understand
how º works.

The remaining description of Ω(É) depends on what happens at the start and, sym-
metrically, at the end, of the string É. Denote, if it exists, by É0, the unique direct arrow
which makes É0É1 . . . Él a string.

We will consider later the case when É0 does not exist. Denote k0 = t(É0).

Consider the maximal path q0 starting in k0 such that q0É0 is different than zero.
Observe that q0 could also have length zero. Then p1, the projective string generating
P (j1), up to replacing it with its inverse, must start with q0. The length of q0 is n1− l1−1,
denote this number u0. Set

q+0 = p11 . . . p
1
u0

= q01 . . . q
0
u0
.

If q0 has length zero, it means that k0 is a sink vertex in Q0, then Ω(É)0 := S(k0).

Recall that d(x1h) = 0 for 0 f h f n1 − l1 and so we can denote

y0h = º−1(x1h) if 0 f h f u0,
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with y0h is an element of the basis of the K-vector space Ω(É)Fp1 (h)
Repeating the same

reasoning as above

n³(y
0
h) =

{

y0h−1 if 1 f h f u0 and ³ = q0h,

0 otherwise.

In this case Ω(É)0 :=M(q+0 )
Symmetrically consider the end of the string. Denote by Él+1, if it exists, the direct

arrow which makes É1 . . . ÉlÉl+1 a string. Again, we will deal later with the case when
Él+1 does not exist. Denote kt = s(Él+1).

Consider qt the inverse of the maximal path starting in kt such that w−1
l+1q

t is different
than zero. Call ut the length of qt. If ut = 0, set Ω(É)t := S(kt). Since pt must end with
qt, we get that ut = mt − (l − jt)− 1. So set the string

q−t = ptnt+l−t+2 . . . p
t
nt+mt

= qt1 . . . q
t
ut .

Again d(xth) = 0 for nt + l−t + 2 f h f nt +mt and denote

y0h = º−1(xth) if nt + l−t + 2 f h f nt +mt,

the vertex in Ω(É)Fpt (h)
and, so,

n³(y
t
h) =

{

yth+1 if nt + l−t + 2 f h f ut − 1 and ³ = qth
0 otherwise

.

In this case Ω(É)t :=M(q−t ).
Summarizing, we have just described the module generated by the strings q0, and,

symmetrically, the one generated by qt. If É0, resp Él+1, does not exists set Ω(É)0 = 0,
resp. Ω(É)t = 0. Then Ω(É) is the direct summand of the modules generated by the
strings qi, namely

Ω(É) = Ω(É)0 ·
t−1
⊕

i=1

P (ki)· Ω(É)t =
t

⊕

i=0

Ω(É)i

.
We can describe the module homomorphism º as a matrix, (ºh,i)h=1,...,t; i=0,...,t where

each component ºh,i is a Λ-module homomorphism from Ω(É)i → P (jh). Observe that
for i ̸= 0 and i ̸= t, ºh,i corresponds to a module homomorphism between indecomposable
projectives P (ki)→ P (jh).

For i ̸= 0, and i ̸= t, ºi+1,i : P (ki) → P (ji+1) is the module homomorphism corre-
sponding to the path

q+i = Éni+1−li+1
. . . Éni+1

= Éki+1 . . . Éji+1
.

While, ºi,i is minus the homomorphism corresponding to the inverse of

wni+l−i
. . . wni+mi

= wji+1 . . . wki ,
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call the inverse of this substring, which is a path in Q, q−i . Moreover for h ̸= i and
h ̸= i+ 1, ºh,i = 0.

In other words, ºi,i = fΘ
q+
i

and ºi+1,i = −fΘ
q−
i

, where Θq+i
: qi ⇝ pi+1 is the unique

partial map sending ui in ni+1 − li+1, while Θq−i
: qi ⇝ pi is the partial map inducing

ui ⇝ ni+ l−i. Below are pictured the partial map, and the path associated for each i ̸= 0
and i ̸= t.

ni

ni + l−i

ni +mi

ni+1

ni+1 − li+1

0

ui

ui − 1

1

0

ui + 1

ui + ri − 1

ui + ri

Θq+i

Θq−i

q+iq−i

Figure 2.3: ºi,i and ºi+1,i

Now consider i = 0, then º1,0 is equal to fΘ
q+0

, where Θq+0
: q0 ⇝ p1 is the unique
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partial map which sends u0 in n1 − j1 − 1, as pictured below:

n1

n1 − j1

n1 − j1 − 1

1

0

n1 +m1

u0

0

Θq+0

Symmetrically, we have ºt,t = −fΘ
q−t

, where Θq−t
: qt ⇝ pt is the partial map inducing

ut ⇝ nt + l − jt + 1.

nt

0

nt + l − jt + 1

nt +mt − 1

nt +mt

nt + l − jt

ut

0

Θq−t
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Putting all together, we get

ºh,i =























−q−i if h = i and i ̸= 0, t,

q+i if h = i+ 1 and i ̸= 0, t,

fΘ
q+0

if i = 0 and h = 1,

−fΘ
q−t

if i = t and h = t,

namely

º =































fΘ
q+0

−q−1 0 · · · · · · · · · · · · · · · 0

0 q+1 −q−2 0
...

... 0 q+2 −q−3
. . .

...
...

. . . . . . . . .
...

...
. . . . . .

...
...

. . . . . . −q−t−1 0
0 · · · · · · · · · · · · 0 q+t−1 −fΘ

q−t































.

2.3.3 Projective presentations and resolutions of string modules

Given a string É = É1 . . . Él, to compute the projective presentation P 1(É)
d1→ P (É) of

the string module M(É), as described in 1.1.6, we need only to use the results obtained
thus far, i.e. it is necessary just to know how to construct the projective cover of the
syzygy and the associated epimorphism. We will continue to use the notations and terms
introduced in this chapter.

Observe that the projective cover of a direct sum of modules is the direct sum of the
projective cover of each summand. Hence P 1(É) = P (Ω(É)) =

⊕t
i=0 P (Ω(É)i). Referring

to Proposition 2.3.2, the projective cover of the syzygy is the direct sum of the projectives
correspondent to the peak vertices of the string. In particular, Ω(É)i = P (ki) for 1 f i f
t−1, then P (Ω(É)i) = Ω(É)i = P (ki), namely correspond to the projective module of the
deep vertices ki of the string É. The peak vertex of the string q0, resp. qt generating Ω(É)0,
resp. Ω(É)t, is k0, resp. kt, hence, if they exist, P (Ω(É)0) = P (k0), resp. P (Ω(É)t) =
P (kt). Summarizing

P 1(É) =
t

⊕

i=0

P (ki).

The map d1 : P 1(É) → P (É) is the composition of the surjective map d1 : P 1(É) →
Ω(É) and the monomorphism º : Ω(É)→ P (É).

P 1(É) P (É)

Ω(É) M(É)

d1

d1 dº
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We can rewrite d1 as a matrix as d1 = (d1i,h)h=0,...,t,i=0,...,t. In particular for any i = 0, . . . , t,
d1i,i = fΘi

: P (ki) → Ω(É)i, where Θi is the partial map sending the vertex ki in ui. It
corresponds to the identity for i ̸= 0, and i ̸= t. Moreover, d1h,i is equal to zero if h ̸= i.

Then

d1 = º ◦ d1 =

=































fΘ
q+0

−q−1 0 · · · · · · · · · 0

0 q+1 −q−2 0
...

... 0 q+2 −q−3
. . .

...
...

. . . . . . . . .
...

...
. . . . . .

...
...

. . . −q−t−1 0
0 · · · · · · · · · 0 q+t−1 −fΘ

q−t































·



























fΘ0 0 · · · · · · · · · · · · 0

0 id 0
...

... 0 id
. . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . id 0
0 · · · · · · · · · · · · 0 fΘt



























So d1 is equal to































fΘ
q+0

◦ fΘ0 −q
−
1 0 · · · · · · · · · 0

0 q+1 −q−2 0
...

... 0 q+2 −q−3
. . .

...
...

. . . . . . . . .
...

...
. . . . . .

...
...

. . . −q−t−1 0
0 · · · · · · · · · 0 q+t−1 −fΘ

q−t

◦ fΘt































,

where

• d10,0 = fΘ
q+0

◦ fΘ0 : P (k0) → Ω(É)0 → P (j0), being the composition of two module

homomorphism related to two partial maps, which induces respectively k0 ⇝ u0
and u0 ⇝ n1 − j1 − 1, then it corresponds to the module homomorphism of the
composition of the partial maps. Thus d10,0 = fΘ

q+0
◦Θ0 , where Θq+0

◦ Θ0 induces

k0 ⇝ n1 − j1 − 1, i.e. d10,0 corresponds to the multiplication by the path q+0 .

• Symmetrically, d1t,t = −fΘ
q−t

◦ fΘt = −fΘ
q−t

◦Θt : P (kt) → P (jt), where Θq−t
◦ Θt

corresponds to the partial map p(kt)⇝ p(jt) inducing kt ⇝ nt − jt + 1− l, i.e. d1t,t
corresponds at minus the multiplication by the path q−t .

We refer to Figures 2.3 and 2.4 to better visualize these maps.
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nt

0 nt + l − jt + 1

nt +mt − 1

nt +mt

nt + l − jt

ut

0

kt

q−t
Θq−t

Θt

0

1

n1 − l−1 − 1

n1 − l−1

n1

n1 +m1

u0

0

k0

q+1

Θq+0

Θ0

Figure 2.4: Visualization of Θq+0
◦Θ0 and Θq−t

◦Θt
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Concluding, we get that:

d1 =



























q+0 −q−1 0 · · · · · · · · · 0

0 q+1 −q−2 0
...

... 0 q+2 −q−3
. . .

...
...

. . . . . . . . .
...

...
. . . . . .

...
...

. . . −q−t−1 0
0 · · · · · · · · · 0 q+t−1 −q−t



























.

Example 2.3.4. Consider the string É = »Ä−1µ−1Ç−1¿ of Example 2.3.2. Its minimal

projective presentation P (É) = P 1(É)
d1→ P 0(É) is:

P 1(É) = P (1)· P (2)· P (1) P 0(É) = P (4)· P (1)

d1 =

[

Å» −ÇµÄ 0
0 ¿ −µ

]

We conclude this chapter with a brief overview of how to construct the projective
resolution of a string module. Having demonstrated how to compute of the minimal
projective presentation, the process now becomes relatively straightforward: one simply
needs to replicate the steps outlined so far, following Corollary 1.1.6.

However, we want to just emphasize an important observation. Since d1i,i corresponds
to the identity for i ̸= 0 and i ̸= t, the only contributions to the kernel of this map come
from Ω0 and Ωt. If these do not exist, then the minimal projective presentation is identical
to the minimal projective resolution.

Instead, if they do exist, we must consider whether there is another arrow ³0 having
as source k0, resp. ³t with source kt, distinct from q01, resp. qt1. If such arrows exist, then
P 2
É will be equal to the direct sum of P (t(³0)) and P (t(³t)). Therefore, for i g 2, P i

É

will have at most two summands.



Chapter 3

Two-term silting complexes

This chapter aims to prove the existence of a bijection between two-term silting complexes
and support Ä -tilting modules. This bijection was established by Adachi, Iyama, and
Reiten in [AIR14], here we outline the steps leading to this bijection. In their paper,
the authors demonstrated that support Ä -tilting modules parametrize torsion pairs in
module categories. This result implies that two-term silting complexes play a crucial
role in controlling many homological properties of the homotopy category, while also
representing a generalization of tilting module. Thus silting theory may be seen as a
completion of tilting theory and this is one of the reasons why we are so interested in it.

Chapter 3 is structured as follows: first, we define a two-term silting complex and
provide its characterizations. Next, we introduce the Auslander-Reiten translation Ä and
explore the initial connections between Ä - rigid modules and two-term complexes. Finally,
we arrive at the proof of the aforementioned bijection.

Definition 3.0.1. Let P in K. We call P silting if

• HomK(P, P [i]) = 0 for any i > 0 and

• thick(P ) = K,

where thick(P ) is the smallest full subcategory of K which contains P and is closed
under cones, [±1] shifts, direct summands and isomorphisms. If only the first condition
is satisfied, we call P presilting. If P is a silting object in K[−1,0], then it is a two-term
silting object. We call silt-Λ the set of isomorphism classes of silting complexes for Λ.
2- silt Λ will denote the set of isomorphism classes of two-term silting complexes.

We note that Λ, viewed as the complex · · · → 0→ Λ→ 0→ . . . , is a silting complex
in any degree.

3.1 Completion of silting complexes

Whenever two complexes M,N in K verify HomK(M,N [i]) = 0 for any i > 0, we denote
it as M g N . We observe that, for any two-term complex P in K[−1,0], we have Λ g P g
Λ[1].

75
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The following proposition shows how a two-term presilting complex can be completed
to a silting one.

Proposition 3.1.1 ([Aih13]). Every two term presilting complex P for Λ is a direct
summand of a two-term silting complex for Λ.

Proof. Since addP is covariantly finite, see Section 1.5, there exists f : P ′ → Λ a right-
addP approximation of Λ, with P ′ in addP , i.e. there exists P ′′ in K and n natural
number such that P ′ · P ′′ = P n. We can then create the triangle

T := V → P ′ f
→ Λ→ V [1] (3.1)

, by setting Cf = V [1], thanks to the first axiom (TR1).
We want to show that W := P · V belongs to 2- silt Λ.
Firstly, we need to prove that HomK(W,W [i]) is equal to zero for every i > 0. Observe

that

HomK(W,W [i]) ≃ HomK(P, P [i])· HomK(V, V [i])·

· HomK(P, V [i])· HomK(V, P [i]),

where HomK(P, P [i]) = 0, since P is presilting.
For any i > 0, we have a long exact sequence, thanks to Proposition 1.4.1:

HomK(P, U
′[i− 1])

HomK(P,f [i−1])
−→ HomK(P,Λ[i− 1])→ HomK(P, V [i])→ HomK(P, P

′[i]).

Since HomK(P, P [i]) = 0, then 0 = HomK(P, P [i])
n ≃ HomK(P, P

n[i]) ≃ HomK(P, P
′[i])

· HomK(P, P
′′[i]), so HomK(P, P

′[i]) = 0.
Since f is a right addP - approximation HomK(P, f [i − 1]) is surjective. So the map

HomK(P,Λ[i − 1]) → HomK(P, V [i]) is zero. This implies, by exactness of the sequence,
that

HomK(P, V [i]) = 0 for i > 0.

Consider now the sequence which arises from the triangle:

HomK(P
′,W [i])→ HomK(V,W [i])→ HomK(Λ[−1],W [i])→ HomK(P

′[−1],W [i]).

For any i > 0, HomK(P
′,W [i]) ≃ HomK(P

′, P [i]) · HomK(P
′, V [i]). We just showed

that HomK(P, V [i]) is equal to zero, then 0 = HomK(P, V [i])n ≃ HomK(P
′, V [i]) ·

HomK(P
′′, V [i]), so HomK(P

′, V [i]) = 0. Equivalently, since P is presilting, 0 = HomK(P,
P [i])n ≃ HomK(P

′, P [i])· HomK(P
′′, P [i]), then HomK(P

′, P [i]) = 0. Moreover,
HomK(P

′[−1],W [i]) ≃ HomK(P
′,W [i+ 1]) which is equal to zero for any i > 0. Then by

exactness of the sequence

HomK(V,W [i]) ≃ HomK(Λ[−1],W [i]).

Consider the long exact sequence arising from the triangle 3.1, by applying the functor
HomK(Λ,−):
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HomK(Λ,Λ[i])→ HomK(Λ, V [i+ 1])→ HomK(Λ, P
′[i+ 1]).

Since Λ is silting, HomK(Λ,Λ[i]) = 0. Since Λ g P , also Λ g P [1], i.e 0 =
HomK(Λ, P [i+1])n ≃ HomK(Λ, P

′′[i+1])·HomK(Λ, P
′[i+1]). So HomK(Λ, P

′[i+1]) is
equal to zero for i > 0. By exactness of the sequence

HomK(Λ, V [i+ 1]) = 0 for i g 0.

Then HomK(V,W [i]) ≃ HomK(Λ[−1],W [i]) ≃ HomK(Λ,W [i + 1]) ≃ HomK(Λ, V [i +
1])· HomK(Λ, P [i+ 1]), which is zero for any i > 0. This show that W is presilting.

By definition, thickW is closed under direct summands and [±1] shifts, so it contains
both P ′ and V [1]. Moreover, it is closed under extension, so Λ also belongs to thickW .
Since Λ is silting, thickA = K. Then thickW = K, namely, we proved that W is
silting.

3.2 Characterization of silting complexes

Now we give some results which relate silting complexes to the triangulated structure of
K, in order to prove the following characterization of silting objects:

Theorem 3.2.1. Any two-term presilting complex P in silt Λ is silting if and only if has
the same number of pairwise non-isomorphic direct summands of Λ, i.e. |P | = |Λ|.

We note that thickP = thick addP . Indeed, thickP is closed under extensions,
isomorphisms, direct summands and [±1] shifts, while thick addP contains also direct
sums of P . Thanks to Proposition 1.4.2, direct sum of triangles is a triangle. So, let
X, Y ∈ thickP , then X·Y is in a triangle of the type X → X·Y → Y → X[1], namely
X · Y is an extension of X and Y , then X · Y belongs to thickP . Thus thickP is
closed under direct sums, in particular it contains direct sums of P , i.e thickP § addP ,
so thickP § thick addP . The other inclusion is due to the fact that P is contained in
addP .

We note also that, if HomK(P, P [i]) = 0 for some i > 0, then HomK(X, Y [i]) = 0 for
X, Y in addP . Indeed, there exists X ′ and Y ′ such that X ·X ′ ≃ P and Y · Y ′ ≃ P ,
then

0 = HomK(P, P [i]) ≃HomK(X ·X
′, Y [i]· Y ′[i]) ≃

≃ HomK(X, Y [i])· HomK(X, Y
′[i])

· HomK(X
′, Y ′[i])· HomK(X

′, Y [i]).

So HomK(X, Y [i]) = 0. Moreover HomK(Q,N [i]) = 0 for any i > 0 and any Q ∈ addP , if
and only if HomK(P,N [i]) = 0 for any i > 0. Let Q ∈ addP , then it exists P ′ ∈ Λ-mod
such that Q · P ′ ≃ P n, so by additivity of the Hom functor, 0 = (HomK(P,N [i])n ≃
HomK(Q,N [i])· HomK(P

′, N [i]). The other implication is obvious.

From now on, we denote the subcategory addP , with P .
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Proposition 3.2.1 ([AI12]). Let P be a silting complex, then

K = thickP =
⋃

lg0

P [−l] ∗ P [1− l] ∗ · · · ∗ P [l − 1] ∗ P [l].

Proof. Firstly observe that P [n] is closed under extension, namely

P [n] ∗ P [n] = P [n]. (3.2)

Indeed, any triangle A → X → B → A[1], with both A,B in P [n], due to the fact that
P is silting and by Proposition 1.4.2, is such that X ≃ A · B and P [n] is closed under
direct summand.

Consider n g m and a triangle A→ X → B
f
→ A[1], where A belongs to P [n] and B

belongs to P [m]. The fact that P is silting implies that f = 0, so, by Proposition 1.4.2,
X ≃ A· B, i.e. X belongs to P [m] ∗ P [n]. This means that

P [n] ∗ P [m] ¦ P [m] ∗ P [n], if n g m.

We now prove that

thickP =
⋃

lg0, n1gn2g···gnl∈Z

P [n1] ∗ P [n2] ∗ · · · ∗ P [nl−1] ∗ P [nl].

The right-hand side contains P and is a thick subcategory:

• is closed under isomorphisms. Indeed, let X ≃ Y isomorphic complexes, with X
in P [n1] ∗ P [n2] ∗ · · · ∗ P [nl−1] ∗ P [nl] for some l g 0, n1 g n2 g · · · g nl ∈
Z. So there exists a triangle A → X → B → A[1], with A in P [n1] and B in
P [n2] ∗ · · · ∗ P [nl−1] ∗ P [nl]. We get the commutative diagram:

A X B A[1]

A Y Cf A[1],

f

id

g

≃ ϕ

f

id

where ϕ exists by the second axiom of the triangulated category (TR2) and is an
isomorphism due to Proposition 1.4.2. Thus Y belongs to P [n1]∗P [n2]∗· · ·∗P [nl−1]∗
P [nl].

• Is closed under direct summands. Indeed, due to the fact that P is silting and to
Lemma 1.5.1, we get P [n1] ∗ P [n2] ∗ · · · ∗ P [nl−1] ∗ P [nl] = smdP [n1] ∗ P [n2] ∗ · · · ∗
P [nl−1] ∗ P [nl]. Given a category C, with smd C we denote the subcategory whose
objects are the summands of C.

• Is closed under [±1]-shifts. Given X in P [n1] ∗ P [n2] ∗ · · · ∗ P [nl−1] ∗ P [nl] for some
l g 0, n1, . . . , nl ∈ Z, we want to show that X[±1] belongs to P [n1 ± 1] ∗ P [n2 ±
1] ∗ · · · ∗ P [nl−1 ± 1] ∗ P [nl ± 1]. We use induction on l. If l = 1, the statement
is obviously true. If l = 2, there exists a triangle A → X → B → A[1], where
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A belongs to P [n1] and B to P [n2] for some n1, n2 in Z. Then there are triangles
A[1] → X[1] → B[1] → A[2] and A[−1] → X[−1] → B[−1] → A. So X[1] belongs
to P [n1 + 1] ∗ P [n2 + 1] and X[−1] belongs to P [n1 − 1] ∗ P [n2 − 1]. Now let the
statement be true for l and take X in P [n1] ∗ · · · ∗ P [nl] ∗ P [nl+1]. There exists a
triangle A→ X → B → A[1], with A ∈ P [n1] ∗ · · · ∗ P [nl] and B ∈ P [nl+1], then it
exists a triangle A[±1] → X[±1] → B[±1] → A[±1 + 1] and A[±1], by induction,
belongs to P [n1 ± 1] ∗ · · · ∗ P [nl ± 1] and B[±1] is in P [nl+1]. Then X[±1] belongs
to P [n1 ± 1] ∗ · · · ∗ P [nl ± 1] ∗ P [nl+1 ± 1] as we wanted.

• Is closed under cones, indeed is closed under extensions. Consider A in P [n1] ∗
P [n2] ∗ · · · ∗ P [nl−1] ∗ P [nl] and B in P [m1] ∗ P [m2] ∗ · · · ∗ P [mt−1] ∗ P [mt] for
some l g 0, n1, . . . , nl ∈ Z and t g 0, m1, . . . ,mt ∈ Z. If exists a triangle
A→ X → B → A[1], then X belongs to (P [n1] ∗ · · · ∗ P [nl]) ∗ (P [m1] ∗ · · · ∗ P [mt]).

Since any mapping cone Cf of A
f
→ B is an extension of B and A[1], we conclude.

By definition, thickP is the smallest thick subcategory containing P , so we have shown
that the right-hand side includes the left one.

Conversely, it is easy to see that each object in P [n1] ∗ P [n2] ∗ · · · ∗ P [nl−1] ∗ P [nl]
belongs to thickP . Thus we proved that:

thickP =
⋃

lg0, n1gn2g···gnl∈Z

P [n1] ∗ P [n2] ∗ · · · ∗ P [nl−1] ∗ P [nl].

Now we want to prove that

⋃

lg0, n1,...,nl∈Z

P [n1] ∗ P [n2] ∗ · · · ∗ P [nl−1] ∗ P [nl] =
⋃

lg0

P [−l] ∗ P [1− l] ∗ · · · ∗ P [l− 1] ∗ P [l].

Note that

P [m]∗P [n] ¦ P [m]∗P [m+1]∗· · ·∗P [n−1]∗P [n] ¦ P [−n]∗P [1−n]∗· · ·∗P [n−1]∗P [n].

Indeed, consider a triangle A→ X → B → A[1], where A belongs to P [m] and B belongs
to P [n], then we also have triangles X → X → 0 → X[1] and B[−1] → 0 → B → B.
Refer to the following diagram for clearance:

A[1] B

B B

X X 0 X[1]

A B[−1]

.
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This implies, using 3.2, that X belongs to

(P [m] ∗P [n]) ∗ (P [n− 1] ∗P [n]) = P [m] ∗P [n− 1] ∗P [n] ∗P [n] = P [m] ∗P [n− 1] ∗P [n].

By repeating the same reasoning, we conclude.

Proposition 3.2.2. If M in K is such that HomK(P,M [i]) = 0 for any i > 0, i.e.
P g M , then M belongs to P ∗ P [1] ∗ · · · ∗ P [l − 1] ∗ P [l] for some l g 0. Moreover, we
have triangles:

M1 P0 M M1[1],

. . . . . .

Ml Pl−1 Ml−1 Ml[1],

0 Pl Ml 0,

f0

fl−1

fl

such that Pi ∈ P and fi is a minimal right P-approximation for 0 f i f l. These triangles
are unique up to isomorphisms.

Proof. Let M in K be such that HomK(P ,M [i]) = 0 for any i > 0 and take the biggest
n such that M belongs to P [n] ∗ P [n + 1] ∗ · · · ∗ P [l − 1] ∗ P [l], for some l g 0. So there

exists a triangle A
f
→ M → B → A[1], with A in P [n] and B ∈ P [n + 1] ∗ · · · ∗ P [l]. If

f ∈ HomK(P [n],M) is zero, then, by Proposition 1.4.2, B =M ·A[1]. Hence M belongs
to P [n + 1] ∗ · · · ∗ P [l], since this is closed under summands, however this contradicts
the maximality of n. Since HomK(P ,M [i]) = 0 for any i > 0 and HomK(P [n],M) =
HomK(P ,M [−n]) ̸= 0, then −n must be less than zero, i.e. n g 0. So M belongs to
P [n] ∗ P [n+ 1] ∗ · · · ∗ P [l − 1] ∗ P [l] ¦ P ∗ P [1] ∗ · · · ∗ P [l − 1] ∗ P [l].

Now we prove the second part of the proposition. If l = 0, M belongs to P , then the
triangle correspondent is just the trivial one : 0→M →M → 0.

So we can assume l > 0. We have a triangle

P ′
1 → P ′

0

f
→M → P ′

1[1]

with P ′
0 in P and P ′

1 in P ∗ P [1] ∗ · · · ∗ P [l − 1]. We have, by Proposition 1.4.1, a long
exact sequence for every Z ∈ P :

HomK(Z, P
′
1)→ HomK(Z, P

′
0)→ HomK(Z,M)→ HomK(Z, P

′
1[1]).

Since P ′
1 is in P ∗ P [1] ∗ · · · ∗ P [l − 1], then HomK(Z, P

′
1[1]) = 0 for every Z ∈ P . Then

f is a right P-approximation. We can decompose f , f = (f0 0) : P ′
0 = P0 · P

′′
0 → M ,

such that f0 is right minimal and, thanks to the first axiom (TR1), we can construct the
triangle

M1 → P0
f0
→M → P1[1].
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Consider the trivial triangle P ′′
0 → P ′′

0 → 0 → P ′′
0 [1], then the direct sum of these two

triangles is again a triangle and is isomorphic to P ′
1 → P ′

0

f
→ M → P ′

1[1]. In particular
P ′
1 ≃ M1 · P

′′
0 , so M1 is a summand of P ′

1, then it belongs to P ∗ P [1] ∗ · · · ∗ P [l − 1] by
Lemma 1.5.1. We can repeat the same reasoning with M1 and so on, until Ml belongs to
P .

Starting the construction of the triangles related to M with the same triangle P ′
1 →

P ′
0

f
→ M → P ′

1[1], will always get the same triangles up to isomorphisms, thanks to the
second and third axioms, (TR3) and (TR2), and Proposition 1.4.2.

Let Q′
1 → Q′

0

g
→ M → Q′

1[1] be a different triangle than P ′
1 → P ′

0

f
→ M → P ′

1[1],
with Q0 in P and Q′

1 ∈ P ∗ P [1] ∗ · · · ∗ P [l − 1].Then we can consider g0 : Q0 → M a
right minimal P-approximation. By what proved in Section 1.5, f0 and g0 are unique
up to isomorphism, namely there exists h : Q0 → P0 Λ-module isomorphism such that,
f0h = g0. Thanks to the second and third axioms, (TR3) and (TR2), we get the following
commutative diagram of triangles:

Q1 Q0 M Q1[1]

M1 P0 M P1[1],

ϕ

g0

h id

f0

where ϕ is an isomorphism, thanks to Proposition 1.4.2.
We have shown that even if we start with a different triangle, we get one that is

isomorphic, and so, following the same construction, we get triangles that are equal up
to isomorphism.

We are now ready to prove the first implication of Theorem 3.2.1 aforementioned.

Theorem 3.2.3 ([AI12]). Any silting complex P in Λ-silt has the same number of pairwise
non-isomorphic direct summands.

Proof. Let P be a silting complex. The idea is to prove that the non-isomorphic inde-
composable summands of P , denoted by indP , form a basis of the Grothendieck group
G0(K). Let n = | indP |. Note that indP = indP , indeed let indP = {Q1, . . . Qn} and
let P ′ ∈ P , then there exists P ′′ ∈ P such that P ′ · P ′′ ≃ Pm for some m ∈ N. So,
Pm ≃ ·niQi

si ≃ P ′ · P ′′, for si > 0, since K is a Krull-Schmidt category, this decompo-
sition is unique, hence P ′ ≃ ·niQ

ri
i for ri g 0.

The G0(K) is defined as the abelian group generated by isomorphism classes of objects
of the category K and the relation:

[L]− [M ] + [N ] = 0,

for each triangle
L→M → N → L[1].

We shall define a group homomorphism µ : G0(K)→ Z
| indP |. We divide the construction

of this map into different steps. Firstly, we describe a map µ : K → Z
| indP | and we prove

that is well-defined group homomorphism. Then we show that it can be restricted to
G0(K).
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Construction of the map

We need to show how µ(M) works for each M in K.

• If M belongs to P , then M = ·i=1,...nQ
ni
i , for some ni g 0 ∈ Z, then µ(M) = (ni)i.

• Consider M in K such that P g M . Then by Proposition 3.2.2 we have triangles,
and we can set

µ(M) :=
l

∑

i=0

(−1)iµ(Pi).

• For a general M object of K, there must exist a sufficiently large k such that M [k]
satisfies HomK(P,M [k + i]) = 0 for i > 0. Then

µ(M) := (−1)kµ(M [k]).

Is well-defined?

• If M belongs to P , then, since we are in a Krull-Schmidt category, its decomposition
is unique up to isomorphism, namely if M = ·i=1,...,nP

ni
i = ·i=1,...,mP

mi
i , for some

ni g 0 ∈ Z,mi g 0 ∈ Z, then ni = mi and n = m.

• If M in K is such that P g M , then µ(M) :=
∑l

i=0(−1)
iµ(Pi). The triangles of

Proposition 3.2.2 are constructed up to isomorphisms. So even if we have a different
sequence of triangles related to M , i.e µ(M) =

∑l
i=0(−1)

iµ(Qi), then Qi ≃ Pi ∈ P
for every 0 f i f l. For what said above µ(Qi) = µ(Pi). Equivalently if M ≃ N ,
then µ(M) = µ(N), since, again, the triangles related to them are isomorphic.

• For a generalM object of K, given the minimum s such thatM [s] satisfies P gM [s],
we want to prove that (−1)sµ(M [s]) = (−1)kµ(M [k]) for any k g s, for which
P gM [k].

Hence, let M [k] be such that P gM [k], i.e. HomK(P,M [k + i]) = 0 for i g 0, thus
it belongs to P ∗ · · · ∗ P [l], for some l g 0. So there exist l + 1 triangles

M1 P0 M [k] M1[1],

. . . . . . ,

Ml Pl−1 Ml−1 Ml[1],

0 Pl Ml 0,

f0

fl−1

fl

and, by definition, µ(M) = (−1)kµ(M [k]) = (−1)k
∑l

i=0(−1)
iµ(Pi). Suppose that

also P g M [k − 1], we want to show that µ(M [k]) = (−1)k−1µ(M [k − 1]). Again
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we have l triangles:

M ′
1 P ′

0 M [k − 1] M ′
1[1],

. . . . . . ,

M ′
l−1 P ′

l−2 M ′
l−2 M ′

l−1[1],

0 P ′
l−1 M ′

l−1 0,

f ′0

f ′l−2

f ′l−1

Since HomK(P,M [k−1+i]) = 0 for i g 0, in particular HomK(P,M [k]) = 0, namely
f0 is zero. Then, by Proposition 1.4.2, the triangle

M1 → P0
f0
→M [k]→M1[1]

must be isomorphic to the trivial triangle:

M [k − 1]→ 0→M [k]→M [k].

This implies that, by minimality of fj+1 and f ′
j,

Mj+2 → Pj+1
fj+1
→ Mj+1 →Mj+2[1]

is isomorphic to

M ′
j+1 → P ′

j

fj
→M ′

j →M ′
j+1[1],

for each l − 1 g j g 0.

Namely

(−1)k−1µ(M [k−1]) = (−1)k−1

l−1
∑

i=0

(−1)iµ(P ′
i ) = (−1)k−1

l−1
∑

i=0

(−1)iµ(Pi) = −µ(M [k]).

By repeating the same reasoning, i times until k − i = s, we prove our statement,
this also implies that the map is well-defined for any objects in K.

We proved that µ(M) = µ(N), if M ≃ N for any M in K. The Krull-Schmidt
property also implies that µ behaves well with direct sums, i.e. if X ≃ M · N , then
µ(X) = µ(M) + µ(N). Indeed, let M,N in P , N = ·iQ

ni
i ,M = ·iQ

mi
i . Then µ(M) =

(mi)i and µ(N) = (ni)i. While X = ·iQ
ti
i , so µ(X) = (ti)i. However, ti = mi + ni for

every i. So we proved that µ(X) = µ(M)+ µ(N) for X in P . By construction of the map
µ, this is also true for every object of K.
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Restriction to G0(K)

We now prove that the relations given by the Grothendieck group are maintained by µ.
Namely, we are proving that we can restrict µ to G0(K). Let X → Y → Z → X[1] be a
triangle. Then we will prove that µ(X)− µ(Y ) + µ(Z) = 0.

If X, Y, Z are general objects of K and there exists a triangle X → Y → Z →
X[1], then µ(X) − µ(Y ) + µ(Z) = (−1)kµ(X[k]) − (−1)kµ(Y [k]) + (−1)kµ(Z[k]), with k
sufficiently large such that P g X[k], P g Y [k], P g Z[k] . Then there exists a triangle
X[k]→ Y [k]→ Z[k]→ X[k+ 1], so without loss of generality, we can assume X, Y, Z be
such that P g X, P g Y, P g Z.

By Proposition 3.2.2 we can take the biggest l, such that all three X, Y, Z belong to
P ∗P [1] ∗ · · · ∗P [l]. We want to use induction. Consider the following assertions for l g 0
and a triangle X → Y → Z → X[1]:

(il) If X, Y, Z ∈ P ∗ P [1] ∗ · · · ∗ P [l], then µ(X)− µ(Y ) + µ(Z) = 0.

(iil) If X, Y ∈ P ∗ P [1] ∗ · · · ∗ P [l] and Z ∈ P ∗ P [1] ∗ · · · ∗ P [l] ∗ P [l + 1], then µ(X)−
µ(Y ) + µ(Z) = 0.

(iiil) If X ∈ P ∗ P [1] ∗ · · · ∗ P [l] and Y, Z ∈ P ∗ P [1] ∗ · · · ∗ P [l] ∗ P [l + 1], then µ(X) −
µ(Y ) + µ(Z) = 0.

We prove first that (i0) is true, and then the following chain of assertions: (il)⇒ (iil)⇒
(iiil)⇒ (il+1) for any l g 0.

(i0) Given a triangle X → Y → Z → X[1], with X, Y, Z ∈ P , it splits, since the
map Z → X[1] correspond to the zero map due to the fact that P is silting. Then by
Proposition 1.4.2, Y ≃ X · Z. By construction of the map, µ(X)− µ(Y ) + µ(Z) = 0.

(il) ⇒ (iil) Let X → Y → Z
w
→ X[1] be a triangle, with X, Y ∈ P ∗ P [1] ∗ · · · ∗ P [l]

and Z ∈ P ∗ P [1] ∗ · · · ∗ P [l] ∗ P [l + 1]. Then it exists a triangle Z1 → A
u
→ Z → Z1[1],

with A in P ¦ P ∗ · · · ∗ P [l] and Z1[1] in P [1] ∗ P [2] ∗ · · · ∗ P [l] ∗ P [l + 1], i.e. Z1[1] in
P ∗ P [1] ∗ · · · ∗ P [l− 1] ∗ P [l]. We can choose this triangle such that u is a minimal right
P-approximation. Then, by definition of µ(Z), we have:

µ(A) = µ(Z1) + µ(Z).

Then we have, wu : A → X[1] and using the mapping cone we can construct the
triangle X → Cwu → A

wu
→ X[1]. In particular Cwu belongs to P ∗ P [1] ∗ · · · ∗ P [l] ∗ P =

P ∗ P [1] ∗ · · · ∗ P [l] by what had been proved in Proposition 3.2.1. Then we get the
triangles:

Z[−1]→ X → Y → Z,

A[−1]→ Z[−1]→ Z1 → A,

A[−1]→ X → Cwu → A.

By the octadrehal axiom (TR4), there exists a triangle Z1 → Cwu → Y → Z1[1]. But
then all three, Z1, Cwu, Y , belong to P ∗ P [1] ∗ · · · ∗ P [l]. By (i)l,

µ(Cwu) = µ(Z1) + µ(Y ).
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Moreover, since wu belongs to HomK(A,X[1]) ¦ HomK(P , X[1]) = 0, using Propo-
sition 1.4.2 related to the triangle X → Cwu → A

wu
→ X[1], we get that Cwu ≃ A · X,

thus
µ(Cwu) = µ(A) + µ(X).

Then

µ(X)− µ(Y ) + µ(Z) = µ(X)− µ(Y ) + µ(A)− µ(Z1) = µ(Cwu)− µ(Y )− µ(Z1) = 0.

So (ii)l holds.
By using exactly the same reasoning and same commutative diagram,

Z1[1] Z1[1]

X Y Z X[1]

X Cwu A X[1]

Z1 Z1,

one can show the other implications.

Conclusion

Since thickP = K, then indP generate G0(K). Indeed, let [X] be an iso-classes of K.
Then X and all the complexes isomorphic to it belong to P [−l] ∗ · · · ∗P [l] for some l g 0.
But then, thanks to the relation in G0(K), [X] =

∑l
i=−l[Pi], with Pi in P [i].

As we observed at the start, indP = indP = indP [i], in particular this means that
the set indP generates G0(K).

Since µ(indP )) is a basis of Z| indP |, then the set indP must be linearly independent
in G0(K). Thus, it forms a basis of G0(K).

This also implies that if we take another silting complex Q, then indQ forms a basis
of G0(K). But G0(K) depends only on the category, then the cardinality of these two sets
must be the same, i.e. | indP | = | indQ|

We will denote the cardinality of the set indP , which represents the number of pairwise
non-isomorphic indecomposable summands of P , with |P |, for any object P ∈ K.

Now we are ready to prove the main theorem of this section, 3.2.1, we recall it:

Theorem 3.2.1. Any two-term presilting complex P in silt Λ is silting if and only if has
the same number of pairwise non-isomorphic direct summands of Λ, i.e. |P | = |Λ|.

Proof. (⇒) The “only if” part follows from Theorem 3.2.3.
(⇐) Given a two-term presilting complex P with |P | = |A|, by Theorem 3.1.1, there

exists a complex Q, such that P ·Q is silting. Then, by Theorem 3.2.3, |P ·Q| = |A| =
|P |. Since the category is Krull-Schmidt, Q belongs to P , thus P is silting.
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3.3 Support Ä -tilting modules

3.3.1 Auslander-Reiten translations

Let M be a left Λ-module, and consider its projective presentation (P 1
M

d1→ P 0
M). Apply

the contravariant functor HomΛ(−,Λ), as defined in 1.3, obtaining:

HomΛ(M,Λ)
HomΛ(d0,Λ)
−→ HomΛ(P

0
M ,Λ)

HomΛ(d1,Λ)
−→ HomΛ(P

1
M ,Λ)

. Let TrM := Coker (HomΛ(d1,Λ)), this is called the transpose of M .
Since projective covers are unique up to isomorphism, as proved in Section 1.5, so

are minimal projective presentations, hence TrM is unique up to isomorphism. We can
prove that the correspondence given by the transposition define a contravariant functor
Λ-mod→ Λop-mod, We need to describe how is defined Tr f : TrN → TrM , given a left
Λ-module homomorphism f :M → N .

Let (P 1
M

d1→ P 0
M), resp. (P 1

N

d′1→ P 0
N) be the projective presentation of M , resp. N .

Consider the following diagram:

P 1
M P 0

M M

Ker d0

Ker d′0

P 1
N P 0

N N

d1

Ã0

d0

f

º0

º′0Ã′
0

d′1 d′0

.

Due to the projectivity of P 0
M , there exists a Λ-module homomorphism f 0 : P 0

M → P 0
N

making the following diagram commute:

P 0
M

P 0
N N

∃ f0
fd0

d′0

.

Since d′0f
0º0 = fd0º0 = 0, the universal property of the kernel ensures the existence of

k0 : Ker d0 → Ker d′0 such that

Ker d0 P 0
M M

Ker d′0 P 0
N N

º0

∃ k0

d0

f0 f

º′0 d′0

commutes.
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Furthermore, since P 1
M is projective, we have a Λ- module homomorphism, f 1 : P 1

M →
P 1
N , satisfying:

P 1
M

P 1
N Ker d′0

∃ f1
k0Ã0

Ã′
0

.

Thus d′1f
1 = º′0Ã

′
0f

−1 = º′0k0Ã0 = f 0º0Ã0 = f 0d1, as shown in the diagram below.

P 1
M P 0

M M

Ker d0

Ker d′0

P 1
N P 0

N N

d1

Ã0

f1

d0

f0 f

º0

k0

º′0Ã′
0

d′1 d′0

Hence we proved the existence of the following commutative diagram with exact rows,
induced by f :

P 1
M P 0

M M

P 1
N P 0

N N

d1

f1

d0

f0 f

d′1 d′0

.

Applying the functor HomΛ(−,Λ), yields a commutative diagram with exact rows

HomΛ(P
1
M ,Λ) HomΛ(P

0
M ,Λ) TrM

HomΛ(P
1
N ,Λ) HomΛ(P

0
N ,Λ) TrN

HomΛ(d1,Λ)

HomΛ(f
1,Λ)

HomΛ(d
′
1,Λ)

HomΛ(f
0,Λ) Tr f ,

where Tr f exists by the universal property of the cokernels.
Note that TrM = 0 if and only if M is projective. Indeed, if M is projective, P 1

M is
zero, then also HomΛ(d1,Λ) = 0 and it implies that TrM = 0. Conversely, if TrM = 0,

then HomΛ(d1,Λ) is surjective,namely d1 is injective. This implies that P 1
M

d1→ P 0
M

d0→ M
is a splitting short exact sequence, indeed, it would mean that P 1

M ≃ Ker d1. Hence M is
a direct summand of a projective, i.e. is a projective module.

The minimal projective presentation of TrM is HomΛ(P
0
M ,Λ)

HomΛ(d1,Λ)
→ HomΛ(P

1
M ,Λ).

If not, call the minimal projective presentation of TrM , (Q0 → Q1). Then HomΛ(P
0
M ,Λ)

HomΛ(d1,Λ)
→ HomΛ(P

1
M ,Λ) must be isomorphic to a direct sum, where one of the summand

is (Q0 → Q1). This implies that, by additivity of the functor Hom, HomΛ(Q1,Λ) →

HomΛ(Q0,Λ), would be a summand of P 1
M

d1→ P 0
M and this is obviously a contradiction,

since the latter is minimal.
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Observe also that if M is not projective then TrTrM ≃ M . Indeed, by what just
proved,

HomΛ(HomΛ(P
1
M ,Λ),Λ))→ HomΛ(HomΛ(P

0
M ,Λ),Λ))

is the projective presentation of TrTrM .
As shown in Section 1.3, HomΛ(−,Λ) induces a duality if restricted to the subcategory

of projective modules. This implies that we have the following diagram:

P 1 P 0 M

HomΛ(HomΛ(P
1
M ,Λ),Λ)) HomΛ(HomΛ(P

0
M ,Λ),Λ)) TrTrM

≃ ≃ .

Then, by universal property of the cokernel and using the five Lemma, we get that
there exists an isomorphism of left modules, completing the diagram, as shown below.

P 1 P 0 M

HomΛ(HomΛ(P
1
M ,Λ),Λ)) HomΛ(HomΛ(P

0
M ,Λ),Λ)) TrTrM

≃ ≃ ≃ .

These observations shows that the correspondence given by the transposition define a
functor Λ-mod → Λop-mod, but can not define a duality, even if we would like so, since
it annihilates the projectives. This justify the need of the following construction.

Let Λ-mod be the category whose object are the same of Λ-mod, while

HomΛ(M,N) := HomΛ-mod(M,N) =
HomΛ(M,N)

P (M,N)
,

where P (M,N) is the K-vector subspace of the homomorphism which factors through a
projective. In some sense Λ-mod is the module category where projectives are factored
out.

Dually, one can define Λ-mod, the module category whose injective are factored out.

It turns out that if f ∈ HomΛ(M,N) does not factor through projectives, neither does
Tr f , and this implies that

Proposition 3.3.1. [ASS06, Proposition IV.2.2 ] The correspondence

Λ-mod→ Λop-mod

M → TrM

defines a K-linear duality functor.

Definition 3.3.1. The Auslander-Reiten translation is the endofunctor defined as

Ä(−) = DTr(−) : Λ-mod→ Λ-mod .



Chapter 3. Two-term silting complexes 89

Given a left Λ-module M , its translation ÄM can be constructed starting with its

projective presentation (P 1
M

d1→ P 0
M). By first applying the functor HomΛ(−,Λ) to this

sequence, computing the cokernel of HomΛ(d0,Λ), and finally applying the duality functor
D, we obtain the exact sequence:

0→ DTrM → D(HomΛ(P
1
M ,Λ))→ D(HomΛ(P

0
M ,Λ))→ D(HomΛ(M,Λ))

Recalling the definition of the Nakayama functor ¿, as Definition 1.3.2, this sequence is
equal to :

0→ ÄM → ¿(P 1
M)→ ¿(P 0

M)→ ¿(M),

This implies that ÄM = ker ¿(d1).

Theorem 3.3.2 (A-R formulas). Let Λ be a K-algebra and M,N be two Λ-modules in
Λ-mod. Then there exists an isomorphism:

Ext1Λ(M,N) ≃ DmodΛ(Ä
−1N,M) ≃ DmodΛ(N, ÄM)

which is functorial in both variables.

See [ASS06, Theorem IV.2.13 ].

Definition 3.3.2. A left Λ-module is said to be Ä-rigid if HomΛ(M, ÄM) = 0.

Definition 3.3.3. A left Λ-module is said to be Ä-tilting if is Ä -rigid and if it has the
same number of isomorphism classes of indecomposable direct summands as Λ, namely
|M | = n.

Proposition 3.3.3 ([AS81]). Let M be a left Λ-module. The following are equivalent:

(i) M is Ä - rigid,

(ii) Ext1(M,M ′) = 0 for all factor modules M ′ of M , i.e. Ext1(M,FacM) = 0.

Proof. Let M ′ be a factor module of M . Saying that Ext1(M,M ′) = 0 is equivalent,
thanks to the AR-formulas, to saying DHomΛ(M

′, ÄM) = 0. This happens if and only if
HomΛ(M

′, ÄM) = 0.
Without loss of generality, we can assume that M is a non-projective indecomposable

module, since both Ä and Hom are additive functors and ÄM is zero if M is projective
indecomposable.

(i⇒ ii) This implication is now obvious, since if HomΛ(M, ÄM) = 0 then HomΛ(M
′,

ÄM) = 0 for all M ′ factors of M . Thus, we conclude.
(ii ⇒ i) We need to prove that if HomΛ(M

′, ÄM) = 0 for any M ′ factor module of
M then HomΛ(M, ÄM) = 0. By contradiction, let f : M → ÄM be non zero and let
M ′ = Im f . Then M ′ is a factor of M . and we have a natural injection f ′ : M ′ → ÄM .
Since f ̸= 0, then f ′ ̸= 0. So f ′ must factor through injectives, i.e. there exist h :M ′ → E
and h′ : E → ÄM with E injective such that f ′ = h′ ◦ h. Since f is a monomorphism, h
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must be a monomorphism, so we can assume that E = E(M) is the injective envelope of
M ′.

M ′ ÄM

E(M)

f ′

h h′

Since, by Proposition 3.3.1, ÄM is indecomposable non-injective, then h′ is not a
monomorphism, and so kerh′ ̸= 0. Indeed, if h were a monomorphism, we would have a

splitting short exact sequence: E(M)
h′
→ ÄM → Cokerh′. Moreover, by the construction

of the injective envelope, E(M) is the maximal essential extension of M and so Imh
is essential in E(M). Then Kerh′ ∩ Imh must be non-zero. So h′ ◦ h can not be a
monomorphism, thus f ′ can not factor through injectives. This is the contradiction we
were looking for.

We introduce support Ä -tilting module and Ä -tilting pair.

Definition 3.3.4. A left Ä -rigid Λ-module M is said to be support Ä-tilting if there
exists an idempotent e ∈ A such that M is a Ä -tilting Λ

ΛeΛ
-module, where ΛeΛ =< e > is

the two-sided ideal generated by e in Λ.

We denote with sÄ - tilt Λ the set of iso-classes of support Ä -tilting modules.

Definition 3.3.5. A left Ä -rigid Λ-module M and a left projective Λ-module P constitute
a Ä-rigid pair (M,P ) if HomΛ(P,M) = 0. A Ä -rigid pair (M,P ) is said to be Ä-tilting
pair if |M |+ |P | = |Λ|.

Note that Λ has a complete set of orthogonal primitive idempotent {e1, . . . , en}, such
that Λ = ·ni=1Λei. So |Λ| = n = | Λ

<e>
| + |eΛ|. Moreover, HomΛ(eΛ,M) is isomorphic to

Me, [ASS06]. Due to these facts, we can show that these two definitions are equivalent.

Let M be a support Ä -tilting module with associated idempotent e, so is Ä -rigid and
|M | = | Λ

<e>
|. Since it is a submodule of Λ

<e>
, then Me is zero. Conversely, if (M,P ) is

a Ä -tilting pair, then we have that P = eΛ for some idempotent e ∈ A. Then |M | =
| Λ
<e>
|. In order to say that M is a Ä -tilting Λ

ΛeΛ
-module, we also need to prove that if

HomΛ(M, ÄM) = 0, then HomΛ/<e>(M, ÄM) = 0. This follows from Proposition 3.3.3,
since M is Ä -rigid then 0 = Ext1Λ(M,FacM). This contains Ext1Λ/<e>(M,FacM), which
is thus equal to zero. Using again Proposition 3.3.3, we get that

HomΛ/<e>(M, ÄM) = 0.

Since being a Ä -tilting pair is equivalent to being a support Ä -tilting module, we
are often going to interchange the definitions and use the one that is most convenient
depending on each case.
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3.4 Connection between two term silting complexes and

Ä -rigidity

With the following two propositions, we start to show the connection between being a
two-term silting complex and being Ä -rigid. The key idea is the correspondence between

Λ-modules M and their projective presentations P 1
M

d1→ P 0
M

d0→ M → 0, done already in
Chapter 1. Specifically, for a Λ-module M , we can uniquely associate a two-term complex
in degrees −1 and 0 within K[−1,0], which is given by PM = · · · → 0 → P 1

M → P 0
M → 0,

also denoted simpler with just PM = (P 1
M → P 0

M), with the convention that the minimal

epimorphism P 0
M

d0→M is always implied, though it is not part of the complex.

Lemma 3.4.1. Let M , N in Λ-mod. Let P 1 p1
→ P 0 p0

→ M and Q1 q1
→ Q0 q0

→ M be their
minimal projective presentation. Denote with P = (· · · → 0 → P 1 p1

→ P 0 → 0 → · · · ) =

(P 1 → P 0) and Q = (· · · → 0 → Q1 q1
→ Q0 → 0 → · · · ) = (Q1 → Q0), the two-term

complexes associated, objects of K[−1,0]. Then

HomΛ(N, ÄM) = 0
i
⇐⇒ HomΛ(p1, N) is surjective

ii
⇐⇒ HomK(P,Q[1]) = 0

If we consider the particular case when M = N , this lemma affirms that M is a Ä -rigid
module if and only if P is a two-term presilting complex for Λ, since by degree reasons,
also HomK(P, P [i]) = 0, if i g 0.

Proof. By what said in the introduction of the functor Ä , we have an exact sequence
O → ÄM → ¿P 1 ¿p1

→ ¿P 0. Applying HomΛ(N,−) we get:

0→ HomΛ(N, ÄM)→ HomΛ(N, ÄP
1)

¿ HomΛ(p1,N)
−→ HomΛ(N, ¿P

0).

While applying DHomΛ(−, N) to the exact sequence P 1 p1
→ P 0 p0

→M we obtain:

DHomΛ(P
1, N)

DHomΛ(p1,N)
−→ DHomΛ(P

0, N)→ DHomΛ(M,N)→ 0.

Thanks to Lemma 1.3.2, we get the following diagram with exact rows:

0 HomΛ(N, ÄM) HomΛ(N, ¿P
1) HomΛ(N, ¿P

0)

DHomΛ(P
1, N) DHomΛ(P

0, N) DHomΛ(M,N) 0.

≃ ≃

Then HomΛ(N, ÄM) is zero if and only if DHomA(p1, N) is injective. The first “if and

only if” (
i
⇐⇒ ) follows.

(
ii
⇒) A morphism f between complexes in HomK(P,Q[1]), is a sequence of maps,

but, in this case, is just determined by the left Λ-module homomorphism in degree −1:
f1 : P 1 → Q0. Indeed, in other degree, we just have the null-map. With the same
reasoning, a homotopy h between the complexes P and Q[1] has just the terms in degree



92 Chapter 3. Two-term silting complexes

zero and −1 different than zero. One can see the reasons why just by looking at the
diagram below, which represent a morphism between these complexes.

· · · 0 P 1 P 0 0 · · ·

· · · 0 Q1 Q0 0 · · ·

0 0

p1

f1 0 0

q1

We want to show that if HomΛ(p1, N) is surjective, then f1 is homotopic to zero.

P 1 P 0 M

Q1 Q0 N

p1

f1

p0

q1 q0

We have that q0 ◦ f1 belongs to HomΛ(P
1, N) and since HomΛ(p1, N) is surjective, there

exists g in HomΛ(P
0, N) such that qo ◦ f1 = HomΛ(p1, N)(g) = g ◦ p1.

P 1 P 0 M

Q1 Q0 N

p1

f

p0

g

q1 q0

But also q0 is surjective, so by projectiveness of P 0, there exists a map h0 in HomΛ(P
0, Q0)

such that q0 ◦ h0 = g.

P 1 P 0 M

Q1 Q0 N

p1

f1

p0

h0
g

q1 q0

Then qo ◦f1 = q0 ◦h0 ◦p1, i.e. q0 ◦ (f1−h0 ◦p1) = 0. By universal property of the kernel of
Q0, there exists a module homomorphism k1 : P

1 → Ker q0 such that ϵ0 ◦k1 = f1−h0 ◦p1.

P 1

Ker q0

Q1 Q0 M

k1

f1−h0◦p1

ϵ0Ã0

q1 q0

Then, by projectiveness of P 1, there exists h1 : P
1 → Q1 such that Ã0 ◦ h1 = k1.

P 1

Ker q0

Q1 Q0 M

k1h1

f1−h0◦p1

ϵ0Ã0

q1 q0
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Thus q1 ◦h1 = ϵ0 ◦Ã0 ◦h1 = ϵ0 ◦k1 = f1−h0 ◦p1, i.e. f1 = h0 ◦p1+ q1 ◦h1. So h = (h1, h0)
is the homotopy that we were looking for.

· · · 0 P 1 P 0 0 · · ·

· · · 0 Q1 Q0 0 · · ·

p1

h1 f1
h0

q1

(
ii
⇐) Conversely, we want to show that the morphism HomΛ(p1, N) : HomΛ(P

0, N)→
HomΛ(P

1, N) is surjective. So take any f in HomΛ(P
1, N). Since P 1 is projective and q0

surjective, there exists g in HomΛ(P
1, Q0) such that f = q0 ◦ g.

P 1 P 0 M

Q1 Q0 N

p1

g f

p0

q1 q0

We can consider g as an element of HomK(P,Q[1]), by setting the maps in the other
degree as zero. By hypothesis this is equal to zero, so it exists a homotopy h = (h1, h0),
where h1 : P

1 → Q1 and h0 : P
0 → Q0 such that g = h0 ◦ p1 + q1 ◦ h1.

0 P 1 P 0 0 · · ·

0 Q1 Q0 0 · · ·

p1

h1 g h0

q1

Then, f = q0 ◦ (h0 ◦ p1 + q1 ◦ h1) which is equal to q0 ◦ h0 ◦ p1 since the sequence is exact,
i.e. f = HomΛ(p1, N)(q0 ◦ h0). And we can conclude.

Lemma 3.4.2. Let M be a left A-module and P 1 p1
→ P 0 p0

→ 0 be its projective presen-
tation. Denote with P := (P 1 p1

→ P 0) the two-term complex in K[−1,0] arising from the
presentation. For any Q projective left A-module, the following are equivalent:

(i) HomΛ(Q,M) = 0,

(ii) HomK(Q,P ) = 0,

where Q is considered as a complex of K, with the only non-zero term equal to Q in degree
0.

Proof. (i ⇒ ii) Let f be in HomK(Q,P ). By degree reasons, this is determined by a
non-zero homomorphism in degree zero f = f0 : Q→ P 0.

· · · 0 Q 0 · · ·

· · · 0 P 1 P 0 0 · · ·

f0

p1
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Then p0 ◦ f0 belongs to HomΛ(Q,M) and so is equal to zero. By universal property
of the kernel of p0, there exists k1 : Q→ Ker p0 such that f0 = ϵ0 ◦ k1.

Q

Ker p0

P 1 P 0 M

k1

f

ϵ0Ã0

p1 p0

By projectiveness of Q, there exists h1 : Q→ P 1 such that Ã0 ◦ h1 = k1.

Q

Ker p0

P 1 Pa0 M

k1h1

f0

ϵ0Ã0

p1 p0

Then f0 = ϵ0 ◦ k1 = ϵ0 ◦ Ã0 ◦ h1 = p1 ◦ h1. So h = (h1, 0) is the homotopy that we were
looking for and f0 ∼ 0, i.e HomK(Q,P ) = 0.

(ii⇒ i) Conversely, let f be in HomΛ(Q,M). Since p0 is surjective and by projective-
ness of Q, there exists g in HomΛ(Q,P

0) such that f = p0 ◦ g.

Q

P 1 P 0 M

g
f

p1 p0

Then g gives a map in HomK(Q,P ). By hypothesis g must be homotopic to zero, i.e.
it must exist h : Q→ P 1 module homomorphism, such that g = p1 ◦ h.

Q

P 1 P 0 M

h g
f

p1 p0

But then f = p0 ◦ p1 ◦ h = 0.

3.5 Bijection between two-term silting complexes and

support Ä -tilting modules

Now we are ready to prove the main theorem of this chapter:
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Theorem 3.5.1. Let Λ be a finite-dimensional K-algebra. Then there exists a bijection

2- silt Λ ←→ sÄ - tilt Λ,

given by

P 7→ H0(P ),

(P 1
M ·Q

(f,0)
−→ P 0

M) 7→(M,Q),

where P = (P 1 d
→ P 0) and H0(P ) = coker(d), while f : P 1

M → P 0
M is a minimal projective

presentation of M .

Proof. Firstly, we prove that two-term silting complexes for Λ give support Ä -tilting mod-
ules.

Let P := (P 1 d
→ P 0) be a two-term silting complex and M := Coker d. Then P is

isomorphic to P 1
M·P

′′ (d′,0)
→ P 0

M , where PM := P 1
M

d′
→ P 0

M →M is the minimal projective
presentation of M . Then P = PM · P

′′[1]. We want to prove that (M,P ′′) is a support
Ä -tilting pair for A. Since P is silting, then M is Ä -rigid, by Lemma 3.4.1.

Moreover since HomK(P, P [i]) = 0 for every i > 0, then HomK(P
′′, P ) = 0. Indeed,

by additivity of the functor Hom,

0 = HomK(P, P [i]) ≃ HomK(PM · P
′′[1], (PM · P

′′[1])[i])

≃ HomK(PM , PM [i])· HomK(PM · P
′′[i+ 1])·

· HomK(P
′′[1], PM)· HomK(P

′′[1], P ′′[1 + i])

By hypothesis, we have that P is a two-term complex and P ′′ is projective, then by
Lemma 3.4.2, HomK(P

′′,M) = 0. Thus (M,P ′′) is a Ä -rigid pair for Λ.

Moreover, since P 1
M

(d′,0)
→ P 0

M is the minimal projective presentation of M , we have

|M | = |P 1
M

d′
→ P 0

M |. Indeed, if M ′ is a direct summand of M , then its minimal projective

presentation is a direct summand of P 1
M

d′
→ P 0

M . This is due to the Horseshoe lemma.
Thus, we have:

|M |+ |P ′′| = |P 1
M

d′
→ P 0

M |+ |P
′′| = |P | = |A|,

where the last equality holds because P is silting by Theorem 3.2.1. Hence, (M,P ′′) is a
support Ä -tilting pair for Λ.

Now we show that support Ä -tilting Λ-modules give silting complexes for Λ.

Let (M,Q) be a Ä -tilting pair for Λ and PM = (P 1
M

f
→ P 0

M) its minimal projective
presentation. Since M is Ä -rigid, then PM is a presilting complex for A, as showed

by Lemma 3.4.1. Set P = (P 1
M · Q

(f,0)
→ P 0

M) = PM · Q[1] and observe that since Q is
projective, its minimal projective presentation is just (0→ Q). Consider HomK(P, P [i]) =
HomK(PM ·Q[1], PM [i]·Q[1 + i]) for any i > 0 then

HomK(P, P [i]) ≃ HomK(PM , PM [i])· HomK(Q[1], PM [i])

HomK(Q[1], Q[i+ 1])· HomK(PM , Q[1 + i]).
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We have that HomK(PM , PM [i]) = 0 because PM is presilting. Since HomΛ(Q,M) = 0,
by Lemma 3.4.2, HomK(Q[1], PM [1]) = 0. Then HomK(Q[1], PM [i]) = 0 for every i > 1 by
degree reasons. While HomK(Q[1], Q[i+1]) and HomK(PM , Q[1+i]) are zero by definition.

This show how P is a presilting complex for Λ. We have again that |PM | = |M |. And
since (M,Q) is a Ä -tilting pair for Λ, we have |M |+ |Q| = |Λ|.

Thus,
|P | = |P 1

M → P 0
M |+ |Q| = |M |+ |Q| = |Λ|.

So we showed that P is a silting complex for Λ by Theorem 3.2.1. This concludes the
proof of the theorem.



Chapter 4

Two-terms silting complexes over gentle

algebras

In the previous chapter, we examined the characteristics and properties of two-term silting
complexes and established the bijection between these complexes and support Ä -tilting
modules. This bijection is fundamental for achieving the main goal of this thesis: to
provide a complete classification of two-term silting complexes over gentle algebras. We
believe that giving this classification will be a satisfying conclusion to this thesis project,
as it will allow one to produce a wide range of useful and practical examples of these
powerful algebraic structures.

The key tool for achieving this classification is the result from [Brü+20], where the
authors classified support Ä -tilting modules over gentle algebras. It is worth noting that
this classification was independently obtained by another group of authors in [PPP21].
While both sets of authors reached the same conclusion, they use slightly different termi-
nology: [Brü+20] refers to what [PPP21] calls a "blossom algebra" as a "fringed algebra."
We will adopt the notation of [PPP21]; however, we find the approach taken by [Brü+20]
to be more aligned with our project, which is why we primarily utilize their work.

In the paper by [Brü+20], support Ä -tilting modules are correlated with certain non-
kissing collections of strings. This non-kissing criterion will be analyzed in terms of
two-term complexes in the second section of this chapter. Indeed, we will establish a cor-
respondence between the two-term presilting minimal projective presentation of a string
module and non-kissing blossoming strings. In particular, we will prove that the property
of being presilting can be determined only by looking at the combinatorial information
provided by the blossoming string. This result will then be used to refine the final classi-
fication.

4.1 Blossoming quivers and blossoming strings

To provide the most accurate description of a minimal projective presentation of a string
module, we discovered that the optimal approach is to enlarge our quiver. We extend
it so that each original vertex has now four neighbors. This enlargement is employed
solely for the combinatorial insights it offers; we are not concerned with the geometric or

97
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algebraic properties of the algebra that may arise from such an extension. In this first
section, we provide the details of this construction, which will also enlarge the strings,
and demonstrate its utility.

Definition 4.1.1 ([PPP21]). The blossoming quiver of a gentle bound quiver (Q, I) is

the gentle bound quiver (QR, IR) , also denoted simply with QR, obtained by adding at
each vertex v ∈ Q0:

• 2−|{³ ∈ Q1 | t(³) = v}| incoming arrows and 2−|{³ ∈ Q1 | s(³) = v}| outgoing
arrows,

• relations such that vertex v fulfills the gentle bound quiver conditions of Definition
2.3.1.

Then KQR

IR
is a gentle algebra and is called the blossom algebra.

Note that each vertex of Q0 has precisely two incoming and two outgoing arrows in QR.

The vertices of QR0 −Q0 are called blossom vertices, and the arrows QR1 −Q1 are called
blossom arrows. Note that in a blossoming quiver, among the set of paths starting,

resp. ending, at a vertex of QR, the longest path starts, resp. ends, at a blossom vertex.
To distinguish blossom vertices and blossom arrows from the original ones, these will

be depicted in green.

Example 4.1.1. In Figure 4.1, we illustrate the construction of blossoming quivers start-
ing from the gentle quivers presented in Example 2.3.1.

Definition 4.1.2. Let v a vertex in Q. A left blossom cohook of v is a string Ã =

Ã1Ã2 . . . Ãl of QR, such that Ã1 = ³−1, with ³ arrow of QR1 with head v, while Ã2 . . . Ãl

corresponds to a path of maximal length in QR ending in v. Symmetrically, a right
blossom cohook of v is the inverse string of a left cohook of v.

A left blossom cohook of v is not unique, but since we are in a gentle quiver, we have
that for each vertex there exists at most two left different cohook.

By construction of the blossoming quiver, each original vertex has two incoming ar-
rows and two outgoing arrows, so if we consider a vertex of Q in the blossoming quiver,
has always two different non-trivial left blossom cohooks. However, we also authorize
the situation where the blossom cohook could also be constituted of just an arrow, this
happens if one of the direct successors of v is a blossom vertex, and so there are no other
arrow ending in that vertex.

Note that in a left blossom cohook Ã = Ã1Ã2 . . . Ãl of a vertex v in Q0, Ãl is always a
blossom arrow.

Definition 4.1.3. Let É = É1 . . . Él be a string of Q, we call blossoming string and

denote it with ÉR, the gentle string obtained by adding a right blossom cohook Ã a the

right of É and a left blossom cohook Ã̃ at its left ending. Namely ÉR = ÃÉÃ̃.
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Notice that a blossoming strings always starts and ends with a blossom vertex. More-

over blossoming strings ÉR are uniquely determined, when É is not trivial. We will depict
the blossom cohook attached at a string in green, and depict its blossoming vertices with
"R".

Example 4.1.2. Figure 4.2 depicts the construction of a blossoming string in QR2 , which
is the blossoming quiver of Example 4.1.1. Note that the original string É of Q1 was
previously presented in Example 2.3.2.

Recall the description provided in Chapter 2 of the minimal projective presentation
of a string module M(É) and assume that Él+1 exists. We have defined Él+1 as the
unique inverse arrows which make ÉlÉl+1 a string. Now, considering the blossoming string

ÉR = ÃÉÃ̃, it follows easily that Él+1 must coincide with the first arrow of Ã̃. Therefore,
kt = s(Él+1) is its only deep vertex. If Él+1 does not exist, then Ã̃ consists solely of a
single blossom arrow. The same reasoning applies to É0.

This observation yields a more natural description of the minimal projective presen-
tation of a string module and demonstrates that the combinatorial information encoded
in the blossoming string is sufficient for its computation.

Proposition 4.1.1. Let É = É1 . . . Él a string of Q and let P = P 1 p1
→ P 0 be the minimal

projective presentation of the string module M(É). Let ÉR be the associated respective
blossoming string, created by added a left cohook Ã = Ã0 . . . Ãr at the left and a right
coohok Ã̃ = Ã̃0 . . . Ã̃s at the right. Set

É0 =

{

Ã0 if Ã1is not trivial,

0 otherwise.
and Él+1 =

{

Ã̃0 if Ã̃1is not trivial,

0 otherwise.

Then

P 0 =
⊕

ji is a peak

non-blossom vertex of ÉR

P (F
ÉR

(ji)), P 1 =
⊕

ki is a deep

non-blossom vertex of ÉR

P (F
ÉR

(ki)),

and

p1 =



























p+0 −p−1 0 · · · · · · · · · 0

0 p+1 −p−2 0
...

... 0 p+2 −p−3
. . .

...
...

. . . . . . . . .
...

...
. . . . . .

...
...

. . . −p−t−1 0
0 · · · · · · · · · 0 p+t−1 −p−t



























.

where
p+i = Éki+1 . . . Éji+1

, p−i = (Éji+1 . . . Éki)
−1, for t− 1 g i g 1,

and
p+0 = É0É1 . . . Éj1 , p−t = (Éjt+1 . . . ÉlÃ̃0)

−1.
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Note that since É0 may be zero, p+0 could also be null; similarly, the same holds for
p−t .

To better visualise a minimal projective presentation of a string module we notice that
this two-term complex ‘unfolds’ as

P (kr−1) P (jr) P (kr) P (jr+1) P (kr+1)
p+r−1 −q−r q+r −q−r+1

where the projective modules P (ji) for t g i g 1 has homological degree zero, while
the projective modules P (ki) for t g i g 0 has homological degree -1.

We will indicate this unfolding of the minimal projective presentation simply as:

kr−1 jr kr jr+1 kr+1

p+r−1 −p−r p+r −p−r+1

This method of visualising the minimal projective presentation will be particularly
useful when describing homomorphisms between complexes. Therefore, from now on we
will use this to represent P (É).

Note that it corresponds to the description of a string complex arising from an homo-
topy string given by [ALP16]. In [BM03], the authors proved that an element of this type
is an indecomposable element of K[−1,0].

4.2 Two-term presilting complexes and non-kissing strings

Having established the basic terminology and construction relative to the blossoming
algebra, we are now ready to define what a "kiss" is. We will then relate this combinatorial
concept of the string to the algebraic property of being presilting.

Definition 4.2.1. Let É, É′ be two blossoming strings. We say that É kisses É′ if there
exist a kiss, i.e a maximal common substring Ã of É and É′ such that the arrows of É
incident to Ã are both incoming while the arrows of É′ incident to Ã are both outgoing.

Note that we authorize the situation where Ã is reduced to a vertex v, meaning that v is
a peak of É and a deep of É′. Observe also that É can kiss É′ several times, that É and
É′ can mutually kiss, and that É can kiss itself.

We will say that two strings É and É′ are non kissing, if neither É kisses É′, nor É′

kisses É.

Example 4.2.1. In Figure 4.3, the string above kisses the string below, the common
substring is depicted in blue.

Proposition 4.2.1. Let Q be a gentle quiver. Let Q = Q1 q1
→ Q0 be the minimal projective

presentation of a string module M(É), and let P = P 1 p1
→ P 0 be the minimal projective

presentation of another string module M(É′). Consider the blossoming strings ÉR and

É′R. If there exists a map not homotopic to zero in HomK(Q,P [1]), then ÉR kisses É′R .
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Figure 4.3

Proof. As showed in Proposition 4.1.1, implying the map F
ÉR

, We have:

Q0 =
⊕

ji peak non blossom vertices of ÉR

P (ji), Q1 =
⊕

ki deep non blossom vertices of ÉR

P (ki),

P 0 =
⊕

j′i peak non blossom vertices of (É′)R

P (j′i), P 1 =
⊕

k′i deep non blossom vertices of É′R

P (k′i).

The maps p1 and q1 corresponds to

q1 =



























q+0 −q−1 0 · · · · · · · · · 0

0 q+1 −q−2 0
...

... 0 q+2 −q−3
. . .

...
...

. . . . . . . . .
...

...
. . . . . .

...
...

. . . −q−t−1 0
0 · · · · · · · · · 0 q+t−1 −q−t



























.

and

p1 =



























p+0 −p−1 0 · · · · · · · · · 0

0 p+1 −p−2 0
...

... 0 p+2 −p−3
. . .

...
...

. . . . . . . . .
...

...
. . . . . .

...
...

. . . −p−t−1 0
0 · · · · · · · · · 0 p+t−1 −p−t



























.

Notice that the two matrices could have different dimension, since t could be different
from t′.
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A map in HomK(Q,P [1]) is determined by a Λ-module homomorphism from Q1 to
P 0, while a homotopy consists of a pair of maps h0 : Q0 → P 0 and h1 : Q1 → P 1. Any
homomorphism f in HomΛ(Q

1, P 0) can be expressed as a matrix f = (fs,r)s,r, where each
fs,r represents a homomorphism P (kr)→ P (j′s) for t g s g 1 and t′ g r g 0.Assume that
fs,r ̸= 0 for some s, r.

As shown in Chapter 2, a basis vector for HomΛ(P (kr), P (j
′
s)) is given by multipli-

cation by a path with head in j′s and tail in kr. Without loss of generality, since being
null-homotopic is an additive property, we can assume that fs,r corresponds to the mul-
tiplication by a path starting at js and ending at kr. We will often denote the path and
the map corresponding to the multiplication by the path with the same name.

The homomorphism h0 is represented by a matrix with entries h0s,r : P (jr) → P (j′s),
while h1 corresponds to a matrix with entries h1s,r : P (kr)→ P (k′s).

Since fs,r is a path from j′s to kr, it must share its initial arrow with either q+r or
q−r , and its final arrow with either p−s or p+s−1. We start by assuming that fs,r has as a
subpath only one of these four. This assumption leads to the first step in our proof, which
is divided into five cases based on which one of these paths is a subpath of fs,r. The fifth
case occurs when none of the paths are subpaths.

jr kr jr+1

−q−r q+r

k′s−1 j′s k′s
p+s−1 −p

−
s

fs,r

We label the five cases,

• (a) if q+r is a subpath of fs,r,

• (b) if q−r is a subpath of fs,r,

• (c) if −p−s h
1
s,r is a subpath of fs,r,

• (d) if p+s−1 is a subpath of fs,r,

• (e) Otherwise .

Although these four cases may initially appear different, we will analyse only one of
them in detail. In fact, if we are in case (b), we can assume that we are in case (a) since we
are considering strings up to their inverses. Indeed, by replacing É with É−1, we observe
that this replacing results in an index shift, where jr becomes jr+1, q

−
r becomes q+r , and

so on. This implies that if we are in case (b), we can substitute É with É−1 and assume,
without loss of generality, that we are in case (a). The same reasoning applies to cases
(c) and (d).
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This reduces our task to analysing cases (a), (c), and (e). However, we will not discuss
case (c) in detail, as it follows the same pattern as case (a). In fact, the diagram shown

in Figure 4.5 is identical. For the sake of completeness, we will depict how ÉR kisses É′R

in some subcases of this in Figure 4.6.

Case (e)

We begin with the last case, (e), as it is the quickest to address. In this scenario, fs,r
neither starts with q+r nor q−r , nor does it end with p−s or p+s−1. This means that we can
not write fs,r as

fs,r = h0s,r+1q
+
r − h

0
s,rq

−
r − p

−
s h

1
s,r + p+s−1h

1
s−1,r. (4.1)

This implies that fs,r is homotopic only to itself. Since we have started with assuming

that fs,r is different from zero, we need to show that ÉR kisses É′R. As already said, since
fs,r is a path from j′s to kr, it must share its starting arrow with either q+r or q−r , and its
ending arrow with either p−s or p+s−1. Then one of the pairs (q+r , p

−
s ), (q

+
r , p

+
s−1), (q

−
r , p

−
s ),

or (q−r , p
+
s−1) shares a common subpath, with the first element in the pair matching with

it at the start and the second at the end. We can visualize these four cases as shown in
Figure 4.4.

As one can easily deduce from the figures, it means that ÉR kisses É′R, as we wanted.
In this case, fs,r could also be the identity, corresponding to the trivial path. If this
occurs, we still have a kiss, as we allow for the possibility of a kiss being reduced to a
single vertex.

Case (a)

We provide a brief summary of the structure of the proof, the detailed explanation of
the reasons will be given in the course of the discussion. This part of the demonstration
follows a tree diagram, consisting of various cases, as illustrated in Figure 4.5. We invite
the reader to follow the diagram for clarity and guidance.

In the tree, each case generally divides into two branches: one stops, while the other
continues. It is only at the end of the diagram, which corresponds to the end of one of
the strings, that the cases become more specific and are distinguished into different types.
Each stop alternatively corresponds to a case where fs,r is not homotopic to zero, there
we will show that the two strings kiss, and one where fs,r is homotopic to zero, which is
a contradiction.

At the beginning, the process appears different, as it starts with a split into three
cases. However, one of these, the case (a.2’), can be excluded without losing generality,
as we shall see.

The split is driven by two main motives, which alternate between the cases and also
apply to the final cases. This aspect is highlighted in the figure, where equal colours
indicate splits based on the same motives.
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kr

jr+1

k′s−1

j′s

kr

jr

k′s

j′s

kr

jr+1

k′s

j′s

kr

jr

k′s−1

j′s

Figure 4.4

As said at the start, we have that fs,r is a path from j′s to kr, having as a ending
subpath q+r . Since q+r is a path with tail in kr and head in jr+1, there exists a path ³1 in
Q starting at j′s and ending at jr+1 such that fs,r = q+r ³1. Call h0s,r+1 the homomorphism
corresponding to the multiplication by ³1, so it is different from zero. Then fs,r = h0s,r+1q

+
r .

We observe that if there exists a homotopy that makes f homotopically trivial, then
we also have that

fs,r+1 = h0s,r+2q
+
r+1 − h

0
s,r+1q

−
r+1 − p

−
s h

1
s,r+1 + p+s−1h

1
s−1,r+1.

However, by assumption, fs,r+1 = 0.
Therefore, for fs,r to be homotopic to zero, we must have h0s,r+2q

+
r+1 − h0s,r+1q

−
r+1 −

p−s h
1
s,r+1 + p+s−1h

1
s−1,r+1 = 0. This occurs, for instance, if h0s,r+1 ̸= id and all other entries

of the matrices corresponding to h0 and h1 are set to zero. This is the reason for the
subsequent division of case (a) into two branches. As mentioned at the beginning of this
case, these considerations will apply to all subsequent discussions.
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a

a.0.1 a.1

a.1.1

a.2a.2’

a.2.1 a.3

a.3.1 a.4

a.4.1 a.5

a.5.1

a.̃i

a.̃i.D

a.̃i.f

a.̃i.U

a.̃i.D.1

a.̃i.D.2 a.̃i.U.0

a.̃i.U.1

a.̃i.U.2.1

a.̃i.U.3

a.̃i.U.3.1

a.̃i.U.4

Figure 4.5: Scheme of case (a)
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• (a.0.1) If h0s,r+1 ̸= id, then fs,r is homotopic to zero. Indeed, the homotopy is given
by setting h1 = 0 and, obviously, h0 has the only entry different from zero equal to
h0s,r+1, in position (s, r + 1).

By the definition of the gentle quiver Q, there cannot be two paths that, when
postcomposed with h0s,r+1, are different from zero, in fact one of the two must be
in a relation. Therefore, h0s,r+1q

−
r+1 = 0 and so, as already mentioned, h0s,r+2q

+
r+1 −

h0s,r+1q
−
r+1− p

−
s h

1
s,r+1 + p+s−1h

1
s−1,r+1 = 0. However this implies that fs,r is homotopic

to zero and so it contradicts our hypothesis.

jr kr jr+1

−q−r q+r

k′s−1 j′s k′s
p+s−1 −p

−
s

fs,r h0s,r+1

a.0.1

• (a.1) If h0s,r+1 = id, then jr+1 = j′s, and ³1 is the trivial path, so fs,r is homotopic
to −q−r+1. Indeed, by applying the same settings to h0 and h1 as in case (a.0.1), we
obtain the equation

h0s,r+2q
+
r+1 − h

0
s,r+1q

−
r+1 − p

−
s h

1
s,r+1 + p+s−1h

1
s−1,r+1 = −q

−
r+1.

This does not conclude our discussion, however, because we still do not know
whether −q−r+1 : P (kr+1) → P (j′s) is homotopic to zero, and if it is not, whether
there is a kiss between the strings.

Notice that we have shifted our focus to the path that follows the position where fs,r
is located.

We have that q−r+1 is a path from jr+1 to kr+1. Moreover, both p+s and p−s−1 are paths
in Q that have their heads at jr+1 = j′s. By the definition of a gentle quiver, since there
are at most two arrows starting from each vertex, either p+s or p−s−1 must share the same
starting arrow with q−r+1. Observe that, by construction of the string, q−r+1 has not the
starting arrow in common with q+r . So we obtain three cases:

• (a.1.1) Neither p−s nor p+s−1 is a starting subpath of q−r+1. This means that we
cannot construct a non-null homomorphism from P (kr+1) to either P (k′s−1) or P (k′s)
such that postcomposing it with p+s or p+s−1 yields q−r+1. Namely, we can not find
homomorphisms h1s,r+1 and h1s,r+1 such that

q+r+1 +−p
−
s h

1
s,r+1 + p+s−1h

1
s,r+1 ̸= 0.
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Hence the homomorphism corresponding to the negative multiplication by q−r+1 can-
not be homotopic to zero, which subsequently implies that fs,r is also not homotopic
to zero.

Moreover, this implies that either p−s or p+s−1 must start with q−r+1. The strings in
these two cases look respectively like:

kr

jr+1

kr+1

j′s kr

jr+1

kr+1

j′s

One can easily observe that ÉR kisses É′R, where the highlighted parts of the strings
in the figure above are identical.

• (a.2) If q−r+1 is a path starting with p−s , there exists a path ´1 in Q starting at k′s and
ending at kr+1 such that q−r+1 = ´1p

−
s . By setting h1s,r+1 to be the homomorphism

corresponding to the multiplication by ´1, we get that

−q−r+1 = −p
−
s h

1
s,r+1

We do not have any conclusive information yet, so we need again to continue under
this hypothesis.

• (a.2’) If q−r+1 is a path starting with p+s−1, there exists a homomorphism h1s−1.r+1 such
that −q−r+1 = −p

+
s−1h

1
s−1,r+1.

jr kr jr+1 kr+1

−q−r q+r −q
−
r+1

k′s−1 j′s k′s
p+s−1 −p

−
s

fs,r

h0s,r+1

h1s−1,r+1

(a.2’)
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Since we are working with strings up to inverses, we can interchange É′ with É′−1.
If we consider the latter, we notice that the index k′s−1 changes to k′s, p

+
s−1 becomes

−p−s , and so on. In particular, this means that we can simply replace É′ with its
inverse and continue, without loss of generality, under the hypothesis of case (a.2).
This justifies the name of this vertex in Figure 4.5.

We proceed under the assumption of case (a.2). Similarly, the reasoning behind the
bifurcation of case (a) applies here, splitting case (a.2) into two distinct scenarios.

• (a.2.1) If h1s,r+1 ̸= id, then, fs,r is homotopic to zero. The homotopy (h1, h0) is con-
structed by setting h1 to be the matrix with the only non-zero entry being h1r+1,s.
Meanwhile, h0 is defined to be the identity at entry (s, r + 1) with all other entries
equal to zero. Indeed, by the same reasoning as in case (a.0.1), this construction
works due to the definition of the gentle quiver. However, this represents a contra-
diction of our assumption.

jr kr jr+1 kr+1

−q−r q+r −q
−
r+1

k′s−1 j′s k′s
p+s−1 −p

−
s

fs,r

h0s,r+1

h1s,r+1

(a.2.1)

• (a.3) If h1s,r+1 = id, then kr+1 = k′s and −q−r+1 is equal to p+s , so, fs,r is homotopic to
p+s . Again, we do not have any conclusive information; instead, we now ask whether
p+s is homotopic to zero.

Once more, we have shifted from talking about a path to talk about the one in the
subsequent position in the string complex.

We will again encounter a bifurcation depending on whether this path can be viewed as
an ending subpath of q+r+1 or not. The reasons for this bifurcation are analogous to those
behind the splitting of case (a.1). If the path cannot be seen as an ending subpath of q+r+1,

it implies that fs,r is not homotopic to zero, and, by the reasoning already discussed, ÉR

kisses É′R. On the other hand, if the path can be seen as an ending subpath, we need to
examine whether p+s and q+r+1 are equal or not, which brings us back to the same scenario
as in case (a.3). These alternating splitting continue to occur following the same idea.
The scheme is illustrated in Figure 4.5.
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For completeness, the figures below illustrate the configurations of the strings in cases
(a.3.1) and (a.5.1). In case (a.3.1), we have h0s,r+i = h1s,r+1 = id and p+s is an ending
subpath of q+r+1. In case (a.5.1), the conditions are h0s,r+i = h1s,r+1 = h0s+1,r+2 = id, and
q−r+2 is an ending subpath of q−s+1.

kr

jr+1

kr+1
j′s

k′s

j′s+1

(a.3.1)

kr

jr+1

kr+1

jr+2

j′s

k′s

j′s+1

(a.5.1)

However, since the strings are finite, this process cannot continue indefinitely. Even-
tually, we must reach the end of one of the strings. Specifically, the final steps of case (a)
depend on whether we reach the end of the string É or the string É′ first.

Set i = min{t′ − s, t − r − 1}. After ĩ = 4i + 1 steps from case (a), we will have
constructed h0s+i,r+i+1 = id and h1s+i−1,r+i+1 = id. We could have:

• (a.̃i.D) i = t′ − s, so it ends before the string É′, the one we have always depicted
down in the figures;

• (a.̃i.U) i = t − r − 1, so it ends before the string É, that we have always depicted
up in the figure.

• (a.̃i.f) t′ = t and either neither kt nor k′t exists, or both exist and are equal. These
are the only cases not covered in the previous scenarios. For instance, if k′t exists
but kt does not, we can refer to case (a.̃i.U.1).

In these last cases, fs,r turns out to be homotopic to zero. The homotopy con-
sists of the pair h0 and h1, with entries equal to the identity for each position:
s+ n, r + n+ 1 and s+ n− 1, r + n+ 1 respectively for t − 1 g n g 0. Addition-
ally, we include the entry h1t,t′ = id , if both kt and k′t exist.

jr kr jr+1 kr+1 kt−1 jt kt

−q−r q+r −q
−
r+1 q+t−1−q

−
t

k′s−1 j′s k′s k′t−1 j′t k′t
p+s−1−p

−
s p+t−1−p

−
t

fs,r

h0s,r+1

h1s,r+1
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Case (a.̃i.D).

jr kr jr+1 kr+1 kr+i jr+i+1 kr+i+1

−q−r q+r −q
−
r+1 q+r+i−q

−
r+i+1

k′s−1 j′s k′s k′t−1 j′t
p+s−1 −p

−
s p+t′−1

fs,r

h0s,r+1

h1s,r+1 h0r+i+1,t

Our proof bifurcates into two distinct cases, depending on the existence of the vertex
k′t′ . We aim to determine whether a contradiction can be reached by constructing a
null-homotopy, and if not, to understand how the strings are connected to each other.

• (a.̃i.D.1) If k′t′ does not exist, or it exists, but q−r+i+1 is a subpath of pt′ , different
from it, then fs,r is not homotopic to zero. Specifically, fs,r is homotopic to −q−r+i+1.
Indeed, it is impossible to construct a map h1t,r+i+1 from P (kr+i+1) that can be
precomposed with −p−t′ such that the composition equals q−r+i+1, i.e.,

q−r+i+1 ̸= −p
−
t h

1
t′,r+i+1.

This confirms that fs,r cannot be homotopic to anything else.

Moreover, if k′t′ does not exist, this implies that the subpath É̃′ = É′
jt′+1 . . . É

′
l is a

maximal path starting from j′t′ . Given that ht′,r+i+1 = id, we have j′t′ = jr+i+1.

So it follows that q−r+i+1 must either be a substring of É̃′ or equal to it. In either

case, ÉR kisses É′R , as depicted in the figure below:

kr

jr+1 jr+i+1

kr+i+1

j′s

j′t′

kr

jr+1 jr+i+1

kr+i+1

j′s

j′t′

R

Note that the left figure also represents the case when k′t′ exists, but q−r+i+1 is a
subpath of p−t′ .

• (a.̃i.D.2) If there exists k′t′ and p−t′ is a subpath of q−r+i+1, or they are equal, then
there exists a path ´i+1 in Q such that q−r+i+1 = ´i+1p

−
t′ . Note that ´i+1 could
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also be the trivial path if p−t′ and q−r+i+1 are equal. By setting h1t′,r+i+1 as the
homomorphism corresponding to multiplication by the path ´i+1, we obtain the
homotopy that makes fs,r homotopically trivial. But this is impossible under our
starting assumption.

jr kr jr+1 kr+1 kr+i jr+i+1 kr+i+1

−q−r q+r −q
−
r+1 q+r+i−q

−
r+i+1

k′s−1 j′s k′s k′t′−1 j′t′ k′t′
p+s−1 −p

−
s p+t′−1 −p

−
t′

fs,r

h0s,r+1

h1s,r+1

h1t,r+i+1

Case (a.̃i.U). We found ourselves in this case if r+i = t−1 and h0s+i,t = id, namely, if
the string above ends before the string below. This case ramifies into other two branches,
whether kt exists or not.

• (a.̃i.U.0) If kt does not exists, then fs,r is homotopic to zero and the homotopy is
represented below:

jr kr jr+1 kr+1 kt−1 jt

−q−r q+r −q
−
r+1 q+t−1

k′s−1 j′s k′s k′s+i−1 j
′
s+i k′s+i

p+s−1 −p
−
s p+s+i−1−p

−
s+i

fs,r

h0s,r+1

h1s,r+1

This contradicts the hypothesis under which we are working, so this case is not
possible.

• (a.̃i.U.1) If there kt, then, with the same homotopy just defined in the case above,
fs,r is homotopic to −q−t , since h0s+i,t+1q

+
t − h

0
s+i,tq

−
t − p

−
s+ih

1
s+i,t + p+s+ih

1
s+i,t = −q

−
t

The path q−t starts in jt and ends in kt, since h0s+i,t = id also p+s+i−1 and p−s+i correspond
to paths with head in jt. However, since p+s+i−1 is equal to q+t−1, the only possibility is
that p−s+i and q−t share the same starting arrow. Then the subsequent splitting follows the
same reasoning used, for instance, in case (a.2).
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• (a.̃i.U.1.1) If q−t is a starting subpath of p−s+i, then q−t is not homotopic to zero.
Consequently, fs,r is also not homotopic to zero, since it is impossible to construct
a module homomorphism from P (kt) to P (k′s+i) such that precomposing it with the
multiplication by p−s+i yields q−t .

In the following figure, the parts of the strings which are in common are highlighted,
and it is easy to see that also in this case there is a kiss.

kr

jr+1
jt

kt

j′s

j′s+i

• (a.̃i.U.2) If p−s+i is a starting subpath of q−t , then there exists ´i+1, path in Q start-
ing in k′s+i and ending in kt such that q−t = ´i+1p

−
s+i. Thus we set h1s+i,t as the

multiplication by ´i+1.

The splitting now follows the same reasoning as case (a), (a.2) or (a.4) and so on, given by
the fact that if h1s+i,t ̸= id is a contradiction, if not we need to continue our examination.

• (a.̃i.U.2.1) If h1s+i,t ̸= id, then, as previously discussed, fs,r is homotopic to zero and
the homotopy is represented in the following

jr kr jr+1 kr+1 kt−1 jt kt

−q−r q+r −q
−
r+1 q+t−1 −q

−
t

k′s−1 j′s k′s k′s+i−1 j
′
s+i k′s+i

p+s−1 −p
−
s p+s+i−1−p

−
s+i

fs,r

h0s,r+1

h1s,r+1

This case is a contradiction of our hypothesis, so it is impossible.

• (a.̃i.U.3) If h1s+i,t = id, then kt = k′s+i and q−t = p−s+i. This implies that fs,r is
homotopic to p−s+i, which is not homotopic to zero.
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Note that the path p−s+i ends with kt = k′s+i, and so it must have in common with the
cohook Ã̃′, at least Ã̃′

1 . However, by definition of the cohook, Ã̃′
1 . . . Ã̃

′ is a maximal
path in Q with head in kt. This means that p+s+i is a subpath of it, so the strings
look like:

kr

jr+1
jt

kt

R

j′s

j′s+i

k′s+i

and it is obvious that ÉR kisses É′R.

Recall that at the beginning, we have assumed that only one among h0s,r+1q
+
r −h

0
s,rq

−
r ,

−p−s h
1
s,r, and p+s−1h

1
s−1,r is equal to fs,r. We showed that with this assumption everything

turns out as desired. However, to conclude the proof, we must not forget to look back
at what happens if more than one among h0s,r+1q

+
r − h

0
s,rq

−
r , −p−s h

1
s,r, and p+s−1h

1
s−1,r are

equal to fs,r.
Since, by construction, q+r ̸= q−r and p−s ̸= p+s−1, fs,r can be equal to at most two of

these expressions: one involving a “q” path and the other a “p” path. Given that fs,r is
assumed to be non-homotopic to zero, the only significant case is when fs,r equals two
of these four terms, h0s,r+1q

+
r − h0s,rq

−
r , −p−s h

1
s,r, and p+s−1h

1
s−1,r, with the corresponding

“h” map being the identity. Indeed, it is not important to look at the case when for
at least one of the element of the pair, the "h" map related is not the identity. If this
happens we have that fs,r is homotopic to zero, as discussed earlier (see case (a.0.1)),
which contradicts the hypothesis.

Consider the case where fs,r = q+r = p+s−1; similar reasoning applies to other cases.
This assumption implies that q−r and p−s−1 share the same starting arrow, as do q−r+1 and
p−s . If q−r ̸= p−s−1, one must be a subpath of the other. Suppose p−s−1 is the subpath; then
fs,r is homotopic to p−s−1, with the homotopy given by setting h0s,r = h1s,r = id.

For the path p−s−1 : j′s−1 → kr, only one of the following can equal it: h0s−1,r+1q
+
r ,

−h0s−1,rq
−
r , −p−s−1h

1
s,r, or p+s h

1
s−1,r, which obviously corresponds to set h1s,r = id. Thus,

without loss of generality, we can replace fs,r with p−s−1 and return to the beginning of
this proof, since now the division in five cases is mandatory. The same logic applies if
q−r+1 ̸= p−s .

If both q−r = p−s−1 and q−r+1 = p−s , we examine whether the pairs (q+r−1, p
+
s−2) and

(q+r+1, p
+
s ) are made of equal terms. If they are not, fs,r is homotopic to a path for which
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there is only one possible way to construct a homotopy , as discussed above, allowing us
to replace fs,r with it and restart the discussion.

If the pairs are equal, we continue by examining the pairs (q−r−1, p
−
s−2) and (q−r+2, p

−
s+1)

and so on. If we never find a pair (q±r−i, p
±
s−i−1) for min{s− 1, r} g i g 0 or (q±r+i+1, p

±
s+i)

for min{t′ − 1 − r, t − s} g i g 0 that has unequal terms, it means that É and É′ are
identical, and fs,r is homotopic to the identity.

Proposition 4.2.2. Let É, É′ be two gentle string of Q. Consider the blossoming strings

ÉR and É̃R and let Q = Q1 q1
→ Q0, resp. P = P 1 p1

→ P 0 , be the minimal projective

presentation of M(É), resp. M(É̃). If ÉR kisses É̃R , there exists a map not homotopic
to zero in HomK(Q,P [1]).

Proof. By assumption there exists a common substring Ã of ÉR and É̃R such that the

arrows of ÉR incident to Ã are both incoming while the arrows of É̃R incident to Ã are
both outgoing.

Call js, . . . js+n the peak vertices of ÉR, which are in common with the peak vertices

js̃, . . . js̃+n of É̃R and call kr, . . . kr+m the deep vertices of ÉR, which are in common with

the deep vertices kr̃, . . . kr̃+m of É̃R.

Consider the first vertex that the two strings have in common, the one that links Ã

with ÉR and É̃R. We denote this vertex as v for ÉR and ṽ for É̃R.

By construction, only one between v and ṽ the must be a vertex in which the respective
string changes direction, in particular either

• (a) ṽ is a peak vertex of É̃R or

• (b) v is a deep vertex of ÉR.

Notice that if we are in case (a), then r = s− 1 and r̃ = s̃−1 and ṽ is equal to js̃−1, while
in case (b) r = s and r̃ = s̃ and v corresponds to ks−1.

js̃−1

ks̃−1

js̃
ks−1

js

(a)

ks−1

js

ksjs̃

ks̃

(b)
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j′s

k′s

j′s+1

kr
j′s

k′s

j′s+1

kr

(c.1.1)

j′s

k′s

j′s+1

kr

jr+1

kr+1

(c.3.1)

j′s

k′s

j′s+1

k′s+1

kr

jr+1

kr+1

(c.5.1)

j′s−1

k′s

j′t

R

ks

jr+i+1

kr+i+2

(c.̃i.D.1)

j′s−1

k′s

j′s+i

ks

jt

kt

R

(c.̃i.U.1.1)

Figure 4.6: Case (c)
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We define a map

f :
⊕

i

P (ki) = P 1 →
⊕

i

P (jĩ) = Q0

as a matrix where all entries are zero except for specific positions. In case (a), we set

fs̃−1,s−1 := p−s̃−1 : P (ks−1) = P (ks̃−1)→ P (js̃−1)

in position (s− 1, s̃− 1), while in case (b), we set

fs̃,s−1 := q+s−1 : P (ks−1)→ P (js) = P (js̃)

in position (s̃, s− 1).
Our goal is to prove that these maps are not null-homotopic. We will focus to show

the details of case (a), as the proof for case (b) follows similarly.
Assume, by contradiction, that f is null-homotopic. This implies that for each pair

(i, ĩ), the following equation holds:

fĩ,i = h0
ĩ,i+1

q+i − h
0
ĩ,i
q−i − p

−
ĩ
h1
ĩ,i
+ p+

ĩ−1
h1
ĩ−1,i

,

for Λ-module homomorphisms h0 :
⊕

i P (ji)→
⊕

i P (jĩ) and h1 :
⊕

i P (ki)→
⊕

i P (kĩ).
Since fs̃−1,s−1 := p−s̃−1, it follows that h1s̃−1,s−1 = id, while h0s̃−1,s, −h

0
˜s−1,s−1

and h1s̃−2,s−1

must be equal to zero, since p+s̃−2 is not a subpath of neither q+s+n nor q−s+n.
We have:

h0s̃+i,s+i+1q
+
s+i − h

0
s̃+i,s+iq

−
s+i − p

−
s̃+ih

1
s̃+i,s+i + p+s̃+i−1h

1
s̃+i−1,s+i = 0 for i ̸= −1.

By construction, we know:

q+s+i = p+s̃+i for n− 1 g i g −1, and q−s+i = p−s̃+i for n− 1 g i g 0.

Putting these two equations together, it implies that h1s̃+i,s+i = id, for n− 1 g i g −1
and h0s̃+i,s+i = id, for n g i g 0.

Now we have two possibilities, either q−s+n = p−s̃+n or not. This depends on whether Ã
ends with a peak vertex or not.

If q−s+n ̸= p−s̃+n, by the definition of the kiss, q−s+n is a subpath of p−s̃+n. This means
that there exists a homomorphism h1s̃+n,s̃+n that is different from the identity such that
−p−s̃+n = −q−s+nh

1
s̃+n,s̃+n. However, this leads to:

0 ̸= h0s̃+n,s+n+1q
+
s+n − h

0
s̃+n,s+nq

−
s+n − p

−
s̃+nh

1
s̃+n,s+n + p+s̃+n−1h

1
s̃+n−1,s+n,

which contradicts our assumption.
If q−s+n = p−s̃+n, then, again, by definition of the kiss, p+s̃+n is a subpath of q+s+n.

Following an equivalent reasoning as above, we reach a contradiction.
Since both cases lead to contradictions, we conclude that f , as defined, is not null-

homotopic.

Putting together these two last propositions, we have proved then the following

Proposition 4.2.3. A minimal projective presentation of a string module M(É) is a two-

term presilting complex for Λ if and only if the relative blossoming string ÉR does not
kiss itself.
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4.3 Classification of two-term silting complexes over a

gentle algebra

In this concluding section, we complete our work by providing a complete classification
of the two-term silting complexes over a gentle algebra. We will illustrate how these
algebraic objects can be described using only combinatorial information, and how each of
the results obtained so far contributes to the classification.

Let Q be a gentle quiver. We consider the set of Ä -rigid indecomposable modules,
along with the shifted projective modules Pv[1] for each vertex v of the quiver Q. We say
that two Λ-modules M and N are compatible if Hom(M, ÄN) = 0 = Hom(N, ÄM). A
Λ-module M and Pv[1] are compatible if Hom(Pv,M) = 0.

Let C be a maximal compatible collection, and consider the pair (M,P ), where M =
⊕

Mi∈C
Mi and P =

⊕

v|Pv [1]∈C
Pv. Then (M,P ) is a Ä -rigid pair. Indeed, HomΛ(P,M) =

0 because HomΛ(Pv,Mi) = 0 for all v and i, and HomΛ(M, ÄM) = 0, since HomΛ(Mj,Mi)
is equal to zero for all i and j.

Because C is maximal, the following lemma proves that the relation established above
yields a one-to-one correspondence between maximal compatible collections and support
Ä -tilting pairs:

Lemma 4.3.1. Let (T, P ) be a Ä -rigid pair. The following are equivalent:

• If (T ·X,P ) is Ä -rigid pair for some X Λ-module, then X ∈ addT .

• (T, P ) is a support Ä -tilting pair.

See [AIR14, Theorem 2.12 and Corollary 2.13].

In [Brü+20, Theorem 5.1], Brüstle, Douville, Mousavand, Thomas, and Yıldırım,
proved that there is a bijective correspondence from maximal compatible collections of
Λ-modules to maximal non-kissing collections of long strings.

With the term long strings, they denote the set of blossoming strings, along with the
so-called injective blossoming strings. An injective blossoming string Iv is obtained by
adding to the lazy path at a vertex v both maximal sequences of arrows oriented towards

v in the blossoming quiver QR.
The correspondence is then created by associating to each blossoming string É its

string module M(É) and to each injective blossoming string Iv the module Pv[1].

{

Maximal collection of
non-kissing long strings

}

←→

{

Maximal compatible collection
of Λ-modules

}

É ←→ M(É)

Iv ←→ Pv[1]

We now want to translate this results in terms of two-term silting complexes.

By Theorem 3.5.1, we have a bijection between support Ä -tilting pairs and two-term
silting complexes given by associating to each support Ä -tilting pair (M,P ), the two-term



Chapter 4. Two-terms silting complexes over gentle algebras 119

silting complex P 1 · P → P 0, where (P 1 → P 0) is the minimal projective presentation
of M .

This implies that, by combining the previous results, we have established a one-to-one
correspondence between maximal collections of non-kissing long strings S and two-term
silting complexes. Specifically, this correspondence is given by

{

Maximal collection of
non-kissing long strings

}

←→ {Two-term silting complexes}

S ←→
⊕

É∈S

P (É)·
⊕

v|Iv∈S

Pv[1],

where P (É) denotes the minimal projective presentation of the string module M(É).

Using the results achieved so far in our thesis project, we can describe this corre-
spondence in greater detail: let M,N be Λ modules, P be a projective Λ-module, and
PM := (P 1

M → P 0
M), resp. PN := (P 1

N → P 0
N), be the minimal projective presentation

of M , resp. N . Thanks to Lemma 3.4.1, we have HomΛ(M, ÄN) = 0 if and only if
HomK(PM , PN [1]) = 0. Moreover, due to Lemma 3.4.2, we know that HomΛ(P,M) = 0 if
and only if HomK(P, PM) = 0.

So if we denote a subset S of the set

{

P = (P 1 → P 0) | P is presilting
}

∪ {Pv[1] | v ∈ Q0}

as coherent when HomK(P,Q[1]) = 0 and HomK(Pv, P ) = 0 for each P,Q, Pv in S, it
follows that a maximal compatible collection of Λ-modules defined above is in bijective
correspondence with a maximal coherent collection of two-term complexes. Indeed, we
associate to each module M its minimal projective presentation, while preserving each
Pv[1] that appears.

Thanks to Proposition 4.2.3, we know that a minimal projective presentation of a
string module P (É) is a two-term presilting complex if and only if the blossoming string

ÉR does not kiss itself.
With the following lemma, we demonstrate the connection between the fact that

HomK(Pv, P (É)) = 0 and the non-kissing criterion.

Lemma 4.3.2. Given a vertex v of a gentle quiver Q, É a gentle string, let Pv be the
indecomposable projective module related to vertex v and P (É), the minimal projective
presentation of string module M(É). Then HomK(Pv, P (É)) = 0 if and only if Iv does not

kiss ÉR.

Proof. Let f be in HomK(Pv, P (É)) = 0, then f can be seen as a vector [f1, . . . ft], where
fi is a Λ-module homomorphism from Pv to Pji . If f is not zero, then at least there exists
some i, such that fi ̸= 0.

Since fi is a Λ-module homomorphism between two indecomposable projective mod-
ules, we can assume that fi corresponds to a multiplication by a path ji → v in Q. We

denote the path with fi. Call p+v and p−v the two maximal paths ending in v of QR, namely
Iv = (p−v )

−1p+v . Then fi is a subpath of either p−v or p+v .
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v

ki−1

ji

q+i−1

Figure 4.7: q+i−1 is a subpath of fi

v

ki−1

ji

q+i−1

Figure 4.8: fi is a subpath of q+i−1

Moreover, let q+i−1 = ÉRki−1+1 . . . É
R
ji

, and q−i = (ÉRji+1 . . . É
R
ki
)−1. These are two different

path of Q starting with ji . This implies that fi must share the same starting arrow as
one of them.

Since we are working with strings up to inverses, we can assume that fi is a subpath
of p+v and has in common the starting arrow with q+i−1. The other combinations arise from

simply replacing ÉR with (ÉR)−1 or Iv with I−1
v .

The homomorphism fi is null-homotopic if and only if fi can be written as fi =
q+i−1hi−1, where hi−1 is a Λ-module homomorphism from Pv to Pki−1

. Since both fi and
q+i−1 are path , hi−1 must correspond to a multiplication by a path from ki−1 to v. Hence
fi is null-homotopic if and only if q+i−1 is a starting subpath of fi.

If q+i−1 is a starting subpath of fi or if they are equal , we have that the two strings are

not kissing. Indeed q+i−1 is a common subpath, but the arrow ÉRki−1
and ÉRji+1, incident to

it, have the same direction, as one can see in Figure 4.7.

If q+i−1 is not a starting subpath of fi. it means that, since they share the same starting
arrow, fi is a starting subpath of q+i−1. The the common substring fi represents a kiss,

since the arrow incident to it of Iv are both incoming and the one of ÉR are both outgoing.
Refer to Figure 4.8.

So we proved that fi is null-homotopic if and only if Iv does not kiss ÉR. Due to the
fact that being null-homotopic is an additive property, we conclude.

The result of [Brü+20] may then be rephrased, in light of the work presented here and
in the preceding chapters.

Definition 4.3.1. Let Q be a gentle quiver. Define the set

Strnk :=
{

P (É) | ÉR is a string not kissing itself
}

∪ {Pv[1] | v ∈ Q0} .
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where we denote by P (É) = (P 1(É)→ P 0(É)) the minimal projective presentation of the
string module M(É) and Pv are the indecomposable projective modules related to the
vertices of Q.

Thanks to Propositions 4.2.1, 4.2.2, and the above Lemma, a subset S of Strnk is

coherent if and only if for each P (É) and P (É̃) in S, the strings ÉR and É̃R are non-

kissing, and for each Pv[1] and P (É) in S, the strings Iv and ÉR are also non-kissing.
We can then state:

Proposition 4.3.3. Let Λ be a gentle algebra. There is a one-to-one correspondence
between two-term silting complex over Λ and maximal coherent subsets of Strnk, where the
correspondence is given by associating to each maximal compatible subset the direct sum
of its elements. In particular each two-term silting complex corresponds to a maximal
collection of non-kissing long strings.
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Appendix A

An alternative proof: the ring of

Laurent polynomials has no non-trivial

idempotents

Lemma A.0.1. K[x, x−1] has no non-trivial idempotents.

Proof. Firstly, we note that the commutative ring of formal series K
[

[x]
]

has no non-

trivial idempotents. Indeed, let p an idempotent element of K
[

[x]
]

, then p =
∑+∞

i pix
i,

with pi in K and p2 =
∑

i(
∑

j+k=i pjpk)x
i. Note that the coefficient qi =

∑

j+k=i pjpk
of xi in p2 depends only on the coefficients with index less or equal than it. If p2 = p,
then p0 = q0 = p20, since K is a field, then p0 = 0. Equivalently the equation q1 = 2p0p1
must holds, thus p1 must be equal than zero. Continuing with the same reasoning, we get
p = 0.

To prove that K[x, x−1] has no non-trivial idempotents, we would like to find an
injective ring homomorphism between K[x, x−1] and K

[

[x]
]

, such that, if restricted to K,
is the identity. This will implies that each idempotent of K[x, x−1] is sent to an idempotent
of K

[

[x]
]

, which has only trivial ones. Hence, K[x, x−1] has no non-trivial idempotents.
So now we need to find such an injective ring morphism.
We start by looking at how the ring K[x, x−1] is constructed. Let R = K[x] be the

polynomial’s ring given by the set of polynomials in one variable with coefficient on a
field K. This is a commutative ring. We can consider the multiplicative closed set S =
{1, x, x2, . . . }, then the localization S−1R is canonically isomorphic to R[x−1] = K[x, x−1],
which is the ring of Laurent polynomials.

Since S does not contain any zero divisors, we have an injective ring homomorphism

º : R ↪→ S−1R
n

∑

i=o

aix
i ↪→

n
∑

i=0

aix
i

which satisfies the following universal property of the localization:

123
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if f : R → T is a ring homomorphism that maps every element of S to an invertible
element in T , then there exist a unique ring homomorphism g : S−1R → T such that
f = g ◦ º.

Claim:

ϕ : K[x, x−1]→ K
[

[x]
]

1 7→ 1

x 7→ 1− x

x−1 7→ (1− x)−1

is an injective ring homomorphism.
If we show that this claim is true, we can conclude the proof of Lemma A.0.1.

We first prove that is a well-defined ring homomorphism, using the universal property
of the localization. We define the map È from K[x] to K

[

[x]
]

on the generator of K[x]
and then extend it by K−linearity: È(x) = 1− x, È(1) = 1.

Let a =
∑n

i=0 aix
i, b =

∑n
j=0 bjx

j ∈ K[x]. We can assume without loss of generaliza-
tion n g m.

Then

È(a+ b) = È
(

m
∑

i=0

(ai + bi)x
i +

n
∑

i=m+1

aix
i
)

=
m
∑

i=0

(ai + bi)(1− x)
i +

n
∑

i=m+1

ai(1− x)
i.

While

È(a) + È(b) = È(
n

∑

i=0

aix
i) + È(

m
∑

i=0

bix
i) =

n
∑

i=0

ai(1− x)
i +

m
∑

i=0

bi(1− x)
i =

=
m
∑

i=0

(ai + bi)(1− x)
i +

n
∑

i=m+1

ai(1− x)
i.

So È preserves the sum. Hence

È(ab) = È
(

m+n
∑

i=0

cix
i
)

=
m+n
∑

i=0

ci(1− x)
i.

where ci =
∑i

j=0 ajbi−j, defining bj = 0 if j > m. While

È(a)È(b) = È(
n

∑

i=0

aix
i)È(

m
∑

i=0

bix
i) =

n
∑

i=0

ai(1− x)
i

m
∑

i=0

bi(1− x)
i =

=
m+n
∑

i=0

ci(1− x)
i.

where ci is as above. So È preserves also the product. Since, by construction, the image
of the identity is the identity, we showed that È is a ring homomorphism.
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Moreover È(S) = {1, (1 − x), (1 − x)2, . . . }, which are invertible elements in K
[

[x]
]

.
Then, by universal property of the localization, there exists a unique ring homomorphism
ϕ from K[x, x−1] to K

[

[x]
]

such that ϕ ◦ º = È. Thus ϕ(º(x)) = ϕ(x) = 1 − x and so
ϕ(x−1) = ϕ(x)−1 = (1− x)−1. Thus actually we proved the first part of our claim, i.e. ϕ
is a ring homomorphism.

Now, we prove the injectivity of ϕ. Let p ∈ K[x, x−1], then p =
∑m

i=−n aix
i with ai ∈ K

and ϕ(p) =
∑m

i=0 ai(1− x)
i +

∑n
i=1 a−i(1− x)

−i.

Recalling Newton’s formula, (1− x)i =
∑i

k=0

(

i
k

)

(−1)kxk, we get

m
∑

i=0

ai(1− x)
i =

m
∑

i=0

ai

(

i
∑

k=0

(

i

k

)

(−1)kxk
)

=
m
∑

k=0

(−1)k
(

m
∑

i=k

ai

(

i

k

)

)

xk.

Then (1−x)−1 =
∑∞

i=0 x
i ∈ K

[

[x]
]

, and we could identify this with the infinite vector:
(1, 1, 1, 1, . . . . . . ).

We have

(1− x)−2 =
(

∞
∑

i=0

xi
)

·
(

∞
∑

j=0

xj
)

=
∞
∑

h=0

phx
h

where ph =
∑h

i=0 1
i1h−i =

∑h
i=0 1

h = (h+ 1) =
(

h+1
1

)

.

While

(1− x)−3 =
∞
∑

h=0

qhx
h

where qh =
∑h

i=0 1
h−ipi =

∑h
i=0(i+ 1) =

∑h
i=0(i+ 1) = (h+1)(h+2)

2
=

(

h+2
2

)

.

Using the same identification as above (1− x)−2 = (1, 2, 3, 4, 5 . . . . . . ) and
(1− x)−3 = (1, 3, 6, 10, . . . . . . ).

By induction, since

(1− x)−i =
∞
∑

h=0

qihx
h

where qih =
∑h

j=0 1
h−j

(

i−2+j
j

)

=
(

i−1+h
h

)

, the infinite vector representing the series (1−x)−i

is the (i−1)−th diagonal of the Pascal’s triangle, i.e. (t(i−1,i−1), t(i−1+1,i−1), t(i−1+2,i−1), . . . ).

t(0,0)

t(1,0) t(1,1)

t(2,0) t(2,1) t(2,2)

t(3,0) t(3,1) t(3,2) t(3,3)

which corresponds to
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1

1 1

1 2 1

1 3 3 1

So (1− x)−i+1 =
∑∞

j=0 t(i+j,i)x
j and this implies that

n
∑

i=1

a−i(1− x)
−i =

∞
∑

j=0

(

n
∑

i=1

a−i

(

j + i− 1

j

)

)

xj.

We just showed that

ϕ(p) =
m
∑

k=0

(−1)k
(

m
∑

i=k

ai

(

i

k

)

)

xk +
∞
∑

j=0

(

n
∑

i=1

a−i

(

j + i− 1

j

)

)

xj.

Now, we consider the coefficient of xk with k > m, that is only ck =
∑n

i=1 a−i
(

k+i−1
k

)

.
If p ∈ ker(ϕ) then ck = 0 for all k. We want to prove that a = (a−i)i is the null vector.
In order to show this, we need to find n natural numbers, call them k1, . . . , kn such that
the following matrix

M =













(

k1
k1

) (

k1+1
k1

) (

k1+2
k1

)

. . . . . .
(

k1+n−1
k1

)

...
...

...
...

(

kn
kn

) (

kn+1
kn

) (

kn+2
kn

)

. . . . . .
(

kn+n−1
kn

)













has maximal rank, i.e. rank(M) = n.
Given a = (a−1, . . . , a−n), if we can find such a set {k1, . . . kn}, where ki > m for i

between 1 and n, then the homogeneous linear system with variables a:

Ma = 0

has, by Rouche Capelli, a unique solution, which is the null vector, then a = 0.
We will work by induction on n, the dimension of the vector a.
If n = 1, M =

(

k
k

)

= 1, has rank 1, for all k.
Assume that we have a family of n natural numbers {k1, . . . , kn} all greater than m,

such that M has maximal rank. We want to find another natural number kn+1 greater
than m, such that, by adding a column c = (

(

k1+n
k1

)

,
(

k2+n
k2

)

, . . . ,
(

kn+n
kn

)

)T and a row r =

(
(

kn+1

kn+1

)

,
(

kn+1+1
kn+1

)

, . . . ,
(

kn+1+n
kn+1

)

) = (1, r1, . . . , rn+1) to M , the matrix

M̃ =

























M



















(

k1+n
k1

)

(

k2+n
k2

)

...
(

kn+n
kn

)











(

kn+1

kn+1

) (

kn+1+1
kn+1

)

. . . . . .
(

kn+1+n
kn+1

)
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has maximal rank.
Since M has maximal rank, we can triangularize it, in order to have every pivot equal

to 1 and each pj,i is a linear combination of elements of the same column. We get:

TM̃ =















1 p1,2 p1,3 . . .
0 1 p2,3 . . .
...

. . . . . .
...

. . . . . .

0 · · · · · · 0 1















.

By doing the same operation on the column c, we obtain c̃ = (p1,n+1, p2,n+1, . . . , pn,n+1)
T .

We want to obtain a matrix of the type :

˜̃M =

































1 p1,2 p1,3 . . .
0 1 p2,3 . . .
...

. . . . . .
...

. . . . . .

0 · · · · · · 0 1





























p1,n+1

p2,n+1
...
...

pn,n+1















0 pn+1,n+1



















.

In order to get this, we need to subtract from the last row, (1, r1, . . . , rn), q1 = 1-
times the first row, obtaining (0, r1 − p1,2, . . . , rn − p1,n+1), then we need to subtract
q2 = (r1 − p1,2)-times the second row, obtaining

(0, 0, r3 − p1,3 − q2 · p2.3, . . . , rn+1 − p1,n+1 − q2 · p2,n+1),

and so on. Until we obtain (0, · · · , 0, pn+1,n+1), where the last pivotal element became
equal to :

pn+1,n+1 = rn − (
n

∑

i=1

qipi,n+1),

with qi defined for recurrence as qi = ri−1 − (
∑i−1

j=1 qjpj,i) and initial value q1 = 1.

By definition, rj =
(

kn+1+j
kn+1

)

is a polynomial in the variable kn+1 of grade j, for all j.

In particular, the coefficient of (kn+1)
n in rn is equal to one, since rn = (kn+1 + 1)(kn+1 +

2) · · · (kn+1+n). So pn+1,n+1 is a monic polynomial of degree n, giving at most n possible
choice of kn+1 for which pn+1,n+1 is equal to zero.

However, if kn+1 = ki for 1 f i f n, then det(M̃) = 0 and this implies that pn+1,n+1 =
0. Thus, the n-roots of pn+1,n+1 are actually {k1, . . . , kn}. So we just need to take kn+1

different from ki for all i and with this choice rank(M̃) = n+ 1.
So we showed that if p =

∑m
i=−n aix

i belongs to ker(ϕ), then a−i = 0 for 1 f i f n.
Now, consider the coefficient of xk, for 0 f k f m, in ϕ(p), this is equal to

ck = (−1)k
(

m
∑

i=k

ai

(

i

k

)

)

,
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and, since p ∈ ker(ϕ), we have ck = 0 for all k. But, if k = m,

cm = (−1)mam

(

m

m

)

= 0 ⇐⇒ am = 0.

If k = m− 1,

cm−1 = (−1)m−1
(

am−1

(

m− 1

m

)

+ am

(

m

m

)

)

= 0 ⇐⇒ am−1 = 0.

By induction we get ai = 0 for all i = 0, . . . ,m. Thus, if p ∈ ker(ϕ), we get p = 0, hence
ϕ is injective, and so we proved our claim.
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