
UNIVERSITÀ DEGLI STUDI DI PADOVA

DEPARTMENT OF INFORMATION ENGINEERING
Master degree in ICT for Internet and Multimedia

Recognition of Road Irregularities by means of
Low-Cost Sensors and Machine Learning Techniques

Supervisor Master Candidate
Professor Andrea Zanella Mattia Pasti

ID Number
2055738

Academic Year
2022–2023

ii

To my family and friends.

iv

Abstract

The work of this thesis aims at automatically recognize road irregularities (potholes, bumps, etc.)
with the aid of a variety of low-cost sensors mounted in soft-mobility means (i.e., electric kick-
scooters and electric bikes) andmachine learning techniques. The work can be divided into three
main steps: data acquisition, signal processing and training and performance assessment. In the
first part, low-cost sensors (sonars, cheap cameras, accelerometers) are mounted in the vehicle
and connected to an Arduino MKR1010 Wi-Fi board that sends the signals to another board con-
nected to the computer through a Wi-Fi connection. Several runs with different road conditions
have been taken into account and the signals have been labeled accordingly. The dataset collected
during the first step is preprocessed, filtered and then given in input to a variety of machine learn-
ing classifiers in order to train the model to automatically recognize different road irregularities.
Once the classifiers are trained, the model is tested in a real testbed and the performances of all
the algorithms taken into account evaluated, finally selecting the most suitable algorithm.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

1 Introduction 1
1.1 Related work . 2

1.1.1 Collaborative approaches . 2
1.1.2 Standalone approach . 3

2 Methodology 7
2.1 Hardware . 7

2.1.1 Arduino MKRWiFi 1010 . 7
2.1.2 HC-SR04 Ultrasonic Ranging Module . 8
2.1.3 MPU-6050 GY-521 Accelerometer-Gyro Module 10
2.1.4 GY-NEO6MV2 GPS Module . 11
2.1.5 External battery . 11

2.2 Final scheme . 11

3 Machine Learning Techniques 13
3.1 Supervised Learning . 14

3.1.1 Support Vector Machines (SVM) . 15
3.1.2 Random Forest (RF) . 16

3.2 Unsupervised Learning . 19
3.2.1 Clustering Method – K-Means . 19

4 Data Collection and Implementation 21
4.1 Data Collection . 21

4.1.1 Dataset . 22
4.2 Implementation . 24

5 SVM Classifier – Results 33
5.1 Binary Classification . 33

5.1.1 Only p2pMatrix . 33
5.1.2 Only std Matrix . 35
5.1.3 p2p and stdMatrix Combined . 36

vii

5.2 Multiclass Classification . 36
5.2.1 Only p2pMatrix . 37

6 Random Forest – Results 41
6.1 Binary Classification . 41

6.1.1 Only p2pMatrix . 41
6.1.2 Only std Matrix . 43
6.1.3 p2p and stdMatrices Combined . 43

6.2 Multicalss Classification . 44
6.2.1 Only p2pMatrix . 45
6.2.2 Only std Matrix . 46
6.2.3 p2p and stdMatrices Combined . 47

7 K-Means – Results 49
7.1 Binary Classification . 49

7.1.1 Only p2pMatrix . 51
7.1.2 Only std Matrix . 52
7.1.3 p2p and stdMatrices Combined . 53

7.2 Multiclass Classification . 54
7.2.1 Only p2pMatrix . 54
7.2.2 Only std Matrix . 55
7.2.3 p2p and stdMatrices Combined . 56

8 Conclusions and Future Work 63
8.1 Summary of the Results . 63

8.1.1 Binary Classification . 63
8.1.2 Multicalss Classification . 64

8.2 Conclusions . 65
8.3 Possible Follow-Up . 65

References 67

viii

Listing of figures

2.1 Arduino MKRWiFi 1010 board. 7
2.2 HC-SR04 Ultrasonic Ranging Module. 9
2.3 Sonar functioning. 9
2.4 MPU-6050 GY-521 Accelerometer-Gyro Module. 10
2.5 GY-NEO6MV2 GPS Module. 11
2.6 Photo of the vehicle considered for the data acquisition and details of the embed-

ding of the sensors. 12

3.1 Example of soft-SVM with different values of the parameter λ. 17
3.2 Example of a decision tree employed for binary classification. 18

4.1 Photos of the five irregularity taken into account. 22
4.2 Samples of acceleration and sonar values for irregularity one. 23
4.3 Samples of acceleration and sonar values for irregularity two. 24
4.4 Samples of acceleration and sonar values for irregularity three. 25
4.5 Samples of acceleration and sonar values for irregularity four. 26
4.6 Samples of acceleration and sonar values for irregularity five. 27
4.7 Samples of acceleration and sonar values for irregularity six. 28
4.8 Samples of acceleration and sonar values for irregularity seven. 29
4.9 Samples of acceleration and sonar values for irregularity eight. 31

5.1 Confusion matrix when the input is the p2p. Multiclass classification. 37
5.2 Confusion matrix when the input is the std. Multiclass classification. 38
5.3 Confusion matrix when the input is the combined. Multiclass classification. 39

6.1 One of the 100 decision tree in constituting the random forest. The input is the p2p
matrix. 43

6.2 One of the 100 decision tree in constituting the random forest. The input is the std
matrix. 44

6.3 One of the 50 decision tree in constituting the random forest. The input is the com-
bined matrix. 44

6.4 Confusion matrix when the input is the p2p. Multiclass classification. 45
6.5 One of the 100 decision tree in constituting the random forest. The input is the p2p

matrix. 45
6.6 Confusion matrix when the input is the std. Multiclass classification. 46

ix

6.7 One of the 25 decision tree in constituting the random forest. The input is the std
matrix. 46

6.8 Confusion matrix when the input is the combined. Multiclass classification. 47
6.9 One of the 30 decision tree in constituting the random forest. The input is the com-

bined matrix. 47

7.1 Ground truth with the p2pmatrix as input and k = 2. 51
7.2 Result of the K-Means algorithm when the input is the p2pmatrix and the number

of cluster is k = 2. 52
7.3 Result of the K-Means algorithm when the input is the std matrix and the number

of cluster is k = 2. 53
7.4 Result of the K-Means algorithm when the input is the combined matrix and the

number of cluster is k = 2. 54
7.5 Ground truth with the p2pmatrix as input and k = 3. 55
7.6 Result of the K-Means algorithm when the input is the p2pmatrix and the number

of cluster is k = 3. 56
7.7 Two different runs over the same irregularity at different speeds. 57
7.8 Confusion matrix when the input is the p2p matrix and the number of clusters is

k = 3. 58
7.9 Result of the K-Means algorithm when the input is the std matrix and the number

of cluster is k = 3. 59
7.10 Confusion matrix when the input is the std matrix and the number of clusters is

k = 3. 60
7.11 Result of the K-Means algorithm when the input is the combined matrix and the

number of cluster is k = 3. 61
7.12 Confusionmatrix when the input is the combinedmatrix and the number of clusters

is k = 3. 62

x

Listing of tables

4.1 Example of two rows of the complete dataset. 21
4.2 Parameters in input to the train_test_split() function. 30
4.3 Parameters in input to the train_test_split() function. 30

5.1 Parameters in input to the train_test_split() function. 34
5.2 Results for the models when the input is the stdmatrix. 36
5.3 Results for the models when the input is the combined matrix. 36
5.4 Results for the models when the input is the p2p matrix. 37
5.5 Results for the models when the input is the p2p matrix. 38
5.6 Results for the models when the input is the combined matrix. 39

6.1 Parameters in input to the RandomForestClassifier() function. 42

7.1 Parameters in input to the RandomForestClassifier() function. 50

8.1 Summary of the results obtained for binary classification with the different config-
urations. 64

8.2 Summary of the results obtained for binary classification with the different config-
urations. 64

xi

xii

xiii

xiv

1
Introduction

A road user may be defined vulnerable with regard to their degree of protection in traffic, such as
pedestrians, cyclists, non-motorised road user and motorcyclists, or with regard to their degree
of mobility, such as the young, the elderly, and people with disabilities or special needs. A study
published in the Journal of Safety Research [1] in 2019 stated that, based on the traffic accident
statistics, in the whole European Union, VRUs constitute 46% of all traffic fatalities and 53% of all
serious injured accident victims. This problem is expected to be further exacerbated by the quick
diffusion of electric kick-scooter and bicycle sharing services, which have markedly increased in
popularity in the recent years throughout Europe and the rest of the globe, significantly raising
the number of VRUs. Since this expansion has not brought along an improvement in safety, sev-
eral cities are now questioning the appropriateness of these services, and some (such as Paris)
have banned electric kick-scooters sharing services.
This thesis aims to set the ground for a fully functional driver assistance to improve the safety of
VRUs by means of sensing systems with which to equip soft mobility vehicles (mainly, electric
kick-scooters and electric bikes). Hence, the final goal is to exploit the sensors mounted in the
vehicle in order to create a net of interconnected users that exchange relevant information to im-
prove the safety of the VRUs. To achieve this objective, a few challenges need to be addressed. For
instance, the dimension of the vehicles taken into consideration poses challenges in the integra-
tion of sizable sensors and their optimal positioning. Additionally, attention must be given to the
energy consumption of these sensors. Furthermore, a crucial aspect to consider is which informa-
tion shall be transmitted to other users and with what frequency. In this context, the concept of
“Value of Information” (VoI) becomes pivotal. The VoI can be described as the maximum benefit
that can be gained in the process of minimizing the average cost with the help of a given amount
of information [2]. In other words, the VoI is not set a priori by the sender, but is determined
by considering the different utility that a certain information may have for the recipient, based
on its context awareness. The issue of information exchange on roadways has been extensively

1

addressed in the current literature, particularly with the advancement of autonomous driving re-
search. However, the inclusion of VRUs introduces an additional layer of complexity, because
VRUs do not strictly adhere to predefined traffic rules during their movements, thus posing an-
other challenge in information exchange.

1.1 Related work
Over the past few years, numerous research papers have been published with the objective of
improving the safety of VRUs. The research can be divided into twomain categories: collaborative
and standalone approaches. The state-of-the-art of both approaches is described in the following
of this section.

1.1.1 Collaborative approaches

This approach seeks to establish an effective collaborative environment among all road users and
road stations, facilitating the exchange of valuable information aimed atmitigating the risk of acci-
dents. Merdrignac et al. [3], [4] proposed a synergistic integration of Vehicle-to-Pedestrian (V2P)
and Vehicle-to-Vehicle (V2V) communication systems, coupledwith perception systems utilizing
onboard sensors within the vehicle. This innovative approach aims to mitigate the limitations in-
herent in each individual method and, in turn, enhance the safety of road users. The authors
explained that the sensors integrated into vehicles are contingent upon factors such as visibility
conditions and inherent imprecisions. Conversely, V2P communication is significantly influenced
by the dependability of the information exchanged, which primarily comprises Global Positioning
System (GPS) data. Through their research, they demonstrated that the amalgamation of these
two distinct methodologies generates a level of redundancy that serves to overcome the short-
comings inherent in each method when employed in isolation. Consequently, this integrated
approach contributes substantively to the overall enhancement of safety for VRUs. The develop-
ment of V2V safety applications based on Dedicated Short Range Communication (DSRC) has
been extensively undergoing standardization for more than a decade. Amin Tahmasbi-Sarvestani
et. al. [5] introduced an end-to-end V2P framework aimed at enhancing situational awareness
and hazard detection in the context of the most prevalent and injury-prone crash scenarios. In
their research, Parag Sewalkar and Seitz Jochen [5] observed that V2P systems are customized to
distinct goals, primarily focused on improving safety by addressing the needs of different groups
of VRUs. Also, these V2P systems integrate a range of communication technologies and use dif-
ferent mechanisms to effectively engage the different groups of users. An effective V2P system
must take into account the different characteristics of different VRUs as these multifaceted com-
ponents comprise critical design parameters within the overall system. Accordingly, Sewalkar
and Jochen proposed a comprehensive design framework for V2P systems based on these con-
siderations. Yina Wu et. al. [6] developed a crash warning system for the bicycle lane area at
intersection investigating drivers’ right turn behavior based on the trajectory data, and they pro-
posed a vehicle-bike crash warning algorithm to calculate the Post Encroachment Time (PET),

2

that represents the time difference between a vehicle leaving the area of encroachment and a con-
flicting vehicle entering the same area.

1.1.2 Standalone approach
This type of approach aims tomainlymonitor the road conditions in order to improve users’ safety.
Existingmethods for monitoring road conditions aremainly based on camera observation and/or
vibration detection.

Vision-based approaches

The vision-based approaches use images to detect the presence of irregularities in the road pave-
ment through computer vision algorithms. Anas Al-Shaghouri et. al. [7] deployed and tested dif-
ferent deep learning architectures to detect the presence of potholes within roadways. The opera-
tional methodology involved capturing multiple images of potholes with a smartphone mounted
in the windshield of the vehicle, then they tested and compared the performances of different
real-time deep learning algorithms with different configurations including TensorFlow, YOLOv3-
Darknet53 and YOLOv4CSPDarknet53. Employing the specified configuration, YOLOv4 demon-
strated an accuracy of 85% in effectively identifying potholes. Muhammad Haroon Asad et. al.
[8] explored the potential of deep learning technique exploiting the Artificial Intelligence (AI)
kit on a Raspberry Pi as an edge platform for pothole detection. Hence, they presented a detailed
real-time comparison of state-of-the-art deep learning models for pothole detection. As a result,
they confirmed that YOLOv4 andYOLOv5 show the highestmean average precision of above 80%.
Abhishek Kumar et. al. [9], instead, based their research in the implementation of Convolutional
Neural Networks in order to detect potholes using images and videos. They also demonstrated
how this type of approach outperforms already existing methods.

Vibration approaches

Once again, many methods have been used, which can be divided into these three categories:

• Threshold-based methods
Threshold based approaches identify anomalies when the amplitude or other properties of
the signal exceed a specific value. PrashanthMohan and colleagues [10] proposed a system
to find potholes and bumps utilizing two detectors depending on the speed of the vehicle.
After calibration to have consistent reference systems, a spike along the az coordinate above a
certain threshold is classified as a suspected anomaly. Over several observations, the detec-
tor maintained a low false positive rate (5−10%), but a higher false negative rate (20−30%).
Naveed Sabir et. al. [11] described a road monitoring system using dynamic threshold and
crowdsourcing approaches to locate potholes and speed breakers. In this case, a potential
pothole is detected when the acceleration values on the x (lateral) and z (vertical) axes ex-
ceed the specific threshold, and a speed bump is detected whenever the acceleration values
of the y (longitudinal) and z axes exceed the specific threshold. Despite their simplicity, the

3

threshold based methods achieve fairly good results (90% successful speed bump detection
and 85% successful potholes detection).

• Dynamic Time Warping (DTW)
DTW is a pattern-matching algorithm for measuring the similarity between two temporal
sequences, which may vary in time and space [12]. For example, Singh [13] proposed a
DTW-based approach to detect road surface anomalies from accelerometer sensor data. In
this approach, time series values captured accelerometer sensor data for every pothole and
bump, and the data were then stored in a central server as templates. Next, incoming sensor
data were compared with the stored templates to detect similarities. The accuracy of this
approach was greatly correlated to the quality of the reference template. Therefore, this
approach was both computationally intensive and unreliable, as it required reference tem-
plates for each different condition (i.e., various vehicles, road conditions, speed of driving).

• Machine Learning together with Feature Engineering
Machine Learning techniques have been widely adopted in road inspection, reaching a cor-
rect classification rate of above 95%. Chao Wu et. al. [14] analyzed different multiclass ma-
chine learning techniques to effectively classify road surface conditions using accelerometer
and GPS data collected from a smartphone. In particular, they evaluated the performances
of a linear, an SVM and a Random Forest classifier. All these algorithms exhibited good clas-
sification performances for both normal road segment and potholes. Akanksh Basavaraju
et. al. [15] conducted a comprehensive analysis of various multiclass machine learning ap-
proaches to effectively classify road conditions using data collected from smartphone. Their
study emphasized the enhanced accuracy achieved by incorporating features from all three
axes of the accelerometer, in contrast to relying on a singular axis. Moreover, the research as-
sessed the effectiveness of deep neural networks in road condition classification, achieving
an accuracy exceeding 90% without the need for explicit manual feature extraction. Mikko
Perttunen and colleagues [16] performed a spectral analysis of tri-axis acceleration signals
gathered through the sensor embedded in a mobile phone. They also proposed a speed de-
pendence removal approach for feature extraction and they demonstrated its positive effect
in multiple feature sets for the road surface anomaly detection task. Lastly, they proposed
a framework for visually analyze the SVM classifier prediction over the validation data and
labels. Kshitij Pawar et. al. [17], focused on building an efficient pothole detection sys-
tem using a Neural Network, while also ensuring that the process is not too complex and
time-consuming. Their proposed architecture comprises a data collection stage, followed
by data preprocessing and training of the proposed model, ending with the evaluation of
the machine learning classifier, which achieved an accuracy of 94.78%.

Previous research mostly focuses on the use of smartphone’s built-in sensors, such as accelerom-
eter, gyroscope, GPS, and Wi-Fi signals, to collect data for the detection of potholes or irregulari-
ties on road pavement. The use of such devices, however, can easily raise some problems, related
to, e.g., the security and privacy of the data communicated to other users, the assumption that
the smartphone is always connected and online, the heterogeneity of device capability and so on.

4

Furthermore, utilizing the user’s smartphone also necessitates the development of a custom appli-
cation that users must download and connect to their vehicle to manage data from these sensors.
This additional step not only requires user downloads but also increases the overall application
costs, which is contrary to the objective of maintaining a low-cost solution. As such, in this project
we propose to mainly leverage onboard sensors and processing, so as to guarantee a certain level
of safety to each vehicle without needing any intervention of the user.

5

6

2
Methodology

2.1 Hardware
As outlined in the introduction, the use of low-cost sensors to detect road anomalies is pivotal.
The following subsections aim to present the hardware utilized for this research.

2.1.1 Arduino MKRWiFi 1010
The Arduino MKR WiFi 1010 is the easiest point of entry to basic IoT application design. The
board’s main processor is a low power Arm® Cortex®-M0 32-bit SAMD21. The WiFi and Blue-
tooth® connectivity is performedwith amodule fromu-blox, theNINA-W10, a lowpower chipset
operating in the 2.4GHz range. On top of those, secure communication is ensured through the
Microchip® ECC508 crypto chip [18].

(a) Board image. (b) Board scheme.

Figure 2.1: Arduino MKR WiFi 1010 board.

In our study, this type of Arduino board is employed for the purpose of gathering data from the
sensors mounted in the vehicle, which is subsequently transmitted to a separate Arduino MKR
WiFi 1010 unit. This latter unit, in direct connection with the computer, is responsible for the

7

reception, reading, and storage of the acquired data signals. In this early stage of the application,
the utilization of two separate boards is advantageous for the more convenient gathering of data,
since it is not necessary to connect the computer directly to the board embedded in the bicycle.
The board implements different types of communication protocol useful for the project that are
listed below:

• Wi-Fi protocol: exploiting Arduino’s WiFiNINA library [19], the Wi-Fi module enables the
Arduino MKRWi-Fi 1010 to function both as a server, accepting incoming connections, and
as a client, establishing outgoing ones. This configuration allows the establishment of aUDP
connection between the two boards, facilitating the seamless transmission of collected data
from the board embedded into the vehicle to the other board connected to the computer.
Notably, this wireless configuration eliminates the need for a physical wired connection
between the vehicle board and the computer, easing the data collection process.

• UART protocol: UART, an acronym for Universal Asynchronous Receiver/Transmitter, de-
fines a protocol or set of rules governing the exchange of serial data between two devices.
It operates using a simple mechanism employing only two wires to transmit and receive
data bidirectionally. Communication in UART can take three forms: simplex (data is sent
in one direction only), half-duplex (each side speaks but only one at a time), or full-duplex
(both sides can transmit simultaneously). A significant advantage of UART lies in its asyn-
chronous nature, where the transmitter and receiver do not rely on a common clock signal.
While this simplifies the protocol, it necessitates that both ends transmit at a pre-arranged,
agreed-upon speed to maintain consistent bit timing. The most prevalent UART baud rates
in contemporary usage include 4800, 9600, 19.2K, 57.6K, and 115.2K [20].

• I2C protocol: the Inter-Integrated Circuit (I2C) communication protocol is structured on
the master-slave paradigm. Similar to UART, it utilizes a two-wire system for communica-
tion, namely the Serial Data (SDA) and Serial Clock (SCL) wires. However, unlike UART,
I2C is synchronous in nature, meaning the output of bits is synchronized to the sampling
of bits through a clock signal shared between the master and the slave. The clock signal is
always controlled by the master. In the I2C protocol, data is transferred in messages, and
messages are further broken down into frames of data. Each message comprises an address
frame containing the binary address of the slave, along with one or more data frames con-
taining the transmitted data. In an I2C communication, the master initiates by sending the
address of the slave it wishes to communicate with to all slaves connected to it. Each slave
then compares the address sent by the master with its own address. If a match is found, the
slave responds with a low voltage acknowledgment (ACK) bit to the master. Conversely, if
there’s no match, the slave remains inactive, and the SDA line retains a high voltage [21].

2.1.2 HC-SR04 Ultrasonic Ranging Module
The HC-SR04 Ultrasonic Ranging Module exploit ultrasonic transmitters, receiver and control
circuit to give an estimate of the distance between the module and an object placed in front of it.

8

It measures distance between 2cm and 400cm, with a ranging accuracy that can reach 3mm.

(a) Sonar sensor image. (b) Sonar sensor scheme.

Figure 2.2: HC-SR04 Ultrasonic Ranging Module.

The schematic representation, depicted in Fig. 2.2(b), illustrates the four pins through which the
sensor connects to the board for collecting necessary data. These pins include the input voltage pin
(VCC = 5V), the ground pin (GND), as well as the trig and echo pins responsible for transmitting
and receiving the signal to estimate the distance of the object that caused the reflection. The sonar
sensor operates based on the following principles:

• Exploit the IO trigger to send a 10μs high level signal

• The module automatically sends eight-cycle burst of ultrasound at 40KHz and raise its echo

• Estimate the distance of the object that generates the echo signal with the formula

d =
ToF× v

2 (2.1)

where ToF is the total time of flight of the signal (time it takes to reach the object plus the
time it takes to return), v is the velocity of the sound (≃ 340m/s), all divided by 2 since the
signal’s travel path covers a distance equivalent to twice the separation between the sonar
sensor and the object of interest.

10 µs Trigger

8 cycle sonic burst

Output proportional

to range

Trig

Echo

Figure 2.3: Sonar functioning.

In Fig. 2.3 above, a basic schematic is presented to elucidate its functioning. Initially, a high signal
is transmitted, triggering the generation of an eight-cycle burst of ultrasound at a frequency of

9

40KHz. The duration of the high Echo Back signal corresponds to an estimate of the ToF of the
reflected ultrasound signal. This ToF is functional to accurately determining the distance of the
object that generated the echo.

2.1.3 MPU-6050 GY-521 Accelerometer-Gyro Module

The MPU-6050 sensor module combines a three-axis gyroscope, three-axis accelerometer, and a
Digital Motion Processor (DMP) all in a small 4× 4× 0.9mm package.

(a) Accelerometer Image. (b) Accelerometer scheme.

Figure 2.4: MPU-6050 GY-521 Accelerometer-Gyro Module.

The multiple features integrated in the module are explained below:

• Three-axes accelerometer: can detect the tilt angle or inclination along the x, y, z axes using
a Micro Electro-Mechanical Systems (MEMS) technology. The acceleration along the axes
is derived from a moving mass and the amplitude of the output is proportional to the accel-
eration undergone by the mass. A 16-bit ADC is used to digitize the values. The possible
full-scale output ranges are ±2g, ±4g, ±8g, ±16g depending on the the sensitivity settings
chosen. In the normal position, that is, when the device is placed on a flat surface, the values
are 0g on the x-axis, 0g on the y-axis, and +1g on the z-axis.

• Three-axis gyroscope: can detect the rotation speed along the x, y, z axis withMicro Electro-
Mechanical System (MEMS) technology. When the sensor is rotated on any axis, a vibration
is produced and due to the Coriolis effect is detected byMEMS. The full-scale output ranges
are : ±250, ±500, ±1000, ±2000. Angular velocity is measured along each axis in degrees
per second units.

In addition to these components used in the project, this module implement also a temperature
sensor, an internal clock oscillator and a digital motion processor. As shown in the Fig. 2.4(b), the
accelerometer module comprise eight pins, however, only four of them are used in this project,
namely the input voltage pin (3 to 5V), the ground pin and the serial clock and serial data pins
to propagate the information towards the board. The communication between the board and the
sensors is facilitated through the I2C protocol explained in the previous subsection.

10

2.1.4 GY-NEO6MV2 GPS Module

GY-NEO6MV2 module series is a family of stand-alone GPS receivers featuring the high perfor-
mance U-Blox 6 positioning engine. The module simply checks its location on earth and provides
output data which is the longitude and latitude of its position.

(a) GPS Module Image. (b) GPS Module scheme.

Figure 2.5: GY-NEO6MV2 GPS Module.

To offer better signal reception, there is an external ceramic antenna that connects to the board via
a U.FL connector. The compact architecture, modular design, and efficient power and memory
options of NEO6MV2 modules render them highly suitable for battery-operated mobile devices
constrained by stringent cost and space requirements. This makes such components a perfect fit
for the project described in this thesis. The four pins shown in Fig. 2.5(b) make the connection
with the board very simple. The VCC and GND pins are connected to the 3.3V and GND pins
of the board, respectively, and the tx and rx pins to the rx and tx pins of the board. Differently
from the sonar sensor described in the previous section, the communication follows the UART
protocol.

2.1.5 External battery

To power the Arduino board mounted in the vehicle, and consequently all the sensors connected
to it, an external battery of 2200mAh capacity and 5 output Volt has been used.

2.2 Final scheme

All the modules described in Section 2.1 have been embedded in the bicycle used for data acqui-
sition. Fig. 2.6 shows a picture of the considered vehicle.
A breadboard was secured to the bike frame. Subsequently, the Arduino board was mounted
onto the breadboard along with the accelerometer module. Following this, a series of wires were
employed to establish connections between the sonar sensor, positioned in the lower part of the
bicycle, and the board. Placing the accelerometer in a stable position on the bicycle framewas cru-
cial to ensure a steady and reliable data acquisition. Therefore, careful consideration was given
to choose the most accurate location on the bicycle frame for optimal stability. Similarly, the po-
sitioning of the sonar sensor was a strategic choice. Mounting it under the pedal was determined

11

by the objective of maintaining stability, ensure that the sonar was perpendicular to the road sur-
face and secure that it was at the center of vehicle in both horizontal directions. This arrangement
aimed to have the signal transmitted and received by the sonar at the desired angle of incidence
to maximize the efficiency and accuracy of pothole and bumps classification.

Figure 2.6: Photo of the vehicle considered for the data acquisition and details of the embedding of the
sensors.

12

3
Machine Learning Techniques

In this chapter, a comprehensive theoretical exposition is provided on machine learning tech-
niques used to classify road conditions. The adoption of machine learning in this context is un-
derpinned by its inherent versatility and its adaptability to diverse datasets and complex patterns
inherent in pavement conditions. Simple threshold based methods should be continually refined
in order to conduct a proper classification when the conditions are changing. The capability of
machine learning algorithms to automatically learn and adapt from data, without explicit pro-
gramming for each condition, renders them highly suitable for the variable nature of road pave-
ment classification. While the landscape of machine learning classifiers ranges from simpler to
more complex models, the selection of the algorithms for this thesis prioritizes memory and com-
putation efficiency. This deliberate choice leans towards a simpler yet accurate algorithm, align-
ing with the objective of maintaining low “costs” while ensuring effective classification for road
pavement conditions. Therefore, the algorithmic selection in this context favors Support Vector
Machines, Random Forest, and K-Means classifiers.
It’s important to highlight that when training a machine learning classifier, the risk of overfitting
or underfitting can arise. Underfitting occurs when a statistical model or machine learning algo-
rithm is too simplistic to capture the complexities present in the data. It represents the inability of
the model to learn the training data effectively, resulting in poor performance both on the training
and testing data. In simple terms, an underfitmodel produces inaccurate predictions, particularly
when applied to new, unseen examples. It mainly happens whenwe uses very simple model with
overly simplified assumptions. Conversely, overfitting happens when a statistical model fails to
make accurate predictions on testing data. This occurs when a model is trained with an exces-
sive amount of data, causing it to learn from noise and inaccuracies in the dataset. Consequently,
when tested on new data, themodel exhibits high variance and struggles to categorize the data ac-
curately due to an excess of details and noise learned during training. To address these challenges,
the dataset is divided into three distinct sets: training, validation, and test sets.

13

• Training Data: this set is used for the actual training of the model, allowing it to learn from
the provided data.

• Validation Split: the validation set plays a crucial role in refining and enhancing themodel’s
performance. It is employed for fine-tuning the model after each training epoch, aiding in
optimizing its parameters and improving generalization.

• Test Set: the test set is utilized to evaluate the final accuracy of the model after completing
the training phase. It provides insights into how well the model performs on new, unseen
data.

In situations where the dataset size is insufficient to create three separate sets, the K-fold cross-
validation methodology is employed. This technique involves partitioning the dataset into K sub-
sets (folds), using K − 1 folds for training and the remaining one for validation. The process is
repeated K times, each time using a different fold for validation, and the results are averaged.
This helps in obtaining a more robust evaluation of the model’s performance, especially when
data availability is limited.

3.1 Supervised Learning
Supervised learning techniques represent themost prevalentmethods inmachine learning. These
approaches utilize a training set to instruct models on how to produce the desired output. The
training dataset consists of inputs paired with correct outputs, allowing the model to learn pat-
terns over time. The algorithm evaluates its accuracy through a loss function, iteratively adjusting
its parameters until the error has been sufficiently minimized. Supervised learning can be cate-
gorized into two primary types, i.e., classification and regression.

• Classification: employs an algorithm to accurately categorize test data into specific classes
or categories. It identifies distinct entities within the dataset and aims to make informed
decisions about how to label or define those entities. Common classification algorithms
include Support Vector Machines, decision trees and Random Forest, described in detail in
the next subsections.

• Regression: utilized to comprehend the relationship between dependent and independent
variables. It is commonly applied for making predictions or projections, such as estimating
sales revenue for a given business. Popular regression algorithms encompass linear regres-
sion, logistic regression, and polynomial regression.

In the following of this section, we will discuss in greater detail some of the most common super-
vised learning techniques for classification and regression, namely Support Vector Machine and
Random Forest in the context of supervised learning, and K-Means clustering technique concern-
ing the unsupervised learning.

14

3.1.1 Support Vector Machines (SVM)

SVM is one of the most common supervised machine learning techniques used for classification
and regression problems. The idea of SVM is fairly simple: the algorithm creates a line or a
hyperplane which separated the data into classes. In order to be able to fully understand the
reasoning behind this type of classifier, a few concept must be explained. Suppose to have a
classification problemwith two classes and assume the data to be linearly separable. We can hence
define themargin as the minimum distance from an example in the training set to the hyperplane.
There are different methods for initializing the hyperplane, and the choice of the initialization
can impact the convergence speed and the quality of the final solution. Some common methods
include a random initialization, use some data points and set the hyperplane to be in the middle
on the selected instances, use a previous model parameters (if possible) and others. The idea is
that the best final separating hyperplane is the one that maximizes the margin. Given two vectors
vvv andwww and given a bias term b, we can define the separating hyperplane as:

L = {vvv :< vvv,www > +b = 0} (3.1)

where the symbol< • , • > represents the dot product between two vectors. The vector vvv denotes
a point within the feature space and the vectorwww serves as the weight vector linked to the features
of the data. These weights signify the significance of each feature in the classification process
and collectively determine the orientation of the hyperplane. The bias term b is essentially an
offset that allows the SVM to shift the decision boundary away from the origin. It represents the
intercept of the equation. The decision rule is based on the sign of the expression: if < vvv,www >

+b < 0 the point is classified as one class, and if < vvv,www > +b > 0, then it is classified as the other
class. The distance of an example in the training set xxx to L is:

d(xxx, L) = min{∥xxx− vvv∥ : vvv ∈ L} (3.2)

where the symbol ∥ • ∥ represent the norm of the vector. It can be proved that, if ∥www|| = 1, then
the distance between a sample and the hyperplane is d(xxx, L) = | < www,xxx > +b|, where the symbol
| • | stands as the absolute value of quantity enclosed within. In this case, the margin is:

min
xxxi∈S

| < www,xxxi > +b| (3.3)

where S is the training dataset. The closest samples to the hyperplane are called support vectors.
SVM techniques can be further divided into two subclasses, i.e., hard-SVMand soft-SVM, depend-
ing on the goal to be achieved and the type of dataset.

15

Hard-SVM

The goal of hard-SVM is to find the separating hyperplane with the largest margin, i.e., find:

argmax
(www,b):∥www∥=1

min
i

| < www,xxxi > +b| subject to ∀i : yi(< www,xxxi > +b) > 0 (3.4)

where yi can be either 1 or −1 and represents the correct classification of the sample xxxi (recall
that is a supervised learning technique, so we have the ground truth for each of the training
instances). It is straightforward that the condition is satisfied when the data is correctly classified.
This condition implies that the data has to be linearly separable. In this case, the goal can be
written as:

argmax
(www,b):∥www∥=1

min
i

yi(< www,xxxi > +b). (3.5)

Soft-SVM

The key problem of hard-SVM is that it needs the data to be linearly separable, which happens
rarely in practice. Soft-SVM addresses this limitation by relaxing the constraint and considering
instances where separation is not perfect. This is achieved through the introduction of slack vari-
ables, denoted as ξξξ = (ξ1, ξ2, . . . , ξm), where ξi ≥ 0 for each i. The slack variables are designed to
quantify and account for the degree of violation of the separation constraint in the optimization
process. Now the condition become:

∀i = 1, . . . ,m : yi(< www,xxxi > +b) ≥ 1− ξi (3.6)

where ξi store how much the constraint is violated. Hence, soft-SVM aims to jointly minimize:

1. the norm ofwww (→ maximize the margin);

2. the average of ξi (→minimize constraint violation).

The trade-off between these two objective is controlled by the parameter λ. If the inputs are the
couples (xxx1, y1), . . . , (xxxm, ym) and the parameter λ, the optimization problem is to solve:

min
www,b,ξξξ

(
λ∥www∥2 + 1

m

m∑
i=1

ξi

)
subject to ∀i : yi(< www,xxxi > +b) ≥ 1− ξi and ξi ≥ 0 (3.7)

Is straightforward that a large λ means focusing on the margin (if λ → ∞ we have hard-SVM)
and a small λmeans focusing on avoiding errors. An example is showed in Fig. 3.1

3.1.2 Random Forest (RF)
To gain a comprehensive understanding of the RF algorithm, it is essential to grasp the underlying
concept of a decision tree. A decision tree serves as a predictive model for associating labels with
a given sample vector xxx by navigating through a tree structure from its root to a leaf node. At

16

2

1

2

1

(a) Large λ

2

1

2

1

(b) Small λ

Figure 3.1: Example of soft-SVM with different values of the parameter λ.

each internal node of the tree, a decision is made based on the features present in xxx. This decision-
making process corresponds to partitioning the input space, with the simplest approach involving
splitting based on a specified threshold applied to one of the input features, i.e., xi < θ or xi ≥ θ.
Ultimately, each leaf is associated to a label that represents the final prediction. The fundamental
idea behind decision trees is relatively straightforward, but the challenge lies in the construction
of the tree itself. For instance, in binary classification scenarios and assuming the existence of a
performance measure, such as training error, the initial tree might consist of a single leaf node
that assigns the most frequent label (i.e., the majority label among the samples). Subsequently,
during each iteration, the impact of splitting a leaf node is evaluated. Among all the potential
splits, the one leading to the greatest improvement in the performancemeasure is selected, and the
corresponding leaf is split accordingly, or the decisionmay be not to split further. A crucial issue in
this process is the selection of the feature to split on since there are numerous options, considering
all possible thresholds and components. To address this challenge, it is necessary to define a
suitable performance measure. The simplest approach is to use training error, where the goal
is to select the split that results in the most significant reduction in training error. Alternatively,
another commonly employed choice is the gini index, which serves as a measure of the statistical
dispersion within the dataset. This index informs us about whether the data within our split
predominantly belongs to a single class or is distributed among various classes. The gini index is
defined as:

G =

C∑
i=1

p(i)(1− p(i)) = 1−
C∑
i=1

[p(i)]2 (3.8)

where C is the total number of classes (2 for binary classification) and p(i) is the probability of the
class i, simply defined as the ratio between the number of sample belonging to class i and the total

17

number of samples in the considered node. For sake of clarity, if all sample are in the same class,
then G = 0, while is the sample are uniformly distributed among all the classes, the gini index is
equal to 0.5. In essence, the gini index serves as an indicator of the purity of the distribution after
a split. It provides a smooth and concave upper bound for the training error.

Figure 3.2: Example of a decision tree employed for binary classification.

In the Fig. 3.2 is shown a simple example of the structure of a decision tree employed for binary
classification. One can notice that, after the first split, the rightmost node contains samples only
belonging to class 1, henceG = 0. In contrast, the leftmost node contains four sample in total, two
from class 1 and two from class 0. Accordingly, the gini index in this specific case is equal to 0.5.
In principle, expanding the size of a decision tree ultimately leads to each leaf being associated
with a single sample, effectively reducing the gini index to zero for all leaves. While this seems
good for the prediction, it results in overfitting the data, causing a bad true error when inputting
a different sample in the tree.
Research has shown that instead of constructing a single, very large decision tree, it is more advan-
tageous to buildmultiple smaller trees. A Random Forest (RF) is a classifier composed of a group
of decision trees. Predictions in a RF are determined by conducting a majority vote based on the
predictions of the individual trees. After the trees are constructed, when presented with an input
sample, it is fed into all the trees, and the classification is determined through a majority voting
process. This ensemble approach enhances the accuracy and generalization of the classifier. The
challenge emerges once again when constructing the decision trees, primarily due to the fact that
we have only one training dataset. If we use the same training set for building each of the trees, we
end upwith a forest consisting of identical trees, rendering the entire process ineffectual. The fun-
damental concept of a RF is to introduce randomness by applying a process known as “random
sampling with replacement” to the dataset. This technique results in the creation of new training
datasets that differ from one another, ensuring diversity in the data used for building individual
decision trees within the forest. The “random sampling with replacement” technique operates as
follows: new datasets with the same dimension as the original training dataset are generated by

18

randomly selecting items from the original dataset. A key element of this technique is that each
sample can be chosen multiple times, or not at all, thereby producing diverse datasets that main-
tain the same dimension as the original dataset. For example, if the training data is [1, 2, 3, 4, 5, 6],
then the resulting sets might be [1, 2, 2, 5, 6, 6], [2, 3, 3, 4, 4, 6], [1, 1, 1, 1, 1, 1] etc. Notice that all lists
have length equal to the original training dataset. The technique of generating different decision
trees from distinct training datasets is referred to as “bagging”, which stands for “bootstrap ag-
gregation”. Bagging is highly valuable because decision trees are inherently sensitive to the data
they are trained on. Even small variations in the input data can lead to the creation of different
trees. RF takes advantage of this by allowing each individual tree to randomly sample with re-
placement from the dataset, resulting in different training sets producing different trees. The RF
algorithm introduces an additional layer of randomness by modifying the way it selects features
for node splitting. In a standard decision tree, when a node is to be split, all available features
are considered, and the one that maximizes the gain is chosen. In contrast, each tree within a
random forest can only select from a random subset of features during node splitting. In other
words, the process of splitting nodes in a RF model is grounded in a random subset of features
for each tree. This deliberate feature selection strategy heightens the diversity among the trees
within the model. It ensures that different trees rely on different subsets of features during their
decision-making processes. Consequently, this approach reduces the correlation among the trees,
promoting greater diversification and enhancing the overall robustness and predictive accuracy
of the Random Forest ensemble.

3.2 Unsupervised Learning
Unsupervised learning employs algorithms to analyze and cluster unlabeled datasets. In this
approach, the algorithms autonomously uncover latent patterns or groupings within the data
without the requirement for human-provided labels or guidance. Specifically, the focus of our
discussion is on clustering techniques. Clustering is the task of grouping a set of objects such that
the similar objects end up in the same group and dissimilar object are separated into different
groups. In the context of this work, the objective is to differentiate segments of smooth road from
sectionswith irregularities and, ultimately, to classify various types of irregularities based on their
severity.
The following subsections provide descriptions of one of the most common clustering algorithm,
specifically, K-Means.

3.2.1 Clustering Method – K-Means

The K-Means clustering technique stands as the simplest distance-based clustering algorithm,
aiming to identify cluster centers (with the assumption that each cluster has a corresponding
center representing it) and allocate data points to clusters. The primary objective is to minimize
the approximation error when representing data points with these cluster centers. There are nu-
merous possible allocations for the cluster centers, making infeasible to consider all the possi-

19

ble combinations. Therefore, K-Means operates as an iterative algorithm that maintains a fixed
number of clusters, assigns each data point to the nearest cluster, recalculates the optimal cluster
centers, and repeats this process. When utilizing the Euclidean distance as the measure between
points and cluster centers, the aim is to minimize:

μμμi(Ci) = argmin
μμμ

∑
xxx∈Ci

d(xxx,μμμ)2 = argmin
μμμ

∑
xxx∈Ci

∥xxx,μμμi∥2 (3.9)

where μμμi are the centroids of the clusters, Ci are the clusters and xxx are the vectors to be clustered.
Can be shown that given a cluster Ci, the center μμμi that minimizes

∑
xxx∈Ci

d(xxx,μμμ)2 is the baricenter:

μμμi =
1
|Ci|

∑
xxx∈Ci

xxx (3.10)

The K-Means algorithm works as follows:

1. Select k random centroids

2. Each point is associated to the closest centroid (according to the distancemeasure taken into
account):

∀ i : Ci = {xxx ∈ X : i = argmin
j

∥xxx−μμμj∥} (3.11)

3. Compute the new centroids (each centroid is the baricenter of the associated points):

∀ i : μμμi =
1
|Ci|

∑
xxx∈Ci

xxx (3.12)

4. Repeat step 2 and 3 until the algorithm converges

Various stopping criteria exist for this algorithm. These include scenarios where the positions of
centroids and point-cluster assignments remain constant, the improvement in error falls below a
specified threshold for a set number of consecutive iterations, or themaximum allowable iteration
count is reached. This algorithm is fast and simple, with a guaranteed convergence. However, it
does not assure an optimal solution (as it relies on the initial centroids), necessitates prior knowl-
edge of the number of clusters (k), and enforces spherical symmetry among clusters.
In the context of this application, the K-Means algorithm can offer valuable insights into the na-
ture of irregularities encountered by vehicles.

20

4
Data Collection and Implementation

4.1 Data Collection

In order to correctly train themachine learning classifiers, segments of both smooth and corrupted
road are necessary. For this purpose, the process of gathering data for this application involved
these steps: first, an irregularity is identified on the asphalt in the city of Padova. For each consid-
ered irregularity, ten runs of 17.5 seconds were conducted, comprising an initial period of smooth
road, followed by the irregularity. The frequency of data acquisition is set at 20Hz, so each mea-
surement comprises of 350 samples. The data is sent via Wi-Fi from the Arduino board attached
to the vehicle to the Arduino connected to the computer. The latter receive the data in the form
of a .txt file with 350 rows and 8 columns. In Table 4.1 is showed an example of two rows of
the complete dataset. In the first, second and third column there are respectively the x, y and z
component of the acceleration, in the fourth column there are the values of the sonar, in the fifth
column there is the speed directly calculated from the latitude and longitude coordinate sent by
the GPS module (column six and seven). Lastly, in the eighth column there is a flag that can be
either 0 or 1. Since the frequency of acquisition of the GPS signal is lower than the rest of the data,
the latitude and longitude data are directly copied from the previous acquisition (flag= 0), or a
new sample is received from the GPS module (flag= 1).

Table 4.1: Example of two rows of the complete dataset.

aX aY aZ sonar speed latitude longitude checkBit
5.32 −8.46 1.65 21.95 1.89 45.408013 11.888756 1
5.73 −7.9 1.37 22.33 1.89 45.408013 11.888756 0

21

4.1.1 Dataset

In order to get a representative dataset, different types of irregularity have been considered. This
subsection displays eight different potholes or bumps taken into consideration (see Fig. 4.1). The

(a) Photo of irregularity 1. (b) Photo of irregularity 2. (c) Photo of irregularity 3.

(d) Photo of irregularity 4. (e) Photo of irregularity 5. (f) Photo of irregularity 6.

(g) Photo of irregularity 7. (h) Photo of irregularity 8.

Figure 4.1: Photos of the five irregularity taken into account.

dataset acquired has been formatted and saved in an institutional repository∗. The original dataset
is organized as follows: there are eight folders, each representing one of the eight different anoma-
lies under consideration, and each folder contains ten .txt files, with each file corresponding to
one of the ten runs conducted for each anomaly. The windowed dataset used for processing fol-
lows a similar structure, with the distinction that within each of the eight folders, there are ten
subfolders (one for each run), and each subfolder contains ten .txt files, each representing the
data for individual windows. A sample of the data acquisition for each irregularity is displayed

∗Link where to find the dataset: https://researchdata.cab.unipd.it/id/eprint/1088

22

https://researchdata.cab.unipd.it/id/eprint/1088

in the following figures 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9. In these figures are plotted the three
axis acceleration values and the sonar values of one run for each irregularity. As expected, for
different anomalies, we observe different profiles in the plot curves.

Figure 4.2: Samples of acceleration and sonar values for irregularity one.

In Fig. 4.2 the irregularity has a fairly small duration and inspecting the plot of the sonar values
registered, it is apparent that over the manhole there is a sudden increase of the distance between
the chassis of the vehicle and the road pavement.
Is interesting also to carefully inspect Fig. 4.4, where the bicycle is traversing a speed bump (Fig.
4.1(c)). From the acceleration trace is evident a sudden shake where the irregularity is located.
However, more interesting is again the plot of the sonar values. As one would expect, while
crossing a speed bump, the vehicle’s center initially experiences an increase in its distance from
the ground as the front tire ascends the bump. This is followed by a sudden decrease in the same
distance as the tire descends from the bump, ending in a similar process when the rear tire under-
goes the same sequence. This succession is clearly evident inspecting the sonar plot in Fig. 4.4.
Fig. 4.5 and Fig. 4.6 illustrate a prolonged duration of the irregularity. Notably, upon closer
inspection of the images depicting these irregularities (see Figures 4.1(c) and (d)), it becomes ev-
ident that both these two anomalies exhibit a distinct pattern of potholes and cracks rather then a
single irregularity as in the previous cases. In conclusion, upon examining the plots in Fig. 4.9, it
becomes apparent that when the vehicle traverses gravel, both the accelerometer and sonar traces
highlight the uneven terrain.

23

Figure 4.3: Samples of acceleration and sonar values for irregularity two.

4.2 Implementation
The algorithms described in the preceding chapter have been implemented and applied to the
collected dataset. The chosen features for classification include the “Peak-to-Peak (P2P)” value
and the “standard deviation” of the acceleration trace. The P2P value is straightforwardly deter-
mined as the difference between the maximum and minimum values of the accelerations in the
window. The standard deviation is defined as σ =

√
|x−x̄|2

N , where x represents individual data
points, x̄ is themean, andN is the total number of data points in thewindow. The rationale behind
choosing these features is grounded in the observation that, when a vehicle traverses an irregular-
ity, the acceleration trace exhibits spikes, a characteristic captured by both the P2P value and the
standard deviation. The testing process started with using only the P2P value. Subsequently, sep-
arate tests were conducted with only the standard deviation. Finally, a comprehensive evaluation
was performed by combining both the P2P value and the standard deviation as input measures.
This step-by-step testing approach aimed to understand the impact of individual features and
their combination on the algorithm’s performance in detecting and classifying irregularities in
the dataset.
Code snippet 4.1 shows the creation of the first input dataset, containing only the P2P values of
the three accelerations.

1 p2p = np.zeros((800, 3))
2 max_value = 0

24

Figure 4.4: Samples of acceleration and sonar values for irregularity three.

3 min_value = 0
4 p2p_value = 0
5 Xp2p = []
6 varAcc2 = ["accX", "accY", "accZ"]
7 for variableAcc in varAcc2:
8 for j in range(1,9):
9 for k in range(1, 11):

10 for i in range(1, 11):
11 max_value = max(windowed[variableAcc][f"dataset{j}"][f"Run{k}"][f"win{i}"])
12 min_value = min(windowed[variableAcc][f"dataset{j}"][f"Run{k}"][f"win{i}"])
13 p2p_value = max_value - min_value
14 Xp2p.append(p2p_value)
15 for i in range(800):
16 p2p[i, 0] = Xp2p[i]
17 p2p[i, 1] = Xp2p[i+800]
18 p2p[i, 2] = Xp2p[i+1600]

Listing 4.1: Python code to create the matrix p2p containing the P2P value of the three-axis acceleration for
each window.

The final matrix, denoted as p2p, comprises the P2P values in its columns. Specifically, the first
column represents the P2P values for the x acceleration, the second columndenotes the P2P values
for the y acceleration, and the third column encapsulates the P2P values for the z acceleration.
Similarly, the input matrix containing the standard deviation values for the three acceleration is

25

Figure 4.5: Samples of acceleration and sonar values for irregularity four.

constructed. Code snippet 4.2 shows the code to create the std input matrix.
1 std = np.zeros((800, 3))
2 std_value = 0
3 Xstd = []
4 varAcc2 = ["accX", "accY", "accZ"]
5 for variableAcc in varAcc2:
6 for j in range(1,9):
7 for k in range(1, 11):
8 for i in range(1, 11):
9 std_value = np.std(windowed[variableAcc][f"dataset{j}"][f"Run{k}"][f"win{i}"

])
10 Xstd.append(std_value)
11 for i in range(800):
12 std[i, 0] = Xstd[i]
13 std[i, 1] = Xstd[i+800]
14 std[i, 2] = Xstd[i+1600]

Listing 4.2: Python code to create the matrix std containing the standard deviation value of the three-axis
acceleration for each window.

Finally, following the same principle, the matrix combined containing both the P2P and standard
deviation values is created (see code snippet 4.3).

1 combined = np.zeros((800, 6))
2 max_value = 0

26

Figure 4.6: Samples of acceleration and sonar values for irregularity five.

3 min_value = 0
4 p2p_value = 0
5 std_value = 0
6 XCombined = []
7 varAcc2 = ["accX", "accY", "accZ"]
8 for variableAcc in varAcc2:
9 for j in range(1,9):

10 for k in range(1, 11):
11 for i in range(1, 11):
12 max_value = max(windowed[variableAcc][f"dataset{j}"][f"Run{k}"][f"win{i}"])
13 min_value = min(windowed[variableAcc][f"dataset{j}"][f"Run{k}"][f"win{i}"])
14 p2p_value = max_value - min_value
15 XCombined.append(p2p_value)
16 for variableAcc in varAcc2:
17 for j in range(1,9):
18 for k in range(1, 11):
19 for i in range(1, 11):
20 std_value = np.std(windowed[variableAcc][f"dataset{j}"][f"Run{k}"][f"win{i}"

])
21 XCombined.append(std_value)
22 for i in range(800):
23 combined[i, 0] = XCombined[i]
24 combined[i, 1] = XCombined[i+800]
25 combined[i, 2] = XCombined[i+1600]

27

Figure 4.7: Samples of acceleration and sonar values for irregularity six.

26 combined[i, 3] = XCombined[i+2400]
27 combined[i, 4] = XCombined[i+3200]
28 combined[i, 5] = XCombined[i+4000]

Listing 4.3: Python code to create the matrix combined containing both the P2P and standard deviation
values.

The training and test sets have been generated using the train_test_split() function from the scikit-
learn library. This function takes in input the parameters listed in Table 4.2. For all three different
kinds of input matrices, the test set is set to be 30% of the whole dataset, comprising 240 windows
in total. The random_state variable is set to 42 so to have randomized training and test set in input
to the algorithms.
An essential factor influencing the performance of these models is their hyperparameters. Op-
timal values for these hyperparameters can significantly enhance a model’s performance. Grid-
SearchCV is a process employed for hyperparameter tuning, aimed at determining the most ef-
fective values for a given model. It is important to note that anticipating the best values for hyper-
parameters in advance is challenging. Ideally, exploring all possible values is necessary to iden-
tify the optimal configuration. However, manually conducting such an exhaustive search can be
time-consuming and resource-intensive. Therefore, GridSearchCV() is utilized to automate the
hyperparameter tuning process. GridSearchCV() is a function within scikit-learn’s model_selection
package. This function systematically iterates through predefined hyperparameters, fitting the
estimator on the training set for each combination. In the end, it allows us to select the best pa-

28

Figure 4.8: Samples of acceleration and sonar values for irregularity seven.

rameters from the specified hyperparameter options. This automated approach streamlines the
hyperparameter tuning process and helps in identifying the most effective configuration for the
model. This function takes in input the parameters listed in the Table 4.3.
As mentioned earlier, SVM and RF are supervised machine learning techniques, meaning that
in order to make predictions, they must be first trained using labeled data. The analysis is di-
vided into two parts. In the first part the models are employed for binary classification, aiming to
predict whether the window considered represent smooth road or an irregularity. The analysis
proceed then adding another layer of complexity trying to discriminate also the severity of the
irregularity. For this reason, two matrices containing the correct labels have been created. The
first matrix, denoted as Y contains the label for binary classification. Is a matrix filled with 0 or
1, respectively representing smooth road or irregularity. The matrix Y3, in contrast, contains the
labels for multiclass classification, namely 0 for smooth road, 1 for low severity irregularity and 2
for high severity irregularity. The code to create these matrices is displayed in code snippet 4.4.

1 Y = np.full(800,99)
2 n=0
3 for j in range(9):
4 for k in range(1, 11):
5 for i in range(1, 11):
6 Y[n] = int(windowed["YN"][f"dataset{j}"][f"Run{k}"][f"win{i}"][0])
7 n = n+1
8 Y3 = np.full(800,99)

29

Table 4.2: Parameters in input to the train_test_split() function.

Parameter Explanation
array: array-like Input array

test_size: float, default = None between 0.0 and 1.0 and represent the
proportion of the dataset to include in the

test split
random_state: int, default = None Controls the shuffling applied to the data

before applying the split
shuffle: bool, default=True Whether or not to shuffle the data before

splitting
stratify: array-like, default = None If not None, data is split in a stratified

fashion, using this as the class labels

Table 4.3: Parameters in input to the train_test_split() function.

Parameter Explanation
estimator: estimator object model instance for which you want to check

the hyperparameters
param_grid: dict or list of dictionaries Dictionary with parameters names (str) as

keys and lists of parameter settings to try as
values

scoring: str Strategy to evaluate the performance of the
cross-validated model on the test set

n_jobs: int, default=None Number of jobs to run in parallel
refit: bool, str, or callable, default=True Refit an estimator using the best found

parameters on the whole dataset
cv: int, cross-validation generator or an iterable,

default=None
Determines the cross-validation splitting

strategy
verbose: int Controls the verbosity: the higher, the more

messages

30

Figure 4.9: Samples of acceleration and sonar values for irregularity eight.

9 n=0
10 for j in range(9):
11 for k in range(1, 11):
12 for i in range(1, 11):
13 Y3[n] = int(windowed["severity"][f"dataset{j}"][f"Run{k}"][f"win{i}"][0])
14 n = n+1

Listing 4.4: Cretion of the matrix Y and Y3 containing the labels for binary and multiclass classification
respectively.

31

32

5
SVM Classifier – Results

This chapter details the results when the dataset is inputted to the SVM classifier. The SVM clas-
sifier function SVC() from the scikit-learn in python takes in input the parameters listed in the
Table 5.1 and the algorithm has been trained and tested with different input configurations as
detailed in the previous chapter. This chapter is divided into two main sections, one concerning
the binary classification and one the multiclass classification. These section are then further di-
vided into three subsections each, separating the analysis carried out for the three different input
matrices considered.

5.1 Binary Classification

5.1.1 Only p2p Matrix
In this section are displayed the results of the SVM binary classifier when the input is the p2p
matrix. Recall that the feature considered in this case is the P2P value for all three acceleration for
each window.

Linear Kernel

First, the algorithm has been tested with a linear kernel. The code to define and train the classifier
is displayed in code snippet 5.1.

1 # parameters for linear SVM
2 parameters = {'C': [0.01, 0.1, 1, 10], 'gamma':[0.01,0.1,1.0]}
3

4 #train linear SVM
5 svc_p2p = SVC(kernel = 'linear')
6 clf_p2p = GridSearchCV(svc_p2p, parameters, cv = 4, n_jobs=-1)

33

Table 5.1: Parameters in input to the train_test_split() function.

Parameter Explanation
C: float, default=1.0 Regularization parameter. The strength of

the regularization is inversely proportional
to C. Must be strictly positive. The penalty is

a squared l2 penalty
kernel: “linear”, “poly”, “rbf”, “sigmoid”,
“precomputed” or callable, default=“rbf”

Specifies the kernel type to be used in the
algorithm

degree: int, default=3 Degree of the polynomial kernel function
(“poly”). Must be non-negative. Ignored by

all other kernels
gamma: “scale”, “auto” or float, default=“scale” Kernel coefficient for “rbf”, “poly” and

“sigmoid”
coef0: float, default=0.0 Independent term in kernel function. It is

only significant in “poly” and “sigmoid”
shrinking: bool, default=True Whether to use the shrinking heuristic
probability: bool, default=False Whether to enable probability estimates

tol: float, default=1e− 3 Tolerance for stopping criterion
cache_size: float, default=200 Specify the size of the kernel cache (in MB)

class_weight: dict or “balanced”, default=None Set the parameter C of class i to
class_weight[i] ∗ C for SVC

verbose: bool, default=False Enable verbose output
probability: bool, default=False Whether to enable probability estimates
max_iter: int, default=−1 Hard limit on iterations within solver, or -1

for no limit
decision_function_shape: “ovo”, “ovr”,

default=“ovr”
Whether to return a one-vs-rest (“ovr”)
decision function of shape (n_samples,
n_classes) as all other classifiers, or the
original one-vs-one (“ovo”) decision
function of libsvm which has shape

(n_samples, n_classes ∗ (n_classes− 1)/2)
break_ties: bool, default=False If true, decision_function_shape = ovr, and

number of classes > 2, predict will break ties
according to the confidence values of

decision_function; otherwise the first class
among the tied classes is returned

random_state: int, RandomState instance or
None, default=None

Controls the pseudo random number
generation for shuffling the data for

probability estimates

34

7 clf_p2p.fit(X_train_p2p,y_train_p2p)
Listing 5.1: Definition and training of the SVM classifier with a linear kernel. The input is the p2p matrix

(see previous chapter).

The code shows the definition and training of the SVM algorithm when inputted with the p2p
matrix detailed in the previous chapter. The GridSearchCV() function takes in input in this case
the C and gamma parameters. The C parameter is the inverse of the λ parameter explained in
Chapter 3 and trades off correct classification of training examples against maximization of the
decision function’smargin. For larger values ofC, a smallermarginwill be accepted if the decision
function is better at classifying all training points correctly. A lower C will encourage a larger
margin, therefore a simpler decision function, at the cost of training accuracy. In other words
C behaves as a regularization parameter in the SVM. The gamma parameter defines how far the
influence of a single training example reaches, with low values meaning “far” and high values
meaning “close”. It can be seen as the inverse of the radius of influence of samples selected by the
model as support vectors. The cross-validation is set to 4, meaning that the training set is divided
into four sets. Three of them are used for training and the remaining one for the validation. This
process is executed four times, each time selecting a different set used for validation. The best
score resulting from the search is 0.9679 with the parameter C set to 10 and gamma= 0.01.

Polynomial Kernel - Order 2

The same reasoning is applied , with the only differences being the kernel of the classifier, now
set to “poly”. The best results are found with the C parameter set to 0.01 and the gamma value
equal to 1.0. The accuracy in this case is 0.9661.

Polynomial Kernel - Order 3

Similarly to the previous subsection, the GridSearchCV() is applied to the model with the polyno-
mial kernel of order three. The best results are found with the value of C= 0.01 and gamma= 0.1.
The result is an accuracy of 0.9678.

Radial Basis Function Kernel

In the same way, the model has been also trained with the “rbs” kernel, reaching a training accu-
racy of 0.9660 with gamma= 0.01 and C= 1.

The best results for this type of input is found with the polynomial kernel of order 3. In this case,
the algorithm achieved a training error of 0.034 and a test error of 0.0041. The model properly
classified all the smooth road instances and 45 out of 46 samples labeled as 1.

5.1.2 Only std Matrix
The same process has been carried out with the std matrix as the input to the classifier. Recall
that the matrix contains the value of the standard deviation of the three accelerometer traces for

35

each window. The results and the optimal parameters found with the GridSearchCV() function
are displays in the Table 5.2. The model with the rbs kernel is selected to be the best model in

Table 5.2: Results for the models when the input is the std matrix.

Kernel C gamma accuracy
Linear 10 N/A 0.9768

Polynomial 2 1 1.0 0.9786
Polynomial 3 1 1.0 0.9767

Radial Basis Function 10 1.0 0.9803

this case. It achieved a training and test error respectively of 0.0196 and 0.0083 with only 2 false
positive and 0 false negative instances.

5.1.3 p2p and std Matrix Combined

In the end, the same models have been trained and tested when the input is the matrix combined.
Once again, the results are shown in the Table 5.3 below. With the combined matrix as input to

Table 5.3: Results for the models when the input is the combined matrix.

Kernel C gamma accuracy
Linear 10 N/A 0.9875

Polynomial 2 0.1 1.0 0.9804
Polynomial 3 1 0.1 0.9766

Radial Basis Function 100 0.01 0.9767

the classifier, the best model is the one with the linear kernel. With this configuration the training
error reads 0.0107 and the test error is equal to 0.0042. Out of all the samples in input to the
algorithm, only 1 instance labeled as 0 is wrongly classified as 1.

5.2 Multiclass Classification

Having demonstrated the algorithm’s proficiency in discriminating between smooth roads and
irregularities, subsequent experiment was conducted to introduce additional complexity. The
algorithm underwent training with three distinct labels, 0, 1, and 2, where 0 designates a smooth
road, 1 characterizes a smooth irregularity, and 2 signifies a substantial irregularity. The code
employed for training and testing is the same to the procedures used in binary classification, with
the only difference being the number of different labels inside the Y3 array. The results for the
different models are shown in the next subsections.

36

Table 5.4: Results for the models when the input is the p2p matrix.

Kernel C gamma accuracy
Linear 0.1 N/A 0.9125

Polynomial 2 0.1 .01 0.9107
Polynomial 3 .0.01 1 0.9161

Radial Basis Function 10 0.1 0.9196

5.2.1 Only p2p Matrix

The analysis started once again considering the p2p matrix as input to the algorithm. The SVM
classifier has been testedwith different kernels anddifferent parameters thanks to theGridSearch()
function. The results for the different kernel functions are displayed in the Table 5.4. The algo-
rithm with the rbs kernel is chosen as the optimal configuration in this case, although the other
configurations also yield fairly high results. The model exhibits a training error equal to 0.041071
and a test error equal to 0.091667. Specifically, all samples associated with label 0, representing
smooth road segments, are correctly classified. However, the algorithm exhibits less accuracy in
correctly classifying irregularity segments. Out of the 30 samples associated with label 1, 2 are
misclassified as 0, and 7 are misclassified as 2. Additionally, out of the 16 instances of label 2, only
3 are correctly labeled as 2, while the remaining 13 are erroneously labeled as 1. The confusion
matrix in Fig. 5.1 summarize the results.

0 1 2

0

1

2

1.00 0.00 0.00

0.07 0.70 0.23

0.00 0.81 0.19

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1: Confusion matrix when the input is the p2p. Multiclass classification.

37

Only std Matrix

The analysis continued considering the std matrix as input to the algorithm, and, with the same
reasoning, the results with the different parameters are summarized in the Table 5.5. The best

Table 5.5: Results for the models when the input is the p2p matrix.

Kernel C gamma accuracy
Linear 10 N/A 0.9303

Polynomial 2 1 1.0 0.9321
Polynomial 3 1 1 0.9285

Radial Basis Function 10 0.1 0.9303

configuration in this case is the one with the polynomial kernel of order 2. The training error is
0.066 and the test error is 0.071. Still the algorithm struggles to classify the two types of irregu-
larity, achieving an accuracy of 19% in recognizing high severity irregularity. In the Fig. 5.2 is
displayed the confusion matrix for this model.

0 1 2

0

1

2

0.99 0.01 0.00

0.00 0.90 0.10

0.06 0.75 0.19

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 5.2: Confusion matrix when the input is the std. Multiclass classification.

p2p and stdMatrices Combined

The analysis concluded combining the two matrices and inputting in the algorithm the matrix
combined. The results are shown in the Table 5.6. Once again, the best results is found with the
polynomial of order 2 kernel function. In this case, 1 out of the 194 instances of smooth road is
wrongly classified as low severity irregularity, 9 out of 30 samples are wrongly assigned the label

38

Table 5.6: Results for the models when the input is the combined matrix.

Kernel C gamma accuracy
Linear 10 N/A 0.9339

Polynomial 2 1 1.0 0.9357
Polynomial 3 0.01 1 0.9339

Radial Basis Function 10 0.1 0.9250

2 and 5 out of 16 high severity irregularity are misclassified. The Fig. 5.3 shows visually these
results.

0 1 2

0

1

2

0.99 0.01 0.00

0.00 0.70 0.30

0.06 0.25 0.69

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 5.3: Confusion matrix when the input is the combined. Multiclass classification.

39

40

6
Random Forest – Results

In this chapter, the results of the RF classifier are listed and explained. The RF classifier in Python
takes in input some parameter explained in Table 6.1. Similar to the SVM classifier, the RF algo-
rithm underwent training and testing with the three configurations of inputs described earlier.
The analysis started with binary classification (distinguishing between smooth road and irregu-
larity) and then proceeded to explore the analysis of irregularity severity. The results for all these
analyses are presented in the subsequent subsections.

6.1 Binary Classification

6.1.1 Only p2p Matrix

In alignment with the prior analysis, the function GridSearchCV() facilitated the identification
of optimal parameters that yielded greater accuracy in the model’s predictions. The parameters
considered in this case are the “max_depth” of the tree, the “min_sample_leaf” parameter, and the
“n_estimators”parameter. The code to run theGridSearch() function is displayed in the cose snippet
6.1.

1 RF_p2p_GS = RandomForestClassifier(random_state=42, n_jobs=-1)
2 params = {'max_depth': [5,10,20],
3 'min_samples_leaf': [2,5,10,20,50,100,200],
4 'n_estimators': [10,25,30,50,100,200]
5 }
6 grid_search_p2p = GridSearchCV(estimator=RF_p2p_GS,
7 param_grid=params,
8 cv = 4,
9 verbose=1, scoring="accuracy")

10 grid_search_p2p.fit(X_train_p2p, y_train_p2p)

41

Table 6.1: Parameters in input to the RandomForestClassifier() function.

Parameter Explanation
n_estimators: int, default = 100 Number of trees in the forest

criterion: default = “gini” Function that measure the quality of the split
max_depth: int, default = None Maximum depth of the tree

min_samples_split: int or float, default=2 Minimum number of samples required to
split an internal node

min_samples_leaf: int or float, default = 1 Minimum number of samples required to be
at a leaf node

min_weight_fraction_leaf: float, default = 0.0 Minimum weighted fraction of the sum of
weights required to be at a leaf node

max_features: int or float, default = “sqrt” Number of features to consider when
looking for the best split (if “sqrt”, then

max_features=
√

n_features
max_leaf_nodes: int, default = None Grow trees with max_leaf_nodes in

best-fashion
min_impurity_decrease: float, default = 0.0 A node will be split if the split induces a

decrease of the impurity greater or equal to
this value

bootstrap: bool, default = True Whether boostrap samples are used when
building the trees

obb_score: bool, default = False Whether to use the out-of-bag samples to
estimate the generalization score

n_jobs: int, default = None Number of jobs to run in parallel

random_state: int, default = None Controls the randomness of the
bootstrapping of the samples used when

building the trees
verbose: int, default = 0 Controls the verbosity when fitting and

predicting
warn_start: bool, default = False When set to True, reuse the solution of the

previous call to fit and add more estimators
to the ensemble

class_weight: dict or list of dicts, default = None Weight associated with classes
ccp_alpha: non-negative float, default = 0.0 Complexity parameter used for Minimal

Cost-Complexity Pruning
max_samples: int or float, default = None If bootstrap is True, the number of samples to

draw from X to train each base estimator

42

11 RF_best_p2p = grid_search_p2p.best_estimator_

Listing 6.1: Definition and training of the RF classifier. The input is the p2p matrix.

In the final line of code, the optimal classifier is selected and stored in the RF_best_p2p vari-
able. In this case, the best performance is achieved with max_depth= 5, min_samples_leaf= 5, and
n_estimators= 100. With this configuration, the algorithm demonstrates a training error of 0.0268
and a test error of 0.0. Consistent with the results observed for the SVM classifier, the algorithm
performs exceptionally well for binary classification. Figure 6.1 showcases one of the 100 decision
trees constituting the forest.

node #8
gini = 0.0

samples = 5
value = [10, 0]

class = Smooth Road

node #9
gini = 0.486
samples = 9
value = [7, 5]

class = Smooth Road

node #16
gini = 0.0

samples = 22
value = [0, 38]

class = Irregularity

node #17
gini = 0.444
samples = 5
value = [2, 4]

class = Irregularity

node #3
gini = 0.0

samples = 270
value = [410, 0]

class = Smooth Road

node #4
gini = 0.278
samples = 5
value = [5, 1]

class = Smooth Road

node #6
gini = 0.48

samples = 5
value = [2, 3]

class = Irregularity

node #7
p2px <= 2.83
gini = 0.351

samples = 14
value = [17, 5]

class = Smooth Road

node #12
gini = 0.0

samples = 6
value = [9, 0]

class = Smooth Road

node #13
gini = 0.426
samples = 8
value = [4, 9]

class = Irregularity

node #15
p2px <= 5.28
gini = 0.087

samples = 27
value = [2, 42]

class = Irregularity

node #18
gini = 0.0

samples = 34
value = [0, 51]

class = Irregularity

node #2
p2pz <= 1.905

gini = 0.005
samples = 275
value = [415, 1]

class = Smooth Road

node #5
p2px <= 2.365

gini = 0.417
samples = 19
value = [19, 8]

class = Smooth Road

node #11
p2pz <= 1.67
gini = 0.483

samples = 14
value = [13, 9]

class = Smooth Road

node #14
p2px <= 5.72
gini = 0.041

samples = 61
value = [2, 93]

class = Irregularity

node #1
p2px <= 2.215

gini = 0.04
samples = 294
value = [434, 9]

class = Smooth Road

node #10
p2px <= 3.26
gini = 0.224

samples = 75
value = [15, 102]

class = Irregularity

node #0
p2py <= 3.895

gini = 0.318
samples = 369

value = [449, 111]
class = Smooth Road

Figure 6.1: One of the 100 decision tree in constituting the random forest. The input is the p2p matrix.

6.1.2 Only std Matrix

The classifier now takes the std matrix as input. The GridSearch() function identified the best
parameters in this case asmax_depth= 2,min_samples_leaf= 10, and n_estimators= 100. Themodel
achieved a training error of 0.0196 and a test error of 0.0124. Figure 6.2 illustrates one of the trees
constituting the forest.

6.1.3 p2p and std Matrices Combined

The analysis concluded by once again considering the combination of the two feature matrices
p2p and std. The parameters yielding the best result are max_depth= 5, min_samples_leaf= 10, and
n_estimators= 50. The algorithm exhibits a training error of 0.01785 and a test error of 0.01249.
Consistently with the previous configurations, Fig. 6.3 depicts one of the 50 decision trees consti-
tuting the random forest.

43

node #2
gini = 0.021

samples = 285
value = [457, 5]

class = Smooth Road

node #3
gini = 0.494

samples = 15
value = [8, 10]

class = Irregularity

node #5
gini = 0.469

samples = 10
value = [6, 10]

class = Irregularity

node #6
gini = 0.0

samples = 39
value = [0, 64]

class = Irregularity

node #1
stdy <= 0.744
gini = 0.061

samples = 300
value = [465, 15]

class = Smooth Road

node #4
stdx <= 0.736
gini = 0.139

samples = 49
value = [6, 74]

class = Irregularity

node #0
stdz <= 0.452
gini = 0.267

samples = 349
value = [471, 89]

class = Smooth Road

Figure 6.2: One of the 100 decision tree in constituting the random forest. The input is the std matrix.

node #13
gini = 0.0

samples = 1
value = [1, 0]

class = Smooth Road

node #14
gini = 0.18

samples = 8
value = [1, 9]

class = Irregularity

node #18
gini = 0.0

samples = 1
value = [1, 0]

class = Smooth Road

node #19
gini = 0.0

samples = 1
value = [0, 1]

class = Irregularity

node #6
gini = 0.0

samples = 1
value = [1, 0]

class = Smooth Road

node #7
gini = 0.0

samples = 1
value = [0, 2]

class = Irregularity

node #12
stdx <= 0.566
gini = 0.298
samples = 9
value = [2, 9]

class = Irregularity

node #15
gini = 0.0

samples = 2
value = [2, 0]

class = Smooth Road

node #17
stdz <= 0.663

gini = 0.5
samples = 2
value = [1, 1]

class = Smooth Road

node #20
gini = 0.0

samples = 53
value = [0, 92]

class = Irregularity

node #4
gini = 0.0

samples = 4
value = [0, 9]

class = Irregularity

node #5
p2py <= 3.95
gini = 0.444
samples = 2
value = [1, 2]

class = Irregularity

node #11
p2py <= 5.725

gini = 0.426
samples = 11
value = [4, 9]

class = Irregularity

node #16
stdx <= 0.712
gini = 0.021

samples = 55
value = [1, 93]

class = Irregularity

node #2
gini = 0.0

samples = 278
value = [437, 0]

class = Smooth Road

node #3
p2px <= 2.525

gini = 0.153
samples = 6

value = [1, 11]
class = Irregularity

node #9
gini = 0.0

samples = 4
value = [4, 0]

class = Smooth Road

node #10
stdy <= 1.134
gini = 0.089

samples = 66
value = [5, 102]

class = Irregularity

node #1
stdx <= 0.527
gini = 0.048

samples = 284
value = [438, 11]

class = Smooth Road

node #8
p2py <= 2.975

gini = 0.149
samples = 70

value = [9, 102]
class = Irregularity

node #0
p2px <= 2.885

gini = 0.322
samples = 354

value = [447, 113]
class = Smooth Road

Figure 6.3: One of the 50 decision tree in constituting the random forest. The input is the combined matrix.

6.2 Multicalss Classification

Similarly to the analysis carried out for the SVM classifier, the RF algorithm has also been tested
for multiclass classification, aiming at classify different irregularity based on their severity.

44

6.2.1 Only p2p Matrix

In this first part the input is the same p2p matrix as the previous analysis. The best parameters
are max_depth= 5, min_samples_leaf= 5 and n_estimators= 100. The model achieved an accuracy
of 0.933, the training error reads 0.055 and the test error is 0.67. The confusion matrix in Fig. 6.4
helps to visualize the results. In particular, the algorithm correctly classify almost all instances
corresponding to smooth road, good results are shown for the classification of low severity irreg-
ularity, while, as expected, the algorithmwith this input and parameters configurations struggles
to classify high severity irregularity segments. An example of one of the 100 trees constituting the

0 1 2

0

1

2

1.00 0.00 0.00

0.03 0.77 0.20

0.00 0.56 0.44

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.4: Confusion matrix when the input is the p2p. Multiclass classification.

forest is displayed in Fig. 6.5.

node #13
gini = 0.611

samples = 22
value = [13, 16, 5]

class = Low Severity Irregularity

node #14
gini = 0.0

samples = 5
value = [0, 0, 8]

class = High Severity Irregularity

node #16
gini = 0.308

samples = 29
value = [2, 32, 5]

class = Low Severity Irregularity

node #17
gini = 0.5

samples = 7
value = [0, 5, 5]

class = Low Severity Irregularity

node #5
gini = 0.0

samples = 38
value = [65, 0, 0]

class = Smooth Road

node #6
gini = 0.278
samples = 5

value = [5, 0, 1]
class = Smooth Road

node #12
p2py <= 9.82
gini = 0.663

samples = 27
value = [13, 16, 13]

class = Low Severity Irregularity

node #15
p2py <= 12.46

gini = 0.387
samples = 36

value = [2, 37, 10]
class = Low Severity Irregularity

node #3
gini = 0.0

samples = 234
value = [358, 0, 0]

class = Smooth Road

node #4
p2px <= 2.29
gini = 0.028

samples = 43
value = [70, 0, 1]

class = Smooth Road

node #11
p2pz <= 2.55

gini = 0.57
samples = 63

value = [15, 53, 23]
class = Low Severity Irregularity

node #18
gini = 0.355
samples = 8

value = [0, 3, 10]
class = High Severity Irregularity

node #2
p2pz <= 1.225

gini = 0.005
samples = 277

value = [428, 0, 1]
class = Smooth Road

node #7
gini = 0.62

samples = 7
value = [5, 2, 3]

class = Smooth Road

node #9
gini = 0.0

samples = 9
value = [17, 0, 0]

class = Smooth Road

node #10
p2pz <= 5.025

gini = 0.589
samples = 71

value = [15, 56, 33]
class = Low Severity Irregularity

node #1
p2px <= 4.365

gini = 0.027
samples = 284

value = [433, 2, 4]
class = Smooth Road

node #8
p2py <= 2.445

gini = 0.641
samples = 80

value = [32, 56, 33]
class = Low Severity Irregularity

node #0
p2pz <= 1.755
gini = 0.295

samples = 364
value = [465, 58, 37]
class = Smooth Road

Figure 6.5: One of the 100 decision tree in constituting the random forest. The input is the p2p matrix.

45

6.2.2 Only std Matrix

The analysis continued considering the stdmatrix as input to the classifier. The best parameters in
output to the GridSearch() function are max_depth= 5, min_samples_leaf= 5 and n_estimators= 25.
The algorithm exhibited a training accuracy of 0.952 (training error equal to 0.048) and a test
accuracy of 0.917 (with a test error of 0.083). Similarly to the previous results, the algorithm is
less accurate in the recognition of high severity irregularity, as displayed in the confusionmatrix in
Fig. 6.6. A decision tree in the forest considered to make the prediction on the test set is displayed

0 1 2

0

1

2

0.99 0.01 0.00

0.00 0.70 0.30

0.00 0.56 0.44

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 6.6: Confusion matrix when the input is the std. Multiclass classification.

in Fig. 6.7

node #7
gini = 0.564

samples = 16
value = [6, 7, 19]

class = High Severity Irregularity

node #8
gini = 0.057

samples = 20
value = [0, 33, 1]

class = Low Severity Irregularity

node #13
gini = 0.469

samples = 10
value = [0, 10, 6]

class = Low Severity Irregularity

node #14
gini = 0.444

samples = 12
value = [0, 7, 14]

class = High Severity Irregularity

node #6
stdz <= 0.592
gini = 0.533

samples = 36
value = [6, 40, 20]

class = Low Severity Irregularity

node #9
gini = 0.165
samples = 5

value = [0, 10, 1]
class = Low Severity Irregularity

node #11
gini = 0.245
samples = 5

value = [0, 1, 6]
class = High Severity Irregularity

node #12
stdx <= 1.51
gini = 0.497

samples = 22
value = [0, 17, 20]

class = High Severity Irregularity

node #5
stdx <= 1.049
gini = 0.498

samples = 41
value = [6, 50, 21]

class = Low Severity Irregularity

node #10
stdx <= 1.259
gini = 0.483

samples = 27
value = [0, 18, 26]

class = High Severity Irregularity

node #3
gini = 0.0

samples = 5
value = [10, 0, 0]

class = Smooth Road

node #4
stdx <= 1.131
gini = 0.531

samples = 68
value = [6, 68, 47]

class = Low Severity Irregularity

node #1
gini = 0.0

samples = 283
value = [429, 0, 0]

class = Smooth Road

node #2
stdy <= 0.62
gini = 0.587

samples = 73
value = [16, 68, 47]

class = Low Severity Irregularity

node #0
stdx <= 0.546
gini = 0.347

samples = 356
value = [445, 68, 47]
class = Smooth Road

Figure 6.7: One of the 25 decision tree in constituting the random forest. The input is the std matrix.

46

6.2.3 p2p and std Matrices Combined
The analysis once again concluded considering the combined matrix containing both the P2P and
standard deviation measures for all the windows. In this case the algorithm showed a training
error of 0.0357 and a test error of 0.0708, with of over 99% correct classification for instances
labeled as 0, 77% for samples labeled as 1 and 50% windows labeled as 2, as depicted in Fig. 6.8.
The parameters selected by the GridSearch() function are max_depth= 5, min_samples_leaf= 5 and
n_estimators= 30. As usual, one of the 30 decision trees that form the random forest is displayed

0 1 2

0

1

2

0.99 0.01 0.00

0.00 0.77 0.23

0.00 0.50 0.50

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 6.8: Confusion matrix when the input is the combined. Multiclass classification.

in Fig. 6.9

node #8
gini = 0.18

samples = 5
value = [0, 9, 1]

class = Low Severity Irregularity

node #9
gini = 0.0

samples = 13
value = [0, 22, 0]

class = Low Severity Irregularity

node #14
gini = 0.31

samples = 13
value = [1, 18, 3]

class = Low Severity Irregularity

node #15
gini = 0.463
samples = 6

value = [0, 4, 7]
class = High Severity Irregularity

node #6
gini = 0.625
samples = 6

value = [4, 2, 2]
class = Smooth Road

node #7
stdz <= 0.582
gini = 0.061

samples = 18
value = [0, 31, 1]

class = Low Severity Irregularity

node #13
p2pz <= 5.13
gini = 0.463

samples = 19
value = [1, 22, 10]

class = Low Severity Irregularity

node #16
gini = 0.375
samples = 7

value = [0, 3, 9]
class = High Severity Irregularity

node #4
gini = 0.64

samples = 7
value = [4, 2, 4]

class = Smooth Road

node #5
stdz <= 0.456
gini = 0.304

samples = 24
value = [4, 33, 3]

class = Low Severity Irregularity

node #11
gini = 0.142
samples = 5

value = [0, 1, 12]
class = High Severity Irregularity

node #12
stdx <= 1.558
gini = 0.513

samples = 26
value = [1, 25, 19]

class = Low Severity Irregularity

node #3
stdy <= 0.709
gini = 0.465

samples = 31
value = [8, 35, 7]

class = Low Severity Irregularity

node #10
p2pz <= 2.235
gini = 0.513

samples = 31
value = [1, 26, 31]

class = High Severity Irregularity

node #1
gini = 0.0

samples = 295
value = [452, 0, 0]

class = Smooth Road

node #2
stdy <= 1.282

gini = 0.55
samples = 62

value = [9, 61, 38]
class = Low Severity Irregularity

node #0
stdx <= 0.55
gini = 0.306

samples = 357
value = [461, 61, 38]
class = Smooth Road

Figure 6.9: One of the 30 decision tree in constituting the random forest. The input is the combined matrix.

47

48

7
K-Means – Results

The last algorithm trained and tested with the gathered dataset is the K-Means clustering tech-
nique. The details of the implementation and the results achieved are listed in this chapter. The
KMeans() function implemented in the scikit-learn library takes in input the parameters listed in
the Table 7.1. The K-Means algorithm is sensitive to feature scaling. Therefore, before inputting
the matrix into the algorithm, the vectors were standardized. This involved removing the mean
and scaling them to have unit variance, using the StandardScaler() function from the Python scikit-
learn library. This function simply computes zzz = (xxx − x̄̄x̄x)/σ, where x̄̄x̄x is the mean and σ is the
standard deviation of the vectors, to have the standardized score of each sample of the dataset.
The standardized matrix will be the input of the K-Means algorithm.

7.1 Binary Classification
The algorithm was initially tested for binary classification. As an unsupervised machine learning
technique, specifying binary classification involves setting the number of clusters to k = 2 (recall
that the KMeans() function necessitates prior knowledge of the number of clusters to partition the
points). The code to train the classifier for binary classification is displayed in code snippet 7.1.

1 # Defying KMeans
2 kmeans = KMeans(n_clusters = 2, init='random', n_init=100, max_iter=500)
3 kmeans.fit(p2p)
4 # Store the assigned labels
5 cluster_assignments = kmeans.labels_

Listing 7.1: Definition of the K-Means classifier function.

In the variable “cluster_assignments”, the labels representing the final cluster assignments of each
point are stored. Fig. 7.1 depicts the ground truth corresponding to the 800 analyzed windows,

49

Table 7.1: Parameters in input to the RandomForestClassifier() function.

Parameter Explanation
n_clusters: int, default=8 Number of clusters to form as well as the

number of centroids to generate
init: “k-means++”, “k-random”, callable or
array-like of shape (n_clusters, n_features),

default=“k-means++”

Method for initialization

n_init: “auto” or int, default=10 Number of times the k-means algorithm is
run with different centroid seeds

max_iter: int, default=300 Maximum number of iterations of the
k-means algorithm for a single run

tol: float, default=1e− 4 Relative tolerance with regards to Frobenius
norm of the difference in the cluster centers

of two consecutive iterations to declare
convergence

verbose: int, default=0 Verbosity mode
random_state: int, RandomState instance or

None, default=None
Determines random number generation for

centroid initialization
copy_x: bool, default=True When pre-computing distances it is more

numerically accurate to center the data first
algorithm: “lloyd”, “elkan”, “auto”, “full”,

default=”lloyd”
K-means algorithm to use

50

where the binary labels are assigned as follows: 0 for smooth road and 1 for irregularity. Instances
of smooth roads are represented by red dots, primarily concentrated in the lower region of the
graph, reflecting lower values across the three acceleration features. In contrast, irregularities are
characterized by elevated P2P values, situating them in the upper part of the plot.

 p2px[g]

1 0 1 2 3 4 5 6 7

p2
p y

[g]

1
0

1
2

3
4

5

p2
p z

[g
]

0

2

4

6

Ground Truth - Binary Classification
Smooth Road
Irregularity

Figure 7.1: Ground truth with the p2p matrix as input and k = 2.

7.1.1 Only p2p Matrix

The analysis started considering the p2p matrix as input to the classifier. The init parameter is
set to “random”, meaning that the initial controid seeds are chosen at random between all the
possible allocations. The algorithm is then executed n_init = 10 times with different random
centroid seeds. The result is displayed in the Fig. 7.2. The instances labeled as 0, corresponding
to segments of smooth road, are represented by the red dots on the plot, while the blue dots
depict segmentswith road irregularities. The green stars indicate the two cluster centers identified
upon algorithm convergence. As anticipated, instances with low P2P feature values tend to form
clusters, whereas those with higher values constitute a distinct group, aligning with expectations.
Notably, the model effectively clusters over 99% of the windows associated with smooth road
conditions and achieves an accuracy of 85% in classifying windows representing irregularities.
The analysis reveals a total of 6 instances classified as ”false positives” (cases where the algorithm

51

 p2px[g]

1 0 1 2 3 4 5 6 7

p2
p y

[g]
1

0
1

2
3

4
5

p2
p z

[g
]

0

2

4

6

K-Means, Only p2p Matrix, k= 2
Cluster 0
Cluster 1
Centroid

Figure 7.2: Result of the K-Means algorithm when the input is the p2p matrix and the number of cluster is
k = 2.

incorrectly identifies smooth road instances as irregularities) and 22 instances classified as ”false
negatives” (cases where irregularities are inaccurately overlooked by the algorithm).

7.1.2 Only std Matrix

The analysis continued by utilizing the std matrix as the input for the algorithm. The code for
training the algorithm closely resembles the previously presented one, with the distinction that
the input for the KMeans() classifier is now the std matrix, incorporating the standard deviation
values of the three accelerations. The model parameters remain consistent with those employed
in the prior analysis, with init set to random and n_init = 10. The result is displayed in the Fig.
7.3. The model trained with this configuration successfully clusters over 99% of the windows
associated with smooth road conditions, and achieve an accuracy of 91% in classifying windows
that represent irregularities. There are a total of 4 instances classified as “false positives”, and 13
instances classified as “false negatives”.

52

 stdx[g]

1 0 1 2 3 4
5

6

std
y[g

]
1

0
1

2
3

4
5

st
d z

[g
]

0

2

4

6

K-Means, Only std Matrix, k= 2
Cluster 0
Cluster 1
Centroid

Figure 7.3: Result of the K-Means algorithm when the input is the std matrix and the number of cluster is
k = 2.

7.1.3 p2p and std Matrices Combined

The input matrix now is the combinedmatrix defined earlier. The code and the parameters to train
the algorithm remained once again the same as the previous analysis, and the results are shown
in Fig. 7.4. It’s noteworthy that the algorithm takes six measurements as input, three for the P2P
value of each acceleration and three for the standard deviation of the same accelerations. However,
for the purpose of visualization, the points are plotted in a three-dimensional space, utilizing
the x, y, and z axes to represent the P2Px, P2Py, and P2Pz values, respectively. It’s important to
mention that utilizing the standard deviation as axes for plotting would yield equivalent results.
The model achieved an accuracy of approximately 95% in classifying smooth road segments and
90% in classifying irregularity, with a total of 3 false negatives and 14 false positives.

53

 p2px[g]

1 0 1 2 3 4 5 6 7
p2
p y

[g]
1

0
1

2
3

4
5

p2
p z

[g
]

0

2

4

6

K-Means, combined Matrix, k= 2
Cluster 0
Cluster 1
centroid

Figure 7.4: Result of the K-Means algorithm when the input is the combined matrix and the number of
cluster is k = 2.

7.2 Multiclass Classification

Similarly to the studies carried out before, the K-Means classifier is also employed to distinguish
between smooth road, low severity irregularity and high severity irregularity. Fig. 7.5 displays the
accurate classificationwhen the labels are assigned as follows: 0 for smooth road, 1 for low-impact
irregularity, and 2 for irregularities of high severity. The red dots are associated to smooth road
instances, blue and green dots are respectively associated with low and high severity irregularity
instances. The KMeans() function is initiated with the same parameters as before, with the only
difference being the number of cluster n_cluster now equal to 3.

7.2.1 Only p2p Matrix

First, the p2pmatrix is selected to be the input to the algorithm. The results are shown in Fig. 7.6.
The plot makes it evident that distinguishing the severity of irregularities poses a more challeng-
ing task. Various factors contribute to this complexity, including the speed at which the vehicle
encounters the irregularity. For instance, Fig. 7.7 illustrates two runs over the same irregularity
but at different speeds. The upper plot depicts the three-axis accelerations when the vehicle tra-

54

 p2px[g]

1 0 1 2 3 4 5 6 7
p2
p y

[g]
1

0
1

2
3

4
5

p2
p z

[g
]

0

2

4

6

Ground Truth - Multiclass Classification
Smooth Road
Low Severity Irregularity
High Severity Irregularity

Figure 7.5: Ground truth with the p2p matrix as input and k = 3.

verses the bump at a speed of approximately 10km/h. Subsequently, the same vehicle navigates
the same bump at a speed of approximately 15km/h. The plot distinctly captures a varied traces
of the accelerations. Notably, higher speeds induce more vehicular shake, consequently augment-
ing the P2P measure of the window where the irregularity is located. However, once again, the
algorithm exhibits good performances in recognizing smooth road, achieving an accuracy of 98%.
A fairly high results is evident also in recognizing low severity irregularity, with an accuracy of
85%, while the major problems are in clustering high severity irregularity correctly, reaching an
accuracy of 52%. These results are summarized in the confusion matrix displayed in Fig. 7.8.

7.2.2 Only std Matrix

The input of the classifier is now the std matrix. The results are shown in Fig. 7.9. The same con-
siderations as the previous case can be drawn. In particular, the algorithmwhen trained with this
configuration exhibits an accuracy of above 99% for the classification of smooth road segments,
83% regarding low severity irregularity and only 37% accurate when classifying high severity ir-
regularity. The results are once again summarized in the confusion matrix displayed in the Fig.
7.10.

55

 p2px[g]

1 0 1 2 3 4 5 6 7
p2
p y

[g]

1
0

1
2

3
4

5

p2
p z

[g
]

0

2

4

6

K-Means, Only p2p Matrix, k= 3
Cluster 0
Cluster 1
Cluster 2
centroid

Figure 7.6: Result of the K-Means algorithm when the input is the p2p matrix and the number of cluster is
k = 3.

7.2.3 p2p and std Matrices Combined
The analysis ended testing the model with the combinedmatrix as input and the number of initial
clusters equal to three. The results are shown in the Fig. 7.11. Looking at the confusion matrix
plotted in Fig. 7.12, it is evident that, once again, the model has no problem in clustering together
instances corresponding to smooth road and to low severity irregularity. The difficulty are found
when trying to separate samples corresponding to high severity irregularity.

56

0 50 100 150 200 250 300 350 400
Samples [T =20Hz]

15

10

5

0

5

10

15

Ac
ce

le
ra

tio
n

Va
lu

es
 [g

]

X, Y, Z Acceleration Values, Irregularity 6, Run3
X acceleration
Y acceleration
Z acceleration

(a) Irregularity 6, Run 3

0 50 100 150 200 250 300 350 400
Samples [T =20Hz]

15

10

5

0

5

10

15

Ac
ce

le
ra

tio
n

Va
lu

es
 [g

]

X, Y, Z Acceleration Values, Irregularity 6, Run5
X acceleration
Y acceleration
Z acceleration

(b) Irregularity 6, Run 5

Figure 7.7: Two different runs over the same irregularity at different speeds.

57

Smooth Road

Low Severity Irre
gularity

High Severity Irre
gularity

Smooth Road

Low Severity Irre
gularity

High Severity Irre
gularity

0.98 0.02 0.00

0.04 0.82 0.14

0.06 0.42 0.52

Confusion Matrix, p2p, k=3

0.0

0.2

0.4

0.6

0.8

Figure 7.8: Confusion matrix when the input is the p2p matrix and the number of clusters is k = 3.

58

 stdx[g]

1 0 1 2 3 4
5

6

std
y[g

]

1
0

1
2

3
4

5
st
d z

[g
]

0

2

4

6

K-Means, Only std Matrix, k= 3
Cluster 0
Cluster 1
Cluster 2
centroid

Figure 7.9: Result of the K-Means algorithm when the input is the std matrix and the number of cluster is
k = 3.

59

Smooth Road

Low Severity Irre
gularity

High Severity Irre
gularity

Smooth Road

Low Severity Irre
gularity

High Severity Irre
gularity

0.99 0.01 0.00

0.03 0.83 0.14

0.06 0.58 0.37

Confusion Matrix, std, k=3

0.0

0.2

0.4

0.6

0.8

Figure 7.10: Confusion matrix when the input is the std matrix and the number of clusters is k = 3.

60

 p2px[g]

1 0 1 2 3 4 5 6 7

p2
p y

[g]

1
0

1
2

3
4

5
p2

p z
[g

]

0

2

4

6

K-Means, combined Matrix, k= 3
Cluster 0
Cluster 1
Cluster 2
centroid

Figure 7.11: Result of the K-Means algorithm when the input is the combined matrix and the number of
cluster is k = 3.

61

Smooth Road

Low Severity Irre
gularity

High Severity Irre
gularity

Smooth Road

Low Severity Irre
gularity

High Severity Irre
gularity

0.99 0.01 0.00

0.04 0.83 0.13

0.06 0.50 0.44

Confusion Matrix, combined, k=3

0.0

0.2

0.4

0.6

0.8

Figure 7.12: Confusion matrix when the input is the combined matrix and the number of clusters is k = 3.

62

8
Conclusions and Future Work

In this concluding chapter of the thesis, we discuss the key findings and insights derived from
the research. Additionally, potential routes for future work are presented, providing a roadmap
for further exploration and development in the field.

8.1 Summary of the Results
In this section, we compare the optimal results achieved for each of the considered classifiers.
The observations are categorized into binary and multiclass classification, and commented based
on the best outcomes obtained in both analyses. Recall that the whole dataset comprises 800
instances in total. For both supervised machine learning techniques, the test set is set to be 30% of
the whole dataset, thus containing 240 samples. Regarding the K-Means classifier, all the dataset
is considered during the test phase.

8.1.1 Binary Classification

In the context of binary classification, the best results obtained with the three different classifier
are summarized in the Table 8.1. For binary classification, the algorithm exhibiting the highest
overall performance is RF when utilizing the p2p matrix as input, achieving a remarkable test
accuracy of 100%. This result should be taken with a grain of caution, as the algorithm may ex-
perience a slight decrease in accuracy when the input is derived from less stable conditions. It is
noteworthy, however, that across various configurations tested with different algorithms, consis-
tently high results were obtained. This suggests that, in the context of binary classification, all the
algorithms examined demonstrate good accuracy even when presented with diverse datasets. It
is important to highlight also the good performances achieved by the K-Means classifier. Consid-
ering its unsupervised nature, it is likely that the algorithm may encounter more challenges than

63

Table 8.1: Summary of the results obtained for binary classification with the different configurations.

Classifier Input Accuracy Training
Error

Test Error False
Positives

False
Negatives

SVM
p2p 0.9678 0.034 0.0041 0 1

std 0.983 0.0196 0.0083 2 0

combined 0.9875 0.0107 0.0042 1 0

RF
p2p 1 0.0268 0.0 0 0

std 0.9875 0.0196 0.0124 3 0

combined 0.9875 0.0179 0.0125 3 0

KMeans
p2p 0.965 N/A N/A 6 22

std 0.9788 N/A N/A 4 13

combined 0.9788 N/A N/A 3 14

Table 8.2: Summary of the results obtained for binary classification with the different configurations.

Classifier Input Accuracy Training
Error

Test Error 0 → 10 → 10 → 1 0 → 20 → 20 → 2 1 → 01 → 01 → 0 1 → 21 → 21 → 2 2 → 02 → 02 → 0 2 → 12 → 12 → 1

SVM
p2p 0.9196 0.0411 0.0917 0 0 2 7 0 13

std 0.9321 0.066 0.071 1 0 0 3 1 3

combined 0.9357 0.034 0.075 2 0 1 7 1 7

RF
p2p 0.933 0.0553 0.0667 0 0 1 6 0 9

std 0.9166 0.048 0.083 2 0 0 9 0 9

combined 0.9291 0.035 0.071 2 0 0 7 0 8

KMeans
p2p 0.9325 N/A N/A 12 0 4 13 3 27

std 0.9288 N/A N/A 8 0 3 13 3 19

combined 0.9325 N/A N/A 9 0 4 12 3 26

its supervised counterparts. The fairly high results obtained byK-Means are attributed to the high
discriminative capability of the selected features, which are hence suitable for the classification
task in hand.

8.1.2 Multicalss Classification
The best results obtained for multiclass classification are summarized in the Table 8.2. The six
right-most columns of the table show the instances that were misclassified. The label of each col-
umn indicated the type ofmisclassification in the formX → Y, whereX is the actual road class the
sample belongs to and Y is the one inferred by the algorithm. The numbers in each column rep-
resent the count of the misclassified road samples. The results confirm the increased difficulty
in distinguishing between two types of irregularities, as previously discussed in the preceding
chapters. Notably, the SVM classifier demonstrates fairly high performance, particularly when

64

the input is the combinedmatrix. Once again, the K-Means classifier emerges as the algorithm en-
countering more challenges than its counterparts. This outcome aligns with expectations, consid-
ering that the model relies solely on the distance measure between points in the feature space. As
explained in the dedicated chapter, various factors, including the speed of the vehicle traversing
the irregularity, can influence the accelerometer’s trace. A possible improvement in themodel can
be incorporating the speed of the vehicle into the prediction process, assigning distinct weights
to each instance accordingly.

8.2 Conclusions
This thesis has showcased the feasibility of predicting road pavement conditions using low-cost
sensors integrated into the vehicle. The absence of direct involvement required from end-users
represents a significant stride towards advancing safety for Vulnerable Road Users (VRUs).

8.3 Possible Follow-Up
As mentioned in the introduction, the goal of this thesis is to set the ground for a fully functional
driver assistance to improve the safety of VRUs. Numerous potential extensions to this work exist,
beginning with the identification of specific types of irregularities such as potholes, bumps, trans-
verse cracks, and more. Furthermore, through this research, it becomes conceivable to construct
an always up-to-date map of the city using algorithms trained for irregularity recognition. Subse-
quent research endeavors can also explore the feasibility of real-time application of thesemethods
and the mechanisms for transmitting data to the computational unit responsible for processing
the information. Addressing the challenges associated with soft mobility necessitates grappling
with the issue of information exchange. The nature of the data collected suggests that on-site pro-
cessing might not be feasible. Consequently, the need to transmit data to an external facility adds
an extra layer of complexity to the overall system.

65

66

References

[1] P. Olszewski, P. Szagata, D. Rabczenko, and A. Zielinska, “Investing safety of vulnerable
road users in selected eu countries,” Journal of Safety Research, 2019.

[2] R. V. Belavkin, P. M. Pardalos, J. C. Principe, and R. L. Stratonovich, “Definition of the value
of information,” Theory of Information and its Value, 2020.

[3] D. Merdrignac, P. Shagdar, O. Jemaa, and F. Nashashibi, “Study on perception and com-
munication systems for safety of vulnerable road users,” IEEE 18th International Conference
in Intelligent Transportation Systems, 2015.

[4] D. Merdrignac, P. Shagdar, and F. Nashashibi, “Fusion of perception and v2p commiu-
nication systems for the safety of vulnerable road users,” IEEE Transaction on Intelligent
Transportation Systems, vol. 18, no. 7, 2017.

[5] P. Sewalkar and S. Jochen, “Vehicle-to-pedestrian communication for vulnerable road users:
Survey, design considerations, and challenges,” Sensors, vol. 19, 2019.

[6] Y.Wu,M. Abdel-Aty, O. Zheng, Q. Cai, and L. Yue, “Developing a crashwarning system for
the bike lane area at intersectionwith connected vehicle technology,”Transportation Research
Record, vol. 2673, 2019.

[7] A. Al-Shaghouri, R. Alkhatib, and S. Berjaoui, “Real time pothole detection using machine
learning,” 2010.

[8] M. H. Asad, S. Khaliq, M. H. Yousaf, M. O. Ullah, and A. Ahmad, “Pothole detection using
machine learning: A real-time and ai-on-the-edge perspective,” Advances in Civil Engineer-
ing, 2022.

[9] A. Kumar, Chakrapani, D. J. Kalita, and V. P. Singh, “Amodern pothole detection technique
using deep learning,” IEEE Xplore, 2022.

[10] P.Mohan, V.N. Padmanabhan, andR. Ramjee, “Nericell: Richmonitoring of road and traffic
conditions using mobile smartphones,” In Proceeding of the 6th ACM Conference of Embedded
Network Sensor Systems, pp. 357–358, 2008.

[11] N. Sabir, A. A. Memon, and F. K. Shaikh, “Threshold based efcient road monitoring system
using crowdsourcing approach,”Wireless Personal Communications, 2019.

[12] S. Adwan and H. Arof, “On improving dynamic time warping for pattern matching,”Mea-
surement, vol. 45, pp. 1609–1620, 2012.

[13] P. Senin, “Dynamic time warping algorithm review,” Information and Computer Science De-
partment University of Hawaii Manoa: Honolulu, 2008.

[14] C. Wu, Z. Wang, S. Hu, et al., “An automated machine-learning approach for road pothole
detection using smartphone sensor data,” Sensors, vol. 20, no. 5564, 2020.

[15] A. Basavaraju, J. Du, F. Zhou, and J. Ji, “A machine learning approach to road surface
anomaly assessment using smartphone sensors,” IEEE Sensors Jurnal, vol. 20, no. 5, 2020.

[16] M. Perttunen, O. Mazhelis, F. Cong, et al., “Distributed road surface condition monitoring
using mobile phones,”

67

[17] K. Pawar, J. Siddhi, and B. Smita, “Efficient pothole detection using smartphone sensors,”
ITM Web of Conferences, vol. 32, 2020.

[18] Arduino. “Arduino mkr wi-fi 1010.” (), [Online]. Available: https://docs.arduino.
cc/resources/datasheets/ABX00023-datasheet.pdf.

[19] Arduino. “Wifinina.” (), [Online]. Available: https://www.arduino.cc/reference/
en/libraries/wifinina/.

[20] R. Schwarz. “Understandinguart.” (), [Online].Available:https://www.rohde-schwarz.
com/us/products/test- and- measurement/essentials- test- equipment/
digital-oscilloscopes/understanding-uart_254524.html#:~:text=UART%
20stands%20for%20universal%20asynchronous,also%20have%20a%20ground%
20connection..

[21] C. Basics. “Basics of the i2c communication protocol.” (), [Online]. Available: https://
www.circuitbasics.com/basics-of-the-i2c-communication-protocol/#:~:
text=I2C%20is%20a%20serial%20communication,always%20controlled%20by%
20the%20master..

68

https://docs.arduino.cc/resources/datasheets/ABX00023-datasheet.pdf
https://docs.arduino.cc/resources/datasheets/ABX00023-datasheet.pdf
https://www.arduino.cc/reference/en/libraries/wifinina/
https://www.arduino.cc/reference/en/libraries/wifinina/
https://www.rohde-schwarz.com/us/products/test-and-measurement/essentials-test-equipment/digital-oscilloscopes/understanding-uart_254524.html#:~:text=UART%20stands%20for%20universal%20asynchronous,also%20have%20a%20ground%20connection.
https://www.rohde-schwarz.com/us/products/test-and-measurement/essentials-test-equipment/digital-oscilloscopes/understanding-uart_254524.html#:~:text=UART%20stands%20for%20universal%20asynchronous,also%20have%20a%20ground%20connection.
https://www.rohde-schwarz.com/us/products/test-and-measurement/essentials-test-equipment/digital-oscilloscopes/understanding-uart_254524.html#:~:text=UART%20stands%20for%20universal%20asynchronous,also%20have%20a%20ground%20connection.
https://www.rohde-schwarz.com/us/products/test-and-measurement/essentials-test-equipment/digital-oscilloscopes/understanding-uart_254524.html#:~:text=UART%20stands%20for%20universal%20asynchronous,also%20have%20a%20ground%20connection.
https://www.rohde-schwarz.com/us/products/test-and-measurement/essentials-test-equipment/digital-oscilloscopes/understanding-uart_254524.html#:~:text=UART%20stands%20for%20universal%20asynchronous,also%20have%20a%20ground%20connection.
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/#:~:text=I2C%20is%20a%20serial%20communication,always%20controlled%20by%20the%20master.
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/#:~:text=I2C%20is%20a%20serial%20communication,always%20controlled%20by%20the%20master.
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/#:~:text=I2C%20is%20a%20serial%20communication,always%20controlled%20by%20the%20master.
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/#:~:text=I2C%20is%20a%20serial%20communication,always%20controlled%20by%20the%20master.

	Abstract
	List of figures
	List of tables
	Introduction
	Related work
	Collaborative approaches
	Standalone approach

	Methodology
	Hardware
	Arduino MKR WiFi 1010
	HC-SR04 Ultrasonic Ranging Module
	MPU-6050 GY-521 Accelerometer-Gyro Module
	GY-NEO6MV2 GPS Module
	External battery

	Final scheme

	Machine Learning Techniques
	Supervised Learning
	Support Vector Machines (SVM)
	Random Forest (RF)

	Unsupervised Learning
	Clustering Method – K-Means

	Data Collection and Implementation
	Data Collection
	Dataset

	Implementation

	SVM Classifier – Results
	Binary Classification
	Only p2p Matrix
	Only std Matrix
	p2p and std Matrix Combined

	Multiclass Classification
	Only p2p Matrix

	Random Forest – Results
	Binary Classification
	Only p2p Matrix
	Only std Matrix
	p2p and std Matrices Combined

	Multicalss Classification
	Only p2p Matrix
	Only std Matrix
	p2p and std Matrices Combined

	K-Means – Results
	Binary Classification
	Only p2p Matrix
	Only std Matrix
	p2p and std Matrices Combined

	Multiclass Classification
	Only p2p Matrix
	Only std Matrix
	p2p and std Matrices Combined

	Conclusions and Future Work
	Summary of the Results
	Binary Classification
	Multicalss Classification

	Conclusions
	Possible Follow-Up

	References

