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Abstract

A beam of light holds many properties such as the intensity value and spatial distribution, polarization
(denoting spin angular momentum), wavelength (linear momentum), and orbital angular momentum
(associated with its phase structure). Structured light refers to the control of these degrees of freedom,
individually or in combination, in order to enhance or extend their optical capabilities. In the last
decade, the possibility to modify and control the intensity and phase spatial distribution of light
has fostered the applications of structured light beams in a wide range of fields, such as particle
manipulation and tweezing, microscopy, imaging, classical and quantum communications. In this
thesis, we analyze some of the most important families of structured light beams and how to control
and measure their properties with the use of computer-controlled spatial light modulators (SLMs). An
experimental optical setup based on SLMs has been arranged on an optical table and numerical codes
have been developed for the generation of custom light beams carrying orbital angular momentum
and their optical detection and analysis with holographic methods.

Un fascio di luce possiede molte proprietà quali l’intensità e la distribuzione spaziale, la polarizzazione
(che denota il momento angolare di spin), la lunghezza d’onda (momento lineare) e il momento angolare
orbitale (associato alla sua struttura di fase). Il termine luce strutturata fa riferimento al controllo di
questi gradi di libertà, individualmente o combinandoli, al fine di potenziarne o estenderne le capacità
ottiche. Negli ultimi dieci anni, la possibilità di modificare e controllare l’intensità e la distribuzione
spaziale di fase della luce ha promosso le applicazioni dei fasci di luce strutturata in un ampio panorama
di settori, quali manipolazione e intrappolamento di particelle, microscopia, imaging, comunicazioni
classiche e quantistiche. In questa tesi, abbiamo analizzato alcune delle più importanti famiglie di
fasci di luce strutturata e come controllarne e misurarne le proprietà mediante l’uso di spatial light
modulators (SLMs). Un apparato ottico sperimentale basato su SLMs è stato predisposto su un banco
ottico e codici numerici sono stati sviluppati per la generazione di specifici fasci di luce che trasportano
momento angolare orbitale e per la loro rilevazione e analisi con metodi olografici.
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Introduction

The concept of light beams carrying orbital angular momentum (OAM) is relatively recent in the
history of physics even if optical vortices (OV) have been studied since 1970 [1]. The link between
beams with helical wavefronts and orbital angular momentum had never been made until the 1990s. It
was only in 1992 that Allen and collaborators found Laguerre-Gaussian(LG) laser modes to have well-
defined orbital angular momentum. That work proposed and implemented the use of cylindrical lenses
to transform the high-order Hermite-Gaussian modes emitted by a conventional laser into helically-
phased LG modes [2].

From that moment forward, the field of beams carrying orbital angular momentum faced a cascade
effect in the development of advanced topics in a wide range of fields. In the ten years going from 1898
to 1999, researchers focused their attention on understanding and developing fundamental theories
and basic phenomena in order to pave the way for further studies and applications. From 1999 to
2009 many advances have been made in OAM manipulation and important applications started to
emerge in the context of OAM-entangled photons [3], particle trapping and tweezing [4], microscopy
and imaging [5] and more. The last ten years faced important progresses in advanced applications to
high-capacity optical communication [6], quantum entanglement and single-photon applications with
a high number of OAM states [7] and tunability of OVs at the nanoscale [8].

In this thesis, the main goals are represented by the generation and detection of beams carrying orbital
angular momentum. In particular, once the principles of wave and beam optics have been underlined,
the attention has been directed onto two classes of vortex beams: perfect vortices and Laguerre-
Gaussian beams. Within the wide portfolio of methods developed to generate vortex beams, the
diffractive approach based on the technology of Spatial Light Modulators (SLMs) has been selected and
used in this work. In order to accomplish this goal, an optical setup based on SLMs has been arranged
on an optical table. The collected images have allowed to visualize instantly the expected profile
of the optical vortex beam and, with interferometric measurements, the orbital angular momentum
carried. In a second moment, a comparison between the experimental data and the theory has been
implemented by means of a MATLAB code. Subsequently, an in-depth discussion has been reserved
to the possible approaches in order to detect OAM modes with different topological charges. Once the
experimental setup has been properly re-arranged, different diffractive optical elements (DOEs) have
been design by numerical codes and experimental data have been collected.

The thesis is structured as follows:

� Chapter 1: a brief derivation of the paraxial Helmholtz equation is presented, followed by the
description of one of its most general and useful solution, i.e. the Gaussian beam, which is
paradigmatic to introduce the features of a propagating optical beam. Right after, the concept
of orbital angular momentum of light is introduced in order to underline the peculiar feature
that characterizes OAM beams, the phase factor exp(imφ). In conclusion, the more relevant
classes of beams carrying OAM are introduced.

� Chapter 2: starting with an overview on the possible methods to generate vortex beams, a more
detailed discussion is given for the more relevant approaches. It follows a description of the SLM
technology, the one on which the thesis is focused. The chapter ends with the presentation of
the experimental results. In particular, for both perfect vortices and LG beams different set
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of data are shown to understand and observe the change of the beam shape depending on the
variation of the control parameters.

� Chapter 3: the concept of mode-division (de)multiplexing (MDM) is discussed. After a brief
introduction to underline the importance of this application, a more detailed treatment on the
process to design diffractive optical elements is given. The chapter ends with the description of
the experimental results collected in the laboratory: in particular, different holographic sorters
have been generated in order to be loaded on an SLM for the detection of OAM modes in a
range of different configurations, characterizing the optical performance in terms of efficiency
and cross-talk.

viii



Chapter 1

Vortex beams

Vortices are common phenomena in many fields of physics. In optics, an optical vortex is a point of
zero intensity of an optical field, usually associated with a singularity, that can propagate along a
beam which takes the name vortex beam or optical vortex beam. Such beams are powerful tools to
study optical vortices, easily realized in the laboratory thanks to the important developments during
the recent years. To analyse more in detail the features of vortex beams, it is recommended to start
from the derivation of the possible analytic forms of vortex beams.

1.1 Helmholtz equation and paraxial approximation

In this context, light is described by the wavefunction u(r⃗, t), a scalar real function of position and
time, that obeys the wave equation

∇2u− 1

c2
∂2u

∂t2
= 0 (1.1)

The simplest solution is the monochromatic wave u(r⃗, t) = a(r⃗)cos[φ(r⃗)− ωt] which is useful to write
in complex notation so that,

u(r⃗, t) = ℜ{U(r⃗, t)} =
1

2
[U(r⃗, t) + U∗(r⃗, t)]

The complex wavefunction U(r⃗, t) can be written as U(r⃗, t) = U(r⃗)exp(−iωt) in which U(r⃗) is the
complex amplitude of the wave. Writing the wave equation in term of the complex wavefunction the
Helmholtz equation is obtained,

∇2U + k2U = 0 (1.2)

where k = 2π/λ is the wavevector modulus. This is the starting point to derive the analytic forms of
light beams carrying orbital angular momentum, that are our object of interest.

Plane and spherical waves are the simplest solutions of the Helmholtz equation but they present some
limits in term of confinement: the first propagates in one direction but the energy extends over the
entire space, the second originates from a single point but diverges in all directions.

In this discussion the interest is addressed to optical beams, electromagnetic waves that remain essen-
tially concentrated around a well defined direction upon free propagation. It derives the necessity to
find a solution that can describe a wave that propagates with wavefront normals that make small an-
gles with the propagation direction. These waves are called paraxial waves and they are characterized
by a complex envelope A(r⃗) which is a slowly varying function of the position z : U(r⃗) = A(r⃗)exp(ikz).

1



CHAPTER 1. VORTEX BEAMS 2

From the substitution of this definition into the Helmholtz equation it follows that,

∇2
⊥A+

∂2A

∂z2
+ 2ik

∂A

∂z
= 0

To maintain the underlying plane-wave nature, the variation of the envelope A and its derivative with
z must be slow within the distance of a wavelength, which implies

⃓⃓⃓⃓
∂A

∂z

⃓⃓⃓⃓
<< |kA|

⃓⃓⃓⃓
∂2A

∂z2

⃓⃓⃓⃓
<<

⃓⃓⃓⃓
k
∂A

∂z

⃓⃓⃓⃓ ⃓⃓⃓⃓
∂2A

∂z2

⃓⃓⃓⃓
<<

⃓⃓
∇2

⊥A
⃓⃓

It follows the equation for the complex envelope,

∇2
⊥A+ 2ik

∂A

∂z
= 0

which is known as paraxial Helmholtz equation.

The simplest solution is the paraboloidal wave, which is an approximation of the spherical wave in
the paraxial approximation; however, a more general and powerful solution is the Gaussian beam.

1.1.1 The Gaussian beam and its features

The Gaussian beam’s complex envelope is given by

A(r⃗) =
A0

q(z)
exp

[︃
− ik

ρ2

2q(z)

]︃
where the complex quantity q(z) is called the q-parameter and is defined as q(z) = z + izR . The
Rayleigh range zR quantifies the length over which the beam can propagate without diverging signifi-
cantly. To separate amplitude and phase terms, it is useful to introduce two other real functions R(z)
and w(z), the wavefront curvature radius and the beam radius respectively, both dependent on the
coordinate z :

� R(z) =
z2 + z2

R

z
is the radius of curvature as a position of z along the beam axis.

� w(z) = w0

√︄
1 +

(︃
z

zR

)︃2

is the radius of the circle within which the 86% of the total power is

carried. It is called beam radius and it assumes its minimum value at z = 0, that corresponds

to w0 =

√︃
λzR
π

, the beam waist radius. The beam width increases monotonically with z and

assumes the value
√
2w0 at z = ±zR .

Rewriting the complex envelope in term of R(z) and w(z):

1

q(z)
=

1

z + izR
=

1

R(z)
− i

λ

πw2(z)

Then the complex amplitude acquires the form:

U(r⃗) = A0
w0

w(z)
exp

[︃
− ρ2

w2(z)

]︃
exp

[︃
ikz − ik

ρ2

2R(z)
+ iζ(z)

]︃
in which,
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3 CHAPTER 1. VORTEX BEAMS

� A0 = A1/(izR) defined in this way for the convergence, where A0 and zR are determined by
initial conditions

� ζ(z) = tan−1

(︃
z

zR

)︃
is the Gouy phase that represents the phase retardation with respect to a

plane wave, due to the focusing of the beam at the beam waist

The intensity of the Gaussian beam is given by I(ρ, z) = |U(ρ, z)|2. It assumes its peak on the beam
axis, then decreases as 1/e2 at the radial distance w(z).

1.2 Orbital angular momentum of light

The total angular momentum is the vectorial sum of the spin angular momentum (SAM) and the
orbital angular momentum (OAM). More precisely, the former is related to the twisting polarization
and it takes an important role in the vectorial framework of electromagnetism, while the latter, related
to the rotating wavefronts, is that taken into account in the discussion of light beams carrying orbital
angular momentum. Hence, even if a great number of solutions for the paraxial Helmholtz equation are
known, the ones considered here are those with a phase factor exp(imφ), that indicates the existence
of an optical vortex, a phase singularity appearing as a dark spot.
In these beams, light is twisted around the axis of propagation generating helical phase fronts from
which the typical annular intensity cross-section originates. The integer m, known as topological
charge, defines the features of orbital angular momentum beams: its absolute value gives the number
of intertwined helical wavefronts, while the sign gives the chirality of the helices. Considering light as
composed of photons, the topological charge also represent the quantity of orbital angular momentum
carried per photon in units of ℏ and each value of m corresponds to a state orthogonal to all the
others. This is a powerful tool in the field of optical communications in order to increase the number
of channels or the Hilbert state space of photons.

1.2.1 Solutions to the paraxial Helmhotz equation

An exact solution of the full Helmholtz equation in cylindrical coordinates is provided by Bessel beams:

Um
κ (ρ, φ, z) = Jm(κρ)eimφeikz

where Jm is the Bessel function of the first kind of orderm. These solutions are useful for the analysis of
the propagation of beams with OAM in the non-paraxial regime; however, having an infinite transverse
profile they cannot be physically generated. More realistic beams are represented by Bessel-Gaussian
beams that are endowed with a Bessel-like intensity profile modulated by a Gaussian term:

Um
κ (ρ, φ, z) = Jm(κρ)exp

(︃
−ρ2

w2
0

)︃
eimφeikz

Another important class of beams which is related to Bessel beams can be obtained applying the
Fourier transform for input Bessel beams,

U(r, φ) =
1

κ
im−1eimφδ(r −R)

This describes a perfect vortex with charge m and radius R =
κf

k
, being f the focal length used to

implement the Fourier transform in the f -f configuration. In particular, due to the characteristics of
Bessel functions, this form is not useful for experimental intentions. A more realistic case is that of
real perfect vortices, which originates from Bessel-Gaussian beams, and take the form

U(r, φ) =
w0

wR
im−1eimφexp

[︃
− (r −R)2

w2
R

]︃
3



CHAPTER 1. VORTEX BEAMS 4

This is a realistic perfect vortex with radiusR =
κf

k
and width wR =

2f

kw0

; the significant characteristic

of these beams is that the radius does not depend on the charge m.
Laguerre-Gaussian modes provide a complete set of solutions to the paraxial Helmholtz equation, in
cylindrical coordinates:

Um
p (ρ, φ, z) = Am

p

w0

w(z)

(︃√
2ρ

w(z)

)︃|m|
L|m|
p

(︃
2ρ2

w2(z)

)︃
exp

(︃
− ρ2

w2(z)

)︃
exp

(︃
−ik ρ2

2R(z)

)︃
ei(2p+|m|+1)ζ(z)eimφeikz

(1.3)

where Lm
p are the associated Laguerre polynomials and Am

p =

√︃
2p!

π(p+ |m|!)
.

Each mode is identified by a couple of indices (p,m): the azimuthal index m represent the orbital
angular momentum, the radial index p gives the number of radial nodes, and so the number of

concentric rings, p+ 1. The radius is proportional to
√︁

|m| as, R(z) = w(z)

√︃
|m|
2

.

Figure 1.1: evolution of helical wavefronts for different OAM beams with relative intensity profile with p = 0
(A), phase distribution for LG beams with different topological charge m and azimuthal index p (B)
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Chapter 2

OAM beams generation

The possibility to generate optical vortex beams has been explored before the link between the peculiar
features of these beams and orbital angular momentum was made.
The most relevant work in this perspective has been that of Soskin and co-workers in 1990 [9]. They
used diffraction grating containing m-pronged fork dislocations coaxially aligned with an incident
plane-waved beam that, in a first-order approximation, emerged as a diffracted beam with helical
wavefronts described by the phase factor eimφ.

On the other side, in 1993, Allen et al developed the use of converters in order to transform an
Hermitte-Gaussian mode, indexed by i and j, into a Laguerre-Gaussian mode, Lm

p , with the relations
m = (i−j) and p = min(i, j). The input beam can be seen as a decomposition into different HG modes
that are re-phased by changing the Gouy phase shift by means of a proper converter, π/2-converter,
made up by two cylindrical lenses. This method takes the name of Astigmatic mode conversion with
cylindrical lenses; it has high efficiency and offers a near lossless transformation between HG and LG
modes, but, on the other side, requires high construction precision and has poor flexibility because
it needs accuracy in the specification or alignment of the cylindrical lenses to avoid any residual
astigmatism in the resulting LG mode [10].
Another approach to generate vortex beams consists in using some optical components denoted as
Spiral Phase Plates, spiraling steps with a refractive index n whose thickness increases with the
azimuthal angle. The step height is given by h = (mλθ)/(2π(n − n0)), being n0 the refractive index
of the surrounding. When light passes through the phase plate it experiences a different phase in the
azimuthal direction and is converted into a helically phased beam with topological charge m. This
type of conversion avoids the risk of astigmatism, the efficiency is still high and can be used with
high power laser beams, but there are some limits in the number of modes that can be generated
and imposes extremely high requirements on technical tolerance, especially with regard to optical
wavelengths [11].
Some other devices employed in the generation of OAM beams are q-plates [12]and metamaterials. The
former are liquid crystal films having a uniform birefringence phase retardation and a transverse optical
axis pattern with a non-zero topological charge. Q-plates are based on the SAM-OAM coupling; these
tools are able to produce a pure OAM mode, but there is a limit represented by the energy threshold
being made of liquid crystals. Metamaterials are planar ultra-thin optical components that operate
forcing a sudden change of some features of an incident beam, like phase, amplitude and polarization.
The OAM beam is obtained by controlling the geometrical parameters of the metamaterial. These
tools have the advantage of the small size that allows easy integration, but, at the same time, are
limited in producing only one mode for a single device in a versatile and dynamic way.

Nowadays, despite the great number of different methods for generating vortex beams, in the majority
of the modern experiments a diffracting-optics approach is preferred since holographic diffraction
gratings are simple and fast to produce and have high efficiency; however, only low-order vortex
beams can be generate because their quality is seriously degraded while increasing the number of
diffraction orders. These diffractive-optical elements can be produced by Spatial Light Modulators

5



CHAPTER 2. OAM BEAMS GENERATION 6

that allow to generate different OAM modes using a single device.

2.1 Spatial light modulators technology

A Spatial Light Modulator (SLM) is a device consisting in a pixelated display, formed by several
hundreds of thousands cells, that allows to modulate or manipulate some properties of light. Each cell
is filled with Liquid Crystals (LC), a state of matter that has properties between those of conventional
liquids and those of solid crystals. Under appropriate conditions LC molecules tend to align in a
preferred direction. Depending on the molecular order or organizational constraints, it’s possible to
classify LCs in nematic, smectic or cholesteric. In the first case all the molecules have the same
orientation but are randomly located. In the second one there is a certain degree of positional order
and the molecules are arranged in layers. In the last one the molecules show an helix-like layered
structure.
The technology of SLMs is based on LCs properties implemented upon reflection or transmission from
which two classes of possible devices derive: transmissive type uses transparent LC displays (LCDs),
while reflective one uses liquid crystal on Silicon displays (LCoS). A LCoS display consists in a Silicon
substrate covered with pixelated metal electrodes which control LC molecules in each cell. The thin
layer of LC is sandwiched between two alignment films above the active matrix circuit of electrodes,
and upon the upper film another layer of transparent electrode is posed. The whole system is finally
covered by a flat glass substrate (figure 2.1). SLMs act like a second monitor controlled by the

Figure 2.1: Scheme of an SLM cross-section

computer; the working principle consists in finding an appropriate image, called computer-generated
hologram, that produces the required result. The grayscale of the image, in which each level of grey
is associated with a discrete increment of the phase from 0 (black) to 2π (white), is used to control
the LCs in each pixel and therefore to modulate the phase of any light beam interacting with it, with
micrometric resolution. At this point, it is possible to appreciate the flexibility of SLM in the sense
that it is not required a specific software to control the pixeled array, it is only necessary to have the
image of the digital hologram designed in a scale of grey that, once it is uploaded on the SLM, is
converted into a voltage scale to obtain the desired phase modulation.

2.1.1 Phase and Amplitude modulation

The conversion from the greyscale and the desired phase change is not automatic and needs some
precautions. In general to create structured light modes it is necessary a transmission function with
both phase and amplitude modulation. Considering the complex field we want to generate:

U(x, y) = A(x, y)eiφ(x,y)

it is needed a phase-only field that incorporates both amplitude and phase variation; this is required
by most modern SLMs that are phase-only devices. In order to do that a function h(x, y) is defined
as,

h(x, y) = eif(A)sinφ(x,y)

6



7 CHAPTER 2. OAM BEAMS GENERATION

By applying the Jacobi-Anger expansion we obtain,

eif(A)sinφ(x,y) =

∞∑︂
n=−∞

Jn(f(A))e
inφ(x,y)

where Jn is the nth-order Bessel function of the first kind. The first order J1(f(A))e
iφ(x,y) is sufficient

to define properly the function f in order to satisfy the relation: J1(f(A)) = A. To spatially separate
the different orders result, a tilt term βx is added to the phase function φ(x, y).

Before going into the details of the experimental generation of beams carrying OAM, it is important
to underline that despite the high flexibility and high dynamical control, SLMs are not 100% efficient
as a result of pixelation. Moreover they are relative expensive and have a low resolution.

2.2 OAM beams generation

In the next sections the generation of perfect vortices and Laguerre-Gaussian beams is discussed in
details.

2.2.1 Experimental setup

In order to accomplish this purpose an experimental setup based of SLMs is set on an optical table
(figure 2.2,figure 2.3).

Figure 2.2: Optical line before SLM: 1.laser, 2.polarization filter, 3.telescope, 4.beam splitter, 5.SLM

Figure 2.3: Optical line after
SLM

The source of light is a laser of wavelength λ = 632.8nm (HeNe laser,
HNR008R, Thorlabs). This is followed by a horizontal polarization
filter and a telescope made by two lenses with focal length d1 =
2.54 cm and d2 = 15 cm respectively, resulting in a magnification
equal to the ratio d2/d1. After the telescope a beam splitter 50 : 50
divides the beam into two parts: one goes straight until the SLM,
the other remains unperturbed and it is redirected by a sequence of
mirrors for interferometry analysis. The SLM used (PLUTO-NIR-
010-A, Holoeye) has a reflective LCoS display with a resolution of
1920x1080 pixels which have a pitch of 8 µm, 8-bit depth (256 phase
levels) (figure 2.2).

After interacting with the SLM, the emerging beam includes the de-
sired optical vortex. In the view of isolating and imaging only the
first order, a 4f system with an aperture in the Fourier plane is set.
This system consists of two lenses with focal length f1 = 20 cm and
f2 = 25 cm respectively, placed at a distance d = f1 + f2 = 2f , the
SLM at a distance f1 from the first lens, the detecting camera that
completes the optical line at a distance f2 from the second lens and an iris in the middle of the two

7



CHAPTER 2. OAM BEAMS GENERATION 8

lenses that removes all the orders except for the first one. The DCC camera (DCC1545M, Thorlabs)
detects also the unperturbed beam, in this way it is possible to observe explicitly the topological
charge of the structured light beam thanks to their interference (figure 2.3).

The first step in order to generate beams carrying orbital angular momentum is the realization of a
computer-generated hologram with the phase and amplitude modulation described in section 2.1.1.
To generate them some MATLAB codes have been used.

2.2.2 Perfect vortices

As seen, a perfect vortex beam is characterized for having a beam radius that doesn’t depend on the
topological charge m. After setting up wR = 0.8mm, R = 1.1mm and the topological charge in the
interval m = [−5; 5], the resulting holograms have been uploaded by a specific program on the SLM.

Figure 2.4: Perfect Vortices: SLM holograms (first row), intensity profiles (second row), spiral interferograms
(third row)

In figure 2.4 first row, it is possible to observe the computer-generated holograms in the greyscale that
are converted in voltage variations by the electronic circuit of the SLM. In the central rows of images
the characteristic ”donut” shape allows to underline the independence of the beam radius from the
topological charge. As predicted by the theory, the intensity profile shows a black hole in the centre
because of the phase singularity. In the third row the result of the interference between the vortex
beam and the unperturbed, that is a Gaussian, is show: the result is a spiral interference pattern that
underlines the shape of the wavefronts that are helically twisted around the axis of propagation, with
the number of helices and the verse of rotation given respectively by the modulus and the sign of the
topological charge.

8



9 CHAPTER 2. OAM BEAMS GENERATION

To confirm that the beams generated are actually the desired ones, a MATLAB code has been im-
plemented to compare the theoretical expectation, seen in section 1.2.1, with the experimental result.
Taking a fixed radius, the intensity averages along concentric circles are plotted in order to observe

the intensity profile in the interval [0;R′], where R′ =
5

4
R due to the magnification of the telescope.

(a) m = 0 (b) m = 1 (c) m = 2

(d) m = 3 (e) m = 4 (f) m = 5

Figure 2.5: Comparison between theoretical function of perfect vortices and experimental results

Figure 2.5 shows how the experimental data follow up effectively the theoretical law seen in section
1.2.1. Data around the peak are characterized for a large error because of the low resolution of the
SLM that introduces noise in the generation of the beam.

This procedure has been repeated taking a fixed value m = 5 and varying the parameters wR and R
to observe the way in which the profile of the vortex changes (Table 2.1).

Perfect vortices with m = 5

wR R

a 0.1 mm 0.2 mm
b 0.1 mm 0.4 mm
c 0.3 mm 0.4 mm
d 0.2 mm 0.8 mm
e 0.4 mm 0.8 mm
f 0.5 mm 1.2 mm

Table 2.1: Parameters wR and R for different perfect vortices with fixed m = 5

In figure 2.6 the detected images are collected and, as previously done, the experimental data and the
model have been compared to confirm that the beams generated were those desired.

9



CHAPTER 2. OAM BEAMS GENERATION 10

(a) R = 0.2mm, wR = 0.1mm (b) R = 0.4mm, wR = 0.1mm

(c) R = 0.4mm, wR = 0.3mm (d) R = 0.8mm, wR = 0.2mm

(e) R = 0.8mm, wR = 0.4mm (f) R = 1.2mm, wR = 0.5mm

Figure 2.6: Perfect Vortices at fixed m, different radius and width, and comparison with theory. The experi-
mental maximum radius is R′ = 5/4R, as expected, due to the telescope magnification.

10



11 CHAPTER 2. OAM BEAMS GENERATION

2.2.3 Laguerre-Gaussian beams

As seen in section 1.2.1, the parameter that is possible to control in LG beams is the beam waist, w0,
from which the beam radius R depends. Once configured the desired w0 = 0.8mm, the values of the
topological charge m and the azimuthal index p have been varied in the code for the generation of
the computer-generated holograms. Firstly, the azimuthal index p has been set at the value p = 0, to
focus the attention on the variation of the intensity profile due to the change of the topological charge.

Figure 2.7: Laguerre-Gaussian beams: SLM holograms (first row), intensity profiles (second row), spiral inter-
ferograms (third row)

(a) m = 0 (b) m = 1 (c) m = 2

(d) m = 3 (e) m = 4 (f) m = 5

Figure 2.8: Comparison between theoretical profiles of Laguerre-Gaussian beams (eq.1.3) and experimental
results

11



CHAPTER 2. OAM BEAMS GENERATION 12

In figures 2.7 and 2.8, it is possible to appreciate the increase of R depending on m. The first image
in the second row is simply a Gaussian beam and it doesn’t show the phase singularity of the optical
vortex because for m = 0 the beam doesn’t carry OAM. In the last row the spiral interferograms
permit to visualize the helical wavefronts due to the orbital angular momentum imposed. Also in this
case a MATLAB code has been implemented to compare the experimental result with the theoretical
expectation (figure 2.8).

In a second moment, beams with p ̸= 0 have been generated. In specific, the values m = 1, 2, 3 and
p = 0, 1, 2 have been taken into account. The resulting vortex beams are collected in the following
figure.

Figure 2.9: Laguerre-Gaussian beams with variable p: intensity profile and spiral interferograms

In figure 2.9, it’s possible to see the increase in the number of rings, varying the azimuthal index,
related to the forms of the polynomials of Laguerre in eq.1.3. In the spiral interferograms the presence
of the index p results in a phase shift π that is possible to see looking at the helices which are not
continuous in brightness. Also for these cases, a comparison between experimental data and theory
has been implemented. The results are collected in the following figures.

(a) p = 0 (b) p = 1

(c) p = 2

Figure 2.10: Comparison between theoretical function of LG beams and experimental results (m=1)

12



13 CHAPTER 2. OAM BEAMS GENERATION

(a) p = 0 (b) p = 1

(c) p = 2

Figure 2.11: Comparison between theoretical function of LG beams and experimental results (m=2)

(a) p = 0 (b) p = 1

(c) p = 2

Figure 2.12: Comparison between theoretical function of LG beams and experimental results (m=3)

13



Chapter 3

Detection of optical vortices

One of the fields in which increasing attention is given to vortex beams is that of telecommunications.
Nowadays the information transmission capacity has almost reached the physical limit of single-mode
optical fibers, the so-called Shannon limit [13]; consequently, the request of alternative transmission
methods becomes relevant. In this perspective, the orbital angular momentum of light suggests the
possibility of multi-mode transmission thanks to the orthogonality of different OAM beams. This
technique takes the name of mode division (de)multiplexing (MDM). Different procedures exist in
order to sort a set of multiplexed different OAM beams. The diffractive optics approach, consisting
in the use of holographic OAM-mode analyzers, is the one considered in this thesis.

3.1 Diffractive OAM-mode analyzers

The key point of this method is the proper design of a diffractive optical element (DOE) that is based
on a harmonic analysis consisting in an expansion of the incident beam into a linear combination
of angular harmonics. The phase pattern is described by a transmission function written as linear
combination of a selected number of element of the chosen orthogonal basis ψj ∝ exp(imθ), resulting
as

ΩDOE(ρ, θ) = arg

{︃ n∑︂
j=1

cjψ
∗
j exp[iρβjcos(θ − θj)]

}︃
where {(βj , θj)} are the vectors of the carrier spatial frequencies in polar coordinates and cj are the
complex coefficients given by the relation

cj =

∫︂ 2π

0
dθ

∫︂ ∞

0
ψj exp(iΩDOE) exp[−iρβjcos(θ − θj)]ρdρ

The modulus of cj is given arbitrarily while the relative phases are free parameters of the task. In
order to calculate this phase pattern for a given basis of OAM modes with topological charges {mj}
an iterative algorithm based on a modified Gerchberg-Saxton method implemented in MATLAB is
used. The algorithm [14] consists in computing the sums in the transmission function ΩDOE(ρ, θ) and
the integrals of the coefficients cj using the Fast Fourier Transform algorithm (FFT) imposing some

constraints: at the p-th iteration, the coefficient c
(p)
j is replaced by c

∗(p)
j with

c
∗(p)
j =

[︁
γTj + (1− γ)|c(p)j |

]︁ c(p)j

|c(p)j |

where 0 < γ ≤ 2 and Tj = 1 are the relaxation coefficient that controls the convergence and pre-given
numbers characterizing the response of each channel respectively. The resulting estimation is put
in the transmission function, after phase quantization is applied. At the end, the resulting DOE is
assumed to be fabricated as surface-relief patterns of pixels realized, for example, by electron beam
lithography (EBL). In the framework of this thesis, the designed phase patterns have been loaded onto
an SLM as Bitmap figures.

14



15 CHAPTER 3. DETECTION OF OPTICAL VORTICES

3.2 Holographic sorter by means of SLM

In order to observe different configurations in detecting OAM beams, an important role is assumed
by SLMs, due to their flexibility in using only one device to model different samples, but with a loss
in terms of resolution. In the following sections, demultiplexing and detection of perfect vortices with
R = 0.8mm and wR = 0.3mm are discussed in details.

3.2.1 Experimental setup

The experimental setup used is that exposed in section 2.2.1 with the addition of some elements at
the end of the optical line.

Figure 3.1: Experimental setup and SLM for optical vortex beams detection

In particular, the OAM beam generated by means of the first SLM is directed through the last beam
splitter into a system composed by an SLM identical to the first one (PLUTO-NIR-010-A, Holoeye),
a DCC camera (DCC1545M, Thorlabs) and a lens in between the two, of focal length f = 12.5 cm
placed at a distance d = f from both the DCC camera and the SLM (figure 3.1)

Once the optical setup is composed, MATLAB codes are used to produce different types of phase
patterns. These are realized modifying the sequence of coding lines in which the parameters rj and
ϕj , defining the positions of the spots (rj , ϕj) in the far-field, are set: the relation with the vectors
{(βj , θj)} is given by, {︃

rj = βj
f

k
ϕj = θj

In particular, the attention is focused on three aspects: the spatial configuration, the selection of the
number of different OAM modes and the choice of subsequent topological charges. In the following,
we will consider the effect of changing these degrees of freedom in the sorter design.

3.2.2 Design of the spatial configuration

The values of topological charge taken into account in this case are m = [−3; 3]. The general proce-
dure has been the following: at first the coordinates rj and θj are set in order to visualize different
configurations for the detection spots: in particular, a straight line and an exponential spiral have
been considered. Once the phase patter is produced, as described in the previous section, it has been
loaded on the second SLM accepting the OAM beam generated by the first one. At this point the
reflected beam is directed to the camera in order to visualize and collect the result.

15



CHAPTER 3. DETECTION OF OPTICAL VORTICES 16

� Bisector configuration

Figure 3.2: bisector configuration model(A), designed DOE(B), DCC image (C), 3D plots of a hole (d1) and a
peak(d2) in the far-field. The thin yellow circle surrounds the region in which the detector of the selected OAM
beam is located.

Figure 3.3: Bisector configuration: output for input m equal to -3(A), -2(B), -1(C), 0(D), 1(E), 2(F), 3(G)
related to the pattern in figure 3.2 (the thin yellow circle surrounds the region in which the detector of the
selected OAM beam is located), total intensity collected in the far-field in all the detectors, normalized to the
total collected energy, plots in 2-dimension (H) and 3-dimension (I)

As shown in figure 3.2, the final output is comparable to a matrix of single detectors setted
on a specific value of the topological charge. Once each of them is reached by the emerging
beam, the combination of the setted m∗ and the one of the incoming beam m results in a OAM
mode of topological charge equal to their sum: when the result is equal to 0, a Gaussian peak
appears in the corresponding spot, while the characteristic annular intensity is shown for the
other channels. In the figure 3.3 the DCC images are collected in order to observe the shift of
the peak while changing the topological charge m of the incoming beam. Integrating over the
small area in which the intensity peak is centred, it is possible to obtain the intensity collected

16



17 CHAPTER 3. DETECTION OF OPTICAL VORTICES

by each channel; by normalizing it to the total energy, an efficiency of the procedure around
60% is calculated. The corresponding plots are shown in figure 3.3(h,i).

� Spiral configuration
The same procedure has been repeated changing the spatial configuration into a spiral.

Figure 3.4: spiral configuration model(A), designed DOE(B), DCC image (C), 3D plots of a hole (d1) and a
peak(d2) corresponding to the presence or not of the target OAM beam, respectively. The thin yellow circle
surrounds the region in which the detector of the selected OAM beam is located.

The DCC images, one for each value of m = [−3; 3] of the incoming OAM beam, are shown in
the following figure.

Figure 3.5: Spiral configuration: output for input m equal to -3(A), -2(B), -1(C), 0(D), 1(E), 2(F), 3(G) related
to the pattern in figure 3.4, total intensity collected in the far-field in all the detectors, normalized to the total
collected energy, plots in 2-dimension (H) and 3-dimension (I). The thin yellow circle surrounds the region in
which the detector of the selected OAM beam is located.

In the same way, the total intensity collected by each channel is plotted in order to have an
approximation of the efficiency. To conclude, the cross-talk (XT) of the channel corresponding
to a given value of m is defined as:

XTm=m∗ = 10 · log10
I∗

ITOT

17



CHAPTER 3. DETECTION OF OPTICAL VORTICES 18

in which I∗ is the sum at a fixed m∗ of all the intensities when all the channels are on, except
for that corresponds to m∗, while ITOT is the total intensity collected by a specific channel when
all the channels are used, m∗ included.

Cross-talk

configuration XT[dB]

bisector -4.79 ± 0.54
spiral -4.66 ± 0.40

The cross-talk is a negative value that rep-
resents the efficiency of the process and
the isolation of the channels. The goal is
that of decreasing this value, in order to
have the maximum intensity collected in
the corresponding channel.

Due to the overlap between the area of integration and the surrounding rings out of the intensity
peak, there is always a small part of the OAM mode that is diffracted and detected in the other
channels. In order to avoid this, the more suitable spatial configuration has to be designed.

3.2.3 Selection of the number of channels

As seen, it is possible to select an interval of values for the topological charge and then, the control
of the configuration in the spatial distribution of the spots can be implemented. It is possible to
repeat the same procedure with a greater number of channels. In the specific, this has been done with
topological charge values in the interval of m = [−5; 5] for a total of 11 channels. In this case the
spots have been placed in a configuration consisting of two concentric circles.

(a) DOE (b) DCC image

(c) Total intensity 2D plot (d) Total intensity 3D plot

Figure 3.6: holographic OAM-analyser for 11 channels. Designed DOE (a), DCC image of the output form = −2
(b), total intensity collected in the far-field in all the detectors, normalized to the total collected energy, plots
in 2-dimension (c) and 3-dimension (d). The yellow circle surrounds the region in which the detector of the
selected OAM beam is located.

18



19 CHAPTER 3. DETECTION OF OPTICAL VORTICES

Due to the limited area over which the beam is detected in the far-field, an increasing number of
channels is translated into a loss in efficiency. In terms of Cross-talk, in this case a value of XT =
(−3.49± 0.13)dB is calculated: comparing it with the results of the previous section, a worsening in
the efficiency is revealed.

3.2.4 Choice of the topological charge values

One way to improve the cross-talk, which means to reduce it, is to increase the separation between
OAM modes in term of topological charge. Designing a diffractive optical element in order to detect
OAM modes with m = [−3; 3] with an interval ∆m = 1 implies a possible superposition of spurious
contributions from nearest-neighbours OAM values, as seen above. In the following, holographic sorter
with different intervals ∆m are exposed.

� ∆m = 1

(a) DOE (b) DCC image (c) Total intensity 2D plot

� ∆m = 2

(d) DOE (e) DCC image (f) Total intensity 2D plot

� ∆m = 3

(g) DOE (h) DCC image (i) Total intensity 2D plot

Figure 3.7: holographic OAM-analyser for ∆m = 1, 2, 3. Designed DOE (a), DCC image of the output for
m = n∆m, with n = 1, 2, 3 respectively (b), total intensity collected in the far-field in all the detectors,
normalized to the total collected energy, plots in a 2-dimensional matrix (c). The yellow circle surrounds the
region in which the detector of the selected OAM beam is located.
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CHAPTER 3. DETECTION OF OPTICAL VORTICES 20

Figure 3.8: 3D matrices with collected intensity for each channel, normalized to the total energy

Cross-talk

configuration XT[dB]

∆m = 1 -4.57 ± 0.31
∆m = 2 -9.09 ± 0.26
∆m = 3 -10.8 ± 0.22

It is noticed straightforwardly how the ef-
ficiency increases, looking at the matrices
containing the information on the total in-
tensity collected by each channel, in par-
ticular, as shown in the following figure.
To quantify the improvements, the cross-
talk is computed and a graphic compari-
son is possible as indicated in figure 3.9.

Figure 3.9: For the configurations shown in figure 3.7 the values of the Cross-talk for different ∆m are grouped
for each channel (OAMvalue/∆m).
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Conclusions

In this thesis the attention has been focused on the generation and detection of beams carrying orbital
angular momentum. Starting from the principles of wave and beam optics, the paraxial Helmholtz
equation and its more useful solutions have been discussed in order to underline the features that
characterize vortex beams, in general.

At this point, having the required theoretical knowledge, it has been possible to implement compu-
tational codes in MATLAB in order to design diffractive optical elements to generate optical vortex
beams. An experimental setup based on SLMs has been arranged in order to visualize and analyse
OAM modes. As predicted, the generated beams at variable values of the topological charge presented
the characteristic annular intensity distribution confirming the existence of an optical vortex on the
optical axis of the beam. By means of interferometric measurements, the helicoidal wavefronts have
been underlined, proving one more time the theoretical predictions.

Structured light covers an important role in the context of telecommunication. In particular, (de)
multiplexing techniques have been developed in order to satisfy the increasing demand in terms of
bandwidth. One of this technique has been discussed in detail in this thesis: the mode-division multi-
plexing. Different OAM-mode analyzers have been implemented in order to study the possible degrees
of freedom that can be manipulated in the view of improving the efficiency of this procedure. Due
to spurious contributions from nearest-neighbours OAM values, it’s necessary to find some ways to
separate OAM beams in terms of spatial distribution and topological charges. In the specific, signif-
icant improvements have been seen taking topological charges with increasing ∆m. More advanced
techniques consists in combining OAM-MDM and SDM demultiplexing considering only the phase-
pattern zone where the incident field is non-null; in this way, it’s possible to use the remaining space
for different phase pattern in order to form a multi-ring DOE with different phase levels [14]. SLMs
play an important role in modelling different phase patters and to generate various classes of beams
by means of a single device. Once the desired results are obtained, the elements can be fabricated
with lithographic techniques as diffractive optics or metasurfaces [15].

To conclude, a quick overview of the more relevant applications is considered. Once laser beams
carrying orbital angular momentum could be engineered, they found a large number of applications
in a wide range of fields like microscopy, astronomy, communications, quantum information, etc.

� communications in free space: as seen in chapter 3, high dimensionality of OAM states space is
relevant in information precessing and communication tasks. In this view, researches are focused
on extending the actual applications to different regions of the spectrum and, in particular, longer
wavelengths [16].

� imaging: due to the particular annular intensity distribution, OAM beams are used in advanced
researches in astronomy, to implement new techniques for the identification of objects against
bright background [17], in microscopy, to develop new models of microscope with higher resolu-
tion [18]. Furthermore, OAM beams can be used to reconstruct 3D images from a single scan of
the sample [19].

� quantum information: due to the peculiarity of having a basis of an infinite number of orthogonal
OAM states, a high dimensional state space is accessible to photons opening to new applications
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in the field of cybersecurity (QKD) [7], and it is possible to entangle photons both in spin and
OAM [3].

� trapping particles: it consists in the possibility to transfer separately spin or orbital angular
momentum to a trapped particle causing a rotation around its centre owing to spin angular
momentum, or around the centre of the beam owing to orbital angular momentum. This led
to a wide use of angular momentum of light in the field of optical micromanipulation and
trapping [20]
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