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Abstract

This thesis work is going to study how the use of artificial intelligence, and more
specifically machine learning applied through the implementation of neural networks,
can be applied to structural mechanics analyses carried out on different types of
cantilever beam and shell structures. The use of this type of new technology to
exploit artificial intelligence makes it possible to greatly reduce the calculation time
required for the conventional analysis of these structures that would be required with
finite element analysis, while still managing to maintain a high level of reliability in
terms of predicting results such as stress and displacement of structures in response
to applied loads. In order to be able to effectively apply machine learning with
the implementation of a neural network for the study of a shell-type structure, the
transfer matrix method is used, thanks also to the exploitation of representations of
the applied load by means of Fourier series.

One would like to thank the RWTH Aachen Polytechnic University for the
opportunity provided, the German thesis advisor Dipl.-Ing. Thomas A. Schervan
for his guidance, collaboration and revision during the thesis work carried out in
Germany, the Head of the SLA RWTH Univ.-Institute of Structural Mechanics and
Lightweight Aerospace Structures, Prof. Dr.-Ing. Kai-Uwe Schröder, and for the
collaboration and final revision of the thesis work the Italian thesis advisor Prof.
Mirco Zaccariotto.

Italian version:

Questo lavoro di tesi va a studiare come l’utilizzo di intelligenza artificiale, e più
specificatamente del machine learning, sia applicato mediante l’implementazione di
reti neurali e possa essere applicato alle analisi di meccanica strutturale effettuate
su diversi tipi di struttura, in particolar modo una cantilever beam e una struttura
di tipo shell. L’utilizzo di questo tipo di nuove tecnologie, per sfruttare l’intelligenza
artificiale, consente di andare a ridurre in modo molto importante i tempi di calcolo
necessari per l’analisi convenzionale di queste strutture che si avrebbero con analisi
agli elementi finiti, pur riuscendo a mantenere un livello di alta affidabilità in termini
di predizione dei risultati quali stress e displacement delle strutture in risposta
a carichi applicati. Per poter applicare in modo efficace il machine learning con
l’implementazione di una rete neurale per lo studio di una struttura di tipo shell,
viene utilizzato il transfer matrix method, grazie anche all’impiego di rappresentazioni
del carico applicato mediante serie di Fourier.

Si ringrazia l’università politecnica di Aquisgrana RWTH per l’opportunità for-
nita, il relatore tedesco Dipl.-Ing. Thomas A. Schervan per la guida, la collaborazione
e la revisione durante il lavoro di tesi svolto in Germania, il Direttore dell’istituto di
meccanica strutturale e strutture leggere aerospaziali dell’università RWTH Univ.-
Prof. Dr.-Ing. Kai-Uwe Schröder, e per la collaborazione e la revisione finale del
lavoro di tesi il relatore italiano Prof. Mirco Zaccariotto.
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Chapter 1

Introduction

In this first chapter, there is a brief introduction to the background of the thesis
project. This thesis was carried out during an Erasmus international mobility period
at the RWTH Aachen Polytechnic University, in collaboration with the Institute
for Structural Mechanics and Design of Lightweight Aerospace Structures, under
the guidance of Univ.-Prof. Dr.-Ing. Kai-Uwe Schröder, with German co-advisor
Dipl.-Ing. Thomas A. Schervan and Italian advisor Prof. Mirco Zaccariotto.

1.1 Objective

Structural calculations of large structures made by means of F.E.M. finite element
analysis, especially considering shell-type structures, usually require very considerable
computational time as the complexity of the structure itself increases. In everyday
life, the space sector uses many structures of this type, just think of the propellant
tanks for launchers or vehicles suitable for space transport, the fuselage of an aircraft,
or the modules of the International Space Station and the cargo vehicles that supply
it with raw materials essential to the lives of the astronauts and the experiments
they conduct.

It is therefore necessary to reduce the calculation time for structural analyses
of this type, while maintaining a good reliability of the results, in order to reduce
the design time and costs of these structures used in aerospace and increasingly also
in industry. To this end, therefore, neural networks were implemented to predict
the behaviour of a cantilever beam and a shell-type structure under applied loads,
respectively, to be included in a larger context of a prediction tool consisting of neural
networks to be used for structural calculations within the institute for structural
mechanics and design of lightweight aerospace structures at the RWTH Polytechnic
University.

1.2 State of the art

With regard to the state of the art in the use of artificial intelligence in structural
analyses, it is very common to use neural networks of a convolutional type that
analyse images, pictures or videos of structures in search of possible damage or
cracks. For this reason, I chose to follow the path of constructing neural networks
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of a different type, pertaining to the field of deep learning, then using them in the
prediction of stress and displacements of the structures analysed.

1.3 Overview
In the development of the work of this thesis, therefore, one will proceed with an
introduction and explanation regarding what machine learning is and how it is
used in modern engineering. Next, the beam theory for bending and normal force
behaviour is explained, as this theory forms the basis of the cantilever beam study.
One proceeds with the description of the implementation and the results obtained
regarding the study of a cantilever beam clamped constrained is subjected to a
concentrated force acting on it that leads it to bending. This first part is necessary
to introduce the study of neural networks in structural mechanics. In the second
part of this thesis, one continues with the description and explanation of the transfer
matrix method and the behaviour of shell-type structures. This method will in fact
be the one that allows the implementation of the neural network architecture used
for the study of a shell-type structure with a cylindrical shape, of very wide use
as previously explained in aerospace, subjected to an internal pressure load that is
described using a Fourier series. A possible analysis of the inverse problem of the
shell is presented. One will conclude with an analysis of the results and possible
future developments.
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Chapter 2

Machine Learning in structural
mechanics

In this chapter, one presents how machine learning is used in engineering today,
describing the functioning of the main types of artificial intelligence used, starting
from the origins of the introduction of this new technology to its most recent uses.

2.1 Machine Learning basics and origins

Nowadays, the artificial intelligence is really important and widespread for a lot of
applications, regarding engineering, medicine, biology and a lot of other scientific
areas. Inside Artificial Intelligence, commonly known as AI, there a branch that is
gaining success and importance: this is Machine Learning. Machine Learning, as
it is easy understandable from the name itself, is a special technique that belongs,
as previously said, to artificial intelligence, that consist in give to the computer
itself the capability of understand hidden relations behind a provided problem, link
together data provided to the machine, and then improve its knowledge without the
need of having a person physically programming the computer, giving predictions
using algorithms and available data-set. Machine Learning is often used in self-
driving cars, image and details of images and videos recognition, speech recognition
and production, alerts for cars and traffic using the navigator, medical diagnosis,
security for electronic devices, and it is used also in sports with technologies such
semi-automatic offside and the goal line technology used during soccer matches etc.

To find the origin of Machine Learning as a theoretical concept, it is necessary to
look in the past till the year 1943 for the conception, and to 1959 to find the original
coining of the word; despite that, the very first use, especially in engineering design,
and precisely also for structural mechanics, has to be referred to 1989, with the work
of Adeli and Yeh, that studied how to teach a computer how to improve itself in the
study of structures for civil engineering, using a steel beam design problem. [1]

Looking closer to the Machine Learning, there three main classes can be spot
inside, that can be summarized as: unsupervised learning, supervised learning, and
reinforcement learning. The first class of learning process is based on training an
algorithm using an unlabelled data-set; for the supervised learning process instead,
the learning process of the algorithm is done by using a labelled data-set, making this
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method perfect for classification problems and regression problems, aiming to link a
set of features given as input to an output (one or a set); the third class of learning
process is the reinforcement learning method, in which the algorithm is trained using
a try and error process. The second class, the supervised learning process, is of
particular interest in structural engineering, and giving some examples, a typical
classification problem that uses this method is the damage and cracks detection,
then, a typical regression problem can be the prediction of strengths and stresses
in a structure. Structural engineering is using more and more Machine Learning,
differentiating using different methods for every purpose that has to be fulfilled in
order to study a lot of applications. The most known are for sure artificial neural
network (ANN), support vector machine (SVM), random forest (RF), boosting
algorithm (BA), decision tree (DT), regression analyses (RA), and many others.

Machine learning used in structural engineering can be useful in saving time that
normally in a structural analysis and using a conventional design process can be
fundamental, giving affordable results in a reasonable time, allowing to modify then
the initial input also adding some little modifications. This fact led to a first use
of Machine Learning in past, around the ’90, when the computation capability of
computer machines was absolutely not comparable with the one that every computer,
also the weakest one, has nowadays available. In this field, one of the most used
method has become the implementation of neural networks, of which many past
references can be found starting from 1989[1] as previously said, and from 1991
with another interesting work conducted by Hajela and Berke [12]. The fact that
in the first period machine learning is still at its very first phase can be proved
also counting the number of publications of those years, that was not high, due to
computational limits but also due to simplicity of the first algorithms implemented,
as clearly visible in Fig. 2.1 The number of Machine Learning methods used at the
state of the art is big, and many of them can be applied also to structural mechanics,
and this is the topic of the next section.

Figure 2.1. Yearly distribution of articles related to ML applications in structural engi-
neering considering all the available algorithms. [27]
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2.2 Machine Learning algorithms
A lot of algorithms and new technologies arise every year using artificial intelligence
with all its sub-classes and techniques (see the composition in Fig. 2.3); here are
presented the most widespread methods to use machine learning and its theoretical
peculiarities in structural design. In recent time, the use of Python and some
common python libraries, open-source developments and already existing data-sets
has increased the use of machine learning also for common users, without specific
knowledge in computer science. The performances of the learning method and the
initial data-set provided to the algorithms are important evaluating the precision and
the accuracy of the machine learning model. The sequence then in building machine
learning models can be divided in three processes: creating databases, learning, and
evaluating models.

Initial data are split in two big data-sets: the training data-set, that contains the
vast majority of data, use to train the algorithm, and the testing data-set, whose
values are not submitted to the machine learning method during the train, but just
after it, resulting than as completely unknown for artificial intelligence. Sometimes,
to improve the results of some algorithms, it is very important to scale input data
in a range that goes from 0 to 1, normalizing them. [5] The steps for the creation of
the training data-set are summarized in Fig. 2.2

Figure 2.2. Steps for the creation of the training data-set. Image source: [14]

Then, comparing all the available algorithms is important to choose the one
that best suits the needs of the studied problem. Once chosen, the training of the
algorithm starts using the training data-set. After the training, the testing data-set
is used to test the performance and the predictions that the algorithm is now capable
to provide. As performance indicator, a loss function is used to measure the real
difference between the predicted value of a variable and its true value. Select the
correct loss function has consequences in the evaluation of performance; the most
used and representative loss functions for regression problems are the Root Mean
Square Error (MSE) and Mean Absolute Error (MAE).
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Mean squared error (MSE) is a loss function used to solve regression problems,
calculated as the average of the squared differences between the actual and predicted
values:

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (2.1)

where:

• n - the number of data points.

• y - the actual value of the data point. Also known as true value.

• ŷ - the predicted value of the data point. This value is returned by model.

Mean absolute error (MAE) is a loss function as well used to solve regression
problems, calculated as the average of the absolute differences between the actual
and predicted values.

MAE = 1
n

n∑
i=1

|yi − ŷi| (2.2)

where:

• n - the number of data points.

• y - the actual value of the data point. Also known as true value.

• ŷ - the predicted value of the data point. This value is returned by model.

The commonly used machine learning algorithms for structural engineering are
designed for specific purposes, presenting different strength points and weaknesses.
An idea of the majority of the nowadays used algorithms can be seen in Fig. 2.4
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Figure 2.3. Schematic view of the broad range area of the artificial intelligence. Image
source: [25]

Figure 2.4. Machine Learning algorithms grouped by learning type. Image source: [27]
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Regression analysis is a predictive modelling technique based on statistics that
allow to study the relationship between an independent variable (predictor) and
a dependent variable (target). This method is applied in the supervised learning
algorithm, to predict, based on the values of the input variables, the output values.
Many regression models have been developed, differentiating one to each other in
the number and/or type of variables, and the shape of the regression lines used. The
most used regression analysis methods for structural mechanics are:[27]

• Linear Regression: the simplest regression model, in which a linear function
best fits output and input variables. Minimizing the loss function, such as
MSE and MAE previously defined, the coefficients of the linear equation are
determined. With only one input variable, the model is called simple linear
regression. With multiple input variables, it is called multiple linear regression;

• Multivariate regression: it is an extension of multiple linear regression when
dealing with problems with multiple output variables. "Multivariate" refers
to multiple output variables, while "multi" refers to multiple input variables.
The advantage of this approach is that it helps to understand the relationship
between input and output variables;

• Polynomial regression: the difference between this model and the linear re-
gression model is the shape of the regression line. The line of best fit in a
polynomial is a curve for which the power of the input variables is greater than
one (a polynomial function). Overflow can occur in the model if the input
variables are fitted using higher order polynomials to obtain a smaller error.
Therefore, it is useful to plot the model to ensure reasonable results;

• Lasso regression: Least absolute shrinkage and selection operator (LASSO)
regression is a common version of linear regression and is used when the input
variables are highly correlated. In this case, using linear regression techniques
can lead to over-fitting. Therefore, this model is proposed to reduce over-fitting
by adding a regularization term to the cost function during training. This
keeps the weight of the model as low as possible. The regularization term used
in this model is the absolute value of the weights; [8]

• Ridge regression: Similar to lasso regression, this form is also a normal version
of linear regression. However, the regularization term used here is the squared
value of the weights, not the one used in lasso regression. The goal of this
modelling technique is to try to remove weight from less important features;
[8]

• Logistic regression: This regression technique was developed for classifica-
tion problems when the output variable is binary or discrete in nature (e.g.
true/false, 1/0, yes/no, etc.). In this model, the relationship between input and
output variables is represented by a logistic function (also known as a sigmoid
function). The method is based on the concept of probability. This means
that the model outputs a binary value of 0 (when the estimated probability
is less than 50%) or 1 (when the estimated probability is greater than 50%)
instead of a numeric value.
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Neural networks are one of the most used machine learning methods, especially in
structure engineering problems, where they are also called Artificial Neural Network.
This model works exactly as a biological neuron in the human brain, doing the
same job. The first artificial neural network was created in 1958, by RosenBlatt,
who created a model called Perceptron, using the capable of performing pattern
recognition tasks after training.[21] It can be defined as a function

ϕ(X⃗) = y (2.3)

that calculates

b+
∑

xiwi (2.4)

where wi are the weights to learn and xi are the input elements of X⃗.

The output of a neuron is the result of its activation function ϕ, which is a Heaviside
step function (threshold function) that returns 1 if y > 1 and 0 otherwise. During
the training process each weight is adjusted, in a supervised manner, with the desired
output known by the training data-set. Given the training sample, the new weights
are modified by

wt+1
i = wt

i + α(ȳ − y)xi (2.5)

with a learning rate α that controls the size of the update, and ȳ is the expected

output for the input vector X⃗. Iterating this process for a given number of e epoch
for the training data-set, Perceptron tends to find solutions to linearly separable
binary problems. [22]

Thanks to the continue improving of computers, ANN is the most used machine
learning algorithm today, including some variants such as:

• feed-forward neural network, the first and simplest type, that transmits infor-
mation only form input node to output node, in a forward direction;

• improved by multi-layer perceptron, an improved version of feed-forward neural
network that uses also one or more hidden layer between input and output;

• radial basis function neural network, with a specific activation function;

• convolutional neural network (CNN), specifically developed for image recogni-
tion using deep learning, implemented especially in image clustering, division,
and recognition;

• recurrent neural network improved by long short term memory, designed to
interpret temporal or serial information;

• adaptive neuro-fuzzy inference system, combines the learning capabilities of
the adaptive neural network with the inference of the fuzzy inference system;



10 2. Machine Learning in structural mechanics

• physical neural network (PINN), in which a physical process is trained rather
than a mathematical process, training directly the physical transformation of
the machine to carry out the required calculations.

The convolutional neural network is a method very used in structural mechanics
for crack detection based on images, detecting damages on structure very quickly.
Each of the layers of a convolutional neural network can convert the information
from the previous layer into more complex information, passing them to the next
layers. Connected to it, a team at Google achieved another impressive algorithm
by creating a new ML method called AutoML-Zero that scales without human
intervention. .[19]

2.2.1 Artificial Neural Networks

The Artificial neural networks are made up of artificial neurons, structures like the
human brain, called nodes. These nodes are arranged in three layers, and they are
connected one to each other (see Fig. 2.5 (a)). The input layer received the data x,
and then the predictions of the network are then presented in y in the output layer
(see Fig. 2.5 (b)). More hidden layers consisting of data processing units are present
between the input and output layers: they can be one or more, and they do the
fundamental computational operations on the input data. When an Artificial neural
network is designed with two or more hidden layers, it is called Deep Learning and
is a specific sub-field of Neural network-based machine learning algorithms.[23]

Figure 2.5. Example of an ANN. Image source: [27]

To every neuron a weight w is assigned controlling how it behaves, so that the
corresponding weight wi is multiplied by the data xi that passes to the input layer.
Then, a transfer function is used to calculate the weighted sum of the inputs, to
which the bias b is added to reduce at minimum the difference between the desired
value and the one obtained from the algorithm, by adjusting incrementally this bias
parameter b. To control if the node has to send data to the output layer or not,
the value of the transfer function is passed through the activation function f . First,
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training an artificial neural network, some random weights values are assigned to
the nodes, and then they are adjusted thanks to the use of an error function, that
check the difference of predicted and desired value as soon as the activation function
passes to the output layer the predicted value y in order to minimize the difference
just described: this is the back-propagation process. To end this process of training,
the developer set a convergence condition. A typical scheme of artificial neural
network flow is presented in Fig. 2.6. To control and optimize the learning process
and the training process, there are some so called hyper parameters that have to be
chosen when the model of the neural network is defined. These hyper parameters
are correlated to the structure and architecture of the neural network itself, and
are for example the number of hidden layers used, the number of nodes per hidden
layers, and the type of activation functions, and correlated to the training variables
for example the leaning rate, the number of epochs (iterations that the network will
do to try to converge), momentum, and batch size.

Figure 2.6. Some frequently used activation functions. Image source: [11]

Increasing the number of hidden layers and hidden nodes can increase for sure the
precision and accuracy of the prediction, but the risk is to make the computational
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time explode. The activation function is used to account for the non-linearity of
the models themselves. Some examples of activation functions can be seen in the
Fig. 2.7.

Figure 2.7. Some frequently used activation functions. Image source: [11]

The learning rate determines the velocity with the artificial neural network can
update its parameters. Using a higher learning rate will speed up learning, but it
may not converge. Epoch controls the number of iterations of the training data set,
while using momentum to choose the direction of the next move from the previous
one, which helps prevent spurious oscillations.[27]

2.2.2 Python libraries for Machine Learning

Nowadays neural networks are very accessible and easy to use also for people not
so expert in programming also thanks to cloud platforms and services provided by
companies like Google, Facebook, Microsoft, creating many models. A very common
programming language for machine learning is Python, that is really used thanks
to the big amount of libraries and algorithms already implemented present in the
web. This is one of the reasons why Python has been chosen also as the language
used for this thesis work. The development of many open source libraries and ready
to use applications (for example TensorFlow and Keras, developed by Google, and
PyTorch, developed by Facebook), has resulted in vast use of Python for machine
learning also in the field of structural engineering.
TensorFlow was first developed by google in 2015, and then also a second improved
version is available since 2017. It is an open source library, currently considered
the best platform for developing machine learning models, especially deep neural
networks, that integrates several algorithms.
Keras is also an open source library for developing and evaluating deep neural
networks as TensorFlow, and was developed by Chollet [46] in 2015 as an interface to
the TensorFlow library. [5] Keras contains many functions for creating NN networks
and many tools for working with images and text data, and it can run on TensorFlow
and Theano platforms.
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PyTorch was first released by Facebook in 2016. It is very popular in deep
learning use as Keras and TensorFlow.[8] It has a powerful framework for creating
computational graphics and provides many tools and libraries for machine learning.
Scikit-Learn is a library created in 2007 based on both Python and the NumPy and
SciPy scientific digital libraries. Scikit-Learn provides a wide range of functions
for classification, regression, clustering and dimension reduction algorithms. It is
popular especially for data mining and analysis of data.
Pandas is the most popular Python library for data analysis in machine learning,
developed in 2008. It contains advanced data structures and can handle various data
types, including raster, table, and time series data. It is suitable for large datasets
handling.
Spark MLlib library has been developed to make easier the big data processing.
Theano is a platform developed by the University of Montreal as Symbolic Mathe-
matics Assistant. It is a powerful library of scientific calculations similar to Spark
MLlib, designed to quickly compute many large-scale computation-intensive prob-
lems. Many deep learning libraries, as Keras, are built on it.
NumPy is a very useful general-purpose library for manipulating arrays, also in
multiple dimensions (as matrices). NumPy stands for "Numerical Python", which
builds on top of the old "Numeric" library. It has become one of the core and popular
libraries for machine learning because it contains many mathematical functions for
working with large multidimensional matrices and arrays. It is especially useful in
basic algebra, stochastic simulations, and Fourier transforms.
SciPy stands for Scientific Python, and is a library built on top of the NumPy library,
used for scientific computing. It has many optimization, linear algebra, fast Fourier
transforms, and signal processing mathematical functions. It is fast in computing
power and scientific functions implementations.
Matplotlib is a complete plotting library for Python visualization, this as well is
built on top of NumPy. Matplotlib helps to understand common patterns and
distributions of data, providing a wide range of plotting functions. [27]

Even if Machine Learning is so widespread and used also in engineering field,
there still some not negligible challenges and limitations that still haven’t been
studied. A summary of all the challenges, encountered also during the development
of the neural networks used in this thesis, can be seen in Fig. 2.8 It is interesting
also to take into account the limitations of Machine Learning, in order to understand
that this method of solving engineering problems has still a lot of potential for the
future, so it can become even more powerful in the near future. A summary of
machine learning limitations can be seen in Fig. 2.9.
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Figure 2.8. Challenges of machine learning. Image source: [17]

Figure 2.9. The limitations of machine learning. Image source: [17]
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Chapter 3

Beam theory to study a
cantilever clamped beam

This chapter deals with the theory of the beam, which is necessary to then develop
the study of stresses and displacements using the neural network that is subsequently
implemented. In particular, the main focus is on normal force loads, simple beam
bending and semi-inverse hypothesis.

The first study approach of this thesis involves the analysis of a cantilever beam,
with the aim of understanding and studying the operation of a simple neural network
in the analysis of a structural analysis problem of a linear type. The analytical study
of this problem is done using the Elastic line theory. In order to better understand
and apply the elastic line theory, one proceeds with a brief recapitulation of the
theory behind the analytical study of beams. The beam is a solid generated by a
plane figure S characterised by variations in shape and size that are always modest,
also known as the orthogonal section or cross-section, which generates the beam
moving in the surrounding space while remaining perpendicular to the trajectory s
described by its barycentre G. The length of the beam itself must be at least one
order of magnitude grater than the dimensions of its section, allowing to consider
the beam as a one-dimensional object.[13]

Figure 3.1. Beam represented with the trajectory s. Image source: [13]
.
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Since the beam is therefore by definition a one-dimensional object, it is useful
to describe its basic characteristics by referring only to its axis, thinking of it as a
fairly regular curve in space defined s → [G(s) −O]. The parameterisation employed
then measures the length of the curve from a reference point. By calculating the
derivative of the position vector [G(s)−O] with respect to the trajectory s, it obtains
the tangent versor t to the axis of the beam:

t(s) = d[G(s) −O]
ds

= [G(s) −O]′ (3.1)

The demonstration that t in this case represents a versor is directly derived from
the fact that s is the abscissa measuring the length of the curve and therefore holds:

|t(s)| = 1
t(s) × t(s) = 1

(3.2)

Then, deriving this last equation, it is possible to get to:

t′(s) · t(s) + t(s) · t′(s) = 2 t′(s) · t(s) = 0 (3.3)

for which t′ is orthogonal to t.

It is then possible to define the curvature of the beam κ(s) as the modulus of t′, the
radius of curvature ρ(s) = 1/κ(s) as the inverse of the curvature and the principal
normal n as the versor of t′. Thus, for the Eq. 3.3, n is perpendicular to t. The
radius of curvature ρ is the circumference radius that better approximates locally
the beam axis; n point toward the centre of this circumference. The curvature is
the index that measures how much the behaviour is far from the straightness: for
straight beams t(s) = constant, and κ = 0. For straight beams, the z-axis is chosen
coincident with the beam axis, for which s = z.

3.1 Beam theory in the plane
A beam in the plane is represented by the equation y = y(x).

The differential quantity ds can be expressed with the equation:

ds =
√

(dx)2 + (dy)2 (3.4)

dividing it for the differential quantity dx, it can be written as:

ds
dx =

√
1 + y′(x)2 (3.5)

Working with these quantities, the versor t tangential to the trajectory and its
first derivative are expressed as function of both x(s) and y(s) as in Eq. 3.6:
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Figure 3.2. Beam represented in the plane x, y, z. Image source: [13]
.

t = d

ds

{
x(s)
y(s)

}
=
{

dx
ds

dy
dx

dx
ds

}
= dx

ds

{
1

y′(x)

}
= 1√

1 + y′(x)2

{
1

y′(x)

}
(3.6)

t′ = dt
dx

dx
ds = . . . = −y′′(x)

[1 + y′(x)2]3/2
1√

1 + y′(x)2

{
y′(x)
−1

}
(3.7)

From these equations, the curvature κ and the normal versor n are directly
presented here:

κ = −y′′(x)
[1 + y′(x)2]3/2

n = 1√
1 + y′(x)2

{
y′(x)
−1

} (3.8)

3.2 The deformable beam and the de Saint Venant prob-
lem

By considering a beam as a deformable object, it is possible to solve the elastic
problem in a complete and exact manner, i.e. by studying the behaviour of the beam
itself in the field of behaviour indicated by the elastic field. This problem is called
the de Saint Venant problem, and with it, the volume of the beam is considered,
removing the simplification whereby the beam was only considered by referring to
its axis, and its deformability is also considered. The solution of de Saint Venant’s
problem leads to a solution that is acceptable from an engineering point of view by
deriving an exact solution.
The form of the solid object being studied with de Saint Venant’s problem is a
rectilinear cylinder with an arbitrary base, representing a beam with constant cross-
section A. The reference system of the body is chosen such that the axis represented
with the versor z is collinear to the axis of the beam, while the axes of the system
represented with the versors x and y are principal and barycentric, Fig. 3.3
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By making a cut perpendicular to the axis of the beam, coincident as said with
the z-axis, the section of the beam is obtained, and acting on a generic point of it,
the tension vector can be identified: tz = {τzx, τzy, σz}T .

Figure 3.3. Beam represented in a system of reference x, y, z. Image source: [13]

On the beam’s sections, the resultants functions of the tension vector components
can be written as:

N =
∫

A
σz dA normal force

Tx =
∫

A
τzx dA shear force along x

Ty =
∫

A
τzy dA shear force along y

Mx =
∫

A
y σz dA bending moment around x

My = −
∫

A
x σz dA bending moment around y

Mt =
∫

A
(x τzy − y τzx) dA torque

(3.9)

The solution of the de Saint Venant problem provides the tension vector compo-
nents as functions of the resultants, thus inverting these equations.
Analyzing the tensions, they are properties of the point of application itself, and
therefore they are dependent from x, y, z; resultant instead are not functions of
the application point of a force, because they are properties of a section, so they
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depends only by z.
The material of the beam, solving the de Saint Venant problem, is assumed as

linearly elastic, isotropic and homogeneous. The boundary conditions of the beam in
this case are not important, thus there is no need to place any particular constraint.

Regarding the loads, no volume forces are present here, and just the edges
sections of the beam are loaded; the lateral area of the beam is assumed as unloaded,
considering n as the outgoing surface normal:

tn = {σn, τnz, τnm,}T = 0
n = {αx, αy, 0}T

Taking the normal n, one has that τzn is the component of the tension vector
referring to the shear orthogonal to the z-axis, i.e. to the section of the beam itself,
and the property holds for it that:

τnz = 0 , τzn = 0
τz = {τzn, τzm}T = {0, τzm}T

(3.10)

From Eq. 3.10, it is clear that on the perimeter of the section of the beam, the
tangential tension vector τz is parallel to the edge of the section itself.

An important postulate thought up and described by de Saint Venant forms the
basis of the problem itself, simplifying its solution. The postulate says: "If different
stress distributions having the same results are applied to the base sections of the
beam, beyond a certain distance from the bases called the extinction distance, the
stress state is essentially identical. [13] This is of course valid from an engineering
point of view, but not mathematically.
This postulate is very important, since it guarantees that the solution of de Saint
Venant’s problem for a given stress distribution is valid for any other stress distribu-
tion than the above defined extinction zone, as long as the other stress distribution
is characterised by the same results as the first; it is possible to say that this is a
direct consequence of the fact that the stress distribution on the base sections of the
beams only influences the areas of the beam that are very close to the bases, not
influencing the stress state beyond the extinction distance, which is therefore only a
function of the results.
For isotropic beams, the extinction distance is generally satisfactorily approximated
by assuming it to be equal to the maximum characteristic dimension of the transver-
sal beam section, as can be seen in Fig. 3.4 . Therefore, the greater the length of
the beam, the greater will also be the part of the length covered by the solution of
de Saint Venant’s problem, minimising the extinction zones close to the bases. [13]
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Figure 3.4. The extinction zone in an isotropic material beam. Image source: [13]
.

Referring to simple examples, if one considers a beam with a length equal to
5 times the diameter L = 5 d, de Saint Venant’s solution is valid in the central
part of the beam, which is: L − 0.2 L − 0.2 L = 0.6 L; on the other hand, if
one considers a beam with a length equal to 20 times the diameter L = 20 d, the
solution of de Saint Venant is valid in the central part of the beam which results as:
L− 0.05 L− 0.05 L = 0.9 L .

de Saint Venant’s solution loses its validity, however, when considering cases in
which the beams are non-compact or anisotropic: in this case, the approximation
of the extinction distance with the length of the beam’s maximum diameter is no
longer valid, since the distribution of stresses on the beam’s base section influences
a much larger section of the beam, making the entire beam a function of it. For
this type of beam, the extinction length may even exceed the length of the beam
itself.[13] In this thesis work, a beam consisting of isotropic material is therefore
considered.

3.3 Semi-inverse hypothesis for the solution of the beam
problem

For the solution of de Saint Venant’s problem of the beam, another hypothesis is
very important, called the Semi-Inverse Hypothesis, which consists of looking for
the solution to the problem in the form: [13]

σx = σy = τxy = 0 (3.11)

Analysing the behaviour resulting from this hypothesis, it can be seen that it
emphasises the centrality of the behaviour given by longitudinal stresses with respect
to transverse stresses, assuming that by taking cuts of the beam parallel to the
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z-axis, the vector of stresses previously defined is directed along the axis itself, thus
not transmitting transverse stresses.

Defining the tensor of stresses T at a generic point of the de Saint Venant solid,
considering applied the semi-inverse hypothesis that cancels all the components of
the tensor itself, except for the components linked to tz which is unaltered, it is
valid:

T =

 0 0 τzx

0 0 τzy

τxz τyz σz

 (3.12)

in which the the main stresses are:

σ1 =
σ2 −

√
σ2

2 + 4τ2
z

2 ≤ σ2 = 0 ≤ σ3 = σ2 +
√
σ2

z + 4τ2
z

2

τ2
z = τ2

xz + τ2
yz2

(3.13)

so, from these Eq. 3.13, at each point there is a plane state of stress.
The maximum tangential stress is:

τman = σ3 − σ1
2 =

√
σ2

2 + 4τ2
2

2 (3.14)

As far as the deformational state is concerned, one obtains, again as a consequence
of the semi-inverse hypothesis:

εz = σ2
E εx = εy = −v εz = −v σ

E

γxy = 0 γzx = τzx

G γzy = τxy

G

(3.15)

The elastic strain and complementary energy densities are therefore:

Ede(E) = 1
2
[
E ε2

z + G
(
γ2

zx + γ2
zy

)]

Ece(T) = 1
2

(
σ2

z

E + τ2
xx + τ2

z

G

) (3.16)

The solution of de Saint Venant’s problem therefore depends on the results
presented in Eq. 3.9 applied to the base sections of the beam, with the two cuts Tx

and Ty being mechanically equal, as are the bending moments Mx and My, from
which it follows that the cases to be studied can be divided into four different cases,
for which the principle of superposition of effects will then apply: normal force,
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shear-bending, bending, torsion.[13] In what follows, the cases of normal force and
bending will be presented, as they are decisive in solving the problem of the beam
in the case being studied in this thesis.

3.4 Normal force applied on the beam base sections:
stresses, strains, energies and displacements.

In this section, normal force applied on the beam base is considered, computing
stresses, strains, energies and displacements. For the study of this case, it is
assumed that there are no tangential stresses and that the normal force N is equally
distributed, uniformly, over the whole section of the beam, defining its tensional
state as follows:

σz = N
A

τzx = τzy = 0

(3.17)

in which A is the area of the section of the beam. Here σz is constant over the
beam section, and thanks to the fact that also N is constant over the length of the
beam, σz can be assumed constant on the entire length of the beam: it is not depend
from x, y, z.
It is immediate to demonstrate how these relations of Eq. 3.17, when inserted into
Eq. 3.9, give as the only result only the normal force N .

For what concern the strains, considering the Eq. 3.15 and Eq. 3.17, the tensor
of the strains is:

εz = N
E A εx = εy = −v N

E A

γxy = 0 γzx = 0 γzy = 0

(3.18)

The theory is valid for small deformations, so this is true if the normal force is
small and Young’s modulus E and beam cross-sectional area A are sufficiently large.



3.4 Normal force applied on the beam base sections: stresses, strains, energies
and displacements. 23

Figure 3.5. The deformed by normal force beam. Image source: [13]

If one takes a single infinitesimal piece of beam, of length dz, one immediately
notices that transversally there will be an homothetic contraction, due to the Poisson
effect. As for the deformation εz, it is constant at each point of the section, which
will therefore undergo the same displacement along the z axis, resulting in a new
section, displaced along the axis by a certain amount, still flat and parallel to the
initial one.[13]
From the constancy of the deformation εz, it also follows that the change in length
∆L can be directly calculated from the relation εz = ∆L/L, and is therefore valid:

∆L = N L
E A (3.19)

Two important quantities can be recognised in this relationship: EA/L is called
the axial stiffness of the beam and represents the force required to have a unit
elongation; the reciprocal of this quantity, called axial deformability, represents the
elongation of the beam that corresponds to a unit force.

The elastic deformation and complementary energies of the entire beam are
respectively:

ede =
∫

v
Ede dV = 1

2
EA
L ∆L2

ece =
∫

v
Ece dV = 1

2
L

EAN2

(3.20)

In terms of displacement, the solution to the problem of the normal force applied
to the beam is:
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u = −v N
EA x

v = −v N
EA y

w = N
EA z

(3.21)

3.5 Simple bending applied to beam base sections: stresses,
deformations, energies and displacements

In the case of simple bending of the beam, it is assumed that the moment vector is
directed following a principal direction of inertia of the beam section. If the beam is
subjected to two equal and opposite moments applied at the ends, a deformation
is obtained in which, due to symmetry, the centre section of the beam placed at
the middle of its total length does not move along the z-axis, and therefore remains
flat (Fig. 3.6); in general, however, the shape of the section may vary, since the
consideration just made does not apply to the x, y directions.[13]

Figure 3.6. Image source: [13]

Then, it is possible to add to the beam a rigid motion, and thanks to the fact
that the rigid motions do not modify the deformation, the section in the middle
of the beam can still be considered plane. A very useful motion is the translation
and rotation of the beam to make the deformed section z = 0 and the initial one
coincident, as in Fig. 3.7.
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Figure 3.7. Image source: [13]

If cuts are made along the longitudinal direction of the beam, obtaining several
sections, by adding appropriate rigid motions to these, the various sections of the
beam can be brought back into alignment satisfying the constraint conditions by
adding translation and rotation motions to the sections while keeping them flat, as
in Fig. 3.8. This therefore makes it possible to state that each section can undergo
rigid rotational and translational motions while always remaining flat. From this it
follows that the deformation of a beam segment appears as in Fig. 3.9, in which the
left and right sections remain flat by meeting at an ideal point C, called the centre of
curvature. The beam segment thus obtained and the axis, which is initially straight,
become an arc of a circle of radius R, which is nothing other than the radius of
curvature. [13]

Figure 3.8. Many cuts on the longitudinal direction of the beam. Image source: [13]
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Figure 3.9. Deformation of a beam segment. Image source: [13]

From the definition of curvature κ = 1/R, in the plane perpendicular to x, the
normal tension can be defined as:

σz = E κx y (3.22)

The tangential tensions τzx and τzy are zero, from which it follows:

Tx = Ty = Mt = 0 (3.23)

For the normal force N and the moments Mx and My, considering the x and y
directions as the principal directions of inertia, the formulas apply:

N =
∫

A σz dA = E κx
∫

A y dA = E κx Sx = 0,

Mx =
∫

A y σz dA = E κx
∫

A y2 dA = E κx Ix,

My = −
∫

A x σz dA = E κx
∫

A x y dA = E κx Ixy = 0.

(3.24)

Then, from Eq. 3.24, the curvature formula is obtained:

κx = 1
R = Mx

E Ix
(3.25)

one derives Navier’s formula:

σz = Mx

Ix
y (3.26)
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which makes it possible to determine the tensional state as a function of the
beam’s internal actions. The curvature formula is proof that in order to flex beams
that are not very stiff, characterised by a Young’s modulus of a small value, a small
bending moment is sufficient, whereas if the Young’s modulus value is high (which
means that the beam is very stiff), a large value of bending moment is required,
since the beam is stiff, with the risk of causing it to break.

The most important maximum normal tensile and compressive stresses are:

σt
max = Mx

Wt ,

σc
max = − Mx

Wc

(3.27)

where Wt and Wc are the modules of strength:

Wt = Ix

ymax
,

Wc = − Ix

ymin
.

(3.28)

From these formulae, it is evident that the sections of best resistance to bending
are those that have a large modulus of resistance W: at the same maximum tension,
the beam can withstand a greater moment since, for the same bending moment, the
maximum tension is smaller for sections that have large modules of resistance, as
can be seen in Eq. 3.28.

Since the moment M, Young’s modulus E, and moment of inertia Ix referenced
to x are constant along the z direction, all beam segments curve according to the
same radius of curvature and the deformation of the beam axis results in an arc of a
circumference of radius R. The figure Fig. 3.10 shows the transverse displacement of
the beam axis, which belongs to the neutral plane and therefore does not elongate;
its longitudinal displacement is zero in this case.
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Figure 3.10. Transverse displacement of the beam axis. Image source: [13]

The expression of the analytical form of the deformed beam is retrieved assuming
the distance between the centre of curvature C = (-R, 0) and a generic point P =
(v(z),z) of the arch of circumference is equal to R.

R2 = d2(P,C) = (v(z) + R)2 + (z − 0)2 (3.29)

from which

0 = v2(z) + 2v(z)R+ z2 (3.30)

Here, with the assumption of small displacements for the beam, v2(z) is negligible
with respect to the other terms, and the transverse displacement of the beam axis is:

v(z) = − z2

2 R = −1
2 κx z

2 = −1
2

Mx

E Ix
z2 (3.31)

Deriving this last equation, the inclination angle is:

ϕ(z) = −v′(z) = κx z = Mx

E Ix
z (3.32)

assumed as positive if it develops in counter-clockwise verse.
With another derivation operation, the equation that links the curvature and the
displacements is provided:
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v′′(z) = −κx (3.33)

and the rotation angle of the final section is:

ϕL = Mx L
E Ix

(3.34)

The number E Ix/L, i.e. the moment it takes to have a unit rotation, is called
the bending stiffness of the beam.

The elastic deformation and complementary energies of the entire beam are
respectively:

ede =
∫

V
Ede dV = 1

2
E Ix

L ϕ2
L,

ece =
∫

V
Ece dV = 1

2
L

E Ix
M2

x

(3.35)

and are equal to the work done by the external moment:

ℓ = 1
2Mx ϕL (3.36)

The complete solution of the simple straight bending problem in terms of dis-
placement is:

u = −v Mx

E Ix
x y,

v = −1
2

Mx

E Ix

[
z2 − v

(
x2 − y2

)]
,

w = Mx

E Ix
y z

(3.37)

Some cases that turn out to be important solutions to the bending problem
are considered through the extension of de Saint Venant’s problem, by having the
tension tensor maintained at each point, knowing the action moment M(z) inside
the beam, and simplifying the formulae so as to refer only to the axis of the beam,
introducing quantities that represent the bending behaviour of the beam itself. From
now on, the subscript x is subtended in the following formulae.[13]
The tensional state is:

τzx = τzy = 0

σz(z) = M(z)
I(z) y

(3.38)
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The displacement here is the transversal one v(z), that is the unique possible for
the axis of the beam. Since the beam is curved by the moment, the parameter that
best represents the deformation undergone is the curvature κ(z).
The constitutive bonding equation can then be introduced, the quantities of which
depend only on z.

κ(z) = M(z)
E(z) I(z) (3.39)

Considering variable curvature, the congruence equation is:

v
′′(z) = −κ(z) (3.40)

Finally, considering p(z) as the transverse load, and c(z) the moments per unit
length applied to the beam axis, the equilibrium equation is:

M′′(z) = −p(z) − c
′(z) (3.41)

In the study of the elastic problem for the bending deformable beam, the data are:
the length L of the beam, the axial inertia modulus I(z) of the beam; the Young’s
modulus E(z) of the material, the constraints at the extremity with transverse
constraining displacements v0 and rotational Φ0, the loads distributed along the
beam p(z) and c(z) and concentrated at the extremity T0 and M0. The unknowns
of the problem are thus: the kinematic transverse displacement v(z), the flexural
deformation κ(z) (called curvature) and the static bending moment known as M(z)
(the shear T can be directly derived from this).[13]

From the Eq. 3.33 and Eq. 3.39, it is obtained:

−M = E I v′′ (3.42)

to which the boundary conditions are associated. The Eq. 3.42 is known as 2nd

order flexural elastic line differential equation.
By using the Eq. 3.42 in the Eq. 3.41, it is possible to obtain the differential equation
of the higher-order transverse elastic deformation, also known as the differential
equation of the 4th order flexural elastic line:

(E I v′′)′′ = p+ c
′ (3.43)

to which the static and kinematic boundary conditions are associated. If the
elastic problem has c = 0 and the product E I is constant, it can be written as:

v
′′′′ = p

EI (3.44)

with the following boundary conditions applied:
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v = v0

v
′ = −Φ0

v
′′ = −M0

EI

v
′′′ = −T0

EI

(3.45)

Considering the specific case studied in this thesis, the cantilever beam with
concentrated force at the extreme, as can be see in Fig. 3.11, computing the
transversal displacement with the second order elastic line equation, the moment
has to be computed first, using this relation:

M(z) = F(−L + z) (3.46)

This results in:

v′′ = − M
EI = F

EI(L − z) (3.47)

an integration performed twice is obtained:

v(z) = F
EI

(
Lz

2

2 − z3

6

)
+ c1z + c2 (3.48)

The constants are determined with kinematic boundary conditions. At embedding
(z = 0) the transverse displacement and rotation are zero.

0 = v(0) = c2,

0 = v′(0) = c1.
(3.49)

The free extremity (z = L) can lower and rotate freely. There are therefore no
further kinematic conditions to add to the conditions just written, as these already
determine the integration constants. The displacement is therefore:

v(z) = F
EI

(
Lz

2

2 − z3

6

)
(3.50)

and the maximum displacement, for z = L, is:

v(z) = 1
3

FL3

EI (3.51)
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Figure 3.11. The cantilever beam with concentrated force at the extreme.
Image source: [13]

For the clamped cantilever beam problem that is solved with the use of neural
networks in this thesis, an UB 305 x 127 x 42 beam steel flange cantilever beam has
been chosen. The modulus of elasticity is E = 200 [GPa], the maximum distance to
point from neutral axis of the beam is ymax = 150 [mm], and the moment of Inertia
is I = 81960000 [mm4]. The cross section of the beam is represented in Fig. 3.12.

Figure 3.12. The cross section of British Universal 305 x 127 x 42 beam steel flange cantilever
beam used, with h = 307.2 mm, w = 124.3 mm, s = 8 mm, sectional area = 53.4 cm2,
weight = 41.9 kg/m.
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Chapter 4

Neural networks used to study a
cantilever clamped beam

This chapter describes in detail the neural network architecture used for the cantilever
beam study, with particular reference to the network composition, the reasons behind
the choices made and the results obtained.

For the study of the beam problem, it was decided to create a neural network
that could investigate the displacement of the free end of the cantilever beam,
and the maximum stress. The load has been chosen to be applied to the beam
is a concentrated force placed at the free end of the beam itself: for this load
condition, the maximum displacement, Eq. 3.51, suffered by the beam with reference
to the initial condition of the unloaded beam is found at the free end, the point of
application of the force itself; the maximum stress, Eq. 4.1, suffered by the beam
with the described load condition coincides with the point at which the bending
moment of the beam is maximum, which is the point of constraint of the cantilever
beam. This load configuration was chosen because it allows, if a possible future user
so desire, to move the point of force application along the beam without having to
make major modifications to the neural network architecture. This fact is guaranteed
by the analysis of the elastic line theory previously presented in Sec. 3.5.

σmax = ymax F L

I
(4.1)

The network trained as described below will be able to predict the two required
output of the maximum displacement and the maximum stress values for the training
data-set characteristics, that are: cantilever beam lengths L between 500 and 5000
millimetres and the modulus of concentrated force applied to the free end of the
beam F between 100 and 3000 Newtons. The input values provided to the neural
network are the only values that vary in the input data-set, so the choice was made
on the length of the beam and the modulus of the force applied to the beam itself.
Of course, if the neural network has to be used for a different load condition, e.g. a
uniformly distributed load along the beam, or for the analysis of a different problem,
e.g. a torsion problem, it would be necessary to re-train the network with a data-set
pertaining to the load condition case just described, or to implement new data in
addition to those provided for bending, in order to be able to solve a torsion problem,
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for example. See Fig. 4.1.

Figure 4.1. The training set affects how well a machine learning model works. If the
model is only trained with bending problems, it will likely only do well on bending
problems. The model doesn’t work well when it faces a torsion problem. If one adds
more training samples that include both bending and torsion problems for instance, the
model performs well for both kinds of problems. .
Image source: [24]

The neural network is then given a training data-set, on which the learning
algorithm creates the model it will use for prediction. The network, in order to
implement a performance evaluation while being trained, is chosen to use 10% of
the training data-set to make an estimate of the performance that the algorithm
is making the network learn, and on this, through backward feedback, it goes on
to improve the learning process itself. Hence, new data unknown to the network in
terms of input parameters, i.e. beam lengths and concentrated force modulus values
that are totally new and that the network has never seen during the training process.
On this new, unknown data-set, the model obtained by the learning algorithm, in
the network training phase, is used to make a prediction, comparing then with the
analytically calculated reference results. The process is represented graphically for
ease of understanding in Fig. 4.2.

4.1 Neural network architecture
A neural network architecture characterised by the element of three network layers
was therefore created for this case study. The first layer, also called the input layer,
is characterised the chosen activation function, that is the rectified linear unit type
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Figure 4.2. The workflow of machine learning for the implemented neural network.
Image source: [27]

described in the chapter referring to the different possibilities of activation functions.
The second and third layers were constructed by choosing, after many attempts, the
same number of nodes of the input layer and using also for these the same activation
function used in the first layer. This configuration proved to be the best in terms of
performance and output of the results, allowing for low errors.

In order to create this neural network architecture, various attempts were of
course made to analyse even networks with layers containing different numbers of
nodes between them, but the configuration containing an equal number of nodes in
each layer, with the network consisting of three layers, turned out to be much better.
Immediately following the last layer is an output layer, with simple linear activation,
which serves to collect the output produced by the third layer and present it to the
end user. It is considered to be of great interest not so much to present the results
by varying the number of layers or the combination of nodes within them, but rather
to study the architecture defined above with the same number of nodes for each
layer, thus varying the quantity of these nodes, and above all to study the number
of example cases provided in the network’s input data-sets, which were used to train
the model, and then were evaluated with inputs unknown to the network to better
analyse the performance of the model thus obtained.

The number of samples provided in the input data-set was made to vary from
300 to 20000, more precisely using data-sets with 300, 500, 800, 1000, 1500, 2000,
3000, 5000, 10000, 15000, 20000, always keeping the output number fixed at the
two described at the beginning of this chapter, i.e. the maximum displacement with
respect to the reference condition of the cantilever beam and the maximum stress it
undergoes with the load condition described.

A very important parameter in neural network training is the batch size, which
defines the number of samples that will be propagated through the neural network
itself. This means that if for example the batch size chosen is 64, the algorithm takes
the first 64 samples provided in the training data-set of the network right the network,
then proceeds to take the next 64 and train the network again. This procedure
is performed until the entire training data-set has been propagated through the
network, resulting in a final training pattern of the network. Using a batch size
smaller than the total number of samples certainly requires using less memory and



36 4. Neural networks used to study a cantilever clamped beam

thus the complete network training procedure using fewer samples uses less memory
in total. This is particularly important in the event that the complete data-set
cannot be stored in the machine’s memory. Usually, the fact of using a very small
batch size means that network training is much faster as the network evaluation
weights are updated with each propagation. On the other hand, it is important to
note that a batch size smaller than the total number of samples, the smaller it is,
the smaller the estimate of the gradient between the previous solution and the next
solution used to train the network. For the beam case study, a batch size of 1/10 of
the total number of samples in the data-set was chosen as the problem is linear and
not difficult to interpret for the network itself.

It is important to specify how the number of epoch before convergence is reached
clearly depends on the training start point of the network itself. In order to avoid a
random dependence on this value, each network training process is performed four
times for each data-set, thus protecting against randomness, the results below all
refer to the best case of network training for the cycle of four processes performed
for each data-set.
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4.2 Neural Network training
In the case study of a network architecture consisting of three layers each composed
of two nodes, the results can be analysed in detail in Tab. 4.1. From a careful
observation of the values obtained, where MAE and MSE are respectively the mean
absolute error and mean squared error, Eq. 2.2 and Eq. 2.1, it is immediately clear
that the best performing model is the one which uses a data-set composed of 10000
samples, which manages to reach convergence in 470 epochs of network training. In
this case, the fact of using data-sets composed of a greater number of rows, equal
to 10000 and 20000 respectively, can be seen by observing the graphs of the errors,
which leads to a faster convergence as the number of rows increases, but at the same
time also leads to an increase in the error values. For this reason, both models with
a greater number of rows compared to the data-set corresponding to 10000 samples
are not suitable for studying the beam problem for an optimal result.

data-set samples epoch MAE MSE

300 365 1.120669 2.533913

500 293 1.065609 2.278502

800 205 0.738644 0.903677

1000 121 0.764835 0.987241

1500 143 1.091989 2.450032

2000 154 1.089331 2.432707

3000 196 1.073450 2.367747

5000 556 0.769681 1.105923

10000 470 0.438509 0.356045

15000 357 0.630449 0.797177

20000 314 0.763505 1.083946

Table 4.1. Training performance analysis with Mean Absolute Error MAE and Mean
Squared Error MSE for the neural network architecture with three identical layers, with
2 nodes each.
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(a) The MAE Mean Absolute Error for the NN with 2 nodes per layer and 10000 rows
data-set.

(b) The MSE Mean Squared Error for the NN with 2 nodes per layer and 10000 rows
data-set.
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(a) The MAE Mean Absolute Error for the NN with 2 nodes per layer and 15000 rows
data-set.

(b) The MSE Mean Squared Error for the NN with 2 nodes per layer and 15000 rows
data-set.
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(a) The MAE Mean Absolute Error for the NN with 2 nodes per layer and 20000 rows
data-set.

(b) The MSE Mean Squared Error for the NN with 2 nodes per layer and 20000 rows
data-set.
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Going to increase the number of nodes used in each layer, and studying the
configuration with four nodes for each layer, the results summarised in Tab. 4.2
indicate that the model trained with a data-set of 5000 rows converges in 875 epochs
as the best performing model. A close look at the table shows how the model
corresponding to a training data-set of 800 rows, and thus 800 samples, also performs
very well, converging in 500 epochs and obtaining error values very close to those of
the data-set of 5000 samples.

data-set samples epoch MAE MSE

300 530 0.425301 0.337350

500 147 0.722469 0.918963

800 500 0.279488 0.176064

1000 701 0.387378 0.264482

1500 428 0.351970 0.237619

2000 294 0.385620 0.266079

3000 510 0.692519 0.882345

5000 875 0.264414 0.134604

10000 730 0.375680 0.257806

20000 117 0.655016 0.808569

Table 4.2. Training performance analysis with Mean Absolute Error MAE and Mean
Squared Error MSE for the neural network architecture with three identical layers, with
4 nodes each.
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(a) The MAE Mean Absolute Error for the NN with 4 nodes per layer and 5000 rows
data-set.

(b) The MSE Mean Squared Error for the NN with 4 nodes per layer and 5000 rows data-set.
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(a) The MAE Mean Absolute Error for the NN with 4 nodes per layer and 800 rows data-set.

(b) The MSE Mean Squared Error for the NN with 4 nodes per layer and 800 rows data-set.
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Finally, using a network architecture consisting of 8 nodes per layer, always using
three layers, it is clear that it is sufficient to stop and use a data-set with a maximum
of 800 samples, see Tab. 4.3. This is due to the fact that using a greater number of
nodes makes the network more skilled and capable in terms of understanding the
mathematical relationship describing the problem, thus also being able to reduce the
number of samples needed to study the network itself in order to obtain a prediction
model that is as generic as possible. In this case, in fact, the best performing training
model turns out to be the one formed from a data-set of 500 rows which reaches
convergence after 447 epochs, with very small error values.

data-set samples epoch MAE MSE

300 555 0.282809 0.193953

500 447 0.251228 0.147881

800 643 0.273160 0.166848

Table 4.3. Training performance analysis with Mean Absolute Error MAE and Mean
Squared Error MSE for the neural network architecture with three identical layers, with
8 nodes each.
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(a) The MAE Mean Absolute Error for the NN with 8 nodes per layer and 500 rows data-set.

(b) The MSE Mean Squared Error for the NN with 8 nodes per layer and 500 rows data-set.
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(a) The MAE Mean Absolute Error for the NN with 8 nodes per layer and 800 rows data-set.

(b) The MSE Mean Squared Error for the NN with 8 nodes per layer and 800 rows data-set.
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4.3 Neural Network evaluation
The oscillations that can be seen in the graphs, especially on the validation curve
corresponding to the evaluation of the Mean Absolute Error MAE, are due to noise
introduced by the fact that the validation data-set used by the network in the
training phase, corresponding to 10% of the data supplied in the training data-set
itself, fails to provide the algorithm with sufficient information to evaluate the ability
of the model to generalise, even though the curve corresponding to the training of
the neural network has a decidedly smoother and very stable behaviour, behaving
as if it were learning the values by heart instead of learning the mathematical
relationship hidden behind them. As the beam problem is a simple problem, this
noise is extremely limited and therefore perfectly negligible, without affecting the
performance of the neural network.

Therefore, when evaluating the best model for solving the problem of beam
bending due to concentrated force applied to the free end of the cantilever beam, it
can be seen that the two best models are the one with 500 data-set samples and
8 nodes for each layer and the model with 5000 data-set samples and 4 nodes for
each layer. Below one can find the images of the neural network validation test
done with beam length data and concentrated force modules as explained above. As
a comparison, the same validation test performed with the neural network model
consisting of 2 neurons per layer is also shown, although this performs less well than
the other two.
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(a) Evaluation of the maximum displacement given as output from the 2-2-2 nodes/layer
NN, varying the length of the beam and the modulus of the concentrated force, for the
10000 rows data-set.

(b) Evaluation of the maximum stress given as output from the 2-2-2 nodes/layer NN,
varying the length of the beam and the modulus of the concentrated force, for the 10000
rows data-set.
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(a) Evaluation of the maximum displacement given as output from the 4-4-4 nodes/layer
NN, varying the length of the beam and the modulus of the concentrated force, for the
5000 rows data-set.

(b) Evaluation of the maximum stress given as output from the 4-4-4 nodes/layer NN,
varying the length of the beam and the modulus of the concentrated force, for the 5000
rows data-set.
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(a) Evaluation of the maximum displacement given as output from the 8-8-8 nodes/layer
NN, varying the length of the beam and the modulus of the concentrated force, for the
500 rows data-set.

(b) Evaluation of the maximum stress given as output from the 8-8-8 nodes/layer NN,
varying the length of the beam and the modulus of the concentrated force, for the 500
rows data-set.
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Chapter 5

Shell structures and the Transfer
Matrix Method

In this chapter the Transfer Matrix Method TMM is presented. It will be used to
study the stresses in a cylindrical shell structure, allowing to compare the results
obtained analytically implementing it, with the results obtained from the neural
network. To use and understand this method, an introduction on the Fourier series
is here presented.

5.1 The Fourier series

The Fourier series is a mathematical method that allows any periodic function to
be described by the summation of simple harmonic functions whose frequencies
are integer multiples of the frequency of the original function. The assumptions
that allow a generic function f(t) to be developed in a Fourier series are known as
Dirichlet conditions and are as follows:

• the function is periodic;

• J(t) is continuous at intervals, that is, in each period there are at most a finite
number of discontinuities with finite amplitude;

• J(t) possesses a finite number of maxima and minima within a single period;

• the integral of |J(t)| calculated over a single period converges to a finite value.

When these conditions are met, the Fourier series converges to f(t) at every point
where the function is continuous; at discontinuities, the series converges instead to
the mean value. There are two alternative forms of the Fourier series, defined in
the real and complex fields, respectively. The real one, that is the one used in this
thesis work, will be now presented.

5.1.1 Real Fourier series

Given a function f(t) that satisfies Dirichlet conditions, the corresponding real Fourier
series is written:
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f(t) = a0
2 +

∞∑
n=1

(an cosnωpt+ bn sinnωpt) (5.1)

Where:

ωp = 2π
T

(5.2)

is the circular frequency of the periodic function (also called the fundamental
frequency), while:

a0
2 = 1

T

∫ T

0
f(t)dt (5.3)

represents the average value of the function.
Fourier series terms have the important property of orthogonality:∫ T

0
cosnωpt · cosmωpt dt = 0 n ̸= m

∫ T

0
sinnωpt · cosmωpt dt = 0

∫ T

0
sinnωpt · sinmωpt dt = 0 n ̸= m

(5.4)

To prove the orthogonality conditions, one uses Werner’s trigonometric formulas
and rewrite the integrals as:

cosnωpt · cosmωpt = 1
2 [cos(n−m)ωpt+ cos(n+m)ωpt]

sinnωpt · cosmωpt = 1
2 [sin(n−m)ωpt+ sin(n+m)ωpt]

sinnωpt · sinmωpt = 1
2 [cos(n−m)ωpt− cos(n+m)ωpt]

(5.5)

It is now easy to calculate the integrals of Eq. 5.4 and prove the orthogonality
conditions. Werner’s own formulas make it possible to calculate:∫ T

0
cos2 nωpt dt =

∫ T

0
sin2 nωpt dt =

∫ T

0

1
2 dt = T

2 (5.6)

The orthogonality conditions are fundamental for calculating the coefficients of
the series. For this purpose, one multiplies both terms of Eq. 5.1 by sin mωpt and
integrate between 0 and T:
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∫ T

0
f(t) sinmωpt dt = a0

2

∫ T

0
sinmωpt dt+

+
∞∑

n=1
an

∫ T

0
cosnωpt · sinmωpt dt+

+
∞∑

n=1
bn

∫ T

0
sinnωpt · sinmωpt dt = bm

T

2

(5.7)

In fact, the integral that multiplies a0 is null because it is computed over an
internal number of cycles; the integrals that multiply the an coefficients are all null
according to Eq. 5.4, just as all integrals that multiply the bn coefficients are null,
except for the case n = m, which corresponds instead to equation Eq. 5.6. In a
similar manner, the am coefficient can be isolated by multiplying both terms of
Eq. 5.1 by mωpt and then integrating in the interval [0, T]. In conclusion, the
coefficients of the real Fourier series are calculated as:

an = 2
T

∫ T

0
f(t) cosnωpt dt

bn = 2
T

∫ T

0
f(t) sinnωpt dt

(5.8)

Alternatively to Eq. 5.1, the real Fourier series can be written as:

f(t) = a0
2 +

∞∑
n=1

rn cos (nωpt− φn) (5.9)

In which amplitude and phase are:

rn =
√
a2

n + b2
n

φn = arctan (bn, an)

(5.10)

5.1.2 Fourier series expansion for non-uniformly distributed loads

Loads distributed non-uniformly on the circumference of a shell are difficult to
solve mathematically with differential equations. For this reason, for rotationally
symmetrical structures, Fourier series are used in which the load is developed. For
each member of the Fourier series, the differential equations are solved separately
in order to later superimpose the partial solutions to an overall solution. This
procedure is easily possible with a linear theory. The actually infinite Fourier series
can practically be broken off after a finite number of terms. For an arbitrary Fourier
series on the circumference distributed, periodic function applies (periodic with
T = 2π): [18]

f(φ) = a0
2 + a1 cosφ+ b1 sinφ+ a2 cos(2φ) + b2 sin(2φ) + . . . (5.11)



54 5. Shell structures and the Transfer Matrix Method

respectively:

f(φ) = a0
2 +

∞∑
m=1

am cos(mφ) +
∞∑

m=1
bm sin(mφ) (5.12)

The coefficients are as follows:

am = 1
π

∫ 2π

0
f(φ) cos(mφ)dφ

bm = 1
π

∫ 2π

0
f(φ) sin(mφ)dφ

(5.13)

If the function is symmetrical to ϕ = 0, the bm become zero. If the function is
anti-metric to ϕ = 0, the am result in zero. The first four terms of a Fourier series
for a periodic, symmetric function are shown in Fig. 5.1.

Figure 5.1. Fourier series of a periodic, symmetrical function. Image source: [18]

5.2 Shell theory
Shell structures are structures consisting of shells that can be stiffened by chords
or edge elements for force transmission and stabilisation. A shell is idealised as
a thin-walled, curved structure whose wall thickness is considerably smaller than
the other dimensions. The curvature of the shell offers the possibility of absorbing
distributed loads normal to its skin as pure normal forces (membrane forces) with
almost constant stress over the wall thickness. This makes it possible to design
structures that have a uniform material stress across the cross-section, and which
are therefore very stable.[31]

Some examples of shell structures are a launcher fuel tank as in Fig. 5.5, a
launcher fairing as in Fig. 5.2 and in Fig. 5.4, a rocket inter-stage or the fuselage of
a plane, as in Fig. 5.3.
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Figure 5.2. A fairing of a launcher system. Image source: [10]

Figure 5.3. An airplane fuselage. Image source: [20]
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Figure 5.4. The Space Shuttle external tank. Image source:[16]

Figure 5.5. A fuel tank shell. Image source:[3]
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Figure 5.6. The Orbital ATK Cygnus cargo ship is seen after final approach to the
International Space Station. Image source:[4]

Figure 5.7. Stresses on the shell element. Image source: [9]
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Due to the curvature in the arched beam, the stress becomes considerably smaller
with decreasing beam height than in the straight beam. The calculation of shells is
based on the following assumptions: [18]

• the shell wall thickness is much smaller than the shell dimensions;

• the deformations are smaller than the shell wall thickness (geometric linear
theory);

• straight lines that are perpendicular to the center surface before deformation
remain straight and are perpendicular to the deformed center surface after
deformation;

• normal stresses acting perpendicular to the center surface are negligibly small.

The stresses acting on a partial shell are shown respectively in Fig. 5.7.

Figure 5.8. Force flows (a) and moment flows (b) on the shell element. Image source: [6]

By integrating the stresses over the wall thickness, one obtains the internal forces
and moments on the shell element, as in Fig. 5.8, which are given as force flows
(force/length) and moment flows (moment/length), as is usual for shell structures.
The shear stresses on the side faces of the element which are perpendicular to each
other are equal: τxy = τyx . Nevertheless, the shear fluxes nxy and nyx as well as
the torsional moment fluxes mxy and myx are different in the general case when the
radii of curvature rx and ry are not equal.
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The force flows (force/length) can be written as:

nx =
∫ h/2

−h/2
σx

(
1 + z

ry

)
dz

ny =
∫ h/2

−h/2
σy

(
1 + z

rx

)
dz

nxy =
∫ h/2

−h/2
τxy

(
1 + z

ry

)
dz

nyx =
∫ h/2

−h/2
τyx

(
1 + z

rx

)
dz

(5.14)

The moment flows (moment/length) can be written as:

mx = −
∫ h/2

−h/2
σx

(
1 + z

ry

)
z dz

my = −
∫ h/2

−h/2
σy

(
1 + z

rx

)
z dz

mxy = −
∫ h/2

h/2
τxy

(
1 + z

ry

)
z dz

myx = −
∫ h/2

−h/2
τyx

(
1 + z

rx

)
z dz

(5.15)

qx =
∫ h/2

−h/2
τxz

(
1 + z

ry

)
dz

qy =
∫

−h/2
τyz

(
1 + z

rx

)
dz

(5.16)
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The shell works most effectively when it is stressed in the direction of the shell
skin, i.e. a membrane stress state is present. In this case, the deformations u and v
in x and y direction are constant over the wall thickness. Because of the assumption
of small wall thickness, constant stresses σx , σy , τxy and τyx can be assumed over
the wall thickness. For the force fluxes of the membrane stress state, Eq. 5.14, if the
constant stresses are drawn in front of the integral, one finds:∫ h/2

−h/2

z

ry
dz =

∫ h/2

−h/2

z

rx
dz = 0 (5.17)

finally:

nx = σx

∫ h/2

−h/2
dz = σxh

ny = σyh

nxy = nyx = τxyh = τyxh

(5.18)

The membrane tension state is established when:

• loads are evenly distributed normal to the shell skin and do not change abruptly;

• the wall thickness does not change abruptly;

• the curvature of the shell does not change abruptly;

• there are no discontinuous inclinations of the shell skin;

• if the boundary conditions do not hinder the deformations of the membrane
stress ratio.

During the phase of designing, shell structures are frequently analyzed using
the membrane theory due to its ability to deliver precise outcomes across extensive
regions. In regions featuring a bending aberration, the optimization of the solution
can be augmented through the employment of a corrective methodology employing
the principles of the vessel theory. The theories of membrane and vessel belong
to the fourth order and exhibit the potential of closed-form solutions in numerous
scenarios.[31] The corresponding solutions appear to be fitting for parameter inquiries.
The analysis of coupling between the membrane and bending state necessitates
sophisticated computations, which can be accomplished via the application of shell
bending theory. This approach yields 8th order theories, for which an exact solution
can only be derived in select, uncomplicated instances. Generally speaking, the
issue at hand can be resolved through the use of numerical techniques. Based on
the elucidated load-bearing characteristics, certain guidelines can be inferred for the
design of formwork structures, which presents a significant challenge:[18]

• Avoid direct concentrated introduction of forces normal to the shell skin.
Bending-resistant, curved elements (e.g., spans) are required for force applica-
tion.
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• Avoid discontinuous changes in the inclination of the shell skin. If they are
unavoidable, suitable curved elements (e.g., spans) should be used for load
transfer.

• Avoid wall thickness jumps.

• Avoid discontinuous changes in curvature. Under certain conditions, undesir-
able bending disturbances due to changes in curvature can be compensated by
wall thickness jumps.

• Apply concentrated longitudinal forces via force application elements to avoid
local stress concentrations.

In this context only rotational shells will be considered, which are an important
application in technology. The central surface of the shell is created by rotating
a meridian curve around the shell axis as in Fig. 5.9. Depending on the shape of
the meridian, different shell shapes are obtained, such as circular cylindrical shell,
conical shell, spherical shell, etc. The position of a point C on the rotation shell
is determined by two angles, the angle ϕ of a meridian plane through C related to
the zero meridian and the angle θ that the surface normal through C encloses with
the shell axis. In the case of straight meridians or meridian curves with a point of
inflection, the angle θ does not lead to clear results. In these cases, the meridian arc
length s is used instead. [18]

Figure 5.9. Designations on the rotation shell. Image source: [7]

Designations:

• r radius of the latitudinal circle

• r1 radius of curvature of the meridian curve

• r2 radius of curvature of the latitudinal circle



62 5. Shell structures and the Transfer Matrix Method

For the cylindrical shell one obtains:

r1 → ∞
r2 = r = a

(5.19)

where a is the distance between the axis of symmetry of the cylinder and the
lateral surface, considering the inner part of it (i.e., neglecting the thickness of the
shell itself).

5.2.1 Membrane theory for rotational shells

Within the framework of the membrane theory, three internal forces occur in the
shell, Eq. 5.18. Three equilibrium conditions are available so that these forces can
be calculated without considering deformations. The task is therefore statically
determined.[31] In order to be able to establish the elastomechanical relations,
an infinitesimal element is cut out of the shell skin, which is bounded by two
neighbouring meridians and two neighbouring breaker circles, Fig. 5.10.
The basic equations or the elastomechanical relations describe the equilibrium of
forces, the distortion-displacement relations and Hooke’s law. Combined, these
result in the differential equations, whose solution is provided by the stresses and
deformations in the shell. If the deformations are not hindered, the equations of the
equilibrium of forces alone provide the stress on the shell.[18]

Figure 5.10. Geometric relationships on the shell element. Image source: [18]

Fig. 5.11 shows the internal and external forces that can act on the shell element.
If the forces are counted positively in the positive coordinate direction, one obtains:
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Figure 5.11. Forces on the shell element. Image source: [18]

Equilibrium in the direction of the meridian tangent:(
nϑr + ∂(nϑr)

∂ϑ dϑ
)

dφ− nϑrdφ+

+
(
nφϑr1 + ∂(nφϑr1)

∂φ dφ
)

dϑ− nφϑr1 dϑ+

−nφr1 dϑdφ cosϑ+ pϑ(ϑ, φ)rdφr1dϑ = 0

(5.20)

Equilibrium in the direction of the latitudinal tangent:(
nφr1 + ∂(nφr1)

∂φ dφ
)

dϑ− nφr1 dϑ+

+
(
nϑφr + ∂(nϑφr)

∂ϑ dϑ
)

dφ− nϑφr dφ+

+nφϑr1 dϑdφ cosϑ+ pφ(ϑ, φ)rdφr1dϑ = 0

(5.21)

Equilibrium in the direction of the normals:

−nφr1 dϑdφ sinϑ− nϑr dφdϑ+ pz(ϑ, φ)rdφr1dϑ = 0 (5.22)

After dividing Eq. 5.20 5.21 5.22 by dφ dϑ and introducing the radius r2:

r2 = r

sinϑ (5.23)
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one finally gets:

∂(nϑr)
∂ϑ + ∂(nφϑr1)

∂φ − nφr1 cosϑ+ pϑ(ϑ, φ)rr1 = 0

∂(nφr1)
∂φ + ∂(nθφr)

∂ϑ + nφϑr1 cosϑ+ pφ(ϑ, φ)rr1 = 0

nφr1 + nθr2 − pz(ϑ, φ)r1r2 = 0

(5.24)

For the cases mentioned above, i.e. in case of straight meridians or meridian
curves with a point of inflection, in which the meridian arc length s is introduced
instead of the angle ϑ, the result is given by:

ds = r1 dϑ (5.25)

then:

∂ (nsr)
∂s

+ ∂nφs

∂φ
− nφ cosϑ+ ps(s, φ)r = 0

∂ (nsφr)
∂s

+ ∂nφ

∂φ
+ nφs cosϑ+ pφ(s, φ)r = 0

nφr1 + nsr2 − pz(s, φ)r1r2 = 0

(5.26)

The three unknown internal forces can be calculated from Eq. 5.24 or Eq. 5.26.
In each case the 3rd equation is used to eliminate an unknown from the first two
equations. This results in a system of two coupled partial differential equations for
two unknown forces, whose integration provides the solution of the membrane theory.
The important special case of the cylindrical shell is presented below.
For the cylindrical shell, the longitudinal coordinate x is introduced. Furthermore,
the following applies: r = r2 = a. Thus follows:

∂nx

∂x
+ ∂nφx

a∂φ
+ px(x, φ) = 0

∂nxφ

∂x
+ ∂nφ

a∂φ
+ pφ(x, φ) = 0

nφ − pz(x, φ)a = 0

(5.27)

The central surface of the membrane shell experiences distortions in the meridian
direction εϑ and in the circumferential direction εφ as well as an angular change
(shear distortion) γϑφ . These depend on the deformations of the shell skin in the
direction of the coordinates. In contrast to the flat skin in Cartesian coordinates,
the geometric relationships of curved or doubly curved shells become relatively
complex. In analytical shell theory, the resulting complex distortion-displacement
relationships are determined by means of tensor calculus. The corresponding relations
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Figure 5.12. Deformation of (a) meridian element AC and (b) latitudinal element AB .
Image source: [18]

Figure 5.13. Shear distortion of the shell element. Image source: [18]

are determined here by means of geometric considerations. The displacements in
the direction of the ϑ, φ, z coordinates are denoted by u, v, w. [18]

The distortion in meridian direction ε results from the change in length of an
element related to the initial length. For εϑ , the designations from Fig. 5.12a result:

εθ = A′C ′ −AC

AC
(5.28)

with:
AC = ds1

A′C ′ =
(

ds1 + ∂u

∂θ
dϑ
)
r1 + w

r1

(5.29)

one gets:

εθ = 1
r1

(
∂u

∂ϑ
+ w

)
(5.30)

Distortion in circumferential direction, εφ, the designations from Fig. 5.12b
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results:

εφ = A′B′ −AB

AB
(5.31)

with:

AB = ds2

A′B′ =
(

ds2 + ∂v

∂φ
dφ
)
r + ∆r
r

(5.32)

and:

∆r = (u cos θ + w sin θ) (5.33)

results:

εφ = 1
r

(
∂v

∂φ
+ u cos θ + w sin θ

)
(5.34)

For the shear distortion of the shell element, γϑφ, the designations from Fig. 5.13
results:

γϑφ = γ1 + γ2 (5.35)

with:

γ1 =
∂u
∂φdφ

r dφ+ ∂v
∂φdφ

≈ 1
r

∂u

∂φ

cos θ = dr
r1 dθ

(5.36)

it becomes:

γ2 = 1
r1

∂v

∂θ
− v

r
cos θ (5.37)

this results in:

γϑφ = 1
r1

∂v

∂θ
+ 1
r

(
∂u

∂φ
− v cos θ

)
(5.38)
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The following applies in the s, φ, z coordinate system:

εs = ∂u

∂s
+ w

r1

εφ = 1
r

(
∂v

∂φ
+ u cos θ + w sin θ

)

γsφ = ∂v

∂s
+ 1
r

(
∂u

∂φ
− v cos θ

)
(5.39)

The distortion-displacement relationships (kinematic relationships) for the cylin-
drical shell are given below, with the longitudinal coordinate x and r = r2 = a
follows: [30]

εx = ∂u

∂x

εφ = 1
a

(
∂v

∂φ
+ w

)

γxφ = ∂v

∂x
+ 1
a

(
∂u

∂φ

)
(5.40)

5.2.2 Rotationally symmetrical load and pressure vessels

If the loads are rotationally symmetrical, the internal forces and the distortions do
not change with the circumferential angle φ, so that the partial derivatives according
to φ become zero. This simplifies the differential equations of the equilibrium weight,
Eq. 5.24 to:

∂ (nϑr)
∂ϑ

− nφr1 cosϑ+ pϑ(ϑ)rr1 = 0

∂ (nϑφr)
∂ϑ

+ nφϑr1 cosϑ+ pφ(ϑ)rr1 = 0

nφr1 + nϑr2 − pz(ϑ)r1r2 = 0

(5.41)

or Eq. 5.26 in the s, φ, z coordinate system:

∂ (nsr)
∂s

− nφ cosϑ+ ps(s)r = 0

∂ (nsφr)
∂s

+ nφs cosϑ+ pφ(s)r = 0

nφr1 + nsr2 − pz(s)r1r2 = 0

(5.42)
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The new equilibrium relations shows that the middle equation for the equilibrium
in circumferential direction is decoupled from the other two and thus the shear flow
nϑφ depends only on the load pφ. The kinematic relations Eq. 5.30, Eq. 5.34 and
Eq. 5.38 simplify to:

εθ = 1
r1

(
∂u

∂θ
+ w

)

εφ = 1
r

(u cos θ + w sin θ)

γθφ = 1
r1

∂v

∂θ
− v cos θ

r

(5.43)

or Eq. 5.39 in the s, φ, z coordinate system:

εs = ∂u

∂s
+ w

r1

εφ = 1
r

(u cos θ + w sin θ)

γsφ = ∂v

∂s
− v

r
cos θ

(5.44)

For the pressure vessels, the above equations are simplified. There is now only a
radial load that is constant in both the meridian and circumferential directions:

pz(θ, φ) = p0 (5.45)

This means that there are no thrust flows and also no thrust distortions, and
one obtains:

∂ (ntr)
∂θ

− nφr1 cos θ = 0

nφr1 + nθr2 − p0r1r2 = 0
(5.46)

or in the s, φ, z coordinate system:

∂ (nsr)
∂s

− nφ cos θ = 0

nφr1 + nsr2 − p0r1r2 = 0
(5.47)

and:
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εθ = 1
r1

(
∂u

∂θ
+ w

)
εφ = 1

r
(u cos θ + w sin θ)

(5.48)

respectively:

εs = ∂u

∂s
+ w

r1

εφ = 1
r

(u cos θ + w sin θ)
(5.49)

The sphere is the most favourable vessel shape for internal pressure and one
obtains in each point of the shell the same force flows in sphere directions. A constant
wall thickness results in a pure membrane stress state with a constant stress in all
directions. Because of the geometric conditions, the spherical shape cannot always
be realised. Examples are:

• gas cylinders,

• tanks of launch vehicles,

• pressurised cabin of a commercial aircraft.

In these cases, the circular cylindrical shell with special bottom shapes is often used.
In the following, the cylinder shell vessel is examined. In the cylinder shell the
following force flows result from Eq. 5.27:

∂nx

∂x
= 0 nφ = p0 a (5.50)

The force flow on the circumference nx0 of the lid force from the internal pressure
must maintain equilibrium. The lid force is non-depending on the shape of the lid
or base:

PD = p0 a
2 π = nx0 2 π a

nx0 = p0 a

2
(5.51)

For the cylindrical shell of a pressure vessel with constant wall thickness, a mem-
brane stress state with constant longitudinal stress σx and constant circumferential
stress σφ is obtained. The circumferential stress is twice as large as the longitudinal
stress:

σx = p0a

2h σφ = p0a

h
(5.52)

these two last equations are called boiler formulas.
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This membrane stress state only occurs if the cylinder shell can deform unhindered
(which is not the case at the ends because of the covers). The unhindered deformation
would result for the length change:

εx = ∂u

∂x
= nx

Eh
− vnφ

Eh
= p0a

2Eh(1 − 2v)

⇒ ∆l =
∫ l

0
εx dx = p0a

2Eh(1 − 2v)l
(5.53)

and for the radius change:

εφ = w

a
= −vnx

Eh
+ nφ

Eh

w = p0a
2

Eh

(
1 − 1

2v
) (5.54)

At the transition from the cylindrical part to the bottom (or lid), deviations
from the from the membrane state occur. Their size depends on the shape of the
bottom. Even at the smooth transition to the hemispherical bottom (but unsteady
curvature change), the membrane stress state is disturbed, as both shells experience
different radius changes. These must be compensated in the transition area by
bending moments and transverse forces. A disturbance of the membrane stress state
can be avoided by increasing the wall thickness in the cylindrical part in order to
obtain the same change in radius there as in the spherical shell.[18]

5.3 The vessel theory

The analysis of pressure vessels with the membrane theory has shown that in general
the membrane stress state is disturbed at the edges or at the transitions to the
vessel bottom. In order to describe the shell with bending disturbances, the bending
theory is used. A simple special case of this theory is the vessel theory, which is
valid for rotationally symmetrical shells with a rotationally symmetrical load normal
to the shell skin. The vessel theory then can be applied on cylindrical shells of
revolution with constant wall thickness.[31] The solutions developed for this can also
be transferred to spherical shells.
A circular cylinder shell is considered, which is firmly clamped upright at one end and
is filled with a liquid, Fig. 5.14. The liquid filling creates a rotationally symmetrical,
hydrostatic pressure that increases linearly from top to bottom:

pz = γ(H − x)

The membrane theory provides a circumferential force flow for this loading
condition:

nφ = pz a = γ(H − x)a

and a radial expansion results:
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Figure 5.14. Standing vessel with liquid filling . Image source: [18]

w = pza
2

Eh
= γ(H − x)a2

Eh
(5.55)

If one considers an infinitesimal element, the element from the shell skin (Figure
3.2), the membrane force flows nx and nφ, the bending moment flows mx and mφ,
and the shear force flow qx can act there. For symmetrical reasons, the shear force
fluxes nxφ and nφx, the torsional moment fluxes mxφ and mφx, and the shear force
fluxes qφ are not possible, i.e. they are equal to zero. Except- nφ and mφ are
constant on the circumference. According to Eq. 5.14, Eq. 5.15, Eq. 5.16, with
z/a << 1:

Figure 5.15. vessel theory: forces on the infinitesimal shell element. Image source: [18]
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nx =
∫ h/2

−h/2
σx

(
1 + z

a

)
dz ≈

∫ h/2

−h/2
σx dz

qx =
∫ h/2

−h/2
τxz

(
1 + z

a

)
dz ≈

∫ h/2

−h/2
τxz dz

mx = −
∫ h/2

−h/2
σx

(
1 + z

a

)
z dz ≈ −

∫ h/2

−h/2
σxz dz

nφ =
∫ h/2

−h/2
σφdz

mφ = −
∫

−h/2
σφz dz

(5.56)

Equilibrium provides:

∂nx

∂x
= 0

a
∂qx

∂x
− nφ + p(x) a = 0

∂mx

∂x
+ qx = 0

∂mφ

∂φ
= 0

(5.57)

In case of open vessel it follows nx = 0, and the second and third equations of
Eq. 5.57 provide after eliminating the shear force:

a
∂2mx

∂x2 + nφ − p(x) a = 0 (5.58)

Hooke’s law provides for isotropic material:

σx(z) = E

1 − v2 (εx + vεφ)

= E

1 − v2 [εx0 + vεφ0 − z (κx + vκφ)]

σφ(z) = E

1 − v2 (εφ + vεx) = E

1 − v2 [εφ0 + vEx0 − z (κφ + vκx)]
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The cutting forces become:

nx =
∫ h/2

−h/2
σx dz = Eh

1 − v2 (εx0 + vεφ0)

= D (εx0 + vεφ0) = D

(
∂u0
∂x

+ v
w

a

)

nφ = D (εφ0 + vεx0) = D

(
w

a
+ v

∂u0
∂x

)

mx = Eh3

12 (1 − v2) (κx + vκφ) = K

(
∂2w

∂x2 + v
w

a2

)

mφ = Eh3

12 (1 − v2) (κφ + vκx) = K

(
w

a2 + v
∂2w

∂x2

)

(5.59)

In the case that nx = 0, it follows from the first equation of Eq. 5.59:

∂u0
∂x

= −vw
a

(5.60)

and thus from the second equation of Eq. 5.59:

nφ = Eh

1 − v2
w

a

(
1 − v2

)
= Eh

a
w (5.61)

If, in addition, ν w
a2 is neglected, from the third equation of Eq. 5.59:

mx = K
∂2w

∂x2 (5.62)

Thus in Eq. 5.58 the moment mx and the force flow nφ can be expressed by the
deformation w and the following equation is obtained:

∂4w

∂x4 + 12
(
1 − v2)
a2h2 w = p(x)

K
(5.63)

Other important parameters are K, ξ, α and β. K is the bending stiffness of the
isotropic shell skin with wall thickness h:

K = Eh3

12(1 − ν2) (5.64)

ξ is the dimensionless longitudinal coordinate:

ξ = x

a
(5.65)
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α is the shell parameter:

α =
√
a

h
4
√

3(1 − ν2) (5.66)

β is the opening angle at the edge of the shell:

Figure 5.16. Opening angle at the edge of the shell. Image source: [18]

Therefore, Eq. 5.63 becomes:

∂4w

∂ξ4 + 4α4w = p(ξ)a4

K
(5.67)

This fourth-order differential equation with constant coefficients is the vessel
equation, the solution of which can be formally expressed as:

w(x) = wh(x) + wp(x) (5.68)

The homogeneous solution wh describes the disturbance of the membrane state
due to the boundary conditions of the edges; the particulate solution wp describes
the radial deformation of the membrane solution.
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5.4 Calculation with the transfer matrix method

The calculations carried out analytically lead to a complex set of formulas and
thus to time-consuming calculation steps. Schematising the calculation process by
formulating matrices is possible and thus make it accessible for calculation with the
computer.[26] [28] For questions whose answer is found by solving the differential
equations, the transfer matrix method is suitable. If the vector of all quantities that
completely describe the state of an edge i is called the state vector U⃗i, then the
following applies with the transfer matrix {W}i,i+1 and a load vector L⃗ for the state
vector U⃗i+1 of the second edge:[18]

U⃗i+1 = {W}i,i+1U⃗i + L⃗ (5.69)

Figure 5.17. Structure consisting of two sections. Image source: [18]

The state vector of an nth-order problem consists of n state variables. To
formalise the calculation process, the load vector can be integrated into the transfer
matrix as the n+ 1th vector. With the new transfer matrix {WL}i,i+1 then applies:

U⃗i+1 = {WL}i,i+1 U⃗i (5.70)

If the structure consists of several sections, the calculation can be carried out
section by section:

U⃗2 = {WL}1,2 U⃗1

U⃗3 = {WL}2,3 U⃗2
(5.71)

These equations can either be solved simultaneously or the inner state vectors
can first be eliminated by an intermediate step:

U⃗3 = {WL}2,3 {WL}1,2 U⃗1 (5.72)

With the outer state vectors now known, the inner state vectors can be calculated
by the initial equations.

The transfer matrix of the cylindrical shell according to the vessel theory, leads
to a 4th order differential equation, so that the state of a vessel edge is clearly
described by four state variables. These are for the edge with coordinate x0:
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w(x0), w′(x0), mx(x0), qx(x0)

If one uses the homogeneous solution of the equation with the hyperbolic functions,
one obtains, if the boundary conditions at the boundary x0 are assumed to be known,
four equations for the state variables of the right boundary as a function of the state
variables of the left boundary and the load. With the state vector U⃗i:

U⃗i =


wi

w′
i

mxi

qxi


and the abbreviations:

sh s = sinh
(
αl

a

)
sin
(
αl

a

)
sh c = sinh

(
αl

a

)
cos

(
αl

a

)
ch s = cosh

(
αl

a

)
sin
(
αl

a

)
ch c = cosh

(
αl

a

)
cos

(
αl

a

)

these equations yield the following transfer matrix WCT H :

WCT H =



ch c 1
2α(ch s+ sh c) 1

2α2K
sh s 1

4α3K
(ch s− sh c)

−α(chs − sh c) ch c 1
2αK (ch s+ sh c) 1

2α2K
sh s

−2α2K sh s −αK(ch s− sh c) ch c 1
2α(ch s+ sh c)

−2α3K(ch s+ sh c) −2α2K sh s −α(ch s− sh c) ch c


and the load vector L⃗CT H in the case of a constant internal pressure p0:

L⃗CT H =



−p0
β (1 − ch c)

−p0
β α(chs − sh c)

−p0
β 2α2K sh s

−p0
β 2α3K(ch s+ sh c)



where CTH stands for (Cylindrical) vessel Theory.
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Frames in the shell structure can also be analysed using the transfer matrix
method. For this purpose, a frame matrix is formulated which describes the elastic
behaviour of the rib. The frame deforms due to radial loads QF r and carding
moments MF r.

Figure 5.18. Loads on the frame. Image source: [18]

If shells are connected to the frame on the left and right and the frame is loaded
by loads Q and M from the outside, the following applies, as in Fig. 5.18:

QF r = Q+ qxi − qxi+1

MF r = M +mxi −mxi+1

(5.73)

If it is further assumed that the deformation over the frame does not change,
the following applies:

wi = wi+1 = wF r

w′
i = w′

i+1 = −ψF r
(5.74)

The last four equations give the frame matrix Fr and the load vector LF r:

{Fr} =


1 0 0 0
0 1 0 0
0 EIzF r

a2 1 0
EAF r

a2 0 0 1

 (5.75)
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L⃗F r =


0
0
M
Q

 (5.76)

5.5 Composite shells under any load
In the previous section Sec. 5.3, the partial differential equations for the rotationally
symmetric shear structure could be transferred into ordinary differential equations
and solved because of the rotationally symmetric load. In the following, any φ-
dependent loads are considered, which also lead to φ-dependent deformations and
internal forces. The differential equations initially remain partial. With the help
of the Fourier series development, the external loads, the internal forces and the
deformations are developed into periodic approach functions, so that the derivatives
according to φ can be replaced by algebraic expressions.[29] This makes it possible
to convert the partial differential equations into ordinary ones. Composite and, if
necessary, tension-stiffened shell structures are broken down into elements, for each
of which transfer matrices or tension matrices are developed, with the help of which
the individual structural sections can be linked.[15]

First, the transfer matrices for the isotropic cylindrical shells are determined
according to the membrane theory by solving the differential equations from section
Sec. 5.2.1. Then, the equilibrium relationships of Eq. 5.26 for the membrane cylinder
shell are compiled again here. Only the normal load pz on the shell skin is considered.
In order to further simplify the solution of differential equations, it is assumed that
this load is not dependent on the coordinate x, but only on φ for the considered
shell sections.[18]

∂nx

∂x
+ ∂nφx

a ∂φ
= 0

∂nxφ

∂x
+ ∂nφ

a ∂φ
= 0

nφ − pz(φ)a = 0

(5.77)

The kinematic relations for the cylindrical shell are:

εx = ∂u

∂x

εφ = 1
a

(
∂v

∂φ
+ w

)
γxφ = ∂v

∂x
+ 1
a

∂u

∂φ

(5.78)
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Hooke’s law for the isotropic cylindrical shell is:

εx = 1
Eh

(nx − v nφ)

εφ = 1
Eh

(−v nx + nφ)

γxφ = 1
Gh

nxφ

(5.79)

From Eq. 5.77 to Eq. 5.79, four relations can be found for the first derivatives
with respect to x of the quantities nxφ , nx , u and v, the state variables as a function
of these quantities. From the second and third equations of Eq. 5.77 follows:

∂nxφ

∂x
= −∂pz

∂φ
(5.80)

From the 1st equation of Eq. 5.77 results:

∂nx

∂x
= −∂nφx

a ∂φ
(5.81)

from the 1st of Eq. 5.78, the 1st of Eq. 5.79 and the 3rd of Eq. 5.77:

∂u

∂x
= 1
Eh

nx − v a

Eh
pz (5.82)

Finally, it follows from the 3rd of Eq. 5.78 and the 3rd of Eq. 5.79:

∂v

∂x
= −1

a

∂u

∂φ
+ 1
Gh

nxφ (5.83)

The last four equations presented are transformed into ordinary differential
equations using Fourier series expansions for the load and the state variables. Stresses
in the plane of the shell sections are nxφ and stresses perpendicular to shell section
plane are nx, thus in the direction of the length of the beam. If only symmetrical
loads are assumed, one gets:

pz(φ) = pz0 +
∞∑

m=1
pzm cos(mφ)

v(φ) =
∞∑

m=1
vm sin(mφ)

u(φ) = u0 +
∞∑

m=1
um cos(mφ)

nx(φ) = nx0 +
∞∑

m=1
nxm cos(mφ)

nxφ(φ) =
∞∑

m=1
nxφm sin(mφ)

(5.84)
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The first derivatives according to φ result with the abbreviation:

∂φ() = ∂()
∂φ

(5.85)

to:

∂φpz = −
∞∑

m=1
pzm m sin(mφ)

∂φv =
∞∑

m=1
vm m cos(mφ)

∂φu = −
∞∑

m=1
um m sin(mφ)

∂φnx = −
∞∑

m=1
nxm m sin(mφ)

∂φnxφ =
∞∑

m=1
nxφm m cos(mφ)

(5.86)

The following applies to the required second derivatives:

∂2
φpz = −

∞∑
m=1

pzm m2 cos(mφ)

∂2
φnxφ = −

∞∑
m=1

nxφmm
2 sin(mφ)

(5.87)

Finally, the third derivative of pz is:

∂3
φpz =

∞∑
m=1

pzmm
3 sin(mφ) (5.88)

If the variables in Eq. 5.80 to Eq. 5.83 are replaced by the Fourier series and
a coefficient comparison is carried out, the following results for each wave number
m ≥ 1 the following system of four 1st order differential equations:



vm

um

nxma

nxφma



′

=



0 m
a 0 1

G h a

0 0 1
E h a 0

0 0 0 −m
a

0 0 0 0





vm

um

nxm a

nxφm a


+



0

− v a
E hpzm

0

m a pzm


(5.89)
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These four equations can be integrated one after the other starting from the
bottom and one obtains with the dimensionless coordinate ξ = x/a and the state
vector U⃗i:

U⃗i =


vm

um

nxm a
nxφm a


i

(5.90)

following transfer matrix {WMT H} of the cylindrical shell according to the
membrane theory:

{WMT H} =



1 mξ m
2Ehξ

2 − 1
Eh

m2

6 ξ
3 + 1

Ghξ

0 1 1
Ehξ − m

2Ehξ
2

0 0 1 −mξ

0 0 0 1


(5.91)

With the assumption that the normal load pzm is constant over the section length,
the integration results in the following load column:

[LMT H ] =



− 1
Eh

[
m3

24 ξ
4 + mv

2 ξ
2
]

+ m
2Ghξ

2

− 1
Eh

(
vξ + m2

6 ξ
3
)

−m2

2 ξ
2

mξ


pzma

2 (5.92)

For m = 0, only symmetrical state variables occur (v = 0 and nxφ = 0).
Therefore, by deleting the 1st and 4th rows and the corresponding columns with the
state vector U⃗i, one obtains:

U⃗i =

 um

nxma
1


i

(5.93)

the transfer matrix:

{WMT HL
} =


1 1

Ehξ − v
Ehξpz0a

2

0 1 0
0 0 1

 (5.94)

The boundary conditions for differently shaped shell edges must be respectively
defined. Deformations u deform the cross-section out of the plane, one speaks of
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warping, while displacements v change the cross-sectional shape, i.e. ovalise.
The calculation is carried out separately for each Fourier element of the external load
with the wave number m and the amplitude pzm , and then the respective results are
superimposed.

In the application studied in this thesis, a horizontal cylindrical tank half-filled
with liquid is considered, Fig. 5.19. The tank is closed at both ends with a flat,
circular plate which is rigid in its plane but flexible vertically. The forces exerted by
the liquid on the lids are neglected in the calculation.

Figure 5.19. Half-filled vessel. Image source: [18]

The following boundary conditions arise at the edges:

vm0 = vm1 = 0
nxm0

= nxm1
= 0

As a result of the liquid filling, a hydrostatic pressure p∗(φ) arises:

p∗(φ) = γR(cos φ0 − cos φ)

which can be described by a Fourier series:

p∗(φ) = a0
2 +

∞∑
m=1

am cosmφ

with the coefficients:

am = 1
π

∫ 2π

0
p∗(φ) cosmφdφ

For the half-filled cylinder (φ0 = π
2 ), one gets:

p∗(φ) = 2P
Rπl

(0, 3183 − 0, 5 cosφ+ 0, 2122 cos 2φ− 0, 0424 cos 4φ+ . . .)
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where P is the filling weight:

P = 1
2γR

2πl

In the solution of this problem, x has been chosen as x = l/2, so in the middle
of the cylindrical shell, where the stress on the direction of the length of the shell is
maximum. The liquid that fills the cylindrical shell has been chosen as water, with
a specific weight of γ = 1000 kg/m3 at 4◦C.

The approximation of the real pressure distribution by a Fourier series, which is
terminated after the term with m = 4, is shown in Fig. 5.20. The further calculation
is carried out with the wave numbers 0 ≤ m ≤ 4.

Figure 5.20. Pressure load Fourier series up to wave number m = 4.

To solve the problem, the equations resulting from Eq. 5.90 to Eq. 5.92, can be
written in a system of equations as:

U⃗i+1 = {WLMT H
} U⃗i (5.95)

where {WLMT H
} is the transfer matrix of Eq. 5.91, with the load vector of

Eq. 5.92 appended as the last column of the matrix. In order to get the right
dimensions to solve the system, the value 1 is appended as the last element of the
two state vectors of Eq. 5.90, and the row vector {0 0 0 0 1} is appended as the last
row of the matrix {WLMT H

}.
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The resulting transfer matrix with the load vector appended is: {WLMT H
} =



1 mξ m
2Ehξ

2 − 1
Eh

m2

6 ξ
3 + 1

Ghξ
[
− 1

Eh

[
m3

24 ξ
4 + mv

2 ξ
2
]

+ m
2Ghξ

2
]
pzma

2

0 1 1
Ehξ − m

2Ehξ
2

[
− 1

Eh

(
vξ + m2

6 ξ
3
)]

pzma
2

0 0 1 −mξ
[
−m2

2 ξ
2
]
pzma

2

0 0 0 1 [mξ] pzma
2

0 0 0 0 1


and the resulting state vectors are:

U⃗0 =


vm

um

nxm a
nxφm a

1


0

(5.96)

and:

U⃗1 =


vm

um

nxm a
nxφm a

1


1

(5.97)

The following applies to the stress nx(φ) of the shell:

nx(φ) =
4∑

m=0
n̄xm cosmφ (5.98)

where m is the Fourier wave number, and n̄xm is the coefficient of the Fourier
series correspondent to the respective wave number that have been computed solving
the Eq. 5.95 and are:

n̄x1 = −1
n̄x2 = 1.698
n̄x4 = −1.357

(5.99)

In Fig. 5.21 one can see the course of the stress nx(φ) in the centre of the shell,
so with x = l/2. The stress is adimensionalized dividing it by a factor = (8π)/(P l)
in order to have a better understanding and comparison of the behaviour along the
circumference of the cylindrical shell in the centre of the shell.[18]
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Figure 5.21. Stress nx(φ) in the centre of the shell, for x = l/2 , where m is the wave
number considered in the Fourier series representation, and the continuous line is the
complete Fourier series resultant of the summation of all the wave numbers from m = 1
to m = 4.

Once the problem has been analytically solved, two different data-sets has been
created, with the implementation of a MATLAB script. The first data-set, used for
the training of the neural network, is composed of 16000 samples with different
lengths of the shell and different diameters, using the same material and the same
applied load. The second data-set, used for the validation of the neural network,
is composed of samples completely different from the samples of the first data-set,
as well with different lengths of the shell and different diameters, using the same
material and the same applied load.

A part of the validation data-set is represented from the analytical computations,
in order to have a better understanding of the behaviour, in Fig. 5.22 fixing a
diameter, and varying just the lengths of the different shells used.
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Figure 5.22. Stress nx(φ) in the centre of the shell, for x = l/2 with R = 3500 mm.
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Chapter 6

Neural Network used to study a
cylindrical shell under pressure
load

6.1 The direct problem: shell length and diameters
given as input to get the stresses

This chapter describes in detail the neural network architecture used for the cylindri-
cal shell structure study, with particular reference to the network composition, the
reasons behind the choices made and the results obtained using an internal pressure
load.

For the study of the cylindrical shell problem represented in Fig. 6.1, the choice
was made to create a neural network that could calculate the stresses arising out of
the plane of the shell section, distributed around the circumference of the shell itself.

Figure 6.1. Half-filled vessel. Image source: [18]

It should be noted that the load applied to the shell varies around the circumfer-
ence of the shell itself, but remains constant along the longitudinal direction of the
structure. This choice stems from the fact that in this way it is possible to calculate
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where, if any, the stress exceeds the ultimate one and causes the material to break.
For this reason, different neural network architectures have been created, all

characterised by using the same neural network training inputs. The inputs given
for the training phase are the diameter and length of the shell, varying the values for
length between 350 and 3500 mm and the inner diameter of the shell between 3005
and 5000 mm. The choice of these values is dictated by the fact that one wishes to
remain within the range of validity of container theory and membrane theory, which
prove to be particularly effective when the shell length does not exceed the inner
diameter and the wave number used for the approximation by means of a Fourier
series of the internal pressure load does not exceed m = 4.

The inputs given to the beam are only the values that vary in the samples of the
training data-set, making it possible to make the architecture of the neural network
completely independent of the Young’s modulus, the Poisson’s coefficient, and
consequently of the material chosen to make the Shell, possibly even implementing
a shell made of composite material, using equivalent Young modulus and Poisson
coefficient values that best represent the composite structure.

For the shell under study was chosen to use aluminium as a material, characterised
by a Young modulus of 70 GPa, a shear modulus of 26 GPa and a Poisson coefficient
of 0.3. The thickness of the shell structure was set at 1 mm, which is also a realistic
value in terms of a lower limit for the actual manufacturability of this type of
structure in the manufacturing field, as it has to withstand an internal pressure load.

Of course, as in the case of the beam analysed in Chap. 4, if one wanted to
study stresses in the plane of the shell section or other types of parameters of a
structural analysis of the shell (changing also the material of the shell for instance),
it would be necessary to re-train the neural network with data-sets that refer to
the particular load condition desired and the particular output desired. The neural
network is given a training data-set on which the algorithm then goes on to study
the model that it will use in predicting the results. With the aim of obtaining an
evaluation of the performance during the training process, it was also chosen here,
as in the case of cantilever beam, to set the amount of data used to create an initial
performance estimate of how the algorithm is allowing the neural network to learn
the mathematical relationships, by means of a backward feedback process, at 10%
of the total data provided. Then, a new data-set is supplied to the network with the
diameter and shell length values provided as input, with the aim of evaluating the
performance of the learning algorithm and comparing the predictions obtained by
the neural network with the results calculated analytically. The process scheme is
therefore the same as that used for the cantilever beam, see Fig. 4.2.

For the shell structure many attempts were made before identifying the most
suitable neural network architecture for studying the problem. With reference to
the section on the cantilever beam neural network Sec. 4.1, also in this case the
final choice of architecture fell on a network composed of three different layers, in
which the input layer uses a rectified linear unit type activation function described
in the chapter referring to the different activation functions. The second and third
layers therefore use the same number of nodes as the input layer and the same
activation function. Immediately following the third layer is the output player which
uses a simply linear activation function, with the purpose of collecting the outputs
produced by the third layer of the network. In the remainder of the chapter, we
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therefore present the study of the various possibilities by varying the number of
nodes, and the number of samples provided in the network’s training data-set, with
the aim of assessing which predictive model is the best.[2]

The number of samples provided in the training data-set is either 10000 or 16000.
As in the case of the beam, the samples contained in the training data-set are
arranged randomly in order to avoid any type of correlation that the network could
detect simply by following the trend of the variation in the length and diameter
of the shell, thus allowing the neural network to focus only on the mathematical
relationships linking the study parameters of this structural analysis.

As the problem under study is a complex one, a neural network architecture
approach consisting of a normalisation performed immediately in the first layer
was also analysed, however, providing poor results and therefore discarding the
possibility of introducing a normalisation from the outset. As an example, the
training graph obtained by means of a training with implementation of normalisation
is also provided: as can be seen from Fig. 6.2, the network fails to identify a prediction
model and generalise it, soon diverging before reaching the maximum number of
iterations allowed for the neural network itself.[11]

The stresses provided in output by the neural network are dimensionless thanks
to the use of a factor f = (8π)/(P l) that allows a better comparison of the results
by varying the input data. Since the cylindrical shell is a symmetrical structure
with respect to its axis, only the semicircle from an angle value φ = 0 up to φ = π
is studied. You only need to perform a rotation of the stresses obtained for the first
semicircle to obtain the values on the other semicircle.

In order to best study the applications of the solution of this shell problem,
experiments were carried out to obtain as output the nx stress values corresponding
to 1 angle, 2 different angles on the half-circle, 4 angles, 10 angles, 25 angles, and
finally 50 angles to best characterise the entire half-circle.

The values of mean absolute error and mean squared error you turn out to be
very small as the scaling performed on the stress values meant that all the values
were in the vicinity of zero, varying at most by 2 orders of magnitude as the angle
considered, the length, and the diameter of the shell varied, and the values of MAE
and MSE presented in Eq. 2.2 and Eq. 2.1 depend directly on these.

The batch size value chosen for the study of the shell problem was set at 64, as
this value proved to be after many different attempts to be the best compromise
value to ensure that the neural network was not trained excessively long in terms of
time and performed very well in terms of the predictions provided by the learning
algorithm.

Again, as with the beam cantilever, in order to guard against any randomness
in the number of iterations required to achieve convergence, each individual neural
network training process was performed four times for each data-set point, and the
best results obtained for each cycle are presented below.

This chapter presents tables corresponding to the study of neural networks by
varying the number of nodes for each layer, completed for each case study by fixing
the number of outputs as previously explained.

An angle of φ = 1.602 rad was used for the problem characterized by only one
value in output of angle φ.
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(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.2. MAE and MSE for the 64 nodes normalized NN with 1 angle value output and
10000 rows data-set.

Angles equal to φ = 0.769, 1.602 rad were used for the problem characterized
by 2 values in output of angle φ.

Angles equal to φ = 0.769, 1.602, 2.308, 3.141 rad were used for the problem charac-
terized by 4 values in output of angle φ.

Angles equal to φ = 0.064, 0.384, 0.769, 1.089, 1.602, 1.923, 2.308, 2.628, 2.821,
3.141 rad were used for the problem characterized by 10 output values of angle φ.

For the problem characterized by 25 output values of angle φ the angles equal
to φ = 0.064, 0.192, 0.320, 0.448, 0.577, 0.705, 0.833, 0.961, 1.089, 1.218, 1.346, 1.474,
1.602, 1.731, 1.859, 1.987, 2.115, 2.243, 2.372, 2.500, 2.628, 2.756, 2.885, 3.013, 3.141 rad.

For the problem characterized by 50 output values of angle φ the angles equal to
φ = 0, 0.064, 0.128, 0.192, 0.256, 0.320, 0.384, 0.448, 0.512, 0.577, 0.641, 0.705, 0.769,
0.833, 0.897, 0.961, 1.025, 1.089, 1.154, 1.218, 1.282, 1.346, 1.410, 1.474, 1.538, 1.602,
1.666, 1.731, 1.795, 1.859, 1.923, 1.987, 2.051, 2.115, 2.179, 2.243, 2.308, 2.372, 2.436,
2.500, 2.564, 2.628, 2.692, 2.756, 2.821, 2.885, 2.949, 3.013, 3.077, 3.141 rad.
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node per layer epoch MAE MSE

4-4-4 170 0.095778 0.014715

8-8-8 498 0.039823 0.003097

16-16-16 172 0.046193 0.004116

32-32-32 158 0.045433 0.004189

64-64-64 231 0.041474 0.004119

128-128-128 382 0.038397 0.003386

Table 6.1. Training performance analysis for the neural network architecture with 10000
samples data-set and 1 output.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.3. MAE and MSE for the 8 nodes NN with 1 angle value output and 10000 rows
data-set.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.4. MAE and MSE for the 64 nodes NN with 1 angle value output and 10000 rows
data-set.
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node per layer epoch MAE MSE

4-4-4 299 0.056972 0.005747

8-8-8 348 0.050528 0.004408

16-16-16 233 0.041033 0.003619

32-32-32 523 0.036913 0.002416

64-64-64 146 0.057068 0.006257

128-128-128 218 0.046602 0.004302

Table 6.2. Training performance analysis for the neural network architecture with 16000
samples data-set and 1 output.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.5. MAE and MSE for the 32 nodes NN with 1 angle value output and 16000 rows
data-set.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.6. MAE and MSE for the 64 nodes NN with 1 angle value output and 16000 rows
data-set.
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node per layer epoch MAE MSE

4-4-4 244 0.030422 0.002218

8-8-8 348 0.037174 0.003757

16-16-16 393 0.025958 0.001773

32-32-32 387 0.025600 0.001725

64-64-64 223 0.029398 0.002406

128-128-128 187 0.025982 0.002074

Table 6.3. Training performance analysis for the neural network architecture with 10000
samples data-set and 2 outputs.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.7. MAE and MSE for the 32 nodes NN with 2 angle values output and 10000
rows data-set.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.8. MAE and MSE for the 64 nodes NN with 2 angle values output and 10000
rows data-set.
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node per layer epoch MAE MSE

4-4-4 64 0.212596 0.090133

8-8-8 271 0.024770 0.001588

16-16-16 215 0.023025 0.001466

32-32-32 217 0.026679 0.002002

64-64-64 147 0.025701 0.001894

128-128-128 290 0.024276 0.001496

Table 6.4. Training performance analysis for the neural network architecture with 16000
samples data-set and 2 outputs.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.9. MAE and MSE for the 16 nodes NN with 2 angle values output and 16000
rows data-set.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.10. MAE and MSE for the 64 nodes NN with 2 angle values output and 16000
rows data-set.
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node per layer epoch MAE MSE

4-4-4 443 0.027254 0.001523

8-8-8 329 0.025498 0.001483

16-16-16 431 0.021999 0.001206

32-32-32 227 0.024241 0.001486

64-64-64 130 0.029329 0.002224

128-128-128 299 0.021172 0.001255

Table 6.5. Training performance analysis for the neural network architecture with 10000
samples data-set and 4 outputs.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.11. MAE and MSE for the 16 nodes NN with 4 angle values output and 10000
rows data-set.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.12. MAE and MSE for the 64 nodes NN with 4 angle values output and 10000
rows data-set.
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node per layer epoch MAE MSE

4-4-4 127 0.197724 0.069611

8-8-8 387 0.024524 0.001305

16-16-16 125 0.022751 0.001402

32-32-32 302 0.023975 0.001473

64-64-64 285 0.022852 0.001415

128-128-128 169 0.025298 0.001511

Table 6.6. Training performance analysis for the neural network architecture with 16000
samples data-set and 4 outputs.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.13. MAE and MSE for the 16 nodes NN with 4 angle values output and 16000
rows data-set.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.14. MAE and MSE for the 64 nodes NN with 4 angle values output and 16000
rows data-set.
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node per layer epoch MAE MSE

4-4-4 130 0.163534 0.050737

8-8-8 234 0.020221 0.001254

16-16-16 317 0.021598 0.001096

32-32-32 327 0.020029 0.001083

64-64-64 248 0.018936 0.001035

128-128-128 393 0.019155 0.000813

Table 6.7. Training performance analysis for the neural network architecture with 10000
samples data-set and 10 outputs.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.15. MAE and MSE for the 128 nodes NN with 10 angle values output and 10000
rows data-set.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.16. MAE and MSE for the 64 nodes NN with 10 angle values output and 10000
rows data-set.
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node per layer epoch MAE MSE

4-4-4 233 0.022956 0.001261

8-8-8 168 0.025441 0.001386

16-16-16 194 0.021315 0.001126

32-32-32 195 0.019784 0.001014

64-64-64 125 0.021273 0.001176

128-128-128 324 0.018338 0.000876

Table 6.8. Training performance analysis for the neural network architecture with 16000
samples data-set and 10 outputs.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.17. MAE and MSE for the 128 nodes NN with 10 angle values output and 16000
rows data-set.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.18. MAE and MSE for the 64 nodes NN with 10 angle values output and 16000
rows data-set.
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node per layer epoch MAE MSE

4-4-4 388 0.024247 0.001414

8-8-8 339 0.021138 0.001204

16-16-16 518 0.017996 0.000856

32-32-32 237 0.020170 0.001122

64-64-64 238 0.021953 0.001235

128-128-128 243 0.020358 0.001199

Table 6.9. Training performance analysis for the neural network architecture with 10000
samples data-set and 25 outputs.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.19. MAE and MSE for the 16 nodes NN with 25 angle values output and 10000
rows data-set.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.20. MAE and MSE for the 64 nodes NN with 25 angle values output and 10000
rows data-set.
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node per layer epoch MAE MSE

4-4-4 120 0.163027 0.053760

8-8-8 183 0.020574 0.001158

16-16-16 206 0.020717 0.001167

32-32-32 168 0.020846 0.001248

64-64-64 401 0.019138 0.000907

128-128-128 127 0.026385 0.001537

Table 6.10. Training performance analysis for the neural network architecture with 16000
samples data-set and 25 outputs.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.21. MAE and MSE for the 16 nodes NN with 25 angle values output and 16000
rows data-set.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.22. MAE and MSE for the 64 nodes NN with 25 angle values output and 16000
rows data-set.
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node per layer epoch MAE MSE

4-4-4 466 0.030013 0.002371

8-8-8 209 0.021741 0.001278

16-16-16 154 0.024214 0.001467

32-32-32 193 0.022444 0.001268

64-64-64 194 0.025819 0.001701

128-128-128 60 0.162566 0.053502

Table 6.11. Training performance analysis for the neural network architecture with 10000
samples data-set and 50 outputs.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.23. MAE and MSE for the 8 nodes NN with 50 angle values output and 10000
rows data-set.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.24. MAE and MSE for the 64 nodes NN with 50 angle values output and 10000
rows data-set.
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node per layer epoch MAE MSE

4-4-4 296 0.019424 0.000985

8-8-8 157 0.022347 0.001261

16-16-16 197 0.021403 .001265

32-32-32 258 0.018480 0.001043

64-64-64 181 0.019944 0.001133

128-128-128 84 0.162238 0.053503

Table 6.12. Training performance analysis for the neural network architecture with 16000
samples data-set and 50 outputs.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.25. MAE and MSE for the 32 nodes NN with 50 angle values output and 16000
rows data-set.

(a) The MAE Mean Absolute Error. (b) The MSE Mean Squared Error.

Figure 6.26. MAE and MSE for the 64 nodes NN with 50 angle values output and 16000
rows data-set.
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A careful analysis of results shows that the network that performs best in
terms of predicting results is the one consisting of three layers each composed of 64
nodes, using the one composed of 16000 examples as the training data-set. This
consideration stems from the fact that using neural networks composed of fewer
nodes per layer sometimes yields lower MAE and MSE error values as output than
using the network consisting of 64 nodes per layer, but this error is actually obtained
as the average of the oscillations that the learning algorithm makes in the validation
curve on the training curve. In fact, the oscillations that are noticed on the validation
curve are due to the fact that the network using 10% of the data provided in the
training data-set, fails to develop a generalized prediction model but tends to produce
noise thus going to "learn by heart" the data instead of studying its relationships to
make a prediction. In these cases, in fact, the training curve has lower error values
than those produced by the neural network consisting of 64 nodes per layer, but as
seen in the validation curves, the predictions on the stress values are reproduced
perfectly due to the fact that the network has "learned by heart" and reconstructed
relationships based only on the trend of the curve and not by going to study its
mathematical properties that read the inputs to the outputs.

In doing so, therefore, it turns out that the network fails to go to generalize
the problem by means of the learning algorithm, and then provides the output
results by going to reconstruct the trend of the curve that refers to how the stress
is worth by varying the length and diameter of the Shell. In the present case, this
behavior does not induce major problems simply because the number of samples
provided with the training data-set has a limited range of validity, as explained
at the beginning of the chapter, thus making the results valid for shell structures
that have a length and internal diameter within the ranges explained above. In
the event that one were to analyze a problem with much wider ranges of variation,
this could go on to create reliability problems, as the network would not necessarily
be able to provide a result using an architecture composed of fewer than 64 nodes
that is reliable is based on an understanding of the generalized problem and not on
predictions dictated by the curve trend. Considering these evaluations, it is therefore
possible to state that although sometimes the predictive model obtained with a
network architecture is formed of 64 nodes per layer provides greater MAE and
MSE errors than those obtained with architectures consisting of a smaller number
of nodes, the predictive models that networks formed by architecture with 64 nodes
per layer turn out to be better in terms of understanding and generalizing the
problem. In conclusion, it can be seen that as the number of required outputs
increases, the neural network gradually reduces its performance, going on to produce
a prediction error that gradually increases slightly with respect to the expected
result calculated analytically. The following pages show graphs with the neural
network evaluations for each case study by varying the number of outputs. the
validation data-set consists of length and internal diameter of the Shell structure
varying in the ranges described at the beginning of this chapter, all values being
absolutely unknown to the neural network, and thus avoiding the possibility of the
network directly providing a number taken solely from memory. The y-axis of each
graph represents the dimensionless stress nx value, while the x-axis represents which
sample is evaluated with the corresponding length and diameter assigned. The nx

stress results shown in the graph are all calculated for an angle φ = 1.602 rad ≈ π/2.
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(a) NN trained with 10000 samples. (b) NN trained with 16000 samples.

Figure 6.27. Evaluation of the stress nx at the angle value φ = π/2 rad, with 1 output
from the 64 nodes/layer NN, varying the length of the shell and the inner diameter.

(a) NN trained with 10000 samples. (b) NN trained with 16000 samples.

Figure 6.28. Evaluation of the stress nx at the angle value φ = π/2 rad, with 2 outputs
from the 64 nodes/layer NN, varying the length of the shell and the inner diameter.

(a) NN trained with 10000 samples. (b) NN trained with 16000 samples.

Figure 6.29. Evaluation of the stress nx at the angle value φ = π/2 rad, with 4 outputs
from the 64 nodes/layer NN, varying the length of the shell and the inner diameter.
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(a) NN trained with 10000 samples. (b) NN trained with 16000 samples.

Figure 6.30. Evaluation of the stress nx at the angle value φ = π/2 rad, with 10 outputs
from the 64 nodes/layer NN, varying the length of the shell and the inner diameter.

(a) NN trained with 10000 samples. (b) NN trained with 16000 samples.

Figure 6.31. Evaluation of the stress nx at the angle value φ = π/2 rad, with 25 outputs
from the 64 nodes/layer NN, varying the length of the shell and the inner diameter.

(a) NN trained with 10000 samples. (b) NN trained with 16000 samples.

Figure 6.32. Evaluation of the stress nx at the angle value φ = π/2 rad, with 50 outputs
from the 64 nodes/layer NN, varying the length of the shell and the inner diameter.
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6.2 The inverse problem: stresses given as input to get
shell length and diameters

An attempt was also made to study the shell-type structure by giving as input
to the network the stress values measured at certain corners of the structure, and
requesting as output the diameter and length of the structure affected by these
stresses, as a consequence of the same internal pressure load also applied in this case.
All these attempts were performed with the exact same network architecture used
for the direct solution of the problem, i.e. the study described earlier in this chapter,
giving as input diameter and length, and obtaining the stress value for different
angles along the circumference of the shell cross-section. The results obtained in this
way, however, are not satisfactory in terms of the inner diameter, as the network
is unable to determine correct predictions of this value even when giving as input
stress values measured for the same 50 different angles as previously mentioned. In
terms of beam length prediction, however, it can be seen that the neural network
manages to predict the correct value with good results, with errors of between 1%
and 5%.

Attempts were made both with a neural network consisting of 64 nodes per layer,
which turned out to be the best in predictive terms, and with 128 nodes per layer
and then with 32 nodes per layer, obtaining, however, for the latter two, slightly
lower performance levels than the architecture consisting of 64 nodes per layer. This
fact is due to the density and distribution of samples contained in the training
data-set of the network, which is sufficiently high and adequate for the lengths of the
shell structure, but too sparse in terms of the diameter values provided as training,
which are consequently not representative for the learning algorithm in the study of
the network’s inverse problem. As an example, the figure below, Fig. 6.33 shows
the evaluation of the model that proved to be best for the prediction of the shell
structure length, using as specified earlier a neural network architecture with 64
nodes per layer, Fig. 6.33c.
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(a) Performance using a 128 nodes per layer NN, asking as output only the length of the
shell structure.

(b) Performance using a 128 nodes per layer NN, asking as output the length of the shell
structure and its diameter.

(c) Performance using a 64 nodes per layer NN, asking as output the length of the shell
structure and its diameter.

Figure 6.33. Performance evaluation for the inverse problem giving as input nx stress
measured in 50 different angles.





109

Chapter 7

Conclusions

This chapter summarises the thesis work completed. Starting with an explanation
of how artificial intelligence is nowadays employed by means of machine learning
techniques and neural networks, passing through a chapter dealing with the theory
of bending and normal force for a beam, the implementation of a neural network for
the study of a cantilever beam, i.e. a clamped beam subjected to a concentrated
force, was dealt with. The neural network was able to predict almost perfectly the
maximum displacement that the final configuration of the beam undergoes with
respect to the initial reference configuration, and the maximum stress to which the
beam is subjected, by providing as input to the network only the length of the
cantilever beam and the modulus of the force applied to it in terms of load.

After a chapter in which the Transfer Matrix Method and the theories used for
the structural study of a shell and more generally of pressure vessels were described
and explained, one moved on to the description of the architecture used for the study
of the cylindrical type axle subjected to constant internal pressure loading along the
longitudinal direction of the structure and varying in the circumferential direction.
It was seen that this network succeeds in forming well in terms of predicting the
stress nx out of the plane of the cylinder cross-section, especially when 1, 2 or 4
output in terms of the angle of stress measurement on the circumference of the
cross-section is required. By increasing the number of angles at which the stress
measurement nx is to be determined, the results gradually reduce the accuracy with
which they are predicted by the neural network.

To further improve the results obtained, it might be interesting to carry out the
same problem study as in this thesis work for the shell by increasing the size of the
training data-set even more, in order to study deeper the inverse problem, improving
the predicted results in terms of length and diameter of the shell.
The areas in which future research development from this thesis work appears
interesting are: the study of shell-type structures characterised by a structure length
greater than its diameter, for which the Vessel Theory no longer applies and for which
it would therefore be necessary to introduce a new study using the Half-bend Theory
in order to calculate stress and displacement accurately; the study and calculation
of stress and displacement occurring in the bulkheads of shell-type structures.

In conclusion, finally, this thesis work has shown how the use of machine learning
can guarantee the solution of structural mechanical analysis problems in a very short
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time while not losing reliability in the prediction of results, potentially enabling
structural and complex mechanical studies in a very short time compared to what
would be required using conventional structural mechanical analysis tools such as
finite elements.
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