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Abstract

For over two decades resting state functional Magnetic Resonance Imaging (fMRI)
has become an extremely popular area of research for neuroimaging as it measures
spontaneous, low frequency fluctuations in the BOLD signal (Blood Oxygenation
Level Dependent) to investigate the functional architecture of the brain. However
fMRI data are influenced by non-neural processes that affect the results of any
task-based or resting state fMRI experiment. Such processes arise from a variety
of sources including subject motion, subject cardiac and respiratory cycles, and
MRI scanner hardware artefacts.

One of the most problematic source of noise in resting state fMRI data (rs-fMRI)
is subject head motion during scans: it causes image intensity to reflect not only
blood oxygenation but also motion-related artefact. In this way signal intensity
could change in fMRI data, causing peaks presence or drop of the signal. Com-
pensating motion effects has always been an important issue in both resting state
and task fMRI data analysis, and pre-processing steps as motion correction are
not complete. Numerous correction methods for head motion artefact in rs-fMRI
were developed, for example Power [1] has been the first researcher to find out
a relation between motion and functional connectivity of rs-fMRI; moreover as
possible solution of movement problem he proposed the scrubbing method which
still remains one of the solutions more adopted. Recently methods have also been
developed to automatically and selectively remove structured noise, so not only
motion related, from fMRI data using for example machine learning classifiers and
spatial Independent Components Analysis (sSICA). For instance in 2014 Griffanti
and colleagues developed a new method to identify artefactual components which
include the application of single-subject ICA, followed by automatic component
classification with FMRIB’s ICA-based X-noiseifier (FIX) [2].

Noise is still an unresolved problem and no methods currently exist to selectively
and completely remove global structured noise while retaining the global signal
from neural activity. To solve this problem, last year Glasser and colleagues [3]
published a new method which use the combination of the standard spatial I[CA
approach with the temporal ICA (tICA).

The aim of the present study is to implement Glasser’s method, in particular the
focus of this thesis is to select and remove motion-related noise sources.

In order to evaluate the effectiveness of implemented method on motion problem
on rs-fmri data, it will be compared the results before and after tICA cleanup in
terms of motion traces and functional connectivity.
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Introduction

Functional magnetic resonance imaging (fMRI) is a powerful neuroscientific tool
for non-invasively mapping brain activity and for estimating the functional inter-
actions between brain areas. Its fundamental principle is based on the capacity
of revealing the neuronal activity through cerebral hemodynamic. Through mag-
netic fields fMRI allows to observe variation of signal depending on metabolic
and hemodinamic change present during cerebral activation induced by external
or internal stimuli. An increment of synaptic activity provides at the beginning
a reduction of oxygen concentration that requires a raise of blood flow due to an
increased demand of oxygen. This bring to a reduction of deoxyhaemoglobin con-
centration (determined from the incrementation of cerebral activity), resulting in
an unbalance between deoxy and oxy-hemoglobin concentrations. This physiologi-
cal condition was demonstrated in 1890 from study results of Roy and Sherrington
[5]. The difference of concentrations between deoxy and oxy-hemoglobin causes
a variation of the signal that can be measured using fmri imaging methods such
as echo-planar sequences. First experiments on fmri were performed by Ogawa et
al. [6] on animals and it has been proved that, through magnetic fields with in-
tensity grater that 1.5T and weighted T2* images, is possible to measure a signal
depending on the level of deoxyhemoglobin present in different cerebral regions,
the so called BOLD signal (Blood Oxygenation Level Dependent). It is not a

direct measure of nervous tissue activity, but is an neuronal activity index since



it is associated to hemodinamic effects.

The acquisition of bold signal can be obtained submitting the subject to a
particular task or in absence of any stimulus. The first method requires that
the subject performs a certain task, but this results a limiting factor for sub-
jects/patients that are unable to make even easy instructions, becoming thus not
analysable cases. The latter method, called resting state fMRI (rs-fMRI), was
first described by Biswal et al. in 1995 [7] which found out structure, organi-
zation, correlations among groups of brain regions that were known to function
together, so even at rest the brain’s different functional networks spontaneously
fluctuate in their activity level. In particular he demonstrated highly correlated
low frequency (<0.1 Hz) changes in BOLD signal between sensorimotor and sup-
plementary motor cortices bilaterally in subjects at rest.

As opposed to task-based studies which model evoked activity from many trials
or blocks of trials, rs-fmri occurs in the absence of a task or stimulus and inves-
tigates in synchronous activations between regions that are spatially distinct to
identify resting state networks (RSNs): they are a set of brain regions that shows
similarities in their BOLD timeseries obtained during rest, so when the brain is
aware, conscious but there aren’t any specific stimulus. Rs-fMRI can be used to
inform about the inherent organization and functioning of the brain. Gaining a
better understanding of the brain’s intrinsic architecture and the level of com-
munication that supports is an important basic neuroscience aim and may help
understand how the brain enables complex information processing.

One of the benefits of rs-fMRI is that it requires only the MRI scanner for data
acquisition: there is no need to present the subjects with any information or
record any behavioural responses during the scan, individuals are instructed to
simply rest. Rs-fMRI application has been growing in the research and clinical
setting for the past 2 decades, since the absence of a task makes this technique
particularly attractive because it is easy to acquire and it is feasible for patients
who may have difficulty or are unable to perform tasks, such as pediatric patients

or those with neurologic, neurosurgical and psychiatric conditions [8].

Resting state fMRI has rapidly emerged as a powerful and reliable approach to
explore the human brain architecture. First approaches performed on brain func-
tional studies exploit the so called functional segregation: it focuses on the local

function of specific brain regions, is mainly used for brain mapping with the aim to



identify and isolate region functionally specialized in carrying out certain tasks.
Then the interest focused on functional integration that studies the functional
relationships or connectivity between different brain areas. For an assessment
of functional integration features and so analyse rs-fmri, several methods were
performed such as seed-based functional connectivity analysis, functional connec-
tivity density analysis (FCD) and independent component analysis (ICA). One
of the first ones employed in numerous studies [9] [10] is the seed-based analysis
whose aim is to identify seed regions or regions of interest (ROIs) and correlate the
average BOLD time course of voxels within these ROIs with each other and with
the time courses of all other voxels in the brain. The computation of seed-based
analysis is simple and the interpretation of the results is intuitive, but requires a
priori selection of ROIs and because of its dependence on the selection of seeds,
makes it vulnerable to bias.

FCD method was proposed recently in 2010 by Dardo Tomasi [11] as a data-driven
method to overcome the limitations of seed-based approaches for the identifica-
tion of highly connected areas, called hubs, in the human brain. It calculates the
correlation of the BOLD time-series between each voxel and all the other voxels
in the brain, showing the importance of functional hubs of brain connectivity. It
is a data-driven method and not need any model assumptions to be performed.
Among different data-driven methods, one of the most popular rapidly developed
in ’90s and used in recent researches is the Independent Component Analysis
(ICA): it was introduced at first in the '80s by J. Hérault and colleagues [12] [13]
for a model of the encoding of movement in muscle contraction, but only in the
'90s it started to receive attention from a portion of the scientific community, with
first publications of ICA as fmri analysis method. Since then, ICA has become a
well establish area of research. One of the first works on ICA application in fmri
data has been published in 2003 [14] and focused on studying the separation of
physiological signal sources of the brain in anaesthetized patients.

Using ICA application on fmri is possible to acquire signals related to brain neural
activity, to highlight signals co-variations in networks of brain regions and to sepa-
rate networks. Independent component analysis uses multivariate decomposition
to disentangle the measured BOLD signal into several independent components.
In particular fMRI data is decomposed into a set of timecourses and associated

spatial maps. To identify the components number that compose fmri signal, ICA



assumes that these components are mutually and statistically independent in
space (sICA) or time (tICA). Several methods exist to estimate this number and
will be discussed later in this thesis work.

For fMRI dataset analyses, sICA is preferred because temporal points (few hun-
dreds, corresponding to each occurrence of a functional image acquisition) are
small compared to spatial ones (more than 10°, corresponding to the number of
voxels contained in a functional image), leading tICA to a computationally in-
tractable mixing matrix. In contrast to seed-based method which extracts only
the regions functionally connected to the chosen ROI, ICA uses a whole-brain

approach.

Results of fMRI experiments not only reflect neural activity, but also are af-
fected from the contribution of non-neuronal fluctuations [15]. In case of task-
based fMRI the timing and intensity of the task is known a priori and the re-
sponses of many trials are averaged to eliminate or reduce noise due to non-
neuronal sources and increase statistical significance. Instead in rs-fMRI the
absence of a priori hypothesis of activation and externally triggered temporal ref-
erences and the inability of performing averaging process make the problem of
artefact identification and removal more difficult [16].

Noise sources are the major obstacle for resting state analysis because they can
strongly influence the computation of temporal correlation of fMRI signal changes
between different parts of the brain and, if not dealt with appropriately, it is pos-
sible for such noise sources to drive findings, leading to erroneous interpretations
of fMRI results [17].

Non-neuronal fluctuation derives from a variety of sources, including subject mo-
tion, subject physiology and MRI scanner hardware artefacts. About the last one,
recording devices and their accessories can affect MR image quality [18]. Some
of artifacts, such as radio-frequency (RF) noise from interfering equipment, can
be reduced or avoided altogether by careful acquisition; others instead are more
difficult to avoid and need to be addressed during preprocessing, for example
distortion of gradient magnetic fields and of the RF electromagnetic field, drift,
which is a very slow change in the baseline BOLD signal over time, and drop out
which is the loss of signal in certain areas. An important noise source in fMRI
data is physiological in nature and his effects on resting state data occur through

a variety of complex mechanisms caused by breathing and cardiac pulsations. In
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particular the effects of breathing and of heart rate include pulsation in the brain
causing local motion, changes in blood pressure and in blood oxygenation [17].
One of the most problematic cause of noise in resting state fMRI data is subject
head motion which, during scans, causes brain matter position shifts in space and
disrupts the establishment of magnetic gradients and subsequent readout of the
BOLD signal. This problem has been highlighted starting from 2012 [1].

Motion effects can also be related to partial volume effects, spin history and field
inhomogeneities variations. The first one derives from the fact that, because of
the relatively coarse spatial resolution of fMRI, voxels at boundaries between
tissue types sampled during fMRI are often made up of a combination of gray
and white matter, and/or cerebrospinal fluid [17]. When head motion occurs, the
relative contribution of the tissues may change because the same voxel represents
a different position in the brain; hence further errors are introduced in BOLD
signal measure because the peak of the true BOLD activation can be mismatched
from the location of any voxels, decreasing the detection of the signal.
Regarding spin history effects, they appears when slice-selective RF pulses are
used for excitation [19]. As it is known, an excitation MR pulse sequence is ap-
plied for acquisition of BOLD signal and it is based on the application of RF
pulses. When a slice is acquired, in the case of no motion, regions of that slice
excited by all pulses overlap resulting in the desired signal evolution. In the case
of out-of-plane motion between pulses, movement influences the desired evolution:
as consequence there is a reduction of desired signals and the generation of unde-
sired resulting in artifacts.

Finally field inhomogeneities in the static magnetic field occur close to cavities of

air, such as around the nasal sinuses, and cause signal drop.

Compensating motion effects has always been an important issue in resting
state and task fMRI data analysis since the '90s with Friston et al. [20] which re-
gressed out the 6 rigid body realignment parameters (translations and rotations),
as well as their temporal derivatives, additionally including time-shifted and/or
squared versions of these motion parameters.

Movement artefact is undesirable in fMRI studies and it is impossible to avoid
it entirely despite movement reduction through appropriate padding and pillows.
To solve this problem some pre-processing steps can be useful to remove part of

signal related to motion, for example motion correction allows to deal with the



spatial misalignment from one volume to the next, in this way motion-related
noise is partially removed.

Various correction methods for head motion artefact in rs-fMRI were developed
in the last years starting from 2011 when three groups reported that small head
movements produced spurious but structured (non-gaussian) noise in brain scans,
bringing to distance-dependent changes in signal correlations [21]. In particular
Power in 2012 [1] proposed a scrubbing method, called also censoring, that iden-
tifies motion-induced spikes in rs-fMRI time series. These data are removed with
a temporal mask, and adjacent time points are temporally concatenated.

Since than, lots of researcher proposed several methods for structured noise re-
moval from rs-fMRI data with regression models more and more complex. An im-
portant progress has been made through the development of automated methods
for removing spatially specific structured temporal noise, using ICA as technique
for detecting spatial components and separating signal from noise. In particular
taking advantage of sICA and machine learning classifier, FMRIB’s ICA-based
Xnoiseifier (FIX) [2] and ICA-AROMA [22] were performed as automated ap-
proaches for cleaning fMRI data of various types of artefact. However also these
methods incompletely removed noise sources because, according to Glasser [3],
sICA is unable to segregate global temporal fluctuation in spatially signal and
noise components. Hence a gold standard has not jet been achieved to selectively
and completely remove global structured noise while retaining the global signal

from neural activity.

To solve the problem recently Glasser and colleagues [3] proposed a fMRI data
clean-up method based on ICA: temporal ICA (tICA) was used as additive pro-
cedure, after the standard sICA, to identify noise components in both task-based
and resting state fMRI data coming from Human Connectome Project (HCP).
Until now tICA was rarely used because it is known that ICA works in input
data matrix looking for the orthogonality along one of the axis (time or space),
based on its orientation: because generally voxels number is superior compared
to timepoints one, sICA is generally the chosen method. However sICA method
is restricted precisely by the fact that estimated components must be spatially
orthogonal and sparse effectively, and global components are difficult to make
spatially uncorrelated with other global/non-global components, so sICA can’t

succeed at removing global artifacts. On the other hand, temporal ICA, which is
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performed by transposing the fMRI data matrix used in sICA, allows to obtain
temporally independent timeseries components and a mixing matrix constituted
by spatial maps not orthogonal to each other. For this reason tICA should be
capable to find global spatial maps.

Glasser et al. used the combination of spatial and temporal ICA to obtain inde-
pendent component maps and timecourses, then taking into account some noise
measure metrics they managed to classify and remove noise components. In par-
ticular their work exploited the acquisition of physiological data, obtained during
scan through a respiratory belt and a heart rate monitor, and converted them
into 14 physiological regressors: 4 cardiac, 4 respiratory and 4 interaction regres-
sors, a heart rate regressor and a Respiration Volume per Time regressor (RVT).
These physiological measures were then compared with component timeseries of
tICA, showing a particular strong relationship between the tICA components
and respiration. Another parameter used as index of task and resting state fMRI
component classification is the measure of derivative of root mean square variance
over voxels DVARS (D referring to temporal derivative of timecourses, VARS re-
ferring to root-mean-square variance over voxels) as modelling subject motion [1].
DVARS is a measure of how rapidly signal changes from volume to volume and so
it is used to identify those volumes that are affected by excessive motion. Glasser
and colleagues focused on the identification of spikes in the timeseries DVARS
traces of each subject because these peaks and dips should reflect image intensity

changes and so represent some movement of subject during the acquisition.

In this work of thesis attempts have been made to replicate Glasser procedure,
implemented ex novo, to evaluate and quantify the capability of the proposed
method in removing motion influence on rs-fMRI data and functional connectivity
FC. Current method will be applied on a different dataset, characterized by rs-
fMRI data. Hence the entire analysis will focus on removing motion-related noise
components through application of spatial and temporal ICA. To do that some
of the measures proposed by Glasser will be implemented, others instead will be
introduced to evaluate the applied procedure. In particular the effectiveness of
Glasser procedure for removal of motion sources will be evaluated at first using
DVARS as measure of the change rate of BOLD signal at each time point. In

particular for each patient several DVARS measures will be computed in different
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steps of entire procedure to analyse if DVARS traces improve after spatial and
temporal ICA, reducing their peaks. Another metric used is QC-RSFC (QC
referring to quality control, measured by mean FD in the present example, RSFC
denoting resting state functional connectivity) developed by Power [21]: the aim
is to quantify the impact of motion on functional connectivity correlations, so

analyse how connections between the obtained networks are related to movement.



Materials and Methods

2.1 Dataset

Data are part of a multi-modal studio on the impact of glioma on cognitive func-
tions, composed of 13 patients 25 to 83 years of age with high-low grade glioma. At
University-Hospital of Padova, Department of Medicine, Nuclear Medicine Unit
both anatomical and functional images were acquired through Biograph mMR
PET-MR system of Siemens. Anatomical images will need for the identification
and definition of tumours, whereas functional ones were obtained asking patients
to stay still, relaxed and with open eyes.Images were acquired following MR brain

imaging protocol. Structural images:

o A three-dimensional T1-weighted Magnetization-Prepared Rapid Gradient-
Echo (MPRAGE) sequence covering the whole brain was performed with
time of repetition (TR) /time of echo (TE) 2400/3.2 ms, voxel dimension
of 1xIxImm? | field of view (FOV) of 256 mm and 160 slices;

o A three-dimensional T2-weighted with TR/TE 3200/536ms, voxel dimen-
sion of 1xlx1lmm?, FOV of 256 mm and 160 slices;

o A three-dimensional T2-weighted Fluid Attenuated Inversion Recovery (FLAIR)
sequence with TR/TE 5000/395 ms, voxel dimension of 1xlxlmm?, FOV
of 250 mm and 160 slices.



Resting State fmri data:

 Echo-planar Imaging (EPI) sequence and SMS (CMRR, R014) 2 were per-
formed with the following parameters: TR/TE of 1260/30 ms, FA of 68°
(set by Ernst Criteria), voxel dimension of 3x3x3mm?, FOV of 204 mm, 40
slices, anterior-posterior (AP) phase encoding direction and 750 dynamic

scans lasting a total of about 15 minutes.

o Two fMRI geometrically matched spin echo (SE) EPI, two-fold acceleration
with Generalized Autocalibration partial parallel Imaging (GRAPPA), SMS

1, AP and posterior-anterior (PA) phase encoding direction.

The fMRI SMS-EPI pulse sequences included in the acquisition protocol were
provided by University of Minnesota’s Center for Magnetic Resonance Research
(CMRR) through a master research agreement (MRA) with Siemens and then a
Core Competence Partnership (C2P) agreement with CMRR.

2.1.1 Pre-processing

Software used for pre-processing were Advanced Normalization Tools software
(ANTs [23]), FMRIB Software Library (FSL [24]), MATLAB and ITK-SNAP
[25].

Anatomical Images Pre-processing

The tumor extent was manually delineate by an expert physician using the FLAIR
as well as the T2w image by means of ITK-SNAP tool. A normalization to
MNT152 2009 symm space [26] is performed through patients T1w.

Functional Images Pre-processing

Data analysis follows state-of-the-art standard pipelines:

o Slice Timing: the aim of this step is to correct for the slight difference in the
time at which each slice of BOLD was acquired (i.e. some slices are acquired
at the start of the TR, whereas others are acquired later). All slices related
to a same volume are temporally realigned in order to actually consider

them sampled at the same temporal instant .
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« Readout distortion correction (using the two SE images) used to reduce or

eliminate magnetic field inhomogeneities.

o Motion correction using affine transforms and as reference the functional
single band image. The aim of this process is to correct the effect of subject

head motion in the scanner.

o Co-registration: In order to perform group-level analyses it is essential to
re-sample all subjects to a common “standard” space. In this case subjects’

images are registered to MNI152 2009 symm space.

The main aim of preprocessing is to prepare the resting state data for subsequent
functional connectivity analysis by reducing the influence of artifacts and other
types of structured noise. The reported pre-processing steps are in line with the
pipeline followed by Glasser et al., i.e. distortion correction, motion correction

and image alignment.
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2.2  rs-fMRI data Processing

The denoising method developed by Glasser uses as input the pre-processed data
previously cleaned individually by sSICA+FIX method [2] which allows to denoise
spatially specific temporal artefacts. FIX algorithm automatically classifies the
resulting sICA components as signal or noise using training weights previously
established with the FIX machine learning classifier.

To obtain similar initial data condition, the available dataset has to be cleaned
individually, this will be performed through Melodic (Multivariate Exploratory
Linear Decomposition Into Independent Components) toolbox [27] that allows
to identify independent components. Then the independent component spatial
maps will be manually classified into signal or noise, according to [28] and [29].
Noise components were removed in order to clean subjects data, resulting new
cleaned images for each subject. All this first step can be seen in figure 2.1 and
it will be discussed in more detail in the next three paragraphs. In particular an
introduction of basic theory of ICA will be explained, then the Melodic function-

ing will be introduced, finally the process of identification and removal of noise

Noise
Removal

\ Denoised
RSN

components will be described.

Spatial
ICA

Patient’s
rs-fMRI

Patient’rs-fMRI

Figure 2.1: Scheme of individual sICA performed through Melodic toolbox. Data are blue and
algorithms are green. Spatial ICA is performed individually on Patient’s rs-fMRI data, obtaining
independent components. Noise one are manually identified and removed from original rs-fMRI
data, resulting Denoised Patient’s rs-fMRI

Finally in the last paragraph of this sub-chapter the Glasser method will be

described, as well as the implementation of that method developed in this work.
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2.2.1 Independent Component Analysis

Independent component analysis (ICA) is a statistical technique whose aim is
to recover hidden underlying source signals from an observed mixture of these
sources.

In standard ICA the mixture is supposed to be linear and the hypothesis made
is that the sources are statistically mutually independent and are not Gaussian.
The observed signal in a certain voxel is described as the sum of the contributions
of all independent sources present in dataset.

Assuming M zero mean signals/sources i, Sg, ..., Spr, IN linear combinations of

these sources are observed. The j-th observed variable can be written as:
xj:aj151+aj252+~-~+ajis,- with Z:].,,M jzl,,N

that in matrix format:

X = AS (2.1)

representing the generative linear instantaneous noise-free mixing ICA model [30],
where X is the mixture, i.e. the observed data, A is the unknown square mixing
matrix (N x M) which has to be estimated and S represents the unknown source
signals to be recovered. The aim of ICA is to estimate an unmixing matrix W
so that C' = WX is a good approximation to the true sources S. W is the
weight matrix which allows to project the original space X into a new space that
characterized the sources S.

To reduce problem complexity, typical pre-processing procedures are performed.
First one is centering which consists of subtract mean value of X, m = F[X],
since it doesn’t bring any useful information on the signal variance. The result
is X as a null mean variable and therefore C' as well. Once the mixing matrix A
has been computed, the mean values will be reintroduced, adding to the estimate
of C' its mean value given by A~'m.

Another important step is the so called whitening or sphering, used to whiten
the observed variables resulting in uncorrelated data and with unity variances,

and allows narrow the search of A to orthogonal matrices. Then it has to be
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identified a V' matrix, so that:
Z=VX with ElZZ'=1=1 (2.2)

Defining P as square and symmetric matrix, computed as:

P = E[XX'] (2.3)
and
V =p2 (2.4)
and substituting:
E[Z7Z1=1=E[VXX'V'] =P '2pp~1/2 (2.5)
After that the result is:
Z=VX=VAS=AS (2.6)

The new mixing matrix now is A = VA which is orthogonal (/ALKT = I); once it
has been estimated, the sources can be computed as S = ATZ. Hence the i-th
independent source/component is computed as: s; = (a;)7 .

Equation 2.6 represents a linear combination of independent components. This
sum is “more gaussian” than original components (sources). In fact under the
hypotesis of non-gaussianity of sources, thanks to Limit Central Theory, the mix-
ture given by the linear combination of sources will have a probability distribution
surely more gaussian than that of sources [30]. A has to be chosen in order to
maximize the non-gaussianity of § = A7 Z.

There are several measures of non-gaussianity, such as Kurtosis index, mutual in-
formation and negentropy. The first one measures the dispersion of a statistical
distribution around its mean value. The kurtosis of a general aleatory variable y
is classically defined by:

Kurt(y) = Bly"] - 3(E[y*)” (2.7)

Being null for gaussian variables, Kurt(y) has to be maximized.

A second measure of non-gaussianity is given by negentropy which is based on
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entropy variation, in order to be null for gaussian variables and not negative in

the other cases:
J(y) = H(Ygauss) — H(y) (2.8)

where H(-) is the entropy, ygeuss is a gaussian variable. As kurtosis, the aim is
to maximize J(y). This index is used in many algorithms of sources separation,
such as FastICA [31].

Another approach for ICA estimation is the minimization of mutual information
which measures the grade of statistic dependence between random variables. It

is calculated through entropy as:
I(y1,-~~,yM):ZH(Z/i)—H(Y) (2.9)

where y is the joint variable. It is a non-negative equation and it is null in
case of independent variables because the second term overlaps with the first one.
Therefore the mutual information has to be minimize in order to maximize the

non-gaussianity of sources.

Two kind of ICA can be carried on: spatial (SICA), when ICA assumes that
sources are statistically independent in space, or temporal (tICA) in which sources
are assumed to be statistically independent in time [32]. The two ICA types are
illustrated in fig. 2.2.

Spatial ICA is represented at the top row of the figure 2.2: known data X is
a N x Ny matrix, where N is the number of time points, Ny the number of
voxels. The sICA decomposition can be described as C' = WX, where C is an
M x Ny matrix containing the M independent components, and W is the M x N
estimated unmixing matrix found using ICA. The starting fMRI data can then be
written as X = W—1C , where the spatially independent components are located
in the rows of C and the associated spatially independent time courses are in the
columns of WL,
In tICA, which is represented at the bottom row of the figure 2.2, the dimensions
of X original data matrix are reversed so that the rows of C represent the tempo-
rally independent timecourses and the associated temporally independent maps

are in the columns of WL,
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Figure 2.2: Visual representation of sICA and tICA of fMRI [32]. In the first one, the algorithm
attempts to find spatially independent components with associated time courses, in the latter one
the algorithm attempts to find temporally independent time courses with associated spatial maps.

2.2.2 Denoising of Single Subject rs-fMRI
Melodic is a FSL toolbox [33] that implements the ICA. Tradition ICA models

are based on deterministic methods which ignore process uncertainties caused
by a contamination of random noise [34]. A more natural expression for the
process data can be obtained using a probabilistic model structure. This is the
model implemented in Melodic, it is called “Probabilist Independent Component
Analysis” (PICA) [4].

Probabilistic Independent Component Analysis

The Probabilist Independent Component Analysis (PICA) allows for a non-square
mixing process and assumes that the data are confounded by additive Gaussian
noise, so it models the observations as mixtures of spatially non-Gaussian signals
plus Gaussian noise [24]. This latter one is the assumption that differentiates
traditional ICA described in 2.2.1 and PICA.

This model manages to overcome the over-fitting problem (fragmentation of signal

across multiple component maps, reducing the ability to identify the signals of in-
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terest) of the classical ICA: fitting a noise-free model to noisy observations causes
a no control over what is signal and noise and precludes any test of statistical

significance on single voxels.

The PICA model equation is:
x; = As;i +p+mn; VieV (2.10)

where x; is a N-vector of individual measurements relatively to the voxel location
1, s; is a M-vector of non-Gaussian source signals contained in the data, A is the
N x M mixing matrix of rank M, u is a vector which defines the mean of z;, n;
represents a gaussian noise, so 1; ~ N (0, 02%;) and V is the set of all voxel
locations. It is assumed that M < N. To find statistically independent sources,
a matrix W (M x N):

W=A"1 (2.11)

has to be identified such that:
=Wz (2.12)

where § is a good approximation to the true source signals s [4].

PICA is composed of several steps, as illustrated in fig 2.3.

Assuming sources with unit variance, the original data are demeaned and nor-
malized to variance through the knowledge about the noise covariance ; at every
voxel location. Possible available spatial prior information is encoded in the esti-
mation of the covariance matrix of observations R, which is used by probabilistic
PCA (PPCA) to estimate the model order so to choose the unknown number of
sources. It is possible to use several criteria for the selection of model order for
PPCA. The one chosen as default estimation technique in Melodic is Laplacian
approximation (LAP) which is a way of approximating Bayesian parameter es-
timation and Bayesian model comparison. It is based on a second-order Taylor
approximation of the log posterior around the maximum a posteriori probability
estimate. Once the model order is selected, as output PPCA returns a noise esti-
mate and a set of spatially whitened observations. From obtained residuals ¥; is
re-estimated in order to voxel-wise (temporally) pre-whiten and re-normalise the

data and iterate the entire cycle. Through the spatially whitened observations,
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Figure 2.3: lllustration of PICA model [4]

the individual component (IC) maps are obtained using the fixed point itera-
tion scheme FastICA [31] which optimised for non-Gaussian sources estimates
by maximising the negentropy [Appendix A]. To obtain statistical significance
from results, Z-score maps are formed by dividing IC maps by the voxel-wise esti-
mated standard deviation of the noise: these new maps depend on the amount of
variability explained by the entire decomposition at each voxel location. In the
final steps Gaussian Mixture Model (GMM) is applied to probability density of
individual Z-score maps to highlight regions or voxels in which statistically sig-
GMM models the distribution

of spatial intensity values of each Z-maps by K mixture of mono-dimensional

nificant levels of activation or correlation occur.
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Gaussian distributions:
K
p(Ze | 6) = iz, [, 07 (2.13)
=1

where 6, represents the vector of parameters {7, 0k} which are respectively
the vectors of the K mixture coefficients, mean and variances. GMM is crucial in
order to infer voxel locations that are significantly modulated by the associated

time course. As results from GMM probability maps are otabined and the final
PICA maps.

Application of Melodic

In this work of thesis Melodic has been used to perform individually single subject
sICA.

Several tests for the setting-up of Melodic parameters have been run. Melodic
allows to compute, the number of components which will be estimated through
a criterion of model order selection or to set fixed the number by the user. The
latter option has been chosen in this work and a same number has been fixed for
all data.

Once independent component spatial maps and relative timecourses are obtained,
components will be classified in signal or noise and these last ones will be removed

from subject pre-processed data.

Identification and removal of noise components

Unlike initial data of Glasser which has been previously cleaned through the au-
tomatic FIX classifier, the components labelling has been made manually due to
the limited number of subjects, leading not feasible training the classifier.
Manual classification is based on visual inspection of the components. Accord-
ing to [17], [29] and [28], three complementary pieces of available information
were evaluated: spatial maps, time-courses, and the frequency spectrum of time-
courses.

As suggest in [29], spatial maps of signal components are characterized by a
relatively low number of relatively large clusters while the presence of small and

scattered clusters suggests the presence of a noise component. The signal com-
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ponents are represented by spatial maps which span for the most part the gray
matter, with their peaks located within this area. On the other hand, noise com-
ponents should mainly be located in the white matter, cerebrospinal fluid and
blood vessels.

Spatial maps that show a characteristic ringing around the brain represent motion
and so indicate a noise component. The presence of non-physiological patterns,
such as positive/negative stripes or clusters visible only in a single slice or alter-
nating slices are usually related to the MRI sequence (e.g. interation between
EPI susceptibility and multiband) or hardware artefacts (e.g. RF interference),
or interactions of the acquisition with head motion (e.g. interleaved slice acquisi-
tions).

In terms of temporal features, timeseries of signal components are typically

stable with no presence of sudden isolated spikes which can suggest motion, and
no significantly changes in the oscillation pattern of the timecourse.
From a physiological point of view resting state signal is the result of a convolution
between the neuronal spiking and haemodynamic response. It is known from
literature that BOLD signal is characterized by low frequency fluctuations, with
power between 0.01 - 0.1 Hz. The physiological noise caused by cardiac and
respiratory cycle can also appear as low-frequency fluctuations, hence in these
cases it may be difficult to identify and separate neural activity-related BOLD
signals from noise ones.

Exploiting those three characteristics, lots of noise components can be easily
identified, but some of them can appear very similar to signal components in one of
the three information types or it is possible that a component contains a mixture
of signal and noise and this is often reflected in all three pieces of information.
In these cases it has been a conservative approach, so those components are not
considered as noise because the aim is to preserve all of the neuronal-related signal
present in the dataset.

Once classification is completed for each subject, noise components are removed
through the FSL command fsl_regfilt.
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2.2.3 Implementation of Glasser method

The entire procedure is represented in fig.2.4: the upper part (yellow background)
represents the first step of thesis processing described in section 2.2.2, while the

bottom one reflects the Glasser procedure and includes the following steps:
a. Spatial ICA through Group ICA of FMRI Toolbox (GIFT [35])

b. Temporal ICA through Fastica [31] included in Matlab

Noise
Removal
Denoised
[ LY ] [ Patient’s rs-fMRI ]
sICA

group
with GIFT
sICA Timecourses
of each subject
concatenated

Patient’s Spatial
rs-fMRI ICA

sICA Spatial Maps
(group and
individual)

Mixing Matrix tICA with tICA Timecourses
FastICA concatenated

tICA Spatial Maps
(group and
individual)

Figure 2.4: Overview of the denoising procedure, adapted from figure 1 in [3]: data are blue

and algorithms are green. The scheme is divided into two parts: in the upper part (yellow back-
ground) Denoised Patient’s rs-fMRI are obtained through Melodic toolbox, whereas the bottom
one reflects Glasser method and it describes two steps. In the first one the use of spatial-ICA
(sICA) with GIFT toolbox, obtaining as results group and individual Spatial Maps and sICA Time-
courses of each subject concatenated; in the second step, through FastICA algorithm, temporal-
ICA (tICA) is applied on sICA timecourses and the final results are t/CA Timecourses and group
and individual tICA Spatial Maps

The aim of Glasser method is to utilize the combination of spatial ICA (step
a) and temporal ICA (step b) to identify global spatial and temporal structured
noise and remove it from subjects data.

Step a represents the group sICA performed from data after cleaning-up of
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sICA+4FIX. This process can be described by the following equation:

Data = sICA _Maps x sICA_TCS + Error (2.14)

in which:

o Data € R vorelxtime ropresents all subjects’ cleaned data
o sICA Maps € R vorelxcomps are the sICA spatial maps
e sSICA TCS € R compsxtime defines the sICA timecourses

o Error is the unstructured noise subspace left over after dimensionality re-
duction to N,

where voxel, time and comp, define respectively the number of voxels, of time-
courses and of components estimated with group sICA. After obtaining group
spatial maps and timeseries, it is possible to derive the individual subject ones
through weighted spatial regression [36]. So the final results are a timecourse for
each of the group-ICA components for each subject and a subject-specific spatial

map for each component.

Step b consists in the application of temporal ICA on the cross-subject con-
catenated individual SICA component timecourses, using the FastICA algorithm
implemented in Matlab. The FastICA parameter settings used by Glasser were
tanh as nonlinear function and symm as estimation method. Another important
parameter is the number of components to be estimated: to identify the optimal
dimensionality, in Glasser procedure binary search and ICASSO software package
[37] are developed. In particular the final dimensionality is the number of com-
ponents with the index quality I, > 0.5. Temporal ICA is implemented through

the equation:

sSICA _TCS oneat = Mixing Matriz x tICA_TCS (2.15)

where:

o SICA TCSeonear € R compsx(time x Ns) gre the subjects concatenated sICA

timecourses, where N, is the number of subjects
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o Mixing Matrix € R ©mPs*<mPt represents the tICA mixing matrix, where

comp, defines the number of components estimated through tICA.

o« tICA TCS € R compix(time x Ns) gro the concatenated tICA timecourses
which can be deconcatenated later to obtain tICA single subject time-

courses.

So sICA_TCS of each subject is temporally concatenated and then fed into
FastICA algorithm, obtaining as results the temporal mixing matrix and the new
concatenated sources timecourses. To get tICA spatial maps of group and of

individual subjects, the equation 2.15 is substituted into equation 2.14 :

Data = sICA_Maps x sICA_TCS + Error
=sICA_Maps x Mixing Matrix * tICA_TCS + Error
=tICA Maps x tICA TCS + Error

so tICA spatial maps are calculated as :
tICA Maps =sICA Maps x Mixing Matriz (2.16)

In particular, tICA spatial maps of each single subject are obtained with the prod-
uct between sICA spatial maps of that subject and the mixing matrix resulting
from FastICA, tICA spatial maps of group are obtained with the product between
sICA group spatial maps and the mixing matrix, as it reported in equation 2.17
and 2.18 :

tICA Maps,, = sICA_ Mapsg,s * Mixing Matrix (2.17)

tICA Mapsgrou = SICA _Mapsgouy * Mizving Matriz (2.18)

Group spatial ICA

Independent component analysis can be applied to data from a single subject, as
previously seen with the first step of the procedure through Melodic, or at the
group level. When performing a group-ICA, the inputs are the preprocessed and

cleaned resting state fMRI data from all subjects, so the components extracted
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in the single-subject ICA decomposition performed by Melodic are not needed.
In order to extract group-level components, data from all subjects has to be
combined. There are two kind of available group ICA: spatial and temporal
concatenation. In the first one data are combined in order to allow for unique
maps assuming common timecourses, so considering each subject data as a matrix
time x voxels, data of different subjects will be concatenated side by side resulting
a final matrix time x (voxels;...voxelsys), where vorels; is the number of voxels of
i-th subject. The latter one, i.e. the temporal concatenation, allows for common
group maps and unique time courses for each subject, therefore considering the
example described before, subjects data will be concatenated under each other
resulting a final matrix of dimensions (time...timeys) X vozels, where time; is the
number of time points of i-th subject. For resting state group-ICA the temporal
concatenation approach is generally used:the dataset from subject i + 1 is stacked
after the last time point of the dataset of the i-th subject and so on, creating one
long dataset. This concatenated dataset from all subjects is then fed into the
ICA and components are extracted using data all subjects. The output from a
concatenated group-ICA gives for each component a spatial map which represents

the group map and the concatenated timeseries.

To carry on group-ICA two different implementations were evaluated: Melodic
and Group ICA of FMRI Toolbox (GIFT) [35] that are the current state-of-the-
art packages broadly used for group level rs-fMRI analysis [38].

GIFT is an application developed in Matlab. As Melodic, it can be used to run
both single subject analysis as well as group. To perform group-ICA, in both
softwares the temporal concatenation approach [39] is implemented, allowing for
unique time courses for each subject and assumes common group maps. Un-
like Melodic, GIFT software additionally implements a back-reconstruction step
which produces subject specific maps and timecourses. So it applies multiple data
reduction steps by PCA following data concatenation to reduce the computational
load, along with the back-reconstruction.

Figure 2.5 illustrates a graphical representation of the GIFT approach: it involves
a mixing matrix estimate which has unique partitions to each subject. Once the
mixing matrix is estimated, the back-reconstruction step starts: components for
each subject are obtained by projecting the single subject data onto the inverse

of the partition of the mixing matrix which corresponds to that specific subject.
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Figure 2.5: Graphical lllustration of Group ICA as implemented in GIFT. On the left group-ICA
is represented: all subjects are concatenated to form one unique input data which is used by ICA
of GIFT to estimate the mixing matrix (the red matrix) of all subjects and the group spatial maps.
On the right the back reconstruction is explained: the inverse of the partition of the mixing ma-
trix for subject ¢ is computed and then it is multiplied by i-th subject data, obtaining component
spatial maps specific for that subject [39]

GIFT procedure can be described mathematically as follow. The PCA reduced
data matrix of i-th subject (i = 1,2,..., Ng) can be represent through the follow-
ing equation:

X, = FY, (2.19)

where X; is a L x Ny matrix, Y; is the N x Ny matrix which contains the
preprocessed data and F, ' is the L x N reducing matrix computed by PCA de-
composition, with Ny the number of voxels, N the number of fMRI time points
and L the size of time dimension following reduction. All X; matrix are then
concatenated into a LN, X Ny matrix and pre-multiplied by the M x LN, reduc-
tion matrix G=! (calculated by PCA decomposition), resulting a new reduced,

concatenated matrix for the N, subjects:

'y,
X=Gg"1 : (2.20)
FylY,
where X is the M x Ny matrix, with M the number of components to be es-

timated. Multiplying previous equation for both sides by G of and using ICA
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model equation X = AS, the following expression is obtained:
'y,
GAS = : (2.21)
FylYy,
where A is the M x M mixing matrix, S is the M x Ny component map. Parti-

tioning the matrix G by subject equation 2.21 can we written as:

G Fy,
: | AS = : (2.22)
G, Fy)Yn,
So for i-th subject:
G,AS; = F1Y; (2.23)

From equation 2.23 the single subject maps (5;) can be calculated:
S; = (G;A)'F Y, (2.24)

Multiplying both sides of equation 2.23 by the reducing matrix F; the decompo-

sition of data from ns-th subject contained in the matrix Y; is represented:

where S; describes M sources spatial maps and FiGiA is the N x M mixing ma-

trix of single subject containing the timecourses of respective M components.

The choice of which implementation between Melodic and GIFT is more ap-
propriate depends on available data, generally Melodic is more demanding from a
computational point of view, in particular the required execution times in resting
state data are much slower.

A comparison between Melodic and GIFT about their characteristics and setting
parameters is described below.
Regarding the pre-processing, while Melodic applies voxel-wise de-meaning of the

data and normalisation of the voxel-wise variance, in GIFT several pre-processing
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types are available (remove mean per timepoint, remove mean per voxel, intensity
normalization and variance normalization) and some tests on data were performed
with variance normalization and intensity normalization: in the first one time-
series are lineary de-trended and converted to Z-score at each voxel, the latter
involves voxel-wise division of the timeseries mean. After a visual inspection on
spatial components intensity normalization was used as data pre-processing type.
The choice of independent components number represents the problem of selec-
tion of model order. In Melodic the default technique of dimensions estimation
is LAP (Laplace Approximation), but there are available also the other methods.
GIFT instead provides only MDL method (Minimum Description Length). This
difference of criteria may cause a different estimated number of components.

In this case to perform different comparisons between Melodic and GIFT, the
number of estimated component was fixed. One of the differences between the
two tools is that GIFT gives the opportunity to use ICASSO toolbox [37] which
allows to determine the algorithmic reliability or stability and so do a better com-
ponents’ estimation [Appendix C]: reliable estimates correspond to tight clusters
and unreliable ones do not point to any cluster. In order to apply ICASSO, a
certain number of runs has to be selected: more runs are used, more reliable will
be the results. In this case ICA algorithm was run 10 times.

GIFT allows also to run group-ICA in parallel mode which is a very useful option
for analysing large data because it allows to exploit more cores and so speed up
the computation.

About ICA algorithm while Melodic uses FastICA, GIFT gives several options, in
particular in this work FastICA and Infomax [40] algorithms were explored.Both
algorithms are based on maximization of an objective function, they use a fixed
non-linearity so their performances tend to be biased towards certain types of
probability density functions pdfs, in that they provide better estimate for cer-
tain classes of sources and hence cannot maximally optimize independence [35].
FastICA maximizes the negentropy of the output to maximize the non-gaussianity
of the estimated sources using fixed point iterations. Infomax uses a fixed sigmoid
non-linearity as the score function and hence emphasizes the estimation of sources
that are super-Gaussian, i.e., have pdfs that are heavier-tailed and more peaky

than the Gaussian [Appendix BJ.
Once GIFT has been selected as toolbox, group sICA can be performed.
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It start with the Setup-ICA analysis, in which all parameters are chosen. Among
them one important is the dimensionality of ICA decomposition that can be
estimated from GIFT or be set. In this case the dimensionality has been fixed.
To obtain an appropriate number of components, Melodic was taken into account
again: data obtained after single-subject clean-up were used individually as input
in Melodic, which estimated for each subject data the components number more
appropriate. As result 13 values were obtained, one for each subject, then they
were average obtaining the value of dimensionality.

Once the number of components has been selected, all input parameters for group-
ICA are fed into GIFT. In this case the steps involved into group-ICA analysis

are listed below:

1. Initialize Parameters

2. Group data reduction: Each subject’s data is individually reduced through
PCA. The outputs are concatenated into groups and put through another
PCA data reduction step.

3. Calculate ICA: The reduced data from the data reduction stage is plugged
into the ICA algorithm.

4. Back-Reconstruction: Individual subject image maps and time courses are

computed.

Temporal ICA

The temporal ICA (tICA) is implemented in Matlab and developed following
Glasser article procedure described at the beginning of subsection 2.2.3. After
group-ICA approach, sICA timecourses of each subject obtained from the back-
reconstruction of GIFT are concatenated into the matrix sICA TCS.onear Which
will be used by FastICA. As in Glasser article using ICASSO the components with
an index-quality measure I, > 0.5 define how many of them have to be estimated.
The tICA concatenated timecourses tIC'A_TC'S obtained as output by FastICA
are de-concatenated to get the individual subjects’ ones. Then through the equa-
tion 2.16 implemented in Matlab group and individual independent component

maps are calculated.
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Indexes for identification of noise components

In order to remove noise components related to motion, three quantitative component-

wise measures described in Glasser’s paper are considered and they will be named

as diﬁAmpDVARS (])7 Va’riabih‘ty/lmp (j) and diﬁAmp (]) :

First index is based on DVARS: it represents the rate of change of BOLD signal
across the entire brain at each frame of data [1] and it is calculated for each
subject starting from the intensities difference of consecutive volumetric images

and root-mean-square:

DVARS(AL) = 4/ < [AL(z)]? > - \/ < [ L(&) — i_l(f)}2> (2.26)

where I;(x) is the image intensity at locus = on frame i and the angle brackets

() denote the spatial average over the whole brain. This index is used as proxy
of subject motion during time and measures how much brain image intensity
has changed from one frame to the next one. According to Power [1] such image
intensity changes often show up as “spikes” in the original timeseries DVARS trace.
Generally after a data motion correction, it is expected that spikes disappear,
returning the DVARS to its baseline level, whereas it often results that some spikes
remain and other become dips (negative peaks) which, according to Glasser et
al. [3], means that probably an excessive signal denoising was applied. Therefore
the aim is to identify DVARS spikes or dips remaining after the first clean-up
procedure (sICA single subject with Melodic) and to analyse tICA components’
timeseries corresponding to peaks’ instants/frames.

In order to identify spikes/dips in DVARS, a band has to be identified and its
width is chosen through a threshold applied symmetrically to the mean value of
DVARS trace. To better understand this concept, figure 2.6 has been reported.
It is an example of DVARS trace in which the band is represented as the coloured
part limited by two symmetric thresholds: what is outside of this band is called
spike/dip.

To identify peaks representative of motion, Glasser and colleagues used a single
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Figure 2.6: Example od DVARS trace with a chosen threshold. The symmetric thresholds define
a band, represented colored: what is outside of this band is called spike/dip

subject approach and for each one of them they identified the maximum value of
DVARS signal, normalized the signal for this peak value and then set the thresh-
old equals to the & 25% of this value: all that is over the 25% of distribution of
that subject has been considered motion.

This proposal of thresholds selection has been applied also to available dataset:
firstly subject DVARS has been calculated through equation 2.26 considering
images obtained after sICA clean-up with Melodic, then DVARS have been indi-
vidually normalized to their maximum value, as in Glasser’s paper, and demeaned
to be able to compare DVARS of different subjects each other.

Observing obtained results, this kind of threshold can’t be adaptable with avail-
able dataset which has been showed varied: there are subjects which move a lot,
others move less. Regarding the latter kind of subjects, once each DVARS has
been normalized for their respective maximum value, the obtained threshold has
led to an amount of data over the range excessively high, removing therefore
too much values which in reality aren’t significant peaks and so representative of
movement.

For this reason several kind of thresholds are explored. The idea is use a group
approach and not single subject to identify the band defined by a threshold:
therefore it is considered DVARS of all subjects together and only one thresh-
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old is found for all. Several thresholds are performed on subjects DVARS traces.
Thresholds are described below:

o The first one is obtained considering the histogram of 10% of higher values
of each subject DVARS: having 750 volumes of acquisition for each subject,
this means to take into account the 75 grater peaks of each DVARS. Then
these peaks selected for each subject are sorted in descent order and their
distribution is observed. The threshold is set as the value from all order
peaks corresponding to 10 percentile which can be defined as the value of a
variable below which a certain percentage of the observation occurs (in this
case 10 percentile is the value under which 10% of observation are situated).

It is calculated as:

n-k
k-percentile = [ 0.5+ = } 2.27
percentile + 100 ( )
where n is the number of data and k represents k-percentile so in this case

kE = 10.

o Under the hypothesis that subjects DVARS come from a Gaussian distribu-
tion, the other thresholds are calculated based on standard deviation o of
concatenated DVARS. In particular are considered as thresholds o, 1.640

and 20 which reflects the fact that data has the probability respectively of
68%, 90% and 95% to fall inside the band derived from threshold.

After the computation of all thresholds just described, for each of them it has been
observed the number of outliers and how it is distributed among all subjects.
Once the identification of DVARS peaks has been completed, diff4,,,,pv ars can
be computed for each component. To do that, first the concept of amplitude has
to be introduced: for each i-th subject, the amplitude of j-th tICA component
was defined by Glasser [3] as the standard deviation of the component timeserie

values:

Amp(i, j) = std [tICA_TCS(i, j)] with i=1,...,N, j=1,...,.M
(2.28)
where tICA_TCS(i,7) is the tICA timeseries of i-th subject and j-th component.

This definition was used to calculate the amplitude of each component through
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the concatenation of tICA timecourses across all subjects:
Ampiy(j) = std [tICA_TCSconcar(j)] with j=1,...,M (2.29)

Next step is to calculate the difference in component amplitudes during periods
of DVARS Dips compared to the non-DVARS Dips periods and the result is
normalized by the component amplitude across all frames, obtaining the first

index for noise classification:

Amppy ars(j) — AMPpon—pvars(J)
Amptot (] )

&iff amppv ars(J) = (2.30)
where Amppy ars(j) is the amplitude j-th IC corresponding to frames with DVARS
peaks/dips, i.e. all the frames which lie outside the band produced by the chosen
DVARS threshold. Amp,on—pvars(j) is the amplitude relative to frames without
DVARS peaks/dips, so all frame which stay within the band, instead Amp;y(j)
is the amplitude relative to all frames of current component.

Equation 2.30 represents hence the first computed index; each component will
have a respective value of this measure and will be identify as signal or noise on
the basis of a chosen threshold: all components under threshold will be classi-
fied as signal, on the contrary those above will be considered noise components.
According to Glasser this threshold will be that value which “best discriminates
between components that had already been clearly identified as signal or noise
based on spatial patterns” [3]. There is no clear indication, in the paper, of how
the threshold selection has been carried out, therefore this problem has been dealt
with in three different ways: three kind of thresholds have been tested. Since the
threshold should discriminate between signal and noise, the idea at the base of
the three threshold approaches is to compute a mean value between signal and
noise components. In particular to obtain a more reliable value, 3 signals and 3
noise components have been manually identified among all components.

In order to make the next equations more clear and readable, two variables are

introduced and defined as:

M3signals = mean[diﬁAmpDVARS[Sl]v diﬁAmpDVARs[Sﬂa diﬁAmpDVARS (s3]

M3noises = MEAn[diff s, pv arsM)s Aiffamppv arsnel, Aiffamppy arsns]
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where diffy,,,pvars(si] and diff .., pvars[ni] are respectively the differences in
component amplitude of i-th signal and i-th noise. The variables msgignqs and
M3noises TePresent respectively the mean value of the three signal and noise com-
ponents.

The computation of all thresholds will be based on mssignais and Mmsy,eises. The

first threshold is computed as the mean of the two previous results:

thDVARS = mean [m?)signals ’ m3noises] (231)

The second one takes into account not only the mean value between msgignas and

M3noises, PUt also the standard deviation of the 6 chosen components:
thDVARS = mean [msignal P mnoise] + SthComponents (232)

where the second term is obtained as the standard deviation of all the six identified

components as described below:

Stdgcomponents = Std [diﬁAmpDVARS [3signals] + diff armppV ARS [3noises]]

The last threshold is similar to the second one, but considers the standard devia-

tion of the two group separately:

Std3signats = std [diff 4ppv ars[3signals]|

stdsnoises = Std [diff smppy ars[3noises]]

and uses the mean of this two values inside threshold’s formula:

thDVARS = mean [msignal ) mnoise} + mean[StdBSignals ) Std3noises] (233)

The second and third metric are based on an analysis of variability of component

amplitudes across subjects.
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Regarding the second metric, for each component j it is computed as:

Variability 4, (1) = :
Ya p(]) Ampmt(])

(2.34)

Then another standard deviation is calculated on these N, values, obtaining one

value for each component. This result is then normalized for Amp;,(7) computed

as for the previous index.

In dif f 4, the focus was on the two highest subject’s component amplitudes.

For each j-th component the index is calculated as:

. . Ampmax (]) - Amp2max (])
dzﬁAmp(]) = Amptot <])

(2.35)

where Ampyq.(7) is the maximum amplitude across all subjects for j-th compo-
nent, Ampoq.(7) is the next highest amplitude across all subjects always for j-th

component. The difference between them is normalized by Amp;y(j).

After the computation of indexes Variability ,,, and diff 4,,,, a robust threshold
needs to be searched, in order to best discriminate between noise and signal. The
threshold is computed as for diff4,,,,py ars Index.

Once all the three metrics described in equations 2.30, 2.34 and 2.35 are com-
puted, for each of them it is obtained as result which components are above the
respective thresholds and so could be considered as noise. Next step is now to
compare results: the components which will be above all the thresholds, will be
identified as noise components.

The selected components were then removed from each subject always through

the FSL command fsl_regfilt, resulting new clean subject data.

2.3 Evaluation of Motion-Related Noise Reduction Procedure

To evaluate if the entire procedure represented in fig. 2.4 can be a valid method

of cleaning-up rs-fMRI data from motion-related noise, two different indexes have
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been employed.

The first one is the comparison between DVARS traces computed after steps of
procedure: the focus is to check if possible peaks/dips of subjects DVARS has
been lowered or even disappeared after the application of the entire procedure.
The second index, introduced by Power [21], is the QC-RSFC measure (QC refer-
ring to quality control, RSFC denoting resting state functional connectivity), in
this work it is used to find out if motion is still much present in cleaned data after
spatial and temporal ICA. In particular it is used to assess a possible relationship

between head motion and resting state function connectivity (rsFC) estimates.

2.3.1 DVARS Comparison
For each subject three different DVARS traces are computed using equation 2.26:
1. DVARS of pre-processed fMRI data (DVARS pre s-sICA)

2. DVARS of data after single subject cleaning through Melodic (DVARS post
s-sICA)

3. DVARS of fMRI data after the entire cleaning procedure (DVARS post
tICA)

For each subject three different DVARS measures are compared to each other to
evaluate if peaks/dips which are in the first DVARS (i.e. that without any ICA

correction) are reduced or even disappeared after SICA+tICA procedure.

2.3.2 QC-RSFC

QC-RSFC metric was used by Power to quantify the impact of motion on func-
tional connectivity correlations. To explain QC-RSFC calculation and how it
can be exploited in this work, first an introduction of functional connectivity is
needed, as well as the computation of connectivity matrices necessary for the
metric, then QC-RSFC application is described.

Functional Connectivity

Functional connectivity (FC) is typically defined as the observed temporal correla-

tion (or other statistical dependencies) between two electro or neuro-physiological
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measurements from different parts of the brain [17]. For resting state fMRI this
definition means that functional connectivity reveals the relationship between
BOLD signals obtained from two separate regions of the brain: the hypothesis
behind this method is that if two regions show similarities in their BOLD signals
over time, they are functionally connected.

Many different methodological approaches are available to investigate func-
tional connectivity, generally for rs-fMRI analysis the node/atlas-based approach
is used [17]. Several steps characterize node-based connectivity analysis and they

are represented in figure 2.7:

1. Definition of the nodes, i.e. grouping voxels together into areas that are to

be considered as functionally homogeneous regions.
2. Extraction of each node timeseries.

3. Calculation of the connectivity between all pairs of nodes through the ex-

tracted timeseries.

4. Building of a connectivity matrix in which each element (7, j) describes the

strength of functional connectivity between node i and node j.

Regarding the first step, identification of nodes is generally obtained through par-
cellation. In this work because an ICA-based approach is implemented, functional
connectivity isn’t computed at node based with parcellation, but at network-level.
Therefore calculating connectivity between pairs of nodes means to do that be-
tween networks. The networks used in this thesis for FC computation are chosen
through visual inspection of all spatial maps of ICA components from rs-fMRI,
hence they will named as resting state networks (RSNs).

To obtain a connectivity matrix, IC sources timeseries of RSNs obtained using
group ICA are used: each pair of timeseries is correlated, through Pearson’s corre-
lation coefficient, to investigate their similarity. Correlation ranges from -1 to +1,
where 0 indicates no relationship on average between two signals. FC matrices
of this work are obtained by computing Pearson correlation coefficients between
the associated timecourses of any paired networks, resulting a symmetric matrix
with a number of rows and columns equals to the number of the chosen networks.

Pearson correlations were also transformed using the Fisher Z in this analysis
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Figure 2.7: Steps of node-based connectivity analysis [17]. The first one represents the parcella-
tion of brain in different areas, showed with different colours, in order to define nodes. The second
one reflects the extraction of timeseries from areas. In the third step timeseries are considered in
pairs and the correlation between them is computed. The last step involves the construction of
connectivity matrix through the values of previous correlations. The entries of the matrix with a
higher value equal to a stronger correlation and are represented with a shade into the red. Slight
correlations will appear with colour near blue

because it allows to transform the sampling distribution of Pearson’s correlation

coefficients into an almost normally distributed measure [41].

QC-RSFC Application

According to Power [1], subjects’ motion produces substantial changes in the time-
courses of resting state functional connectivity MRI (rs-fcMRI) data, in particular
many long-distance correlations could be increased or decreased by subject mo-
tion, whereas short-distance correlations increased.

The aim is to understand the additive step of temporal ICA compared to the
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standard sICA has been successful in the detection and removal motion-related
components. If tICA has effectively removed motion artefacts, then the paired
correlations between RSN illustrated in FC should change after tICA application;
more precisely the relation between FC and subject motion should decrease.
This relation is what QC-RSFC measure computes: it allows to correlate, across
subjects, subject motion with the observed correlation values of FC.

Before explaining how QC-RSFC is computed, it is important to noticed that
QC-RSFC takes into account a measure of subject motion: the Frame-wise dis-
placement (FD) which is calculated, for each i-th volume/frame, by combining the
six motion parameters estimated during motion correction into a single measure

of displacement [1]:
FD; =| Adiy |+ | Adyy | + | Adi | + | Acy |+ | AB | + | Ay | (2.36)

where Ad;; = d(;—1)» — diz, and similarly for the other rigid body parameters
(i diy diz i Bi il

Considering of having N, subjects, for each of them there is a FD trace from
which a mean value can be computed. There will be hence a vector of Ny FD
mean values that can be correlated with each entries of FC, across subjects, in or-
der to determine how that entries of all subjects is modulated by subject motion.
Therefore the idea is to compute two kind of correlation matrices FC, one pre-
tICA (FCs) and one post-tICA (FCriqg) for all Ny subjects. Then QC-RSFC
is applied to relate the obtained F'Cs with the mean values of subjects’ FD. At
this point the same approach is done for FCr, s and the results of both will be
observed.

Now it will be described how the F'Cg of subjects have been computed. For
each subject component spatial maps, obtained from back-reconstruction of group
sICA with GIFT, are considered and of these only credible components have been
chosen as the resting state (rs) networks for next steps, through visual inspection.
The sources (i.e timeseries) of these networks are taken into account to compute
FCyg. As result of this step Ny connectivity matrices pre-tICA are obtained.

To better explain the step which involves QC-RSFC metric, figure 2.8 is showed.

As it can be seen the subject network matrices are combined into one large (num-
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ber of subjects Ny by number of edges i.e connectivities) matrix: this is done by
discarding one half of the network matrix (which contains the same information
as the other half because the matrix is symmetric), and then reassembling half of
the node by node matrix of edges from each subject into one long row, resulting

a large subjects-by-edges matrix. This resulting matrix is then correlated with
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Figure 2.8: A network matrix from a single subject can be mapped into one line by removing
the redundant part of the symmetric matrix and unwrapping it so that all edges are next to each
other. Subjects can then be stacked below each other to form a matrix ready for group-level anal-
ysis [17]

the vector of mean values of subject’s FD. As output a correlation matrix and a
p-value matrix are obtained.

The same calculation is now applied starting from correlation matrices FCr g
of all subjects. These correlation matrices are generated from timecourses derived
from back-reconstruction of SICA components through group-information guided
ICA (GIG-ICA) of GIFT applied on the clean data after tICA. In GIG-ICA,
group information captured by standard ICA on the group level is used as guid-

ance to estimate individual subject specific Independent Components (ICs), using
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a multi-objective optimization strategy which simultaneously optimizes the inde-
pendence among multiple ICs of each subject and the correspondence between
each group-level IC and the associated subject-specific IC [42].

Hence GIG-ICA method involves the use of a spatial prior, which are the group
spatial maps and represents the starting point of the minimization of cost func-
tion used by an ICA algorithm.

GIG-ICA process is applied individually for each subject; as input GIFT toolbox
gets clean data from tICA and the group aggregate component spatial maps, pro-

ducing component spatial maps and timeseries of that subject as output.

Statistical analyses

To evaluate the effect of tICA application, an important instrument is the statis-
tical analysis applied to FC computed before and after tICA. Figure 2.9 shows
the procedure of how get the two groups of FC to be compared. To evaluate
whether and how FC of the RSNs change after the procedure, it is possible to
work at statistical level. This means that t-tests will be performed between two
FC groups to check whether there is a statistically significant difference between
the two groups. The FC groups which will take into account are showed in fig-
ure 2.9: F'Cr,q, which are obtained starting from tICA results (the right part
of figure), and F'Cs;¢, obtained with the state of art in rs-fMRI (subject-wise
cleaning data and group sICA).

In particular this latter FC group have been computed not correlating RSNs’
sources, but considering only the clean and reliable part of sources, characterized
by no motion. Doing that equals to apply the so called censoring: it leads to FC
matrices devoid of volumes in which a subject movement occurred that hasn’t
been corrected but has remained despite the usage of the classical technique of
motion correction. Applying censoring to a subject data allows to remove the
part referring to motion of each timecourses of RSNs. In order to identify time
frames corrupted by motion, censoring applies a threshold to a measure of move-
ment, in this case to FD. Censoring works by simply removing volumes at time
points where the FD was higher than the chosen threshold. Because motion has
an impact on signal not only when it is above the threshold, but also on nearby

volumes, also one volume before and two volumes after are also removed in addi-
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Figure 2.9: lllustration of how to compute functional connectivity (FC) matrices. F'Cg are get
through sICA timecoures of single subjects. F'Cs;¢ are obtained from sICA timecourses after
censoring. F'Cp, ¢ are calculated after applying GIG-ICA on data post tICA and correlation of
selected networks timeseries. The dotted line represents comparisons between pairwise matrices,
through t-tests.

tion to the volume corresponding to FD above threshold [21].
Observing any changes between FCr, ¢ and F'Cs ¢ allows to understand if tICA
managed to reduce motion impact on signal compared to what is done tradition-

ally through group sICA and censoring.

Before describing in detail how t-tests are performed, it is noticed that the com-
parison is done between two FC groups computed with different methods: unlike
FCs, ¢, FCr,¢ is obtained starting from GIG-ICA methodology which could
have a strong impact on result and so the eventually statistically significant dif-
ferences between the two matrices groups could only due to GIG-ICA application
to only one of them. For this reason t-tests between FCs - and FCrp.g could

not be suitable.

To verify if GIG-ICA method controls the results of the comparison between
FCgs,c and FCr,q, statistical analysis has been expanded compared to that

described in figure 2.9: a second part has been added, resulting the computation
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of more FC groups and so more t-tests between FC matrices in pairs.

This can be seen on figure 2.10 in which statistical analyses is performed between

Figure 2.10: lllustration of all computed FC matrices. The yellow block represents the compar-
ison between two FC groups F'Csyc and FCr.¢ is performed. The other block instead is the
new adding part which includes the computation of other FC and new t-tests. F'Cysy ¢ are com-
puted after clean-up of Melodic and GIG-ICA application. FCy;+g+c are obtained after Melodic,
GIG-ICA and censoring. The dotted lines represent all comparisons between pairwise matrices
through t-tests

correlation matrices calculated in all phases of cleaning procedure (after Melodic
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clean-up, after group sICA, after tICA), examining if there are some variations

between components’ connections:

o FC matrices obtained starting from cleaning data of Melodic: GIG-ICA of
GIFT is used individually on single subject cleaned data, using as prior the
spatial maps coming from group sICA. The results are new independent
spatial maps and timecourses of individual subjects. Of these timecourses,
only those referring to the rs-networks are taken into account and used to
obtain initially the FC matrices (FCyy¢) and, after applying censoring,
the other FC matrices FChigic.

o FC matrices starting from group sICA: rs-networks timecourses of single
subjects obtained from back-reconstruction of group sICA are correlated to
each other to create a FC matrix for each subject, F'C's. Applying censoring
to timeseries before their correlation produces F'Cs ¢ matrix, one for each

subject.

e FC matrices derived after tICA: Clean data obtained with the entire clean-
ing procedure are used as input, along with spatial maps of group sICA, to
perform GIG-ICA method. Of the new subject’s data resulting, timecourses

of the rs-networks are used to obtain F'Cr s matrices.

The idea behind the implementation of the new part represented in figure 2.10
is that it is expected that F'Cy. ¢ and F'Cg are very similar, hence if they are
significantly different, this will mean that all the difference is due to the usage
of GIG-ICA in the computation of FCy;. . In this case then comparison (@) in
figure isn’t plausible because it compares matrices obtained with not comparable
methods and therefore it would be more appropriate comparison (3) to verify the
effects of tICA.

Other comparisons have been performed, resulting five tests:
® FCsic <«— FCric
@ FCyic <+— FCs
® FCu+crc < FCrig

@ FCM+G — FCM+G+C
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® FCy+g +— FCrig

Regarding the application of t-test, for each pairwise comparison two FC groups
are considered. For each FC matrix group involved in a comparison only strictly
upper triangular is taken into account and for each element (7, j) of these strictly
upper triangular matrices the values in (7, j) position of all subjects are stacked:
so for each pixel (i,j) a vector of subjects’ values of (i,j) is obtained. Then a
difference between respective vectors of the two FC groups is computed in each
position (i,7): to see if each difference vector is significantly different from zero
and so there was an effect between the two matrix groups, the difference vector
of position (7, j) is used as input for t-test: there will be as much statistical tests
as the total number of elements in the strictly upper triangular. From these t-
tests the findings will be a connectivity matrix representing the comparison of
two group connectivity matrices of interest, and a p-value matrix representing
the possible significance of results.

This computation is done for each of the pairwise comparison, resulting after all
statistical tests five matrix connectivities and as many p-value matrices.

In all t-tests the significance value is fixed to 0.05.All t-tests were corrected to

multiple comparisons through false discovery rate correction (FDR) [43].
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Results

3.1 Denoising of Single Subject rs-fMRI

The application of Melodic to individual subjects data was performed fixing the
number of components (IC) to be estimated.

Current dataset is heterogeneous because of a high motion for some subjects and
slow motion for others: the first type of subjects requires an high number of
estimated components to explain the variance of rs-fMRI signal, the latter type
instead needs a low number of components. In case of this study, there are 2 sub-
jects that moved a lot during images acquisition (subject 5 and 8) and applying
Melodic on them without a fixed number of estimated components, the number
of independent components was respectively 127 and 140. Instead for subjects
which moved less, the number estimated by the tool was lower (for the first 3
subjects it was respectively 96, 73, 64). So several ICA tests with Melodic were
performed on subjects’ data to look for the optimal ICA dimensionality which
best explains data: through visual inspection the parameter is then set to 100.
Hence for each subject 100 independent spatial maps and relative timecourses are
obtained.

The classification in noise or RSN components has been done manually based on
visual inspection of spatial maps, timecourses and power spectrums, exploiting

the advices and the informations given in the articles of [29] and [28].
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Figure 3.1 shows some examples of these three pieces of informations, fundamen-

tal for components identification, in case of signal IC. On the left side 3 signal

Timecourse of IC 29

Timeseries
o

5 I I I I I I

Hz
Timecourse of IC 39

0 100 200 300 400 500 600 700
Volumes
3 x10* Power spectrum of IC 29
T T
©2r |
8
ailf |
2 0 A | |
0 0.05 0.1 0.15 0.2

Hz

7 3
20
£
=
5 . . . . . . .
0 100 200 300 400 500 600 700
Volumes
) «10% Power spectrum of IC 39
T T
g
o 1 —
a
2 0 L L L
0 0.05 0.1 0.15 0.2

Timecourse of IC 51

Timeseries
o

&

Figure 3.1: Graphic representation of some signal independent components coming from Melodic
single subject. All three pieces of information are illustrated: on the left side, three spatial maps
of subject 1 are showed, instead on the right the respectively timecourses and power spectrum are
presented.

component spatial maps are showed and they represent respectively a visual, de-
fault and auditory RSNs. From maps on all three planes (sagittal, coronal and
axial), clusters which define the components are big and well defined.

Timecourses of figure are characterized from a regular/oscillatory pattern, which
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is typical of most of signals components. Power spectrum of signal sources is
predominantly at low frequency (at least one strong peak within 0.01 - 0.1 Hz)
as it is showed for all 3 signal IC in figure.

Figure 3.2 illustrates the three measures relative to some noise components.
Compared to signals spatial maps, noise ones are characterized by smaller and

sparse clusters which dispose mostly on the edges of the brain.
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Figure 3.2: Graphic representation of some noise independent components coming from Melodic
single subject. On the left side three spatial maps of subject 1 are showed, instead on the right
the respectively timecourses and power spectrum are presented

In particular spatial maps of IC 2 highlights blood vessels, visible in the sagittal

plane, and a ring near the edges of the brain resulting from a motion-related
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source; IC 66 shows some stripes due to the effect of eyes rolling back; in the map
(IC 53) the component reflects in the axial plane large arteries.
Timecourses of noise components can present large jumps and/or sudden change
of oscillation pattern, as it can be seen in IC 2 timeseries. Regarding power
spectrum noise sources are presented generally at high frequency as it can be
seen in the power spectrum of IC 53, but cardiac and respiratory noise can often
appear into BOLD low-frequency range (0.01 - 0.1 Hz) and this can be noticed
in components 2 and 66.

Table 3.1 summarizes the results obtained from the cleaning-up of subjects’

data. In particular the second column indicates the total number of noise com-

Subjects # noise components | explained variance | # components
removed removed after clean up

1 45 53.83 63

2 27 42.58 65

3 44 53.7 51

4 41 55.42 52

) 59 74.45 104

6 46 62.67 54

7 46 60.08 53

8 65 72.63 93

9 54 61.9 46

10 50 60.67 o6

11 65 72.02 29

12 39 56.85 70

13 46 53.81 o7

Mean value 48 60.05 63

Table 3.1: Results coming from the application of Melodic at the single subject level. In the first
column the number of subjects is inserted; in the second and third one the number of noise com-
ponents identified and removed and their respectively explained variance are showed; the last col-
umn represents, for each subject, the number of components estimated by Melodic after noise
components are removed from patients data. The last row indicates the mean values of the re-
sults

ponents which for each subject are removed through command fsl_regfilt: on the
average about half of components (48) have been removed from each data. In the
third column the explained variance of all the removed components is specified.
The last column reflects the number of components estimated by Melodic after

subjects clean-up data. The mean value of this last column is 63 and it will be
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used, as initial fixed number of group components, in the following group ICA
analysis with GIFT.

3.2 Group spatial ICA

In order to decide which method is more performing with the available dataset
for group-sICA, several comparisons between Melodic and GIFT are performed

with similar input parameters. The testing parameters are represented on table
3.2.

MELODIC GIFT
. L . e Intensity normalization
Pre-processing Normalization voxel-wise . o
e Variance normalization
Algorithm FastICA o FastICA
e Infomax
Stability analysis 1 run 10 run

Table 3.2: Comparison between MELODIC and GIFT for group-ICA analysis. In GIFT two possi-
bilities are tested in both Pre-processing and Algorithm type. Black dots reflect the possibility to
chose one of the parameters

Regarding number of estimated independent components, it was fixed and its
value is based on the model order selection criteria of both implementations of
group sICA analysis. In Melodic the default technique of dimensions estimation
is LAP, but there are available also the other methods. Instead GIFT provides
only MDL method. This difference of criteria causes a different estimated number
of components: Melodic estimates 101 components, GIFT 25 which results very
low observing data components. Even changing Melodic’s criteria to MDL the
estimated number results very different to GIFT’s ones (56 against 25), therefore
the conclusion is that with the same criteria they work differently. Consequently
to do a comparison between the two software, based on visual inspection the

number of estimated components was fixed to 100.
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Four comparisons were developed setting GIF'T with pre-processing and Algo-
rithm type varying during the tests while the other parameters of the table stayed
fixed. The comparisons are based on exploring the respective Default Mode Net-
work (DMN) and are developed between:

1. GIFT: variance normalisation, FastICA (setupl)
Melodic: default parameters named in table 3.2 (setup2).

2. GIFT: variance normalisation, FastICA (setupl)
GIFT: intensity normalisation, FastICA (setup3)

3. GIFT: intensity normalisation, FastICA (setup3)
Melodic: default parameters (setup2)

4. GIFT: intensity normalisation, FastICA (setup3)

GIFT: intensity normalisation, Infomax (setup4)

and they are showed respectively in figures 3.3, 3.4, 3.5 and 3.6.

Setup2 Setupl

Figure 3.3: Comparison on Default Mode Network (DMN), at group level, between Melodic
(Setup2) and GIFT which is run through Variance Normalization as pre-processing and FastICA
as Algorithm (Setupl). Melodic results are reported on the left side, whereas GIFT's one are on
the right side.

Observing the group spatial maps of the first three comparisons about DMN,
it is noticed that Melodic (setup2) produces more intense but smaller sparse
clusters, instead GIFT, performed with FastICA algorithm, gives as output well-
defined and compact clusters with both variance and intensity normalization pre-
processing (setupl and setup3). Based also on the other spatial maps relative
to different networks, Melodic doesn’t hold this dataset, that is it seems not to

be able to interpret data properly since that some networks result split in more
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Setup3 Setupl

Figure 3.4: Comparison at group level on GIFT between different pre-processing. On the left
Intensity normalization was used as pre-processing type (Setup3), instead on the right Variance
normalization is used (Setupl). In both cases FastICA algorithm was chosen.

Setup2 Setup3

Figure 3.5: Comparison between Setup2 and GIFT which is run through Intensity Normalization
as pre-processing and FastICA as Algorithm (Setup3). Melodic results are reported on the left
side, whereas GIFT's one are on the right side. Spatial maps are extracted at group level and are
compared respect to the same values range ([2 ; 7])

Setup3 Setup4

Figure 3.6: Comparison at group level on GIFT between different Algorithms: Setup3 with
FastICA algorithm, Setup4 with Infomax. In both cases Intensity Normalization is used as pre-
processing.

components.

Once GIFT has been chosen as method to do group-sICA analysis using the pre-
processing intensity normalization, a last comparison between setup3 and setup4
(represented on figure 3.6) is made to understand which algorithm does a better

estimate of independent components on available subject’s data. Results from
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both algorithms are very similar and in both cases signals are well-separated in

sources, with Infomax producing more intense and compact clusters.

For these reasons group-sICA analysis is performed through setup4. Even
in this case the components number has been fixed. To obtain an appropriate
number of components, LAP criteria, performed by Melodic as default, was taken
into advantage. In fact from the first tests it was noticed that, in case of this
dataset, LAP seems to be the best estimator of components number. For this
reason it has been used also for this selection. Hence the idea was to re-apply
Melodic on data already cleaned to observe the new estimate of components
number for each subject: as result 13 values were obtained, illustrated in the last
column of table 3.1, then they were average obtaining 63 and this has been taken
in consideration as number of component to be estimated. GIF'T was applied on
all subjects data using the dimensionality already obtained, but this mean value
was not found to be representative of the entire group; therefore several tests
were done with GIFT for group analysis, varying the number of components and
increasing it to 100, choosing at the end an ICA decomposition dimensionality of
80.

Through group-ICA analysis performed by GIFT toolbox, 80 spatial ICA com-
ponents and relative timecourses were estimated in the resting state fMRI data at
both group and individual level. Some of the obtained spatial maps are reported
in figure 3.7: it can be noticed that despise the cleaning through Melodic, there
are still remarkable noise sources, as those highlighted on the right side of the

figure.
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Figure 3.7: Examples of Group Spatial ICA components from GIFT. In particular two signal com-
ponents are showed, on the left side, and two noise ones on the right

3.3 Temporal ICA

The timecourses of each subject obtained from the back-reconstruction of GIFT
during the previous sICA analysis are concatenated and fed into FastICA algo-
rithm to identify the temporal independent components. In this phase, as Glasser
suggested, ICASSO procedure was used to estimate the appropriate number of
components. In particular the index quality measure I, is showed in figure 3.8.
Each filled black circle represents the value of I, associated to the relative compo-
nent/cluster. A high value of I, is related to a compact and tight cluster which
reflects consequently a reliable component. The components with an index-quality
measure I, > 0.5 define how many of them have to be estimated: 53 components
are over the threshold.

The component selection is based on a compromise. The method proposed
by Glasser just described, has been performed on available dataset, but some is-
sues have been detected: using the resulting 53 as components’ number led some
RSNs to converge on the same component, other times network and noise have
appeared on the same component. The chosen dimensionality seems therefore
not to be appropriated. As consequence a major number of component has been
considered, in particular it has been increased up to 60. This choice is equivalent

to analyse how many components have an I, > 0.47 which is not so much different
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#of IC

Figure 3.8: The quality indices Iq are showed in rank order of the clusters. Green dotted line
is the threshold between clusters with I, > 0.5 and those with I, < 0.5. The red circle is the

Stability index (Iq) for ICA estimate-clusters
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be feasible without lowering extremely the quality of clustering.

Once tICA is completed, results are group and individual 60 spatial maps
computed through the equations 2.17 and 2.18 and concatenated timecourses of
the 60 components coming from FastICA. Examples of resulting group spatial
maps are reported in figure 3.9. As it is expected, some IC clearly represent a
network component, for example IC6, IC14 and IC32 are a default, a somatomotor
and a visual network. Even several noise components seem to be clearly separated

compared to signal ones. The three IC illustrate on the right side of figure 3.9

are certainty only noise-related sources.
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10
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Figure 3.9: Examples of Group Temporal ICA spatial maps. Three group signal components (I1C
6, IC 14, IC 32) are illustrated on the left. On the right side the components 5, 19, 31 reflect
noise sources. The range of values is the same for all components ([3 ; 10])

3.4 Indices

3.4.1 Normalized Difference in Amplitude for DVARS dips

The first index for identification of motion-related noise components, diff x,,,pvars>
exploits the DVARS measure. DVARS is a metric that should reflect subject’s mo-
tion. All traces are demeaned (DV ARSy) to allow comparisons between different
subjects. From these traces it has been observed a difference in the amplitude of
DVARS among subjects: all subjects except 13th could be observed starting from
the same range of DVARS values (]-2 4]); on the contrary subject 13 presented
a bigger range of values ([-5 15]), this means that the variance of the signal is
completely different from the others. This strong variation of a subject compared
to the others is due to the update of the scanner of magnetic resonance, therefore

it is important to apply a certain normalization on DVARS data, in order they
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could be compared appropriately.

As solution to this problem it was decided to normalize each DVARS trace for
the mean intensity of images of the relative subject, resulting new traces named
as nDVARS. FEven the mean value has been removed, obtaining nDV ARS,.
This method brought all subjects in a comparable range and appears as the more
sensible metric to find out how subjects behaved during the acquisition.

Figure 3.10 shows for three subjects DVARS before and after normalization: sub-
ject 13, which is represented in the last row, now falls within variance of the

others and hence he can be reasonable compared to other subjects.
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Figure 3.10: Comparison between DV ARSy and nDV ARSj. The first one is illustrated on
the left side and reflects DVARS plot in which mean value has been removed. Three example of
representative subjects are showed: the first one moved not so much, in the second one it can
be noticed a greater number and a major amplitude of peaks of motion; the last one represents
an example of how the signal can change when there is a variation of the sequence. On the right
the same DVARS traces have been demeaned, but also normalized for the mean intensity of the
relative images (nDV ARS))

In order to understand how much a subject moved during fmri data acquisition,
in general the trend of DVARS trace and its peaks are inspected. In table 3.3
mean values and standard deviation of nDV ARS have been inserted for each sub-

ject. These nDV ARS are computed starting from data cleaned by Melodic single
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subject. Subjects which moved a lot (for example subject 5, 8 and 11) provide
to a standard deviation higher compared to others and they are characterized by
very large and frequent peaks of motion or otherwise a variable pattern. Subjects
that moved less, for example subject 3, 6 and 10, present a homogeneous trend
with few and low spikes, so their standard deviation is lower and their values are

generally small.

# Subjects 1 2 3 4 5 6 7 8 9 10 11 12 13
nDVA;zRS 3.52 12771298 | 2823141 3.32]2.63]| 252|299 359|240 2.74| 2.53
x10~
nDVARS std 1.9 20 1.1} 22 (127 1.7 1.7 | 46 | 1.8 | 21| 23| 2.1 1.7
x10~3

Table 3.3: Table of values of mean and standard deviation of nDVARS traces, computed after
clean-up of Melodic single subject (s-sICA). In the second row the mean values are reported up
to a constant multiplier equals to 1072, The last row represents the nDVARS standard deviation
which is reported up to a constant multiplier equals to 1073.

Now the aim is to find DVARS spikes or dips remaining after the first clean-up
procedure (post s-sICA) and to analyse tICA components’ timeseries correspond-
ing to peaks’ instants/frames. Spikes and dips are needed for the computation of
the metric diff 5., ,pyvars and they can be identify through a fixed threshold.
Several thresholds are tested and some examples of the application of the first
chosen threshold, proposed by Glasser, are illustrated in figure 3.11: in each box,
timecourse DVARS trace related to a subject is demeaned and then normalized
for its maximum value, obtaining gDV ARSy. The threshold, represented with
red dotted lines, is set to £25: all that is out of the band produced by the thresh-
old is considered peak/dip.

Observing the graphs, it is noticed that a large amount of values is often brought
outside the thresholds’ band, but in reality those values are not all significant and
so representative of movement. For example subjects 3, 6 and 10 have a lot of
values over the threshold, but their DV ARS, trace seem to have an homogeneous
pattern, with no particular high peaks.

The threshold proposed by Glasser can’t be adaptable with available dataset, its

value is different from one subject to another and it results quite variable among
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them, as consequence there are often too much values that are outside the band
identified by the threshold.
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Figure 3.11: Examples of gDV ARSj plots. The term g indicates the application of Glasser's
threshold, i.e. all DVARS are normalized to the relative maximum value and the threshold has
been fixed for all subjects to £ 25. The subscript 0 reflects the fact that traces are demeaned.
The red dotted lines represent the chosen threshold of + 25

The successive thresholds used for the same aim are computed considering
nDV ARS, of all subjects, so demeaning each of them and normalizing for the
mean intensity of images of the specific subject. Then all DVARS are taking into
account together to find one only threshold for all.

The threshold calculated through 10th percentile is showed in figure 3.12: for
each subject their respective 75 higher values (peaks) of DVARS trace are figured
in descent order. Green dotted line is the threshold obtained taking into account
the 10th percentile of all 975 peaks (75 x number of subjects) and its value is
0.0117. Under this threshold the 10% of observations are situated.

The other thresholds are computed as a function of the standard deviation o
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Figure 3.12: Histogram of higher 75 values (peaks) of each subject's DVARS. Green dotted line
represents the threshold computed with 10th percentile

of DVARS of all subjects.
Three examples of subject DVARS traces with the 3 thresholds are showed in
figure 3.13: in particular for subjects 4, 8 and 10 demeaned and normalized
DVARS are represented with thresholds of 10th percentile, 20, 1.640 and o that
are respectively figured in green, magenta, red and black dotted lines.

As it can be seen, those thresholds seem to be more appropriate respect to the
first one represented in figure 3.11.
The values of all the five computed thresholds are reported in table 3.4. The
second column, T'hr,, represent the threshold values proposed by Glasser, instead
the other columns, T'hr, Thrg, Thr, and Thry reflect the values of the four
thresholds computed in addition to those proposed in the reference paper [3].
These last four thresholds are calculated at group level and are constant for all
subjects. On the contrary T'hr, is extremely variable and also from figure 3.11
would consider as spikes/dips too much DVARS frames.

The choice of the more appropriate threshold based on only observing DVARS
plot of all subjects, but on the inspection of outliers number on traces and how
it distributed among subjects.

Thr, produced a number of frames outside the band of about 16.8% of the all
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Figure 3.13: Examples of subject nDV ARS) traces (demeaned and normalized by the respective
mean intensity of the images). Four thresholds are showed and represent 10th percentile (green),
20 (magenta), 1.640 (red) and o (black). All values outside the band defined by two symmetric
thresholds are the so called spikes/dips

traces. For some subjects that moved less the number of outliers resulted too
much big: for example subject 6 and 10 traces are homogeneous, with low values
and without particular high peaks, but T'hr, highlighted respectively 251 e 257
values outside the band, so about 34% of total frames, as consequence these
outliers numbers are too high. On the contrary for subjects which moved a lot
during the acquisition as subject 5 and 8, the selected outliers are respectively 16
and 36, resulting probably fewer observing their DVARS traces. Therefore T'hr,
has been easily excluded as method for threshold choice.

The other thresholds, T'hry, Thrg, Thr, and Thrg, produce a constant threshold
which seems to be more appropriate for this dataset. They highlight an outliers
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Subjects Thr, Thr, Thrg Thr, Thry

1 0.3141 0.0117 0.00828 0.00679 0.00414

0.2264 0.0117 0.00828 0.00679 0.00414
3 0.2788 0.0117 0.00828 0.00679 0.00414
4 0.8290 0.0117 0.00828 0.00679 0.00414
5 4.7199 0.0117 0.00828 0.00679 0.00414
6 0.1636 0.0117 0.00828 0.00679 0.00414
7 0.1846 0.0117 0.00828 0.00679 0.00414
8 0.8848 0.0117 0.00828 0.00679 0.00414
9 0.3794 0.0117 0.00828 0.00679 0.00414
10 0.2934 0.0117 0.00828 0.00679 0.00414
11 1.0962 0.0117 0.00828 0.00679 0.00414
12 0.4566 0.0117 0.00828 0.00679 0.00414
13 4.6970 0.0117 0.00828 0.00679 0.00414

Table 3.4: Representation of thresholds’ values for each subject. T'hr, is Glasser’s threshold. The
other thresholds, named in the following columns, are all those computed in this work and are
respectively 10th percentile (Thr,), 2 o (Thrg), 1.64 o (Thry) and o as Thrg. While Glasser’s
threshold changes compared to subjects, the other are computed at group level and so they are
fixed for all

number respectively of 0.99%, 2%, 3.4% and 8% compared to the total of traces.
Observing subjects plots attempts have been made to understand which threshold
could be suitable to identify frames with high spikes and without selecting those
that couldn’t reflect motion. For example from the three plots of figure 3.13 it was
quite clear that green and black thresholds (Thr,, Thry), for opposite reasons,
don’t highlight appropriately spikes/dips.

Starting from all these informations, the choice fell on T'hr., which allowed to select
among all subjects a number of peaks/dips selected beyond the band equals to
335.

Once the classification between DVARS peaks/dips and non-peaks/non-dips is
completed, the quantitative component-wise measure based on DVARS, diff »,,,pvars:
is computed through equation 2.30 for each component. The results of this com-
putation is represented in figure 3.14. Red dotted line is the threshold equals to
0.945 and it has been calculated through equation 2.31, where the selected sig-

nal components are illustrated as the green diamonds, noise components as red
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filled circles. These six components have been selected manually and are already
illustrated in figure 3.9: the three signal components were easily identified as net-
works because of the presence of big and compact clusters, the three noise ones
also were detected very quickly as manly the edges of the brain are highlighted.

Observing figure 3.14, signal components are situated below the threshold as
expected because they have been chosen the most credible ones among all the

possible signals and less influenced by motion, so their value of diff s,,,pyars will

be low.
Normalized Difference in Amplitude for DVARS Dips thr =1.64 o
3 T T T T i
—e—Diff DVARS
1 = ~=threshold = 0.945
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2.5
22 ® noise
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Figure 3.14: Difference in component amplitude (standard deviation o of component timeseries)
between frames with DVARS dips and those without DVARS dips normalized by the component
amplitude across all frames. Red dotted line is the threshold that best discriminates between the
components that had already been clearly identified as signal (green diamonds) or noise (red filled
circles). The numbered components are those above the threshold

62



VariabilityAmp

o
©

o
©

o
3

o
=)

I
3

IN
~

o
w

o
[N

3.4.2 Variability between subjects: Variability,,,,, Diffamppvars

The other two evaluation indices are based on an analysis of amplitudes variabil-

ity of component across subjects.

Variability in Amplitudes Across Subjects

Highest minus second highest subject Amplitude
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Figure 3.15: Comparison between Variability 4,,, and diffam,, metrics: variability in amplitude
across subjects, represented on the left side, and difference between the two highest subjects am-
plitudes, illustrated on the right

Figure 3.15 illustrates the results obtained from equations 2.34 and 2.35 which
describe the two metrics: the variability in amplitude across subjects for each
component ( Variability,,,,) on the left side and the difference between the two
highest subjects amplitudes (diff},,,) on the right side. The first one, for a given
component, grows with the increasing of the component timeseries variability
(standard deviation). The latter, for a given component, takes into account the
dissimilarity of the two highest subjects amplitudes, highlighting those compo-
nents that are particularly strong in a single subject.

Plots assume different range of values, but reveal a very similar trend. This lead
to analyse the behaviour of the two indices and concluding that Variability 4,,,
is little representative of group differences due to the reduced number of sub-
jects: in the limit case the timeseries standard deviation of only one subject is
very different from the others, the value of Variability,,,, of a component raises
significantly, showing the same behaviour of diffy,,, whose aim is to expose the

difference between two subjects amplitudes.

Figure 3.16 depicts the diffs,,, measure plus the threshold (red dotted line)

computed according to equation 2.31.

63



Highest minus second highest subject Amplitude
T T T

T
—e—diff ampl
= =threshold
¢ signal
® noise B
12
18 22 |
29
15 19
16 2044 25
3 8 w P
A A a1 36 43 50 o _
57
1 - -
0.5 —
0 | | | | |
0 10 20 30 40 50 60

Component Number

Figure 3.16: Difference between the maximum subject’s component amplitude and the next high-
est subject's component amplitude normalized by the overall amplitude of each component. Red
dotted line is the threshold that best discriminates between the components that had already been
clearly identified as signal (green diamonds) or noise (red filled circles). The numbered compo-
nents are those above the threshold

3.5 Identification of noise-related components

The two metrics diff x,ppyars and diffy,,, have been used for the identification
of noise-related components. These components are those that result above both
thresholds of the two plots. From the first plot, 21 components are above the
threshold, while in the latter one, 30. The component common to both plots
result 14 and their spatial maps can be seen in figure 3.17. These 14 components
are removed from data, obtaining a total explained variance of those component
equals to 41.47%.
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Figure 3.17: Temporal ICA components identified as noise. All spatial maps are reported in order
and are saved with the same range of values ([3 ; 10])
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3.5.1 Outlier Detection

The application on available dataset of the entire procedure described in this work
(figure 2.4) and of indexes diff s,,,pvars and diffy,,,, with all the choices already
justified, brought to the identification and removal of 14 tICA components clas-
sified as noise.

A further analysis has been that to verify if obtained results were somehow
strongly influenced from some outliers of motion. In this case subject 5 was
taken into account as he moved a lot during the acquisition compared to the oth-
ers and this has been noticed starting form his DVARS traces. Hence attempts
have been made to check if subject 5 have had a strong impact on results and
how much this method is robust to outliers.

Figure 3.18 illustrates nDV ARS| of subject 5: there are several high peaks that
get to reach values near 0.14, in contrast to the others subjects DVARS that don’t
exceed 0.04.

nDVARS | subj5

\ \ I
—DVARS
— -1.640

0 100 200 300 400 500 600 700

Volumes

Figure 3.18: nDV ARS traces of subject 5 (demeaned and normalized by the mean intensity).
Red dotted line is the threshold equals to 1.64 o and representing about the 90% of data
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This led to analyse obtained results after applying diff o,ppvars and diff s,
for the identification of noise components, to verify if these are influenced from
subject 5. Values of diff »,,,pvars are based on the partitioning of DVARS traces
in spikes/dips and not-spikes/dips.

Hence the number of peaks is counted for each subject and result is represented
in table 3.5: 76.4% over the total peaks comes from subject 5. Therefore the
computation of thresholds has been rerun for DVARS plots, without considering

subject 5.

# Subjects

13

# peaks over threshold

256 | O

0 (43 ] 6 | 2 | 10| 6

Table 3.5: Table of peaks over DVARS plot threshold (1.64 o) for each subject

The new values of thresholds Thr, Thrg Thr, Thr, are reported on table

3.6 in second column. Last column reflects the values of the same thresholds,

but computed before with all subjects.

All threshold values lowered without

considering subject 5 and this is expected as subject 5 DVARS is quite variable
with some high spikes. Therefore the new thresholds are more stringent.

Threshold Value with 12 subjects | Value with all subjects
Thr, 0.00658 0.0117
Thrg 0.00452 0.00828
Thr, 0.00370 0.00679
Thr, 0.00226 0.00414

Table 3.6: Representation of thresholds’ values obtained without considering subject 5 in the
second column, considering all subjects in the last column

The difference in thresholds’ results can be seen also in figure 3.19 in which
three subject DVARS traces are illustrated with all the computed thresholds.
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Figure 3.19: Examples of comparison between subject nDV ARS| traces with all four thresholds
performed in this work. On the left side three examples are presented, in which all thresholds were
computed considering all subjects. On the right one, the same example are reported, but in this
case the thresholds are computed on group excluding subject 5, resulting lower values.The four
thresholds are 10th percentile (green), 20 (magenta), 1.640 (red) and o (black)

The case of considering all subjects except patient 5 (right side of the figure)
allowed to get lowered thresholds. For example the two cases can be compared
considering the threshold Thrg. In case with all subjects, T'hrg highlighted 335
spikes/dips above the band defined from the threshold, but most of them came
from subject 5; in the second case, so without subject 5, peaks number for each
subject is more homogeneous. In fact excluding subjects 8 and 3 (the first one
moved a lot so reasonable most of his spikes are above the band, while the latter
one is the one which moved little so the number of his peaks il very low) the
number of peaks highlighted on average for each subject is 34 compared to all

750 values, so about 4.5% of the entire trace. This value is much more reasonable
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with respect to case with subject 5 in which only 0.88% of values for each subjects
were assigned as spikes/dips.

As before the focus now is to select the threshold more appropriate for peaks/dips

identification. Even in this case the number of outliers has been inspected for all
threshold. More specifically it has been analysed T'hrg Thr., Thr,, that are based
on standard deviation, to understand if standard deviation could be appropriate
measure to go on for thresholds computation.
Regarding this last aspect, all thresholds based on o are computed on concate-
nated DVARS of the 12 subjects: observing the distribution of concatenated
DVARS in figure 3.20 it has been found that is not properly a gaussian distribu-
tion because of the presence of a very long right tail.

The solution adopted in this work is to characterize a gaussian distribution based

Histogram of DVARS group Histogram of DVARS group
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Figure 3.20: Distribution of concatenated DVARS without considering subjec 5. The figure on
the right side is a zoom version of the left one, highlighting the long right tail circled in red

on reference subjects, that is those optimal subjects which don’t move or moved
not so much: in this case based on individual DVARS inspection with mean and
standard deviation values, they are 2, 3, 6, 9, 10 and 13. The new distribution will
have zero mean and a certain standard deviation (X). Now subjects DVARS are
compared individually to this reference distribution which is illustrated in figure
3.21: everything that is outside 23 will be considered as outlier of motion. The
value 2% is equals to 0.00352 and reflects the fact that data has the probability
of 95% to fall inside the band derived from threshold.

In this way the new threshold to be applied for all DVARS traces is 23, Figure
3.22 shows two examples of subjects DVARS traces in which threshold of 2X is
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Figure 3.21: Histogram represents the reference distribution of concatenated DVARS. Black
line is the reference probability gaussian distribution, red dotted lines are the threshold of 2 ¥
(0.00352), instead green one are the threshold of 3 3

applied.

Through this threshold the classification of DVARS peaks/dips and non-peaks/non-
dips is computed, obtaining for each subject a number of peaks as reported in table
3.7, with a total of 719 spikes and dips. From the table it is noticed that lots of

nDVARS0 subj 1 nDVARS0 subj 11
004 T T T 004 T T T
- -threshold=2 % - -threshold=2 %

0.03r B 0.03r B
0.02 R 0.02
0.01 0.01

0 0
-0.01 - R -0.01 - R
_0'02 L L L L L L L _0'02 L L L L L L L

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Volumes Volumes

Figure 3.22: Example of DVARS traces with 2 ¥ threshold. In particular DVARS of subject 1
and 11 are represented. Red dotted line is the threshold 2 ¥
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identified spikes comes from subject 8: this is expected because his DVARS traces
present many and wider peaks. A complementary consideration can be made on
subject 3, whose DVARS has been already showed in figure 3.10: DVARS trace
is quite homogeneous with few and low spikes, therefore it is reasonable that a

low number of values has been identified as spikes.

# Subjects 1 2 | 3| 4 5 6 718 ]9 |10 11

12

13

# peaks over threshold | 39 | 53 | 9 | 36 | - 55| 21| 316| 34 | 54| 36

40

26

Table 3.7: Table of peaks over DVARS plot threshold (2 X) for each subject without considering
subject 5

As before the quantitative component-wise measure based on DVARS is com-
puted through equation 2.22 for each component. Figure 3.23 illustrates the two
plots coming from this measure in the case of considering all subjects (figure on
the left side) and of excluding subject 5 from the analysis (figure on the right). It
can be noticed that not considering subject 5 significantly modifies diff 5., pvars
values.

Regarding diff 4,,, even in this case the focus is to analyse results obtained with
all subjects, already showed in figure 3.16, and verify how much they are influences
by subject 5. That can be seen in figure 3.24: on the left diff,,,, plot is showed
again, with the addition of the presence of pink stars that reflect components
in which the maximum amplitude belongs to subject 5; instead on the right an
histogram is created which count the number of times each subject assumes the
maximum components amplitude. Observing this histogram, it is evident that
subject 5 assumes the maximum amplitude in one-third of all components.

Therefore even diff 4, index should be significantly influenced by subject 5. To
verify that, the index is recomputed, as already done for diff4,,,py ars, Without
considering the subject 5. Figure 3.25 illustrates the two diff,,,, plots in which
the graph on the left takes into account all subjects, the right one is obtained
excluding subject 5 from the analysis. In both figures red dotted threshold is
computed, through equation 2.31, as the average value of the mean of three signal

(components 6, 14, 32) and mean of three noise (5, 19, 31) components amplitude.
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Figure 3.23: Comparison between DVARS Difference in component amplitude with and without
subject 5 which are respectively represented on the left and right side. The first one is obtained
after classification of spikes/dips non-spikes/dips through threshold of 1.64 ¢, instead in the lat-
ter one the threshold computed without subject 5 is equals to 2 3. In both cases red dotted line
is always calculated through equation 2.31 as the average value of the mean of the three signal
and and mean of the three noise components. The numbered components are those above the
threshold
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Figure 3.24: Representation of subject 5 influence on diff4,,;, plot. On the left side diff4,,, is
showed again, in which red dotted line is the threshold which best discriminated between that had
already been clearly identified as signal or noise, pink stars reflects components with the maximum
amplitude belonging to subject 5. On the right side the histogram of the maximum amplitude
frequency is showed for each subject

Even for this index, its value changes significantly based on the presence of subject

5, in particular without subject 5 lots of values are lower (near zero which means
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Figure 3.25: Comparison between diff4,,,;, computed with and without subject 5 which are re-
spectively represented on the left and right side. In both cases red dotted threshold is always cal-
culated through equation 2.31 as the average value of the mean of three signal and and mean of
three noise components amplitude. The numbered components are those above the threshold

that the difference between the two highest amplitude for some components are
very similar), others instead are not influenced by subject 5 and stay more or less
at the same level.

In summary, observing the previous results, it is noticed that both indices
diff amppv ars and diff,,, are significantly modified based on the presence of sub-
ject 5. This brought the conclusion that the selected analysis for the identification
of noise components is excessively influenced by the contribution of subject 5 com-

ponents and so the findings are not very much plausible and credible.

3.5.2 Thresholds selection

The proposed final solution is to re-apply the temporal ICA through FastICA
algorithm, without considering subject 5. As before, the number of estimated
components is set to 60, obtaining new spatial maps and relative timecourses.
The two metrics diff a,,,py ars and diff 4, are re-computed obtaining the results
in figure 3.26 and 3.27. The first one is obtained classifying spikes using again as
threshold 2% of the reference distribution. For both figures, red dotted line is al-
ways computed with equation 2.31 in which manually selected signal components
(green diamonds) are 11, 13, 47, instead noise ones (red filled circles) are 10, 29,
45.
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Figure 3.26: Difference in component amplitude between frames with DVARS dips and those
without DVARS dips normalized by the component amplitude across all frames. All the analysis
is done after the application of tICA without subject 5. Red dotted line is the threshold that best
discriminates between the components that had already been clearly identified as signal (green
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Figure 3.27: Difference between the maximum subject’s component amplitude and the next high-
est subject’'s component amplitude normalized by the overall amplitude of each component. All
the analysis is done after the application of tICA without subject 5. Red dotted line is the thresh-
old that best discriminates between the components that had already been clearly identified as
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Further tests are performed changing twice the threshold illustrated in the red
dotted line through equation 2.32 and 2.33. In this way, based on the different
method to compute the threshold, for both plots diff4,,,pvars and diff4,,, a dif-
ferent number of noise components will be obtained.

Table 3.8 represents the number of components to remove after tICA with and
without subject 5 and with different thresholds. The values of Thy, Ths, Ths rep-

# comp over # comp over | # comp over | Explained
Threshold threshold threshold both Variance
diﬁAmpDVARS diﬁAmp
All subjects Thy 21 30 14 41.47 %
Subjects 5
Excluded Th, 12 39 8 9.91 %
Subjects 5
Excluded Thsy 6 18 2 4.49 %
Subjects 5
Excluded Ths 6 21 3 5.20 %

Table 3.8: Table representing the number of components to remove after tICA with and without
subject 5 and with different thresholds. The second row indicates results considering all subjects
in tICA analysis, instead the following rows represent the results coming from exclusion of subject
5 in tICA analysis. In particular three different thresholds are used to obtain diff o,,pvars and
diff Amp Plots: they are indicated with names of T'hy, T'he, Ths and are computed respectively
with equations 2.31, 2.32 and 2.33

resent respectively equations 2.31, 2.32 and 2.33. It can be seen that the number
of components to be removed above both thresholds of the two metrics and their
total explained variance are less in cases of tICA without subject 5 compared to
the one with all subjects. T'h; is the lowest one and consequently causes a number
of components to remove higher compared to the other cases (T'hy and Ths).
Since Thsy and Thz remove a low number of components, and similarly the ex-
plained variance, the chosen threshold is Th;.

The resulting plots of the new two thresholds, T'hy and Ths, are showed in figure
3.28 and 3.29.
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Figure 3.28: Representation of diffamppv ars (on the left) and diffa,,, (on the right) computed
without subject 5 in tICA analysis. Red dotted threshold (T'hq) is calculated through equation
2.32 as the sum of two values: the first one is the average value of the mean of three signal and
mean of three noise components, the second one is the standard deviation of the 6 components.
The numbered components are those above the threshold
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Figure 3.29: Representation of diffamppy ars (on the left) and diffa,,, (on the right) computed
without subject 5 in tICA analysis. Red dotted threshold (T'h3) is calculated through equation
2.33 as the sum of two means: the first one is the average value of the mean of three signal and
mean of three noise components, the latter one is the mean between the resulting two standard
deviations of three signal components and noise ones. The numbered components are those above

the threshold

The spatial maps of the removed tICA components are showed in figure 3.30

in the two columns which respectively contains in order components 10, 14, 24,
27 and 32, 43, 52, 53. It can be noticed that all IC appear to be completely

noise components. In fact most of them seems to be motion-relates components
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as they manly highlight edges of the brain; others overlap with blood vessels (IC
10 shows clearly this characteristic), arteries or are mainly located within areas
of air-tissue interface. In general all IC present a large number of small clusters,

typical of noise sources.

5%
53

e
>

Figure 3.30: Group Temporal ICA spatial maps of the 8 components to be removed. Left column
contains in order components 10, 14, 24, 27, whereas the right one contains 32, 43, 52, 53
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In summary the principal choices adopted to develop the entire procedure of

identification of motion-related noise components are resumed in table 3.9:

Steps

Final choices

Description

Processing

Denoising of Single Subject
rs-fMRI through Melodic

This step has been performed to obtain ini-
tial data condition similar to Glasser’s article.
Each subject data has been fed into Melodic
to identify 100 components. Of these com-
ponents, noise ones have been identified and
removed from data

Glasser
Procedure

1. Group sICA
2. tICA

Group-ICA analysis has been performed by
GIFT toolbox: the number of components to
be estimated has been set to 80. As result
spatial ICA components and relative time-
courses were estimated at both group and in-
dividual level. Temporal ICA has been com-
puted through FastICA algorithm and fixing
the number of estimated components to 60.
Subject 5 was excluded form tICA method

Noise
Identification
Indexes

L. diff spnppv aRS
2. diﬁAmp

For calculate diff4,,,pvars 1t is necessary
first identify peaks of nDV ARSy plot: this
has been done thresholding all traces to + 2
Y. In both plots of diff o, pv ars and diff ,,,
a threshold has been chosen to identify and
separate signal from noise

Thresholds for
indexes

Thy

The chosen threshold for both indexes plots
is equal to T'h; and it has been computed
through 2.31, taking into account 3 signal
components (IC 11, IC 13 and IC 47) and
3 noise (IC 10, IC 29 and IC 45)

Components
Removal

Based on Th;

All components above both thresholds of
diff amppv ars and diff ., are classified as
noise

Table 3.9: Final choices to develop the entire procedure. In the second column most important
parameters/choice are reported, while in the latter column a brief description is provided on how
the several steps have been developed

78




01

0.05

10

nDVARS pre and post s-SICA subj 10

3.6 Evaluation of Motion Related Noise Reduction Procedure

3.6.1 DVARS Comparison

DVARS comparison is the first method used to evaluate the entire procedure. To
do that, for each subject three different DVARS measures are compared to each
other. The first measure is computed starting from pre-processed data and it will
be named as pre s-sICA. The second one, called post s-sICA, is performed from
data cleaned by single subject sSICA of Melodic. The last one is calculated after
cleaning of tICA method, so it will be named as post tICA.

The first comparison is represented in figure 3.31 which shows some examples of
DVARS traces computed pre s-sICA an post s-sICA, and below the difference
between them in correspondence of frame with spikes/dips: a positive peak high-
lights a positive difference between pre and post s-sICA and hence a decrease of
the peak.

From comparison between pre and post s-sICA it has been noticed a huge im-

nDVARS pre and post s-SICA subj 11

‘ —DVARS pre s-SICA 015 ‘ —DVARS pre s-sICA
—DVARS post s-SICA 01k —DVARS post s-SICA
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Figure 3.31: Examples of comparison of DVARS traces pre and post s-sICA (single subject sICA)
which are respectively showed in green and blu lines. Each figure is composed of two subplots: the
first one illustrates the two DVARS traces, the latter one shows the difference between the peak
values of DVARS

provement on all DVARS. For subjects that moved a lot, characterised by high
peaks, this improvement has been observed not so much at mean level, but rather

at standard deviation level and on the inspection of spikes: in particular for sub-
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ject 5 and 11 peaks have been strongly lowered, resulting a reduction of DVARS
standard deviation respectively of 61% and 82% compared to the original one.
An example of that is illustrated on the right of figure 3.31: the major peaks
of subject 11 that before reached values about 0.15, now are lowered to 0.05.
This can be also seen in their second subplot in which the majority of differences
between pre s-sICA peaks and those of post s-sICA are largely positive, with
difference values reaching 0.08.

About subjects that moved less, such as subject 2, 10 and 13, DVARS improved
further even though they were already characterized by homogeneous patter with
few and low peaks: the mean value of DVARS decreased moderately, just like
the standard deviation. An example of this case if presented on the left of figure
3.31 in which few spikes present in the trace of subjects 10 are slightly decreased,
resulting a difference of peaks pre and post s-sSICA characterized by one order less
of magnitude compared to those of previous subjects.

In general, the majority of subjects obtained a significant reduction of mean
DVARS, as it can be observed from the values reported on second and third row
of table 3.10: its value, nDV ARS, has decreased about 20%-27% compared to
the original mean value. S-sICA has been showed successful also for subjects as 8
and 12 which present few but high peaks: most of the peaks have been reduced,
resulting to a drop of DVARS standard deviation of about 53%, as it can be seen
on table 3.11 from values of these subjects before and after s-sICA.

On the other hand their mean value hasn’t changed much.

The other comparison is performed between post s-sICA and post tICA. After
the application of tICA some DVARS traces further improve, as it can be seen
for subject 1 of figure 3.32, but in general the reduction of peak values is not so
much visible: traces coming from tICA of subject 4 are not so different from those
after s-sICA, and this is noticed also from the difference between peaks barely of
an order of 1073,
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Figure 3.32: Examples of comparison of DVARS traces post s-sICA (blu lines) and post tICA
(red lines). The term s-sICA indicates single subject sICA performed through Melodic. Each figure
is composed of two subplots: the first one illustrates the two DVARS traces, the latter one shows
the difference between the peak values of DVARS

Some examples of a complete representation of all the three comparisons are
illustrated in figure 3.33 for three representative patients: in the first one it can
be noticed a improvement of DVARS plot even after tICA, on the contrary in the
other two examples the peaks reduction is evident only after post s-sICA, instead

tICA seems not to modify so significantly the traces.
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Figure 3.33: Examples of comparison of DVARS traces pre s-sICA, post s-sICA and post tICA
which are respectively showed with green, blu and red lines. The term s-sICA indicates single sub-
ject sICA performed through Melodic

Tables 3.10 and 3.11 allow to verify quantitatively the evolution of DVARS
traces between different steps, in particular for each patient of the three DVARS
the mean and standard deviation values are reported.

Regarding the first table, it has been observed that mean value decreases signifi-
cantly between nDV ARS pre s-sICA and nDV ARS post s-sICA, with a reduction
ranging from 11% to 27%. A much smaller reduction appears instead between
nDV ARS post s-sICA and nDV ARS post tICA: the variation of mean values

is less significant compared to the previous comparison. Subject 1 is the one
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# Subjects 1 2 3 4 5 6 7 8 9 10 11 12 13
nDVARS pre s-sICA | 4.66 | 3.19 | 3.48 | 3.61 | 3.92 | 4.07| 3.35 | 3.12 | 412 | 4.93 | 3.41 | 3.08 | 3.32
nDVARS post s-sICA | 3.52 | 2.77| 2.98 | 2.82| 3.14 | 3.32 | 2.63 | 2.52 | 2.99 | 3.59 | 240 | 2.74 | 2.53
nDVARS post tICA | 3.37 | 2.74| 2.97 | 277 | - | 329|264 252|299 3.58 | 2.38| 2.75 | 2.50

Table 3.10: Table of values of mean of DVARS traces, computed pre s-sICA (second row), post
s-sICA (third row) and post t-ICA (last row). All values are reported up to a constant multiplier
equals to 1072

# Subjects 1 2 |3 |4 |56 |7 |8 |9 |10]11 | 12]13
nDVARS std pre s-sICA | 44 | 26 | 25 | 3.3 | 325 3.2 | 3.1 | 10 | 35 | 4.9 | 125/ 45 | 3.5
nDVARS std post s-sICA | 1.9 | 2.0 | 1.1 | 22 | 127 1.7 | 1.7 | 46 | 1.8 | 2.1 | 23 | 2.1 | 1.7
nDVARS std post tICA | 1.7 | 2.0 | 1.1 | 22 | - | 1.6 | 17 |46 | 1.8 | 2.1 | 24 | 2.2 | 17

Table 3.11: Table of values of standard deviation of DVARS traces, computed pre s-sICA (second
row), post s-sICA (third row) and post t-ICA (last row). All values are reported up to a constant
multiplier equals to 1073

in which mean value is significantly improved, with a difference of about 4.3%
between the two means. On the other hand for the other subjects nDV ARS
doesn’t seem too much altered. The same conclusion results in the observation
of standard deviations: they stay constant in most of the subjects.

In order to quantify the impact of the two steps (s-sICA and tICA) on pre-
processed data, it is taken into account the difference between peaks illustrated
in the subplots of figures 3.31 and 3.32, then for each of the two comparisons, a
sum of the peaks difference is calculated, obtaining figure 3.34: red line represents
the sum of DVARS spikes difference between pre and post s-sICA, blue one reflects
that between post s-sICA and post tICA. Observing the result, the application
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of the first step s-sICA produced a remarkable decreasing of peaks value, in
particular for subjects 8 and 11 that moved a lot during acquisition. The step of
tICA, instead, produced a little and almost null improvement for the majority of

subjects, in total the reduction of spikes is about 2.8% of the one produced by
s-sICA step.

Sum of difference DVARS spikes

——pre-post s-sICA
1.2¢ ——pre-post tICA

Subject

Figure 3.34: Sum of DVARS peaks difference between pre and post s-sICA (in red line), pre and

post tICA (in blue line). Subject 5 has already been removed from the analysis, so the value of
the two plots for subject 5 is zero.
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3.6.2 QC-RSFC

Another index for evaluation of procedure of motion-related noise removal is QC-
RSFC and to use it, functional connectivity matrices have to be calculated.

All computed FC matrices show the correlation between 27 rs-networks identified
manually from the 60 group spatial maps of group sICA with GIFT. These RSN
were labelled taking into account of article of [28] and are identified as 3 sub-
cortical (SC), 3 auditory (AUD), 5 somatomotor (SM), 5 visual (VIS), 4 default
(DMN), 6 cognitive (COG) and 1 cerebellar (CB). FC matrices are represented
with the networks ordered as in figure 3.35. Pairwise correlation between 27 rs-
networks’ timeseries results in 27 x (27 — 1)/2 = 351 connectivity values for each

subject.

FC Matrix

SC

AUD

SM

VIS|

DMN

COoG

CcB

SC AUD S™M VIS DMN COG CB

Figure 3.35: Structure of FC matrix. Networks are grouped into the following functional do-
mains: subcortical (SC), auditory (AUD), somatomotor (SM), visual (VIS), default-mode (DMN),
cognitive (COG) and cerebellar (CB) networks.

To quantify QC-RSFC measure, firstly it is necessary to compute for each sub-
ject F'Cs and F'Cr g matrices, obtained as represented in figure 2.10. Then all
FCy are stacked in a single matrix and correlated to the vector of mean values
of subject-wise framewise displacement (FD), resulting a correlation matrix and
p-value matrix illustrated in the left side of figure 3.36. The same calculation has
been applied for F'Cr,g obtaining the two matrices on the right side of figure
3.36.  Observing the two QC-RSFC matrices on the first row, it can be noticed
that tICA application modified some node connectivity strengths, but p-value

matrix assumes in both cases high values for most nodes, making results less
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Figure 3.36: FC and p-values resulting from QC-RSFC measure. The two matrices on the left
represent the FC and p-value matrices obtained from application of QC-RSFC on pre-tICA FC
(FCs). Instead on the right is showed those computed on post-tICA FC (FCri¢)

significant. In fact after FDR correction there is no statistically significance for
both QC-RSFC matrices.

In order to verify possible modifications of connectivity strengths between rs-
networks in the different steps of the entire procedure, the statistical analysis is
performed and provides the use of t-tests between FC pairs. Before t-test can
be applied, FC matrices has to be computed. In particular for each subject five
FC matrices are computed with the procedures illustrated in figure 2.10. Two
examples of resulting matrices are showed in figures 3.37 and 3.38. Observing
FC of subjects 6 and 10 firstly it can be noticed that there is an evident similarity
between FCyiq and FCyigic, as well as between FCgs and FCs, ¢, where in

both second terms the only additive step is the application of censoring.
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Figure 3.37: FC matrices of subject 6
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Figure 3.38: FC matrices of subject 10
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Moreover F'Cr.q tends to have the same pattern of FCyrie and FCyigic,
rather than that of FC matrices obtained without GIG-ICA method. All these
considerations are present also in the other subjects’ FC.

Another aspect is that the difference between FCg and F'Cy, ¢ is expected only
if GIG-ICA method has a strong impact on results.

In this case it is observed that these two kind of matrices show different connec-
tivity strength, with FCy/ ¢ appears to have higher contrast than FCg. The
same observation can be derived also for the pair (F'Cs.c, FCyicic)-

For the five type of matrices the mean value is computed among the subjects, ob-
taining results in figure3.39. These matrices confirm the observations highlighted
at subject level: FCp, g presents a pattern very similar to those of FCy g nad
FChyigice. From all FC mean it can be observed strong correlation between so-
matomotor networks, whereas other important connectivity strengths in default
networks and in visual ones are more visible in FC matrix in which GIG-ICA was
performed. In general in the most of subjects these strengths are present, even if
slightly pronounced in FC of subjects 2, 4 and 12.

FC mean
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Figure 3.39: Mean FC matrices among subjects

Once all FC are available for each subject, the focus is to perform the statistical
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analysis on functional connectivity through t-tests. Five comparisons, listed in
paragraph 2.3.2, have been done and for each comparison between two different
type of matrices t-test is performed for each entries, so 351 t-tests. As results a
p-value matrix and a t-test matrix, which has been corrected for multiple com-

parison through FDR correction, are obtained.

Findings of comparison (1) are showed in figure 3.40: the first matrix is the
result of t-tests between the two groups F'Cgs,c and FCryg with FDR correc-
tion. The last matrix represents the p-value matrix. When in correlation matrix
a yellow node appears means that there is a significant statistically difference
between the two groups, instead blue nodes reflect a non significance. Observing
the result below, several entries of the first matrix show a significant statistically
difference, suggesting a difference between F'Cs, ¢ and FCr, g and consequently

tICA application seems to have changed some connectivities between rs-networks.

T-test FC FCrg FDR-corrected P-value

s+C -

5 10 15 20 25 5 10 15 20 25
network network

Figure 3.40: T-Tests on comparison between F'Csyc and FCr g that represents the compari-
son (D. Two images are reported: the first indicates the result of t-test between the two groups of
matrices with FDR correction, the latter instead is the p-value matrix

The comparison (2) has been performed because it is expected that if GIG-
ICA application has a different impact on data compared to the case in which it
isn’t applied, then the comparison between F'Cy; ¢ and F'Cg should not produce
any significances, in fact they should present the same pattern. Instead from
results in figure 3.41 it is noticed that several matrix entries, after FDR correction,
are statistically significant; as consequence these differences are due to GIG-ICA

method application in only one of the two groups of matrices.
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Figure 3.41: T-Tests on comparison between F'C;. ¢ and FCg that represents the comparison
(2. Two images are reported: the first indicates the result of t-test between the two groups of
matrices with FDR correction, the latter instead is the p-value matrix

The comparison (3) represents the t-tests applied between F'Cy/igic and FCrig
and it is showed in figure 3.42. From the results in figure no statistically sig-
nificance is present, therefore as consequence the two groups of matrices have

connectivity strengths values very similar.

T-test FC FCT+G FDR-corrected

M+G+C
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Figure 3.42: T-Tests on comparison between F'Cy;ic4¢c and FCr.yc that represents the com-
parison (3). Two images are reported: the first indicates the result of t-test between the two
groups of matrices with FDR correction, the latter instead is the p-value matrix

The comparison (4) which represents the difference FCyri¢ and FChurigic
produced no statistically significant, indicating therefore how the application of
censoring didn’t modify considerably connectivities between the 27 rs-networks
obtained with the same procedure for the two groups (cleaning-up of Melodic and
GIG-ICA application).

Also in the last comparison there is no remarkably statistically difference be-
tween F'Cyiq and FCr, g, consequently tICA procedure doesn’t seem to have

changed rs-networks connectivity.
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From t-test matrices it is resulted that reasonable comparisons are between

pairs of FC matrices both computed with or without GIG-ICA method. There-
fore the result of comparison (1) is not indicative of a possible variation due to
tICA in FC connectivity strengths. Moreover it was found, through the other
comparisons, that tICA didn’t modify rs-networks connections with respect to
what standard s-sICA or s-sICA+censoring obtain, in fact no statistical differ-
ences are showed in comparisons (3) and (5).
In light of this, the comparison performed previously between QC-RSFC of F'Cg
and that of FC7, ¢, to see the impact of tICA at motion level, is not reasonable be-
cause in itself F'C's and FCr, ¢ are not comparable. Hence now to verify in terms
of motion a possible difference between FCr, ¢ and what is given from the-state-
of-art, i.e. censoring, QC-RSFC has to be computed starting from FCyigic
and then the result compared to those previously obtained with F'Cr.g. The
two QC-RSFC matrices with the respective p-values are reported in figure 3.43.
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Figure 3.43: FC and p-values resulting from QC-RSFC measure. The two matrices on the left
represent the FC and p-value matrices obtained from application of QC-RSFC on FCu4g+c-
Instead on the right is showed those computed on F'Cr g
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QC-RSFC matrices are very similar, therefore at motion level tICA seems not
to have modified significantly the connectivity strengths between the subjects FC
and the mean vector of FD. Moreover after FDR correction no entries of matrix

remains, indicating that there isn’t any statistically significance.
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Discussion

In this work of thesis, an attempt has been made to implement a new method
introduced by Glasser and colleagues [3] for the cleaning-up of fmri data from
global noise. In this case their method was used to try to remove sources related
to subjects motion in rs-fmri data.

Hence at first a standard pre-processing for fmri data has been applied and in-
cludes slice timing, readout distortion correction, motion correction and coregis-
tration. Next a pipeline has been developed and it can be resumed in two phases
as described in figure 2.4: the first phase concerns a manual cleaning of rs-fmri
data, individually for each subject, through sICA with Melodic; the latter one, in-
stead, reflects the implementation of Glasser procedure which consists of a group
approach with group sICA followed by the use of tICA.

Regarding the first part, Melodic has been used to perform single subject sSICA,
in which the number of estimated components was fixed to 100 after a visual
inspection on results. Once 100 spatial maps and relative timecourses were ob-
tained, a components classification has been made to identify noise components
and then remove them from each subject. This classification was made manually
because the low number of available subjects didn’t allow to use classifiers as FIX
which needs to be trained with part of available data.

For the second part of pipeline, group sICA was implemented through GIFT,

after several comparisons between this toolbox and Melodic. GIFT allowed to
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obtain spatial maps with large and well defined clusters, moreover it automatically
reconstructed maps and timeseries of components to single subject level thanks
to the back-reconstruction. With GIFT, ICASSO was used to run several times
the algorithm for ICA for researching a better local minima. In fact the basic
principle of most ICA algorithms is to start in some initial point, and then make
steps in a direction that decreases the cost function, until one finds a point in
which the cost function is locally minimized. Depending on the point where the
search was started (the “initial condition”), the algorithm will find different local
minima.

As before the number of components has been fixed. To do that, the solution
provides to use Melodic to re-estimate from each single subject the number of
components of pre-processed cleaned data, then from resulting 13 values a mean
values has been computed obtaining 63. Hence GIFT has been tested several
times, fixing at first the number of components to 63 and increasing it until the
more appropriate choice for available data has been 80 components.

Therefore 80 group spatial maps and timecourses were obtained from GIFT and,
through back-reconstruction already implemented in the toolbox, also results at

individual level were produced.

After group sICA, tICA was performed giving as input to FastICA algorithm
the timeseries previously obtained from back-reconstruction. Even in this case
the choice was to fix the number of estimated components: ICASSO was taken
into account, as showed in figure 3.8, and it selected as more appropriate number
53. So tICA was run with the number identified from ICASSO, but it has been
noticed that several components’ maps seemed to include more networks at once,
therefore the number has been increased up to 60. As results tICA produced 60

group and individual spatial maps and timecourses.

At this point to identify and remove possible subjects motion-related compo-
nents, three indexes proposed by Glasser were used and named as diff4,,,,pv ars:
Variability 4,,, and diff4,,,,: the first one is based on DVARS measure computation
as motion index, instead the others two attempt to highlight the variability of
components among subjects.

DVARS traces are not comparable among subjects and this has been noticed
thanks to the fact that subject 13 presented a DVARS with a range completely

different from the others. Therefore to allow comparisons between these traces
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the proposed solution was to demean each of them and normalize for the mean
value of images intensity of the relative subject.

One of the critic choice in this phase of work was the identification of a threshold
to define the so called DVARS peaks/dips which should reflect possible movement
of subjects. At first the threshold proposed by Glasser’s paper was applied, but
it didn’t seem appropriate for this dataset: Glasser uses a threshold computed at
individual level for each subject, but from obtained results this cannot be a valid
method because for subjects which moved less during the acquisition the result
was a too low threshold and therefore highlighted erroneously lots of peaks as
motion.

The solution was to try and apply other kind of thresholds, computed at group
level, which have been considered more appropriate and are 10th percentile and
thresholds based on standard deviation of concatenated DVARS. T'hr.,, equals to
1.64 o has been chosen after an inspection of spikes on different subjects.

Once spikes have been selected, plot of diff s,,,,pv ars has been computed and then
also the other two metrics, resulting figures 3.14 3.15. From results it is seen that
the second index isn’t significant in available dataset, in particular because of the
reduced number of subjects this index comes down to describe what the third
index represents. For this reason Variability ,,,, has been excluded as metric for

the successive analysis.

Plots obtained from diff 5,,,pyags and diffs,,, present a threshold to discrim-
inate what is signal or noise and the idea is that all components above both
thresholds will be classified as motion-related noise sources and consequently will
be removed from data. So the choice of these thresholds is crucial. The way
in which illustrated thresholds should be computed was not specified by Glasser.
So, based on the fact that these thresholds have to well separate signal and noise,
they have been calculated as the average between the mean value of three sig-
nal sources and mean of three noise sources: these six components have been
manually selected between all the 60 group spatial maps, trying to identify three
components that clearly reflected networks and three that clearly represented only
noise presence. The selection of 6 components is justified from some considera-
tions. First of all it not easy identify many components that distinctly belong to
one of the two groups, consequently choosing too much components for threshold

computation would bring to a more time consuming analysis without the security
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of a correct and definitely result; on the other hand instead, choosing too few
components doesn’t allow to obtain a credible threshold. This choice of threshold
calculation seemed appropriate even if a strong limit is that a different choice of
the 6 components could produce threshold values quite different. Once selected

the thresholds, 14 components have been selected as noise and then removed.

Analysing with more detail indices used for identification of motion-related
components it has been discovered a remarkable dependence on subject 5: this
subject moved a lot during the acquisition and all performed analysis turned out
to rely almost entirely on its components.

To solve the problem, subject 5 was removed from analysis, so tICA has been
re-run without it and again the indexes have been computed.

Regarding the identification of DVARS spikes, it was noticed that the usage of
thresholds based on standard deviation of concatenated DVARS was not so ade-
quate because the distribution of concatenated traces isn’t gaussian, but presents
a long right tail. The solution adopted in this work is to characterize a gaussian
distribution based on reference subjects, that is those optimal subjects which
moved not so much. The new distribution will have zero mean and a certain
standard deviation > and based on this > a new threshold has been computed,
in particular it was set to 2% because it reflects the probability of about 95% for
a sample to fall inside the interval produced from 23.

The computed indices diffs,,,pv ars and diff s, produced as results figures 3.26
and 3.27. This time it has been tried to calculate plots’ thresholds in different
ways, but since they removed few components, and consequently a very low ex-
plained variance, it was decided to keep valid the initial threshold method, T'hq,

which seems more robust.

As result 8 components were removed from data and, observing their spatial
maps, they effectively seem to reflect only a noise source.
After that, attempts have been made to find out some metrics for evaluation of
entire procedure and hence to verify that new data are effectively characterized
by no motion.
Firstly DVARS traces have been computed for the different steps of procedure: in
this way it was possible to see visually if spikes/dips of DVARS are disappeared
or their values are decreased. From results it can be noticed that after the appli-

cation of single subject sSICA with Melodic there is a relevant variation of DVARS
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which decrease their spikes, so this technique is sensitive enough to motion effect;
the second step instead, i.e application of tICA, doesn’t seems to be particular
effective in the reduction of movement as spikes didn’t decreased so much and
in some cases actually they got worse, underlining ever more peaks related to

motion.

Another index used for procedure evaluation is QC-RSFC, is a more robust
metric based on the computation of FC matrices. All FC of this work have been
obtained considering exclusively the 27 rs-networks identified at group level.
The correlation between the mean vector of FD and first the group of F'C's ma-
trices, then with F'Cr, ¢ produced two correlation matrices and p-value matrices.
Results showed some variations of connectivities between the two comparisons,
but non relatively significant due to high value of p-value matrices. So this result
can’t bring to any conclusion about the effectiveness of tICA on motion compo-

nents removal.

In order to verify possible differences between FC computed before and after
tICA, a statistical analysis has been performed through t-tests between the group
of matrices F'Cs ¢ and FCrig. The two kind of matrix were obtained with dif-
ferent procedures as seen in figure 2.10, in particular the latter one is obtained
from data cleaned after tICA in which GIG-ICA method was applied. The prin-
cipal concern was that GIG-ICA could modify results compared to the case in
which GIG-ICA didn’t be applied because it uses different informations coming
from the entire group.

For this reason the statistical analysis is enlarged to five groups of FC matri-
ces as illustrate in figure 2.10. In particular two of them have been computed
starting from cleaned data due to single subject sSICA with Melodic (F'Cy/4¢ and
FCyigic), other two have been get after group sICA with GIFT (FCgs and
FCsc) and then FCr ¢ produced from data cleaned after tICA.

Five comparisons have been obtained from these matrices groups and for each of
comparison t-tests have been calculated as many as the entries of a FC matrix.
For each comparison 2 plots are illustrated: a t-test matrix corrected for FDR
and a p-value matrix.

From results it can be deduced that comparison (1) brought significant statisti-
cally differences between F'Cs.c and FCr g, consequently tICA seems to have

had some effects on available signal.
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Even in comparison (2) there are significant statistically differences: the two
groups of matrices should instead produce correlations between rs-networks very
similar, because F'C); s reflects network correlations computed starting from
data after cleaning of Melodic and after GIG-ICA method, while F'Cs shows the
correlations resulting after group sICA. So the only difference between these two
groups is the application of GIG-ICA in only one of the FC groups.

Therefore GIG-ICA method effectively modifies results because it is based on
maps and timeseries reconstruction starting from the prior of group maps, and
so this affects also functional connectivity. The finding is that comparison (@) is
inconclusive since doesn’t take into account two FC groups with both GIG-ICA
analysis.

Therefore to verify if tICA actually modifies connectivities between rs-network,
comparison (3) is the one that has to be observed because both the FC groups in
consideration use GIG-ICA and so the two groups can be reasonably compared.
Results of (3) shows that there aren’t any statistically significant differences be-
tween F'Chigic nad FCryg, this means that at connectivity level between rs-
networks the application of tICA on available dataset hasn’t modified networks.
Comparisons (@) regards two FC groups (FCyig and FCyrigic) in which the
only difference is the application of censoring in one of them: from the results
there is no statistical difference detected in rs-networks correlations.
Comparisons (5) didn’t show once again any statistical differences between before
and after tICA application. These results were evident also only visually from
comparison of the 5 FC in several subjects as showed in figure 3.37 and 3.38 for
subject 6 and 10: FC obtained after tICA presents a patter very similar to those
of FCyi¢ and FChyigic.

Hence from evaluation indexes used in this work, it seems that tICA hasn’t
had any impact on fmri signal compared to the usage of the first step of manual
cleaning made through Melodic, and so it hasn’t be able to remove remaining noise
sources related to motion. This finding is in contrast with what Glasser obtained
with his data, in particular from the results he states that his procedure, in spite
of some limits that could be resolve in the future, managed to separate and remove
noise sources compared to neural signal. This discrepancy between thesis results
and Glasser’s ones can be due to several factors. First of all available dataset

is characterized by a greatly reduced number of subjects and, as Glasser said in
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his paper, this can be a heavy influence: his method is designed to work with
high spatial and temporal resolution fMRI data at the group level with a large
number of subjects [3]. Moreover it is essential using tICA from data with a high
number of timepoints because it couldn’t do perform well, in fact this method is
particularly applicable to large datasets.

Another important consideration is that Glasser and colleagues dispose of much
more information about subjects, for example they benefit from the usage of
respiratory belt and a heart rate monitor to acquire physiological data and hence
perform a more detailed analysis on noise sources. So they could take advantage
of more indexes compared to this work of thesis, as RVT (Respiration Volume per
Time) or monitoring of subjects sleep, that were used to help identifying noise
components, not only those related to motion.

One crucial difference with Glasser’s article is that all the choices that leaded
us to identify and remove 8 motion-related tICA components, such as the way
to obtain thresholds used for computation of indexes diffs,,,pvars and diffa,.,,
are mostly likely different compared to reference paper because was not provide
a detail explanation of the several steps. The calculation of these thresholds
has been certainty critic because a different choice of the 6 components from
which thresholds are computed cause a variation of the thresholds’ values and
so a possible difference in the number of components to be removed. Despite
all differences with reference article, the aim of this thesis is quite different from
Glasser’s one because the focus here is to remove only motion-related sources.

Unfortunately this aim doesn’t seem to be reached for available dataset.

4.1 Relation with the state-of-the-art

About Glasser’s article, a debate has been emerged between Glasser and another
important researcher, Jonathan D. Power, which in recent months published an
article discussing Glasser’s results [44]. One of the topic of discussion is that the
entire classification has been performed manually and, because there are no neural
records to anchor decisions to classify as signal or noise a certain component,
it is fundamental that this identification is done appropriately. In particular
his critic focused on respiratory signals that are considered from both articles

those prevalent in fMRI data. Power states that Glasser exploited physiological
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data obtained through a respiratory belt and a heart rate monitor as measures
useful for final identification of noise components, but these data haven’t been
inspected and any data quality has been assured: according to Power instead it is
really important assessing personally physiological data because in these cardiac
and respiratory traces is possible to find peaks that allow to understand what is
happening to patients [45].

Measures of respiratory and cardiac cycles are not available for dataset of this

work, so this problem does not concern.

Through his article, Power tried to verify if the hand-classification of tICA com-
ponents as noise or signal has been correct. The fact that all the identification
is done manually is a strong limit, observed also in this thesis because despite
component identification is based on thresholds of plot diff4,,,pyars and diff,,,,,
these thresholds have been necessary computed through visual inspection of some
components, and hence part of classification still remains manual.

Analysing in detail Glasser data and results, Power observed that sources separa-
tion is “flawed” [44] because sometimes global signals have been assigned to both
noise and signal components. This consideration brought him to the conclusion
that the observed problem is due to an incomplete removal of noise or to a inap-
propriate identification of some neural signals.

In this thesis work these investigations on signals cannot be performed but from
indexes used for procedure evaluation it has been established that tICA didn’t
significantly modified signals obtained after single subject cleaning and so didn’t

manage to completely remove noise sources, in this case, related to motion.

The possible erroneous separation between the two kind of sources has been
detected by Power also observing some components assigned as neural signals.
In particular, taking into account of a relation highlighted in some studies [46]
[47] between regressors accounting for respiratory signals and a sensorimotor dis-
tribution, it is possible that some components identified as signals, which show
a sensorimotor distribution, have proprieties of respiratory signals and so they
are erroneously interpreted as neural sources. Since Power supports that a link
between respiratory signals and head motion exists [48] [45], the checking of some
components classified as sensorimotor signals to have respiratory signals propriety
has been done evaluating how much these components’ amplitude is related to

subjects’ movement, hence observing if their value in diff »,,,,py ags is high. Power
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found out some signal components having this characteristic.

Regarding this last aspect, removed components from this thesis work are those
above both thresholds of diff 4,,,pv ars and diff 4,,, plots. Observing the first plot,
it has been noticed that components with higher diffy,,,,pv ars values have been
already identified as noise, so in this work the problem argued by Power is not
present.

Starting from received criticisms, Glasser published a new article [49] in which
he agreed for some aspects with Power’s analysis, for example in the fact that the
classification of components presented in his paper might be reviewed in order to
find out one more effective and toward an automation of the tICA approach to
make it widely accessible.

However regarding Power most important critic, i.e. the fact that tICA didn’t
completely separate signla and noise sources, Glasser emphasised that in most of
the cases the global noise has been entirely removed from sSICA+tICA framework
minimizing the removal of neural signal. Glasser showed that, in case of task, the
events highlighted by Power of a simultaneous identification of noise and signal
in different parts of the brain, actually occur in correspondence of neural activity
induced by the task in task-positive brain areas; hence the fact that all portions
of epochs, which temporally match with respiratory noise, are artefacts may lead
one astray.

Glasser disagrees also with the statement relative to a link between respiration
and motion, saying that these two kind of artefacts not necessary are linked and
can be strongly dissociated, showing that through the inspection of some subjects’
data at the disposal.

All these consideration will be remain at the heart of future debates that could
leads to a deeper, experimental and theoretical basis for fMRI data denoising, in
order to better understand how to exploit tICA. The discussion between Power
and Glasser focused mostly on problem of sources related to respiration, therefore
about that any considerations cannot be brought from this thesis, but starting
from tICA procedure applied to available dataset some limits have been high-
lighted previously explained.

Despite the procedure didn’t produce expected results with the available dataset,
tICA still remains a promising approach for removing global noise from fMRI

data and this concept has been underlined from both researchers.
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Conclusions

The aim of thesis’s work is to verify if the new procedure developed by Glasser
[3] can be usefulness to remove motion-related noise sources for rs-fMRI data.
In fact these sources have proved to be very critical in resting state as they in-
duce changes in the signal intensity, causing presence of peaks or drop of the
signal. Glasser’s paper is intended to clean data of physiological, motion and MR
physics related artefacts through a procedure which uses a combination of spatial
and temporal ICA. In this work the focus is on identification and removal of noise
sources related only to motion starting from rs-fMRI data of 13 glioma patients.
During the implementation of this method, several problems have been detected.
First of all, as Glasser highlighted in his article, the entire procedure relies on
manual classification of ICA independent components at group level. In fact
in this work the identification of noise components occurred through the use of
some indexes, diffs,,,pvars and diff 4,,,, in which a threshold has been necessary
for components classification. These thresholds are computed through visual in-
spection of 6 components and therefore the setting of the appropriate threshold
is crucial: a different choice of these components and hence a variation of the
threshold could lead to different results.

Even the computation of the index diff4,,,pv 4rs has been elaborate, as it is based
on the identification of spikes/dips which characterize subject DVARS traces. The

method proposed by Glasser for the selection of peaks hasn’t been effective in
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available dataset; therefore several kind of thresholds have been explored, in or-
der to find out the more appropriate. So even in this case, a different choice of the
DVARS thresholds causes a different number of peaks which leads to a difference
i diff gppv ars values.

An important limit highlighted with this work is that the entire procedure de-
pends heavily on the presence of outliers. This has been proved as in available
dataset there is the subject 5 which moved a lot compared to the others: observ-
ing the results, it has been noticed that all the analysis and the choices made to
get motion components rely almost exclusively to this particular subject. In order
to perform properly the procedure and obtain credible outcomes, the proposed
solution was to exclude subject 5 from tICA analysis. Since in this thesis the
method has been performed to remove motion-related noise, obviously Glasser
method should be improved in the future from this point of view, in order to
include subjects considered outliers.

In general a crucial choice in ICA analysis is the setting of estimated components
number. In this case this problem has been revealed for both sICA and tICA. Re-
garding tICA, ICASSO toolbox was exploited, as proposed by Glasser, to obtain
the more appropriate dimensionality, but for this dataset it was not sufficient to
ensure the optimal number of components: it produced a sub-clustering of the

information, so further investigations have necessarily been requested.

In the attempt to assess the effectiveness of entire procedure, two different ap-
proaches have been employed: DVARS and QC-RSFC.
From comparisons between the three DVARS traces (pre s-sICA, post s-sICA,
post tICA) it is emerged that standard application of group sICA affects motion,
in particular spikes of DVARS traces are considerably reduced for both subjects
who moved a lot and subjects who moved less. In fact the mean value of DVARS
lowered about of 11%-27%. Moreover for some subjects that moved a lot, as
subject 5 and 11, the radical reduction of peaks led to an important decrease of
the standard deviation of DVARS, respectively of 61% and 82%. The additive
tICA step instead produced a minimal drop of peaks: mean values and standard
deviations of DVARS traces remained more o less approximatively unchanged,
only subject 1 has obtained a significant improvement, with a mean value low-
ered of 4.3%. This brought to the conclusion that possible tICA effects cannot

be observable at motion traces level.
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For this reason tICA has also been evaluated in terms of functional connectivity
FC. QC-RSFC computed pre and post tICA have highlighted some differences
that nevertheless are not significant as proved from high value assumed by p-value
matrices. As consequence of that, tICA didn’t have any impact at motion level.
In order to quantify the influence of tICA, the statistical analysis has been de-
veloped through t-tests between pairs of FC matrices identified for each subject.
However no significant statistically difference has been revealed from the com-
parison between FC obtained from tICA (FCr.i¢) and those obtained with the
standard approach (F'Cyrigic), in which single subject sSICA and censoring has
been performed. Therefore also at functional connectivity level tICA has not

resulted in modifying connectivity strengths of rs-network.

In summary from specified methods for evaluation of the entire procedure, it is
established that tICA hasn’t had any impact on fmri signal and it hasn’t be able
to remove noise sources related to motion. Moreover it doesn’t seem to produce
a real improvement compared to results generated by the state-of-the-art in this
field.

This result is in contrast with what Glasser and colleagues exposed, but it is
important to bear in mind that available dataset is characterized from a greatly
reduced number of subjects compared to Glasser’s one; additionally they take
into advantage of data coming from fmri at both resting and task level while in
this work dataset used for analysis comes from resting state fmri. Moreover they
dispose of much more information about subjects, for example they benefit from
the usage of respiratory belt and a heart rate monitor to acquire physiological

data and hence perform a more detailed analysis on noise sources.

Glasser’s method turned out to be very tricky to perform and, because of the
complexity of its formalization, has token a long time to be completed also due to
limits already described. Despite that, from results and the development of the
procedure, some important considerations have been revealed. A relevant result
concerns about GIG-ICA method, which exploits group spatial maps as prior.
From t-tests performed on pairs of FC matrices it has been found out that GIG-
ICA modifies the signal and has a strong impact on results. Therefore in order to
perform reasonable comparisons between FC computed after tICA (FCr,g) and

another FC matrix, it is appropriate that the two terms of comparison are both
obtained using GIG-ICA method.
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Another important consideration refers to DVARS measure. What it has been
observed is that in order to compare DVARS of different subjects, not only the
mean value of each dvars has to be removed, but also a certain normalization
of DVARS traces has to be performed. This finding has been noticed because
one of the available subject data presented a trace with a completely different
range compared to the other subjects due probably to the update of the scanner
of magnetic resonance.

In order to solve the problem, the proposed solution has been to normalize each
DVARS for the mean intensity of the images of the relative subject.

The small number of subjects could have had a great impact on the results ob-
tained: probably with more patients’ data some problems highlighted previously
could be solved, for example the method for choosing the thresholds that char-
acterized DVARS would have been more robust, or the results from QC-RSFC
could reveal a statistically significant difference.

Therefore to confirm the obtained results, future development should be based
on the use of a larger dataset and on availability of physiological signals; in this

way a more reliable evaluation will be reached.
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FastICA Algorithm

FastICA is an algorithm introduced by Hyvdrinen in 1999 [31] and used in the com-
ponent analysis for the separation of source signals. It allows to compute, one by
one, all independent non-gaussian components that created observed dataset. Fas-
tICA is based on a fixed-point iteration scheme to maximize the non-gaussianity
of observed data through the usage of a non-gaussianity measure as the approxi-

mation of negentropy:

J(y) o< [E{G(y)} — E{G()}]* (A1)

where G is a non-quadratic function, y is a non-Gaussian random variable stan-
dardized (zero mean and unit variance), v is a standardized Gaussian variable
and J(y) is the negentropy which by definition represents the variation of en-
tropy so that it is equal to zero if it is applied to a gaussian variable, otherwise
non-negative. Because J goes to zero for gaussian variables, the focus is to maxi-
mize it.

FastICA learning rule finds a direction, i.e. a unit vector w such that the pro-
jection w?x maximizes the non-gaussianity measured by the approximation of
negentropy J(w?z). So after data are pre-whitened, the following steps are per-
formed [30]:

1. Choose an initial (e.g. random) weight vector w;, which is the vector for an
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individual i-th component.

2. Define w;" = E{xg(w!z)} — E{¢'(w!z)}w;, where g is the derivative of G.

3. Update w; = —+H

[[w

4. If not converged, repeat the procedure starting from second step. The word
convergence means that the previous and the actual values of w; point in

the same direction, i.e. their dot-product is (almost) equal to 1.

The variable w; represents a column-vector of the un-mixing matrix W, w;“ is a
temporary variable used to calculate w;, ¢’ is the derivative of g and E is the
expected value (mean).

The described procedure allows to estimate one independent component, so to
estimate n of them, the algorithm has to be applied n times using the vectors
Wi, W, ..., w,. To avoid that different w; vectors converge to the same maximum
of non-gaussianity, each new w; that is computed must be made orthogonal to

the previous w; vectors through the following computation:

i—1
+ _ E T
w;, = w; — W; Wiw;
7j=1

The new w; is obtained as:
w

_ ]

w; =
Ll

In this way the new estimated component will be different from those already
calculated.
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Infomax Algorithm

Infomax is another algorithm proposed by Amari et al. [50], with which the
estimate of independent components is done by focusing on minimizing the mutual
information.

This measure can be described, for a pair of random variables, starting from

entropy as:

I
o
s
+
T
=

|
=
=
=

where H(X) H(Y) are the entropy respectively of X and Y, H(X|Y) is the
conditional entropy (the entropy of X conditional on Y taking a certain value y)
and H(X,Y) is the joint entropy of X and Y. Observing the previous equation, it is
noticed that this index is equal to zero for independent variable and in general not
negative, therefore maximizing the non-gaussianity of the source signals means
to minimize the mutual information.

To compute the un-mixing matrix W and estimate the source signals, Amari et
al. used mutual information equation and, after some manipulations, created and

proposed Infomax algorithm which is composed of the following steps:
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1. Initialize W(0) (e.g. random)
2. W(t+1)=W(t)+n(t) (I —fF(Y)YT) W(t)
3. If not converged, repeat the process starting from the second step

where ¢ represents a given approximation step,n(t) a general function that specifies
the size of the steps for the un-mixing matrix updates (usually an exponential
function or a constant), f(Y') a non-linear function usually chosen according to
the type of distribution (super or sub-Gaussian), I the identity matrix and 7" the
transpose operator.
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ICASSO

An important problem of most ICA algorithms used for components estimation is
that they are stochastic: their results may be somewhat different in the different
runs of the algorithm. In fact the basic principle of ICA algorithms is to start
in some initial point and find out a point in which the cost function is locally
minimized. Depending on the initial point, the algorithm will find different local
minima. Thus for a chosen ICA algorithm, the outputs of a single run should
be interpreted with some reserve. Therefore it is reasonable to run the estima-
tion algorithm many times, using different initial points, and assessing which of
the components are found in almost every run: this has been implemented in
ICASSO.

It is a software package developed by Himberg et Al. [37] with the aim to inves-
tigate the ICA reliability analysis. It is based on estimating a large number of
candidate independent components by running a chosen ICA algorithm (for ex-
ample FastICA) many times, and visualizing their clustering in the signal space.
Each estimated independent component is one point in the signal space. If an
independent component is reliable, ideally every run of the algorithm should pro-
duce one point in the signal space that is very close to the real component. So,
reliable independent components correspond to clusters that are small and well
separated from the rest of the estimates, unreliable components correspond to
points which do not belong to any cluster. ICASSO consists of the following
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steps:

. Parameters for the ICA estimation algorithm are selected. For example in

case of FastICA algorithm, the orthogonalization approach (symmetric or

deflationary) and the non-linearity are chosen.

ICA algorithm is run a chosen number of times. Each time, the data is
bootstrapped and/or the initial point of the optimization is changed. In
the first case the initial condition for the run of the algorithm is kept the
same in every run, but the data is re-sampled by bootstrapping every time.
In the latter one the algorithm is run M times for the same data, so that

for each run the algorithm starts from a new random initial condition.

The estimated components are clustered according to their mutual similari-
ties. As default the agglomerative clustering with average-linkage criterion

is selected.

The clustering is visualized as a 2-D plot. The user investigates how the
estimates are concentrated in the clusters. The clustering of the estimated
components is expected to yield information on the reliability of estimation.
A compact, tight cluster emerges when a similar estimate is repeatedly
obtained despite the randomization. The user can examine the quality of

the clusters and rank them accordingly.

The user can retrieve the estimates belonging to certain clusters for further

analysis and visualization.

Regarding the third step, the agglomeration method produces as output the tree-

like hierarchy or dendrogram, which is intuitively appealing in the sense that all

clusters implied by lower levels of the tree are always subsets of clusters at the

higher levels.

To direct the attention of the user to those clusters that seem to be the most

compact and interesting, a cluster quality index [Iq is created during this step: it

reflects the compactness and isolation of a cluster.

It is computed as the difference between the average intra-cluster similarities and
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average inter-cluster similarities, and its expression is the following:

Z gij — |C’ ||C’ » Z Z Tij0j (C.1)

1,j€ECm 1€Cm jeC_pm

1,(Cy)

mP

where C' represents the indices set of all the estimated components, C,, and C'_,,
are respectively the set of indices belonging and not belonging to the m-th cluster,

|Cyn| is size of the m-th cluster.
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