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Abstract

In this thesis we propose two methods for optic disc (OD) detection and
segmentation in scanning laser ophthalmoscope (SLO) images of the human
retina.
The OD is one of the main landmark for locating other components in the
retina, for vessel tracking and retinal zones identification. Moreover, it is well-
known that the OD appearance is linked to glaucoma. Hence, an accurate and
reliable detection is needed.
Many algorithms have been proposed for OD detection in fundus camera im-
ages but hardly any for SLO images. In these images, the OD appears as
a dark elliptical shape spot with high contrast between the inner and outer
region and poorer contrast with the vessels. For this reason the techniques
working with fundus camera images are not suitable for SLO images.
Both methods locate a ROI containing the OD first and then segment the
OD. The first method segments the OD via morphological operations. The
second method extracts hand-crafted features within the ROI and selects the
OD contour points by an optimization in the space of the possible shapes of a
deformable contour.
We tested the algorithms with 1536x1536 images from a Heildelberg SPEC-
TRALIS SLO camera. The second algorithm performs better than the first
one; it achieves an average accuracy of 90% on a pilot dataset of 50 images
annotated by four expert ophthalmologists.
We compared the resulting contours with those obtained by a validated OD al-
gorithm on registered fundus camera images; hence, in our work, we proposed
a semi-automatic approach to register these two kind of images, too.
This work was supported by NHS Lothian R&D, and Edinburgh Imaging and
the Edinburgh Clinical Research Facility at the University of Edinburgh.
The project has been developed during the ERASMUS Mobility Studentships
program at the CVIP department of Dundee University.

Keywords: retinal image analysis, optic disc, validation, image registration.
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Chapter 1

Introduction

1.1 About this chapter

Nowadays, in ophthalmology, computer-assisted solutions are employed to help
clinicians in diagnosis, screening, as well as in assessing a new treatment. Our
contribute is the development of a software for the automatic localization of
one of the main landmark in the human retina, the optic disc (OD), in a
specific kind of image. In this Chapter we are going to investigate why there
is the need of automatic procedures in the study of the human retina and, in
particular, for the detection of the OD. We will start from a simple anatomy
of the eye, focusing on the retina, and then we will discuss the retinal imaging
technologies used in this study.

1.2 Eye structure

The eye is a organ that allows to receive light stimuli from the outside world,
that will be converted into visual information by the visual apparatus.

Figure 1.1: Section of human eye.1

1https://www.brainhq.com/brain-resources/image-gallery/vision-images
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10 CHAPTER 1. INTRODUCTION

Looking into someone’s eyes several structures can be recognised2, Figure
1.1. The pupil, a black-looking aperture, allows light to enter the eye; as
the size of the pupil changes the more or less light enters. The pupil’s size
is controlled by a coloured circular muscle surrounding the pupil itself, the
iris. It is responsible of the eye’s colour. Both pupil and iris are covered by
a transparent external lens, the cornea. This lens enables, together with the
crystalline lens, the production of a sharp image. The white part of the eye
is the sclera. It forms the supporting wall of the eyeball and is continuous
with the cornea.
Observing a cross-sectional view of the eyes it is possible to distinguish three
layers:

1. the external layer composed by the sclera and cornea;

2. the intermediate layer in which there is the iris;

3. the internal layer, that is the sensory part of the eye, the retina.

In this work we will mainly focus on the last layer.

1.3 The retina

The retina is the site of transformation of light energy into a neural signal.
It is a neural layer of approximately 0.5 mm thickness locating in the back of
the eye, extending from the circular edge of the optic disc to the ora serrata
[1].
The main structures identifiable in the retina, Figure 1.2, are the fovea and
the optic disc. The fovea is a shallow depression with a horizontal diameter of
approximately 1.5 mm . It has the highest concentration of cones in the retina
and it is specialized for discrimination of detail and color vision. Within the
fovea is a capillary-free zone 0.4 to 0.5 mm in diameter. The whole foveal area
is considered the macula of human eye, recognizable as yellow pigmentation
around the fovea. While the optic disc, or optic nerve head, is the site where
ganglion cell axons accumulate and exit the eye. It is slightly elongated verti-
cally with a horizontal and vertical diameter of 1.7 and 1.9 mm, respectively.
The number of nerve fibers appears to be positively correlated with the size
of the optic nerve head; larger discs have relatively more fibers than smaller
discs. Smaller discs may demonstrate optic nerve head crowding. Fiber num-
ber decreases with age. It is paler than the surrounding retina because there
is no retinal pigment epithelium (RPE), the outermost retinal layer.
Since the disc does not contain photoreceptor cells, light incident on the disc
does not elicit a response; thus it represents the physiologic blind spot. We
can recognize a depression in the surface of the disc, named the physiologic cup.

2https://webvision.med.utah.edu/book/part-i-foundations/
simple-anatomy-of-the-retina/

https://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/
https://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/
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Figure 1.2: The retina

The retina has a complex and articulated blood vessel network that
transports the oxigen. There are two sources of blood supply to the retina:
the central retina artery and the choroidal blood vessels. The choroid receives
the greatest blood flow (65-85%) and is vital for the maintainance of the outer
retina, while the remaining 20-30% flows to the retina through the central
retinal artery from the optic nerve head to nourish the inner retinal layers.

1.4 Why Retinal Image Analysis?

We can refer to Retinal image analysis (RIA) as the research field aimed at
develop computer-aid methods for the study of the human retina.
The retina is the unique accessible part of the central nervous system (CNS)
in vivo, so it can be possible studying systemic and neurological diseases.
It is thought that in some chronic disease changes in the retina can appear
years before that other signs become evident. For this reason studying the
retina could provide an useful mean to identify earlier a disease, prevent and
assessing the efficacy of new treatments [2].
Among the diseases that can be studied via eye imaging and image analysis
there are diabetes mellitus, hypertension, cardiovascular disease, etc.
Diabetes mellitus can have serious complication, such as diabetic retinopathy
(DR). The retina should receive a constant supply of blood through a net-
work of tiny blood vessels, over time, a persistently high blood sugar level can
damage these blood vessels. If left undiagnosed and untreated it can lead to
blindness [3]. Cardiovascular disease manifests itself in the retina in a number
of ways. Hypertension and atherosclerosis, for example, cause changes in the
ratio between the diameter of retinal the arteries and veins.
The retina shares with brain embriological origins, blood supply and nerve
tissue so it is a site for biomarkers for microvascolature health and neurode-
generative damage. Moreover, retina is easier to image than the brain and
with a far superior resolution [4]. Measuring geometric features of the vascular
pattern visible in retinal imaging, such as vessels width, tortuosity, network
branching, is a proxy for microvasculature health. For example, Alzheimer’s
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disease (AD) etiology includes cerebral small vessel disease. So the retina could
be considered as a surrogate marker for microvascular pathology in AD.
For all these reasons the main purposes of RIA is detect retinal lesions, ves-
sels and main landmarks. Computer-assisted methods measure variations or
abnormalities in the retina that might be imperceptible or missed by a human
grader, in an objective and repeatable way helping clinicians in risk-stratifying,
diagnosis and assess therapies.
In the following two major techniques to acquire images of the fundus will be
discussed.

1.5 Retinal imaging technologies

Retinal imaging takes a 2D digital picture of the 3D retinal surface. It is a
patient-friendly tool that offers a non-invasive and inexpensive way to access
the health of the CNS, a rich part of the microvasculature and a source of
biomarkers for a lot of diseases.
The person being imaged is asked to sit and place his or her chin and forehead
on a support to keep his or her head steady. Before proceeding, the instrument
operator checks that the person is comfortable, adjusting the height of the
instrument table if necessary. To the patient is asked to open the eyes as wide
as possible and stare straight ahead at an object while a laser scans the eyes.
In the following two common technologies, Figure 1.3, employed in our study,
were described.

Figure 1.3: (a) Fundus camera image acquired with a Canon non-mydriatic camera
and (b) scanning laser ophthalmoscope image acquired with a Heildelberg SPEC-
TRALIS camera. The two images refer to the same retina, showing the difference
in area viewable with the two devices.
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1.5.1 Fundus camera imaging

A fundus camera is a specialized low power microscope with an attached cam-
era3. Tipically field of view (FOV) graduations are between 20◦ and 50◦. A
larger FOV up to 60◦ can be achieved with special mydriatic camera for work
with pupil dilation. Peripheral areas of the retina which lie outside the central
FOV can be registered when the patient looks in different directions, changing
the line of sight. With special Auto Mosaic (or Montage) software, the indi-
vidual images can then be stitched together forming a panoramic image which
can span an angular range of up to 110◦.
The main advantages of this technique are the lower cost compared to other
technologies, easy interpretation, full color (helping to distinguish between
cupping and pallor), better detection of disc, hemorages, peripapillary atro-
phy etc. Disadvantages are the need of high light intensity for illumination of
the retina and the fact that dilation of pupils often needed.
Fundus camera imaging is used in DR screening where it has been well vali-
dated as a screening Tool [5]. It is also used to monitoring changes in some
retinal structures, for example changes in the optic nerve in conditions such
as glaucoma.
The optic disc, on which rely this work, in this kind of images appears as a
bright part with the highest radial (circular) symmetry, with high contrast
between OD and vessels.

1.5.2 Scanning laser ophthalmoscope

It is a confocal imaging technique, that is, the retina is scanned point by point
in a raster fashion by a focused laser beam and the reflected light is captured
through a small aperture, the confocal pinhole.4

Unlike the fundus camera, the SLO are not capable of capturing full color im-
ages of the retina. However, the monochromatic laser illumination combined
with a confocal optical system produce high-contrast finely detailed images.
Obtained images are typically rectangular with angle of view variable by in-
strument from 15–45◦, comparable to fundus cameras, up to 200◦, the so called
ultra-widefield. The Heidelberg SPECTRALIS camera uses an infrared (IR)
laser beam and confocal microscope arrangement to scan across the surface
of the retina and form a fundus picture [4]. This particular SLO image at a
slightly higher resolution than the fundus camera but captures a smaller area.
The SLO can be used to perform fluorescein angiography allowing for the
measurement of capillary flow velocity, important in assessing the health of
the microcirculation.
The cost and complexity of devices often see the SLO confined to research
and ophthalmology clinics [2]. However, there are some advantages in the use
of SLO over traditional fundus photography include improved image quality,
patient comfort, video capability, and effective imaging of patients who do not

3https://www.opsweb.org/page/fundusphotography
4https://www.opsweb.org/page/SLO

https://www.opsweb.org/page/fundusphotography
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dilate well, such as diabetics. The main applications are detecting biomarkers
of diabetic retinopathy, as well as age-related macular degeneration [6].
Unlike in the fundus images, in the SLO image the OD appears as a dark
elliptical shape part with high contrast between OD and background and low
contrast between OD and vessels.

1.6 Aim and medical motivation of the thesis

The contribution of this work to RIA is the localization of the optic disc (OD)
in scanning laser ophthalmoscope (SLO) images.
This project has been developed within the VAMPIRE5 group at the Univer-
sity of Dundee.
The VAMPIRE (Vascular Assessment and Measurement Platform for Images
of the REtina) software suite aims at providing efficient and reliable detection
of retinal landmarks (optic disc, retinal zones, main vasculature), and quantify
morphological features of the retinal vasculature. In the same context an al-
ternative method to the one proposed in this thesis has been developed, which
will be described in Section 3.6.
The location of the OD is important in retinal image analysis, to locate
anatomical components in retinal images, for vessel tracking, as a reference
length for measuring distances in retinal images, and for registering changes
within the optic disc region due to disease [7].
The changes that occur in OD in terms of shape, color or depth of OD are
indicators of different ophthalmic diseases. Severity of certain diseases, such as
glaucoma and diabetic retinopathies can be measured with the change in the
dimensions of OD. Glaucoma is the second leading cause of blindness, therefore
diagnosing glaucoma at early stages is extremely important for an appropriate
management of the medical treatment of the disease. In people with glaucoma
damage the cup becomes larger in comparison to the optic disc, hence, the
enlargement of the cup with respect to OD, measured as vertical cup-to-disc
ratio (CDR), is one of the most important indicators of the disease [8].
The position and radius of the optic disc can be used also as the references for
approximating fovea detection [9]. Moreover, it is crucial detecting the optic
disc as initial step to identify the retinal zones.
Furthermore, the need of automatic procedure to locate the OD is founda-
mental since the definition of the optic disc is uncertaint itself. Histologically,
what the clinicians sees as OD border has been source of controversia with
the possibility that structures that most accurately define the boundary of the
optic nerve head are not always visible by clinical examination techniques. It
is thought that the OD rim depends on the 3D architecture of the Brunch’s
membrane and the underlying border tissue, rather than a single structure [10].

5https://vampire.computing.dundee.ac.uk/

https://vampire.computing.dundee.ac.uk/
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1.7 Chapter summary

In this Chapter we have introduced the purpose of this thesis starting from
a simple anatomical description of the eye and, in particular, of the retina.
Giving a look at retinal imaging techniques used in our work and underlying
the relevance of retinal image analysis.
The thesis, apart from Chapter 1 that is the introduction, has been divided
in 6 more chapters as follows. In Chapter 2 the datasets and protocol for
the annotations will be presented and in Chapter 3 a brief overview of the
method existing in literature for locating the OD will be provided. In Chapter
4 all the theoretical tools useful to understand our works are reported, while
the proposed methods are described in details in Chapter 5. At the end, in
Chapter 6, the results of our methods compared to the annotators and to a
validate algorithm implemented in the software VAMPIRE will be evaluated.
Finally, in Chapter 7 we made our conclusions and some inspirations for future
works.
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Chapter 2

Materials

2.1 About this chapter

In this Chapter details on the materials, images and ground truth, used for
our project are reported.
We will describe our datasets, images resolution and acquisition. Then we will
deal with our annotations. Before going into details of what concerning the
annotations, raters and protocol, we will briefly discuss on what is a validation
process in retinal image analysis. At the end the strategy for testing our
methods will be illustrated.

2.2 Datasets

In our study we used two datasets, one for algorithm development and one for
performances evaluation. The first dataset consists of 20 SLO images; the sec-
ond one is composed of 50 pairs of SLO and corresponding fundus camera im-
ages. The images were obtained in the context of the VAMPIRE collaboration
between the Universities of Dundee and Edinburgh from the PREVENT De-
mentia study1 from Edinburgh Imaging and the Edinburgh Clinical Research
Facility. The SLO images were acquired with a Heildelberg SPECTRALIS
SLO camera, the fundus images with a Canon non-mydriatic camera.
The SLO images are black and white images of resolution 1536x1536, while
the coloured fundus images are of dimension of 2048x3072.
Unlike fundus images, there are no public datasets available for SLO images
providing annotations on the optic disc.

2.3 Medical annotations

To validate an algorithm we need to have the ground truth (GT) to compare
with. What ‘to validate’ means and how our GT have been generated will be
explained in the following sub-sections.

1https://preventdementia.co.uk/.
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2.3.1 Validating retinal image analysis algorithms

In a medical image processing context, validation can be defined as the ‘process
of showing that an algorithm performs correctly by comparing its output with a
reference standard ’ [11]. In medical image segmentation field, there is usually
a lack of reference or ‘gold’ standard method. In many studies, the manual seg-
mentation from expert raters is regarded as the gold standard. However, these
manual denotation methods suffer from high inter-rater and intra-rater vari-
ability. An outline for validating automatic retinal image analysis algorithm
is:

1. selecting a database such that it is a representative sample of the target
population;

2. collecting annotations on the sample images;

3. running algorithms on the sample images;

4. comparing the output with the reference standard to assess the agree-
ment between ground truth and the output of the algorithm.

The key task in validation is, hence, to assess qualitatively and quantitatively
the agreement between automatic and manual measurements. A first point is
defining how to declare agreement or not. In fact, a main issue with validation
methodologies is the lack of standardization. Without standardization it re-
mains difficult to compare the performances of different methods. Validation
metrics should be chosen or defined according to their suitability to assess the
outcome of the algorithm. This means that the metrics depend on the types
of validation process. We can recognize four main types:

- outcome orientated, for example disease/no disease;

- disease grading, quantifying the severity of a pathology;

- feature grading, measurements of features in the image, for example tor-
tuosity level of vessels;

- image/pixel/measurement oriented, locating structure in the image, mea-
suring perimeter or area of a target region.

Particular attention should be paid in the process of generating the refer-
ences standard. The two main issues are: the variability of expert judgement
and the need for generating annotations directly comparable to the algorithm’s
output. By having several expert annotators the variability can be reduced.
Moreover, a detailed protocol could minimize variations in the annotations as
well as create annotations consistent with the algorithm’s output.
We will dedicate the next sub-sections to the annotators and protocol for an-
notations.
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2.3.2 Annotators and protocol for annotations

Four specialized ophthalmologists contributed to our research project, provid-
ing annotations: Dr. Andrew Tatham2 consultant eye surgeon, Dr. Sirjhun
Patel3 ophthalmology registrar, Dr. Fraser Peck3 ophthalmology registrar as
well and Dr. Obaid Kousha3 ophthalmic specialist trainee (Year 2).
The debate with these specialists revealed the uncertainty on the definition of
the optic disc contour and the lack of standardization on how to draw the out-
line. This gives support to the importance of following an annotation protocol
in collecting references in the context of image analysis, as said before.
We prepared a detailed protocol to annotate the images, also named ‘Standing
Operating Procedure’ (SOP). To the annotators were asked to annotate all the
50 pairs of images independently. In details, they had to:

1. annotate with red coloured dots the OD contour;

2. in case of uncertain about some parts of the contour, annotate with
yellow coloured dots this parts;

3. if present, annotate the Peripapillary Atrophy (PPA) with green coloured
dots.

An example of annotation is displayed in Figure 2.1.

Figure 2.1: Example of annotation: red dots placed on the first choice of the
contour, yellow dots along the second chosen contour, green dots on the PPA.

2Princess Alexandra Eye Pavilion, Chalmers Street, Edinburgh, EH3 9HA, UK.
3Department of Ophthalmology, NHS Tayside, Dundee, UK.
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We asked also to re-annotate 15 images, SLO and fundus, randomly chosen
among all the images to assess the annotators repeatability. In the case of an
annotator on a test batch of nine images we found a problem concerning the
intensity with which the contours were marked. This could be a problem when
we extract the contour in automatic way. So we had recommended with all the
annotators to make sure that every point has a good intensity since the colour
intensities of the annotated points could vary, and some could be faint. On
average, the doctors took 4-7 minutes to annotate an image. It is interesting
to note that the annotators disagreed on which type of image was easier to
annotate; some of them found easier to annotate the fundus images; others to
annotate SLO images.
The original protocol designed for this annotation task is reported in Appendix
on page 79.

2.4 Test planning

Our methods are aimed to locate one of the main landmark in the retina,
the OD. So, in the validation process, we want to assess how much the two
contours, automatic and manual, are similar. Common measurements to com-
pare automatic segmentation and ground truth are metrics which quantify the
spatial overlap between the two segmentations, like Dice or Jaccard, or point-
to-point distances along the contours [11].
All our tests are conducted using three measurements to declare agreement:
Dice coefficient, Jaccard coefficient and contour distance, explained in Section
4.4. First of all, to measure the spatial overlap we had to create a segmentation
map from the contour manually drawn. Such maps are nothing but a binary
image in which the optic disc has value equal to one and not optic disc is zero.
The comparisons, Section 6.4, are so structured:

• First proposed method compared to annotations on SLO images;

• Second proposed method compared to annotations on SLO images;

• Second proposed method compared to annotations on fundus images;

• VAMPIRE algorithm compared to annotations on fundus images.

Moreover we tested the inter- and intra-rater agreement, in Section 6.3.

2.5 Chapter summary

This chapter was included to highlight the challenges posed by the validation of
retinal image algorithms. We wanted to define the way in which we collected
the annotations and the strategies used to compare them with algorithm’s
outcome.
Now, before going into the explanation of our methods, we will present, in the
next chapter, an excursus into the methodologies already proposed in literature
for segmenting the optic disc.



Chapter 3

Related work for
locating/segmenting the optic
disc

3.1 About this chapter

The aim of this Chapter is to give an overview of the methods employed for
the localization and segmentation of the optic disc, without claiming to be
a detailed review. To our best knowledge, many optic disc detection studies
have been presented on fundus camera images, while few on scanning laser
ophthalmoscope images. For this reason we focused on methods designed for
fundus images, aware of the differences in the OD’s appearance in the two kind
of images.
The existing papers mainly use features such as intensity, and shape to locate
the position of the optic disc. Some robust methods are based on context, for
example the presence of vascular structures and their orientation.
The methods for optic disc detection reviewed [12]-[14] in the literature can be
divided in three main methodologies:

- Features-based

- Convergence of blood vessels

- Deformable-templates

In the following sections the three kind of strategies will be discussed (see Table
3.1 for a summary). Furthermore, the method implemented in the software
VAMPIRE will be presented, since we are going to compare the performance of
our methods with the performance of VAMPIRE. We decided not to investigate
deep learning methods proposed in literature for OD location since our method
is a non-learning approach. However, at the end of this chapter a deep learning
approach developed in the same context of this thesis will be briefly illustrated.

21



22 CHAPTER 3. RELATED WORK

3.2 Features-based approach

The features-based approach is less accurate than other two approaches and
is less complex in time [14]. A features-based method is purely based on the
properties of the optic disc, for example location, size, color and shape.
Sinthanayotim et al. [15] proposed an approach based on the intensity of the
optic disc. They assume the OD’s appearance as a yellowish region typically
occupying approximately one seventh of the entire image.
The optic disc area is defined by the highest variation in intensity of adjacent
pixels due to the variation in the appearance of dark blood vessels besides
bright nerve fibres. The OD detection is essentially split into three different
steps:

- pre-processing to enhance local contrast;

- determination of the variance within a running window;

- determination of the average variance within a running window.

This approach correctly detects the optic disc with the sensitivity and speci-
ficity of 99.1% on a local dataset consisting of 112 fundus images.
Abdullah et al. [16] presented an OD detection and segmentation methodol-
ogy which is able to detect the OD centre without using any template or prior
vascular information. The proposed method is based on morphological oper-
ations, the circular Hough transform and the grow-cut algorithm. To detect
the OD centre, an initial morphological operation is conducted with the aim
of enhance the OD and remove retinal vasculature and pathologies. Then the
OD centre is approximated by a circular Hough Transform. Once localized
the OD region, the grow-cut (GC) algorithm is employed to precisely segment
the optic disc boundary. For the OD segmentation they use the detected OD
centre point as the seed for the GC algorithm, which then iteratively searches
for neighbours of initial seeds and expands the region based on the label and
strength of each pixel. The method was evaluated on five public databases and
one local. The algorithm achieves an optic disc detection success rate of 100%
for these databases with the exception of 99.09% and 99.25% for the DRIONS-
DB, MESSIDOR, and ONHSD databases, respectively. The optic disc bound-
ary detection achieved an average spatial overlap of 78.6%, 85.12%, 83.23%,
85.1%, 87.93%, 80.1%, and 86.1% in DRIVE, DIARETDB1, CHASE DB1,
Shifa, DRIONS−DB1, MESSIDOR, and ONHSD databases, respectively.
Similary, Giraddi et al. [17] proposed a morphological approach. The method
detects a first patch of the OD through a P-Tile thresholding. Then, making
use of geometrical properties of the OD, i.e. area and eccentricity, they remove
the false positive to avoid artefacts or pathologies. This step defines an initial
patch of the OD for which centroid correction is computed. The final contour
is performed by a GVF snake. The algorithm is robust and effective both
in healthy images and pathological images, as well as in low contrast images.
The performance, evaluated on three benchmark datasets, DIARETDB0, DI-
ARETDB1, DRIVE, show an accuracy of 98%, 97% and 100%, respectively.
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3.3 Convergence of blood vessels approach

These methods identify the optic disc as vessels convergence point and use the
information provided by the vascular tree. The main issue with these methods
is that they often require an accurate vessel segmentation, which is, in general,
a difficult and time consuming task.
Hoover et al. [18] developed a voting-type algorithm called fuzzy convergence
in order to detect the origination of the blood-vessel network (i.e. convergence
point) which was considered as the centre of the OD in fundus image. The
input to their algorithm was a binary segmentation of the blood vessels, in
which each vessel was modelled by a fuzzy segment that contributed to a cu-
mulative voting image. The output of the algorithm was a convergence image
which was thresholded to identify the strongest point(s) of convergence. This
technique successfully detects 89% of the normal and abnormal images in the
STARE dataset.
Foracchia et al. [19] proposed a method exploiting the evidence that all reti-
nal vessels originates from the OD and their path follows a similar directional
pattern (parabolic course) in all images. To describe the general direction of
retinal vessels at any given position in the image, a geometrical parametric
model was built, where two of the model parameters are the coordinates of
the OD centre. However, their approach is not just based on the detection
of the area of the convergence of vessels but rather on the fitting of a model
with respect to the entire vascular structure. To identify the model parame-
ter, so OD centre, they minimizing the weighted residual sum of squares (RSS)
by means of a simulated annealing optimization technique. The performance
evaluation was assessed on 81 images of both normal and pathological subjects
from STARE dataset. The OD position was correctly identifies in 79 out of 81
images (98%), even in rather difficult pathological situations.
In the same way X.Wu et al. [20], exploiting the vessels convergence, proposed
a method based on several directional models: global, local and hybrid. They
first built the global model, named the relaxed biparabola directional model,
which rely on the evidence that the main vessels originates from the OD and
their shape is a parabola. The global model is robust to pathologies and image
artefacts. Then a local model, named the disc directional model, is built to
characterize the local vessel convergence in the OD as well as the shape and
the brightness of the OD. At the end the two models are combined to form a
hybrid directional model to obtain a more robust OD localization. The method
achieved accuracy of 100% on nine public datasets.
The method proposed by Perez-Rovira et al. [21] takes advantage of the spa-
tial relationship between OD and main arcade to locate the OD. Two week
detectors are used to locate independently the arcade and the OD. Without go
into details, the main arcade detector chooses as vessel points the pixels having
minimum intensity and that are fitted by Gaussian masks, exploiting the fact
that the intensity profile along a short vessels segment can be approximated
by inverted Gaussian. A simple OD detector seeks for a bright circular zone
approximately centred vertically in the image, after smoothing the image to
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remove noise and small bright spot. Then, OD candidates are detected as the
peaks in the intensity level map and rated by their brightness.
Among all the possible pairs disc-arcades, the best pair including the OD is
searched using a prior-knowledge and anatomical constraints. This algorithm
fails in case of OD completely occluded, or due to the bad quality of the im-
age. Sometimes the arcades were not fit well due to an abnormal tortuosity of
vessels, while a circular lesion besides the OD is selected as OD.
The algorithm achieved a detection rate in public datasets grater than 90%,
91.4% in the STARE dataset, 95.0% in the DRIVE dataset, 96.7% in the DI-
ARETDB1 dataset.

3.4 Deformable-templates approach

This is a template-matching method, in which the template is compared with
the set of candidates to determine the best-matching candidates.
Model-based approach was proposed by Osareh et al. [22] to locate the OD
centre. They created a gray-level template image by averaging the optic disc
region of 25 images whose colors were normalized using histogram specifica-
tions. The OD was located by using the generated template calculating the
normalized correlation coefficient to find the most similar match between the
template and the image under consideration. This localization phase was fol-
lowed by a snake fitting. They initialized the snake as a circle with a centre
at the best-matched point obtained through template matching and with a
circular diameter set to the width of the template. The method achieves an
average accuracy of 90.32% in detecting the boundary of the optic disc of 75
images of the retina.
In a similar way, Wang et al. [23] employed a template matching method
to approximately locate the optic disc centre. Then they applied the Level
Set Method, which incorporates edge term, distance-regularization term and
shape-prior term, to segment the shape of the optic disc. The performances
of this method, evaluated on three public datasets, are comparable with the
state-of-art methods.
Li and Chutatape [24] created an optic disc model (disc-space) by applying
Principal Component Analysis (PCA) to a training set of 10 intensity normal-
ized images that were manually cropped around the optic disc. The PCA is
employed to the candidate regions to reduce the computation time. The can-
didate regions are defined by selecting and clustering the pixels with the high-
est 1% gray levels in intensity image. The proposed PCA approach includes
three steps: obtaining disc space, projection on disc space, and calculating
the distance from disc space. The PCA transformation is performed on the
training set to obtain the disc-space. Then, the subimage is projected onto the
disc-space and the distance from disc-space is simply defined as the Euclidean
distance between the subimage and its reconstruction onto the disc space. To
take into account size variations of the optic disc a multi-scale eigendisks is
used. After the localization, a modified ASM method extracts the boundary of
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the optic disc. In this work the optic disc was successfully detected in 99% of
the images as the region with the smallest Euclidean distance to its projection
onto the disc-space.
Dehghani et al. [25] suggested a method for localizing the OD by histogram
matching. On a sample of images from the dataset they built a template for
the optic disc. Instead of creating an image as template, they construct an
histogram template for each color channel.
The template is obtained by averaging the histograms of each color channel for
all retinal images sample. For localizing the OD a window is moved through
the retinal image and in each sliding-window, they calculate the histograms of
each channel. The correlation between the histograms in the moving window
and the histograms of its corresponding channel in the template is computed.
At the end the correlation is the weighted sum of the three correlation coeffi-
cients, one for each channel. A final thresholding on the correlation function is
used to localize the centre of optic disc. The method was tested on two public
datasets, DRIVE and STARE, and one local. The success rate was 100, 91.36,
and 98.9, respectively.

Table 3.1. Table to summarize the reviewed papers
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3.5 The method implemented in VAMPIRE

The method proposed by Giachetti et al. [26], Figure 3.1, is implemented
in the software suite for the semi-automatic quantification of retinal vessel
properties from fundus camera images (VAMPIRE). The approach is based on
OD’s appearance, i.e. its shape and brightness, combined with the contextual
information. The method separates the location and the segmentation tasks.
The OD location is performed using a simple probabilistic approach based
on combining the output of simple detectors, one related to radial symmetry
and the other related to vessel density. The assumption behind this technique
is that the OD centre is located where the vessel density is high. A key
point is that the OD searching and segmentation is performed on impainted
images obtained by removing the vessel mask and propagating neighboring
information in the masked region. The iterative procedure for obtaining the
impainted image is:

1. remove vessel pixel from the image. Select the border set composed of
the empty pixels close to valued ones;

2. for each border pixel, compute the median of the valued pixel in a 5x5
neighborhood and fill the pixel with this value;

3. recompute the border set and iterate until it is empty.

The segmentation consists of the fitting of incrementally complex contour
models at increasing image resolutions. At the coarsest resolution the fitting
model is a circle, that will be explained in Section 5.2.3. Increasing the res-
olution a vertical elongation term is added and, at the highest resolution, a
rotation term is added so that the final OD is a generic ellipse. At the end
a snake runs to refine the contour. The method can provide accurate results
both in term of optic disc location and contour segmentation accuracy, with
an average error reasonably close to the interoperator errors.

Figure 3.1: Flow chart of the method showing the steps of the multiscale optic
disc localization and segmentation.
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3.6 A deep learning approach

A deep learning approach, presented in [27], has been developed in parallel
with the method proposed in this thesis within the same context.
The pipeline of the algorithm, Figure 3.2, can be divided in: Locating/detecting,
ROI extraction and final segmentation.

Figure 3.2: Pipeline of the method. (Image taken from [27])

Locating/detecting

In this stage a classifier locates the optic disc in low-resolution images of di-
mension 64x64. The classifier is composed of four different CNNs (A, B, C, D),
combined to obtain a single binary map. The first three networks are designed
for pixel-wise classification, share the same architecture and same training set.
Such nets differ only in the initialization of the weights. The D-net is designed
for region-wise classification of output size 4x4. It is useful to individualize
the region in which the OD is. The resulting segmentation map is the AND
(pixel-wise) of the segmentation maps resulting from each net.

ROI extraction

From the segmentation map found at the previous step, the centre of the optic
disc is calculated as the barycentre of the point classified as OD.
From the original SLO images, downsized at resolution of 512x512, a ROI of
256x256 is extracted around the predicted OD centre.

Final segmentation

The main strategy used in this step is the transfer learning, to exploit as much
information as possible. The classifier was at first trained on 70 images in
which the ground truth are1 the segmentation maps produced by the algo-
rithm proposed in the method ‘Hand-crafted features for OD contour points
selection’, Section 5.3. In the second phase the trained network is re-trained
on the image annotated by expert ophthalmologists.
The classifier for the final segmentation is inspired by the U-net architecture,
with 52 layers and “dice-pixel-classification” as output layer.
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3.7 Chapter summary

After giving an overview of some representative methodologies existing in lit-
erature, summarized in the table 3.1, we can move towards the discussion of
our proposed methods. For a better understanding, in the next Chapter, the
theoretical tools behind our work are illustrated briefly.



Chapter 4

Theoretical tools

4.1 About this chapter

In this Chapter we provide a brief explanation of the theoretical instruments
lying behind the methods, as well as the evaluation measurements used in the
testing phase.
We organized all the methods in three main categories:

• Numerical mathematics in which we can find the Bisection root find-
ings method used to automatically select a threshold for the initial seg-
mentation in Section 5.2.1, the Nelder-Mead simplex method that is the
optimizer chosen in the circle fitting of Section 5.2.3 and the Ellipse fit-
ting, the approach used to approximate the resulting segmentation with
an ellipse, Section 5.2.6.

• Image processing in which a brief overview of Morphological image pro-
cessing is given to better understand our methods in next Chapter, Non
parametric smoothing utilized to obtain a smoother and finer contour in
Section 5.3.4 and basic concepts of Image registration to understand our
approach to register fundus and SLO images, in Section 6.2.

• Quantitative measurements in which we defined both Similarity mea-
surements, Dice and Jaccard coefficients, and Distance measurement,
point-to-point distance between two contours. These quantitative mea-
surements are used in the testing phase in Chapter 6.

In the following sections these categories will be discussed.

4.2 Numerical mathematics

4.2.1 Bisection root findings method

The bisection method is a root-finding method that applies to any continuous
functions.
Let f(x) continuous in the interval [l, r] and f(l)f(r) < 0 then a zero of the
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function, α, is in (l, r).
The method consists of repeatedly bisecting the interval defined by the values
l and r and then selecting the subinterval in which the function changes sign,
and therefore must contain a root. Here the pseudocode

Algorithm 1 Bisection Method

1: k=0
2: while the interval (l(k), r(k)) is ‘big enough’ do

3: c = l(k)+r(k)

2

4: x(k) = c
5: if f(c)f(r(k)) > 0 then
6: this means that α is between l(k) and c, so set r(k+1) = c and l(k+1) =

l(k)

7: else
8: this means that α is between c and r(k) so set l(k+1) = c and r(k+1) =

r(k)

9: end if
10: k = k+1
11: end while

4.2.2 Nelder-Mead simplex method

The Nelder-Mead simplex algorithm [28] is a method proposed for minimizing
a real-valued function f(x) for x ∈ Rn

The Nelder-Mead method is simplex-based. A simplex is a geometric figure
in Rn that is the convex hull of n+ 1 vertices x1, . . .xn+1 ∈ Rn. For example,
Figure 4.1, a simplex in R2 is a triangle, and a simplex in R3 in a tetrahedron.

Figure 4.1: Simplex for n = 2 is a triangle, for n = 3 is a tetrahedron.

To define a complete Nelder-Mead method four scalar parameters must
be specified: coefficients of reflection (ρ), expansion (χ), contraction (γ) and
shrinkage (σ). These parameters should satisfy

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1 and 0 < σ < 1. (4.1)

The standard configuration of these parameters is

ρ = 1, χ = 2, γ =
1

2
and σ =

1

2
. (4.2)
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A simplex direct search method begins with a set of n+ 1 points x1, . . .xn+1 ∈
Rn that are considered as the vertices of a simplex S, and the corresponding
set of function values at the vertices fj := f(xj), for j = 1, . . . , n + 1. The
initial simplex S has to be nondegenerate, i.e., the points x1, . . .xn+1 must not
lie in the same hyperplane.

Statement of the algorithm. At the beginning of the kth iteration, k > 0,
a nondegenerate simplex ∆k is given, along with its n+1 vertices, each of which
is a point in Rn. It is always assumed that iteration k begins by ordering and
labeling these vertices as x

(k)
1 , . . . ,x

(k)
n+1, such that

fk1 6 fk2 6 · · · 6 fkn+1, (4.3)

where fk1 denotes f(x
(k)
1 ). The kth iteration generates a set of n + 1 vertices

that define a different simplex for the next iteration, so that ∆k+1 6= ∆k. We
refer to xk1 as the best point or vertex, to xkn+1 as the worst point, and to xkn as
the next-worst point. In the same way we refer to fkn+1 as the worst function
value and so on.
The result of each iteration is either a single new vertex, that replaces xn+1

in the set of vertices for the next iteration, or in case of shrink, a set of new
points that, together with x1 form the simplex at the next iteration.

One iteration of Algorithm NM

1. Order. Order the n+ 1 vertices to satisfy 4.3.

2. Reflect. Compute the reflection point xr from

xr = x̄ + ρ(x̄− xn+1) = (1 + ρ)x̄− ρxn+1, (4.4)

where x̄ =
∑n

i=1 xi/n is the centroid of the n best points (all vertices
except xn+1). Evaluate fr = f(xr).
If f1 6 fr < fn, accept the reflected point xr and terminate the iteration.

3. Expand. If fr < f1, calculate the expansion point xe

xe = x̄ + χ(xr − x̄) = x̄ + ρχ(x̄− xn+1) = (1 + ρχ)x̄− ρχxn+1, (4.5)

and evaluate fe = f(xe). If fe < fr, accept xe and terminate the itera-
tion, otherwise accept xr and terminate the iteration.

4. Contract. If fr > fn, perform a contraction between x̄ and the better
of xn+1 and xr.

a Outside. If fn 6 fr < fn+1, perform an outside contraction

xc = x̄+γ(xr− x̄) = x̄+γρ(x̄−xn+1) = (1+ργ)x̄−ργxn+1, (4.6)

and evaluate fc = f(xc). If fc 6 fr, accept xc and terminate the
iteration; otherwise, perform a shrink (step 5).
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b Inside. If fr > fn+1, perform an inside contraction

xcc = x̄− γ(x̄− xn+1) = (1− γ)x̄ + γxn+1, (4.7)

and evaluate fcc = f(xcc). If fcc < fn+1, accept xcc and terminate
the iteration; otherwise go to step 5.

5. Perform a shrink step. Evaluate f at the n points vi = x1 + σ(xi −
x1), i = 2, . . . , n + 1. The vertices of the simplex at the next iteration
consist of x1, v2, . . . ,vn+1.

The idea is to try to expand the simplex if good values of the objective function
are found, contract otherwise. In Figure 4.2, are shown the effects of reflection.
expansion, contraction and shrinkage for a simplex in two dimensions with the
standard values for the four coefficients (4.2).

Figure 4.2: NM operations: reflection xr expansion xe, inside contraction xc,
outside contraction xcc and a shrink.

4.2.3 Ellipse fitting

In this Section the method proposed by A.Fitzgibbon et al. [29] for fitting
ellipses to segmented data is discussed.

Problem statement Let a = [a b c d e f ]T parameter vector and x =
[x2 xy y2 x y 1]T ,

F (a,x) = a · x = ax2 + bxy + cy2 + dx+ ey + f = 0 (4.8)

is a general conic represented by an implicit second order polynomial. F (a,x)
is called the “algebraic distance” of a point (x, y) to the conic F (a,x) = 0.
The fitting of a general conic may be approached by minimizing the sum of
squared algebraic distances

DA(a) =
N∑
i=1

F (xi)
2 (4.9)
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of the curve to the N data points xi.
The parameter vector a has to be constrained in some way in order to avoid
the trivial solution a = 0 and to take into account that any multiple of a
solution a represents the same conic.
The appropriate constraint so that the conic is forced to be an ellipse is that
the discriminant b2 − 4ac < 0. However this constraint problem is difficult to
solve in general. The constraint 4ac−b2 = 1 can be regarded as a “normalized”
version of the elliptical constraint b2 − 4ac < 0, as a is only defined up to a
scale factor. This is a quadratic constraint, in matrix form aTCa = 1 as

aT


0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 a = 1 (4.10)

Problem 4.9 becomes

minimizing E =‖ Da ‖2 subject to the constraint aTCa = 1 (4.11)

where the design matrix D is defined as in 4.9. By introducing the Lagrange
multiplier λ and differentiating, we get a system of equations

2DTDa− 2λCa = 0

aTCa = 1
(4.12)

This system can be rewritten as

Sa = λCa (4.13)

aTCa = 1 (4.14)

where S is the scatter matrix DTD. This system is solved by considering
the generalized eigenvectors of 4.13: if (λi, ui) solves 4.13, then so does (λi, µui)
for any µ. Starting from 4.14 it is possible to evaluate µi as µ2

iu
T
i Cui = 1,

giving

µi =

√
1

uTi Cui
=

√
1

uTi Sui
. (4.15)

The solution of 4.12 is found by setting âi = µiui
It can be shown that the minimization of ‖ Da ‖2 subject to 4ac− b2 = 1

yields exactly one solution, which corresponds to an ellipse, due to the con-
straint itself. This method has some interesting advantages: is ellipse-specific,
also under noise conditions; invariance to affine transformation of the data;
high robustness to noise; and high computational efficiency.
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4.3 Image processing

4.3.1 Morphological image processing

In the context of mathematical morphology we can refer to the word morphology
as a tool for extracting image components that are useful in the representation
and description of region shape, such as boundaries, skeletons and complex hull
[30]. The language of mathematical morphology is set theory. The applications
based on the morphological concepts discussed in this section involve binary
images. In this case, the logic operations are performed on a pixel by pixel
basis between corresponding pixels of two or more images (except NOT).

Dilation

Let A and B be set in Z2, the dilation of A by B, denoted A⊕ B, is defined
as

A⊕B = {z | (B̂)z ∩ A 6= �}. (4.16)

The dilation of A by B is the set of all displacements, z, such that B̂ and A
overlap by at least one element. Set B is commonly named as the structuring
element in dilation, as well as in other morphological operations. An intuitive
application of dilation is bridging gaps.

Erosion

Let A and B be set in Z2, the erosion of A by B, denoted A 	 B, is defined
as

A	B = {z | (B)z ⊆ A}, (4.17)

that means that the erosion of A by B is the set of all points z such that
B, translated by z, is contained in A. A simple use of erosion is to eliminate
irrelevant detail (in terms of size) from a binary image.
Dilation and erosion are duals of each other with respect to set complementa-
tion and reflection. That is, (A	B)c = Ac ⊕ B̂.

By combining this two operations in different way we obtain other operations,
opening and closing.

Opening and Closing

The Opening of set A by structuring element B, denoted A ◦ B, is defined as
the erosion of A by B, followed by a dilation of the result by B:

A ◦B = (A	B)⊕B. (4.18)

This operation generally smoothes the contour of an object, breaks narrow
isthmuses, eliminates thin protrusions and deletes noisy pixels from binary
images.
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The opening operation has a simple geometric interpretation, Figure 4.3. Sup-
pose that we consider the structuring element B as a flat “rolling ball”, that
is rolled around inside the boundary of A. The boundary of A ◦ B is fixed
by the points of B that reach the farthest into the boundary of A. So we can
consider the opening result as the union of all translations of the structuring
element B that fit into the image A. That is, opening can be expressed as a
fitting process such that

A ◦B = ∪{(B)z | (B)z ⊆ A}. (4.19)

The Closing of set A by structuring element B, denoted A • B, is defined
as the dilation of A by B, followed by the erosion of the result by B.

A •B = (A⊕B)	B (4.20)

This operation also tends to smooth contours but it generally fuses narrow
breaks and long thin gulfs, eliminates small holes and fills gaps in the contour.
Closing has a similar geometric interpretation, except that the structuring el-
ement B is now rolled on the outside of the boundary, Figure 4.4.

Figure 4.3: (a) Structuring element B “rolling” along the inner boundary of A
(the dot indicates the origin of B). (c) The heavy line is the outer boundary of the
opening. (d) Complete opening (shade).

Figure 4.4: a) Structuring element B “rolling” on the outer boundary of set A. (b)
The heavy line is the outer boundary of the closing. (d) Complete opening (shade).



36 CHAPTER 4. THEORETICAL TOOLS

As in the case of dilation and erosion, opening and closing are duals of each
other with respect to set complementation and reflection. That is, (A •B)c =
(Ac ◦ B̂). The opening operation satisfies the following properties:

(i) A ◦B is a subset (subimage) of A.

(ii) If C is a subset of D, then C ◦B is a subset of D ◦B.

(iii) (A ◦B) ◦B = A ◦B.

Likewise, the closing operation satisfies the properties:

(i) A is a subset (subimage) of A •B.

(ii) If C is a subset of D, then C •B is a subset of D •B.

(iii) (A •B) •B = A •B.

4.3.2 Adaptive thresholding

Thresholding is the simplest approach of segmentation used to create a binary
image from greyscale or coloured images, as shown in Figure 4.5.

Figure 4.5: The input image (a) converted into binary image using a single thresh-
old (b).

The working principle of the approach is selecting a threshold value for
assigning colors below ad above thresholds, to get the segmented image. Pixels
are partitioned depending on the intensity values of pixels: replace each pixel
in an image with a black pixel if the image intensity Ii,j is less than some fixed
constant T (that is, Ii,j < T ), or a white pixel if the image intensity is greater
than that constant.
Thresholding may be seen as an operation that involves tests against a function
T of the form

T = T [x, y, p(x, y), f(x, y)] (4.21)
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where f(x,y) is the gray level of point (x, y) and p(x, y) denotes some local
property of this point. A thresholded image g(x, y), with a single threshold,
Figure 4.6 (a), is defined as

g(x, y) =

{
1, if f(x, y) > T

0, if f(x, y) 6 T
. (4.22)

Pixels labeled 1 correspond to objects whereas pixels labeled 0 correspond to
background. But multi-thresholding, Figure 4.6 (b), with appropriate thresh-
olds T1 and T2 is given as

g(x, y) =


a, if f(x, y) > T2

b, if T1 < f(x, y) 6 T2

c, if f(x, y) 6 T1

(4.23)

Figure 4.6: Gray-level histograms that can be partitioned by (a) a single threshold,
and (b) multiple thresholds.

- if T depends only on f(x, y) the threshold is called global ;

- if T depends on both f(x, y) and p(x, y), the threshold is called local ;

- if T depends on the spatial coordinates x and y, the threshold is called
dynamic or adaptive.

A basic approach to adaptive thresholding is to divide the original image into
subimages and then utilize a different threshold to segment each subimage.
The key issues in this approach are how to subdivide the image and how to
estimate the threshold for each resulting subimage.

4.3.3 Non-parametric smoothing

In smoothing problem the signal uk has to be reconstructed starting from
the discrete observations yk. Let’s suppose to have signal y(t) sampled on a
sampling grid Ωs, infrequent and non-uniform. We want to estimate the signal
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on a “virtual” grid Ωv, uniform and finer than the sampling grid.
Our model of the measure is

y = Gu+ v (4.24)

where y is the signal (dimension n), G is a “quasi-Toeplitz” matrix (nxN), u
is the signal we want to estimate (dimension N) and v (dimension n) is the
uncertainty on the measures y [31]. The matrix G is obtained by deleting from
the matrix Gv = IN the rows corresponding to the missing samples.
Assuming that the covariance matrix of v is Σv = σ2B, where B is a known
positive definite matrix and σ2 is a scalar. The estimate û is defined as

û = argmin
u
{(y −Gu)TB−1(y −Gu) + γuTΣ−1u u} (4.25)

where γ > 0 is the so called regularization parameter and Σ−1u = FTF, where
F = ∆m and ∆, NxN Toeplitz matrix lower triangular with first coloumn
(−1,−1, 0, . . . , 0)T :

∆ =


1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
· · · · · · · · · · · · · · ·
0 · · · · · · −1 1

 , F = ∆m (4.26)

The matrix F penalizes the m−differences; increasing m leads to smoother
solutions. For m = 2, the matrix F is

F =


1 0 0 0 · · · 0
−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · · · · 1 −2 1

 .
The first term on the right-hand side in 4.25 measures the fidelity to the data,
whereas the second term is introduced to penalize the roughness of the esti-
mate. The regularization parameter γ determines the relative weight between
the fidelity to experimental data and the smoothness of the solution. If γ is
too small, the regularization effect vanishes and the solution is an interpola-
tion of the data. On the other hand, too large values of γ produce smooth
estimates that may be unable to track sharp variations in the true input (over-
smoothing). For a better understanding of the effect of the parameter γ refer
to Figure 4.7.
It is possible to demonstrate that problem 4.25 has a closed form solution:

û = (GTB−1G + γFTF−1)GTB−1y. (4.27)
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Figure 4.7: An example of smoothing of a biological signal at increasing value
of gamma, from left to right. Red dashed line is the noisy signal, blue line is the
smoothed estimate signal. For very low value of γ (a) the estimated û 4.27 follows
the noisy data, while for high value the estimate is too regular.

4.3.4 Image Registration

Registration is the process of determining a one-to-one mapping or transfor-
mation between the coordinates in one space and those in another, such that
points in the two spaces that correspond to the same anatomical point are
mapped to each other.
From an operational view, the inputs of registration are the two images to
be registered; the output is a geometrical transformation, which is merely a
mathematical mapping from points in one image to points in the second.
In Figure 4.8 an example of multi-modal registration.

Figure 4.8: Multi-modal registration between SLO and fundus images.

Registration can be classified according to the image acquisition modality.
Registration between like modalities is called ‘intramodal’ or ‘monomodal’;
registration between differing modalities is called ‘intermodal’ or ‘multimodal’
registration. Similarly, registration between image of the same patient is ‘in-
trapatient’, between different patient ‘interpatient’.
The image to not be modified is called reference image or fixed image; the im-
age to be transformed into alignment with the reference image is called target
image or moving image. The transformation function is the function used to
modify the target image to overlap the reference.
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We can formalize the problem as following: given n corresponding points in two
images of the same scene, [(Xi, Yi), (xi, yi)], i = 1, . . . , n, determine functions

X = f(x, y)

Y = g(x, y)

that will register the images. We will refer to image with coordinates (x, y)
as the reference image and the image with coordinates (X, Y ) as the moving
image.
In the following subsections we briefly report the two mapping functions used
to register the fundus images and SLO images in our work.

Piecewise linear mapping function

This method [32] rather than using one global mapping function to register the
whole images, uses a number of local mapping functions, each tuned to map
well in local neighbourhoods. Then by piecing the local mapping functions
together, a global mapping is obtained. This is an interpolation approach: the
surfaces f and g pass exactly through the 3-D points (xi, yi, Xi) and (xi, yi, Yi),
respectively, and determine the surface values at non-control points by inter-
polation of surface values at nearby control points.
The procedure can be divided in three parts: triangulation, linear interpolation
and extrapolation. Using control points in the images, each image is divided
into triangular regions, Figure 4.9 (a): a triangle is obtained such that any
point in a triangle is closer to the three vertices that make the triangle than to
vertices of any other triangles. The triangulation is determined in one of the
images; in the other image is automatically obtained from the correspondence
between control points.
For each pair of corresponding triangles in the images, the mapping functions
that will register the two triangles are determined in the ‘linear interpolation’
phase. The problem of finding the linear mapping functions that will overlay
the triangles can be stated in the form that: given 3-D points determine param-
eters of plane X = f(x,y) that will pass through these points. The equation of
a plane passing through three points (x1, y1, X1), (x2, y2, X2), and (x3, y3, X3)
is given by,

Ax+By + CX +D = 0 (4.28)

where

A =

∣∣∣∣∣∣
y1 X1 1
y2 X2 1
y3 X3 1

∣∣∣∣∣∣ ;B = −

∣∣∣∣∣∣
x1 X1 1
x2 X2 1
x3 X3 1

∣∣∣∣∣∣ ;C =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ ;D = −

∣∣∣∣∣∣
x1 y1 X1

x2 y2 X2

x3 y3 X3

∣∣∣∣∣∣ ;
Given the coordinates of a point in the reference image (x,y), we can determine
the X-component coordinate of the same point in the moving image using the
linear mapping function of 4.28. The Y-component of the point is determined
similarly.
The last step is the determination of the functions for mapping the points
outside the convex hulls by extending the boundary triangle planes, Figure 4.9
(b).



4.3. IMAGE PROCESSING 41

Figure 4.9: (a) Triangulation of a set of control points in an image. (b) Extension
of a triangle planes to cover points between the convex hull and image borders.

Local weighted mean

The idea lying behind this method [33] is that if a point (x, y) in the reference
image is near a control point i, then we expect that the corresponding point in
the moving image would be also near control point i. This leads to determine
the X value of a point (x, y) by the X values of the nearby control points, with
appropriate weights. The registration transformation function is so defined by

f(x, y) =

∑N
i=1Wi(x, y)Xi∑N
i=1Wi(x, y)

(4.29)

where, the weight function, to make the method local is so defined

{
Wi(R) = 1− 3R2 + 2R3 0 ≤ R ≤ 1

Wi(R) = 0 R > 1
(4.30)

where R = [(x− xi)2 + (y − yi)2]
1
2/Rn and Rn is the distance of point (xi, yi)

from its (n− 1)th nearest control points in the reference image.
Using the weight function 4.30 in the mapping function 4.29, define the X
value at an arbitrary point (x, y) by the weighted sum of polynomials having
a nonzero weight over that point

f(x, y) =

∑N
i=1X{[(x− xi)2 + (y − yi)2]

1
2/Rn}Pi(x, y)∑N

i=1W{[(x− xi)2 + (y − yi)2]
1
2/Rn}

(4.31)

where Pi(x, y) is the polynomial passing through measurement (xi, yi, Xi) and
n− 1 other measurements nearest to it.
If the distribution of the control points is not uniform, so that no control points
fall in a large area of the image, then it could happen that none of the fitted
polynomials will pass over that area, leaving a hole in the image. In this case,
new control points should be selected.
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4.4 Quantitative evaluation measurements

One of the critical tasks of selecting the right image segmentation approaches
for different medical image analysis tasks is to determine the accuracy of the
algorithms. The accuracy is required in order to prove the improvement of the
new algorithm compared with the current algorithms.
Many measurements have been presented to evaluate the segmentation ap-
proaches’ performance. The most common measurements include similarity
measurements and distance measurements. The similarity measurements com-
pare the consistency between the ground truth and the automated segmenta-
tion. The distance index measures the difference distances between the contour
of the ground truth and the automated segmentation. These measurements
are explained in more detail in the following sub-sections.

4.4.1 Similarity measurements

Similarity coefficients measures how well two segmentation overlap. Two simi-
larity coefficients are commonly used to measure the fraction of spatial overlap
between two binary images, a ground truth and a proposed automated seg-
mentation method.
The Sørensen–Dice index is a measurement of spatial overlap used widely for
comparing segmentation results, with a value ranging from 0 to 1. The Dice
coefficient can be defined as two times the area of the intersection between two
segmentations divided by the sum of the area of the two segmentations. Given
two sets, X and Y, is defined as

Dice(X, Y ) =
2 | X ∩ Y |
| X | + | Y |

, (4.32)

where | X | and | Y | are the cardinality of the two sets. Using the definition
of true positive (TP), false positive (FP), and false negative (FN), Figure 4.10,
it can be written as

Dice(X, Y ) =
2TP

2TP + FP + FN
(4.33)

The Jaccard coefficient measures similarity between finite sample sets, and is
defined as the size of the intersection divided by the size of the union of the
sample sets:

Jaccard(X, Y ) =
| X ∩ Y |
| X ∪ Y |

(4.34)

The Jaccard coefficient can also be expressed in terms of true positives (TP),
false positives (FP) and false negatives (FN) as:

Jaccard(X, Y ) =
TP

TP + FP + FN
(4.35)

The Dice index is related to the Jaccard index according to:

Dice(X, Y ) =
2 ∗ Jaccard(X, Y )

1 + Jaccard(X, Y )
(4.36)
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Figure 4.10: TP: pixels correctly segmented as foreground. FP: pixels falsely
segmented as foreground. TN: pixels correctly detected as background. FN: pixels
falsely detected as background.

4.4.2 Distance measurement

The above mentioned similarity coefficients do not demonstrate the dissimi-
larity between the boundaries of the ground truth and the automated image
explicitly, which may be more interesting than the overlap area in many appli-
cations. Measuring the distance between two contours quantifies the amount
of mismatch between two sets of points. We employed as measurement the
average distance computed between the two contours.
In particular, let the ground truth GT contour discretized in n points (g1, g2, . . . ,
gn) and the algorithm A resulting contour (a1, a2, . . . , an), Figure 4.11.
For each point gi, i = 1, . . . n is calculated the Euclidean distance between
the point and the closest point belonging to A to the point itself in the radial
direction,

d(gi, A) = minj‖aj − gi‖, j = 1, . . . , n. (4.37)

The final index, Cd, is the distance averaged over all contour points

Cd(GT,A) =
1

n

n∑
i=1

d(gi, A) (4.38)

A high value of 4.38 implies that the two contours do not match closely.

Figure 4.11: The green contour represents the GT, the blue one is the algorithm
result. In red the distances 4.37.
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4.5 Chapter summary

In this Chapter the theoretical tools used to understand our proposed methods
are provided, dividing the same in three categories and for each tools the
section in which is used has been reported.
In the next Chapter we will illustrate in details the proposed methods for OD
detection in SLO images.



Chapter 5

Proposed methods

5.1 About this chapter

We developed two methods for automatic locating the optic disc in scanning
laser ophthalmoscope images.
These methods have a first common part in which the OD is located, while
they differ in the segmentation phase. To locate the OD they take advantage
of the following observations on the OD’s appearance in SLO images, Figure
5.1:

1. The OD is usually dark but it might have a lighter spot inside.

2. The contrast between vessels and OD is usually low.

3. The contrast between OD and background is usually high.

4. The shape is approximately elliptical.

Figure 5.1: An example of SLO image.

The two methods will be illustrated in details in the following two Sections,
while the results of the methods are provided in the next Chapter.

45
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5.2 Elliptical OD rim approximation via mor-

phological operations

The first method has been developed at the beginning of the research study
on a dataset consisting of 20 images.
Basically the algorithm, after defining a region of interest, seeks inside this
ROI the OD segmentation. During the process, several OD segmentation
candidates are generated through a sequence of morphological operations and
the final segmentation is the ellipse that fits the best segmentation among all
of them.
The algorithm can be divided in six main steps as in Figure 5.2:

Figure 5.2: Pipeline of the algorithm

5.2.1 Initial segmentation

In the first step the algorithm performs an initial segmentation of optic disc
along with the main vessels. A way to achieve this result is to iteratively run
an adaptive thresholding. The thresholding is computed by setting the ratio

R =
number of foreground pixels

number of background pixels
(5.1)

to 0.15. This number was set experimentally.
The adaptive thresholding is computed with the MATLAB built-in function
adaptthresh; it takes as input the image to be thresholded and the sensitivity
parameter, that is a scalar in the range [0,1] that indicates sensitivity towards
thresholding more pixels as foreground.
We used the bisection method, explained in Section 4.2.1, to set, for each
image, the parameter sensitivity in order to reach the condition R = 0.15.
In particular, looking at the pseudocode 4.2.1, the interval [l, r] is equal to
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[0, 1]. At each iteration, the idea is looking for greater value of sensitivity if
the percentage of pixel thresholded on the total pixels of the image is greater
than the target value (0.15), lower value of sensitivity otherwise. The exit
condition for the while loop is R = 0.15. A result of the initial segmentation
is shown in Figure 5.3.

Figure 5.3: Result of the initial segmentation step in an image of the dataset.

5.2.2 First OD candidate

In the second step we generate a first OD candidate through a sequence of
morphological operations; the idea is to separate the optic disc from the vessels
and keep only the OD.
From the initial segmented image, a preliminary opening operation is carried
out with the aim of dividing the OD from vessels. In this case the structuring
element has a disc shape of radius 15. Then, the largest connected component
in terms of number of pixels is kept and a closing operation is performed to
not lose information.
At this point the binary image is refilled through a closing operation with a disc
structuring element of radius equal to the estimated radius of the segmentation
itself. The resulting image is considered as a first OD segmentation.
At the end the centre of gravity of the result of this stage is calculated and
given as input to the circle fitting step. Despite this procedure is similar to
the one proposed in [17], it was developed independently.
It is not required high precision at this stage, since the goal is to find a region
in which the optic disc is located. The entire procedure is illustrated in Figure
5.4.
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Figure 5.4: First OD candidate: (a) Opening to split OD and main vessels. (b)
Largest connected component. (c) First OD segmentation. (d) OD centre coordi-
nates calculated as the centre of gravity of (c).

5.2.3 Circle fitting

Looking at this kind of images we can recognize the optic disc as the structure
with both high radial (circular) symmetry and high contrast between the inner
and outer region.
For this reason, a first form of contour is given by fitting the circle that maxi-
mize the contrast between the inner and outer region.
It has been used circle fit already implemented in the software VAMPIRE
3.1.2.
The optimal circle is found by initializing circles in the ROI, detected at the
previous step, running the deterministic Nelder-Mead optimizer, see Section
4.2.2. The initial possible values for the radius are [100, 120, 140, 160], while
the initial OD centre coordinates have been calculated at the end of first OD
candidate step. The final result is the circle that has minimum value of the
cost function. The steps for building the cost function [26] are listed below:

– Sample the contour at N discrete points

– for each point p(i) = (xi, yi), compute the unit vector n(i) perpendicular
to the contour

– sample S equally spaced internal points Cin(i, k) = p(i) − kαn(i), k =
1, . . . , S
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– sample S equally spaced external points Cout(i, k) = p(i)− kβn(i), k =
1, . . . , S

The cost function is defined as,

F (C) =
N∑
i=1

S∑
k=1

w(k)min{I[Cin(i, k)]− I[Cout(i, k)], D} (5.2)

where w(k) are weights that are maximal for small k, and D is a constant
value representing a reasonable value for the difference between inner and
outer intensity. In our method the parameters are:
N = 30, S = 8, D = 50, α = 0.8R/S β = 0.5R/S.

Figure 5.5: (a) Optimal sampled circle (blue dots), set of inner points (red dots)
and set of outer points (green dots). (b) Weights that multiplies the differences
between the two sets into the cost function.

For a better comprehension of the cost function, refer to Figure 5.5.
To the optimal circle was assigned a score: let the local contrast (LC) for each
sampled point p(i) defined as,

LC(i) =
S∑
k=1

w(k)min{I[Cin(i, k)]− I[Cout(i, k)], D},

that indicates the weighted sum between the set of inner points along the
perpendicular to the circle and the set of outer points.
Define a red point as a point of the sampled circle in which the LC computed
for that point is lower than a certain threshold h (h = 60). We can define
e, a scalar proportional to the number of red points on the total number of
sampled points (N), as

e = (
#red points

N
)ρ,

red points := p(i) s.t. LC(i) < h, i = 1, . . . , N.
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The coefficient of proportionality is ρ and is set to 0.3. The reliability
coefficient α for the optimal circle is

α = (1− e) (5.3)

is a measure of how many points in the circle are considered as a edge points
due to the contrast in the radial direction.

5.2.4 Generation of OD segmentation candidates

In the 4th step the algorithm generates several OD segmentation candidates
to choose among, Figure 5.6. Starting from the result obtained by the initial
segmentation, the generation of the candidates is performed by subsequent and
more aggressive closing operation. This means that the structuring element
dimension increases at each candidate.
In order to limited the computation and to avoid including the vessels into the
segmentation, the operations are conducted only inside the mask defined by
the optimal circle.

Figure 5.6: Generation of several OD candidates starting from the segmented
image.

5.2.5 Choice of optimal OD segmentation

Once we generate the candidates we have to choose one as the final segmenta-
tion, so we need a criterion.
In the dataset we observed that the optimal circle area (OCA) is usually equal
or greater than the OD area. So, intuitively, the best OD candidate is the one
whose area is close to the OCA. But, since the circle is just an approximation
of the OD, this criterion is not enough. In fact, the circle will fit well some
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part of OD contour and badly other parts; this information is incorporate in
the reliability coefficient for the optimal circle, α (5.3).
The final criterion is to select the segmentation that is close enough to both
the optimal circle and to a percentage of the optimal circle, given by α, i.e.
α(OCA). In formulas, defining

C1 =
OCA− Ac
OCA

(5.4)

and

C2 =
Ac − α(OCA)

Ac
, (5.5)

where Ac is the area of the segmentation candidate.
Choose the segmentation that

minimizing C = C12 + C22 (5.6)

In Figure 5.7 an example of final segmentation, chosen according the above
criterion.

Figure 5.7: OD segmentation candidate chosen according the criterion 5.6.

5.2.6 Elliptical fitting

At the end a fit ellipse is performed on the final segmentation as described in
Section 4.2.3.
In detail:

1. after choosing the OD segmentation (binary image), Figure 5.7

2. calculate the OD contour as the perimeter of the segmentation
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3. sample the contour

4. run the ellipse fitting function on a set of sampled contour points

5. the final segmentation is the ellipse that best fits the binary image

A result is shown in Figure 5.8, the white contour is the segmentation found,
while the red one is the result of fit ellipse.

Figure 5.8: Final result. The white contour is the best OD segmentation choose
according the criterion 5.6. The red contour is the fit ellipse result.

5.3 Hand-crafted features for OD contour points

selection

After the formulation of the first method, our studies focused on the need of
either obtain more precise free-form contour and faster performance of the al-
gorithm.
To achieve the above mentioned purposes, a ultimate method has been devel-
oped for the automatic location and segmentation of the optic disc in SLO
images.
Initially, the algorithm locates a ROI containing the OD, as processed in the
first steps of the previous algorithm. Then the algorithm extracts hand-crafted
features within the ROI, along the OD contour. The final contour is identified
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by an optimization in the space of the possible shapes of a deformable contour.
Referring to Figure 5.9, we can see that the first three steps of the first algo-
rithm, upper windows, are gathered in a single block that is the first step of
the new algorithm.
The method is divided in five steps as described below.

Figure 5.9: Scheme of the first algorithm, upper window. Pipeline of the second
method, bottom window.

5.3.1 Coarse OD contour

The first step includes the initial segmentation, first OD candidate and circle
fitting. The initial segmentation and first OD candidate steps are the same
defined in the previous Section. While we have slightly modified the cost
function in the circle fitting step by adding a regularization term related to
the overall intensity level of the circle contour. It is possible to vary the
strength of this term by setting the parameter α. Giving name Fc(C) to the
cost function defined in 5.2, the cost function with regularization term is :

F (C) = FC(C) + αIm, (5.7)

where F(C) is the contrast between the inner and the outer region, Im is the
mean intensity along the circle. The α parameter takes value in the range
[0, 1], where 0 leads to prefer darker OD contours, while 1 leads to brighter
contours.

5.3.2 Sampling and feature extraction

Here, our goal is to discriminate OD’s edge points in the ROI. Before going
through the details of this stage, observing the images in the dataset, we can
state that:
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1. Points belonging to the same edge share
some features, such as

(a) intensity (i)

(b) contrast (c)

2. The contrast computed over the OD’s
edge points is usually high.
In the side figure, a magnification of the
contour. Here, for each point pi, the over-
lapped square represent the intensity, and
the bottom square the contrast.

It is possible to generalize (1.) to m features

pi =

(
i
c

)
→ pi =


f
(1)
i

f
(2)
i
...

f
(m)
i

 (5.8)

such that a point pi is a vector in Rm identified by its features. At this
stage we suppose to be close to the ideal contour, hence we sample around
the contour and over these sampled positions in the image we extract several
features. Observing Figure 5.10 (a), the points are sampled as following:

• N samples along the contour (blue dots)

• n samples in radial direction at frequency fc :
- (n− 1)/2 samples inside the contour (red dots)
- (n− 1)/2 samples outside the contour (green dots)

At the end we got nxN pixels sampled matrix (PSM), Figure 5.10 (b): the
pixels coordinates in the original image are stored in a nxNx2 matrix.
Basically, with “features extraction” we mean to filter the sampled image
(PSM) to obtain feature maps.
Feature maps computed are:

1. Contrast : radial contrast between inner/outer region computed on OD
contour points, should be high in radial direction and homogeneous in
the normal direction.
A common way to extract edges is to filter an image with a derivative of
Gaussian filter. The Gaussian filter is defined as,

hσ(u, v) =
1

2πσ2
e−

u2+v2

2σ2 , (5.9)
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Figure 5.10: Sampling grid of the contour (a). Blue dots are the sampled contour,
red dots inner points, green dots outer points. PSM matrix (b)

so the derivative of Gaussian along x direction is

∂

∂x
hσ(u, v). (5.10)

In Figure 5.11 are reported a Gaussian filter and a derivative of Gaussian.
We use a 1-D derivative of Gaussian filter, Figure 5.12, in the radial

Figure 5.11: Gaussian filter on the left and derivative of Gaussian filter on the
right side.

direction of the contour to obtain the ‘Contrast’ feature map. The filter
size is [30 1] and σ = 3.

2. Median filtered image: median filter applied along the normal direction,
in order to try to reduce the vessels information. The median filter is a
sliding-window spatial filter, it replaces the center value in the window
with the median of all the pixel values in the window. The median
is calculated by first sorting all the pixel values from the surrounding
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Figure 5.12: 1-D derivative of Gaussian filter.

neighbourhood into numerical order and then replacing the pixel being
considered with the middle pixel value. If the neighbourhood under
consideration contains an even number of pixels, the average of the two
middle pixel values is used.
In our case the window size to filter the PSM is [1 mspan ∗ 2 + 1], where
mspan is related to the number of samples N according the relation
mspan = round(N

30
).

3. Radius : close points along the contour share the same distance from the
centre.
The ‘radius’ map has got by the computation, for each point in the grid,
of the Euclidean distance from the OD centre.

4. Contrast on median filtered image: contrast (1.) computed on feature
map 2.

The feature maps, Figure 5.13, are stacked in a 3-d array of size nxNx4.

5.3.3 Contour selection

Ideally, the goal of this step is finding the best set of points (4-d) defining a
contour among all the possible sets. For this scope we built a cost function
that assigns a cost to a set of points. The cost is given in order to penalize set
of points in which the intra-variability of the features is high, and the overall
contrast is low. In detail, for each point pk the Euclidean distance between
pk and all the others points in the set is computed and then weighted by their
relative position in X. The sum of all the distances is finally multiplied by the
contrast feature of pk itself. We select the optimal set of points {p1,p2, · · ·pN}
such that

I∗ = argmin
I={p1,p2,···pN}

N∑
k=1

ck
∑
∀j:pj∈I

w(j − k)d(pk,pj), (5.11)
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Figure 5.13: Hand-crafted feature maps

where:
I∗ : optimal set
I : set of edge candidates points
N : number of columns of the sampling grid
w(t) : spatial weight function
d(pi,pj) : distance function
ck : contrast features of pk.
The selection is operated trying to minimize the cost function through an iter-
ative procedure leading to a suboptimal solution. The routine starts choosing
an initial point from which, step by step, all the others points are selected; at
each iteration the point that minimize the cost is added to the final sequence.
The initial point is drawn according to the following cost function:

score(pk) =
∑
∀j:pj∈I

w(j − k)d(pk,pj). (5.12)

In other words, the more similar the point is from the rest of the contour the
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lower is its score.

5.3.4 Non-parametric smoothing

To obtain regular contour we perform a non-parametric smoothing, Section
4.3.3, on the one obtained at the previous step using, as penalization, the score
computed on the contour itself. We implemented the formula 4.27, where:

- y: signal to be smoothed, defined as the distance between each contour
point and the OD centre

- B: diagonal matrix where bii is the score of pi, as in 5.12

- F: Toeplitz matrix 4.26, that penalizes the second-differences (m=2)

The balance between smoothing and fitting is settled by the parameter gamma:
smaller gamma corresponds to higher fitting, while larger gamma corresponds
to stronger smoothing. In Figure 5.14 are shown results obtained with different
values for gamma. Typical values are in the range [10−5 ÷ 105], in which 10−5

means no regularization and 105 means maximum regularization. We fixed
γ = 100, but it is a user parameter an it can be tuned. The smoothing was
performed on a virtual grid with number of samples N equal to 150.

Figure 5.14: Results obtained for different values of gamma.
Result of contour selection at first iteration (a). Non-parametric smoothing with
γ = 0.001 (b), γ = 100 (c), γ = 10000 (d).
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5.3.5 Refinement

The contour resulting from step 4 is then refined by repeating steps 2, 3, 4.
In the direction of getting more accurate information we increase both the
number of samples along the contour and the sampling frequency along the
radial direction (fc). In Figure 5.15 some results are reported.

Figure 5.15: Results obtained in a sub-set of the images in the dataset.

5.4 Chapter summary

In this Chapter we presented two methods for OD localization in SLO images.
These methods have a common detection phase, while differ in the segmen-
tation step. The detection of the OD is achieved by searching in the image
the largest connected component. After ROI identification, the first method,
named ‘Elliptical OD rim approximation via morphological operations ’, seg-
ments the OD through a sequence of morphological operations. The second
method, named ‘Hand-crafted features for OD contour points selection’, se-
lects the OD boundary via cost function minimization, based on features ad
hoc computed within the ROI.
The quality of the results of the first and second methods will be evaluated
in the next Chapter. The performances of the algorithms are compared with
manually drawn annotations, as well as with the performance of a validate
algorithm for the fundus images.
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Chapter 6

Experimental results

6.1 About this chapter

This chapter presents the experimental tests and results of our methods.
First of all the method used for registering the fundus images will be illus-
trated. Then a characterization of the annotators will be conducted, with a
brief discussion on the annotations of the peripapillary atrhopy (PPA) contour.
At the end we make comparisons among the automatic and manual procedures.
The performance of the proposed methods will be compared with respect to
the reference standards, as well as the performance of the VAMPIRE algorithm
with respect to the fundus images.

6.2 Multi-modal retinal image registration

Our goal is to find a method to register the fundus camera images and SLO
images, so as discussed in Section 4.3.4, we are dealing with a multi-modal
intra-patient image registration.
Multi-modal image registration is a primary step in integrating information
stored in two or more images, which are captured using multiple imaging
modalities. In medical applications is useful in monitoring the progression
of diseases, quantifying the effectiveness of a treatment, surgery planning.
Multi-modal registration algorithms focus on finding correspondence between
images generated using various modalities. For this reason comparing to mono-
modal registration is more challenging due to the high variability of tissue
appearance under different modalities, as well as the different sizes and reso-
lutions [34].
The existing approaches for retinal imaging registration are usually based on
pixels intensity or feature extraction of anatomical structures that correspond
in the two images [35]. Despite all the efforts in studying the problem of reg-
istration there is no unique technique that works in all circumstances.
In our case we set up a semi-automatic procedure, Figure 6.1, to register the
fundus camera images over the SLO images.

61
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Figure 6.1: Sketch of the procedure for the registration.

Since the fundus image is larger than the corresponding SLO, the first
step is cutting in the fundus image a ROI of the same size of the SLO image
(1536x1536) around the OD centre. For this operation, useful to reduce the
computational complexity, we use as coordinates of the OD centre the values
resulting from the VAMPIRE algorithm.
Then we align the two images such that the centre of the optic disc in the
two images corresponds. To do that we apply a simple translation transform,
Figure 6.2. The OD centre in the SLO images is manually selected for each
image.

Figure 6.2: Shift of the fundus image such that the centre of the OD in the two
images corresponds.

Basically after aligning the OD centres, we want to estimate the transfor-
mation that brings the two images to match.

We use the framework shown in Figure 6.3:

1. Find all valid pairs of control points in the moving (fundus) and fixed
(SLO) images.

2. Infer a spatial transformation between moving and fixed control points.

3. Apply the spatial transformation to the new points in the image.
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Figure 6.3: Framework used to register the fundus image over the SLO image 1.
In blue the functions of MATLAB that are used in each step.

In fact, image registration is usually carried out in two steps [36]. In the first,
a number of control points are selected from the images. In the second, the
position of corresponding control points in the images are used to determine
a transformation function which maps the rest of the points in the images
[37]. Control points are selected either manually or automatically. In our
work we manually select the points using the ‘Control Point Selection Tool ’ of
MATLAB, Figure 6.4. This tool is a user interface that enables you to select
control points in two related images.

We manually select in the two images a set of corresponding points, trying
to distribute them uniformly. Previous papers have shown that it is reason-
able extract fixed landmarks likes blood vessel crossings and bifurcations from
retinal images, as well as the fovea and points inside the OD [38]. An example
of selected control points in the two images is provided in Figure 6.5.

After the points selection we want to estimate the transformation by taking
the pairs of control points, moving and fixed, and using them to infer the ge-
ometric transformation. The hard part here is find the proper transformation
that enables the images to overlap.

1https://uk.mathworks.com/help/images/control-point-registration.html

 https://uk.mathworks.com/help/ images/control-point-registration.html


64 CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.4: Control Point Selection Tool

Figure 6.5: Example of set of control selected points in the moving (on the left)
and fixed (on the right) image.

For each image we estimate two types of transformation: piecewise linear trans-
formation (‘pwl’) and local weighted mean (‘lwm’), described in Section 4.3.4.
For each image both transformations were estimated and is chosen the one that
gives the best overlap between the fixed and registered image. The amount of
overlapping was assessed by visual inspection.

The accuracy of image registration was assessed by visual inspection for
each image, showing the two images overlapped in a ‘chessboard’ visualization,
as shown in Figure 6.6.
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Figure 6.6: Examples of registered images overlapped to corresponding SLO images
with chessboard visualization.

6.3 Inter- and intra-annotator reliability

In engineering, when we talk about reference standars for testing we refer in
general to objective measurements; in medical image analysis, the references
standards are instead built from statistical or explicit consensus among experts
[11].
For example, in our case the ground truth are contours manually drawn.
Since it is known that the OD margin is complex and can be highly variable
within individual eyes and between different eyes [10], there may be some dis-
agreements among the annotators. Hence, before evaluating the performance
of the algorithms against the annotators it is very interesting and useful as-
sessing the inter- and intra-operator reliability.
We can refer to inter-operator reliability as the level of agreement among an-
notations, in our case manually drawn contours.
As said in Section 2.3 for testing our algorithm we have four annotators, A1,
A2, A3, A4. Both inter- and intra-annotator variability will be tested with
three measurements, Dice, Jaccard and the contour distance, reported in Sec-
tion 4.4.
We made comparisons among all possible pairs of annotators: A1/A2, A1/A3,
A1/A4, A2/A3, A2/A4, A3/A4.
In Table 6.1 are reported the comparisons with the three measurements, mean
and standard deviation, in the SLO images; while in Table 6.2 are compared
the annotations in fundus images.
Furthermore in Table 6.3 there is the mean agreement between the annotators
in SLO and Fundus images; it gives as an idea of how much homogeneity or
consensus there is in the ratings given by various annotators.

The annotators show an high inter-agreement, apart for some images in
which the contour differ substantially. In Figure 6.7 we show the inter-agreement
in SLO and fundus images, we can see that for some images the Dice coefficient
is very low. We can note that for the SLO images the variability between the
annotators is lower than in the fundus images.
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Table 6.1: Table with the comparisons among annotators on SLO images.

Dice Jaccard Contour distance
mean (std. dev.) mean (std. dev.) mean (std. dev.)

A1/A2 0.92 (0.07) 0.86 (0.10) 16 (12.39)
A1/A3 0.91 (0.07) 0.85 (0.11) 20 (16.91)
A1/A4 0.94 (0.05) 0.89 (0.08) 15 (11.07)
A2/A3 0.94 (0.03) 0.90 (0.08) 13 (14.62)
A2/A4 0.94 (0.03) 0.90 (0.05) 12 (6.84)
A3/A4 0.94 (0.04) 0.89 (0.07) 13 (12.92)

Table 6.2: Table with the comparisons among annotators on fundus images.

Dice Jaccard Contour distance
mean (std. dev.) mean (std. dev.) mean (std. dev.)

A1/A2 0.92 (0.07) 0.85 (0.10) 23 (20.33)
A1/A3 0.87 (0.07) 0.78 (0.11) 30 (16.61)
A1/A4 0.92 (0.06) 0.85 (0.09) 21 (16.74)
A2/A3 0.93 (0.04) 0.87 (0.06) 18 (8.42)
A2/A4 0.95 (0.03) 0.91 (0.06) 13 (9.58)
A3/A4 0.93 (0.04) 0.87 (0.06) 18 (8.83)

Table 6.3: Mean Agreement among annotators.

Dice Jaccard Contour distance
mean (std. dev.) mean (std. dev.) mean (std. dev.)

SLO 0.93 (0.06) 0.88 (0.09) 15 (12.98)
FUNDUS 0.92 (0.06) 0.88 (0.09) 20 (14.96)

Figure 6.7: Orange box represents the inter-agreement between annotators on SLO
images (S); blue box on fundus images (F). For each box the line inside represents
the median value and the red ‘+’ symbols represent the outliers.

On the other hand we have to take into account the variability over repeated
judgments by the same expert (intra-observer variations).
We must keep in mind that annotating specific image elements, like in our
case the OD contour, is a task that doctors do not normally perform in clinical
practise. Hence, assess the intra-annotators reliability is a crucial part in the
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validation process. In Table 6.4 there is the intra-operator reliability on SLO
images, in Table 6.5 on fundus images. The intra-operator reliability was
evaluated on a batch of 15 images.

Table 6.4: Intra-annotator variability in SLO images.

Dice Jaccard Contour distance
mean (std. dev.) mean (std. dev.) mean (std. dev.)

A1 0.94 (0.04) 0.90 (0.06) 11.70 (6.59)
A2 0.95 (0.03) 0.91 (0.05) 11.57 (7.27)
A3 0.95 (0.03) 0.91 (0.05) 11.35 (8.00)
A4 0.97 (0.02) 0.95 (0.03) 5.99 (3.32)

Table 6.5: Intra-annotator variability in fundus images2.

Dice Jaccard Contour distance
mean (std. dev.) mean (std. dev.) mean (std. dev.)

A1 ∼ ∼ ∼
A2 0.96 (0.02) 0.93 (0.03) 10.50 (5.86)
A3 0.95 (0.03) 0.91 (0.05) 12.79 (7.03)
A4 0.97 (0.01) 0.95 (0.02) 6.34 (2.17)

All the annotators have a high intra-agreement with all the three indices.
In particular the value of the point-to-point distance are very low, hence we
can suppose that the two contours are close each other.
It is very interesting to compare the annotations on SLO images against the
annotations on fundus images, both inter- and intra-annotator. In Table 6.6
are reported the results of this comparisons, with the three measurements.
On the diagonal we have the intra-annotator agreement on the two kind of
images. We can see that often an annotator has a greater agreement with the
fundus annotations of another doctor than with his own annotations. This
result agrees also with the fact that the doctors found a difference in the
difficulty of annotating the two kind of images.

2We don’t have repeated annotation on fundus image for the annotator A1.
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Table 6.6: Comparisons between annotators on the two kind of images.

Dice coefficient
FUNDUS

A1 A2 A3 A4
S
L

O

A1 0.88 (0.06) 0.91 (0.06) 0.91 (0.06) 0.90 (0.08)
A2 0.83 (0.08) 0.88 (0.07) 0.91 (0.06) 0.89 (0.08)
A3 0.83 (0.07) 0.89 (0.05) 0.92 (0.05) 0.90 (0.08)
A4 0.86 (0.07) 0.90 (0.05) 0.92 (0.05) 0.90 (0.08)

Jaccard coefficient
FUNDUS

A1 A2 A3 A4

S
L

O

A1 0.78 (0.09) 0.83 (0.08) 0.84 (0.09) 0.82 (0.12)
A2 0.71 (0.10) 0.80 (0.10) 0.84 (0.10) 0.81 (0.12)
A3 0.71 (0.10) 0.80 (0.08) 0.86 (0.07) 0.82 (0.11)
A4 0.76 (0.10) 0.83 (0.08) 0.86 (0.08) 0.83 (0.11)

Contour distance
FUNDUS

A1 A2 A3 A4

S
L

O

A1 29 (16.85) 23 (15.44) 21 (16.82) 25 (21.34)
A2 36 (18.64) 25 (15.96) 21 (16.35) 25 (21.94)
A3 35 (15.64) 25 (9.74) 18 (9.32) 23 (19.56)
A4 31 (17.12) 23 (14.29) 19 (14.24) 23 (21.08)

We suggested to annotate some parts of the contour in which the annota-
tors were in doubt. As we can infer from Table 6.7 and 6.8, the annotators
A1, A2 ,A3 were in doubt on a large number of images in both the two type of
images, while A4 were in doubt in 50% of the images in both SLO and fundus.
The mean (and std.dev.) is calculated over all the 50 images; for each annota-
tor, in the images in which only one contour was traced, meaning no doubts on
the boundary of the OD, we considered the second choice contour equal to the
first choice contour (Dice, Jaccard = 1, contour distance = 0). This analysis
between the two contours gives us an idea of how uncertain the determination
of the contour is.

Table 6.7: Red Vs Yellow in SLO images

Dice Jaccard Contour distance
# images mean (std. dev.) mean (std. dev.) mean (std. dev.)

A1 42 0.93 (0.07) 0.87 (0.10) 20 (15.83)
A2 41 0.95 (0.06) 0.90 (0.09) 15 (15.95)
A3 41 0.92 (0.06) 0.86 (0.10) 19 (11.55)
A4 25 0.97 (0.05) 0.95 (0.08) 9 (15.59)
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Table 6.8: Red Vs Yellow in Fundus images

Dice Jaccard Contour distance
# images mean (std. dev.) mean (std. dev.) mean (std. dev.)

A1 39 0.96 (0.04) 0.93 (0.07) 15 (14.87)
A2 43 0.96 (0.04) 0.93 (0.06) 13 (11.16)
A3 49 0.88 (0.05) 0.79 (0.09) 29 (10.67)
A4 25 0.97 (0.04) 0.95 (0.07) 8 (9.91)

6.3.1 PPA identification

Paripapillary atrophy (PPA) is the loss condition of retinal pigment epithelium
and choriocapillaris located on the retina. The presence of PPA is associated
with two kinds of diseases, namely glaucoma and myopia. Glaucoma and
myopia are diseases that may cause blindness. Glaucoma is the second largest
cause of blindness in the world and it is an incurable disease. Myopia is a
disease widely suffered by both children and adults.
PPA is an area that has a distinctive texture, visually tends to be white. It
lies adjacent to the outer boundary of optic disc and is described as a bright
rounded area. Visually, the shape of PPA can be illustrated as a crescent moon,
while in several cases the shape looks like ring because it appears around the
OD.
PPA has so far been differentiated into zones: alpha zone, beta zone and gamma
zone. It has been shown that the beta zone was associated with the presence
of glaucoma, whereas the gamma zone was associated with the absence of
glaucoma [39].
We asked to the annotators to place dots along the contour of the PPA, if
present. From the analysis of the PPA segmentation results some interesting
observations:

- The probability that the annotators agree, defined as the number of im-
ages in which they agree divided by the total number of images is 0.63
in SLO images, and 0.62 in FUNDUS ones.

- The percentage of images in which the i-th annotator (i = 1, . . . , 3) iden-
tifies the PPA and at least one other annotator marks it as a contour:
SLO = 0.56 mean (0.29 std.dev.), FUNDUS = 0.52 mean (0.40 std.dev.).
To a better understanding look at Figure 6.8, 3th and 4th columns. This
is a very interesting results because it implies an high variability in the
PPA identification inter-annotators.

- We tested also the annotators agreement, so defined:

- Number of images in which the annotators agree on the presence of
PPA divided by the total number of images, SLO = 0.45, FUNDUS
= 0.57.
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- Number of images in which the annotators agree on the contour of
PPA divided by the total number of images, SLO = 0.45, FUNDUS
= 0.46, Figure 6.8, 1th and 2th columns.

- Number of images in which the annotators agree on the contour of
PPA divided by the number of images in which they agree on the
presence, SLO = 0.83, FUNDUS = 0.17.
We can state that when all the annotators find a PPA in an image,
so they agree on the PPA presence, they agree more in drawing the
contour in SLO images, than in fundus one.

- The last interesting observation is the comparison between SLO and fun-
dus with the same annotators: number of images in which the contour of
the PPA is the same in the two kind of images. The ‘Presence’ coloumns
are the number of images in which the i-th annotators recognized a PPA.

Presence
Intra-agreement SLO FUNDUS

A1 0.73 9 15
A2 0.59 28 16
A3 0.55 26 13

Figure 6.8: Form left to right, the first two columns show images in which the
three annotators, one for each row, agree on the segmentation of the PPA (green
dots). The other two columns show images in which when an annotator recognizes
a zone as PPA at least another annotator marks the same zone as OD contour, first
or second choice (red and yellow, respectively).
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We made this analysis when we had only three annotators, so the above
numbers are related to three annotators. Furthermore, we don’t use any quan-
titative measurements to evaluate the segmentation, just visual inspection.
From this study it appears that there is an high variability between annota-
tors in drawing the PPA contour, as well as high variability intra-operator in
drawing the contour in the two kind of images. Moreover it seems to be more
easier for the three annotators to recognize the PPA in SLO images than in
fundus ones, suggesting more studies on this topic.

6.4 Quantitative comparisons

In this Section we will evaluate the performance of the proposed methods and
of VAMPIRE algorithm, as well as the comparison between the methods. The
test are conducted as described in the ‘Test planning’ Section 2.4.
For simplicity, we refer to the methods as:

- ‘Elliptical OD rim approximation via morphological operations ’ M1

- ‘Hand-crafted features for OD contour points selection’ M2

- ‘VAMPIRE algorithm’ V

We compared the results obtained from the first method both with the ellipse
(M1E) and the free-form segmentation (M1S) against human annotations on
SLO images, Table 6.9.

Table 6.9: Performance of M1E and M1S compared to SLO ground truth.

Dice Jaccard Contour distance
mean (std. dev.) mean (std. dev.) mean (std. dev.)

M1E/A1 0.87 (0.08) 0.78 (0.11) 32 (19.96)
M1E/A2 0.90 (0.07) 0.83 (0.10) 25 (18.89)
M1E/A3 0.90 (0.07) 0.82 (0.11) 25 (19.16)
M1E/A4 0.88 (0.08) 0.79 (0.12) 30 (22.02)

M1S/A1 0.82 (0.09 0.71 (0.12) 40 (20.30)
M1S/A2 0.87 (0.07) 0.77 (0.10) 31 (16.36)
M1S/A3 0.89 (0.08) 0.80 (0.11) 27 (17.49)
M1S/A4 0.87 (0.09) 0.78 (0.12) 32 (22.22)

From the Table 6.9 we can see that by constraining the automatic seg-
mentation to an elliptical shape, in M1, an improvement in performance is
achieved, especially in the distance of the contours. Furthermore, also from
visual inspection the results obtained with the ellipse looks more similar to
the annotations. For these reasons we decide to take as algorithm’s output the
ellipse.
In Table 6.10 we reported the comparisons of the algorithm M2 with anno-
tated SLO images. While in Table 6.11 the results of M2 are compared with
the annotated fundus images, after being registered.



72 CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.10: Performance of M2 compared to SLO ground truth.

Dice Jaccard Contour distance
mean (std. dev.) mean (std. dev.) mean (std. dev.)

M2/A1 0.91 (0.06) 0.83 (0.10) 23 (14.74)
M2/A2 0.89 (0.06) 0.81 (0.10) 24 (13.31)
M2/A3 0.89 (0.08) 0.81 (0.11) 26 (20.87)
M2/A4 0.91 (0.05) 0.83 (0.08) 22 (13.31)

Table 6.11: Performance of M2 compared to fundus ground truth.

Dice Jaccard Contour distance
mean (std. dev.) mean (std. dev.) mean (std. dev.)

M2/A1 0.87 (0.08) 0.78 (0.10) 32 (19.48)
M2/A2 0.90 (0.07) 0.83 (0.10) 25 (19.29)
M2/A3 0.90 (0.07) 0.82 (0.10) 25 (18.93)
M2/A4 0.88 (0.08) 0.80 (0.11) 29 (21.60)

By looking at Table 6.12 we can see that in average the second method
performs better than the first one. The advantage of having a free-form contour
instead of an ellipse reflects in a better values in the ‘contour distance’ coloumn.
Moreover the computational time is strongly inferior for M2 than M1. The
time required for segmenting one image for M1 is ∼ 18.3 seconds while for
M2 ∼ 2.6 seconds. In addition the first method rely only on morphological
operations trying to segment the OD as connected component. For this reason
we may suppose that in case of lesions the algorithm will fail. This is just a
guess since our dataset is quite simple.
For all these reasons we can state that the second proposed method is best
than the first one both in terms of accuracy and computational performance.
Moreover, the method M2 performs well compared to the reference standards.
In Figure 6.9 is shown the frequencies of images of M2 and annotators (in
average) for decreasing value of the Dice coefficient. We can see that the
manual procedure have a fairly large coefficient and there are few outliers for
the automatic method making the average coefficient lower.
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Figure 6.9: Histograms showing the number of automatic contours M2 (red) and
SLO ground truth (green).

We can observe that the M2 performance compared to SLO GT and fun-
dus GT gives results slightly different, contextually to the differences found
in the inter-operators variability in the two kind of images (Table 6.6). We
may suppose that the two kind of images give different informations about the
optic disc contour.
In all our comparisons the Dice and Jaccard coefficients agree with slightly
lower value of the last one. In the same way the values of the point-to-point
distance agree with the other two indices.

We tested also the performance of the validate algorithm V against the
annotated fundus of our dataset; the results are shown in Figure 6.10. In
orange the performances of V against fundus annotated images and in blue
M2 against SLO annoted images. The agreement between our method and
annotators is comparable to the agreement between VAMPIRE algorithm and
annotations on fundus images. This suggests us that we can consider our
method as a valid proposal for OD segmentation in SLO images.

Figure 6.10: Orange box represents the performance of VAMPIRE algorithm on
fundus images compared with annotations of fundus images. Blue box represents
the performance of M2 algorithm on SLO images compared with annotations of SLO
images. The line inside the box is the median value and the red ‘+’ symbols are the
outliers.
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The ‘Summary Table’ 6.12 shows the average measurements of the methods
against reference standard, as well as inter and intra-annotators.

Table 6.12: Summary table: average coefficients (and standard deviation) for the
automatic procedures compared with intraoperator and interoperator coefficients.

Dice Jaccard Contour distance
mean (std. dev.) mean (std. dev.) mean (std. dev.)

Average M1 vs A SLO 0.89 (0.07) 0.80 (0.11) 28 (20.13)
Average M2 vs A SLO 0.90 (0.07) 0.82 (0.10) 24 (16.61)

Average V vs A fundus 0.89 (0.08) 0.82 (0.08) 28 (20.81)
Average inter-op. SLO 0.93 (0.06) 0.88 (0.09) 15 (12.98)
Average intra-op. SLO 0.96 (0.03) 0.92 (0.05) 10 (6.87)

Average M2 vs A fundus 0.89 (0.07) 0.81 (0.11) 28 (19.94)
Average inter-op. fundus 0.92 (0.06) 0.88 (0.09) 20 (14.96)
Average intra-op. fundus 0.96 (0.02) 0.93 (0.04) 9.88 (5.96)

6.5 Chapter summary

In this Chapter we described tests conducted in a pilot validation of our meth-
ods for OD segmentation. The results show a good agreement of our automatic
methods with the annotators, comparable with the validated algorithm.
For what concerning the annotations is evident the uncertain in the OD con-
tour. Inter-annotation variability indicates an interesting level of disagreement
on the exact location of the OD contour, especially in the fact that all the an-
notators were in doubt in a lot of images tracing a double contour choice.
Moreover, particular attention must be paid to the segmentation of the PPA,
which was very variable within the annotators.



Chapter 7

Conclusions and future works

The aim of this thesis is to develop an algorithm for automatic locating and
segmenting the optic disc (OD) in scanning laser ohptalmoscope images (SLO).
From the interfacing with doctors a great variability emerged in the definition
of the contour of the optic disc and so the need of an automatic procedure for
the segmentation.
We proposed two original methods inspired by the relevant literature for this
purpose. The ‘Elliptical OD rim approximation via morphological operations ’
locates the OD relying on the fact that the OD in this kind of images appears
as the largest connected component. Through a sequence of morphological
operations it segments the OD approximating with an elliptical shape.
The ‘Hand-crafted features for OD contour points selection’ shares the locating
procedure with the first method and then computes ad hoc features around
the OD. The final contour is identified by an optimization in the space of the
possible shapes of a deformable contour.
The second method performs better than the first one compared to the gold
standards and it is faster in terms of computational time. This method is being
incorporated in the VAMPIRE software for OD location in Heidelberg Spec-
tralis SLO images, under development by the VAMPIRE Edinburgh group.
In addition, we presented a semi-automatic routine to register the SLO and
fundus images. In this way we were able to compare the information on the
OD resulting from the two retinal imaging techniques, as well as the results of
a validate algorithm for fundus images and our method.
To sum up our main findings, for simplicity only in terms of Dice coefficients,

refer to Figure 7.1. The inter-annotator agreement is high except in some im-
ages and overall is higher between SLO annotated images than in the fundus
ones. The SLO OD segmentation results show excellent agreement with the
SLO ground truth (M2/AS), suggesting the algorithm’s suitability for pratical
applications, comparable with the agreement of the OD detection in fundus
camera images (V/AF). Interestingly, both agreements are similar to inter-
observer ones for both fundus and SLO images. It is worth noticing the lower
mean agreement between the method and fundus ground truth (M2/AF) re-
spect to SLO GT (M2/AS), comparable with the lower annotators agreement
between the two kind of images (AS/AF) respect to the inter-agreement in
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Figure 7.1: In the box plot the comparison between: our method (M2), VAMPIRE
(V), annotations on SLO (AS), and annotations on fundus images (AF). In orange,
the annotators agreement on SLO (S) and fundus images (F). On each box, the
central mark indicates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme
data points not considered outliers, and the outliers are plotted individually using
the ‘+’ symbol.

SLO (S) and in fundus (F).

A limitation to our results is the fact that we had a local dataset and it is
free of lesions. In future it could be useful assessing the performance of our
methods on larger public datasets with some lesions, as well as comparing with
methods designed for SLO images.
Everything in our work, methods and tests, has been implemented in MAT-
LAB. A first improvement to our method could be provide with an optimization
phase. Furthermore our algorithm works with images of dimension 1536x1536;
it could be modified in future such that it can works with different image res-
olutions.
Another idea is to return with the OD segmentation also measurements of the
four characteristics of the optic nerve head: optic nerve tilt, crescent, ovality
and torsion. In fact, it has been demonstrated that changing in these char-
acteristics are associated with the progression of pathologies as myopia and
glaucoma [40].
Another improvement to our method is to return as algorithm outcome the
PPA segmentation in addition to the OD segmentation. As discussed in Section
6.3.1, we found a large variability in the segmentation of the PPA within the
annotators. Moreover we observed discrepancies in locating and segmenting
the PPA in SLO and fundus images of the same retina, both intra-annotators
and inter-annotator. In our dataset the annotators show a greater agreement
in SLO images, than in fundus ones, suggesting that the SLO images are suit-
able to study this pathology. These considerations suggest to both develop
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automatic procedure to segment the PPA zones and to investigate the PPA
appearance in the two images to understand if one kind of image is better than
the other in identifying the PPA.
Regarding the approach used to registered the images we can state that our
registration method suffers from a manual step that makes the procedure time
consuming and tedious. It could be useful in a future work to make the first
part of the procedure, control points selection, automatic.
A last hint for a possible study is investigate the differences in the OD con-
tour resulting from the annotations in the SLO and fundus images. Since the
annotations are different, it could be possible to understand if the two types
of retinal imaging give us different information about the OD and it could be
understood which kind of images is the best for studying the optic disc.
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Appendix

Optic disc annotation protocol in SLO Heidelberg Spec-
tralis images

Sabrina Mattera, Stefano Gennari, Tom MacGillivray and Emanuele Trucco
s.mattera, s.gennari, e.trucco@dundee.ac.uk
VAMPIRE project
Version: 8th April 2019

1. Purpose and context
The purpose of this exercise is to generate a set of ground truth (gold standard) op-
tic disc contours in matched pairs of Heidelberg Spectralis SLO images and fundus
camera images.

The context is the development of a VAMPIRE application capable of comput-
ing morphometric properties of the vasculature in Heidelberg Spectralis SLO image,
complementing the existing VAMPIRE applications for fundus camera images and
ultra-wide-field-of-view OPTOS SLO images. The contours (“annotations”), will be
used to validate a VAMPIRE software application detecting the OD contour auto-
matically.

For each retina, a fundus camera image is also provided.

2. Methods
For simplicity, we recommend to use Microsoft Paint. Our guidelines refer to Mi-
crosoft Paint for Windows 10, version 1803. If Microsoft Paint is not available on
your operative system, please contact us before starting the annotations.
We suggest to annotate two contours per OD: one showing the most likely contour
in your opinion, and a second, where needed, showing a plausible alternative for
possible, uncertain parts of the contour.
In case of visible peripapillary atrophy (PPA) in the image, we ask you to annotate
it with a third contour.

A contour is annotated by placing (clicking) points along it. For guidance, e.g.
frequency of points, a few examples of annotated contours are provided.
Please check these before starting your annotations.

Feel free to zoom in to place your contour points if this helps you.
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3. Loading the images
Download the archive <Heildelberg SPECTRALIS.zip> and extract all the files.

4. Annotation protocol

4.1 Look at the examples

Start by looking at the examples of annotated contours in the directory <Protocol
and annotation examples>. This will show you what your annotations should look
like. The different colours are explained below. If you have questions, please contact
Sabrina, Stefano and Manuel (emails above) before starting.

4.2 Annotate the images

Please try to annotate the whole set of images consistently, e.g. in similar condi-
tions, and dedicating comparable amounts of time and attention to each image.

The SLO images to be annotated and corresponding fundus camera images are
located in the directory <Images to annotate>.
The SLO images are in the format ‘.tif’, while fundus images are in the format
‘.bmp’.
Please, it is required to annotate the SLO and fundus images independently.

To annotate a new image:

1. Open the image in Paint.

2. Place red dots along your first choice of contour. To do this, select ‘brush’ and
‘size’ as shown in Figure 1. For number/frequency, please follow the examples.

3. If you are uncertain about some parts of the contour, place yellow dots along
your second choice of contour.

4. If PPA is visible, place green dots along the contour.

5. Save the annotated image as <name>ann.tif ; for instance, the annotated
version of image
05.tif would be 05ann.tif.

It would be useful if you could record on a separate file the time taken per image.

5. Images for repeatability

Please, once you have completed the annotations, we ask you to produce a sec-

ond annotation for a batch of 30 images (15 SLO, 15 fundus) randomly chosen. We

will use this set of annotations in order to compute the repeatability.

Please re-annotate without looking the first annotation.

6. Returning the annotated images
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Figure 1. Paint menus. Left: please select the brush indicated by the arrow in
the Brushes menu. Right: please select the thickness indicated by the arrow in the
Size menu. Colour (red for first-choice contour, yellow for second-choice one) can be
selected using the adjacent boxes.

Please upload the annotated images in the Dropbox directory and alert Sabrina

and Stefano.

Thank you very much for your collaboration and time.
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