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Once you have tasted flight,

you will forever walk the earth

with your eyes turned skyward.

For there you have been and there

you will always long to return.

Leonardo da Vinci
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Abstract

One of the latest challenges in the aeronautical field is the research and development

of convertible Unmanned Aerial Vehicles (UAV). This kind of aircrafts offers interesting

alternatives to fixed-wing and Vertical Take-Off and Landing (VTOL) UAVs. Fixed-wing

UAVs are very efficient in the forward flight and they require runways for take-off and

landing, VTOL UAVs, in contrast, have the ability to hover but are not very efficient in

forward flight.

Especially for missions like observation and inspection of structures, in which, for

instance, the vehicle has to inspect a wind turbine and then to fly rapidly towards another

one, both fixed-wing and VTOL UAVs are unsuitable. Convertible Unmanned Aerial

Vehicles (UAV), instead, guarantee a good performance in these kind of missions, as they

provide efficient capabilities in both vertical take-off and landing, hovering and forward

flight.

This research project is initially focused on the accurate dynamic modeling of a bi-

rotor, tilt-body, tail-sitter, delta-wing convertible aircraft. Then, the obtained system is

proved to satisfy the differential flatness property, for which two different analyses, for

zero/small and high aerodynamic velocities, are considered. Differentially flat systems

have the property that all the states and control inputs can be expressed as a function of

a set of flat outputs and a finite number of their derivatives. This study allows to compute

the inverse dynamic model of the system and it is used for the feedforward control.

Finally, the linearized system is decoupled with the Singular Value Decomposition

(SVD) method, and PID controllers are designed.

It is worth to remark that this research project is simulation based, but considerable

effort was made in order to keep this work as close as possible to reality.
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Sommario

Una delle sfide più recenti in campo aeronautico consiste nella ricerca e nello sviluppo

di veicoli aerei senza pilota (UAV) convertibili. Questo tipo di velivoli offre interessanti

alternative agli UAV ad ala fissa e a decollo e atterraggio verticale (VTOL). Gli UAV

ad ala fissa sono molto efficienti nel volo orizzontale e richiedono piste per il decollo e

l’atterraggio, mentre gli UAV VTOL hanno la capacità di volo stazionario ma non sono

molto efficienti nel volo orizzontale.

Specialmente per missioni come l’osservazione e l’ispezione di strutture, in cui, ad

esempio, il veicolo deve ispezionare una turbina eolica e poi volare rapidamente verso

un’altra turbina, sia gli UAV ad ala fissa che quelli VTOL non risultano adatti. I

veicoli aerei senza pilota convertibili (UAV), invece, garantiscono una buona perfor-

mance in questo tipo di missioni, in quanto forniscono capacità efficienti sia nel decollo e

nell’atterraggio verticale che nel volo orizzontale.

Questo progetto di ricerca è inizialmente incentrato sulla modellazione dinamica accu-

rata di un velivolo convertibile con ala a delta, bi-rotore, tilt-body e tail-sitter. In seguito,

si è dimostrato che il sistema ottenuto soddisfa la proprietà di differential flatness, per la

quale sono state effettuate due analisi diverse, per nulle/basse ed elevate velocità aero-

dinamiche. I sistemi differentially flat hanno proprietà che tutti gli stati e gli input di

controllo possono essere espressi in funzione di un insieme di flat outputs e di un numero

finito delle loro derivate. Questo studio permette di calcolare il modello dinamico inverso

del sistema e viene utilizzato per il controllo feedforward.

Infine, il sistema linearizzato viene disaccoppiato con il metodo di Singular Value

Decomposition (SVD) e sono progettati i controllori PID.

Vale la pena sottolineare che questo progetto di ricerca è simulativo, ma sono stati

compiuti notevoli sforzi per mantenere questo lavoro il più vicino possibile alla realtà.
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Chapter 1

Introduction

Unmanned aerial vehicles (UAVs) made their initial appearance in the military as remote-

control aircrafts, but nowadays are widely used for a variety of purposes, for instance in the

surveillance, air-to-ground and air-to-air strikes, wildlife monitoring, aerial photography,

etc.

As [21] reports, UAVs were traditionally classified into: Fixed-Wing and Vertical Take-

Off Landing (VTOL). Concerning Fixed-Wing UAVs, the flight is mainly based on the

thrust to cancel the drag induced by the air movement and the aerodynamic lift on the

wings to compensate for the weight of the vehicle. These vehicles are very efficient in

the forward flight and they require runways for take-off and landing. VTOL UAVs, in

contrast, have the ability to hover, but are not very efficient in forward flight. These two

configurations are illustrated in Figure 1.1a and Figure 1.1b, respectively.

In applications like observation and inspection of structures, where, for instance, the

UAV has to inspect a wind turbine and then to fly rapidly to another one away from its

initial position, it is required efficient capabilities in both vertical take-off, hovering and

forward flight.

Interesting alternatives to fixed-wing and VTOL UAVs, that are clearly unsuitable for

these kind of missions, are the later emerged convertible UAVs.

(a) Example of a fixed-wing UAV. Photo by [15] (b) Example of a VTOL UAV. Photo by [14]

Figure 1.1: UAVs configurations.
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20 Introduction

Figure 1.2: Convair XFY Pogo, 1954. Photo by [12]

Among the possible diverse configurations for a convertible aircraft, this research

project is focused on the tilt-body aerial vehicles, which are increasingly popular in un-

manned applications. Tilt-body convertible UAVs require the body of the aircraft to

rotate during the transition flight and, additionally, wings and rotor hubs are rigidly at-

tached to the aircraft body. Also, a special kind of tilt-body aircraft, which is considered

here, is the so-called tail-sitter due to the ability to take off and land on its tail.

In the history of aeronautics, these ideas have been already followed in the development

of manned aircraft and not only UAVs. For instance, an early prototype of a tilt-body,

tail-sitter aircraft, was the Convair XFY Pogo, illustrated in Figure 1.2. The thrust

generation was effectuated by a pair of three-bladed contra-rotating propellers, and it

was mainly exploited for its ability to perform VTOL on limited surfaces, for instance on

a small warship. Nevertheless, one of the disadvantages of this model was the difficulty

for the pilot, in the uncomfortable sitting position, to perform landing.

The Laboratoire de l’Intégration du Matériau au Système (IMS), at the Polytechnic

Institute of Bordeaux (Bordeaux INP), where this research project was conducted, is

doing research about this topic. The considered aircraft, whose model is shown in Figure

2.1, is a delta-wing with two propellers, which is characterized by four control inputs,

namely the deflections of the left and right elevons and the rotation speeds of the left and

right counter-rotating propeller-engines, explained in detail in Section 2.1.

1.0.1 Aim and challenges of the thesis

The aim of this master thesis is to initially study the aerodynamic forces and moments

acting on the aircraft, in order to design a high accurate model which is as close as

possible to reality. The critical aspects during the different flight modes, as, for instance,

an increase of the angle of attack which exceeds the stall angle, resulting in a sudden drop

in the lift produced by the wing, and the gimbal-lock issue, are taken into account and
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modeled carefully and precisely.

Afterwards, the design of a feedforward controller based on the differential flatness

theory and the design of a feedback controller, are carried out. The approach based on

flatness, which is a property of some nonlinear systems, has numerous advantages: by

identifying a set of flat-outputs, the complete system’s state variables and control inputs,

can be defined as functions of this subset of flat-outputs and a finite number of their time

derivatives. This allows to implement the feedforward control without the need to solve

any differential equations but only algebraic ones.

The mathematical proof of the flatness property for this kind of aircraft is challenging,

not only due to the high complexity of the resulting nonlinear dynamic model, but also

due to the presence of the different flight modes. In this research project, they are treated

separately, and the reasons behind this choice are deeply investigated in Section 3.2.

In addition, the nonlinear model exhibits a high coupling between different motions,

as for instance when the aircraft rolls, it can induce a pitch motion, and vice versa. This

behaviour requires an input-decoupling, where the chosen method is the Singular Value

Decomposition (SVD) approach, before proceeding with the design of the PID controllers.

The practical work was performed using the Softwares MATLAB & Simulink and the

mathematical analyses for the differential flatness property were carried out with Maple.

1.0.2 Thesis overview

A brief overview of each chapter is presented below.

Chapter 2 provides the accurate description of the system, the assumptions and nota-

tions adopted for the whole analysis and the study of the nonlinear dynamic model. The

resulting equations are reported in Section 2.63.

Chapter 3 is initially focused on the differential flatness theory, which is briefly il-

lustrated for a general nonlinear system in Section 3.1. Afterwards the chosen analysis

approach is explained deeply, in Section 3.2, analyzing the reasons that led to the final

solution and the choice to proceed separately for zero/small and for higher aerodynamic

velocities. Finally, in Sections 3.3 and Section 3.4, the representation of the mathematical

model adopted in the different flight modes, the simplifying assumptions, the choice of

the flat-outputs and the resulting solutions are provided.

Chapter 4 illustrates the implementation of the open-loop control based on the differ-

ential flatness approach. Firstly, in Section 4.1, it is introduced the concept of trim, and

an algorithm in order to find the control inputs, which guarantees the aircraft to be in

equilibrium, is implemented. Afterwards, in Section 4.2, based on the results obtained
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from the trim algorithm, the trajectories are generated both for vertical take-off/landing

and hover flight, and for horizontal flight. In particular they are illustrated the role of

the differential flatness property and the advantages it provides. Finally, the results of

the open-loop control are shown: the control inputs obtained from the differential flatness

analyses perfectly match the ones obtained from the trim for all the flight modes, and

in particular a very high accuracy is achieved in the final results, with the exception of

the variables z(t) and θ(t) during horizontal flight, which present some imprecision in

following the generated trajectories.

Chapter 5 explains, in Section 5.1, the procedure followed for the design of PID con-

trollers, for the linearized and decoupled system via Singular Value Decomposition, during

the different flight modes. Afterwards, in Section 5.1.2, the obtained results achieved with

the addition of the feedback control, are compared to the results obtained with only the

feedforward action. The usefulness of the feedback control part is evident comparing the

results obtained with only the feedforward action, with respect to the generated trajectory.

It allows to correct the inaccuracy of the feedforward action alone, which is particularly

visible for the angle θ(t) in horizontal flight, and to keep the errors of the controlled

variables close to zero.

Chapter 6 shows the reached conclusions and the possible further developments.



Chapter 2

Nonlinear dynamic model of the

aircraft

2.1 System description

The UAV convertible aircraft considered is a tail-sitter, tilt-body, with two counter-

rotating rotors, see Figure 2.1. The wings are symmetric triangular shaped, called delta-

wing, and the airfoil is chosen to be symmetric, as illustrated in Figure 2.2.

In order to maneuver the aircraft, by modifying the aerodynamic forces and moments,

the control surfaces have to be defined. Generally, when standard aircraft configurations

are considered, the control surfaces include the elevator, the aileron and the rudder. The

aileron deflection is denoted as δa, the rudder deflection as δr and the elevator deflection

as δe, as represented in Figure 2.3. In the case of a delta-wing configuration, the control

surfaces are called elevons. The left angular deflection is denoted as δel and the right

angular deflection as δer. The mathematical relation between elevons and aileron-elevator

Figure 2.1: Simplified model of the delta-wing aircraft.

23
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Figure 2.2: Symmetric profile of the airfoil, where the chord represents an imaginary
straight line joining the leading edge and the trailing edge of the aerofoil.

Figure 2.3: Control surfaces for a standard aircraft configuration. Image from [4].

signals is defined as follows: [︄
δe

δa

]︄
=

[︄
1 1

−1 1

]︄[︄
δer

δel

]︄
(2.1)

In fact by driving the elevons differentially δel = −δer has the same effect as ailerons,

providing a torque about the x axis of the aircraft (roll control), instead driving the

elevons together δel = δer has the same effect as an elevator, producing a torque about

the y axis of the aircraft (pitch control). The yaw movement is controlled with different

spinning of the propellers ωl ̸= ωr, called “Differential Propeller Rotation”.

In synthesis, the four control inputs are defined in this way:

• δel, δer which are the deflections of the left and right elevons, are expressed in [rad]

and positive deflections are trailing edge down, as shown in Figure 2.1.

• ωl, ωr which are the rotation speeds of the left and right counter-rotating propeller-

engines, are expressed in Pulse Width Modulation [PWM].

and so the control input vector is:

u =

⎡⎢⎢⎢⎢⎣
δel

δer

ωl

ωr

⎤⎥⎥⎥⎥⎦ (2.2)

The flight of this kind of aircraft can be differentiated into the following flight modes:
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• Take-off, landing and hover: in this modes, the aircraft is positioned vertically on

its tail, the aerodynamic velocity is small (or zero during hover) and the thrust from

its propellers allows it to take off, hover and land like a helicopter.

• Horizontal flight (cruise): in this mode, the aircraft flies horizontally with higher

aerodynamic velocities, like a conventional fixed-wing airplane and the control sur-

faces become the primary means of maneuvering the aircraft.

2.2 Assumptions and notations

The trigonometric functions sin, cos, tan are abbreviated into c, s, t respectively, and in

some of the following equations the dependence on time (t) is avoided to save space.

The following assumptions are considered for the whole analysis:

• A constant gravity acceleration is assumed, equal to g = 9.81m s−2, hence the

Center of Mass (CoM) of the aircraft coincides with its Center of Gravity (CG).

• Zero wind condition.

• Flat and fixed earth.

• Absence of external disturbances.

2.2.1 Skew-symmetric operator

Given a vector P = [p1, p2, p3]
T in R3, its skew-symmetric operator [.]× is defined as:

[P ]× =

⎡⎢⎣ 0 −p3 p2

p3 0 −p1
−p2 p1 0

⎤⎥⎦ (2.3)

2.2.2 Reference frames

In this section it is explained what reference systems are taken into account throughout

the whole analysis and what are the relations between them.

In this research project, the reference frames are indicated with upper-case calligraphic

letters and the lower-case superscripts denote the projection frames, and are expressed

with the right-hand rule.
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Inertial-frame I

The inertial-frame I = (O;xi, yi, zi) has the origin O at the surface of the earth and

the North-East-Down (NED) convention is used to define its axis xi, yi, zi, which point

respectively towards the north, the east and the center of the earth.

Vehicle-carried normal Earth frame O

The vehicle-carried normal Earth O = (CG;xo, yo, zo), has the origin at the CG of the

aircraft and its axes are parallel to those of the inertial-frame I.
The gravitational force vector is defined in this frame as:

Go =

⎡⎢⎣ 0

0

mg

⎤⎥⎦ (2.4)

with m = 1.56 kg being the mass of the aircraft, as proposed in the Zagi flying wing by

[4].

Body-frame B

The body-frame B = (CG;xb, yb, zb) is centered in the aircraft’s Center of Gravity, with

the axis xb pointing towards the nose of the aircraft, yb out of the right wing and zb

pointing into the belly of the aircraft, as illustrated in Figure 2.1. The axes xb and zb

define the symmetry plane of the vehicle, to which yb is perpendicular.

Defining three elementary rotation matrices in terms of three successive rotations

ϕ, θ, ψ, called Euler-angles, around the x,y,z axes respectively:

Rx(ϕ) =

⎡⎢⎣1 0 0

0 c(ϕ) −s(ϕ)
0 s(ϕ) c(ϕ)

⎤⎥⎦ Ry(θ) =

⎡⎢⎣ c(θ) 0 s(θ)

0 1 0

−s(θ) 0 c(θ)

⎤⎥⎦

Rz(ψ) =

⎡⎢⎣c(ψ) −s(ψ) 0

s(ψ) c(ψ) 0

0 0 1

⎤⎥⎦
(2.5)

then the relation between the body-frame B and the normal Earth-frame O, shown in

Figure 2.4, is defined as follows:

Ro
b = Rz(ψ(t))Ry(θ(t))Rx(ϕ(t)) = (2.6)
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Figure 2.4: Three rotations from frame B to frame O

=

⎡⎢⎣c(ψ)c(θ) −s(ψ)c(ϕ) + c(ψ)s(θ)s(ϕ) s(ψ)s(ϕ) + c(ψ)s(θ)c(ϕ)

s(ψ)c(θ) c(ψ)c(ϕ) + s(ψ)s(θ)s(ϕ) −c(ψ)s(ϕ) + s(ψ)s(θ)c(ϕ)

−s(θ) c(θ)s(ψ) c(θ)c(ϕ)

⎤⎥⎦ (2.7)

where the subscript b denotes a vector defined in the frame B, which is transformed into

a vector in the frame O, denoted with the superscript o.

Kinematic frame K

The kinematic frame K = (CG;xk, yk, zk) has the origin at the aircraft CG, and the axis

xk points towards the direction of the kinematic speed of the aircraft. The axis zk is given

by a first rotation of an angle −αk (kinematic angle of attack) about yb, and the axis yk

is the result of a second rotation of an angle βk (kinematic sideslip angle) about zk.

Remark The kinematic velocity, also called ground speed, represents the velocity of

the aircraft relative to the earth. Thus,

Vk(t) =
dOCGI

dt
=

⎡⎢⎣vk(t)0

0

⎤⎥⎦ (2.8)

where OCG is the vector connecting the center of the Inertial-frame, O, with the aircraft’s

CG.

Aerodynamic-frame A

The aerodynamic-frame A = (CG;xa, ya, za), with the origin at the aircraft CG, has the

xa axis pointing towards the aircraft’s aerodynamic speed. A is given by two rotations:

za is the result of a first rotation of an angle −αa = −α (aerodynamic angle of attack)

about the axis yb, and the axis ya and xa are obtained with a second rotation of an angle

βa = β (aerodynamic sideslip angle), about the axis za.

Remark The aerodynamic velocity, also called air speed, represents the velocity of the

aircraft with respect to the air. In other words, the aerodynamic velocity of the aircraft
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CG represents the distance, generated by the aircraft per second, between the aircraft’s CG

and a particle of air W , pushed to a new position by CG. Thus,

Va(t) =
dWCGI

dt
=

⎡⎢⎣va(t)0

0

⎤⎥⎦ (2.9)

The normal Earth-frame O is related to the aerodynamic-frame A as:

Ro
a = Rz(χ(t))Ry(γ(t))Rx(µ(t)) = (2.10)

=

⎡⎢⎣c(χ)c(γ) −s(χ)c(µ) + c(χ)s(γ)s(µ) s(χ)s(µ) + c(χ)s(γ)c(µ)

s(χ)c(γ) c(χ)c(µ) + s(χ)s(γ)s(µ) −c(χ)s(µ) + s(χ)s(γ)c(µ)

−s(γ) c(γ)s(µ) c(γ)c(µ)

⎤⎥⎦ (2.11)

Through the angle of attack α(t) and the side-slip angle β(t), the relation between the

aerodynamic-frame A and the body-frame B can be defined as:

Rb
a = Ry(−α(t))Rz(β(t)) =

⎡⎢⎣c(α)c(β) −c(α)s(β) −s(α)
s(β) c(β) 0

s(α)c(β) −s(α)s(β) c(α)

⎤⎥⎦ (2.12)

Remark When the aerodynamic velocity va(t) = 0, the axis of the frame A and those

of the frame B are aligned.

2.2.3 Velocity notations

The relation between the kinematic speed, aerodynamic speed and Vw(t), the velocity of

the air mass relative to the ground, namely the wind velocity is given by:

Vk(t) = Va(t) + Vw(t) (2.13)

Assuming zero wind condition, Vw(t) = 0, then Vk(t) = Va(t), namely A coincides with

K. The velocity Va(t) can be expressed in the body-frame as:

V b
a (t) =

⎡⎢⎣vxvy
vz

⎤⎥⎦ (2.14)
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which allows to write, as [4] shows, the aerodynamic velocity and the angle of attack as:

va(t) =
√︂
v2x + v2y + v2z (2.15)

α(t) = arctan

(︃
vz
vx

)︃
(2.16)

2.2.4 Angular velocities notation

The attitude of the aircraft is represented by the Euler angles roll ϕ, pitch θ, and yaw ψ.

Its time derivative is defined in the inertial frame as:

Ω =

⎡⎢⎣ϕ̇θ̇
ψ̇

⎤⎥⎦ (2.17)

The angular velocities of a general frame a relative to frame b, and projected in frame c,

is defined as Ωc
ab. For instance the angular velocity of the body frame B relative to O and

projected in the body-frame B, is:

Ωb
bo =

⎡⎢⎣pq
r

⎤⎥⎦ (2.18)

2.2.5 Inertia matrix

The inertia matrix is defined as:

I =

⎡⎢⎣
∫︁
(y2 + z2)dm −

∫︁
xydm −

∫︁
xzdm

−
∫︁
xydm

∫︁
(x2 + z2)dm −

∫︁
yzdm

−
∫︁
xzdm −

∫︁
yzdm

∫︁
(x2 + y2)dm

⎤⎥⎦ =

⎡⎢⎣ Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz

⎤⎥⎦ (2.19)

Where the diagonal terms of I are called moments of inertia, which are measures of

the aircraft’s tendency to oppose acceleration about a specific axis of rotation, and the

off-diagonal terms are the products of inertia. In practice this matrix is numerically

computed from mass properties using, for instance, CAD models. The integrals in (2.19)

are calculated with respect to the axis xb, yb, zb in frame B, hence I is constant when

viewed from the body-frame.

Due to the symmetry of the aircraft, with respect to the plane defined by xb and zb,

then Ixy = Iyz = 0, which implies:

I =

⎡⎢⎣ Ix 0 −Ixz
0 Iy 0

−Ixz 0 Iz

⎤⎥⎦ (2.20)
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where its values are taken from Zagi flying wing in [4] and they are Ix = 0.1147 kgm2,

Iy = 0.0576 kgm2, Iz = 0.1712 kgm2 and Ixz = 0.0015 kgm2.

2.3 Aerodynamic forces and moments

A pressure distribution is generated around the UAV body, when it passes through the

air. The strengh and the distribution of the pressure acting on the UAV is a function of

the air density ρ = 1.2682 kgm−3, the airspeed Va, and the shape and attitude of the

vehicle. A typical approach, in order to avoid characterizing the pressure distribution

around the wing, is to capture the effect of the pressure with a combination of forces and

moments. A common procedure, proposed in [4] , is to decompose the aerodynamic forces

and moments into longitudinal and lateral ones.

2.3.1 Longitudinal aerodynamics

The longitudinal forces and moments act in the xb-zb plane, called pitch plane. They

include the lift and drag forces in the xb and zb axis, Flift and Fdrag, and the pitch moment

in the yb axis, mpitch. These are influenced by the angle of attack α, the pitch rate q and

the elevator deflection δe.

Flift =
1

2
ρV 2

a SCL(α, q, δe) (2.21)

Fdrag =
1

2
ρV 2

a SCD(α, q, δe) (2.22)

mpitch =
1

2
ρV 2

a SCm(α, q, δe) (2.23)

CL, CD and Cm are nondimensional aerodynamic coefficients, S = 0.2589 m2 is the plan-

form area of the UAV wing, and c = 0.3302 m is the mean chord of the UAV wing, as

illustrated in Figure 2.2. These values are taken from Zagi flying wing in [4].

In order to have an accurate model of the aircraft, considering linear aerodynamic

models in α for the lift and drag forces,

CL = CL0 + CLαα (2.24)

CD = CD0 + CDαα (2.25)

does not allow to include the stall effect, which happens for high angles of attack. When

the aircraft is flying at low or moderate angles of attack, the flow over the wing is laminar

and as it flows over the wing, it remains attached. In contrast, when the aircraft is flying

at high angles of attack, exceeding the critical stall angle, the flow starts to separate from

the top surface of the wing causing turbulent flow and a sudden drop in the lift produced
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Figure 2.5: The upper drawing represents a wing under a laminar flow. The lower drawing
represents the wing under stall conditions due to a high angle of attack. Image from [4].

by the wing, see Figure 2.5.

Hence linear aerodynamic models in α, erroneously predict that the lift force continues

to increase as the angle of attack increases to physically unrealistic flight conditions. The

proposed solution in [21], consists in interpolating the lift coefficients from two models:

one for small angles of attack and one for large angles of attack.

Consider the following lift models:⎧⎨⎩cL1(α,Re) = c1 sin(2α) for 0 ≤ α ≤ α0(Re) or 180
o − αo(Re) ≤ α ≤ 180o

cL2(α,Re) = c2 sin(2α) otherwise
(2.26)

where Re is the Reynolds number, which in fluid mechanics, is a dimensionless quantity

that helps predict fluid flow patterns in different situations by measuring the ratio between

inertial and viscous forces:

Re =
ρvL

µ
=
vL

ν
(2.27)

with v the velocity of the fluid in (m s−1), ρ the fluid density in (kgm−3), µ the dynamic

viscosity in (kgm−1 s−1), L the length of the chord in (m), and ν = µρ−1 is the kinematic

viscosity in (m2 s−1).

In particular, when this number is low, the flows tend to be dominated by laminar

flow, instead at high Reynolds numbers, flows tend to be turbulent.

c1 is the lift constant for small angles of attack α, c2 is an “average” lift constant

and α0(Re) is the angle at which the stall zone starts. In order to combine cL1(α,Re)

and cL2(α,Re) into a continuous and differentiable curve, a function σ(α, αo(Re)), which
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combines two sigmoid curves is exploited:

σ(α, αo(Re)) =
1

1 + eα−α0(Re)
+

1

1 + e180−α−α0(Re)
(2.28)

The angle α0(Re) is scaled for the change of the Reynolds number:

α0(Re) = α0ref

(︃
Re

Reref

)︃Reexp

(2.29)

where Reref is the reference Reynolds number, α0ref is the angle at which the stall zone

starts for the airfoil at the reference Reynolds number and Reexp is the exponential scaling

constant. Hence, the lift coefficient is modeled as:

CL(α,Re) = cL1(α,Re)σ(α, αo(Re)) + cL2(α,Re)(1− σ(α, αo(Re))) (2.30)

Regarding the drag coefficient, it is almost independent of the Reynolds number, hence

it is modeled as:

CD(α,Re) ≈ CD(α) = c1 + 2c2 sin
2(α) (2.31)

For simulation purposes, as proposed in [16], a symmetric profile NACA0012 is considered,

with c1 = 5.3344 and c2 = 1.0150, the reference Reynolds number Reref = 160000,

α0ref = 9 deg and Reexp = 0.15.

A Reref = 160000 corresponds to an aerodynamic velocity of 7.1595 m s−1, for the

chord c = 0.3302 m and a kinematic viscosity ν = 1.4776e−05 m2 s−1, for the air at 15o.

The obtained lift aerodynamic coefficient is shown in Figure 2.6.

Thus, the lift, drag and pitching moment are given, respectively, by the following

relations:

Flift =
1

2
ρV 2

a S(cL1(α,Re)σ(α, αo(Re)) + cL2(α,Re)(1− σ(α, αo(Re))) (2.32)

+ CLq

c

2Va
q + CLδe

δe) (2.33)

Fdrag =
1

2
ρV 2

a S(c1 + 2c2 sin
2(α) + CDq

c

2Va
q + CDδe

δe) (2.34)

mpitch =
1

2
ρV 2

a S(Cm0 + Cmαα +
Cmqcq

2Va
+ Cmδe

δe) (2.35)
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Figure 2.6: Lift aerodynamic coefficient CL versus the angle of attack α, for Reref =
160000. The linear behaviour CL = CL0 + CLαα is maintained for small α.

2.3.2 Lateral Aerodynamics

The forces and moments for the lateral aerodynamics, cause both rotational motions in

roll and yaw, and translation motion in the lateral direction along the yb axis, which will

result in directional changes in the flight path of the UAV.

The lateral aerodynamics is mainly influenced by the sideslip angle β, the roll rate p,

the yaw rate r and the deflection of the aileron δa.

Thus, the lateral force Fy, the roll moment l and the yaw moment n, are respectively:

Fy =
1

2
ρV 2

a SCY (β, p, r, δel, δer) (2.36)

l =
1

2
ρV 2

a SbCl(β, p, r, δel, δer) (2.37)

n =
1

2
ρV 2

a SbCn(β, p, r, δel, δer) (2.38)

with b = 1.4224 m the wingspan of the aircraft, namely the distance from one wingtip

to the opposite wingtip, and CY , CL and Cn nondimensional aerodynamic coefficients.

Accurate models can be obtained with linear aerodynamic coefficients, proposed in [4], as

follows:
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Fy ≈
1

2
ρV 2

a S(CY0 + CYββ +
CYpbp

2va
+
CYrbr

2va
+ CYδaδa) (2.39)

l ≈ 1

2
ρV 2

a Sb(Cl0 + Clββ +
Clpbp

2va
+
Clrbr

2va
+ Clδaδa) (2.40)

n ≈ 1

2
ρV 2

a Sb(Cn0 + Cnβ
β +

Cnpbp

2va
+
Cnrbp

2va
+ Cnδa

δa) (2.41)

2.3.3 Aerodynamic coefficients

The same notation as [4] is maintained for the following aerodynamic coefficients.

CY0 is the value of the lateral force coefficient CY , when β = p = r = δa = 0, which is

equal to zero, as Cl0 and Cn0 , since the aircraft is symmetric about the plane xb − zb.

Cmα , Clβ , Cnβ
, Clp and Cnr are referred to as stability derivatives, since their values

determine the static and dynamic stability of the aircraft. In particular Cmα , Clβ and Cnβ

determine its static stability, representing the change in the moment coefficients due to

the changes in the direction of the relative wind.

Cmα is referred to as the longitudinal static stability derivative and it must be negative,

such that an increase in α would cause the aircraft to nose down in order to maintain the

nominal angle of attack.

Clβ is called roll static stability derivative, which must be negative, such that it results

in a rolling moment that roll the aircraft away from the direction of the sideslip, hence

leading the angle β to zero.

Cnβ
is the yaw static stability derivative, it must be positive to guarantee stability.

This implies that for a positive sideslip angle, a positive yawing moment is induced. This

yaws the aircraft into the direction of the relative wind, leading the angle β to zero.

Cmq , Clp and Cnr refer, respectively, to the pitch, roll and yaw damping derivative.

These are negative, namely they produce a moment that opposes the direction of motion,

meaning damping the motion.

Cmδe
, Clδa are referred to as the primary control derivatives, associated with the de-

flection of the control surfaces. They are defined as primary, since the moments they

produced are the mean result of the specific control surface deflection. Since a positive

elevator deflection causes a nose-down pitching moment, negative about yb, and a positive

aileron deflection causes a right-wing-down rolling moment, positive about xb, then Cmδe

is negative and Clδa is positive.

In particular, to provide positive and negative actions for the pitch and roll control,

the deflection of the elevons should be:

• Deflected downward simultaneously, to generate a nose-up pitching moment, causing

the aircraft’s nose to pitch up (positive pitch control). This action is used for pulling
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the aircraft into a climb or reducing the angle of descent during landing.

• Deflected upward simultaneously, to generate a nose-down pitching moment, causing

the aircraft’s nose to pitch down (negative pitch control). This action is used for

pushing the aircraft into a descent or reducing the angle of ascent during climb-out.

• The left elevon deflected upward while the right elevon is deflected downward, caus-

ing the aircraft to roll to the right (positive roll control).

• The left elevon is deflected downward while the right elevon is deflected upward,

causing the aircraft to roll to the left (negative roll control).

The values of the aerodynamic coefficients are reported in Table 2.1.

Table 2.1: Aerodynamic coefficients for Zagi flying wing by [4]

Longitudinal Coef. Value Lateral Coef. Value
CL0 0.09167 CY0 0

CD0 0.01631 Cl0 0

Cm0 -0.02338 Cn0 0

CLα 3.5016 CYβ -0.07359

CDα 0.2108 Clβ -0.02854

Cmα -0.5675 Cnβ
-0.00040

CLq 2.8932 CYP 0

CDq 0 ClP -0.3209

Cmq -1.3990 CnP
-0.01297

CLδe
0.2724 CYr 0

CDδe
0.3045 Clr 0.03066

Cmδe
-0.3254 Cnr -0.00434

Cprop 1.0 CYδa 0

M 50 Clδa 0.1682

α0 0.4712 Cnδa
-0.00328

2.3.4 Propulsion Forces and Moments

Propeller thrust

The thrust generated by a propeller can be modeled using the Bernoulli’s principle, namely

to compute the pressure ahead of and behind the propeller, and then to apply this pressure
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difference to the area of the propeller. The total pressure upstream and downstream of

the propeller are defined, respectively, as:

Pupstream = P0 +
1

2
ρV 2

a (2.42)

Pdownstream = P0 +
1

2
ρV 2

out (2.43)

with ρ the density of the air, P0 the static pressure, Vout the speed of the air when it

leaves the propeller, which is defined by the linear relationship:

Vout = kmotorωi (2.44)

with i ∈ {l, r} and kmotor = 40, which specifies the efficiency of the motor.

Thus, the thrust produced by the motor, is defined in the body frame B as:

f bpi = SpropCprop(Pdownstream − Pupstream) = (2.45)

=
1

2
ρSpropCprop

(︁
(kmotorωi)

2 − V 2
a

)︁
(2.46)

Acting along the xb axis:

F b
pi
=

1

2
ρSpropCprop

⎡⎢⎣(kmotorωi)
2 − V 2

a

0

0

⎤⎥⎦ (2.47)

Propeller Torque

When a propeller of the aircraft spins, it generates a force to the air that goes through the

propeller. This increases the momentum of the air while generating a thrust force on the

aircraft. The result of these equal and opposite forces applied by the air on the propeller, is

a torque about the propeller axis of rotation. The propeller applies an equal and opposite

torque to the motor, in response to the torque the motor applies to the propeller, and

therefore to the air. This torque is proportional to the square of the propeller’s angular

velocity and opposed to the propeller’s direction of rotation, as shown by:

TP = −KTP (kΩωi)
2 (2.48)

with KTP = 1e−6 a constant obtained by experiment and Ω = (kΩωi), i ∈ {l, r}, the left

and right propeller speed, with kΩ = 1e3, where both values are taken from Zagi flying

wing by [4].

Hence, the moments induced by the propulsion system, in the body frame B, are given
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by:

mt =

⎡⎢⎣−KTP (kΩωi)
2

0

0

⎤⎥⎦ (2.49)

Even if the effects of this propeller torque are minor, if they are not considered it generates

a slow rolling motion opposed to the propeller rotation. This could be easily counteracted

by generating a rolling moment, due to a small differential elevon deflections.

As explained in [2], each propulsion force induces also a moment, in the body-frame,

as follows:

mpi =
#                 »

(CG,Oi)|B ∧

⎡⎢⎣F
b
pi

0

0

⎤⎥⎦ (2.50)

where
#                 »

(CG,Oi)|B gives the coordinates of the application point for each of the two propul-

sion forces in the body-frame, i ∈ {l, r}.
Since the two propellers are positioned in a symmetric way in the plane formed by xb

and yb, with a distance of xp on the axis xb and yp =
b
4
on yb, then the total moment from

the propulsion forces, in the body-frame B, can be defined as:

mp =

⎡⎢⎣ 0

0

yp(f
b
pl
− f bpr)

⎤⎥⎦ (2.51)

2.4 Wing-propeller interaction

In order to allow attitude control in hover flight, it is necessary to introduce the slip-

stream air induced velocity, due to the spinning of the two propellers. The section of

the wing affected is called wet area Sw, illustrated in Figure 2.7, and its effect on the

aerodynamic equations is modeled by taking into account a induced free-stream velocity

vi.

For this simulation purpose, Sw is modeled as half of the total area of the wing S.

The induced velocity of the slip-stream, at the downstream side of the propeller disk,

as proposed by [17], is a solution of:

v2i + va cos(α)vi −
Fthrust

2ρSprop

= 0 (2.52)

where Sprop = 0.0314 m2 is the area of the propeller disk.

Thus,

vi =
1

2

[︄√︄
(va cos(α))2 +

2Fthrust

ρSprop

− va cos(α)

]︄
(2.53)
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Figure 2.7: Wet and dry areas of the wing, due to the wing-propeller interaction. Image
from [17].

The aerodynamic forces and moments in the slip-stream area are considered to act in

the body frame B and are given by the lift force, the drag force and the pitch moment

respectively:

Lw =
1

2
ρv2i SwCLδe

δe (2.54)

Dw =
1

2
ρv2i SwCDδe

δe (2.55)

mw =
1

2
ρv2i cSwCmδe

δe (2.56)

It is also considered the roll moment induced by the propeller wing interaction in the

body-frame, which is not proposed in [17], and it is defined as:

me = yp
1

2
ρv2i SwCLδa

(δa) (2.57)
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2.5 Total forces and moments

The total force vector acting in the aerodynamic frame A is given by:

F a =

⎡⎢⎣X
a(t)

Y a(t)

Za(t)

⎤⎥⎦ = F a
a +Ra

bF
b
p +Ra

bF
b
w (2.58)

with F a
a defined as the contributions of the lift force, the lateral force and the drag force

in frame A:

F a
a =

⎡⎢⎣−Fdrag

Fy

−Flift

⎤⎥⎦ (2.59)

and F b
w as the contribution of the aerodynamic forces due to the wing-propeller interaction:

F b
w =

⎡⎢⎣−Dw

0

−Lw

⎤⎥⎦ (2.60)

The total torque vector, is expressed in the body frame B and it’s given by:

τ b =

⎡⎢⎣L
b(t)

M b(t)

N b(t)

⎤⎥⎦ = τ ba +mp +mt +mw +me (2.61)

with the vector τ ba defined as follows:

τ ba =

⎡⎢⎣L
b
a(t)

M b
a(t)

N b
a(t)

⎤⎥⎦ =

⎡⎢⎣ l

mpitch

n

⎤⎥⎦ (2.62)

2.6 Nonlinear dynamic model

The nonlinear model for the convertible aircraft is described using the Newton-Euler

formalism.

It is worth to remark that there are various ways on the choice of the frames to write

the equations for the translational and rotational motion.

In this research project both the equations for the translational and rotational motion

are written in the body frame B, as proposed in [2]:
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ξ̇ = Ro
bV

b
a (2.63)

m
dV b

a

dt
+ Ωb

bo ∧mV b
a = Rb

aF
a + (Ro

b)
TGo (2.64)

Ṙ
o

b = Ro
b [Ω

b
bo]× (2.65)

d(IΩb
bo)

dt
+ Ωb

bo ∧ IΩb
bo = τ b (2.66)

Where ξ = [x, y, z]T and (x, y, z) is the position of the CG of the aircraft relative to frame

I.
Ωb
bo = [p, q, r]T , with (p, q, r) being the rotational speeds, and [.]× represents the skew-

symmetric operator, defined in (2.3).

2.6.1 Gimbal lock and Modified Rodrigues Parameters (MRP)

The primary objective of this research project is to model and control a convertible

aircraft, which is capable of taking-off and landing vertically.

Since the aircraft is a tail-sitter, it has to perform a rotation of 90o around the pitch

axis from the vertical take-off to the forward flight, and from the forward-flight to the

vertical landing.

This requires particular attention to the choice of the most suitable description for

the orientation of the body, indeed, choosing a good attitude coordinates allows not only

to simplify mathematical calculations and analysis, but in particular to avoid geometrical

and mathematical singularities.

This leads to a deep investigation on the most suitable description for the rigid body

orientation, which is presented here.

The first subject of investigation concerns the Euler angles, which include three angles

with respect to a fixed coordinate system. The angles are uniquely determined except for

the singular case, which is called Gimbal lock.

To better understand this issue consider an analogy using physical gimbals, which are

mechanical devices with nested rings that allow an object to rotate in three axes: yaw,

pitch and roll.

Imagine an aircraft with three gimbals representing each rotational axis, in such a

system, any orientation can be achieved by independently rotating each gimbal.

However, the problem occurs when the pitch angle approaches 90 degrees (or -90

degrees), where the roll and yaw axes become aligned, resulting in a loss of independence

between the rotations. Effectively, one degree of freedom is lost, and now there are only

two independent axes for rotation instead of three, which is shown in Figure 2.8.



2.6 Nonlinear dynamic model 41

Figure 2.8: In (a) the rotor of the gyroscope is maintained in balance: The red gimbal
ring performs a rotation along the x-axis (red line) to produce the pitch motion; the blue
gimbal ring performs a rotation along the y-axis (green line) to produce the yaw motion;
the green gimbal ring performs a rotation along the z-axis (blue line) to produce the roll
motion. In (b) the rotor of the gyroscope is instead out of balance: Gimbal lock, namely
two out of the three gimbals are in the same plane and one degree of freedom is lost.
Photo by [28].

It becomes evident that Euler angles are not suitable for the specific objectives of this

research project and an alternative orientation description, which allows to overcome the

gimbal lock issue, must be explored.

A possible approach, as proposed in [28], could be the use of the rotation matrices R

for the attitude representation, which can globally and uniquely denote any orientation.

Nevertheless, they include six extra parameters due to the orthogonality condition RTR =

I3×3, resulting in a 9-parameter representation.

This high-redundancy for describing a relative orientation makes the rotation ma-

trices less desirable, leading to further investigations into alternative and more efficient

representations.

Two possible solutions, which also overcome the gimbal lock issue, are the quaternions

and the Modified Rodrigues Parameters (MRP).

Quaternions, also called Euler parameters, provide a nonsingular attitude description

and are well suited to describe arbitrary and large rotations.

The quaternion vector β is described in terms of the principal rotation elements as:
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β0 = cos(
Φ

2
) (2.67)

β1 = e1 sin(
Φ

2
) (2.68)

β2 = e2 sin(
Φ

2
) (2.69)

β3 = e3 sin(
Φ

2
) (2.70)

Since e21 + e22 + e23 = 1, then the parameters βi, i = 0, 1, 2, 3, have to satisfy the holonomic

constraint:

β2
0 + β2

1 + β2
2 + β2

3 = 1 (2.71)

which describes a four-dimensional unit sphere, on which any rotation has a trajectory

on this constrained sphere. In this notation, due to the non-uniqueness of the principal

rotation elements, given a certain attitude, the same orientation will be described by two

sets of Euler parameters. The same quaternion vector β is obtained switching between

the sets (ê,Φ) and (−ê,−Φ), when ê = [e1, e2, e3]
T .

It is worth to notice that any point on the unit constraint sphere surface and its anti-

pole represent the same exact orientation, with the only difference that one specifies the

orientation through the shortest single axis rotation and the other through the longest.

To choose the Euler parameter vector corresponding to the shortest rotation, namely

Φ ≤ 180 deg, the coordinate β0 must be nonnegative.

The second solution, which is adopted to describe the nonlinear model of the aircraft,

consists in the use of Modified Rodrigues Parameters. As described in [26], the MRP

vector σ is defined in terms of Euler parameters as the transformation:

σi =
βi

1 + β0
i = 1, 2, 3 (2.72)

This equation is well-behaved, except near the singularity at β0 = −1, where Φ →
±360 deg. It describes a stereographic projection of the Euler parameter unit sphere

onto the MRP hyperplane normal to the β0 axis at β0 = 0, where the projection point is

at β = (−1, 0, 0, 0). This is illustrated in Figure 2.9.

It needs to be taken into account the fact that the projection of the alternate Euler

parameter vector −β results in a distinct set of shadow (or image) MRPs. Hence, one

can arbitrarily switch between the two vectors through the mapping:

σSi =
−βi

1− β0
=

−σi
σ2

i = 1, 2, 3 (2.73)

where the choice as to which vector is the original and which is the shadow vector is
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arbitrary. It is typically referred to σ to represent the mapping point interior to the unit

sphere and σS the point exterior to the unit sphere.

Considering the non-uniqueness of the principal rotation vector γ and the Euler pa-

rameter vector β, one set of MRPs always corresponds to a principal rotation ϕ ≤ 180 deg

and the other to Φ ≥ 180 deg. This behaviour can be seen in Figure 2.9. Of particular

importance is the unit sphere |σ| = 1, which corresponds to all principal rotations of

180 deg from the origin. When one set of MRPs exits the unit sphere, the other (shadow)

set enters.

It is worth to notice that the definitions of the two sets allows to avoid MRP sin-

gularities altogether, by switching between original and shadow MRP sets as one MRP

vector approaches a singular orientation. In particular, comparing to the original MRPs

which are singular at Φ = ±360 deg, the shadow MRPs have a singular orientation at

Φ = 0 deg. The switch between the two MRPs is chosen here when the vector σ enters the

surface σTσ = 1. This is due to the fact that the mapping between the two MRP vectors

simplifies on this surface to σS = σ and that the magnitude of σ will remain bounded

above by 1. This last property is fundamental, as it reflects the fact that two orientations

can differ only by a finite rotation, and also the current MRP attitude description will

always describe the shortest principal rotation.

Hence, this choice provides for a nonsingular, bounded and minimal attitude descrip-

tion, which is suited to describe large and arbitrary motions.

Substituting the inverse transformation:

β0 =
1− σ2

1 + σ2
βi =

2σi
1 + σ2

i = 1, 2, 3 (2.74)

defining σ2n = (σTσ)n, into the holonomic constraint (2.71), the direction cosine matrix

is obtained:

[C] =
1

(1 + σ2)2
×

⎡⎢⎣4(σ
2
1 − σ2

2 − σ2
3) + (1− σ2)2 8σ1σ2 + 4σ3(1− σ2)

8σ2σ1 − 4σ3(1− σ2) 4(−σ2
1 + σ2

2 − σ2
3) + (1− σ2)2

8σ3σ1 + 4σ2(1− σ2) 8σ3σ2 − 4σ1(1− σ2)

· · ·

8σ1σ3 − 4σ2(1− σ2)

· · · 8σ2σ3 + 4σ1(1− σ2)

4(−σ2
1 − σ2

2 + σ2
3) + (1− σ2)2

⎤⎥⎦
(2.75)

Hence, the orientation of the aircraft from frame O to frame B, Rb
o, is defined with this
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notation, that in compact vector form is parametrized in terms of the MRP as:

Rb
o = [I3×3] +

8[σ̃]2 − 4(1− σ2)[σ̃]

(1 + σ2)2
(2.76)

where [σ̃] is the MRP skew-symmetric operator.

The state vector is defined as x = [x, y, z, vx, vy, vz, σ1, σ2, σ3, p, q, r]
T , with σ1, σ2, and

σ3 the MRP vector components explained in (2.72).

Figure 2.9: Singular behaviour of the MRPs as they describe a complete revolution.



Chapter 3

Differential flatness

This chapter is initially focused on the differential flatness theory, which is briefly il-

lustrated for a general nonlinear system in Section 3.1. Afterwards the chosen analysis

approach is explained deeply, in Section 3.2, analyzing the reasons that led to the final

solution and the choice to proceed separately for zero/small and for higher aerodynamic

velocities. Finally, in Sections 3.3 and Section 3.4, the representation of the mathematical

model adopted in the different flight modes, the simplifying assumptions, the choice of

the flat-outputs and the resulting solutions are provided.

3.1 Theoretical background

The flatness theory can be a very useful approach to the control problem of a nonlinear

system. It was initially developed by Jean Levine, see [11], but many researchers summa-

rized in their works and papers its main aspects and the possible applications to several

systems. The purpose of this section is to explain which is the concept of flatness, seen

from an engineering point of view, and which are the most important advantages of this

property.

Flatness, as [13] and [20] propose, is a system property that extends the notion of

controllability from linear systems to nonlinear dynamical systems. If one system proves

this property is called flat system and it admits a set of outputs (flat outputs), which

can be used to express all its states and inputs, in terms of the flat outputs and a finite

number of their time derivatives, see Figure 3.1.

Definition A nonlinear system

ẋ(t) = f(x(t), u(t)), u(t) ∈ Rm, x(t) ∈ Rn, m ≤ n (3.1)

45
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Figure 3.1: Differential flatness block.

is differentially flat if, and only if, there exists an m-dimensional vector

y = ϕ(x, u, u̇, ..., u(α)) (3.2)

such that x and u can be expressed as functions of the components of y and a finite

number of their time derivatives.

Applications of flatness to problems of engineering interest have grown persistently

in recent years: when a system is flat, as [18] suggests, it is an indication that the

nonlinear structure of the system is well characterized and one can exploit that structure

in designing control algorithms for motion planning, trajectory generation, stabilization

and for the feedforward control. The application to the trajectory generation and to the

control problem is evident for several reasons. In particular, the outputs of the block

of trajectory generation are only the flat ones, which can be defined as different kind

of splines (polynomial, trigonometric, exponential, etc), also the feedforward control is

realized only knowing algebraic relationships between control inputs and flat outputs. In

the feedback the states are built knowing the measurements and so having previously

defined the relationships between the flat outputs and the states, it is simple to get the

actual flat outputs and calculate the error for the reference values. As a result, there are

no differential equations to solve.

In this research project the differential flatness property is exploited for the feedforward

control.
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3.2 Introducing the chosen analysis approach

A first approach to the differential flatness analysis consisted in considering a unique non-

linear dynamic model for the convertible aircraft, with the equations in the translational

motion written in frame A, and those for the rotational motion in frame B. In this model

the orientation from frame O to frame A was expressed in terms of quaternions, as:

Ra
o = I3 − 2β0[β]× + 2[β]×[β]× (3.3)

where [β]× is the skew-symmetric operator of the quaternion vector β. As explained in

Section 2.6.1, quaternions allow to avoid the gimbal lock issue present during the vertical

take-off/landing and hover flight.

The chosen set of flat-outputs was defined as

y(t) = (β0, β1, β2, α) (3.4)

with β0, β1, β2 the first three components of the quaternion vector, defined as (2.67), and

the simplyfing assumption of the side-slip angle equal to zero, which implies Y a(t) = 0,

was considered.

The mathematical analysis was carried out successfully, allowing to express all the

states and control inputs as a function of the flat-outputs and a finite number of their

derivatives, but resulting in a singularity issue related to the fact that several equations

presented a division by the aerodynamic velocity, which could not be simplified. As

already explained, this is not an issue during the horizontal flight, since va is always

greater than zero, instead, it represents a problem when it comes to the hover flight, in

which the aerodynamic velocity is equal to zero. This reason led to the impossibility of

using the same differential-flatness analysis both for the horizontal flight and for the hover

flight.

Having to distinguish into two different analyses, and possibly two different represen-

tations of the model of the system, led to another possible solution. In this proposed

solution, two different representations of the mathematical model of the aircraft are con-

sidered:

• In the first model the equations for the translational motion are expressed in the

aerodynamic frame A and those for the rotational motion in the body frame B,
and it is used for the differential flatness analysis for high aerodynamic velocities

(horizontal flight).

• In the second model the equations for the translational motion are expressed in

frame I and those for the rotational motion in the body frame B, and it is used for
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the differential flatness analysis for zero and small aerodynamic velocities (vertical

take-off/landing and hover flight).

Dealing with two different mathematical models offers the advantage of dealing with the

gimbal lock issue only in the second one, for vertical take-off/landing and hover flight,

since during the horizontal flight this issue is not encountered. To overcome this problem

a different solution from the one proposed in Section 2.6.1, is adopted, which consists in

the use of vertical Euler angles and it will be explained in details later in this chapter, in

Section 3.4.1.

The choice of expressing both models in terms of the Euler angles and vertical Euler

angles, abandoning the first approach in terms of quaternions also for the horizontal flight,

derives from a practical reason which was explored afterwards by searching for this other

approach. Indeed, the use of the quaternions or the MRPs, as proposed in (2.63), offers a

good solution to define a unique nonlinear dynamic model for the simulator while avoiding

the gimbal lock issue in the vertical take-off/landing and in hover flight, but it does not

offer an intuitive and straightforward representation of the behaviour of the aircraft during

flight, which is instead provided by the use of Euler angles.
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3.3 Differential flatness analysis for horizontal flight

3.3.1 Mathematical model

The differential flatness analysis is performed on the nonlinear dynamic model of the

aircraft, where the equations for the translational motion are expressed in the aerodynamic

frame A and those for the rotational motion in the body frame B in order to simplify the

equations, as [1] proposes:

ξ̇ = Ro
aV

a
a (3.5)

m
dV a

a

dt
+ Ωa

ao ∧mV a
a = F a + (Ro

a)
TGo (3.6)

Ṙ
o

a = Ro
a[Ω

a
ao]× (3.7)

d(IΩb
bo)

dt
+ Ωb

bo ∧ IΩb
bo = τ b (3.8)

Where the same notation as (2.63) is maintained. The relation between Ωa
ao and Ωb

bo

derives from the following property:

Ωao = Ωab + Ωbo (3.9)

Projecting this equation in frame A:

Ωa
ao = Ωa

ab +Ra
bΩ

b
bo (3.10)

and using:

Ṙ
b

a = Rb
a[Ω

a
ab]× =⇒ [Ωa

ab]× = (Rb
a)
T Ṙ

b

a (3.11)

it becomes possible to determine the elements of Ωa
ab as functions of the angle of attack

α(t) and the side-slip angle β(t), and their derivatives:

Ωa
ab =

⎡⎢⎣−α̇s(β)−α̇c(β)
β̇

⎤⎥⎦ (3.12)

Substituting (3.12) in (3.10), the expression of Ωa
ao as a function of Ωb

bo is obtained.
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The complete nonlinear dynamic equations of the model are developed as follows:

ẋ(t) = cχcγva (3.13)

ẏ(t) = sχcγva (3.14)

ż(t) = −sγva (3.15)

v̇a(t) =
Xa

m
− sγg (3.16)

β̇(t) = sαp− cαr +
cγsµmg + Y a

mva
(3.17)

α̇(t) = q − (cαp+ sαr)tβ +
cγcµ

cβ

g

V a
a

+
Za

cβmva
(3.18)

χ̇(t) =
−Zasµ+ Y acµ

vamcµ
(3.19)

γ̇(t) =
−cγgm− Y asµ− Zacµ

vam
(3.20)

µ̇(t) =
−cµcγsβg
vacβ

+
pcα + rsα

cβ
− Zasβ

vamcβ
+
sγ(Y acµ− Zasµ)

vamcγ
(3.21)

ṗ(t) =
(Ixz(Ixx − Iyy + Izz)p− (I2xz − Izz(Iyy − Izz))r)q + IxzN

b + IzzL
b

IxxIzz − I2xz
(3.22)

q̇(t) =
−Ixzp2 − r(Ixx − Izz)p+ Ixzr

2 +M b

Iyy
(3.23)

ṙ(t) =
((I2xz + Ixx(Ixx − Iyy))p− Ixz(Ixx − Iyy + Izz)r)q + IxxN

b + IxzL
b

IxxIzz − I2xz
(3.24)

where x = [x, y, z, va, β, α, χ, γ, µ, p, q, r]
T is the state vector and u = [δel, δer, ωl, ωr]

T is

the control input vector, as defined in (2.1).

In order to simplify the analysis, it is assumed that the side-slip angle β is equal to

zero, which implies Y a(t) = 0, see (2.58). Also, the velocity induced by the propeller-

wing interaction is assumed to be null and the aerodynamic coefficients are assumed to

be linear in the angle of attack α(t).
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3.3.2 Choice of the flat-outputs

As [6] explains, some remarks need to be taken into account in the choice of the flat

outputs, in particular:

• The number of the flat outputs need to coincide to the number of the control inputs.

• It is not required for the flat outputs to have particular physical meaning, however it

is more intuitive to consider first the physical variables of the system as flat-outputs

candidates.

Since the number of control inputs is four, then the number of flat-outputs has to be the

same. A set of flat-outputs for this model can be given by:

y(t) = (x(t), y(t), z(t), α(t)) (3.25)

where x(t), y(t), z(t) is the position of the CG of the aircraft relative to frame I and α(t)

is the angle of attack. In this way the 12 system variables and the input variables can

be expressed, both, as functions of these flat outputs and a finite number of their time

derivatives. In other words, 16 system variables and control inputs, minus 4 flat outputs

that can be expressed as functions of themselves, implies that in total 12 variables need

to be expressed as a function of this set of flat outputs.
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3.3.3 Mathematical proof of the differential flatness property

The first step consists in deriving from the equations (3.13), (3.14), (3.15), the aerody-

namic velocity va(t) and the angles γ(t) and χ(t):

va(t) =

√︂
ẋ2 + ẏ2 + ż2 (3.26)

γ(t) = arcsin

(︃
− ż

va

)︃
(3.27)

χ(t) = arctan

(︃
ẏ

ẋ

)︃
(3.28)

Recall that no singularities are present in (3.27), as in all the following equations, since

the aerodynamic velocity is always greater than zero, and it is exploited the atan2 instead

of the arctan in (3.28).

The derivatives of these states are necessary for the following analysis, and are defined

as:

v̇a(t) =
ẋẍ+ ẏÿ + żz̈

ẋ2 + ẏ2 + ż2
(3.29)

v̈a(t) = −(2ẋẍ+ 2ẏÿ + 2żz̈)2

4(ẋ2 + ẏ2 + ż2)
3
2

+
2ẍ2 + 2ẋ

...
x + 2ÿ2 + 2ẏ

...
y + 2z̈2 + 2ż

...
z

2
√︁
ẋ2 + ẏ2 + ż2

(3.30)

γ̇(t) = − 1

va

√︂
1− ż2

v2a

z̈ +
ż

v2a

√︂
1− ż2

v2a

vȧ (3.31)

χ̇(t) =
ÿẋ− ẏẍ

ẋ2 + ẏ2
(3.32)

χ̈(t) =
(−ẋ2ẏ − ẏ3)

...
x + (ẋ3 + ẏ2ẋ)

...
y − 2(ẏÿ + ẋẍ)(ÿẋ− ẏẍ)

(ẋ2 + ẏ2)2
(3.33)

It is worth to remark that equations (3.32) and (3.33) can be singular in straight vertical

flight, since va(t) = ż. Recalling that c(.) and s(.) are respectively sin and cos, then,

dividing (3.32) by (3.20), the angle µ(t) is obtained:

µ(t) = arctan

(︃
vamc(γ)χ̇

vamγ̇ + c(γ)gm

)︃
(3.34)

Where it’s reported here only its first derivative, while its second derivative which is
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required in (3.42) is not written for sake of simplicity:

µ̇(t) =
m (χ̇c(γ)2vȧgm+ c(γ)2vaχ̈gm+ c(γ)v2as(γ)χ̈− χ̇v2aγ̇)

v2amc(γ)
2χ̇2 + c(γ)2g2 +m2 + 2c(γ)vas(γ)gm− c(γ)2v4a

(3.35)

Za(t) is computed from (3.20):

Za(t) = −vamγ̇ + c(γ)gm

c(µ)
(3.36)

Its derivative is given by:

Ż
a
(t) = −(mγ̇vȧ +mvaγ̈ − gms(γ)γ̇

c(µ)
− s(µ)(mvaγ̇ + gmc(γ))µ̇

c(µ)2
(3.37)

From (3.16), Xa(t) is computed:

Xa(t) = mv̇a + s(γ)g (3.38)

The pitch angular rate q(t) is obtained from equation (3.18) as:

q(t) = α̇− c(γ)c(µ)g

va
− Za

mva
(3.39)

Then the roll and yaw angular rates, p(t) and r(t), are obtained from (3.21) and (3.17)

respectively:

p(t) =
1

(1 + tan2(α))

(︃
µ̇

cos(α)
− tan(α)

(︃
cos(γ) sin(µ)g

cos(α)va

)︃
+

Za sin(µ) sin(γ)

m cos(γ)va cos(α)

)︃
(3.40)

r(t) =
va sin(α)p+ cos(γ) sin(µ)g

cos(α)va
(3.41)
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Their derivatives are given by:

ṗ(t) =
1

v2am cos2(γ)

(︁
−va cos(γ)

(︁
g cos2(γ) sin(µ) cos(α)m+ sin(α)mvaµ̇ cos(γ)

+ sin(γ) sin(µ) sin(α)Za) α̇− cos(γ) cos(µ)va
(︁
g cos2(γ) sin(α)m− sin(γ) cos(α)Za

)︁
µ̇

+ cos(γ) sin(µ)
(︁
g cos2(γ) sin(α)m− sin(γ) cos(α)Za

)︁
vȧ +

(︁
sin(µ)

(︁
g cos2(γ)

· sin(γ) sin(α)m+ cos(α)Za) γ̇ + cos(γ) cos(α)
(︂
cos(γ)mµ̈va + sin(µ) sin(γ)Zȧ

)︂)︂
va

)︂
q̇(t) =

(cos(γ) cos(µ)gm+ Za)vȧ + va(g sin(γ) cos(µ)γ̇m+ g sin(µ)m cos(γ)µ̇+mvaα̈− Zȧ )

mv2a

ṙ(t) =
1

cos2(α)v2a
va(g sin(µ) sin(α) cos(γ) + vap)α̇− cos(α)((va sin(α)p+ cos(γ) sin(µ)g)vȧ

+ va(γ̇ sin(γ) sin(µ)g − cos(γ)µ̇ cos(µ)g − va sin(α)ṗ))

(3.42)

Finally, the components Lb(t),M b(t), N b(t) of the total torque vector τ b, see (2.61), are

computed from (3.42), (3.68) and (3.69):

Lb(t) = Ixxṗ− Ixz ṙ − q((Iyy − Izz)rIxzp (3.43)

M b(t) = q̇Iyy + Ixzp
2 + r(Ixx − Izz)p− Ixzr

2 (3.44)

N b(t) = −Ixzṗ+ Izz ṙ − q((Ixx − Iyy)p− Ixzr) (3.45)

The total state vector x is now defined as a functions of only the flat-outputs and a finite

number of their time derivatives, of which the maximum order is four, included in the

derivatives of the states: v̇a, v̈a, γ̇, γ̈, χ̇, χ̈, µ̇, µ̈, Ż
a
, ṗ, q̇ and ṙ, which are needed to

express all the states found above.
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The control inputs can now be derived from τ b and F a, since they depend on Lb(t),

M b(t), N b(t) and Xa(t), Y a(t) assumed to be equal to zero and Za(t), obtained from

the flatness analysis. Due to the complexity of the equations, the computations were

performed with the software Maple and the resulting control inputs are reported here:

wl =

(︃
CmqqvaSc

2ρCDδe
lmotor + 4 cos(α)Cpropv

2
aSpropρcCmδe

lmotor

4Cprop cos(α)Spropck2motorρCmδe
lmotor

+ . . .

· · ·+
2ρv2aSCDααcCmδe

lmotor + 2v2aαScρCDδe
Cmαlmotor + 4 cos(α)N bcCmδe

4Cprop cos(α)Spropck2motorρCmδe
lmotor

+ . . .

· · ·+
4XacCmδe

lmotor − 4M bCDδe
lmotor

4Cprop cos(α)Spropck2motorρCmδe
lmotor

)︃ 1
2

wr =

(︃
CmqqvaSc

2ρCDδe
lmotor + 4 cos(α)Cpropv

2
aSpropρcCmδe

lmotor

4Cprop cos(α)Spropck2motorρCmδe
lmotor

+ . . .

· · ·+
2ρv2aSCDααcCmδe

lmotor + 2v2aαScρCDδe
Cmαlmotor − 4 cos(α)N bcCmδe

4Cprop cos(α)Spropck2motorρCmδe
lmotor

+ . . .

· · ·+
4XacCmδe

lmotor − 4M bCDδe
lmotor

4Cprop cos(α)Spropck2motorρCmδe
lmotor

)︃ 1
2

δel =
1

4v2aSbρ
2ClδaCmδe

CpropSpropkmotorlmotor

(−2bSpropρ
2(CmαClδaα + Cmδe

(Cl0)) . . .

· lmotorkmotorCpropSv
2
a − SCpropSpropbkmotorρ

2lmotor(CmqqClδac+ bCmδe
Clpp+ . . .

· · ·+ rbCmδe
Clr)va + 4LbCmδe

CpropSpropkmotorρlmotor + 4M bClδaCpropSprop . . .

· kmotorρlmotor − 8kωCmδe
kTpN

b)

δer =
1

4v2aSbρ
2ClδaCmδe

CpropSpropkmotorlmotor

(︁
2bSpropρ

2(−CmαClδaα + Cmδe
(Cl0)) . . .

· lmotorkmotorCpropSv
2
a + SCpropSpropbkmotorρ

2lmotor(bCmδe
Clpp+ rbCmδe

Clr − . . .

· · · − CmqqClδac)va − 4LbCmδe
CpropSpropkmotorρlmotor + 4M bClδaCpropSprop . . .

·kmotorρlmotor + 8kωCmδe
kTpN

b
)︁

(3.46)
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3.4 Differential flatness analysis for vertical take-off,

vertical landing and hover flight

3.4.1 Mathematical model

The nonlinear dynamic model of the aircraft on which the differential flatness analysis is

performed for zero/small aerodynamic velocities is given by:

ξ̇ = V o
o (3.47)

m
dV o

o

dt
= Ro

bF
b +Go (3.48)

Ṙ
o

b = Ro
b [Ω

b
bo]× (3.49)

d(IΩb
bo)

dt
+ Ωb

bo ∧ IΩb
bo = τ b (3.50)

Where the same notation as (2.63) is maintained.

V o
o = [vxo , vyo , vzo ]

T is the vector of the components of the velocity along the x, y, z

directions in the frame I. In this model the orientation of the aircraft from frame B to

frame O, is no longer expressed in terms of the MRP, as explained in Section 3.2, but in

terms of vertical Euler angles.

The state vector is x = [x, y, z, vxo , vyo , vzo , ϕ, θ, ψ, p, q, r]
T and the control input vector

is u = [δel, δer, ωl, ωr]
T , as defined in (2.1).

Some simplifying assumptions are considered for the model. Since the aircraft is flying

with a null or small aerodynamic speed, then the aerodyanamic forces, Flift, Fy and Fdrag,

are neglected. It is also neglected the lift force due to the propeller wing interaction, Lw.

The propulsion force F b
p and the drag force due to the propeller wing interaction, Dw, are

considered:

F b =

⎡⎢⎣F
b
p −Dw

0

0

⎤⎥⎦ (3.51)

The pitch moment due to the propeller wing interaction is also taken into account. Finally,

the aerodynamic coefficients are considered to be linear in the angle of attack α(t).

Vertical Euler angles

This set of Euler angles is constructed to provide unambiguous attitudes in the vertical

flight orientation. They are shown in Figure 3.2 and are defined as follows:

• Starting from a vertical attitude in which the vehicle xb axis points upwards and

with the zb axis pointing North.
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Figure 3.2: Definition of vertical Euler angles.

• Apply a yaw rotation ψ about the zb axis.

• Apply a pitch rotation θ about the new position of the yb axis.

• Finally perform a roll rotation ϕ about the axis xb moved twice.

It should be noted that in this system the order of rotations is yaw, pitch, roll ψ, θ, ϕ as

in the standard Euler angle rotations, differently from [7], where this concept is derived

from, and the proposed order of rotations is roll, pitch and yaw ϕ, θ, ψ. This is due to

the fact that the initial rotation of 90 deg around the yb axis, was introduced to the

already defined matrix Ro
b with the standard Euler angles notation. Also, this system

gives singularities when the vertical pitch angle θ is ±90 deg, namely when the aircraft is

horizontal.

The orientation of the body from frame B to frame O, is now defined as:

Ro
b = Ry

(︂π
2

)︂
Rz(ψ)Ry(θ)Rx(ϕ) = (3.52)

=

⎡⎢⎣ −s(θ) s(ψ)c(θ) c(θ)c(ϕ)

s(ψ)c(θ) −s(ψ)s(θ)s(ϕ) + c(ψ)c(ϕ) −c(ψ)s(ϕ) + s(ψ)s(θ)c(ϕ)

−c(ψ)c(θ) s(ψ)c(ϕ)− c(ψ)s(θ)s(ϕ) −s(ψ)s(ϕ)− c(ψ)s(θ)c(ϕ)

⎤⎥⎦ (3.53)
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3.4.2 Choice of the flat-outputs

The same considerations explained in Section 3.3.2, are taken into account. In particular

the chosen flat-outputs are:

y(t) = (x(t), y(t), z(t), ϕ(t)) (3.54)

where x(t), y(t), z(t) is the position of the CG of the aircraft relative to frame I and ϕ(t)

is the roll angle.

3.4.3 Mathematical proof of the differential flatness property

The first step consists in deriving from equation (3.47) the following relations:

ẋ = vxo (3.55)

ẏ = vyo (3.56)

ż = vzo (3.57)

Then, the aerodynamic velocity va(t) is given by:

va(t) =

√︂
ẋ2 + ẏ2 + ż2 (3.58)

From (3.48) defined as:

m

⎡⎢⎣ẍÿ
z̈

⎤⎥⎦ =

⎡⎢⎣ −s(θ)(F b
p −Dw)

s(ψ)c(θ)(F b
p −Dw)

−c(ψ)c(θ)(F b
p −Dw)

⎤⎥⎦ (3.59)

The total force F b(1) = F b
p −Dw is obtained:

F b
p −Dw = m

√︂
ẍ2 + ÿ2 + (z̈ − g)2 (3.60)

From (3.48) they are also obtained the angles ψ(t) and θ(t):

ψ(t) = arctan

(︃
ÿ

g − z̈

)︃
(3.61)

θ(t) = − arcsin

(︃
mẍ

F b

)︃
(3.62)
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And their derivatives are given by:

ψ̇(t) =

...
y (g − z̈)

ÿ2 + (g − z̈)2
+

ÿ
...
z

ÿ2 + (g − z̈)2

ψ̈(t) =

....
y g3 +

....
z g2ÿ + 2g2

...
y
...
z − 3

....
y g2z̈ +

....
y gÿ2 − 2gẏÿ2 − 2

....
z gÿz̈ + 2gÿ

...
z 2

(g2 − 2gz̈ + ÿ2 + z̈2)2

− 4g
...
y
...
z z̈ + 3

....
y gz̈2 +

....
z ÿ3 − 2ÿ2

...
y
...
z − ....

y ÿ2z̈ + 2ÿ
...
y 2z̈ +

....
z ÿz̈2 − 2ÿz̈

...
z 2

(g2 − 2gz̈ + ÿ2 + z̈2)2

+
2
...
y z̈2

...
z − ....

y z̈3

(g2 − 2gz̈ + ÿ2 + z̈2)2

θ̇(t) =
ẍ2

...
x − ...

x (ẍ2 + ÿ2 + (g − z̈)2)− gẍ
...
z + ẍÿ

...
y + ẍz̈

...
z(︂

1− ẍ2

ẍ2+ÿ2+(g−z̈)2

)︂ 1
2
(ẍ2 + ÿ2 + (g − z̈)2)

3
2

(3.63)

The second derivative of θ(t) is not reported here for sake of simplicity, but it is needed

in (3.68) and (3.69). From (3.49) the roll, pitch and yaw angular rates, p(t), q(t) and r(t)

are derived:

p(t) = −ψ̇s(θ) + ϕ̇ (3.64)

q(t) = s(ϕ)ψ̇c(θ) + θ̇c(ϕ) (3.65)

r(t) = ψ̇c(ϕ)c(θ)− θ̇s(ϕ) (3.66)

With their derivatives defined as:

ṗ(t) = −ψ̈s(θ)− ψ̇θ̇c(θ) + ϕ̈ (3.67)

q̇(t) = ϕ̇c(ϕ)ψ̇c(θ) + s(ϕ)ψ̈c(θ)− s(ϕ)ψ̇θ̇s(θ) + θ̈c(ϕ)− θ̇ϕ̇s(ϕ) (3.68)

ṙ(t) = ψ̈c(ϕ)c(θ)− ψ̇ϕ̇s(ϕ)c(θ)− ψ̇c(ϕ)θ̇s(θ)− θ̈s(ϕ)− θ̇ϕ̇c(ϕ) (3.69)

From (3.50) the components of the total torque vector τ b are computed:

Lb(t) = Ixxṗ− Ixz ṙ − q((Iyy − Izz)rIxzp) (3.70)

M b(t) = q̇Iyy + Ixzp
2 + r(Ixx − Izz)p− Ixzr

2 (3.71)

N b(t) = −Ixzṗ+ Izz ṙ − q((Ixx − Iyy)p− Ixzr) (3.72)
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The total state vector x is now defined as a functions of only the flat-outputs and a finite

number of their time derivatives, of which the maximum order is four, included in the

derivatives of the states: ψ̇, ψ̈, θ̇, θ̈, ṗ, q̇ and ṙ, which are needed to express all the states

found above.

The control inputs can be now computed from the total torque vector τ b and the total

force vector F b, of which its components Lb(t), M b(t), N b(t) and (F b
p −Dw) are derived

from the flatness analysis. Also in this case, due to the complexity of the equations, the

computations were performed with the software Maple and the resulting control inputs

are reported here:

δel =
1

2v2i

⎛⎝ 2M b

ρSwcCmδe

+
8(Lb − kTpk

2
ω

2Nb

ρSpropCpropk2motorlmotor
)

bρSwCLδe

⎞⎠ (3.73)

δer =
1

2v2i

⎛⎝ 2M b

ρSwcCmδe

−
8(Lb − kTpk

2
ω

2Nb

ρSpropCpropk2motorlmotor
)

bρSwCLδe

⎞⎠ (3.74)

wl =
1√
2

√︄(︃
2Fp

ρSpropCprop

+ 2v2a

)︃
1

k2motor

+
2N b

ρSpropCpropk2motorlmotor

(3.75)

wr =
1√
2

√︄(︃
2Fp

ρSpropCprop

+ 2v2a

)︃
1

k2motor

− 2N b

ρSpropCpropk2motorlmotor

(3.76)



Chapter 4

Open-loop control implementation

and results

The aim of this chapter is to illustrate the implementation of the open-loop control based

on the differential flatness approach, see Figure 4.1.

Firstly, in Section 4.1, it is introduced the concept of trim, and an algorithm in order to

find the control inputs, which guarantees the aircraft to be in equilibrium, is implemented.

Afterwards, in Section 4.2, based on the results obtained from the trim algorithm,

the trajectories are generated both for vertical take-off/landing and hover flight, and for

horizontal flight. In particular they are illustrated the role of the differential flatness

property and the advantages it provides.

Finally, the results of the open-loop control are shown.

4.1 Trim

Based on the theory illustrated in [4] and in [8], given a nonlinear system described by

differential equations

ẋ = f(x, u) (4.1)

Figure 4.1: Schematic representation of the open-loop control.

61
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where f : Rn × Rm −→ Rn is given by the equations (2.63), x is called the state of the

system, and u is the input. The system is said to be in equilibrium at the state xtrim and

input utrim if

f(xtrim, utrim) = 0 (4.2)

In the aerodynamic literature, an aircraft in equilibrium is said to be in trim, namely the

forces and moments acting on it are balanced, resulting in steady and level flight. Since

trim conditions may include states that are not constant, it is more appropriate to define

the conditions for trim in a general way, as:

ẋtrim = f(xtrim, utrim) (4.3)

The trim points vary depending on the flight mode and are treated differently for when

the aircraft is in hover flight and when it is flying horizontally. For the vertical take-off

and landing it is considered that the aircraft is flying from one equilibrium point to an

other one, found for the hover flight.

The equilibrium point in hover flight given by xtrim and utrim is unique, it has to satisfy

(4.2), and it depends only on the propellers angular rates expressed in PWM, that need

to produce a total thrust force capable of equalizing the weight of the body. Hence, the

aircraft remains at a constant altitude z∗, with a constant orientation given in terms of

MRP, σ∗
1 = 0, σ∗

2 = 0.4142 and σ∗
3 = 0, which corresponds to a rotation of 90 deg around

the yb axis, namely the aircraft’s nose is pointing up. The remaining states are all equal

to zero.

xtrim =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x∗ = 0

y∗ = 0

z∗

v∗x = 0

v∗y = 0

v∗z = 0

σ∗
1

σ∗
2

σ∗
3

p∗ = 0

q∗ = 0

r∗ = 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.4)

Recalling that the aerodynamic velocity during hover, is equal to zero, then the values of

the propeller angular rates which guarantee this condition are derived from (2.45) which
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is equalized to the weight of the aircraft mg:

ωi =
1

kmotor

√︃
mg

ρSpropCprop

i = l, r (4.5)

Hence, the control input vector is given by:

utrim =

⎡⎢⎢⎢⎢⎣
δ∗el
δ∗er

ω∗
l

ω∗
r

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0

0

0.4986

0.4986

⎤⎥⎥⎥⎥⎦ (4.6)

These results are shown in Figure 4.2.

Figure 4.2: Results of the trim algorithm for the hover flight, with a constant altitude of
4m.

For sake of completeness, they are reported in Figure 4.3 also the resulting forces and

moments, which as expected are all equal to zero.

During horizontal flight, instead, the equilibrium is not unique, since the aircraft can

fly at different velocities and directions. The objective is to find the states xtrim and

control inputs utrim, that satisfy (4.3). The aircraft is flying at a given altitude, with an
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Figure 4.3: Resulting forces and moments in the body-frame of the trim algorithm for the
hover flight, with a constant altitude of 4m.

assigned aerodynamic velocity. Since, x(t) = va(t)t, the state vector xtrim is given by:

xtrim =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x∗ = va(t)t

y∗ = 0

z∗

v∗x

v∗y

v∗z

σ∗
1

σ∗
2

σ∗
3

p∗ = 0

q∗ = 0

r∗ = 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.7)

where v∗x, v
∗
y and v∗z are the components of the aerodynamic velocity in the body frame,

see (2.14), and the MRP components are given by the specified orientation at which it is

desired the aircraft to fly. The value of αtrim(t) is retrieved from (2.16):

αtrim(t) = arctan

(︃
v∗z
v∗x

)︃
(4.8)
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Consequently, the vector of the time derivatives of the states is defined as:

ẋtrim =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ∗ = va

ẏ∗ = 0

ż∗ = 0

v̇∗x = 0

v̇∗y = 0

v̇∗z = 0

σ̇∗
1 = 0

σ̇∗
2 = 0

σ̇∗
3 = 0

ṗ∗ = 0

q̇∗ = 0

ṙ∗ = 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.9)

The optimization of the cost function ||f(xtrim, utrim)− ẋtrim||, in the five unknowns αtrim,

δel, δer, ωl and ωr, is performed by the function trim 1 in Matlab, which uses a sequential

quadratic programming algorithm. For instance, if the aircraft is required to fly with an

aerodynamic velocity va(t) = 20 m s−1 at an altitude of 4m, the corresponding state and

input vectors are given by:

xtrim =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

va(t)t

0

−4

19.9935

0

0.5080

0

0.0064

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

utrim =

⎡⎢⎢⎢⎢⎣
−0.0142

−0.0142

0.6404

0.6404

⎤⎥⎥⎥⎥⎦ (4.10)

These results are shown in Figure 4.4.

1https://it.mathworks.com/help/simulink/slref/trim.html
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Figure 4.4: Results of the trim algorithm for the horizontal flight, with an aerodyanamic
velocity of va(t) = 20 m s−1, an initial angle of attack of π/100 and an altitude of 4m.

4.2 Trajectory generation

In the context of trajectory planning, a system which is proved to be differentially flat,

has the advantage that the trajectory can be specified directly in the flat-output space,

and the control inputs needed to execute that trajectory can be obtained as an algebraic

function of the trajectory and its derivatives.

As explained in Section 3.3.2, the flat-output variables do not need to correspond to

convenient physical quantities, but often they do. For the convertible aircraft, the four

flat-outputs, both for zero/small and high aerodynamic velocities, are x(t), y(t), z(t) which

is the position of the CG of the aircraft relative to frame I along with the angle of attack

α(t) for the horizontal flight, and the roll angle ϕ(t) for the vertical take-off/landing

and hover flight. Therefore, it becomes easy to specify start and goal locations in the

flat-output space.

Note that in order to recover the states and the inputs to the vehicle along the tra-

jectory, they are needed not only the values of the flat-outputs along the trajectory, but

also their derivatives.

It is convenient to define the trajectories using a differentiable basis function, as,

intuitively, the states and inputs of the vehicle at some point along a trajectory must

depend not only on the position, but also on the velocity, acceleration and higher order

derivatives of the trajectory at that point. Among the various choices that would work
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in this setting, it is decided to adopt the idea proposed in [5] and [24], where the use of

polynomials, due to their analytical and computational tractability, is chosen.

Consider the evolution of a flat-output variable, over a time interval t ∈ [t1, t2], for

instance a position coordinate, prescribed by a polynomial P (t) between two points in

the space of flat-outputs. The objective is to select the coefficients of the polynomial, in

order to match the endpoints at t1 and t2 (and the derivatives at those endpoints), with

those that have been specified. Hence, it is desired to optimize some cost function of the

derivatives of the polynomial, by using the minimum-snap (4th derivative) cost function,

which was proposed in the trajectory generation for quadrotors. This method allows to

discourage abrupt changes in the motor command to the quadrotor, resulting in graceful

trajectories, and it is explained briefly in the following.

Denote pn the coefficients of a polynomial P of degree N such that:

P (t) = pnt
N + pn−1t

n−1 + ...+ p0 =
N∑︂
n=0

pn(t)t
n (4.11)

The coefficients of P has to be optimized, in order to minimize cost functions in this form:

J =

∫︂ t=t2

t=t1

c0P (t)
2 + c1P

′(t)2 + c2P
′′(t)2 + ...+ cNP

(N)(t)2dt (4.12)

which can be written in quadratic form as:

J = pTQp (4.13)

where p ∈ (R)N+1 is the vector of the polynomial coefficients and Q is the cost matrix,

corresponding to the desired penalty on each of the polynomial derivatives. In addition,

it should be also constrained the solution to enforce specific conditions on the value and

derivatives of the initial and final enpoints of the polynomial. These constraints are

defined as:

At1p = bt1 (4.14)

At2p = bt2 (4.15)

with At1 and At2 the matrices which map the coefficients p to the derivatives of the poly-

nomial at the beginning and end, respectively. The values of the derivatives to constrain

are indicated by the vectors bt1 and bt2 . Every row of (4.14) and (4.15) corresponds to a

particular derivative to be constrained, including the 0th derivative, that allows to con-

strain the value of the polynomial, namely the position. Hence, the standard quadratic

programming problem can be obtained by concatenating the desired constraints on the
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initial and final derivatives of the polynomial:

min
p

pTQp

s.t. Ap− b = 0
(4.16)

The trajectory followed by the convertible aircraft consists in four independent polyno-

mials that describe the evolution of the four flat output variables through time, and it

starts and end at rest as the higher order derivatives begin and end at zero.

The function used in Matlab, which performs what has been explained up to now,

is the minsnappolytraj 2, which generates a minimum snap polynomial trajectory

that achieves a given set of input waypoints with their corresponding time points. In

particular, the function returns positions, velocities, accelerations, jerks, and snaps at the

given number of samples. It also returns the piecewise polynomial form of the polynomial

trajectory with respect to time, as well as the time points, and the sample times.

4.2.1 Trajectory generation for horizontal flight

For generating the trajectory in the horizontal flight it is considered that the aircraft is

flying at a given arbitrary altitude with respect to frame I of 4 m, namely z(t) = −4 m,

with a y(t) coordinate equal to zero. Instead the x(t) coordinate in frame I is obtained

from:

x(t) = vat (4.17)

where the value of the aerodynamic velocity can be selected arbitrarily. In this way the

vector of waypoints for the trajectory generation for high aerodynamic velocities is defined

in terms of the aerodynamic velocity and the remaining flat-output α(t) as:

wPts =

[︄
va(t)

α(t)

]︄
(4.18)

Since the aircraft has to fly from one equilibrium point to the next one, explained in

Section 4.1, the values for the angle of attack and for the final aerodynamic velocity

are defined by the trim, respectively as αtrim1 , αtrim2 and va1 , va2 . Considering that the

aircraft has to fly horizontally, for instance in a time period t ∈ [t1, t2] = [10, 40]s, then

the vectors of waypoints at time t1 and t2 are given respectively by:

wPts1 =

[︄
va1

αtrim1

]︄
wPts2 =

[︄
va2

αtrim2

]︄
(4.19)

2https://it.mathworks.com/help/robotics/ref/minsnappolytraj.html
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where, the aerodynamic speeds are va1 = 20 m s−1 at the first trim point, and va2 =

25 m s−1 at the second, and the angles of attack are obtained as αtrim1 = 0.0254 rad,

αtrim2 = 0.0163 rad, as shown in Figure 4.5.

Figure 4.5: Examples of a polynomial trajectory for an initial aerodynamic velocity of
20 m s−1, showing the evolution of the flat-outputs and va(t) during time.

4.2.2 Trajectory generation for vertical take-off/landing and hover

flight

The vector of waypoints for the trajectory generation for zero/small aerodynamic veloci-

ties is defined in terms of the flat-outputs as:

wPts =

⎡⎢⎢⎢⎢⎣
x(t)

y(t)

z(t)

ϕ(t)

⎤⎥⎥⎥⎥⎦ (4.20)

An example of a trajectory for the hover flight consists in requiring the aircraft to perform

a rotation around the roll angle ϕ(t) from 0 rad s−1 at time t1, to π/4 rad s
−1 at time t2,
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in an arbitrary time interval, t ∈ [t1, t2] = [10, 40]s, at a constant altitude of 4 m, namely:

wPts1 =

⎡⎢⎢⎢⎢⎣
0

0

−4

0

⎤⎥⎥⎥⎥⎦ wPts2 =

⎡⎢⎢⎢⎢⎣
0

0

−4
π
4

⎤⎥⎥⎥⎥⎦ (4.21)

Another movement the aircraft is required to perform during the vertical flight modes is

to move from an equilibrium point to another one, see Section 4.1, namely from a certain

altitude position, for instance an height of 4m, up to another altitude position, as 8m,

defined in frame I as −4m and −8m, namely:

wPts1 =

⎡⎢⎢⎢⎢⎣
0

0

−4

0

⎤⎥⎥⎥⎥⎦ wPts2 =

⎡⎢⎢⎢⎢⎣
0

0

−8

0

⎤⎥⎥⎥⎥⎦ (4.22)

These trajectories are shown in Figure 4.6 and 4.7.

Figure 4.6: Example of a polynomial trajectory for hover flight showing the evolution
of the flat-outputs during time, where the aircraft is required to remain at a constant
altitude of 4 m and to perform a rotation of ϕ(t) = π

4
in the time interval t ∈ [10, 40]s.
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Figure 4.7: Example of a polynomial trajectory for vertical flight showing the evolution
of the flat-outputs during time, when the aircraft is required to fly from an altitude of 4m
up to an altitude of 8m.
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4.3 Results of the open-loop control for horizontal

flight

The obtained results of the open-loop control, for an initial aerodynamic velocity of

20 m s−1, an altitude of 4m and an initial angle of attack of 0.0254 rad are reported

in this section and compared with the generated ones, in Figures 4.8, 4.9, 4.10, 4.11 and

4.12.

It is worth to notice that the control inputs obtained from the differential flatness

analysis perfectly match the ones obtained by the trim algorithm, ensuring equilibrium

during flight:

utrim =

⎡⎢⎢⎢⎢⎣
−0.014

−0.014

0.6404

0.6404

⎤⎥⎥⎥⎥⎦ u =

⎡⎢⎢⎢⎢⎣
−0.014

−0.014

0.6404

0.6404

⎤⎥⎥⎥⎥⎦ (4.23)

and the total forces and moments acting on the aircraft are zero, as expected.

An interesting remark is that the generated angle θ(t) is close to the angle of attack,

as desired during horizontal flight, for the no wind condition and the absence of other

external factors, by contrast the simulated result for θ(t) presents some imprecision, see

Figure 4.11. Also, the altitude z(t) is not staying constant at the required altitude due

to the parametric uncertainty in the lift aerodynamic coefficient, see Figure 4.8.

Figure 4.8: Result of the open-loop control for the position of the aircraft in horizontal
flight with respect to frame I.
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Figure 4.9: Result of the open-loop control for the aerodynamic velocity of the aircraft
in horizontal flight, the aerodynamic velocity has been obtained from the norm of the
components of V b

a , namely vx, vy and vz.

Figure 4.10: Result of the open-loop control for the angle of attack of the aircraft in
horizontal flight. The value of α is obtained from (2.16).
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Figure 4.11: Resulting roll, pitch and yaw angles of the open-loop control, derived from
the angles χ(t), γ(t) and µ(t), for sake of clarity.

Figure 4.12: Result of the open-loop control for the angular rates p(t), q(t) and r(t) in
horizontal flight.
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4.4 Results of the open-loop control for vertical take-

off/landing and hover flight

The results for zero/small aerodynamic velocities are illustrated in this Section, in Figures

4.13, 4.14, 4.15 and 4.16. It is worth to remark that the control inputs obtained from

the differential-flatness analysis perfectly match the ones obtained by the trim algorithm,

ensuring equilibrium during flight, and that the total forces and moments acting on the

aircraft are zero.

4.4.1 Results for vertical flight

The obtained results of the open-loop control for the vertical flight are reported here.

The simulation shown here, illustrates the vertical movement during the take-off, from an

altitude of 4m up to 8m in the time interval t ∈ [10, 40]s.

All the simulated results are highly accurate in comparison with the generated ones.

Figure 4.13: Result of the open-loop control, where the aircraft is required to vertically
move from an altitude of 4m up to 8m in the time interval t ∈ [10, 40]s.
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Figure 4.14: Resulting aerodynamic velocity of the open-loop control, as expected its
value increases in the time interval t ∈ [10, 40]s, due to the variation in altitude of the
aircraft.

Figure 4.15: Resulting roll, pitch and yaw angles of the open-loop control, derived from
the MRP components, for sake of clarity.
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Figure 4.16: Resulting angular rates of the open-loop control.
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4.4.2 Results for hover flight

The obtained results of the open-loop control, when the aircraft is required to fly at a

fixed altitude of 4m and to perform a rotation from ϕ(t) = 0 to ϕ(t) = π
4
in the time

interval t ∈ [10, 40]s, are shown in Figures 4.17, 4.18, 4.19 and 4.20.

All the simulated results are highly accurate in comparison with the generated ones,

with a slight imprecision after 45s of simulation for the variables x(t), y(t) and va(t).

Figure 4.17: Result of the open-loop control for the position of the aircraft with respect
to frame I, where the aircraft is required to remain at an altitude of 4m.
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Figure 4.18: Resulting aerodynamic velocity of the open-loop control. As expected, since
the aircraft is in hover flight, it is equal to zero. It has been obtained from the norm of
the components of V b

a , namely vx, vy and vz.

Figure 4.19: Resulting roll, pitch and yaw angles of the open-loop control, derived from
the MRP components, for sake of clarity. As expected, the aircraft performs the requested
rotation ϕ in the time interval t ∈ [10, 40]s.
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Figure 4.20: Resulting angular rates of the open-loop control. As expected, to perform
the requested rotation ϕ, an effort from p(t) is required in the time interval t ∈ [10, 40]s.



Chapter 5

Closed-loop control implementation

and results

In Section 5.1 it is explained the procedure followed for the design of PID controllers ,

for the linearized and decoupled system via Singular Value Decomposition, during the

different flight modes. Afterwards, in Section 5.2 and 5.3, the obtained results achieved

with the addition of the feedback control, are compared to the results obtained with only

the feedforward action.

5.1 Input decoupling and design of PID controllers

5.1.1 Horizontal flight

During horizontal flight the variables to control are the roll, pitch and yaw angles, ϕ(t),

θ(t), ψ(t), and the aerodynamic velocity va(t). These movements are intrinsically coupled

because actions taken to control one of them can affect the others. For instance, when

the aircraft rolls, it can induce a pitch motion, and vice versa.

Hence, four new control inputs are defined as functions of the true ones δel, δer, ωl, ωr:

uva = ωl + ωr (5.1)

uθ = δel + δer (5.2)

uϕ = δel − δer (5.3)

uψ = ωl − ωr (5.4)

It is of interest to isolate the effect of each input, starting with the linear time-invariant

81
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(LTI) system represented by the state-space equations:

ẋ(t) = Ax(t) +Bu(t) (5.5)

y(t) = Cx(t) +Du(t) (5.6)

where A,B,C,D are the matrices that describe the system dynamics. Among the various

methods suitable for this purpose, the chosen one is the Singular Value Decomposition

(SVD), which is applied at the decoupling frequency of 2π10 (rad/s). This allows to

obtain four transfer functions for the variables ϕ(t), θ(t), ψ(t) and va(t) and for each of

these, a PID controller is designed, whose transfer function, ideally, is defined as follows:

C(s) = KP +
KI

s
+KDs = KP

(︃
1 +

1

TIs
+ TDs

)︃
(5.7)

Since this is an improper transfer function due to the term TDs, for physical realizability,

the ideal derivative is replaced by the high-pass filter

H(s) =
s

TLs+ 1
(5.8)

namely, a pole at high frequency −1/TL is introduced. So, the actual transfer function of

the PID controller is

C(s) = KP +
KI

s
+KD

s

TLs+ 1
= KP

(︃
1 +

1

TIs
+ TD

s

TLs+ 1

)︃
(5.9)

and its block diagram implementation is shown in Fig. 5.1.

Figure 5.1: PID scheme.

In order to design the controller, then, the three gains KP , KI and KD, related to

the proportional, integral and derivative action respectively, must be chosen. Also, the

high-frequency pole for the real derivative implementation must be placed.

The chosen tuning technique for the determination of the three gains is the Bode’s

method (frequency response method) proposed in [23], in order to satisfy the required
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control design specifications on the step response of the system. In particular, once that

are given the requested settling time ts,5% and the maximum admissible overshootMP (in

this case they are chosen as ts,5% ≤ 0.15s and MP ≤ 10%), assuming that the closed loop

system admits a second order dominant pole approximation

P (s) =
ω2
n

s2 + 2δωns+ ω2
n

, 0 ≤ δ < 1 (5.10)

the relationship between the time domain specifications and the parameters of the domi-

nant poles (the natural frequency ωn and the damping factor δ) is

ts,5% =
3

δωn
δ = log

1
MP√︂

π2 + log2 1
MP

(5.11)

And, for a closed-loop system that admits a second order dominant pole approximation,

the following relations hold between the parameters of the dominant poles and the target

gain cross over frequency ωgc and phase margin φm:

ωgc ≈
3

δts,5%
φm = atan

2δ√︁√
1 + 4δ4 − 2δ2

(5.12)

Then, according to Bode’s method, the PID gains can be computed as follows:⎧⎪⎪⎨⎪⎪⎩
KP = ∆K cos∆φ

KI =
KP

TI
KD = KPTD

(5.13)

where

∆K = |(P (jωgc))|−1 (5.14)

TD =
tan (∆φ) +

√︂
(tan (∆φ))2 + 4/α

2ωgc
(5.15)

TI = αTD, α = 4 (5.16)

And finally, the frequency of the pole for the derivative implementation, is chosen 5 times

larger than the gain cross over frequency:

TL =
1

5ωgc
(5.17)

The obtained PID transfer functions are defined as Cva, Cϕ, Cθ and Cψ, and the true
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control inputs are obtained as functions of uva, uϕ, uθ and uψ:

δel =
uθ + uϕ

2
(5.18)

δer =
uθ − uϕ

2
(5.19)

ωl =
uva + uψ

2
(5.20)

ωr =
uva − uψ

2
(5.21)

The Simulink scheme is reported in Figure 5.2.

Figure 5.2: Simulink scheme of the feedback for the horizontal flight. S, V and U represent
the matrices of the Singular Value Decomposition. V and U are the orthogonal matrices
and S is the diagonal matrix containing singular values.

The obtained results are presented and commented in Section 5.2.

5.1.2 Vertical take-off/landing and hover flight

During the vertical and hover flight, the variables to control are the roll, pitch and yaw

angles, ϕ(t), θ(t), ψ(t), and the altitude z(t). As in the horizontal flight mode, also these

variables are intrinsically coupled and the four new control inputs are defined:

uz = ωl + ωr (5.22)

uθ = δel + δer (5.23)

uϕ = δel − δer (5.24)

uψ = ωl − ωr (5.25)
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The same procedure used in horizontal flight which leads to the design of the four PID

controllers is followed, and it is not reported here for sake of simplicity.

The definition of the true control inputs as function of uz, uϕ, uθ and uψ, is given by:

δel =
uθ + uϕ

2
(5.26)

δer =
uθ − uϕ

2
(5.27)

ωl =
uz + uψ

2
(5.28)

ωr =
uz − uψ

2
(5.29)

The obtained results are presented and commented in Section 5.3.

5.2 Results of the closed-loop control for horizontal

flight

The obtained results with the feedback control, for an initial aerodynamic velocity of

20 m s−1, an altitude of 4m and an initial angle of attack of 0.0254 rad are reported in

this Section and compared with the ones obtained with the feedforward control and the

generated trajectory that should be followed, in Figures 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8.

The usefulness of the feedback control part is evident comparing the results obtained

with only the feedforward action, with respect to the generated ones. This can be seen

for the aerodynamic velocity in Figure 5.3 and for the angle θ(t) in Figure 5.5, where the

feedback corrects the inaccuracy of the feedforward action.

In Figures 5.7 and 5.8 it is shown how the feedback action keeps the errors between

the generated and simulated trajectory of the variables to control close to zero. Clearly,

due to the imprecision of the aerodynamic velocity and the angle θ(t) in following the

desired trajectory even with the introduction of the feedback, the initial errors eva and

etheta are higher.
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Figure 5.3: Comparison between the resulting aerodynamic velocity with the feedback
control versus with the feedforward control, for the horizontal flight with an initial va(t) =
20 m s−1.

Figure 5.4: Zoomed view of Figure 5.3.
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Figure 5.5: Comparison between the resulting roll, pitch and yaw angles with the feedback
control versus with the feedforward control, for the horizontal flight with an initial va(t) =
20 m s−1.

Figure 5.6: Zoomed view of the angle θ(t) in Figure 5.5.
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Figure 5.7: Error for the aerodynamic velocity adding the feedback to the feedforward
action, for the horizontal flight with an initial va(t) = 20 m s−1.

Figure 5.8: Error for the roll, pitch and yaw angles adding the feedback to the feedforward
action, for the horizontal flight with an initial va(t) = 20 m s−1.
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5.3 Results of the closed-loop control for vertical take-

off/landing and hover flight

5.3.1 Results for vertical flight

The obtained results with the feedback control for an initial altitude of 4m are reported

in this Section and compared with the ones obtained with the feedforward control and

the generated trajectory, in Figures 5.9 and 5.10.

The feedback action maintains an accurate tracking of the generated trajectory, and

it can be observed in Figures 5.11 and 5.12, that the errors for the controlled variables

are kept to zero.

Figure 5.9: Comparison between the resulting altitude with the feedback control versus
with the feedforward control, for the vertical flight with an initial altitude of 4m.
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Figure 5.10: Comparison between the resulting roll, pitch and yaw angles with the feed-
back control versus with the feedforward control, for the vertical flight.

Figure 5.11: Error for the altitude z(t) adding the feedback to the feedforward action, for
the vertical flight.
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Figure 5.12: Error for the roll, pitch and yaw angles adding the feedback to the feedforward
action, for the vertical flight.
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5.3.2 Results for hover flight

The obtained results with the feedback control, when the aircraft is required to fly at a

fixed altitude of 4m and to perform a rotation from ϕ(t) = 0 to ϕ(t) = π
4
in the time

interval t ∈ [10, 40]s, are reported in this Section and compared with the ones obtained

with the feedforward control and the generated trajectory, in Figures 5.13 and 5.14.

The feedback action maintains an accurate tracking of the generated trajectory, and

it can be observed in Figures 5.15 and 5.16, that the errors for the controlled variables

are kept to zero.

Figure 5.13: Comparison between the resulting altitude with the feedback control versus
with the feedforward control, for the hover flight with an altitude of 4m.
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Figure 5.14: Comparison between the resulting roll, pitch and yaw angles with the feed-
back control versus with the feedforward control, for the hover flight.

Figure 5.15: Error for the altitude z(t) adding the feedback to the feedforward action, for
the hover flight.
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Figure 5.16: Error for the roll, pitch and yaw angles adding the feedback to the feedforward
action, for the hover flight.



Chapter 6

Conclusion and further developments

The derived model includes all the significant phenomena for all the flight modes of

this kind of aircraft, providing a very precise starting point for subsequent analyses and

investigations.

The overall system has been proven to be flat, namely all the system’s state and input

variables can be expressed as functions of the flat-outputs and a finite number of their

time derivatives. The flat-outputs that satisfy this property are x(t), y(t) and z(t) for all

the flight modes, with the addition of α(t) for the horizontal flight and of ϕ(t) for the

vertical and hover flight.

The trajectory has been generated by four independent polynomials for the horizontal

flight and vertical/hover flight respectively, that describe the evolution of their four flat

output variables through time. This allows to define all the flight phases and their related

maneuvers.

The results prove that a feedforward control, able to steer the system along the gen-

erated trajectory, can be built using the flatness relationships, which are only algebraic.

Additionally, the control inputs obtained from this analysis perfectly match the ones

derived from the trim algorithm, thus ensuring equilibrium during flight.

It is also proved that the feedforward action alone is not sufficient to guarantee high

accuracy in tracking the generated trajectory, but a simple feedback law can be introduced,

allowing to follow the trajectory in a good way.

Further developments may consist in implementing a switch based on the aerodynamic

velocity, in order to automatically pass from the feedforward control in vertical and hover

flight, to the horizontal flight. Nevertheless, the current result of the differential flatness

analysis in horizontal flight at low aerodynamic speeds appears to be inaccurate and needs

to be improved.
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Appendix A

Matlab codes

A.1 Lift aerodynamic coefficient CL versus the angle

of attack α

1 function [coeffL] = coeffLf(alpha_deg)

2

3 alpha_rad = alpha_deg/180*pi;

4 va = 5;

5 c = 0.3302;

6 nu = 1.4776e-05;

7 Re = va*c/nu;

8

9 % Lift sigmoid function parameters

10 alpha0_deg = 9;

11 Re0 = 16e4;

12 pow_coef = 0.15;

13

14 % Lift coefficients

15 c1_lift = 4.9781;

16 c2_lift = 1.015;

17

18 alpha_0_Re = alpha0_deg*(Re/Re0)ˆpow_coef;

19

20 if (abs(alpha_deg)<=alpha_0_Re) || (abs(alpha_deg)>=180-alpha_0_Re)

21 CL1 = c1_lift*sin(2*abs(alpha_rad));

22 CL2 = 0;

23 elseif (abs(alpha_deg)>alpha_0_Re) && (abs(alpha_deg)<180-alpha_0_Re)

24 CL1 = 0;

25 CL2 = c2_lift*sin(2*abs(alpha_rad));

26 else

27 CL1 = 0;

28 CL2 = 0;
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29 end

30 sigmoide = 1/(1+exp(abs(alpha_deg) - alpha_0_Re)) + 1/(1+exp(180-abs(

alpha_deg) - alpha_0_Re));

31 coeffL = sign(alpha_deg) * (CL1*sigmoide+CL2*(1 - sigmoide));

32 end

A.2 Forces and moments

1 function[F,M,IMat,m] = forces_moments(x,u)

2

3 delta_el = u(1); % left elevon deflection angle

4 delta_er = u(2); % right elevon deflection angle

5 w_l = u(3); % left propeller angular rate (PWM)

6 w_r = u(4); % right propeller angular rate (PWM)

7

8 po_x = x(1); % x coordinate position in Earth frame

9 po_y = x(2); % y coordinate position in Earth frame

10 po_z = x(3); % z coordinate position in Earth frame

11 vb_x = x(4); % vx coordinate speed in Body frame

12 vb_y = x(5); % vy coordinate speed in Body frame

13 vb_z = x(6); % vz coordinate speed in Body frame

14

15 %% Compute air data

16 va = sqrt(vb_xˆ2+vb_yˆ2+vb_zˆ2); % aerodynamic speed

17 alpha_rad = atan2(vb_z,vb_x); % angle of attack

18 alpha_deg = alpha_rad/pi*180;

19 beta_rad = atan2(vb_y,va); % side-slip angle

20 beta_deg = beta_rad/pi*180;

21

22 bRa = Ry(-alpha_rad)*Rz(beta_rad); % rotation matrix from Aerodynamic to

Body frame

23

24 %% Modified Rodrigues Parameters

25 sig_vec = x(7:9);

26 sig1 = sig_vec(1);

27 sig2 = sig_vec(2);

28 sig3 = sig_vec(3);

29

30 %% Rotation matrix with MRP

31 norm_sig_squared = sig_vec’*sig_vec;

32 sig_sqew = [0 -sig3 sig2; sig3 0 -sig1; -sig2 sig1 0];

33 bRo = eye(3)+1/(1+norm_sig_squared)ˆ2*(8*sig_sqew*sig_sqew-4*(1-

norm_sig_squared)*sig_sqew);

34
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35 %% Roll, pitch and yaw angular rates

36 p = x(10);

37 q = x(11);

38 r = x(12);

39

40 %% Parameters

41 m = 1.56; % (kg) full weight of the delta-wing

42 g = 9.80665; % (m/sˆ2) gravitational acceleration

43 Ixx=.1147; % (kg*mˆ2) (Zagi flying wing)

44 Iyy=.0576; % (kg*mˆ2) (Zagi flying wing)

45 Izz=.1712; % (kg*mˆ2) (Zagi flying wing)

46 Ixz=.0015; % (kg*mˆ2) (Zagi flying wing)

47 IMat = [Ixx 0 -Ixz;0 Iyy 0;-Ixz 0 Izz];

48

49 rho = 1.225; % (kg/mˆ3) (density of the air)

50 mu = 1.81e-5; % (kg/m/s) (dynamic viscosity of the air at 15 )

51 nu = mu/rho; % (mˆ2/s) (kinematic viscosity of the air at 15 )

52

53 S = 0.2589; % (mˆ2) surface of the delta-wing

54 S_w = 1/2*S; % wet area

55 c = 0.3302; % (m) mean chord

56 b = 1.4224; % (m) tip to tip length of the wings

57 l_motor = b/4; % distance from motor to Oxb axis

58 S_prop = 0.0314; % (mˆ2)

59 k_motor = 40;

60 k_T_p = 1e-6; % maximum 1 Nm torque

61 k_omega = 1e3; % maximum 2000 rad/s

62

63 %% Lift sigmoid function parameters

64 Re0 = 16e4;

65 pow_coef = .15;

66 e = 0.8; % Oswald efficiency factor

67

68 %% Aerodynamic coefficients for Zagi flying wing

69 % Longitudinal aerodynamics

70 C_L_0 = 0;

71 C_D_0 = 0;

72 C_m_0 = 0;

73 C_L_alpha = 3.5016;

74 C_D_alpha = .2108;

75 C_m_alpha = -.5675;

76 C_L_q = 2.8932;

77 C_D_q = 0;

78 C_m_q = -1.3990;

79 C_L_delta_e = .2724;

80 C_D_delta_e = .3045;
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81 C_m_delta_e = -.3254;

82 C_prop = 1;

83

84 % Lateral aerodynamics

85 C_Y_0 = 0;

86 C_l_0 = 0;

87 C_n_0 = 0;

88 C_Y_beta = -.07359;

89 C_l_beta = -.02854;

90 C_n_beta = -.00040;

91 C_Y_p = 0;

92 C_l_p = -.3209;

93 C_n_p = -.01297;

94 C_Y_r = 0;

95 C_l_r = .03066;

96 C_n_r = -.00434;

97 C_Y_delta_a = 0;

98 C_l_delta_a = .1682;

99 C_n_delta_a = -.00328;

100

101 %% Forces

102 % coeffL defined in "Lift aerodynamic coefficient versus the angle of

attack"

103 coeffD = C_D_0+C_D_alpha*abs(alpha_rad);

104 coeffM = C_m_0+C_m_alpha*alpha_rad;

105

106 Fa_ra_x = ((rho*S)/2)*(coeffD*vaˆ2+(C_D_q*c*q*va)/(2)+C_D_delta_e*(abs(

delta_el)+abs(delta_er))*vaˆ2); % drag force due to va

107 Fa_ra_z = ((rho*S)/2)*(coeffL*vaˆ2+C_L_q*c*q*va/(2)+C_L_delta_e*(delta_el+

delta_er)*vaˆ2); % lift force due to va

108 Fa_ra_y = ((rho*S)/2)*(C_Y_0*vaˆ2+C_Y_beta*beta_rad*vaˆ2+C_Y_p*b*r*va*p/(2)

+C_Y_delta_a*(delta_el-delta_el)*vaˆ2); % lateral force due to va

109

110 Fthl_rb_x = rho*S_prop*C_prop*((k_motor*w_l)ˆ2-vaˆ2)/2; % thrust force due

to the left propeller

111 Fthr_rb_x = rho*S_prop*C_prop*((k_motor*w_r)ˆ2-vaˆ2)/2; % thrust force due

to the right propeller

112 F_thrust_tot = Fthl_rb_x+Fthr_rb_x; % total thrust force

113

114 if (va*cos(alpha_rad))ˆ2+(2*(F_thrust_tot))/(rho*S_prop) >= 0

115 vi = 1/2*(sqrt((va*cos(alpha_rad))ˆ2+(2*(F_thrust_tot))/(rho*S_prop))-

va*cos(alpha_rad)); % due to wing propeller interaction

116 else

117 vi = 0;

118 end

119
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120 Fa_ra_x_vi = ((rho*S_w)/2)*(C_D_delta_e*(abs(delta_el)+abs(delta_er))*viˆ2)

; % drag force due to vi

121 Fa_ra_z_vi = ((rho*S_w)/2)*(C_L_delta_e*(delta_el+delta_er)*viˆ2); % lift

force due to vi

122

123 F_aero_A_va = [-Fa_ra_x Fa_ra_y -Fa_ra_z]’;

124 F_aero_vi = [-Fa_ra_x_vi 0 -Fa_ra_z_vi]’;

125 F = F_aero_vi +bRa*F_aero_A_va;

126 F = F + [Fthl_rb_x+Fthr_rb_x 0 0]’+bRo*[0;0;m*g]; % total force vector

127

128 %% Moments

129 C_L_simplified_va = C_l_0*vaˆ2+C_l_beta*beta_rad*vaˆ2+(C_l_p*b*p*va)/(2)+(

C_l_r*b*r*va)/(2)+C_l_delta_a*(delta_el-delta_er)*vaˆ2;

130 C_M_simplified_va = coeffM*vaˆ2+(C_m_q*c*q*va)/(2)+(C_m_delta_e)*(delta_el+

delta_er)*vaˆ2;

131 C_N_simplified_va = C_n_0*vaˆ2+C_n_beta*beta_rad*vaˆ2+C_n_p*b*va/(2)*p+

C_n_r*b*va/(2)*p+C_n_delta_a*(delta_el-delta_er)*vaˆ2;

132

133 coeff_vector = [C_L_simplified_va C_M_simplified_va C_N_simplified_va]’;

134 tau_ab = 1/2*rho*S*c*coeff_vector; % moment due to the aerodynamic effects

135

136 M_t_b = [k_T_p*(k_omega*w_l)ˆ2-k_T_p*(k_omega*w_r)ˆ2; 0; 0]; % moment

induced by the propellers

137

138 M_p_b = [0;0;l_motor*(Fthl_rb_x-Fthr_rb_x)]; % moment induced by propulsion

force

139

140 C_M_vi = (C_m_delta_e)*(delta_el+delta_er)*viˆ2; % torques generated by the

propeller wing interaction

141 M_prop = 1/2*rho*S_w*c*[0;C_M_vi;0];

142 M_elevon_lift = b/4 * [rho*S_w/2*(C_L_delta_e*(delta_el-delta_er)*viˆ2)

;0;0];

143

144 M = M_t_b + M_prop + M_p_b + tau_ab + M_elevon_lift; % total torque vector

145

146 end

A.3 Trajectory generation and trim for vertical take-

off/landing, hover and horizontal flight

1 trim_sel = input(’Select horizontal (0, default) or hover trim (1): ’);

2

3 if isempty(trim_sel)

4 trim_sel = 0;
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5 end

6

7

8 if trim_sel==1

9 %% Trim function for vertical take-off/landing and hover flight

10

11 % Initial altitude of the aircraft to be chosen

12 z_t1 = -4;

13

14 q0 = [cos(pi/4);0;sin(pi/4);0];

15 sig0 = q0(2:4)/(1+q0(1));

16 x_trim = [0;0;z_t1;zeros(3,1);sig0;zeros(3,1)]

17

18 % Parameters

19 m = 1.56;

20 g = 9.80665;

21 k_motor = 40;

22 rho = 1.225;

23 S_prop = 0.0314;

24 C_prop = 1;

25

26 w_lr = sqrt(m*g/rho/S_prop/C_prop)/k_motor;

27 u_trim = [0;0;w_lr;w_lr]

28

29 % Trajectory generation with waypoints and time interval to be chosen

30 wPts1 = [0;0;-4;0];

31 wPts2 = [0;0;-4;pi/4];

32 tPts = [10,40];

33 [q,qd,qdd,qddd,qdddd,pp,tPoints,tSamples] = minsnappolytraj([wPts1,

wPts2],tPts,100);

34

35

36 elseif trim_sel==0

37 %% Trim function for horizontal flight

38

39 % Initial parameters to be chosen

40 z_t1 = -4;

41 alpha0 = pi/100;

42 pos0 = [0;0;z_t1];

43

44 % Selection of the velocity in [m/s] for the aircraft in horizontal

flight

45 v_selection = input(’Select the velocity for the horizontal flight (m/s

): ’);

46 if isempty(v_selection)

47 v_selection = 20;
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48 end

49 v0 = [v_selection;0;0];

50

51 q0 = [cos(alpha0/2);0;sin(alpha0/2);0];

52 sig0 = q0(2:4)/(1+q0(1));

53 norm_sig0_squared = sig0’*sig0;

54 sig_sqew = [0 -sig0(3) sig0(2); sig0(3) 0 -sig0(1); -sig0(2) sig0(1)

0];

55 bRo = eye(3)+1/(1+norm_sig0_squared)ˆ2*(8*sig_sqew*sig_sqew-4*(1-

norm_sig0_squared)*sig_sqew);

56 vB = bRo*v0;

57 x0 = [pos0;vB;sig0;zeros(3,1)];

58 x_trim = 0*x0;

59

60 u0_trim = [-0.2;-0.2;0.4;0.4];

61 u_trim = 0*u0_trim;

62 ix_trim = [2,3,5,7,9:12]; %fixed states

63 dx0_trim = [v0;zeros(9,1)];

64 idx_trim = [1:12]’; % fixed derivatives

65 disp(’trim ...’)

66 [x_trim,u_trim,˜,˜,options] = trim(’trim_model_MRP’,x0,u0_trim,[],

ix_trim,[],[],dx0_trim,idx_trim);

67 disp(’These are x_0 and x_trim’)

68 [x0, x_trim]

69 disp(’These are u0 and u_trim’)

70 [u0_trim, u_trim]

71 disp(’done !’)

72 disp(’These are alpha_0 and alpha_trim (in deg)’)

73 [atan2(x0(6),x0(4)), atan2(x_trim(6),x_trim(4))]

74 alpha_trim = atan2(x_trim(6),x_trim(4));

75

76 % Second trim point

77 v0 = [v_selection+5;0;0];

78 q0 = [cos(alpha0/2);0;sin(alpha0/2);0];

79 vB = bRo*v0;

80 x0 = [pos0;vB;sig0;zeros(3,1)];

81 u0_trim = [-0.2;-0.2;0.4;0.4];

82 u_trim1 = u_trim;

83 u_trim = 0*u0_trim;

84 ix_trim = [2,3,5,7,9:12]; %fixed states

85 dx0_trim = [v0;zeros(9,1)];

86 idx_trim = [1:12]’; % fixed derivatives

87 disp(’trim ...’)

88 [x_trim2,u_trim2,˜,˜,options] = trim(’trim_model_MRP’,x0,u0_trim,[],

ix_trim,[],[],dx0_trim,idx_trim);

89 disp(’These are x_0 and x_trim’)
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90 [x0, x_trim2]

91 disp(’These are u0 and u_trim’)

92 [u0_trim, u_trim2]

93 disp(’done !’)

94 disp(’These are alpha_0 and alpha_trim’)

95 [atan2(x0(6),x0(4)), atan2(x_trim2(6),x_trim2(4))]

96 alpha_trim2 = atan2(x_trim2(6),x_trim2(4));

97

98 u_trim = u_trim1;

99

100 % Trajectory generation with waypoints and time interval to be chosen

101 tPts = [10,50];

102 wPts1 = [v_selection;alpha_trim]

103 wPts2 = [v_selection+5;alpha_trim2]

104 [q,qd,qdd,qddd,qdddd,pp,tPoints,tSamples] = minsnappolytraj([wPts1,

wPts2],tPts,100);

105 tInterp = minsnappolytraj([wPts1,wPts2],tPts,100);

106

107 else

108 disp(’Error: bad trim select value!’)

109 end

A.4 SVD and PID design

It is reported here only the code for the vertical and hover flight, since for the horizontal

flight the same procedure is mentained.

1 %% State_space representation

2 [A,B,C,D] = linmod(’lin_hover’,x_trim,zeros(size(u_trim)));

3 sys_struc = linmod(’lin_hover’,x_trim,zeros(size(u_trim)));

4 sys = ss(A,B,C,D)

5

6 %% SVD decoupling

7 % Decoupling frequency (rad/s)

8 wc = 2*pi*10;

9

10 % System’s response at the decoupling frequency

11 H1 = evalfr(sys,1j*wc);

12

13 % Real approximation of G(j*wc)

14 D = pinv(real(H1’*H1));

15 H1 = pinv(D*real(H1’*diag(exp(1j*angle(diag(H1*D*H1.’))/2))))

16

17 % Singular value decomposition

18 [U,S,V] = svd(H1);
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19

20 % Decoupled system

21 G_svd = tf(sys*V*inv(S)*U’);

22

23 G_z = G_svd(1,1)

24 G_phi = G_svd(2,2)

25 G_theta = G_svd(3,3)

26 G_psi = G_svd(4,4)

27

28 %% PID parameters Bode method

29

30 % Specifications

31 ts5 = 0.15; % settling time

32 Mp = 10/100; % maximum peak

33

34 % Specification translation

35 delta = (log(1/Mp)/sqrt(piˆ2 + (log(1/Mp))ˆ2)); % damping factor

36 wgc = 3/(delta*ts5); % gain crossover frequency

37 phi_m = atan(2*delta/sqrt(sqrt(1+4*deltaˆ4)-2*deltaˆ2)); % phase margin

38

39 % Parameter for real derivative

40 Tl = 1/(5*wgc);

41 rd_num = [1 0];

42 rd_den = [Tl 1];

43

44 % Bode method for altitude control

45 alpha_z = 4;

46 Delta_K_z = 1/abs(evalfr(G_z,1i*wgc));

47 Delta_phi_z = -pi + phi_m - angle(evalfr(G_z,1i*wgc));

48 Kp_z = Delta_K_z*cos(Delta_phi_z);

49 TD_z = (tan(Delta_phi_z)+sqrt((tan(Delta_phi_z))ˆ2+4/alpha_z))/(2*wgc);

50 TI_z = alpha_z*TD_z;

51 Kd_z = Kp_z*TD_z;

52 Ki_z = Kp_z/TI_z;

53

54 % Bode method for roll control

55 alpha_phi = 4;

56 Delta_K_phi = 1/abs(evalfr(G_phi,1i*wgc));

57 Delta_phi_phi = -pi + phi_m - angle(evalfr(G_phi,1i*wgc));

58 Kp_phi = Delta_K_phi*cos(Delta_phi_phi);

59 TD_phi = (tan(Delta_phi_phi)+sqrt((tan(Delta_phi_phi))ˆ2+4/alpha_phi))/(2*

wgc);

60 TI_phi = alpha_phi*TD_phi;

61 Kd_phi = Kp_phi*TD_phi;

62 Ki_phi = Kp_phi/TI_phi;

63
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64 % Bode method for pitch control

65 alpha_theta = 4;

66 Delta_K_theta = 1/abs(evalfr(G_phi,1i*wgc));

67 Delta_phi_phi = -pi + phi_m - angle(evalfr(G_phi,1i*wgc));

68 Kp_theta = Delta_K_theta*cos(Delta_phi_phi);

69 TD_theta = (tan(Delta_phi_phi)+sqrt((tan(Delta_phi_phi))ˆ2+4/alpha_theta))

/(2*wgc);

70 TI_theta = alpha_theta*TD_theta;

71 Kd_theta = Kp_theta*TD_theta;

72 Ki_theta = Kp_theta/TI_theta;

73

74 % Bode method for yaw control

75 alpha_psi = 4;

76 Delta_K_psi = 1/abs(evalfr(G_phi,1i*wgc));

77 Delta_phi_phi = -pi + phi_m - angle(evalfr(G_phi,1i*wgc));

78 Kp_psi = Delta_K_psi*cos(Delta_phi_phi);

79 TD_psi = (tan(Delta_phi_phi)+sqrt((tan(Delta_phi_phi))ˆ2+4/alpha_psi))/(2*

wgc);

80 TI_psi = alpha_psi*TD_psi;

81 Kd_psi = Kp_psi*TD_psi;

82 Ki_psi = Kp_psi/TI_psi;

83

84

85 %% PID for z (altitude)

86 C_num_z = [Kp_z*(TI_z*Tl+TD_z*TI_z) Kp_z*TI_z+Tl Kp_z*1];

87 C_den_z = [TI_z*Tl TI_z 0];

88 C_z = tf(C_num_z,C_den_z);

89

90 %% PID for phi (roll angle)

91 C_num_phi = [Kp_phi*(TI_phi*Tl+TD_phi*TI_phi) Kp_phi*TI_phi+Tl Kp_phi*1];

92 C_den_phi = [TI_phi*Tl TI_phi 0];

93 C_phi = tf(C_num_phi,C_den_phi);

94

95 %% PID for theta (pitch angle)

96 C_num_theta = [Kp_theta*(TI_theta*Tl+TD_theta*TI_theta) Kp_theta*TI_theta+

Tl Kp_theta*1];

97 C_den_theta = [TI_theta*Tl TI_theta 0];

98 C_theta = tf(C_num_theta,C_den_theta);

99

100 %% PID for psi (yaw angle)

101 C_num_psi = [Kp_psi*(TI_psi*Tl+TD_psi*TI_psi) Kp_psi*TI_psi+Tl Kp_psi*1];

102 C_den_psi = [TI_psi*Tl TI_psi 0];

103 C_psi = tf(C_num_psi,C_den_psi);
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