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Abstract

Data science methods from the fields of machine learning and artificial in-
telligence (ML/AI) offer several opportunities for enabling and accelerating
progress toward the realization of fusion energy.
The massive amount of data available from current operating tokamaks, to-
gether with the exponential growth of computing power and cloud comput-
ing technologies, have enabled new scenarios in the framework of advanced
data analysis and processing. In particular, machine learning methods are
used to maximize the information extracted from measurements, systemat-
ically fuse multiple data sources and infer quantities that are not directly
measured or cannot be easily computed in real-time during the experiments.
The work proposed in this thesis focuses on the reconstruction of the elec-
tron temperature 1D plasma profile from the TCV tokamak through a neu-
ral network model. An autoencoder structure with recurrent layers is em-
ployed, which succeeds in solving the reconstruction task on a difficult fusion
dataset.
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Introduction

The world lacks safe, low-carbon, large-scale and cheap energy alternatives
to fossil fuels. The need for reducing emissions has never been so strong as
in recent years: with the issue of global warming taking center stage in the
social and political discussion, both governments and citizens are increas-
ingly demanding that sustainable alternatives, in all fields, be employed.
In Fig. 1 it can clearly be seen that the main responsible for greenhouse
gas emissions in the world is linked to energy production, which output
≈ 15 billion tonnes of carbon dioxide-equivalents in 2018; the second largest
producer is transport, with half the emissions. This clearly shows that the
search for a clean energy production method is of the utmost importance
and urgency.
At current, we face the so called energy problems: the lack of access to

Greenhouse gas emissions by sector, World
Greenhouse gas emissions are measured in tonnes of carbon dioxide-equivalents (CO₂e).
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energy for countries that have low carbon emissions and too high greenhouse
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viii Introduction

gas emissions from those that do have access to energy. Many are the efforts
and attempts towards finding a solution, which may very well be fundamen-
tal for the future of humanity.
Low-carbon energy production alternatives are already employed, but they
are simply not as efficient as fossil fuels and gas and are therefore (for now)
not sufficient by themselves.
In the World Energy Outlook 2021 [1] by the International Energy Agency
it is stated that to reach the Net Zero Emissions (NZE) scenario by 2050,
the share of energy produced by nuclear power needs to increase from less
than 5% in 2020 to almost 15% in 2050. This trend is only expected to
grow, and given the ongoing public debate on the safety of nuclear fission,
the success of nuclear fusion could be a relevant factor.
Moreover, if one does not consider the NZE scenario, which is the best out-
come humanity can hope for, we are looking at a likely future environment
where the global electricity demand has greatly increased by 2050. In fact,
given the currently implemented policies, it will rise from 589.1 EJ in 2020
to 743.9 EJ in 2050). It is once again apparent that the need for large scale,
sustainable, safe and low-carbon electricity generation is extremely relevant.
Currently, the state of research concerning the manufacturing of a fusion re-
actor is still in an experimental phase. At present, in the south of France,
35 nations around the world are collaborating to build the biggest fusion
experiment in the world: ITER. The aim is for it to be the next big leap
towards the realization of a commercial reactor: it is set to prove the scien-
tific and technological feasibility of fusion.
Extensive research has been carried out in the past years to prepare for
ITER: model based simulations, study of materials and radiations, develop-
ment of new diagnostics and many more. The experimental conditions are
extremely demanding and the slow pace of the breakthroughs in this area
of research is directly linked to the complexity of the problem, both from a
physical and technological point of view.
Applications able to catalyze this process are a great asset: recently, data
science methods from the field of artificial intelligence (AI), in particular
machine learning (ML), have started to offer several opportunities for en-
abling and accelerating progress in this field. Given the massive amount of
data produced by current operating machines and the exponential growth
of computing power and cloud computing technologies, the employment of
these new methods comes as a natural fit.
Machine learning methods can be used to maximize the information ex-
tracted from measurements, systematically fuse multiple data sources and
infer quantities that are not directly measured or cannot be easily computed
in real-time during the experiments.
In particular, in this work a neural network model is presented which, by
fusing different data sources and exploiting the knowledge of the plasma
confinement state, reconstructs a key 1D kinetic plasma profile: the elec-
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tron temperature Te.
Being able to monitor these quantity is of paramount importance for ma-
chine performance: it would allow to improve continuous control and plasma
state monitoring, as well as the estimation of the proximity to disruptive
boundaries (regions of the operating space in which stable operation of the
machine is not possible).
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Chapter 1

Physics Background

1.1 Nuclear Fusion

Nuclear fusion was first suggested in 1920, when Arthur Eddington proposed
hydrogen-helium fusion as the primary source of stellar energy. In the fol-
lowing 20 years, the theoretical basis were studied and at the beginning of
the 1940s the first experiments to reproduce fusion on earth were being car-
ried out.
Research towards developing controlled fusion inside reactors is ongoing and
no ready-to-use technology is available as of now.
Physically, the process of nuclear fusion consists in two light nuclei that
fuse together, forming a heavier nucleus and releasing energy in the form
of kinetic energy of the nucleus itself and of other particles (e.g. neutrons,
photons) produced in the reaction.
There are many possible nuclear fusion reactions, but the main ones in term
of favourable energy output are:

2D + 3T 4He + 1n + 17.6 MeV

2D + 2D 3He + 1n + 3.27 MeV

2D + 2D 3T + 1H + 4.03 MeV

2D + 3He 4He + 1H + 18.3 MeV

For two nuclei to fuse, a substantial energy barrier, the Coulomb barrier,
needs to be overcome. This is the barrier put in place by the electrostatic
repulsive force between the positively charged protons of the nuclei. Only
when the nuclei are close enough for long enough the nuclear force can win
over the electrostatic force and allow fusion to happen.
Given the relative velocity v of the two reactant nuclei, the reaction cross
section σ gives a measure of the probability of a fusion reaction. If in general

1



2 Chapter 1. Physics Background

one has a high number of reactant nuclei, it will be necessary to work with
velocity distributions, typically Maxwell-Boltzmann. By calling ⟨σ⟩ and ⟨v⟩
the average of σ and v with respect to their distributions, the reaction rate
can be then defined as:

f = n1n2⟨σv⟩

where ⟨σv⟩ is the reactivity. In Fig. 1.1 is reported the reactivity as a func-

Figure 1.1: Reactivity ⟨σv⟩ as a function of the temperature T for various fusion
reactions. Figure taken from [2]

tion of temperature for three commonly considered fusion reactions. The
nuclei involved are isotopes of hydrogen and are chosen for their lightness
(they only contain one proton), which results in a lower Coulomb barrier. It
can be seen that ⟨σv⟩ grows from practically zero at room temperature to
relevant values at temperatures of 10-100keV, at which the reactants exist
in a plasma state. This is the reason for which current experiments operate
at high temperatures with reactants in the plasma state.
Moreover, Fig. 1.1 also tells us why deuterium tritium (DT) reaction is the
preferred one for ongoing fusion experiments: it peaks in reactivity at a
lower temperature and higher value.

1.2 Tokamak

The research towards building a fusion reactor has been ongoing since the
1940s, without successful attempts at producing more electrical energy than
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the one needed to power the machine.
More than one paradigm has been tested in the experimental campaigns to-
wards fusion power, the main two being magnetic confinement and inertial
confinement.
A useful quantity to consider to understand these two different mechanisms
is the triple product nTτE , where n is the plasma density (assuming that the
densities of tritium and deuterium are equal), T is the plasma temperature
and τE is the confinement time. The bigger the triple product, the better
the performance of the fusion machine [3].
In magnetic confinement, the goal is to confine a hot plasma for a long time,
so τE needs to be maximized. In inertial confinement on the other hand,
the density n is maximized, while the confinement time τE is really short.
Magnetic confinement can be realized with different machine configurations:
tokamak, stellarators, compact toroids, reversed field pinch (RFP). Cur-
rently, the most promising one is the tokamak, a fusion reactor of toroidal
shape in which a hot plasma at low pressure is confined with multiple sets
of magnetic coils placed outside the low pressure chamber.
The biggest fusion experiment in the world, ITER, involves a tokamak ma-
chine. It is set to achieve for the first time a positive energy balance, produc-
ing more energy than the one needed to power it. The next projected step
is DEMO, a reactor prototype which will have to demonstrate the economic
viability of a fusion reactor.
Given the relevance of the Tokamak in the current experimental situation, in
this chapter the basic functioning concepts of this machine will be outlined.
First, a brief discussion of the power balance of the machine will be pre-
sented (Section 1.2.1), then an explanation of how magnetic confinement
works (Section 1.2.2) and the theory of toroidal equilibrium will be out-
lined(Section 1.2.3). Subsequently, plasma heating methods (Section 1.2.4)
and plasma instabilities (Section 1.2.5) will be presented, finally followed by
a short introduction of the transport problem in tokamaks (Section 1.2.6).

1.2.1 Power balance

In general, a machine that aims to achieve nuclear fusion needs to generate
enough energy to overcome its energy losses. This concept can be formalized
by giving an examination of the energy balance for a fusion power plant using
a hot plasma and magnetic confinement. The quantities to be considered
are as follows:

- External power; the energy needed to drive the device, namely the
power injected into the plasma to heat it, PH .

- Fusion power; the energy generated by the fusion reactions. The power
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per unit volume can be written as

pf =
1

4
n2⟨σv⟩Ef (1.1)

where Ef is the energy produced by a single reaction (17.6 MeV for
D-T), n = nT +nT and nD = nT = n/2, with nD and nT the densities
of deuterium and tritium respectively.
If one considers D-T fusion reactions the fraction of Ef carried by
the neutrons (4/5) exits the machine, so it is not involved in further
heating of the plasma. The remaining Ef fraction (1/5) is associated
to the α particles which, being charged, remain trapped inside the
plasma and release their energy through collisions:

pα =
1

4
n2⟨σv⟩Eα (1.2)

Eα =
Ef

5
(1.3)

- Radiation loss; the energy lost in the form of light leaving the plasma.
This can happen due to multiple mechanisms, mainly bremsstrahlung,
line radiation and cyclotron radiation. In first approximation, line
radiation can be ignored (negligible if the impurity level is reduced
to very low values) and cyclotron radiation (the plasma is opaque at
those frequencies, so most of the emitted radiation is re-absorbed).
Bremsstrahlung, on the other hand, is intrinsic and unavoidable, since
it originates from the acceleration and deceleration of charged particles
during Coulomb interactions. For bremsstrahlung, and thus, in first
approximation, for radiation losses, the power lost per unit volume is:

pR = pb = αbn
2T 1/2 Wm−3 (1.4)

where αb = 5.35× 10−37 Wm3keV−1/2

- Transport losses; the energy lost in the form of particles leaving the
plasma, both as convection and conduction. This quantity is difficult
to estimate, since the problem of transport in fusion plasmas is still
unsolved. Experimentally, it is quantified through the energy confine-
ment time, τE , which is defined through:

PL =
W

τE
(1.5)

where W = wV is the total plasma thermal energy and PL = pLV are
the total power losses, with V the plasma volume. The interpretation
of τE is that if, ideally, one could switch off all heating sources and
radiation losses, the stored energy in the plasma would decay expo-
nentially with a characteristic time of τE .
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Furthermore, in stationary conditions (absent/negligible fusion reac-
tions) PH = PL + PR. Thus, since experimentally the value of PH is
known, one can write:

τE =
W

PH − PR
(1.6)

First, it is to be observed that, even considering the ideal case of absence of
transport losses, in order to obtain a positive energy balance, the power lost
by bremsstrahlung would still put a lower limit on the plasma temperature.
This value corresponds to 4.4 keV for D-T and 30 keV for D-D.
On the other hand, if considering transport losses, we can define the ignition
condition: α particle heating balances energy losses and the plasma is self-
sustained, meaning PH = 0 or

pα = pL + pb (1.7)

By inserting Eq. (1.2), Eq. (1.4), Eq. (1.5), Eq. (1.6) in Eq. (1.7) a condition
on the product of density and energy confinement time, as a function of
temperature, is obtained:

nτE =
12T

⟨σv⟩Eα − 4αbT 1/2
(1.8)

If one considers the plot of the nτE curve for D-T it can be seen that it
displays a minimum at T = 25−30 keV. Even so, a fusion reactor will likely
be operated at a lower temperature, around 10− 20 keV: this is due to the
higher power density associated to these temperatures.
In the 10 − 20 keV range, by using an approximation for the reactivity
(which works within a 10% discrepancy), neglecting radiation losses (which
are relatively low at this temperature for D-T) and considering parabolic
radial profiles for density and temperature, a new condition is obtained:

nTτE = 5× 1021 m−3keVs (1.9)

which is based on the product of temperature, density and confinement time.
The quantity in Eq. (1.9) is referred to as triple product.
For current fusion research, the ignition condition is no longer a desirable
achievement. This regime might seem advantageous, because one wouldn’t
need to spend power running the external heating system, if not for a tran-
sient period at the beginning. Nonetheless a tool for active control of the
plasma temperature would be lacking.
A more relevant parameter is the Q parameter, an energy gain factor which
represents the ability of the plasma to be a net energy producer. It is the
ratio between the power produced through fusion and the power required to
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heat the plasma:

Q =
1
4n

2⟨σv⟩EfV

PH
(1.10)

Ignition corresponds to Q→∞ (PH = 0). The condition Q = 1 is referred
to as break-even: fusion produces the same amount of energy used to heat
the plasma. For Q = 5 the external heating is equal to the α particles
heating (Eq. (1.3)), so only half of the power losses need to be compensated
with external heating. The target value for ITER is set at Q = 10, while
for a profitable reactor Q = 50 is the minimum acceptable value.

1.2.2 Magnetic confinement

Thermonuclear fusion plasmas cannot directly come into contact with the
walls of the tokamak: due to their high temperature they would erode the
materials and as a consequence lower their own temperature.
In order to avoid this issue, one needs to confine the plasma inside the
chamber so that it won’t touch the walls. Such condition can be achieved
through the use of magnetic confinement, which means employing magnetic
fields to confine the charged particles in the plasma in a specific region of
space.
Indeed, if one considers a charged particle in a magnetic field, it will follow
a spiral orbit with radius, called Larmor radius, equal to:

ρL =
mv⊥
qB

(1.11)

where v⊥ is the velocity component perpendicular to the magnetic field and
q is the particle charge.
This property leads to the confinement of the particle in the two direc-
tions perpendicular to the magnetic field, if the Larmor radius is signifi-
cantly smaller than the size of the tokamak chamber. Furthermore, recalling
that the velocity is mainly dictated by the thermal velocity, which goes as
(T/m)1/2 it follows that as the temperature of the plasma increases a bigger
magnetic field will be required.
As for what concerns the magnetic field, a uniform magnetic field is insuf-
ficient for good confinement, since particles still have one direction along
which to escape the chamber. By making the field non uniform one can
realize the magnetic mirror effect, which consists in making the field more
intense at the ends of the plasma column so that particles mostly bounce
back and remain in the volume. Nonetheless, this configuration suffers from
significant losses, driven by Coulomb collisions and instabilities; the devel-
opment of the latter can be linked to the velocity distribution, which can
become strongly different from a Maxwellian.
To avoid longitudinal losses, the most straightforward way is to close the
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magnetic field lines on themselves, obtaining a toroidal configuration.
In practice, this corresponds to placing the coils as to form a toroidal
solenoid. However, even this configuration presents modest confinement
properties. In fact, the field generated by a toroidal solenoid is not uniform,
but decays from the torus major axis as 1/R. This is at the origin of a
drift motion which causes the center of the circular orbits to translate in the
direction parallel to the magnetic field, as well as in the perpendicular one,
with a drift velocity given by:

vd =
mv2⊥
2qB

B×∇B
B2

+
mv2∥

qB

RC ×B

R2
cB

(1.12)

where the first term is known as gradient drift and is linked to the non-
uniformity of the magnetic field B, while the second term is called curvature
drift and is related to the radius of curvature of the magnetic field lines RC.
It can be noted that these two contributions are dependent on the charge of
the particles involved, so that the motion associated to these effects will be
in opposite direction for ions and electrons.
This motion leads to charge separation and the formation of an electric field,
to which is associated a drift velocity:

vd =
E×B

B2
(1.13)

which is derived considering a charged particle in stationary electric and
magnetic fields. Note that the direction of motion is independent on the
charge of the particle.
This last contribution to the drift is responsible for the loss of confinement.
To mitigate this loss, one can superimpose to the toroidal component of the
magnetic field, generated by the coils, a poloidal one generated by a current
flowing in the plasma itself. By superimposing these two components one
obtains field lines that run around the torus helicoidally: the field has a
rotational tranform.
In this configuration, the motion of the particle orbit centers will be such
that when they are located in the torus upper part the drift will move them
away from the upper edge, and when they are in the lower part they will be
moved towards the upper part. Overall, along a full poloidal rotation the
effects of the drift motion cancel out.
In a Tokamak, this field lines configuration is achieved by multiple set of
coils.
The toroidal component is generated by coils placed as to approximate a
toroidal solenoid: the approximation lies in the number of coils that are
employed, which varies based on cost, the necessity to fit diagnostics and
heating systems between the coils and the need to reduce the non uniformi-
ties due to the distance between coils.
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The poloidal field component is generated by a toroidal current (plasma cur-
rent) flowing in the plasma, which in turn is induced by a system of coils in
which a time-dependent current is flowing. This current causes a variation
of the magnetic flux and by Faraday’s law this induces a toroidal electric
field, that finally generates the plasma current. This second set of coils is
set at the centre of the tokamak and acts as the primary winding of a trans-
former, with the plasma acting as the secondary.
There is a third and last set of coils which is responsible for the position and

Figure 1.2: Scheme of the three sets of coils in a tokamak machine. Figure taken
from [3]

shape of the plasma column; in these, current flows parallel to the plasma.
A scheme of the three sets of coils can be seen in Fig. 1.2.

1.2.3 Toroidal equilibrium

Considering the case of a fully ionized plasma, which coincides to the ones
produced in Tokamaks, the equilibrium condition can be expressed by adopt-
ing the magnetohydrodynamic (MHD) point of view. In this framework the
plasma is seen as a conducting fluid. In particular, the equation of motion
can be written in the same way as for a neutral fluid, with an additional
term related to the Lorentz force:

mn

(︃
∂v

∂t
+ (v · ∇)v

)︃
= j×B−∇p+mnν∇2v (1.14)

where m is the ion mass, n is the plasma density, v its velocity and p its
pressure; j and B are current density and magnetic field, ν is the viscosity.
The pressure is defined as the product of density and temperature.
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If, in first approximation, plasma motion is neglected(v = 0) a force equi-
librium relation between the pressure gradient and the Lorentz force is ob-
tained:

j×B = ∇p (1.15)

Starting from this equation, making the further assumption of working with
an axysymmetric toroidal plasma then the so called Grad-Shafranov equa-
tion can be derived [3].
The Grad-Shafranov equation gives as solution a function that describes the
magnetic surfaces of such configuration. Indeed, in an axysimmetric toroidal
equilibria the magnetic field lines lie on nested magnetic surfaces, wrapped
around a circular line called magnetic axis.
The solution is expressed in cylindrical coordinates (R,Z, ϕ) as can be seen

Figure 1.3: Scheme of the cilindrical and polar coordinates

in Fig. 1.3. The direction described by the unit vector eϕ is the toroidal
direction while the RZ plane in Fig. 1.3 is called poloidal plane.
Symmetry with respect to ϕ is assumed, which is approximately true for
tokamaks [3].
By writing the magnetic field as the vectorial sum of toroidal and poloidal
component one has:

B = Bϕeϕ +Bp (1.16)

A function ψ (R,Z) can be thus defined such that:

BR = − 1

R

∂ψ

∂Z
(1.17)

BZ =
1

R

∂ψ

∂R
(1.18)
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It can be easily verified that these expressions satisfy the solenoidality con-
dition which in this case can be written as [3]:

1

R

∂

∂R
(RBR) +

∂BZ

∂Z
= 0 (1.19)

or in more compact form:

Bp =
1

R
(∇ψ × eϕ) (1.20)

Moreover, the function ψ satisfies B · ∇ψ = 0 and thus it can be implied
that ψ is constant along each magnetic field line. This furthermore infers
that ψ is constant over each magnetic surface: once ψ (R,Z) is described
the magnetic surfaces directly follows as the loci of the points on which ψ is
constant.
The Grad-Shafranov equation lends the form of ψ (R,Z), which is called
poloidal flux function, as solution.
Similarly to what has been written for the magnetic field, one can work with
the current density, defining:

jR = − 1

R

∂f

∂Z
(1.21)

jZ =
1

R

∂f

∂R
(1.22)

and by comparing these relations with Ampere’s law ∇ × B = µ0j one
realizes:

f =
RBϕ

µ0
(1.23)

With a reasoning similar to that used for ψ it can be concluded that j ·∇f =
0, so f is constant along the current density lines.
From Eq. (1.15) it can be understood that j and B are orthogonal to the
pressure gradient. This leads to the fact that pressure is constant along
the magnetic field lines and therefore surfaces, also that the pressure is
constant along the current density lines. Thus, current density lines lie on
the magnetic surfaces. Finally, since f is constant on current density lines it
will also be constant on magnetic surfaces. From this, it can be concluded
that it is possible to express f and p as functions of ψ only:

f = f (ψ) (1.24)

p = p (ψ) (1.25)

f (ψ) and p (ψ) are the input to the Grad-Shafranov equation, which can be
finally written as [3]:

R
∂

∂R

(︃
1

R

∂ψ

∂R

)︃
+
∂2ψ

∂Z2
= −µ0R2p′ (ψ)− µ20f (ψ) f ′ (ψ) (1.26)
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or in more compact form, by defining the operator ∆∗:

∆∗ = R
∂

∂R

(︃
1

R

∂

∂R

)︃
+

∂2

∂Z2
(1.27)

∆∗ψ = −µ0R2p′ − µ20ff ′ (1.28)

Boundary conditions hold great importance in the resolution of the equation
and are in practice determined by the currents flowing in the coils for plasma
control (position and shape).

1.2.4 Plasma heating

To produce a sufficient number of fusion reactions in the volume, plasma
temperature needs to reach a high enough value, as explained in Section 1.1.
Thus arises the need for a system to heat the plasma and balance the in-
evitable losses due to imperfect confinement.
It is found [3] that as temperature rises, energy losses in the plasma grow
consequently. If one remains at low enough temperatures, such that fusion
reactions can be neglected, losses will be balanced by the ohmic heating
alone. On the other hand, when fusion reactions become relevant, which is
desirable inside a tokamak, additional heating will be needed.
The plasma current has the byproduct of heating the plasma by Joule ef-
fect. Nonetheless, this heating alone is not enough to bring the plasma to a
high enough temperature. For a fully ionized plasma, its resistivity can be
expressed [3] through the Spitzer-Härm relation:

η (Ωm) = 1.65× 10−9 ln Λ

Te (keV)3/2
(1.29)

from which can be deduced the dependence of resistivity on temperature,

which goes as T
−3/2
e . As the plasma gets hotter, it becomes less resistive, al-

ready signaling the difficulty of reaching thermonuclear conditions by ohmic
heating alone. Indeed, to reach high enough temperature it would be needed
to sustain intense magnetic fields, of the order of 13 T. [4]
It is thus clear that there is a need for additional heating systems, which in
general fall into two categories:

- Neutral beam heating, the injection of energetic beams of neutral
atoms;

- RF heating, injection of electromagnetic waves at radiofrequency or in
the microwave range

As for neutral beam heating, it consists in injecting neutral particles (charged
ones would be deflected by the magnetic field) in the plasma volume, which
are then ionized by collisions with the plasma particles. As a consequence,
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they are confined by the magnetic field and gradually release their energy
to the plasma by means of thermalization. The position where most of the
thermalization happens can be controlled by tuning/tailoring the beam en-
ergy: preferably one would want the bulk of the energy to be deposited in
the core.
The beam particles and plasma particles can interact through different pro-
cesses, namely charge exchange, ion-driven ionization and electron-driven
ionization. Different processes dominate at different energies of the beam.
It can be concluded, after carrying out some calculations on the cross sec-
tions, that required energy of the beam for a tokamak with a minor radius
of a few metres is of the order of the MeV. From the technological point of
view, this represents quite a challenge.
As for the direction of injection, it is preferred to be as tangential as pos-

Figure 1.4: Scheme of NBI injection system. Figure taken from [3]

sible, as can be seen from Fig. 1.4. A normal injection could result in losses
due to the ripple of the toroidal field or in damage resulting from depositing
the beam power over the internal wall after incomplete absorption inside the
plasma. Nonetheless, actually realizing tangential injection depends on the
actual space availability amongst the coils; often positioning of the NBI is a
compromise between actual space and desire for tangential injection.
For what concerns RF heating, the functioning is based on injecting elec-
tromagnetic waves in the plasma in an effective way. The effectiveness lies
in the ability for the radiation to propagate, without being reflected, up to
a plasma region where it is absorbed, transferring its energy to the plasma
particles.
There are three main schemes for radiation injection:

- ion cyclotron resonance heating (ICRH), operating at frequencies from
30 to 120 MHz, depending on the magnetic field. The idea is to inject
waves with a frequency close to the ion cyclotron frequency. Given
that the magnetic field decays as 1/R, resonance will take place in a
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specific region where the condition ω = nωci, with n integer and ωci the
ion cyclotron frequency, is satisfied [3]. By controlling the frequency,
one can control the power deposition location.

- lower hybrid resonance heating (LH), it operates from 1 to 8 GHz,
frequencies high enough that waveguides can be used for power trans-
mission. The frequency is such that ωci << ω << ωce and the associ-
ated wave is called lower hybrid wave. This scheme results in electron
heating, though the main interest lies in its ability to drive current in
the plasma.

- electron cyclotron resonance heating (ECRH), uses waves with fre-
quencies between 100 and 200 GHz, that is in the microwave domain.
The resonance in this case is with the electron gyrotron frequency.
This setup is also used to drive the current in the plasma.

1.2.5 Instabilities

One of the mechanisms impacting the most the energy confinement, together
with transport losses and the other phenomena described in the previous sec-
tions, is the appearance of plasma instabilities, typically of Magneto Hydro-
Dynamic (MHD) nature.
An interesting quantity linked to plasma instabilities is the q value, which
is defined as:

q =
1

2π

∮︂
dϕ (1.30)

where dϕ is the infinitesimal variation of the toroidal angle. A q value of 1
corresponds to a field line that comes back to its starting poloidal position
after making one toroidal turn. q describes how tightly (loosely) wound the
helix of the magnetic field line is.
Actually, by making some assumptions on the current profile and approx-
imating the torus with a periodic cylinder one can find [3] the following
expressions for q at the edge and at the core, respectively:

qa =
2πa2Bϕ

µ0IR0
(1.31)

q0 =
2Bϕ

µ0jϕ0R0
(1.32)

where a is the minor radius of the torus, Bϕ is the toroidal magnetic field
component, jϕ0 is the toroidal current density at the core and I is the plasma
current.
Similarly, another important quantity is defined as:

β =
p

B2/ (2µ0)
(1.33)
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meaning the ratio of kinetic to magnetic pressure. Noticing that the triple
product nτET is proportional to B2βτE ,it can be said that high values of β
are desired. In fact, together with other indicators, it represents a common
figure of merit of the efficiency of the energy confinement.
In general, instabilities in a plasma can be classified as:

- current driven instabilities, which arise from gradients in the current
density profile;

- pressure driven instabilities, which arise from the effect of pressure
gradient and magnetic field curvature.

Morevoer, instabilities described within the framework of MHD (ideal modes)
can be divided from those that depend on the finite plasma resistivity (re-
sistive modes).
Ideal modes are the most violent instabilities in a plasma: they grow at re-
ally high rates and almost inevitably lead to disruption, meaning an abrupt
loss of the plasma thermal and magnetic confinement, potentially damag-
ing the device. On the other hand, resistive modes can be sustained by a
plasma, which as a result of these instabilities becomes unstable but not
necessarily terminates the discharge.
Resistive modes, nonetheless, are still an inconvenience: these instabilities
can have negative effects on plasma confinement, by modifying the magnetic
surface topology. If resistive modes manage to destroy magnetic surfaces,
this gives rise to field lines which ergodically fill a region of space, which will
become a region of poor confinement.
In both cases, these instabilities exhibit an infinite spectrum of modes, which
depend, in the approximation of torus with large aspect ratio, on the poloidal
and toroidal angles as follows:

exp [i (mθ + nϕ)] (1.34)

with m and n called the poloidal and toroidal wavenumber, respectively.
Most unstable modes are those respecting the resonance condition:

q = −m
n

(1.35)

where q is the safety factor as described above. This means that the pertur-
bation wavefront is a helix with the same pitch as the magnetic field lines.
When this occurs, the perturbation shifts all the points on a magnetic field
line by the same quantity and no deformation of the field line happens.
Indeed, the magnetic field lines can be visualized as rods made of flexible
materials: they are naturally opposed to increases in their curvature or com-
pression against each other. This means that when a field line is curved by
an instability, it intrinsically exhibits a stabilizing effect. On the contrary,
when the resonant condition holds, no deformation is present and thus the
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mode is not stabilized. The outcome is that resonant modes are more un-
stable and dangerous than non resonant ones.
A notable phenomenology linked to the resonance condition is the onset of
the so called sawtooth oscillations, which are associated to the development
of a resistive instability with m = 1 and n = 1. When the temperature
at the core grows, resistivity decreases and the current density increases,
causing qa (Eq. (1.31)) to become lower than one. At this point, the res-
onant mode surface is present inside the plasma and feeds the instability
growth, which ruptures magnetic surfaces in the core, leading to an increase
of energy transport and cooling of the core. This allows qa to become larger
than one again, the magnetic surface to reconstitute and the cycle to begin
again.
On the other hand, MHD instabilities can grow, destroying plasma con-
finement, and lead to the dramatic outcome of fast discharge termination,
known as disruption. The consequence is a rapid release of the plasma ther-
mal energy to the vessel of the tokamak.
Disruptions can lead to overheating and damage of plasma facing compo-
nents; moreover, the fast shutdown of the plasma induces strong electromo-
tive forces which drive large currents that interact with the magnetic field,
leading to substantial structural damage.
It is thus of paramount importance that tokamaks operate far from the dis-
ruptive boundaries.
Situations giving rise to disruptions, as far as classical stability limits are
concerned, are mainly two: the lowering of the edge q below the critical
value qa = 2 or the growth of the plasma density above a certain threshold,
called Greenwald density:

n̄
(︁
1020m−3

)︁
<

I

πa2
(︁
MA/m2

)︁
(1.36)

A third operational limit related to instability development, for pressure
driven instabilities, translates in a condition on β:

β (%) < g
I (MA)

a (m)Bϕ (T)
(1.37)

g = 3.5 (1.38)

where g is a factor coming from theoretical assumptions and is called Troyon
factor. Often, in practice the normalized β is used:

βN = β (%)
a (m)Bϕ (T)

I (MA)
(1.39)

so that the condition becomes βn ≤ g.
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1.2.6 Transport and confinement

In a plasma, energy losses can be driven by different phenomena. Most
of the times, losses driven by turbulence phenomena are predominant and
surpass those driven by collisions. This results in a difficulty in describing
the relationship between the energy confinement and the machine plasma
parameters, since energy losses driven by turbulence phenomena are not
completely modelled.
In general, transport of energy, mass and momentum in the plasma can be
of two forms:

- classical or neoclassical transport, driven by collisions, for which a
predictive theoretical description can be given;

- anomalous or turbulent transport.

Anomalous transport is driven by small scale instabilities which do not have
a destructive effect on the discharge.
Given the presence of turbulent transport, which is not theoretically for-
malized, predicting transport coefficients, and thus the confinement time,
is in practice extremely complex. An attempt at squaring this issue lies in
the development of empirical laws from experimental data, linking energy
confinement time to plasma parameters.
There are various scaling laws, one of the most sophisticated being the so
called ITER-89P:

τ ITER89−P
E (s) =

I (MA)0.85R1.2
0 a0.3κ0.5n

(︁
1020m−3

)︁0.1
B0.2

ϕ A0.5
i

P (MW)0.5
(1.40)

where I is the plasma current, R0 and a, respectively, the major and minor
axis of the tokamak in metres, κ the plasma elongation, Ai the mass number
of the ions (1 for hydrogen, 2 for deuterium) and P is the additional heating
power.
The scaling law of Eq. (1.40) shows a dependence from the heating power
P−0.5. The regime in which this law holds is called L-mode where L stands
for low confinement.
In 1991, the research group working on the ASDEX tokamak discovered a
transition to an improved confinement regime, which could be obtained by
reaching a sufficiently high level of additional heating power. In this regime,
the energy confinement time is almost doubled with respect to L-mode; this
regime is called H-mode, where H stays for high confinement.
Characteristic of the H-mode is the formation of a transport barrier in the
edge region of the plasma, where steep gradients of density and temperature
develop. As a consequence, density and temperature (especially at the core)
are increased.
One of the most reliable scaling expressions since 1998 for the H-mode ther-
mal energy confinement time is the so called IPB98y2 scaling which reads
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as follows:

τth,98y2 = 0.0562 I0.093p B0.15
t n0.4119 P−0.69

L R1.97ϵ0.58κ0.78a M0.19 (1.41)

where τth,98y2 is the confinement time in s, Ip is the plasma current in MA,
Bt is the toroidal magnetic field in T, n19 is the electron density in 1019m−3,
PL ≡ P − dW/dt is the loss power in MW (P is the heating power and W
is the stored energy), R is the major radius, ϵ = a/R is the inverse aspect
ratio (with a the minor radius), κa is the elongation and M is the ion mass
number.
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Chapter 2

TCV

The Tokamak à configuration variable (TCV) (Fig. 2.1) is a research fusion
reactor of the Swiss Plasma Center (EPFL), located in Lausanne, Switzer-
land.
It is a medium sized machine with its main characteristic being that it

Figure 2.1: Representation of the TCV machine. Figure from [5]

can produce a vast array of plasma shapes, hence the name, which literally
means ”variable configuration tokamak”. The main aim of TCV is to inves-
tigate effects of plasma shape on tokamak physics, so the machine has been
designed such that it can produce diverse plasma shapes without requiring
hardware modifications. [6]
TCV is also characterized by extreme flexibility in plasma positioning.
Such flexibility in positioning and shapes is granted by the shape of the

19
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chamber which develops in height.
For plasmas with moderate elongation it is not difficult to produce a con-
figuration which allows for a variety of plasma shapes. On the other hand,
for highly elongated plasmas, a close fitting passive shell becomes necessary,
and that is in conflict with the idea of variable shape.
TCV has thus been designed such as to represent a compromise between
maximum shape variability and a good passive vertical stability. [6]
To satisfy these opposing requirements, TCV displays a number of unusual
design features.
First, the poloidal field system consists of an ohmic heating (OH) trans-
former and 16 independently powered shaping coils located between the
vacuum vessel and the toroidal field coils, which are supplemented by two
internal coils to stem axisymmetric instabilities with high growth rates. [6][7]
The vacuum vessel is a continuously welded structure with low toroidal resis-
tance (55pΩ) and a nearly rectangular cross-section, with a height to width
ratio of 3 (major radius of 0.88m and a minor radius of 0.25m). [6]
First wall protection is made of high purity, isotropic graphite tiles B211.
TCV sustains a vacuum toroidal field up to 1.5 T, and plasma current up
to 1 MA. [7]
The focus of TCV recent experimental program is on a determined search
for alternative and unconventional configurations in view of meeting one of
the primary challenges for a DEMO reactor: the need to handle higher heat
fluxes than ITER. [7]

2.1 Far InfraRed interferometer (FIR)

The knowledge of the electron density profile of tokamak plasmas is essen-
tial.
The Far InfraRed interferometer (FIR) is a diagnostic which measures the
line-integrated electron density along parallel chords in the vertical direc-
tion.
On TCV, a 14-channel Mach-Zehnder type interferometer is employed.
TCV also present a state of the art Thomson Scattering (TS) diagnostic
for temperature and density profiles reconstruction, which relies on good
calibration. The FIR is also used to calibrate the TS. [8]
The FIR has an acquisition frequency of 10kHz, as opposed to the TS ac-
quisition frequency of 20-60Hz.
The system is made up of a FIR (FarInfraRed with CH2F2 difluoromethane
gas) laser, pumped by a CO2 laser, and emitting a continuous wave at
184.3µm, and a multi-element detector unit (InSb hot-electron bolometer).
[8]
The laser beam is divided into a reference beam, which is frequency shifted
by a rotating grating, and 14 probe beams passing the plasma at different
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Figure 2.2: FIR diagnostic schematic

radial positions.
The reference laser beam is used as the refence with respect to which a
phase dealy is computed. Namely, when the probe beams pass through the
plasma, the difference in refractive index will cause a phase delay.
For the wavelength and polarization of the FIR beams, the refractive index
of the plasma is directly related to the electron density. In this way, the
system is able to provide continuous measurements of the line-integrated
density along 14 chords.
The system is fully automated and part of the basic and essential diagnostic
set in operation for each TCV shot.
The measurement along the central chord is used for real time control of the
plasma density.
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2.2 Thomson Scattering

The Thomson scattering (TS) system is the main diagnostic for the mea-
surement of the spatial profiles of the electron temperature and density on
TCV.
The working principle of the TS is based on the scattering of electromag-
netic radiation from the plasma electrons, which allows under certain cir-
cumstances to measure electron temperature and density.
In particular, when a laser beam is sent through a plasma, the electrons are
accelerated in the laser oscillating field and re-emit radiation.
Assuming that the wavelength of the laser is much smaller than the Debye

Figure 2.3: Thomson scattering (TS) diagnostic schematic

length, there is no correlation between the emissions from different electrons
and therefore one speaks about incoherent Thomson scattering.
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Under this assumption, the electron temperature can be determined from
the broadening of the scattered radiation spectra while the density is pro-
portional to the total scattered power.
A laser beam passes the plasma in vertical direction at R=0.9m (mid ra-
dius of the TCV vessel) and profiles are measured along such laser Fig. 2.3.
There are multiple wide-angle camera lenses with the goal of collecting the
scattered light from the observation volumes in the plasma and focusing it
onto sets of fiber bundles.
Currently, there are 109 observation positions covering the region from
Z = −69cm to Z = +55cm with a spatial integration length that depends
on the channel location. Previously, the observation points were 89.
Measurements of the electron temperature over a range from 6eV to 20keV
are permitted. Some plasma positions are more favourable than others.
The sampling rate of the measurements is determined by the repetition rate
of the high-power Nd:YAG lasers, which emit at a wavelength of 1.06µm.[9]
The system is made up of 3 lasers combined in a cluster to build a beam
which goes through the plasma as a narrow fan. Nonetheless, it appears as
a single laser when viewed by the detection optics.
Using a combination of 3 lasers is favourable because it allows [9]:

- flexibility in timing. Indeed, each laser operates at a fixed repetition
rate o 20Hz but triggering them separately with different delays allows
to adapt sampling rates according to the measurements being done.

- flexibility in effective pulse energy. When performing measurements
at low electron density it is required to have higher energies per laser
pulse, or it wouldn’t be possible to maintain the appropriate signal-to-
noise ratio. Triggering lasers simultaneously helps increasing energy.

As anticipated when discussing the FIR diagnostic, for measurements of the
electron density the system has to be absolutely calibrated.
A comparison of the line integrated density with the results from a multi-
chord FIR interferometer is performed to derive a correction factor and
obtain consistency. [9]

2.3 Soft X-rays

The Duplex Multiwire Proportional soft X-ray counter (DMPX) is a 64-
channel soft X-ray detector located under TCV, viewing the plasma verti-
cally.
Measurement coming from this diagnostic can be used as a proxy for elec-
tron temperature.
Soft X-ray emission, which is emission with energy typically under 50keV,
in tokamak plasmas is composed of:
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- Bremsstrahlung, from electron-ion Coulomb collisions

- electron-ion recombinations

- line emission

The power spectral radiation densities can be precisely derived for the phe-
nomena listed above. [10] [11]
In the absence of metallic impurities in the plasma, the contribution of the
line emission can be neglected for the energy range the diagnostic is sensitive
to.
For the first two emission types, which compose the continuum of the soft

Figure 2.4: Soft X-rays diagnostic, on the right the most recent upgrade.

X-ray radiation, the local power spectral densities can be written as:

j(ν) = 1.54× 10−38 n2eZeff
e−

hν
Te

√
Te
· f(Te) [Wm−3eV−1] (2.1)

where Te is the electron temperature in [eV], f(Te) is a complicated function
of Te that is different according to the phenomena, ne the electron density
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in [m−3], Zeff is the effective charge, and hν the energy of the photon in
[eV].
Soft X-ray photons interact with the matter mainly by photo-electric absorp-
tion: they are absorbed by an atom which is thus ionized. The resulting
free charges are then used for the detection of the incident soft X-ray.
The detection happens in a wire-chamber filled with gas where an electri-
cal field is applied between an array of thin wires (anodes) and 2 plane
cathodes, one on each side of the wire array. When the incident soft X-ray
photon interacts with an atom of the detection gas, an electron and ion pair
are produced and subsequently accelerated by the electrical field. While
migrating towards the closest wire-anode, the electron further collides with
other detection gas atoms and ionizes them triggering an avalanche process
that takes place near the wire. As a result of this, the wire chamber mea-
sures a slight change in t(mainly the ions) migrating in the electrical field.
In Fig. 2.4 can be seen a schematic representation of the Soft X-rays detector
on TCV.
The detector is made up of two superimposed wire-chambers sensitive to
soft X-ray emission with energy between 3 and 30keV.
This diagnostic has high time- and space-resolutions. The acquisition is done
at 200kHz and the mean distance separating two lines-of-sight is of 7.9mm
for the top chamber and 16.3mm for the bottom chamber (when considering
the equatorial plane of TCV vacuum vessel). The wire-chambers operate in
the proportional regime, meaning that the measured signal, integrated along
the lines-of-sight, is proportional to the mean power of incident soft X-ray
flux.
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Chapter 3

Machine Learning

Machine Learning (ML) is a branch of Artificial Intelligence (AI) which in-
cludes methods developed in the second half of the XX century in several
scientific communities under different names, such as computational statis-
tics, neural network, pattern recognition, data mining and many others.
The main characteristic of ML is that the machine that needs to solve the
task is not specifically programmed for it but learns autonomously how to
do it.
The learning process is made possible by data, which is also one of the rea-
sons ML has recently seen a big development. Indeed, for these methods to
work, large quantities of data are needed, and the computational power to
handle them has only recently stepped up to the task.
The ML framework can be divided in sub-groups according to the way in
which the learning process happens, depending on the kind of signal it is
used to learn and the feedback the system ha access to. Based on this, one
can individuate:

- Supervised learning; feed the model examples of the outputs asso-
ciated to the inputs and expect it to learn the underlying rule associ-
ating input to output. Classic supervised learning tasks are regression
and classification. [12] More formally, one says that supervised learn-
ing consists in training a model f : x → y such that f(xi) ≈ yi
∀i = 1, ..., N .
This is achieved by minimizing iteratively a loss function, which in-
tuitively represents the cost associated with the model; quantitatively
it indicates the difference between the predictions of the model f(xi)
and the known labels yi.

- Unsupervised learning; the system is not fed any example of out-
put, it is expected to learn exclusively from data. Typical examples of
this kind of tasks are clustering problems. [13]

27
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- Reinforcement learning; the system interacts with a dynamic en-
vironment with the goal of completing a task, the learning happens
through a teacher which only says if the goal has been reached. This
kind of algorithms are used for example to develop self-driving cars
or artificial agents that can play (complicated) games with human
counterparts. [14]

These different kind of tasks can be tackled with a variety of approaches,
which can be most varied. For instance:

- Neural Networks (NN), an adaptive system which updates its structure
based on the information flowing inside it

- Bayesian Networks (BNN), based on probabilistic inference

- Decision trees, which can be thought of as a collection of if-else rules

- Support Vector Machines (SVM), used to solve supervised classification,
typically binary.

In particular, recently, NN have been receiving considerable attention from
several fields of application. These algorithms have proved to be extremely
well performing in a variety of tasks, including time-series prediction, clas-
sification, regression and pattern recognition [15]. They are used for facial
recognition systems, data mining purposes and also financial and meteoro-
logical prediction [16].
The scientific community similarly manifests growing interest towards this
kind of applications, which can represent an important catalyst for scientific
discovery. The most famous example probably being AlphaFold, a neural
network model by DeepMind [17] which is capable to accurately predict 3D
models of protein structures.
The nuclear fusion community is also steering its attention in this direction
and several works have been published which employ neural networks for a
variety of tasks. [18] [19] [20] [21] [22] [23][24] [25] [26] [27] [5]
Different priority research opportunities have been recently discussed by
various fusion international agencies such as IAEA (Technical Meeting on
Artificial Intelligence for Nuclear Technology and Applications), the De-
partment of Energy Offices of Fusion Energy Science (FES) and Advanced
Scientific Computing Research (ASCR) and EUROfusion. Directions that
have been indicated worth exploring include:

- Machine Learning Boosted Diagnostics, where machine learning meth-
ods are used to maximize the information extracted from measure-
ments, systematically fuse multiple data sources and infer quantities
that are not directly measured or cannot be easily computed in real-
time during the experiments. Both supervised and unsupervised learn-
ing techniques can be employed: the former to be used on data ex-
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tracted from the diagnostic measurements, the latter to explore the
complex high dimensional data.

- Data-Enhanced Physics Informed Prediction, where fault and off-normal
events detection, such as disruptions, are essential to be predicted, or
mitigated in the worst case. Such predictions, properly combined with
model-based approaches, can improve the response of the Plasma Con-
trol System.

Indeed, magnetic confinement fusion experiments lend themselves particu-
larly well for a machine learning task. The produced data are complex, high
dimensional and noise prone. Being able to employ ML models effectively
in such a context could prove an actual game changer.

3.1 Neural Networks

(Artificial) Neural Networks (NN) are a computational model made up of
artificial neurons, inspired by actual biological neural networks that consti-
tute animal brains.
In these structures neurons are connected with each other, by so called edges,
that model the synapses in the brain. Through these connections the neu-
rons exchange signals, which are real numbers obtained by computing some
non-linear function of the sum of the inputs to the neuron. The strength
of the signal in the connection is decided by the weight, which adjusts as
learning proceeds. Neurons are typically structured in layers; different layers
may perform different transformations on their inputs.
The starting seed for NN was planted in 1943 by McCulloch and Pitts in a
paper presenting a threshold linear combinator, accepting as input multiple
binary data and with a single binary output; by combining many of such
elements one can create a network which is able to compute some boolean
functions. In the following years the study on the topic continued until
the first neural network scheme, the perceptron, was introduced in 1958 by
Rosenblatt. This marked a significant advancement, since the perceptron
has variable synaptic weights and so it is able to learn. This means that the
input is weighted according to weights that change in value as the learning
process progresses.
In 1974 Werbos presented a way to train the Multi Layer Perceptron (MLP),
which is a multi-layered network of perceptrons (namely an input layer, hid-
den layer with non-linear activation and output layer). Ten years later, in
1986, Hinton and Williams, based on the work of Werbos, developed the er-
ror backpropagation (BP) algorithm, which is still today amongst the best
known and most efficient ways of training a neural network. The algorithm
consists in modifying the connections amongst the neurons (weights) so that
the network response gets closer to the desired one. Thanks to this new tech-
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nique, more complex functions can be approximated, including the problem
of non linearly separable data.

3.1.1 Training and inference

Training a neural network means iteratively updating the weights, moving
in the direction that minimizes a loss function, which can take up different
forms depending on the task one has to perform. The loss function defines
the performance measure to be optimized during training.
A variety of algorithms can be employed to perform the training process,
the most used one being stochastic gradient descent (SGD).
The gradient descent method allows one to find the local minimum of a
function in an N dimensional space. The function under consideration will be
the loss, of whose the gradient can be computed using the backpropagation
algorithm introduced previously. BP is composed of two steps:

- Forward pass; in this phase, after a random initialization of the weights,
the vectors in input are passed through all the layers of the network.
The weights are fixed.

- Backward pass; this is the step in which by comparing the output of
the network with the desired one, the error signal is computed. This
error is back propagated through the network.

In stochastic gradient descent weights are updated based on an approximate
value of the gradient (e.g. the value of the gradient of a single sample), while
in gradient descent the update is performed with the value of the gradient
over the whole dataset. As a compromise between computing the gradient
of a single data point and that of the whole dataset, usually one computes
the gradient over a subset of samples, called minibatch.
Assuming that the loss function can be decomposed as a sum over training
examples, it can be written:

J(θ) = Ex,y∼p̂dataL (x, y,θ) =
1

m

m∑︂
i=1

L
(︂
x(i), y(i),θ

)︂
(3.1)

where m is the number of training samples. Then, the gradients of the loss
with respect to the weights θ can be written as:

∇θJ(θ) =
1

m

m∑︂
i=1

∇θL
(︂
x(i), y(i),θ

)︂
(3.2)
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Furthermore if the gradient is computed over a subset of samples of size m′

one writes:

g =
1

m′∇θ

m′∑︂
i=1

L
(︂
x(i), y(i),θ

)︂
(3.3)

Finally, the update rule for the weights is written as:

θ ← θ − ϵg (3.4)

where ϵ is called learning rate and can be tuned to optimize learning. Learn-
ing rates can also be adaptive, changing their value according to current and
past gradient values.
The basic training process described above can be arbitrarily enriched through
the use of several methods. Amongst these are dropout layers, first and sec-
ond order optimization methods (using first and second derivatives of the loss
function), regularizers, weights initialization and adaptive learning rates.
The dataset used for training is called training dataset. Samples in this
dataset should be as many as possible and come from the distribution one
wants to model. Commonly used is also the so called validation dataset,
which is employed to choose the best set of hyperparameters in the network.
Hyperparameters are non learnable parameters which can be related to the
architecture of the network (number of hidden units, number of hidden lay-
ers) or to more refined components (optimizers and regularizers tuning).
After performing training, the network is optimized to perform the devised
task and one can move to the inference regime. Feeding previously unseen
values to the network a correct prediction is expected as output. These new
data are referred to as the test dataset, which remains strictly unseen by
the network up until the moment inference is performed and the network
performance is tested.
The assumption is that data used for training and test come from the same
distribution, which is an important thing to keep in mind when construct-
ing a dataset. If this hypothesis is not realized, performance will directly be
affected.
In the real world it is impossible to precisely respect this request but still
one should strive to be as close as possible to it.

Over the years, the family of NN has grown substantially, and now includes
a variety of techniques which have reached state of the art performance
in multiple domains. Amongst the main breakthroughs are convolutional
neural networks for processing of visual data, long short-term memory for
speech recognition and text-to-speech applications, generative adversarial
networks for tasks which include winning a game or deceiving the opponent.
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3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a type of neural networks concep-
tualized to process data that has a known grid-like topology. In particular,
one can think of a time series as a 1D grid, or of an image as a 2D grid of
pixels. CNNs employ a linear operation different from matrix moltiplication,
called convolution, which can be defined in several ways, the most used one
being:

S(i, j) = (K ∗ I)(i, j) =
∑︂
m

∑︂
n

I(i+m, j + n)K(m,n) (3.5)

which is written for a 2D input I and kernel K, where the kernel values are
the parameter to be learnt.
In Fig. 3.1 is represent graphically the operation of Eq. (3.5) for a 2D input.
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Figure 3.1: Representation of the convolution operation with a kernel in a CNN

Convolution is based on three main ideas that allow it to build efficient ML
models and that are responsible for its wide usage and success: sparse in-
teractions, parameter sharing and equivariant representations.
Fully connected neural networks optimize a weight matrix representing the
interaction of each input unit with each output unit for every layer. On
the other hand, CNNs have typically sparse interactions (connections),
realized by making the kernel smaller than the input. This leads to the pos-
sibility of detecting small features in the input (e.g. edges in an image) and
also to a reduction of the memory and computational cost (less information
to store and smaller matrices to multiply).
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Moreover, in deep CNNs, it may happen that units in deeper layers interact
with a larger portion of the input. This results in the ability of describing
complex interactions between many variables, being able to construct the
description of such interactions from elementary building blocks which only
describe sparse interactions.
Moreover, in a CNN the value of the weight applied to one input is related to
the value of a weight applied elsewhere, leading to what is called parameter
sharing. This results because of the application of the kernel, which slides
on the input and is progressively convolved with it at every position. As a
consequence, rather than learning m× n parameters as in a fully connected
network, only k parameters need to be optimized (and stored), where k is
the number of elements of the kernel.
Lastly, CNN layers represent the only way in which we can linearly imple-
ment equivariant representations in neural networks. The existence of
equivariant representations is what allows models that employ CNN layers
to develop edge detectors in images or specific event detectors when pro-
cessing time series.
An equivariant mapping is a mapping which preserves the algebraic struc-
ture of a transformation; in particular, in the case of a translation, one
practically has that when the input is translated of a certain amount the
output is translated of the same amount.
Thinking in terms of neural networks, let’s consider an image classification
task which resulted in a feature mapping ϕ; we also have an input image
X1 that we translate by means of a transformation T , obtaining an im-
age X2 = T (X1). If the mapping ϕ is translationally equivariant, then
F2 = ϕ(X2) = T (F1) = T (ϕ(X1)). It can be demonstrated that by requiring
the existence of a neural network layer thought of as an operator that is
linear and shift invariant, the expression of a convolution layer as described
in Eq. (3.5) can be derived [28].
The three motives described above are the reasons for which convolution is
used. Architectures that employ CNN layers are under constant evolution,
becoming more and more complicate, having, in general, around a million
parameters. Such models present a variety of layers and can be specialized
to many different tasks. Nonetheless, the basic building blocks are the ones
presented in this section.
As for what concerns training of CNN, it is carried out making use of back-
propagation algorithm. Most commonly employed is minibatch stochas-
tic gradient descent (SGD) with the loss function to be optimized varying
greatly depending on the task.
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3.3 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are neural networks specialized in deal-
ing with sequential data. RNN can scale to sequences that are much longer
than those that can be processed by networks which are not specialized in
this sense.
Recurrent networks make use of parameter sharing across different parts of
the model. This makes it possible to extend and apply the model to ex-
amples of different forms, meaning that, for example, in making predictions
one is not restricted only to sequences with the same length of the ones used
for training. This feature is also very important to be able to detect if an
event is happening, whether it is found at the beginning or the end of the
sequence.
Let us note that parameter sharing in RNN is different from the one found
in CNN. For convolutional layers, the sharing of parameters across time lies
in the fact that the same convolutional kernel is used at each time step.
Nonetheless, this kind of parameter sharing not as refined as in RNN, since
each piece of the output sequence is function only of a small number of
neighboring pieces of the input.
On the other hand, in RNN each member of the output is obtained using
the same update rule of the previous output; this means that each output
is a function of the components of the previous output.
Given the recurrent nature of these networks a useful way to construct a
representation is by unfolding them into a computational graph which se-
quentially displays the chain of events. This description directly shows the
sharing of parameter across the network structure. In Fig. 3.2 an example
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Figure 3.2: Representation of the unfolding of the recurrent connections in an RNN
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of a RNN with connections between input-hidden units (parametrized by
the matrix U) and hidden-output units (parametrized by the matrix V) can
be seen; it also features recurrent connections between hidden-hidden units,
parametrized by the matrix W. The black square indicates the passing of
one time step.
On the right the unfolded graph is presented; one can clearly see the param-
eter sharing in the fact that the matrices U,V and W are the same across
the whole graph.
The network represented in Fig. 3.2 produces an output at each time step
and presents recurrent connections between hidden units. In general, RNN
can be designed in different ways. For example, they may produce an output
at each time step and have recurrent connections only from the output at
one time step to the hidden units at the next time step or they could read
an entire sequence and produce a single output, with recurrent connections
between hidden units.
The unfolded graph representation also allows us to realize that the training
of RNN can be performed by means of backpropagation, where the gradi-
ents are iterated backwards through time; from this, the method is called
backpropagation through time (BPTT). This kind of algorithm cannot be
performed in parallel, since the forward pass is inherently sequential: for
the computation of each time step one needs the previous one. Moreover,
states computed in the forward pass need to be stored to be used during
the backward pass, so also the memory cost is considerable (O(τ), with τ
length of the sequence).
Nonetheless, even considered the shortcomings of BPTT this method re-
mains the most widely used training algorithm for RNN; other methods,
such as Reservoir Computing [26], have been developed but are not as effi-
cient at BPTT.
One big issue of RNN lies in the capability of learning long-term depen-
dencies. This problem arises because gradients propagated over many time
steps tend to vanish or, more rarely, explode. Moreover, even if one assumes
to be able to solve this problem, it remains the fact that the weights given
to long-term dependencies are exponentially smaller than the ones given to
short-term ones.
Specifically, in RNN the same function is composed over many time steps.
This composition can be treated as a matrix multiplication. For example if
one considers for simplicity a network with only recurrent connections be-
tween hidden units, no input and no activation function the update relation
can be written as:

h(t) =W ⊺h(t−1) (3.6)
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if the recursive relation for h(t−1) up to h(0) is used and one assumes that
W is diagonalizable it is clear it can be written:

h(t) = (W t)⊺h(0) = Q⊺ΛtQh(0) (3.7)

The update rule depends directly on the value of the eigenvalues raised to
the power t: for large t, those smaller than 1 will eventually decay to 0,
those bigger than 1 will explode. The result will be that all components of
h(0) which are not aligned to the largest eigenvalue will eventually vanish.
One may think that the problem could be easily solved by staying in regions
of the parameter space where gradients do not vanish or explode. Unfortu-
nately, to model long-term dependencies it is necessary to enter these region
of space. This means that it is not impossible to train networks to model
long-term dependencies, only that it will take a long training time given
that the signal about the long-term dependency is vanishing exponentially.
In practice, this results in unsuccessful attempts at training RNN with SGD
already for sequences off length 20.
To overcome this issue, a variety of approaches have been proposed, such
as Long Short Term Memory (LSTM), but learning long-term dependencies
remains one of the biggest challenges in deep learning.

3.3.1 Long Short Term Memory

Long Short Term Memory (LSTM) models are a kind of gated RNN, de-
signed to solve the problem of vanishing or exploding gradients and thus
being able to learn long-term dependencies in sequences.
The main idea is to create paths through time for which one does not en-
counter vanishing derivatives. In order to do so, gated units operate on the
value of the weights at each time step, modifying them. In particular, the
focus is not only on being able to store information for a long duration, but
also on the capability of recognizing which information has become irrele-
vant and discard it.
The repeating module of a LSTM network is more complex than that of

a standard RNN. There can be many different variants of LSTM units, the
standard one being composed of 4 neural network layers, interacting between
them. In Fig. 3.3 a representation of such LSTM unit is displayed.
The flow of information inside the cell is regulated by the cell state Ct,
which is represented by the top horizontal black line. The LSTM can add or
remove information from the cell state by means of structures called gates.
These gates are composed of a sigmoid/tanh layer and a pointwise multipli-
cation operation.
Referencing Fig. 3.3, we’ll walk through the functioning of a LSTM cell step
by step. Starting on the left, the first layer one encounters is the so called
forget layer, which takes care of throwing away information that is no longer
relevant. By looking at the previous hidden layer ht−1 and current input xt,
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Figure 3.3: Representation of the LSTM cell

it outputs a number between 0 and 1 for each number of the previous cell
state Ct−1. The equation is as follows:

ft = σ (Wf · [ht−1, xt] + bf ) (3.8)

After having decided what to forget, the next step is to decide which parts
of the new input are relevant to the cell state. This is handled by two layers.
The first is a sigmoid layer (the input gate) that decides which values will
be update, while the second is a tanh layer that takes care of producing
the vector of new candidate values C̃t that could be added to the cell state.
To create the update to the state these two outputs will be combined. the
equation for this second step is:

it = σ (Wi · [ht−1, xt] + bi) (3.9)

ft = tanh (WC · [ht−1, xt] + bC) (3.10)

Given the quantities just computed, one can proceed to update the cell state
as:

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.11)

After having updated the state, generating the output is next. In order to
do so some filtering is added to the cell state, as follows:

ot = σ (Wo · [ht−1, xt] + bo) (3.12)

ht = ot ∗ tanh (Ct) (3.13)

Once again, the sigmoid layer decides which parts of the cell state Ct are
going to be output and the tanh takes care of pushing the values of the cell
state between −1 and 1.
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3.4 Autoencoders

Autoencoders are neural networks devised to reproduce the input as output.
The basic structure of an AE can be observed in Fig. 3.4.
They are composed of two parts, an encoder function h = f(x) and a de-

𝒙 𝒙′𝒉 = 𝒇(𝒙) 𝒉

encoder

𝒓 = 𝒈(𝒉)

decoder

Figure 3.4: Schematic representation of an autoencoder

coder function r = g(h). Autoencoders also feature the presence of a hidden
layer h, which should learn a useful representation of the input.
Clearly, obtaining perfect reconstruction (g(f(x)) = x) everywhere is not
particularly useful so AE are designed to be unable to copy the input per-
fectly. This forces the model to learn the key charachteristics of the input,
since it cannot simply reproduce it without loss.
Moreover, one speaks of overcomplete autoencoders whene the hidden layer
has a dimension equal or greater than the input. Actually, the more inter-
esting case is when the autoencoder is undercomplete, so that the hidden
layer constructs a low dimensional representation of the input.
Training of an autoencoder happens with the same methods employed for
feedforward neural networks, namely descending gradients through back-
propagation. The goal is to minimize the reconstruction error, which is
often expressed through the mean square error (MSE) as:

MSE =
1

m

m∑︂
i=1

∥ŷ(i) − y(i)∥2 (3.14)

Autoencoders with linear activation functions and MSE as reconstruction
error actually learn to span the space space as PCA. If one uses nonlinear
activation functions, the representation learnt is a more powerful general-
ization of PCA.
Autoencoders can be constructed to deal with several different kinds of in-
puts and they can be composed of different neural network layers, from
convolutional to recurrent to simple feed forward ones.
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Data

Constructing the dataset to train the model is a fundamental step which
needs to be carried out carefully.
To construct the samples for the neural network model data that are coming
from the TCV machine are employed.
The plasma discharges that are considered represent several experimental
conditions: no filtering based on the experimental configuration has been
made.
In table Table 4.1 are displayed the signals considered for this work, indi-
cating the diagnostic that produced them, a brief description and the unit
of measure. Some of the diagnostic mentioned in Table 4.1 are presented in
Chapter 2, such as Thomson Scattering (TS), Far Infra-Red interferometer
(FIR) and Duplex Multiwire Proportional soft X-ray counter (DMPX). As
for the others, the foil bolometers (BOLO) are a diagnostic which detects
the total incident power from both photons and neutral atoms; LIUQE is a
tokamak equilibrium reconstruction code. Let it be noted also that for pow-
ers calc the diagnostic column is empty: this feature is computed starting
from other values as follows:

powers calc = POHM,calc + 106PNBI + 106PECRH (4.1)

where POHM,calc is the ohmic power, PNBI and PECRH are, respectively, the
NBI and ECRH injected power.
Due to the extreme experimental conditions, even if the diagnostics em-
ployed are state of the art, the hardware can undergo failures or produce
incorrect data because of various reasons. Hence, raw data coming from
the diagnostics need to be cleaned and pre processed before being passed as
input to the neural network.
This process has been executed carefully in subsequent steps, which are now
going to presented in detail.
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4.1 Data structure

After a shot (discharge) of the TCV machine, raw data coming from the
diagnostics are processed and stored in the MDSplus database. Developed
jointly by the Massachusetts Institute of Technology, the Fusion Research
Group in Padua, Italy (Istituto Gas Ionizzati and Consorzio RFX), and the
Los Alamos National Lab, MDSplus is the most widely used system for data
management in the magnetic fusion energy program [29]. It consists in a
set of software tools for data acquisition and storage and a methodology for
management of complex scientific data. The system was designed to enable
users to easily construct complete and coherent data sets.
Various codes are run, to output interpretable signals and calculations of
parameters and derived quantities are carried out. Fit codes reconstruct
profiles.
Starting from these raw signals, by using a set of MATLAB routines, mul-
tiple Apache Parquet files are generated, to keep track both of the actual
value of the signal and of the coordinate system of the diagnostic with which
it has been acquired.
The MATLAB routines employed in this work are part of what is called
dis tool software [30], which is officially employed for the EUROfusion Dis-
ruption Database and various international collaborations. Moreover, most
of the MATLAB routines developed specifically for this thesis have been
completely integrated in the dis tool software.
The Apache Parquet format has been chosen for its several advantages. First
of all, it is a language agnostic format: this bodes well with the fact that
these files are being used by several different collaborations which may not all
use the same programming language to access the data. Moreover, Apache
Parquet lends itself well for column-based files, allowing a per-column ac-
cess as well as very efficient row filtering, so that one can skip over the
non-relevant data very quickly. Furthermore, it provides highly efficient
data compression and decompression as well as occupying less storage space
than other tabular formats (e.g. CSV).
For each discharge, two parquet files are available; for a shot number 000000,
they are named as follows:

- TCV DATAno000000.parquet

- TCV COORDno000000.parquet

The TCV DATA files contain the actual values of the signals. The data are
stored so that the columns are the different diagnostics and each row is
a time instant; the sampling frequency is 10 kHz for all the signals (they
have all been resampled to the same frequency by means of one of the
MATLAB routines quoted above). The first column of each file carries the
time information.
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For the multichannel diagnostics multiple columns are present: one for each
channel. In the case of the Thomson Scattering (TS) ans Soft X-rays (SSX)
the reported values do not refer to the actual physical channels but to a
remapping according to the normalized flux coordinate ρ, varying between
0 (magnetic axis) and 1 (plasma boundary) or between−1 (plasma boundary
on the High Field Side HFS) and 1 (plasma boundary on the Low Field Side
LFS). After this procedure, one obtains:

- for TS, 200 channels with 0 ≤ ρ ≤ 1. The distribution of channels is
not uniform: indeed, 65% of the available channels is devoted to the
pedestal region, which by covering 0.8 < ρ < 1 represents only 15% of
ρ range of values.
Of these 200 channels, only 1 every 3 is retained, for a total of 67
channels.

- for SSX, 51 channels with −1 ≤ ρ ≤ 1.

Moreover, the data from TS is not the raw signal of the diagnostic but the
output of a fit routine called LIUQE.
The TCV COORD file contains information about the multichannel diagnostics
which involve information about the coordinates of line measurements (all
of them except for TS). Specifically, for each channel, for each time instant,
are reported the two points of intersection of the LCFS, which identifies the
plasma boundary, with the line of sight of the diagnostic. Given the fact
that in TCV the plasma shape and position in the chamber can vary consid-
erably, a specific line of sight can at one time cross a considerable portion of
plasma and at another barely touch it. This information is thus necessary
to interpret the line integrated values available for these kind of diagnostics.
Lastly, a file in JSON format, TCV diags.json, contains the geometric map-
ping of all the diagnostics, based on a reference system with origin in the
center of the tokamak and axis R and Z (horizontal and vertical, respec-
tively).
Given the set of all possible diagnostics available (in principle) during a
certain shot, not all discharges actually have the same diagnostics configu-
ration available and selected; as stated above, the experimental conditions
are quite extreme and malfunctioning can be expected. In some cases, the
files are missing some columns, due to the fact that for that particular shot
the signal from some diagnostics may not have been available. This calls for
a first post processing step: all the parquet files are rewritten with the same
set of columns, adding columns of NaN in the cases with missing diagnostics.

4.2 Data cleaning

At this point of the processing, data may contain various elements which
cannot be digested by a machine learning model: values which are not avail-
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able, infinite ones and values which are simply not physical.
By using a MATLAB routine, this issue is tackled in the following order:

1. Remove the infinite values (Inf) and substitute them with NaN (not
a number). Infinite values are the result of saturated diagnostic or
general malfunctioning at a specific time instant. As for what concern
their occurrence, they are not at all frequent in the data.

2. Non physical, non plausible or non admissible values are present in
the data. A nonphysical value could be the density or injected power
≤ 0; a very unlikely one could be the safety factor bigger than 10 or
the βN ≥ 3.5, with

βN = β
aBT

Ip
(4.2)

β =
⟨p⟩

B2/2µ0
(4.3)

where a is the minor radius in m, BT is the toroidal magnetic field
in T, Ip is the plasma current in MA and β is a coefficient expressing
plasma performance, given by the ratio of the mean plasma pressure
to the magnetic pressure associated to the mean total field strength.
For each feature, a range of admissible values has been chosen, both by
making physical considerations and by plotting the empirical cumula-
tive density function (ECDF), discarding values for which the curve
has a value ≥ 0.9995.
In some cases, in order to be able to decide on a range, it has been
necessary to first apply a transformation (logarithmic) to the values
of the feature.
Let it be noted that, at this point of the workflow, the modulus of the
toroidal magnetic field was computed, and consequently the features
which use the value of the magnetic fieldcarry this information.
Apart from removing values which are non physical, this fine proce-
dure of individuating allowed values is needed to cut long tails from
the distribution of the feature; long tails notoriously make machine
learning tasks significantly more difficult. Moreover in this work, by
cutting these long tails extreme values of the features are cut, which
are particularly exotic and thus are not affecting the applicability of
the model.

3. As a last step, the NaN values are taken care of. These can derive
from many situations (the diagnostic missed some data, that specific
diagnostic wasn’t used for that specific shot).
NaN are treated differently based on where they are located inside the
shot. Two possible cases present:
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- The NaN are present in sequence at the beginning or/and at the
end of the shot. This is the case of a diagnostic that, for example,
hasn’t started data acquisition until a certain time instant or that
has ceased working before the end of the shot. These sequences
of NaN are left untouched. The alternative would be to substitute
them with the first (last) available value, but this would mean
modifying the data distribution, even significantly if the sequence
are long (as it is the case for some shots).

- The NaN are in the middle of the shot, enclosed by available val-
ues. In this case, linear interpolation is performed to retrieve the
values and being able to use the data to subsequently construct
samples. Linear interpolation could seem a bold choice, since it
uses both past and future information to fill missing values. If
then one uses this dataset to train a network with time series (as
it will be the case in this work) it could be argued that the fu-
ture information is revealed by the filled values and therefore the
network could have an unfair advantage in the learning process,
which wouldn’t be available in a real-time setting.
Nonetheless, this is not the case here: no actual future informa-
tion is being used. Future information is used, for example, when
performing a moving average with a window that sits across the
current time step i: after applying this operation the time step
i contains information about i + n, where n is half the width
of the window. On the contrary, in our case, there is a missing
diagnostics of which we need to reconstruct the signal in a way
which is as close as possible to what it would have been, had
the diagnostic not failed.The only use of future information is to
retrieve the shape of the signal where it is not available, but it
is simply a reconstruction. Furthermore, the alternative to in-
terpolation would be to substitute the NaN with the value of the
last available time step; in cases with long NaN sequences this
could mean ending up with data which are unusable to construct
proper training samples (they are not representative of how that
feature actually evolves in time).

Let us note that, even if for the specific application in this work not all of
the signals have been employed, the cleaning procedure described above has
been carried out for all available signals.
In Fig. 4.1, Fig. 4.2, Fig. 4.3 and Fig. 4.4 you can see an example of the
normalization process, for the total radiated power PradTot RT (Table 4.1).
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Figure 4.1: Probability density function for PradTot RT (cfr Table 4.1), for 1886
discharges.
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Figure 4.2: Probability density function for log (PradTot RT) (cfr Table 4.1), for
1886 discharges.
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Figure 4.3: Cut probability density function for log (PradTot RT) (cfr Table 4.1),
for 1886 discharges.
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Figure 4.4: Empiric cumulative density function (ECDF) for log (PradTot RT) (cfr
Table 4.1), for 1886 discharges.
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4.3 Data normalization

The final step of preprocessing consists in normalizing the data. This part
of the procedure has been carried out only for the signals that have been
employed for this specific work. For more details on the chosen signals refer
to Table 4.1.
Normalization is an essential step which involves the transformation of fea-
tures in a common range.
This allows to deal with two main issues of data which inhibit the learning
process of ML algorithms: the presence of dominant features and outliers.
After normalization, features that have greater numeric values cannot dom-
inate the ones which have smaller numeric values [31]. In this work, for
example, before normalization the density of the plasma is in the order of
1019 m−3, while the parameter βN (Eq. (4.2)) is in the range [0, 3.5]; training
with this data would clearly result in bad performance of the network.
There exist several different normalization procedures, which normalize the
data within a certain range based on different statistical measures from the
raw data.
In this work, the type of normalization was individually picked for each fea-
ture. This choice is justified by the fact that the distribution of the features
across the dataset is quite varied. Each of them has different pathologies:
some present more outliers, others have some tails.
In particular, the distribution of each signal is plotted across the whole
dataset of discharges, normalized according to seven possible normalization
methods. Then, a choice can be made based on how the un-normalized and
the normalized plots look like in terms of solving the above stated patholo-
gies and modifying the variance of the distribution.
The normalization strategies considered are as follows:

1. Mean and standard deviation based normalization methods;
in this case the measures employed are the mean and standard devi-
ation of the raw data. Amongst the pool of existing variations are
chosen:

- Z-score (ZS); the resulting features have zero mean and a unit vari-
ance. Given an instance n of feature i, xi,n, the transformation lends:

x′i,n =
xi,n − µi

σi
(4.4)

where µi and σi represente the mean and standard deviation of the
i-th feature.

- Pareto Scaling (PS); analog to the ZS but the scaling factor is now
the square root of the standard deviation. The new feature thus have
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a variance equal to the standard deviation of un-normalized features.

x′i,n =
xi,n − µi√

σi
(4.5)

This method minimizes the contribution of noise in the data and im-
proves the representation of lower concentrated features. Further-
more, it keeps the structure of data partially intact. [31]

- Variable stability scaling (VSS); this is an extension of the ZS, with the
introduction of the Coefficient of Variation (CV) as a scaling factor.
Such coefficient is defined as the ratio of the mean to its standard
deviation, so that:

x′i,n =
xi,n − µi√

σi

µi
σi

(4.6)

The scope of the coefficient is to give a higher importance to features
with a small standard deviation and consequently lower importance
to those that have a large one.

2. Minimum–Maximum value based normalization methods; in
these methods the maximum and/or minimum of the raw data are
used for rescaling. Amongst all the possibilities are chosen:

- Min-Max (MM); data are scaled linearly to predefined lower and upper
bounds. The range of rescaling is usually [−1, 1] or [0, 1]. Generally:

x′i,n =
xi,n −min(xi)

max(xi)−min(xi)
(nMax− nMin) + nMin (4.7)

where min and max represent the minimum and maximum of the i-
th feature and nMax, nMin the new maximum and minimum values
after normalization. In this work, nMin = 0 and nMax = 1, so the
range is [0, 1].

3. Median and median absolute deviation normalization; for this
methods the values of the median and the median absolute deviation
from the raw data are employed. The transformation of xi,n is:

x′i,n =
xi,n −med(xi)
MAD(xi)

(4.8)

where med represents the median of each i-th feature and MAD =
med(|xi,n−med(xi)|). This procedure is analogous to the ZS one, using
the median as a statistical property, as opposed to the mean. This
results in enhanced robustness towards outliers and extremes, given
the insensitivity of the median towards such values. Nonetheless, this
method fails to rescale the data to a common numerical range when
data varies with respect to time.
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4. Sigmoidal normalization; this method consists in a non-linear trans-
formation of the data and it is particularly suited for reducing the effect
of outliers. The two main sigmoidal functions usually employed are:

- Hyperbolic tangent (HT); this normalization transforms the raw
data in the range [−1, 1] using the hyperbolic tangent function.
It is as follows:

qi,n =
xi,n − µi

σi
(4.9)

x′i,n =
1− e−qi,n

1 + e−qi,n
(4.10)

This kind of normalization helps to scale the outliers without
affecting the rest of the data, which are scaled linearly. It prevents
the data to be pushed in a narrow range due to the presence of
outliers.

- Logistic sigmoid (LS) or SoftMax ; this normalization transforms
the raw data in the range [0, 1] using the logistic sigmoid function.

qi,n =
xi,n − µi

σi
(4.11)

x′i,n =
1

1 + e−qi,n
(4.12)

This kind of transformation is useful when data are not evenly
distributed around the mean: outliers which lie away from µi are
squashed exponentially.

The main advantage of these normalizations is the ability of mapping
the outliers along the tails of the given range (dependent on the func-
tion). Meanwhile, data that lie within a standard deviation of the
mean are mapped to an almost linear region, preserving their signifi-
cance.

In the following table (Table 4.2) each feature and the chosen normalization
are reported. For the multichannel diagnostics each channel has been nor-
malized with the same method.
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Feature Normalization Range

FIR SoftMax [0.17, 1]
WP Tanh [−0.64, 1]
powers calc Tanh [−1, 0.9]
PradTot RT Tanh [−1, 1]
KAPPA MinMax [0, 0.99]
DELTA MinMax [0, 1]
Q95 Tanh [−0.8, 0.9]
H98y2calc Tanh [−0.6, 0.8]
P LH RT ZScore [−2, 3.65]
LI Tanh [−0.96, 0.98]
VOL SoftMax [0.04, 0.91]
AREA SoftMax [0.05, 0.86]
BETAN Tanh [−0.64, 1]
Te rho Tanh [−1, 0.9]
Ne rho Tanh [−1, 1]
SSX Tanh [−1, 1]

Table 4.2: Summary of the features used in this work, their normalization and
allowed range of variation after the normalization.

Let it be noted that even after the normalization some features were still
presenting some spikes in the extremal regions, which would bias the model.
These are due to the presence of values coming from extreme experimental
configurations. When plotting the histogram of the feature, the number of
bins is automatically chosen based on the number of counts and the range of
normalization. A relevant number of really low/high (not significant) values
can then be put all in the same bin, which will be seen as a spike at one of
the extremes of the range. By only plotting these extreme regions it can be
seen that the contribution is actually negligible.
Therefore the choice has been made, in some cases, to further cut the dis-
tribution range as to exclude these spikes; such information is also reported
in Table 4.2. Note that these cut imply that NaN values may appear in
the middle of the discharge, therefore one further step of linear interpola-
tion is carried out, with the same modality described in the previous section.

As a last step after normalization, all the NaN values at the beginning and
end of each shot are rigidly cut, in order to have files which contain only
available values and are ready to use to construct the dataset. To achieve
this, the file is scanned to individuate the feature(s) which has (have) the
longest sequence of NaN at the beginning/end of discharge; this allows to
individuate the first and last available time instant of the new file, which
will have no NaN present.
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Neural network model

As briefly outlined in Introduction, the goal of this thesis is to develop a neu-
ral network model for the reconstruction of the electron temperature and
density profiles. In this chapter, the two network architectures I developed
and the results obtained through both of them will be presented in detail.
First, the inspiration and concept behind the architectures will be presented,
followed by the models details in terms of neural network layers and imple-
menting framework.
Next, results will be discussed, obtained with different combinations of reg-
ularization and optimization techniques, as well as a different number of
points in the profile spatial resolution, samples in the dataset and normal-
izations.
Of the two developed architectures, only one was able to perform the task
successfully. Nonetheless both networks will be presented in detail, since
developing the working one was a direct consequence of understanding the
failure of the first one.

5.1 Model inspiration

The main inspiration for the network architecture first came from the work
of Matos et al (2020) [23]. In this article, the authors develop a neural net-
work model for the classification of plasma confinement states (Low, Dither,
High) and the detection of ELMs (Edge Localized Modes [32]). The archi-
tecture is called ConvLSTM, and it is composed of convolutional layers and
LSTM layers. This combination of layers is intended to be able to capture
temporal relations in the data at different time scales: longer for the LSTM
layers, shorter for the convolutional ones.
For this work, since we are dealing with kinetic plasma profiles, which have
the structure of a time series with space resolution, being able to capture
temporal correlations is of the utmost relevance. Given the good results ob-
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tained by [23], the model was constructed with the same base architecture.
Nonetheless, since the goal of this work is to perform a reconstruction task,
not a classification one, the structure of autoencoders seemed the most nat-
ural fit.
Drawing further inspiration from the work of Zhu et al [33], I construct an
autoencoder with the base structure of the ConvLSTM network. In [33], the
authors develop an autoencoder model with LSTM layers with the goal of
reconstructing and forecasting multi-dimensional time-series data. Further-
more, they employ the latent embedded representation of the autoencoder,
concatenated with additional cathegorical information, as the input to a
network of fully connected layers, with which forecasting and uncertainty
estimation are performed.
Combining these two sources of inspiration the model is thus shaped as a
symmetric autoencoder, with the same kind of layers in reversed order both
for the encoder and the decoder. The latent representation is embedded in
the first LSTM layer (last layer of the encoder).
This first architecture, which will be referred to as AEConvLSTM, could
not perform the task in a satisfying manner. The model was unable to re-
construct the profiles accurately and resorted to produce in output the same
average result for all inputs.
This led to a complete rethinking of the network architecture, with the pri-
mary goal of simplifying the data structure, which was deemed too complex.
As a result, a different network was further developed, with a simpler archi-
tecture: still an autoencoder, with only LSTM layers and a fully connected
one for readout.
Results improved substantially, thus the final model developed for this work
is the second one, which from now on will be simply called AE LSTM.

5.2 Dataset

Concerning the dataset with which the network is trained, it is constructed
starting from the normalized parquet files presented in Chapter 4.
The networks take as input a multidimensional array, which can be different
from the one it is given as output. Indeed, the input contains the profile to
reconstruct (whichis reminded can be the electron temperature or density)
and can additionally feature some 0D variables, which can aid reconstruction
by means of additional information.
The additional 0D features are chosen based on their relevance to the output
signal, namely they can be divided in:

- averaged line-integrated density from the FIR;

- plasma stored energy;

- total input power minus the losses;
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- LH power scaling;

- Internal inductance (proxy for plasma current);

- equilibrium parameters: H98y2 scaling factor, edge safety factor and
normalized beta;

- shape parameters: elongation, triangularity, plasma volume, plasma
poloidal cross section area.

It is possible to also employ an ulterior 1D profile, which is the signal coming
from the Soft X-ray emission. It has 51 available channels and can be used
as a proxy for the Thomson electronic temperature.

The algorithm which builds the data samples does so randomly.
A reduced subset of the parquet files available (126) is considered, in order to
ensure the variability of the dataset. Indeed, with 1886 discharges available,
if one makes an estimate of the number of samples that can be extracted
given a time sequence length of 5000 time steps (500ms), a number of ≈ 25
million possible samples is obtained. The risk of extracting from such a large
pool of possibilities is to end up covering only a small part of the profiles
variability.
This effect is exacerbated by the fact that in the dataset, the majority of
the sequences that can be extracted from the discharges are either of ohmic
type or with low auxiliary power, which naturally skews the dataset towards
this type of sequences; moreover this inevitably reduces the reconstruction
capability of the network when faced with non ohmic sequences, such as
disruption avoidance ones which include a significant amount of additional
heating.
Nonetheless, in doing this reduction, the overall distribution of the dataset
is not changed, as can be seen in Fig. 5.1, where, as an example, the prob-
ability density function of Ch. 10 of the TS for the electron temperature is
plotted, both for the whole 1886 discharges and for the reduced subset of
126. Notice that to aid visualization the distributions are smoothed with a
kernel smoothing function. For each discharge in this subset of the database
(to which is associated a shot number), there are a certain number of possi-
ble starting times, given the length of the time sequence needed to construct
the sample.
After having built a set of all the shot numbers and associated possible start-
ing times, a number equal to #training + #validation + #test pairs is
randomly extracted. Each sample is then constructed by reading the par-
quet file of the shot from the starting time start time up to start time +

time spread*time base, where time base is needed to convert time spread

from number of time steps to the same time unit of start time.
The data generation routine is implemented in Python, in particular sam-
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Figure 5.1: Probability density functions for channel Te rho z10 of TS, for 1886
discharges and for the reduced subset of 126

ples are constructed as multi dimensional numpy arrays. Nonetheless, the
samples are written to a format different from the .npy native numpy for-
mat.
Indeed, when working with big amounts of data (as is the case in this work,
with the training dataset of AEConvLSTM being ≈ 67GB) it is important
to optimize the input pipeline as to not overload it and create bottlenecks.
In order to avoid this, the TFRecord file format is adopted, which is Ten-
sorflow’s own binary storage format.
The binary format has the advantage of being lightweight: this can have
significant impact on the performance of the input pipeline, and therefore
on the training time of the model. Binary data takes up less space on disk
and is faster to read.
Moreover, being TFRecord native of Tensorflow, it is optimized for use
with the library in different ways. It is seamlessly integrated with the
tf.data.Dataset object of Tensorflow, which allows to preprocess data in
multiple ways. For example, it allows prefetching of samples, batching and
shuffling, as well as mapping operations along the dataset and generating
an iterator object.
All of these actions can be carried out without loading the dataset in mem-
ory, which for this work is of fundamental importance since it simply can’t
fit.
Thus, the numpy arrays with the data need to be converted in a format
suitable to be written to a TFRecord file. This process involves two steps
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Figure 5.2: Probability density functions for channel Te rho z10 of TS, for 1886
discharges and for the reduced subset of 126

[34]:

- convert the numpy array into a tf.Tensor of type tf.string con-
taining the data in a binary string format, which is suitable to work
with tf.train.Example

- write a tf.train.Example message which details the structure of the
sample; in this case, what are the input X and the output y

After having properly prepared the data, each sample is simply written to
a different TFRecord file.
Firstly, this allows to occupy less memory during the writing process,

as one generates the multidimensional array and writes it to disk straight
away. This means to avoid having multiple multidimensional arrays, each
with ∼ 109 elements, loaded in memory, which clearly makes the process
less heavy.
Moreover, this choice leads to an ease of reading: when constructing the
tf.train.Dataset object is much more flexible having a different file for
each sample.
Lastly, this allows one to shuffle the samples by simply shuffling the names
of the TFRecord files, which is a much quicker operation than shuffling el-
ements of the dataset. Indeed, the shuffle method of the dataset object
works by filling a buffer with buffer size (a parameter to fix) elements, then
randomly samples elements from this buffer, replacing the selected elements
with new elements. In principle, to achieve perfect shuffling one should fix
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buffer size greater than or equal to the size of the dataset. Lower values of
buffer size lead to a suboptimal shuffling. [35]
Given the size of the dataset, it is clear to see that by using this method
the only possible shuffling would be sub optimal. To avoid this problem, the
list files method of tf.train.Dataset is used, which creates a dataset
of strings corresponding to the file names. At this point, one can employ
the shuffle method on this dataset of strings, since the whole dataset can
now easily fit into memory. After, by means of the interleave and map

method the strings dataset becomes a tensors dataset to be used for train-
ing or evaluation.

Throughout this work, various sizes of training, validation and test sets are
employed, depending on the model being developed. Nonetheless, the same
proportions are maintained, so that the training set is bigger than validation
and test sets. A standard 80/20 split between training and validation/test
is employed.
In particular, the same graphs as in Fig. 5.1 are presented for two of the
datasets that will be introduced and employed in Chapter 7, as to show that
the sampling process constructing the datasets is properly done. Moreover,
Fig. 5.2 shows that the implicit assumption in building a ANN model is
respected: the distributions of training, validation and test set are the same
as the distribution of the whole dataset.
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AEConvLSTM

In this chapter we present the details of the AEConvLSTM architecture.
The model is implemented in Tensorflow 2.3.0 [36]. For further details on
the Anaconda environment used for developing this work, see [37].

6.1 Architecture

As previously mentioned the model architecture is an autoencoder with dif-
ferent types of layers. In particular, a detailed graphical representation can
be seen in Fig. 7.2.
The input/output array is schematically represented in Fig. 6.1. Input and
output have shape, respectively:

(time spread // stride, conv window, no feat input)

(time spread // stride, conv window, no target ch)

Where:

- time spread is the length in time steps of the time sequence considered
to build the sample. stride is the number of points shifted over for
subsampling of the time sequence: one point is taken every stride

points. The operation // indicates the integer result of the division
between the two numbers. This is the length of the sequence in input
to the LSTM layer. In the figure, this is indicated as 300, which is a
typical length considered throughout this work.

- conv window is the size of the convolutional window, therefore of the
input to the convolutional layer. It is fixed to 40 throughout this work.

- no feat input (no target ch) is the number of features (channels)
in input (output). In the figure, 147 is indicated as input (67 from
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Figure 6.1: Graphical representation of the input (output) to (of) the AEConvL-
STM architecture

TS temperature, 67 from TS density and 13 0D features) and 67 as
output (TS temperature/density).

Referencing Fig. 6.2, starting from the left, the structure of the network is
as follows:

- a convolutional layer with no feat input input channels and 32 out-
put channels; a kernel size of 3 and a stride set to 1 so that there is
no reduction in the convolutional input size, which is conv window.
The array in input and output to this layer have shape, respectively:

(batch size, conv window, no feat input)

(batch size, conv window, 32)

- another convolutional layer with 32 input channels and 64 output chan-
nels; a kernel size of 3 and a stride set to 1 so that there is no reduction
in the convolutional input size, which is conv window.
The array in input and output to this layer have shape, respectively:

(batch size, conv window, 32)

(batch size, conv window, 64)
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- a dropout layer with dropout rate a hyperparameter to be optimized.
The array in input and output to this layer have shape, respectively:

(batch size, conv window, 64)

(batch size, conv window, 64)

- after flattening the output of the previous dropout layer, a fully con-
nected layer with 64×conv window input units and 16 outputs.
The array in input and output to this layer have shape, respectively:

(batch size, conv window × 64)

(batch size, 16)

- an LSTM layer with 32 units that takes as input a sequence of length
time spread // stride and a number of features equal to 16 (the
output units of the previous dense layer).
The array in input and output to this layer have shape, respectively:

(batch size, time spread // stride, 16)

(batch size, time spread // stride, 32)

- an LSTM layer with 32 units that takes as input a sequence of length
time spread // stride and a number of features equal to 32.
The array in input and output to this layer have shape, respectively:

(batch size, time spread // stride, 32)

(batch size, time spread // stride, 32)

- a fully connected layer with 32 input units and 64×conv window out-
puts.
The array in input and output to this layer have shape, respectively:

(batch size, 32)

(batch size, conv window × 64)

- a reshaping layer.
The array in input and output to this layer have shape, respectively:

(batch size, conv window × 64)

(batch size, conv window, 64)

- a dropout layer with dropout rate a hyperparameter to be tuned.
The array in input and output to this layer have shape, respectively:

(batch size, conv window, 64)

(batch size, conv window, 64)
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- a convolutional layer with 64 input channels and 32 output channels;
a kernel size of 3 and a stride set to 1 so that there is no reduction in
the convolutional input size, which is conv window.
The array in input and output to this layer have shape, respectively:

(batch size, conv window, 64)

(batch size, conv window, 32)

- a convolutional layer with 32 input channels and no target ch output
channels; a kernel size of 3 and a stride set to 1 so that there is no
reduction in the convolutional input size, which is conv window.
The array in input and output to this layer have shape, respectively:

(batch size, conv window, 32)

(batch size, conv window, no target ch)

Notice how the length of the sequence (time spread // stride) appears
as input only to the LSTM layers. One may wonder how it can feature in
the middle of the network without being used in the previous layers. The
answer lies in the TimeDistributed layer of Tensorflow.
Consider the input sample with shape:

(batch size, time spread // stride, conv window, no feat input)

since until the LSTM layers the time sequence is not modeled, one needs
a way to pass the input without the second dimension to the convolutional
and dense layers. TimeDistributed allows to do exactly this.
The input flows in the network for each time step in the time sequence, up
until the first LSTM layer. This means that the layers are applied to every
time step time spread // stride. Once all these single timestep inputs
have been processed, the whole time sequence output is fed to the LSTM
layers. The same operation is carried out until the end of the network.
Notice that no update of the weights is performed between the processing
of different time slices of the same sample.

Reproducibility of the results is ensured by fixing the random seed. Both
the global seed and the operation seed are fixed, for each operation that
involves randomness.
More in detail, the global seed is set as:

tf.random.set seed(2022461)

Moreover, the weights matrix of convolutional and dense layers and the
matrix used for linear trasnformations of the input in the LSTM is initialized
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through:

tf.keras.initializers.GlorotUniform(2022461)

while the matrix used for the linear transformation of the recurrent state in
the LSTM layer as:

tf.keras.initializers.Orthogonal(2022461)

Finally, a seed for the dropout operation is also set, equal to 12345.

6.2 Training and optimization

Training is performed on a machine with 12 6-core CPUs, model Intel®

core™ i7-8700 CPU @ 3.20GHz, and a 32GB memory.
As a first step, a gridsearch on the parameter space is carried out, to identify
the best combination of hyperparameters and architecture structure.
Potentially, a high number of combinations is possible: considering the num-
ber of layers, if one wants to optimize the number of units for each layer,
the size of the convolutional kernel, the dropout rate, the optimizers, the
regularizers and the learning rate is easy to reach ≈ 106 different networks.
The ideal approach to explore such a high dimensional parameter space
would be to perform a random hyperparameter search to identify the correct
region of space in which to focus. Subsequently, a more refined gridsearch
on such restricted space of parameters should lend the more appropriate
configuration.
Nonetheless, for the AEConvLSTM network, given the high dimensionality
of the input and output, training for 20 epochs (which is enough to obtain
a substantial decrease in the loss function) takes at least 6h.
This implies the obvious impossibility of performing extensive random/grid
search.
Thus, focusing on what are considered to be the most relevant parameters
we optimize:

- number of neurons of the latent space embedding ∈ {8, 16, 32}

- dropout rate ∈ {0.2, 0, 6}

- learning rate ∈ {10−5, 10−4, 10−3}

Obtaining a total of 18 configurations, which are studied with Optuna[38],
an automatic hyperparameter optimization software framework.
The optimizer is chosen as Adam with the tensorflow implementation stan-
dard parameters and the convolutional kernel size is fixed to 3.
The optimization procedure is performed with a training set of 4096 samples
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Figure 6.3: Original and reconstructed profiles in the test set, model AEConvLSTM

and a validation set of 1024 samples, running each training for 20 epochs.
The employed loss function is the mean squared error.
The best configuration is the one with lowest validation loss, which corre-
sponds to the one with 32 latent units, dropout rate equal to 0.2 and learning
rate equal to 10−3.

The network with such parameters is then trained for 50 epochs, reaching a
training loss of 0.0554 and a validation loss of 0.057.

6.3 Evaluation

When performing evaluation on the test set, the loss reaches a value of
0.062, which is in good agreement with the training loss, indicating no rele-
vant presence of overfitting.
Nonetheless, the simple numeric value of the loss is not revealing of the ac-
tual performance of the model. If one plots, for all samples in the test set,
the original profiles and the reconstructed ones in the same figure (Fig. 6.3)
it is easy to recognize that the model is actually always producing the same
output for all inputs.
This behaviour can be explained by noticing that the output is the average
profile seen by the network, in the sense that for each channel the network
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is giving as output approximately the average values of the electron temper-
ature in the dataset.
The network is not capable of learning the reconstruction task, so it resolves
to giving the average as the answer, which is a safer choice than making
a random guess. Furthermore, it is likely that the variability in the distri-
bution of each feature gets lost in the convolutional layers because of the
model overparametrization with respect to the training data.
Even after explaining the origin of this incorrect output, the question still
remains as to why the network fails in completing the reconstruction task.
This can be answered by focusing on the number of samples which are em-
ployed in the training set, which is 4096. Such number is too low to ensure a
proper training of this kind of model. Indeed, the output samples are arrays
with a notable number of elements (≈ 8 · 105), meaning that the network
needs to learn a lot of information from few examples.
Furthermore, up scaling the size of the dataset is not feasible: even if the
samples are few, the dataset has considerable dimensions. Considering a
training set of size 4096, and a validation and test set both of size 1024,
around 67 GB of disk space are needed. Clearly, this also results in a long
training time, which is ≈ 10h for 40 epochs.
To conclude, the downfall of this network architecture is linked to the too
high complexity of the samples, which requires a much larger dataset.
It is expected that by reducing the complexity of the samples and making
the dataset larger, one should be able to obtain acceptable results.
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AE LSTM

In this section the details of the AE LSTM architecture are presented.
The model is implemented in Tensorflow 2.3.0 [36]. For further details on
the Anaconda environment used for developing this work, see [37].

7.1 Architecture

As previously mentioned the model architecture is that of an autoencoder
with LSTM layers. In particular, a detailed graphical representation can be
seen in Fig. 7.2.
Given the difficulty encountered in solving the task in Chapter 6, for this
architecture, it is decided to develop two distinct models. The first one
will be dedicated to reconstructing only the pedestal region, which is the
outer region of the plasma (≈ ρ > 0.8): monitoring the pedestal is of great
importance in tokamak operation. The second model will focus, on the other
hand, on reconstructing the whole profile.
Thus, throughout this chapter, for each setup of the network two models
will be developed: one for pedestal and one for whole profile reconstruction.
The input/output array is schematically represented in Fig. 7.1. Input and
output have shape, respectively:

(time spread // stride, no feat input)

(time spread // stride, no target ch)

Where:

- time spread is the length in time steps of the time sequence considered
to build the sample. stride is the number of points shifted over for
subsampling of the time sequence: take one point every stride points.
The operation // indicates the integer result of the division between

65
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Figure 7.1: Graphical representation of the input (output) to (of) the AE LSTM
architecture.

the two numbers. This is the length of the sequence in input to the
LSTM layer.

- no feat input (no target ch) is the number of features (channels)
in input (output).

Referencing Fig. 7.2, starting from the left, the structure of the network is
as follows:

- an LSTM layer with 32 units that takes as input a sequence of length
time spread // stride and a number of features equal to 42 (for the
pedestal reconstruction) or 63 (for the whole profile reconstruction).
The array in input and output to this layer have shape, respectively:

(batch size, time spread // stride, 42/63)

(batch size, time spread // stride, 32)

- an LSTM layer with 16 units that takes as input a sequence of length
time spread // stride and a number of features equal to 32 (the
output units of the previous LSTM layer).
The array in input and output to this layer have shape, respectively:

(batch size, time spread // stride, 32)

(batch size, time spread // stride, 16)
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- an LSTM layer with 8 units that takes as input a sequence of length
time spread // stride and a number of features equal to 16 (the
output units of the previous LSTM layer).
This is the embedding layer, the one which learns a lower dimensional
representation of the data; the last layer of the encoder.
The array in input and output to this layer have shape, respectively:

(batch size, time spread // stride, 16)

(batch size, 8)

- A repeat layer, which takes care of repeating the previous output
time spread times so to retrieve the time sequence dimension. The
array in input and output to this layer have shape, respectively:

(batch size, 8)

(batch size, time spread // stride, 8)

- an LSTM layer with 8 units that takes as input a sequence of length
time spread // stride and a number of features equal to 8 (the
output units of the previous LSTM layer).
This is the first layer of the decoder.
The array in input and output to this layer have shape, respectively:

(batch size, time spread // stride, 8)

(batch size, time spread // stride, 8)

- an LSTM layer with 16 units that takes as input a sequence of length
time spread // stride and a number of features equal to 8 (the
output units of the previous LSTM layer).
The array in input and output to this layer have shape, respectively:

(batch size, time spread // stride, 8)

(batch size, time spread // stride, 16)

- an LSTM layer with 32 units that takes as input a sequence of length
time spread // stride and a number of features equal to 16 (the
output units of the previous LSTM layer).
The array in input and output to this layer have shape, respectively:

(batch size, time spread // stride, 16)

(batch size, time spread // stride, 32)
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- a fully connected layer with 42/63 units that takes as input a sequence
of length time spread // stride and a number of features equal to
32 (the output units of the previous LSTM layer).
The array in input and output to this layer have shape, respectively:

(batch size, time spread // stride, 32)

(batch size, time spread // stride, 42/63)

As stated at the beginning of this chapter, two models were developed based
on this architecture.
The first, which aims at solving the task of pedestal reconstruction, specif-
ically considers the last 42 channels of the TS diagnostic (0.8444 ≤ ρ ≤ 1).
Indeed, the pedestal is an important region to monitor, which holds impor-
tant information on the confinement state of the plasma and more generally
represents the layer interfacing the plasma core to the plasma boundary and
the Scrape-Off Layer (SOL).
The second model, which takes care of reconstructing the complete kinetic
profile, includes all channels except for the first 4: 0.1432 ≤ ρ ≤ 1. Exclud-
ing the first 4 channels is a choice made to avoid including data that in the
considered dataset was sometimes coming from saturated channels.
Reproducibility of the results is ensured by fixing the random seed. Both the
global seed and the operation seed are set, for each operation that involves
randomness.
More in detail, the global seed is set as:

tf.random.set seed(2022461)

Moreover, the weights matrix of dense layers and the matrix used for linear
transformations of the input in the LSTM is initialized through:

tf.keras.initializers.GlorotUniform(2022461)

while the matrix used for the linear transformation of the recurrent state in
the LSTM layer as:

tf.keras.initializers.HeUniform(438)

Finally, a seed for the dropout operation is also set, equal to 12345.

7.2 Training and optimization

Starting from the base structure of the network as described in the previous
paragraph, several models can be developed, depending on the number of
layers, LSTM units, length of the sequence, region of reconstruction and
normalization technique.
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For this reason, at first different combinations of these variables on datasets
of reduced size (namely 4096 samples in the training set and 1024 for vali-
dation and test sets) are tested.

Model Sequence
Length

Stride Time
resolution

Channels Normalization

1 5000 100 10ms 5-67 MinMax
2 5000 50 5ms 5-67 MinMax
3 5000 20 2ms 5-67 MinMax
4 5000 100 10ms 5-67 Tanh
5 5000 50 5ms 5-67 Tanh
6 5000 20 2ms 5-67 Tanh
7 5000 100 10ms 26-67 MinMax
8 5000 50 5ms 26-67 MinMax
9 5000 20 2ms 26-67 MinMax
10 5000 100 10ms 26-67 Tanh
11 5000 50 5ms 26-67 Tanh
12 5000 20 2ms 26-67 Tanh

Table 7.1: Trial models for the AE LSTM.

As can be concluded from Table 7.1, in which are listed all trials, a fixed se-
quence length of 5000 time slices is considered, which corresponds to 500ms.
This is due to the fact that such length appropriately spans the profile evolu-
tion, catching the variations over relatively long time scales in the evolution
of the discharge. On the other hand, using a shorter sequence, for example
300ms, leads to the risk of not covering major variations in the profile evo-
lution. Even if in principle 300ms is a time scale long enough to consider
the profile evolution, the dataset constructed with such choice of length for
the time sequence results poor in displaying big changes in the profile, such
as those linked to L-H transitions.
Moreover, different strides are considered, as to test how the network per-
forms when seeing the profile evolution at different time resolutions. Differ-
ent models are developed based on the spatial position of the channels: one
pertaining the pedestal (channels 26-67), one pertaining the whole profile
(channels 5-67) with the exclusion of the first 4 channels for reasons dis-
cussed in Section 7.1.
Lastly, the network performance is tested when trained with samples nor-
malized with different techniques, namely a MinMax normalization in the
range [0, 1] or a Tanh normalization (more details in Section 4.3).
All models have been trained for 30 epochs using the MSE as loss function,
with the same hyperparameters, namely:

- Dropout set to a rate of 0.4, both for the recurrent and linear connec-
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tions;

- Regularizer set to L1 L2 with coefficient of regularization α = 10−8,
both for recurrent and linear kernels;

- Adam optimizer with the Tensorflow implementation default settings;

- Adaptive learning rate lr, set to a starting value of 10−3 which is fixed
for the first 5 epochs and then decays according to:

lr = lr · e−0.1

The results obtained by the models in terms of training, validation and
test losses are reported in Table 7.2, as well as the training duration in
seconds. Notice that in order to obtain the total time needed to converge to
a functioning model, one has to add the time for the loading of the dataset to
the training time. Such time varies depending on the number of samples in
the dataset and the size of the samples themselves (different time resolution
and space resolution). Therefore a final column with the dataset loading
time is added for improved perspective of the whole process.

Model Training
loss

Validation
loss

Test loss Training
time

Loading
time

1 0.0027 0.0029 0.0028 18min 2s 16s
2 0.0032 0.0033 0.0032 34min 27s 16s
3 0.0032 0.0032 0.0032 1h 46min 25s
4 0.031 0.025 0.025 17min 48s 12s
5 0.030 0.026 0.027 34min 54s 18s
6 0.043 0.041 0.042 1h 37min 23s
7 0.0027 0.0022 0.0021 18min 0s 14s
8 0.0030 0.0024 0.0024 34min 29s 16s
9 0.0037 0.0037 0.0037 1h 35min 25s
10 0.028 0.024 0.025 17min 51s 14s
11 0.029 0.027 0.028 34min 48s 15s
12 0.040 0.046 0.047 1h 35min 25s

Table 7.2: Training, validation and test loss on normalized data, training time and
dataset loading time for the models of Table 7.1.

7.3 Evaluation

First of all, for all models, no relevant overfitting is encountered: validation
and test losses present values close to the training one, in some cases even
lower (Table 7.2).
The training time increases with the samples size (when the stride reduces),
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Figure 7.3: Training and validation loss, model 4. Note the logarithmic scale on
the y axis.

as it is expected.
Fixing one kind of normalization, the models with the lowest validation loss
can be deduced from Table 7.2 and are:

- For the whole profile:

1. for the MinMax normalization model 1

2. for the Tanh normalization model 4

- For the pedestal:

1. for the MinMax normalization model 7

2. for the Tanh normalization model 10

Following, in Fig. 7.3 and Fig. 7.4 the graphs of the training and validation
loss over the training epochs for models 4 and 10 are presented.
In all cases, the model performing better is the one with a stride value

of 100. At first, this may seem strange: other models have a lower value
of stride, which means the temporal resolution is higher and thus that the
network is receiving more information about the profiles evolution.
Nonetheless, the relevant dynamic must happen on a timescale which is
higher than 2ms (stride of 20) and 5ms (stride of 50). In the light of this,
the models with a shorter stride end up having redundant information in
time which simply makes the training heavier, requiring the network to
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Figure 7.4: Training and validation loss, model 10. Note the logarithmic scale on
the y axis.

learn more information, which is not relevant to the overall dynamic. This
is consistent with the acquisition frequency of the diagnostics, that is 60Hz,
apart from the resampling performed to re-align the Thomson to higher
bandwidth diagnostics.

Model Test MSE Test sqrt (MSE)

1 17151.43 130.96
2 17479.75 132.21
3 16189.52 127.24
4 4666.25 68.31
5 4368.15 66.09
6 6167.09 78.53
7 704.54 26.54
8 773.98 27.82
9 1117.09 33.42
10 587.11 24.23
11 674.78 25.98
12 1029.73 32.01

Table 7.3: MSE of de-normalized test data, root square of MSE of de-normalized
test data for the models of Table 7.1.

To identify the best kind of normalization it is necessary to compute the
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Figure 7.5: Original and reconstructed profiles in the test set, model 1.

MSE between the original and reconstructed profile, after having reversed
the normalization process. In Table 7.3 are report the results of such pro-
cess, also reporting the value for the square root of the MSE.
The value of the MSE square root is to be intended as the average distance

(in euclidean measure) between the reconstructed and original profile.
It is clear by looking at such results that the models trained with the Tanh
normalized samples consistently perform better than those with MinMax
normalization. This is a posteriori confirmation of the work carried out in
Section 4.3, where the normalization technique was tailored on the feature.
Thus, it is concluded that an informed choice in normalization (as it was the
case with Tanh for TS electron temperature) leads to better results when
confronted with a standard MinMax approach.
The difference in performance is most clearly seen for the model reconstruct-
ing the whole profile: the MSE is one order of magnitude smaller for the
Tanh normalized model (model 4), achieving an average distance of 68.31eV
opposed to the 130.96eV of the MinMax model (model 1).
For what concerns pedestal reconstruction, the difference in performance is
not that wide, with the Tanh normalized model (model 10), achieving an
average distance of 24.23eV opposed to the 26.54eV of the MinMax model
(model 7).
Computing the incidence rate of the average distances in Table 7.3 on the
test set range, which changes according to the model, it is obtained that
model 1 and 4 are not performing as different as it would appear by looking
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Figure 7.6: Original and reconstructed profiles in the test set, model 4.
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Figure 7.7: Original and reconstructed profiles in the test set, model 7.
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Figure 7.8: Original and reconstructed profiles in the test set, model 10.

at Table 7.3. Indeed, given the fact that the dataset are constructed by a
random sampling procedure, different sets can have different ranges of val-
ues included. For example, model 1 ranges in ≈ [0, 3000] eV while model 4
ranges in ≈ [0, 2000] eV.
It is thus not meaningful to simply compare the values of MSE, while it is
more meaningful to compare the incidence rate given the dataset range.
Nonetheless, with an incidence rate of 3.4% for model 4 and one of 4.5% for
model 1, the Tanh normalized model is still the best performing one.
This conclusion becomes clearer when looking at Fig. 7.5, Fig. 7.6, Fig. 7.7,
Fig. 7.8, in which all original and reconstructed profiles in the test set for
models 1,4,7,10 are shown.
The time slice is fixed (namely number 20), which is not relevant. Indeed,
since each sample has a different starting time, the index of the time slice can
be linked to different stages of the discharge for each sample. Nonetheless,
since the test MSE does not display specific trends with respect to the time
slices indices, one can safely fix a single random time slice for visualization
purposes, without losing generalization.
By looking at Fig. 7.5 and Fig. 7.6 it can be seen that the reconstruction
of model 4 is indeed better, since it covers the whole range of temperature
values. It can also be noticed that both models 1 and 4 struggle in recon-
structing the more steeper pedestals.
Moreover, the regularizing effect of the network can be appreciated: whilst
some of the original profiles present downward spikes (for example note the
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Figure 7.9: Original and reconstructed profile for shot 63298, start time 0.2625s,
model 1.

one in Fig. 7.6 at around 0.2 < ρ < 0.3 and Te ≈ 250eV), the reconstructed
ones always present the trend that one expects for the temperature profile
in a tokamak. By looking at Fig. 7.5 and Fig. 7.6 it can also be noted that
for higher values of temperature Te > 1500eV, in the region 0.1 < ρ < 0.6,
the network struggles (model 4, note the broken lines in the reconstructed
profiles) or fails (model 1) at reconstructing the profiles. This could hap-
pen because the model sees less samples at high temperature values and a
good portion of these samples presents irregularities which are non physical
(downward spikes, saturation). Indeed, the distribution of electron temper-
ature for the inner most channels peaks at ≈ 800eV, which is also where
most samples in the figures peak.
For what concerns pedestal reconstruction, looking at Fig. 7.7 and Fig. 7.8
it can be seen that the reconstruction of models 7 and 10 is actually compa-
rable in performance. They both fail at properly reconstructing the profiles
with higher temperature values, which are the ones with steeper pedestals.
Finally, some examples of reconstruction for specific samples in the test set
are presented. For these, the graphs display a single sample time evolution.

In Fig. 7.9 we can see the best reconstructed profile in the test set of
Model 1, i.e. the one with lowest MSE (0.00041). The model can properly
reconstruct the pedestal region, but fails when it starts approaching the in-
ner region, where temperature values are higher. This is in accordance with
Fig. 7.5, where the model fails at reconstructing higher temperature values.
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Figure 7.10: Original and reconstructed profile for shot 64290, start time 1.4852s,
model 7.
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Figure 7.11: Original and reconstructed profile for shot 66755, start time 1.1768s,
model 7.
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Figure 7.12: Original and reconstructed profile for shot 66903, start time 1.143s,
model 4.

On the other hand in Fig. 7.10 it can be seen how model 7 struggles in
reconstructing the pedestal region, especially when there’s a transition from
L to H mode and the appearance of a pedestal, which is what is happening
in this sample (MSE= 0.015, the highest in test set). The same model, in
absence of a pedestal, can accurately reconstruct the profile, as can be seen
in Fig. 7.11 which presents the best reconstructed sample across the test set
of Model 7.
Moreover, in Fig. 7.12 a well reconstructed profile from the test set of

Model 4 is presented(MSE = 0.0027). This profile displays temperature val-
ues which are approximately around the average of the overall dataset for
all channels. The type of discharge associated to this electron temperature
profile is by far the most present in the dataset and consequently is the best
reconstructed.

7.4 Final models

The previous subsection presented the results obtained when considering 12
different models, trained on a restricted dataset of 4096 training samples
and 1024 validation and test samples.
Having established which are the best performing models, it is now con-
ducted a more substantial training of the winning combinations.
In particular, the dataset is scaled up as follows:
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- 12888 samples in training set, 3072 in validation and test set;

- 128880 samples in training set, 30720 in validation and test set;

Two different sizes are tested, to investigate how much the dataset size in-
fluences the model performance.
A complete summary of the final models can be found in Table 7.4.

Model # Train set # Val/Test set Channels

1F 12888 3072 5-67
2F 128880 30720 5-67
3F 12888 3072 26-67
4F 128880 30720 26-67

Parameters common to all models

Sequence length 5000
Stride 100

Time resolution 10ms
Normalization Tanh

Table 7.4: Final models for the AE LSTM

Each model is trained for 40 epochs using the MSE as loss function, with
the same hyperparameters, namely:

- Dropout set to a rate of 0.4, both for the recurrent and linear connec-
tions;

- Regularizer set to L1 L2 with coefficient of regularization α = 10−8,
both for recurrent and linear kernels;

- Adam optimizer with the Tensorflow implementation default settings;

- Adaptive learning rate lr, set to a starting value of 10−3 which is fixed
for the first 5 epochs and then decays according to:

lr = lr · e−0.1

Following, in Fig. 7.13, Fig. 7.14, Fig. 7.15 and Fig. 7.16 the graphs of the
training and validation loss over the training epochs for the models are pre-
sented.
No relevant overfitting is encountered.

In Table 7.5 the results of the trainings are presented, namely the training
and validation losses, as well as training time and dataset loading time. No-
tice how, when scaling up the dataset size, the loading time becomes the
most impacting action in terms of required time.
For the models trained with 12288 samples, it is found that there’s a slight
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Figure 7.13: Training and validation loss, model 1F. Note the logarithmic scale on
the y axis.
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Figure 7.14: Training and validation loss, model 2F. Note the logarithmic scale on
the y axis.
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Figure 7.15: Training and validation loss, model 3F. Note the logarithmic scale on
the y axis.
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Figure 7.16: Training and validation loss, model 4F. Note the logarithmic scale on
the y axis.
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decrease in the losses values with respect to the models of the previous sec-
tion, but not significantly. On the other hand, when training with 122880
samples, it is observed a more relevant decrease in the losses values.
This behaviour is in agreement with what is expected: scaling up signifi-
cantly the dataset size leads to better performances overall. The dataset is
primarily made up of sequences extracted from discharges either of ohmic
type or with low auxiliary power, which are the ones the network learns
to reconstruct better. The loss starts to significantly decrease only when
the network is showed enough samples so that it is able to see a sufficient
amount of the other type of discharges.
From the losses values, it is concluded that it is necessary to increase the
dataset of at least an order of magnitude to experience an appreciable in-
crease in reconstruction performance.

Model Training
loss

Validation
loss

Training
time

Loading
time

1F 0.028 0.022 18min 45s 6h
2F 0.018 0.016 5h 20min 14h
3F 0.027 0.023 18min 10s 5h
4F 0.017 0.014 4h 21min 12h

Table 7.5: Training and validation loss (normalized data), training time and dataset
loading time for the models of Table 7.4.

This trend can also be seen in Table 7.6, where as before the MSE between
the original and reconstructed profiles (de-normalized) and its square root
are presented.
For model 4F, which reconstructs the pedestal, one finds an average distance
between original and reconstructed of 17.74eV, which is ≈ 7eV less than for
model 10 of the previous section. Nonetheless, model 3F displays an average
distance on the test set which is practically the same as the one for model
10 (24.23 the latter, 24.33 the former).

Model Test MSE Test sqrt (MSE)

1F 3858.69 62.12
2F 2586.20 50.85
3F 591.95 24.33
4F 314.63 17.74

Table 7.6: MSE of de-normalized test data, root square of MSE of de-normalized
test data for the models of Table 7.4.

In Fig. 7.17 andFig. 7.18 are shown all original and reconstructed profiles in
the test set for models 1F and 3F.
A time slice is fixed (namely number 20), which is not relevant since each
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Figure 7.17: Original and reconstructed profiles in the test set, model 1F.
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Figure 7.18: Original and reconstructed profiles in the test set, model 3F.
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sample has a different starting time (it holds the same reasoning as in the
previous section).
As can be seen, overall reconstruction hasn’t improved much for these models
trained on 12k samples. This is further confirmation that with this dataset,
which is not specific to a single discharge type, it is necessary to scale up
the dataset to 120k to obtain an improvement in performance. Nonetheless,
the reconstruction displayed in Fig. 7.17 and Fig. 7.18 is good.
Finally, are also presented some examples of reconstruction for specific sam-
ples in the test set. For these, the graphs display a single sample time
evolution.
In Fig. 7.19 the reconstruction of a test set shot is shown, which is performed
by the so called Model P, a preliminary model for whole profile reconstruc-
tion, trained with MinMax normalized samples on a training dataset of size
12288. In this discharge, it can be seen that in the original profile a MHD
mode is present, of which the effect can be seen in the inward bulge at
0.3 < ρ < 0.6. This model is not capable of recognizing the local flattening
of the profile due to the presence of such mode, registers it as something to
regularize and produces the known shape of the electron temperature, which
does not display bumps or flattenings.
Nonetheless, in Fig. 7.20 the reconstruction performed by Model 2F is pre-
sented. In this case, the network recognizes the presence of the MHD mode
and properly reconstructs it. This is a clear consequence of the effect of
increasing the dataset size, as well as the effect of using a tailored normal-
ization.
Moreover, another comparison case is presented in Fig. 7.21 and Fig. 7.22.
The former displays the reconstruction of model P, while tha latter the one of
Model 2F. Even in this case, we can see how the reconstruction performance
has clearly improved.

7.5 Disruption avoidance discharges

As previously stated throughout this work, the dataset is primarily made
up of ohmic discharges.
Also, it was noted that in order for the network to improve its performance
significantly, it is needed to scale up the dataset size as to have enough sam-
ples of the lesser represented discharges.
In the light of this, a dataset made up only of a specific discharge type,
namely disruption avoidance configurations, is constructed.
The objective is to observe how the performance increases when the model
is developed for a single discharge type, which in the previous dataset was
only present in minority and was not properly reconstructed.
In Table 7.7 are presented the main characteristics of the dataset employed
for training and evaluating such model.
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Figure 7.19: Original and reconstructed profile for shot 66293, start time 1.0543s,
model P.
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Figure 7.20: Original and reconstructed profile for shot 66293, start time 1.0641s,
model 2F.
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Figure 7.21: Original and reconstructed profile for shot 66293, start time 1.0543s,
model P.
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Figure 7.22: Original and reconstructed profile for shot 66293, start time 1.0641s,
model 2F.
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Model # Train set # Val/Test set Channels

1da 12888 3072 5-67
2da 12888 30720 26-67

Parameters common to all models

Sequence length 5000
Stride 100

Time resolution 10ms
Normalization Tanh

Table 7.7: Disruption avoidance discharges models for the AE LSTM.

Each model is trained for 40 epochs using the MSE as loss function, with
the same hyperparameters, namely:

- Dropout set to a rate of 0.4, both for the recurrent and linear connec-
tions;

- Regularizer set to L1 L2 with coefficient of regularization α = 10−8,
both for recurrent and linear kernels;

- Adam optimizer with the Tensorflow implementation default settings;

- Adaptive learning rate lr, set to a starting value of 10−3 which is fixed
for the first 5 epochs and then decays according to:

lr = lr · e−0.1

In Table 7.8 are presented the results of the trainings, namely the training
and validation losses, as well as training time and dataset loading time.

Model Training
loss

Validation
loss

Training
time

Loading
time

1da 0.024 0.016 20min 1s 6h
2da 0.021 0.016 34min 2s 6h

Table 7.8: Training, validation and test loss (normalized data), training time and
dataset loading time for the models of Table 7.7.

An evaluation of these models performance compared to the ones of previ-
ous sections can be directly made by looking at Table 7.9, where as before
are displayed the MSE between the original and reconstructed profiles (de-
normalized) and its square root.
For model 1da, an average distance between original and reconstructed of
22.08eV is found, which is less than half of what was obtained for model
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Figure 7.23: Training and validation loss, model 1da. Note the logarithmic scale
on the y axis.

2F of the previous section. Nonetheless, model 2F was trained with 120k
samples, as opposed to the 12k employed for model 1da. When comparing
model 1da with model 1F, which was also trained with 12k samples, one
obtains that the average distance for the former is one third of the one for
the latter, which is 62.12eV.
For what concerns model 2da, for pedestal reconstruction, there is an im-
provement with respect to model 3F, which was trained on 12k samples
as 2da, but not as dramatic as for the whole profile: 17.50eV the former,
24.33eV the latter. Actually, model 4F, trained for pedestal reconstruction
on 120k samples performs quite similarly to model 2da: 17.74eV.

Model Test MSE Test sqrt (MSE)

1da 487.31 22.08
2da 306.31 17.50

Table 7.9: MSE of de-normalized test data, root square of MSE of de-normalized
test data for the models of Table 7.7.

Following, in Fig. 7.23 and Fig. 7.24 are presented the graphs of the training
and validation loss over the training epochs for the models.
No relevant overfitting is present.
In Fig. 7.25 and Fig. 7.26, are shown all original and reconstructed profiles
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Figure 7.24: Training and validation loss, model 2da. Note the logarithmic scale
on the y axis.

in the test set for models 1da, 2da. A time slice is fixed (namely number
20), which is not relevant since each sample has a different starting time (it
holds the same reasoning as in the previous subsection).
It can clearly be seen from Fig. 7.25 and Fig. 7.26 how performance in-

creases when restricting the dataset to a single discharge type. Both pedestal
and whole profile reconstruction are capable of spanning the whole range of
temperature values.
Finally, some examples of reconstruction for specific samples in the test set
are also presented. For these, the graphs display a single sample time evo-
lution.

In Fig. 7.27 the worst reconstructed profile in the test set for model 1da
is presented (distance from the original profile of 36.87eV). Notice first how
this is the worst performance of the network on the test set, but nonetheless
reconstruction is overall good. The struggle is in the last time slices, where
the model fails to follow the rise of the original profile.
On the other hand in Fig. 7.28 the best reconstructed sample in the test
set for model 1da is reported. The distance from the original profile is of
only 8.14eV, the lowest value across all models presented in this work. This
sample shows little change in temperature values over time: the network is
best capable of following a sample which does not modify its temperature
range significantly.
Finally, in Fig. 7.30 and Fig. 7.29 are presented, respectively, the best and
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Figure 7.25: Original and reconstructed profiles in the test set, model 1da.
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Figure 7.26: Original and reconstructed profiles in the test set, model 2da.
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Figure 7.27: Original and reconstructed profile for shot 65527, start time 0.4944s,
model P.
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Figure 7.28: Original and reconstructed profile for shot 65527, start time 1.1622s,
model 2F.
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Figure 7.29: Original and reconstructed profile for shot 65527, start time 0.4904s,
model P.
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Figure 7.30: Original and reconstructed profile for shot 65527, start time 1.1622s,
model 2F.
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worst reconstructed profiles in the test set for model 2da. Similar considera-
tions as for model 1da hold, with the worst reconstructed sample displaying
the network struggle in following higher temperature values in the last time
slices and the best reconstructed one which does not modify much its range
of temperature values in time.
Overall, it is concluded that these two models developed for disruption avoid-
ance discharges only are the best performing models in this work. Further-
more, considering model 1da and 2da were trained on a training sample
of size 12288, it is expected an additional performance improvement when
training with a dataset of bigger size, as the one for models 2F and 4F.



Conclusions and Outlook

In this work several neural network models to reconstruct the 1D plasma
profile of the electron temperature in the TCV tokamak have been explore.
First, an autoencoder architecture, with convolutional and recurrent LSTM
layers was developed; this model proved ineffective because of the complex-
ity of the data, which would have required a much bigger dataset size. On
the other hand, such a scale up of the dataset was unfeasible given the size
of the samples and consequently long training time for the model.
Thus, a simpler autoencoder architecture was constructed, composed only of
recurrent LSTM layers. This network was tested with several combinations
of parameters and finally used to develop two distinct models for pedestal
and whole profile reconstruction.
These models achieved a satisfying performance, especially when trained on
a dataset of size ≈ 120k. They allowed to solve several pathologies of the
models trained on smaller datasets, confirming that a bigger training set
leads to an improvement in performance.
Furthermore, given that the task complexity also lies in the nature of the
dataset, which comprises several different kinds of discharges, an additional
model for the same reconstruction task but on a specific discharge type
(disruption avoidance) was developed. The intuition was to investigate if a
model tailored to a specific type of discharge would perform better.
Indeed, such model surpassed in performance the generic ones, even if it was
trained on only ≈ 12k samples. This leads to the conclusion that focusing
on a specific type of discharge could be a more precise approach to solving
the task. Alternatively, oversampling the under represented discharge types
could also be a solution to the non homogeneity of the dataset with respect
to the discharge type.
Overall, it can thus be affirmed that a neural network model(s) for the re-
construction of the electron temperature profile was successfully developed,
which can be a confirmation of the usefulness of NN models in the context
of nuclear fusion data.

As for what concerns future prospects, more models should be developed, in
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the direction of tailoring each model to a specific discharge type. One could
argue that training multiple models is expensive, both in terms of time and
computational resources. Nonetheless, the models developed in this work
have short training times (≈ 30min for 12k samples, ≈ 4h for 120k samples)
which make them suitable for this proposal.
The bottleneck of this approach actually lies in the input pipeline of the
dataset, which is performed by means of the tf.data.Dataset object of
Tensorflow [36]. This is also one of the points which are intended to be im-
proved: more efficient ways for loading the data are available, among which
are, for example, additional parallelization and hardware acceleration.
Moreover, as previously mentioned, over sampling options for underrepre-
sented discharge types in the complete dataset should be explore, as to
investigate if it is possible to develop a single model which effectively recon-
structs several discharge types.
Furthermore, training the models developed in this work with raw data com-
ing from the Thomson Scattering diagnostic would be a significant line of
research: indeed, if one hopes to deploy the model in real time, function-
ing with raw data is an essential requirement. This direction is encouraged
by the fact that being raw data only fitted and giving the regularization
properties exhibited by these AE models, no relevant degradation in the
performance is expected.
Additionally, a possibility that needs to be explored is to feed the model
with data coming from a source which is not the one to reconstruct, but
just a proxy signal: specifically, data coming from the Soft X-rays (SSX) di-
agnostic would be given as input to reconstruct the TS electron temperature
profile in output. This would prove useful since the SSX signal is currently
available in real time in TCV.
In conclusion, the model developed in this thesis is a first step towards a
subsequent model that is capable to perform forecasting of the electron tem-
perature plasma profile. An autoencoder trained for reconstruction can be
used as an efficient embedder of information about the profile, which, once
encoded, can be used, together with additional variables (such as plasma
confinement state, equilibrium parameters, shape parameters, information
on MHD modes) as input to a different network with the task of forecasting
some timesteps of the profile.
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