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Introduction

This thesis is focused on the development of a wavefront curvature sensor and the

wavefront correction with a multi-actuator lens developed at CNR-IFN of Padua.

The curvature sensor determines the wavefront from two images taken out of the

focus of a telescope and is typically used when working with point-like objects, as

for example with stars in astronomy. Our goal is to obtain the depth of point-like

objects in a specimen by using out of focus images to characterise the deformation

of the object due to astigmatism.

In the first chapter we discuss the optical image formation and how to represent a

wavefront with two different bases. We then discuss the components of an adaptive

optics system and we introduce three different wavefront sensors, several wavefront

correctors and three kinds of control systems. Among the wavefront correctors,

the multi-actuator lens is of particular importance, since it allows to modify a

wavefront with several aberrations.

In the second chapter we introduce the theory of the curvature sensing and we

present the results of an algorithm that estimates the wavefront by using two out

of focus images.

The third chapter contains the laboratory test of the wavefront curvature sensor.

In the fourth chapter we show how it is possible to control the multi-actuator lens

with out of focus images and to obtain an almost flat wavefront by using this par-

ticular approach. The practical implementation is then exposed with two different
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setups.

In the last chapter we use the multi-actuator lens mounted on a fluorescence mi-

croscope to obtain depth reconstruction of a sample by using a single image with

an astigmatic wavefront.
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Chapter 1

Aberrations and adaptive optics

In an ideal imaging system, rays coming from a point like object are focused by the

optic system into another point of the image plane. However, ideal conditions do

not exist and when the rays travel through a medium and then through the system

they come to be affected by aberrations. For example, if a spherical wave is emitted

by a point-like sorgent under ideal conditions, when the wave passes through the

system it remains spherical with its centre in the image plane. However, if there

are misalignments and imperfections in the system, or even dust in the propagation

medium, the wave can no longer be spherical.

For example, astronomers always come to deal with aberrations on telescopes

due to atmosphere. In fact, the wavefront produced by a star is plane until it

reaches the atmosphere of the Earth. Here different refractive indices modify the

wavefront, so that it results no to be plane anymore when it is detected by the

telescope.

Adaptive optics [5],[14] enables to correct the wavefront. In the astronomical case

the adaptive optics system enables to make the wavefront flat. In this chapter, we

will introduce some basic concepts of optical imaging and wavefront formations.

Later on, we will discuss adaptive optics and its typical components: wavefront

sensors, control systems and wavefront correctors.

11



1. ABERRATIONS AND ADAPTIVE OPTICS

1.1 Optical image formation

An aberration introduced into the pupil of the objective lens can be expressed as

a wavefront function W (x, y), measured in waves, or a phase function Φ(x, y) =

2πW (x, y), measured in radians. The wavefront function represents the difference

between the physical wavefront and the reference wavefront that can be sphere or

plane. The complex pupil function can be written as

P (r, θ) = P (r)eiΦ(x,y), (1.1)

where P (r) = 1 in the unit circle, 0 elsewhere.

In an optical system with spatially incoherent light, the image irradiance I(u, ν)

is the convolution of the object irradiance I0(η, ξ) with the point spread function

(PSF) |h(u, ν)|2 of the system:

I(u, ν) =

∫ ∫
|h(u− η, ν − ξ)|2I0(η, ξ) dη dξ = |h(u, ν)|2 ⊗ I0(u, ν). (1.2)

The PSF describes the response of an incoherent imaging system to a point source,

and it is mathematically equivalent to the modulus squared of the amplitude point

spread function h(u, ν). Using the scalar diffraction theory we can write the am-

plitude point spread function as

h(u, ν) =
1

λz

∫ ∫
P (x, y)e−i

2π
λz

(ux+νy)dxdy =
1

λz
F{P (x, y)}fx= u

λz
,fy= ν

λz
(1.3)

where z is the image distance and F{...} is the Fourier transform operation.

If we want to describe the aberrations that affect a system, it is useful to express

the wavefront as a complete and orthogonal series of polynomials, as we can see

in the next sections.

1.2 Zernike polynomials

Zernike polynomials are used to represent a wavefront in a circle domain. In fact

these polynomials are a basis in the unit circle, that it means that they are a set
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1.2. Zernike polynomials

of orthonormal functions. If we indicate with Zm
n (ρ, θ) the Zernike polynomial of

order (n,m), we can write it as

Zm
n (ρ, θ) =


√
n+ 1 Rm

n (ρ) cos(mθ) for m > 0√
n+ 1 Rm

n (ρ) sin(mθ) for m < 0
√
n+ q R0

n(ρ) for m = 0

(1.4)

where ρ and θ are polar coordinates. The function Rm
n (ρ) can be written as

Rm
n (ρ) =

n−m
2∑

k=0

(−1)k(n− k)!

k!
(
n+m

2
− k
)

!
(
n−m

2
− k
)

!
ρn−2k (1.5)

for n−m even, whereas it takes constant value 0 if n−m odd.

The orthogonality law of Zernike polynomials states that∫∫
Zm
n (ρ, θ)Zm′

n′ (ρ, θ)dρdθ = δn,n′δm,m′ . (1.6)

Usually the wavefront is not expressed with this indexation. Let us look at Fig-

ure 1.1, where Zernike polynomials are represented in a triangular scheme where

the i − th row is given by all polynomials Zm
n with n = i. We relabel them in

order of appearence in the scheme (top to bottom, left to right). In the first row

we thus have Z1 (piston), in the second row Z2 (tip) and Z3 (tilt), in the third

row Z4 (oblique astigmatism), Z5 (defocus), Z6 (vertical astigmatism) and so on.

Using this indexation, a wavefront can be written as

W (ρ, θ) =
∞∑
i=1

ciZi(ρ, θ). (1.7)

A remarkable property that descends from the orthogonality law is that the wave-

front variance between the wavefront we have and the one we wish to obtain can

be easily calculated as

σ2 =
∞∑
i=2

c2
i . (1.8)
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1. ABERRATIONS AND ADAPTIVE OPTICS

Figure 1.1: Zernike polynomials up to 5-th order.

1.3 Lukosz polynomials

The wavefront can also be expressed with other basis, and the Lukosz polynomials

are an example of it If we indicate with Zm
n (ρ, θ) the Lukosz polynomial of order

(n,m), we can write it as

Lmn (ρ, θ) =

{
Bm
n (ρ) cos(mθ) for m > 0

Bm
n (ρ) sin(mθ) for m < 0,

(1.9)

where

Bm
n (ρ, θ) =



1

2
√

(n)

(
R0
n(ρ)−R0

n−2(ρ)
)

for n 6= m = 0

1

2
√

(n)

(
Rm
n (ρ)−Rm

n−2(ρ)
)

for n 6= m 6= 0

1√
(n)

(
Rn
n(ρ)

)
for n = m 6= 0

1 for n = m = 0.

(1.10)

The term Rm
n (ρ) is the same of equation 1.5.

As in the previous case, instead of using n and m, we can use the index i to refer

to the polynomials. Using this different indexation, the wavefront can be written

14



1.3. Lukosz polynomials

as

W (ρ, θ) =
∞∑
i=1

aiLi. (1.11)

The orthogonality law satisfied by these polynomials is rather different from Zernike

ones. In fact the latter is given by

1

π

∫∫ (
∇Li1

)
·
(
∇Li2

)
ρdρdθ = δi1,i2 . (1.12)

Now we write the root mean square (rms) of a certain ensemble of values {x},

xrms =

√∑N
i=1(xi − x̄)

N2
, (1.13)

where x̄ is the average value and N the number of values. An interesting property

of Lukosz polynomials is that they can give a simple expression for the root mean

squared radius. in fact, it is defined as

ρ2
rms = 〈(∆x)2 + (∆y)2〉, (1.14)

where ∆x and ∆y are the transverse aberrations, which are equal to

∆x = Rλ
∂W (x, y)

∂x
, (1.15)

∆y = Rλ
∂W (x, y)

∂y
. (1.16)

The coefficient λ is the wavelength and R is the radius of the reference sphere.

Using Equations 1.11 and 1.12, we can show that ρ2
rms is proportional to the squares
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1. ABERRATIONS AND ADAPTIVE OPTICS

of the Lukosz coefficients:

ρ2
rms = (Rλ)2〈

(
∂W (x, y)

∂x

)2

+

(
∂W (x, y)

∂y

)2

〉

= (Rλ)2〈|∇W (x, y)|2〉

= (Rλ)2〈∇W (x, y) · ∇W (x, y)〉

= (Rλ)2

∞∑
i=4

∞∑
j=4

aiaj〈∇Li(x, y) · ∇Lj(x, y)〉

= (Rλ)2

∞∑
i=4

∞∑
j=4

aiaj
1

π

∫∫
∇Li(ρ, θ) · ∇Lj(ρ, θ)ρdρdθ

=

(
λ

2πNA

) ∞∑
i=4

a2
i ,

where NA is the numerical aperture of the system, and in the last step a change

from polar to cartesian coordinates has been made.

1.4 Maréchal criterion

We have seen that the variance of the wavefront, expressed as sum of Zernike

polynomials, is quite simple to calculate. This is of great advantage, since it can

be used to compute the Strehl intensity

S = 1− σ2, (1.17)

which let us determine the quality of the optical system according to the Marèchal

criterion. This latter states that a system is well corrected if

S ≥ 0.8. (1.18)

This means that if the rms between the wavefront we measure and the flat wave-

front is less or equal than 0.08 waves, the wavefront can be considered as flat.
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1.5. Wavefront sensors

1.5 Wavefront sensors

The problem of measuring the wavefront is very common in optics and different

types of wavefront sensors (WFS) have been developed to solve it. The most

used are the Shack-Hartmann, the curvature, the pyramid and the phase diversity

wavefront sensor.

1.5.1 Shack-Hartmann WFS

The Shack-Hartmann WFS is composed by a detector and an array of lenslets

each having the same focal length. Every lens takes a small part of the signal and

focuses it on the detector, typically a CCD. If we record an image of a plane wave

and one of an aberrated wave, the local tilt of the wavefront across each lens can

be calculated by using different positions of the spots of the two images. Since any

phase aberration can be approximated by a set of discrete tilts, by sampling an

array of lenslets it is then possible to approximate the whole wavefront by using

all the measured tilts. Therefore, the sensor measures the tilt over each aperture

by comparing the measured positions of the aberrated spots to the position of the

spots for a reference input beam. The tilt measurements are then converted into

the estimated wavefront.

1.5.2 Curvature WFS

In the curvature sensor the wavefront is reconstructed by using two different im-

ages. The signal is focused by a lens and the two images are taken out of the focus

of the same quantity, one before and one after the focus. More details of this type

of sensor are in Chapter 2.
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1. ABERRATIONS AND ADAPTIVE OPTICS

Figure 1.2: Scheme of a Shack-Hartmann wavefront sensor. When the wavefront is
flat the focused spots are in the intersection between the CCD and the red dotted lines.
When the wavefront is aberrated, the focused spots on the CCD translate with respect
to the flat wavefront’s spots.

1.5.3 Pyramid WFS

This kind of wavefront sensor was invented by Ragazzoni in 1994 [12]. It is similar

to the Shack-Hartmann. A pyramidal glass prism is placed in front of a lens. The

prism divides the signal beam in four parts and the lens projected the four parts in

a detector. The difference in intensity over the four images contains information

about the first derivatives of the incoming wavefront.

1.5.4 Phase diversity WFS

With this kind of sensor we need to take two images of the object, one with a known

defocus distance with respect to the other, as shown by Gonsalves [7], [9], [8]. The

method Gonsalves presents in 1976 is an iterative method to retrieve the phase of

a pair of light distributions. We know the width of the pupil, so we generate a

random phase and calculate the PSF. We then define a merit function and minimise

it by using an algorithm that search the phase. Typically the algorithm to find the

phase is a steepest descend one or a genetic algorithm. Finally, when the merit

function is minimised, the phase is uniquely determined.

Some years before Gonsalves, Gerchberg and Saxton [6] presented in 1972 a method

18



1.5. Wavefront sensors

Figure 1.3: Scheme of a pyramid wavefront sensor.

to obtain the phase by using the intensity of the sampled image and diffraction

plane. To find the phase, a random number generator is used to generate an array

of random numbers between π and −π which serves as the initial estimate of the

phases corresponding to the sampled image amplitudes. These amplitudes are

multiplied by the respective sampled image amplitudes. The Fourier transform is

then applied to these new values and the phases obtained trnasform are combined

with the corresponding sampled diffraction plane amplitudes. These values are

then inverse Fourier transformed, the phases of the sample points computed and

combined with the sampled image amplitudes to form a new estimation of the

image amplitudes and the process is repeated.

However, the Gerchber-Saxton algorithm is very slow and Fienup [3] the year later

presented other methods that are faster than the previous. Fienup et al. made a

comparison between the curvature sensor and the phase diversity too [4].
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1. ABERRATIONS AND ADAPTIVE OPTICS

Figure 1.4: Scheme of a phase diversity wavefront sensor.

1.6 Wavefront correctors: Deformable Mirrors

Deformable mirrors (DMs) are mirrors whose reflecting surface can be deformed

by attaching on its backsome. Deformable mirrors are the most used wavefront

correctors. These type of correctors do not introduce chromatic aberration and

thanks to high reflective coatings they allow not to lose signal. The principal

parameters that describe a deformable mirror are:

• the number of actuators, that determines the number of degree of freedom

of the system. The greater is the number of actuators, the higher order of

aberrations the deformable mirror can resolve.

• the actuator pitch, that is the distance between actuators’ centres.

• the actuator stroke, that is the maximum actuator displacement from the

initial position.

• the response time, that can vary from microseconds to tens of seconds.

• the hysteresis, that is the positional error from previous actuator position

commands and it obviously affects the ability of the mirror to work in a

predictable way.
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1.6. Wavefront correctors: Deformable Mirrors

• the influence matrix, which contains information on how the actuators affect

the shape of the surface. Usually the influence matrix is calculated by setting

the actuators to a certain value one at a time and the wavefront obtained

is recorded by a wavefront sensor. If we call the influence matrix A, the

wavefront Φ is given by

Φ = Ac, (1.19)

where c is the vector commands to be applied to the actuators. Once we

know the wavefront and the influcence matrix, we can invert Equation 1.19

to obtain the vector commands, that is

c = A−1Φ. (1.20)

1.6.1 Segmented DMs

These type of mirrors are formed by some independent flat mirrors, each one with

an actuator on its back. The actuators can move up and down (piston) and/or

allow the mirror on the top of them to rotate (tip/tilt). By using a segmented DM

there is no crosstalk between the actuators, because each one is independent to the

others. Segmented DMs allow to reach high dimensions, in fact they are usually

mounted in big telescopes. A great disadvantage is that they are expensive.

Figure 1.5: A segmented deformable mirror with piston and tip/tilt actuators.

1.6.2 Continuous faceplate DMs

These mirrors are similar to the segmented DMs. However, in this case there is

not a flat mirror for each actuator, but only one deformable continuous faceplate
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1. ABERRATIONS AND ADAPTIVE OPTICS

on the top of all the actuators. The shapes that this mirror can assume depend

on the combination of the forces applied by the actuators, the boundary condition

of the faceplate and the properties of the faceplate itself. Therefore in this case

there is crosstalk between the actuators.

Figure 1.6: Scheme of a continuous deformable mirror.

1.6.3 Membrane DMs

The membrane DMs use the same continuous faceplate as the previously presented

mirrors. In this case, instead of by the actuators, the membrane is moved with

electrode pads by using electrostatic pressure. The electrostatic pressure exerted

by the i-th electrode can be written as

pi =
ε0
2

(
Vi
d

)2

, (1.21)

where Vi is the voltage applied and d is the distance between the electrode and

the membrane. Pressure can only be positive, so we have to choose a bias zero

position of the voltage, usually Vmax/
√

2, that allows us to create positive and

negative aberrations by moving up and down the membrane.

Figure 1.7: Scheme of a membrane deformable mirror.
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1.7. Wavefront correctors: Deformable Lenses

1.6.4 Bimorph DMs

Bimorph mirrors also use a continuous faceplate, but the actuators are flat disks

of piezoelectric material bonded to the back of the faceplate, as we can see in

Figure 1.8. By changing the voltage of the piezoelectric materials, their dimensions

change parallel to the faceplate, and this produces bending moments that curve the

faceplate. Typically these kinds of mirrors are produced with low-cost materials

and very well suited to adaptive optics systems.

Figure 1.8: Scheme of a bimorph deformable mirror.

1.6.5 Microelectromechanical DMs

Microelectromechanical (MEM) DMs are a quite new technology for cheap DMs.

These devices are derived from the membrane DMs, and the peculiarity is that

these DMs are small, so that they can be used in very small devices. The dimension

of the components is typically between 1 and 100 µm, thus the whole deformable

mirror is no bigger than 1 cm and it contains hundreds or thousands of actuators.

MEMs actuators are moved with electrostatic forces as in membrane DMs, but in

this case voltage is very small, tens of Volts, and so is the current.

1.7 Wavefront correctors: Deformable Lenses

In the last few years deformable lenses (DLs) have been developed to perform

wavefront correction. DLs are very interesting because they enable to minimise

the dimension of the adaptive optics setup. Here we present different types of

deformable lenses.
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1. ABERRATIONS AND ADAPTIVE OPTICS

Figure 1.9: A MEM deformable mirror.

1.7.1 Electrically tunable lens

The first lens we introduce is the electrically tunable lens created by Optotune

(model EL 10-30) [11]. It has an external diameter of 30 mm and a clear aperture

of 10 mm, and it is 10.75 mm thick. It consists of a container (two thin glass

windows with a 400 − 700 nm broad band), which is filled with a low dispersion

transparent liquid (with refractive index n = 1.300) and sealed off with an elastic

polymer membrane. This lens has an electromagnetic actuator that changes the

pressure of the liquid. By varying the current of the actuator we can change the

pressure applied to the liquid and therefore change the focal length of the lens.

(a) (b)

Figure 1.10: Optotune lens. Photo of the lens (a) and scheme (b).
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1.7. Wavefront correctors: Deformable Lenses

1.7.2 Electrowetting lens

Electrowetting is the change of the solid-electrolyte contact angle due to an applied

voltage between the solid and the electrolyte.

The shape of a liquid-vapour interface on a solid is determined by the Young-

Laplace relation, and the theoretical description descends from thermodynamic

considerations between the three phases: solid, liquid and vapour. If we indicate

with γ the interfacial energy, i.e the surface tension, we will have three surface

tensions: γSL between the solid and the liquid, γLG between the liquid and the

vapour and γSG between the solid and the vapour. The Young-Laplace equation

is then (see Figure 1.11)

γSG − γSL − γLG cos θC = 0, (1.22)

from which we get the contact angle

θC = arccos
(γSG − γSL

γLG

)
. (1.23)

Figure 1.11: Scheme of the contact angle.

If the liquid is an electrolyte, the surface tension of the solid conductor and the

electrolyte depend on the voltage applied according to the law

γSL = γSL0 −
CV 2

2
, (1.24)
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1. ABERRATIONS AND ADAPTIVE OPTICS

where γSL0 is the surface tension at 0 V , C is the capacitance of the interface and

V is the potential. The contact angle is then

cos θC =
γSG − γSL0 + CV 2

2

γLG
. (1.25)

An electrowetting lens [22] uses this principle to obtain a lens that can change

its shape from plano-convex to plano-concave. A typical electrowetting lens is

composed by a cylindrical insulant box whose bases are made of glass. Inside the

box there are the solid conductor and the electrolyte, as it is shown in Figure 1.12.

Figure 1.12: The electrowetting lens changes behaviour by varying the supply tension.

1.7.3 Multi-actuator adaptive lens

The last lens we introduce is a multi-actuator adaptive lens, invented by Bonora

in 2014 [1]. It is composed of two thin glass windows (borosilicate glass, refractive

index n = 1.474, 150 µm thick), upon each of which is mounted a piezoelectric

actuator ring. The space between the windows is filled with a transparent liquid

(Vaseline oil, refractive index n = 1.475 ). The piezoelectric actuator ring (Physics
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1.8. Control systems

Instruments) has an external diameter of 25mm and an internal diameter of 10mm

with a thickness of 200 µm. The multi-actuator lens used has 9 independent

actuators per ring, thus the total number of actuators is 18. The rings are glued

to the windows and act as bimorph actuators: therefore the application of a voltage

generates a bending of the glass windows. The actuators can be controlled using an

high voltage (+/- 125 V) driver (Adaptica srl, IO64). As in the case of deformable

mirrors, if we apply a voltage to one actuator at a time, we obtain the influence

matrix of the system, and by inverting equation 1.19 we find the vector commands.

As we can see in Figure 1.13, the top and bottom actuators work in different ways.

Figure 1.13: Layout of the multi-actuator adaptive lens. Panels a-c show the mea-
sured wavefront with the relative interferogram in three different configurations: a) one
electrode on the top, b) one electrode on the bottom, c) all the actuators with the same
voltage value.

In fact, the actuators on the top are free to move, instead the bottom actuators

are blocked by a rigid aluminium ring. Thanks to this particular configuration,

the bottom actuators are virtually inside the clear aperture, and this enables to

correct wavefront aberrations up to the fourth order of the Zernike polynomials.

1.8 Control systems

There are three kinds of control of the adaptive optics system.

The first type of control is the open loop, where we directly use the measurements

of the wavefront to control the actuators and eliminate the aberrations.

The second type of control is the closed loop. In this case we compare the desired
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wavefront with the measured one with a sensor, compute the error between them

and use this error to control the actuators of the corrector.

The last type of control is called wavefront sensorless. In this case there is no wave-

front sensor and the correction is possible by the optimisation of some properties

of the signal.

1.8.1 Closed loop

The closed loop is the typical control for adaptive optics systems. Generally, in this

kind of control an integrator is used to introduce memory in the system, thanks to

which we keep trace of information about the previous corrections. The wavefront

aberrations vector Φ in the (k + 1)-th iteration can be written as{
Φk+1 = Φk + Ack

yk+1 = Φk + vk,
(1.26)

where A is the influence matrix of the corrector, c the actuator commands vector,

v is the measured noise vector and y the measured aberrations vector. In a discrete

time approach, the integrator for the command vector is

ck = −Ryk + ck−1, (1.27)

where R is called reconstructor matrix and it has to be determined. To consider a

wavefront corrected, Φk+1 has to be null. The reconstructor can be found (setting

ck−1 = 0) as

ck = −Ryk = −A−1yk ' −A−1Φk. (1.28)

Since the influence matrix is not square, the simplest way to find the reconstructor

is by using a least square technique, that results into

R = (ATA)−1AT . (1.29)

28



1.8. Control systems

Other techniques can be used to calculate R, one of them is the already seen

singular value decomposition. In this case

A = UWV T , (1.30)

and

R = VW−1UT . (1.31)

Once we have computed the reconstructor, it is possible to implement the closed

loop control system.

1.8.2 Wavefront sensorless optimisation

As already described, in the sensorless optimisation [24], [13] the wavefront sensor

is not used, and the image is corrected maximising a metric with the wavefront

corrector. In literature several imaging sharpness metrics are described. For exam-

ple, two optimisation metrics have already been introduced, the Strehl intensity

and the rms spot radius. However, they work only with point-like samples, so

they cannot be properly considered as metrics. For extended samples, the most

used metric is the irradiance squared metric, proposed by Buffington and Muller

in 1974 [10]. The irradiance squared metric is defined as

IQ =

∫∫
I(x, y)2dxdy, (1.32)

where I(x, y) is the irradiance. In the article it is demonstrated that this metric

is maximised when the wavefront distortions are zero and that the maximum is

global. Moreover, in the same article other metrics are defined, for example

Sβ =

∫∫
I(x, y)β for β = 3, 4 (1.33)

S5 =

∫∫
I(x, y) ln

(
I(x, y)

)
dxdy (1.34)
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S5 =

∫∫
I(x, y)(x2 + y2)dxdy (1.35)

Another metric that it is largely used is the spectral density metric (SD), proposed

by Debarre, Booth and Wilson in 2007 [2]. This metric is based on the lower spatial

frequency of the image, but leads to a correction of all the frequencies of the image,

specially for incoherent images. SD metric is defined as

SD =

∫ 2π

ξ=0

∫ M2

m=M1

SJ(m) m dm dξ, (1.36)

where SJ(m) is called spectral density and can be calculated as follows. If we

apply the convolution theorem to Equation 1.2 we obtain

I(x, y) = |h(x, y)|2 ⊗ I0(x, y). (1.37)

Now we apply the Fourier transform to this equation and multiply for the complex

conjugate, so the result is

SJ(m) = |F{h(x, y)2}|2 · |F{I0(x, y)}|2, (1.38)

where SJ(m) = |F{I(x, y)}|2.

SD metric has some interesting property. The first one is that it reaches the

maximum in a free aberrations system. Moreover, we can select the spatial fre-

quencies to use in equation. The bigger is the range of frequencies, the larger the

aberrations that can be corrected in the image. If we consider only low spatial

frequencies and samples without a predominant periodicity in one direction, it has

been demonstrated that SD metric can be written as a series of Lukosz coefficients,

SD =
1

q1 + q2

∑∞
i=4 a

2
i

, (1.39)

where q1 and q2 are positive constants that depend on (M1,M2) fixed. If we take

the inverse relation, SD−1 is a paraboloid in N dimensions, with a global minimum

in the free aberrations system configuration,

SD−1 = q1 + q2

∞∑
i=4

a2
i . (1.40)
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Once we have chosen the basis and the metric, we need to use an algorithm to

perform the optimisation. A possible algorithm is the modes correction, that uses

the inverse of the SD metric to correct every single Lukosz mode and it is faster

than any other algorithm in this field. The steps to follow are:

1. Evaluate SD−1
0 with the wavefront corrector relaxed.

2. Select the number of modes N to correct and a bias term b to add and

subtract to every mode.

3. Excluding piston, tip and tilt that do not contribute to the aberration, cal-

culate the inverse SD metric of the given Lukosz mode with coefficient +b.

4. Repeat the same calculation with coefficient −b.

5. We now have three points, which let us extrapolate the parabola to find the

value that corrects the aberration of the given Lukosz mode, that is

acorr =
−b(SD−1

+ − SD−1
− )

2SD−1
+ − 4SD−1

0 + 2SD−1
−

(1.41)

6. With the value acorr the given Lukosz mode is correct and we can then change

Lukosz mode and repeat the same steps until all the N modes are corrected.
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Chapter 2

Propagation of a wavefront and
Curvature Sensing

In this chapter we present the theory for a numerical wavefront propagation and

for a wavefront curvature sensor, developed by F. Roddier in 1988 [15, 16, 17].

2.1 Theory of wavefront curvature sensing

Let us suppose to have a wavefront focused by a lens with focal length f . The

curvature sensing consists of the detection of two images with one or two detectors

and an algorithm that elaborates a combination of these images. If we use two de-

tectors, one takes a snapshot of the irradiance distribution I1 in a plane orthogonal

to the optic axis at a distance l before the focus of the lens. The other one detects

the irradiance distribution I2 at a distance l after the focus (see Figure 2.1).

We can write the irradiance transport equation (ITE) (see Appendix A) as

∂I

∂z
= −

(
∇I · ∇W + I∇2W

)
, (2.1)

where z is the direction of the optic axis, I is the irradiance and W the wavefront.

We apply this equation at the pupil plane (z = 0), where we assume the illumi-

nation to be fairly uniform and equal to I0 inside the pupil and 0 outside. In this
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I
1

I2

f

l l

L1

L2

W

Figure 2.1: Scheme of a wavefront curvature sensor. The wavefront W propagates and
passes through the two lenses L1 and L2. The two irradiances I1 and I2 are different if
the wavefront is not plane, so we can extrapolate information of the incoming wavefront
using I1 and I2.

plane ∇I = 0 everywhere but at the pupil edge, where

∇I = −I0n̂δedge. (2.2)

In this equation n̂δedge is a ring delta function around the edge of the signal.

Putting Equation 2.1 into 2.2 yields

− 1

I0

∂I

∂z
= ∇2W + δedge

∂W

∂n̂
. (2.3)

The longitudinal derivative normalised by I0 can be approximated as

− 1

I0

∂I

∂z
=

1

∆z

I1 − I2

I1 + I2

, (2.4)

where I1 = I(z −∆z) = I0 − ∂I
∂z

∆z, I2 = I(z + ∆z) = I0 + ∂I
∂z

∆z and ∆z = f(f−l)
2l

.

If we constrain
∂Wedge

∂n̂
= 0, the equation we have to solve is simpler than that in

Equation 2.1:

∇2W = − 1

∆z

I1 − I2

I1 + I2

. (2.5)

2.1.1 Solution of the ITE by Fourier transform

Equation 2.5 can be solved by using the Fourier transform. In fact it is well known

that

W (x, y) =

∫ +∞

−∞

∫ +∞

−∞
W (ξ, η)e−i2π(ξx+ηy) dξdη. (2.6)
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2.2. Simulation of an aberrated signal

Therefore if we apply the Fourier transform to the laplacian of the wavefront we

obtain

Fξ,η{∇2W (x, y)} = −4π2(ξ2 + η2)Fξ,η{W (x, y)}, (2.7)

where ξ and η are the spatial frequencies that range from − 1
2pxsz

to + 1
2pxsz

and

pxsz is the aperture pixel size, typical of each experiment. If we now combine

Equations 2.5, 2.7 and apply the inverse Fourier transform (F−1) we can finally

calculate the wavefront

W = F−1
x,y

{
Fξ,η

{
− 1

∆z
I1−I2
I1+I2

}
−4π2(ξ2 + η2)

}
. (2.8)

2.1.2 Solution of the ITE by finite difference method

Another method to calculate the wavefront from Equation 2.5 is by using a finite

difference algorithm [23]. In this case we solve the Poisson equation numerically

on a square grid with equal steps δxy in the two directions of the grid x and y. The

grid knots are indexed as i and j for x and y respectively. The grid approximation

of the Laplace operator takes the form

∇2W =
Wi+1,j +Wi−1,j +Wi,j+1 +Wi,j−1 − 4Wi,j

δ2
xy

. (2.9)

If we combine Equations 2.5 and 2.9 we finally obtain

Wi,j = −1

4

(
δ2
xy −

1

∆z

I1 − I2

I1 + I2

−Wi−1,j −Wi+1,j −Wi,j+1 −Wi,j−1

)
. (2.10)

Starting with matrices of zeros as initial conditions we iteratively compute Wi,j

according to the previous formula, until a minimum stationary error is reached.

2.2 Simulation of an aberrated signal

The simulation of an aberrated wavefront has been made to test the software of the

wavefront curvature sensor. To perform this simulation we have written a software
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2. PROPAGATION OF A WAVEFRONT AND CURVATURE SENSING

in MATLAB that creates an aberrated wavefront and then propagates it through

a lens to obtain two out of focus images I1 and I2.

The aberrated wavefront is calculated in term of Zernike modes and the optical

field can be in a uniform or a gaussian beam. The optical field can be written as

U(x1, y1) = f(x1, y1)eiW (x1,y1), (2.11)

where W (x, y) is the aberration, f(x, y) is a function that represents the gaussian

beam or the uniform beam and i =
√

(−1) is the imaginary unit. After the optical

field is generated, it propagates through a lens, and the optical field after the lens

can be written in Fraunhofer conditions as

U(x2, y2) =
1

iλfl
e
i k
2fl

(x22+y22)FT{f(x1,y1)}
, (2.12)

where λ is the wavelength, k the wave vector and fl the focal length of the lens. In

order to use the wavefront curvature sensor, the optical field cannot be in the focus

of the lens but out of it. Therefore we added and subtracted the same quantity of

the fifth Zernike mode (defocus) to W (x1, y1) in Equation 2.12.

2.3 Algorithm of the wavefront curvature sensor

The wavefront reconstruction has been done in different steps:

1. Obtain the out of focus images I1 and I2.

2. Create the signal S = − I1−I2
I1+I2

.

3. Find the size of the mask.

4. Calculate the wavefront by using Equations 2.8 or 2.10.

5. Set ∂W
∂n

= 0 on the boundary.
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2.4. Results of the simulations

6. Estimate sensor signal S by applying the Laplace operator to W according

to the equation ∇2W = S2.

7. Replace the signal S2 lying inside the mask into S and come back to point

4.

8. When RMS reaches a minimum, stop the algorithm: W has been found. To

calculate the RMS we used the formula

RMS =

√√√√√ N∑
i=1

(W calc
i −W real

i )2

N2
, (2.13)

where N is the number of points of the wavefront grid, W calc is the wave-

front obtained by the algorithm and W real is the real wavefront used in the

propagation program.

2.4 Results of the simulations

We created aberrated images in two different beams. In what follows we analysed

them separately.

2.4.1 Uniform beam

Now we propose an example of the analysis with some Zernike modes. The out

of focus images for the uniform beam with Zernike polynomial 14 can be seen in

Figure 2.2. Then we used the described algorithm in Section 2.3 to obtain an

estimation of the wavefront.

An example of the beginning signal S = − I1−I2
I1+I2

is shown in Figure 2.3. The

size of the mask depends on the dimension of the defocused signal without aber-

ration. We computed the width of these signals in pixels. Once we obtained this

parameter, we varied the dimension of the mask and calculated the RMS between
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Figure 2.2: Optical fields of a wavefront with mode fourteen (Z14). The left image is
the optical field out of focus before the lens, while the right image after the lens.

Figure 2.3: Signal S obtained by I1 and I2 with mode 14.
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2.4. Results of the simulations

the computed wavefront and the real wavefront. We also computed the spectral

purity of the Zernike coefficients obtained by the algorithm. When both the min-

imum of the RMS and the maximum of the spectral purity were found, we used

the corresponding size of the mask for the linear trend analysis. As we can see in

Figure 2.4 the minimum of the RMS for several Zernike coefficients is where the

diameter of the mask is 72 pixels. In order to validate the size of the mask, we

also used the spectral purity of the coefficient, that it is defined as

SP =

√
c2∑N
i=1 c

2
i

, (2.14)

where c is the estimation of the WCS algorithm of the Zernike coefficient used in

the propagation and the denominator is the squared sum of all the Zernike coeffi-

cients obtained by the WCS.

We can observe in Figure 2.5 that the maximum value of the spectral purity is

assumed at the same size of the mask of the minimum of the RMS, thus we used

that diameter for the analysis of the linearity. The spectral purity for two analysed

modes, 4 and 11, is practically always near one. This is due to the fact that when

the mask of these two modes exceeds a particular value, the wavefront does not

change shape anymore and the only value that changes is the peak to valley of it.

Since the signal S = − I1−I2
I1+I2

can assume values from −1 to +1, when it reaches

these extrema the signal will be saturated. If we vary the coefficient of the aber-

ration in the propagation, we can observe the estimation of the coefficient in the

WCS algorithm, to see that it saturates over a certain value.

As we can see in Figure 2.6, the linear trend is correct up to a coefficient value of

2.8 waves, that is when the signal reaches the extrema −1 or +1. In Figure 2.7

there is an example of a saturated signal.

The saturation can be reduced if the out of focus distance is smaller. Nevertheless,

if we reduce this distance, the WCS algorithm will be less sensitive to the change
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Figure 2.4: RMS between the real wavefront and the computed wavefront in the
uniform beam.
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Figure 2.5: Spectral purity of the computed wavefront in the uniform beam.
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2.4. Results of the simulations

of shape of the wavefront. On the other hand, if we want to increase the sensitivity

to the aberrations, we will have to increase the out of focus distance, consequently

the signal will saturate sooner.
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Figure 2.6: Linearity trend for three Zernike modes in an uniform beam.
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Figure 2.7: Saturation of the signal S with a coefficient of 3 waves for the fourth mode
(astigmatism).

2.4.2 Gaussian beam

As in the previous case, we propose an analysis of several Zernike modes. The out

of focus images for the gaussian beam of the mode 14 can be seen in Figure 2.9.

Once we created these images, we have used the algorithm in Section 2.3 to obtain

an estimation of the wavefront.

An example of the beginning signals S = − I1−I2
I1+I2

is represented in Figure 2.10.

The diameter of the mask depends on the dimension of the defocused images

without aberration, as in the previous case. We calculated the full width at half

maximum (FWHM) of the out of focus images and extrapolated the σ. Once we

obtained this parameter, we varied the size of the mask in unit of σ and calculated

the RMS between the computed wavefront and the real wavefront. Again we also

computed the spectral purity of the Zernike coefficients obtained by the algorithm.

When both the minimum of the RMS and the maximum of the spectral purity were

found, we used the size of the corresponding mask for linear trend analysis. As we

can see in Figure 2.11, the minimum of the RMS for several Zernike coefficients
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Figure 2.8: Example of an aberrated wavefront in uniform beam. On the top the
estimated wavefront by the FFT algorithm, on the bottom the real wavefront given as
input of the software of propagation.
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Figure 2.9: Optical fields of a wavefront with the fourteenth mode. The left image is
the optical field out of focus before the lens, while the right image after the lens.

Figure 2.10: Signal S obtained by I1 and I2 with mode 14.
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is where the diameter mask is 1.30σ, and the same value is assumed when the

spectral purity is maximum (Figure 2.12), so we used this size of the mask for the

analysis of the linearity.

The signal is calculated as in the uniform beam, S = − I1−I2
I1+I2

, thus it assumes
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Figure 2.11: RMS between the real wavefront and the computed wavefront in the
gaussian beam.

values from −1 to +1, and when it reaches these extrema the signal will be satu-

rated. If we vary the coefficient of the aberration in the propagation software, we

can see that the estimation of the coefficient in the WCS algorithm over a certain

value does not change anymore: at that value the signal is saturated.

As we can see in Figure 2.13, the linear trend is correct up to a coefficient value

of 3.0 waves, value over which the signal reaches the extrema −1 or +1, as it is

well represented in Figure 2.14.
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Figure 2.12: Spectral purity of the computed wavefront in the gaussian beam.
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Figure 2.13: Linearity trend for several Zernike modes in a gaussian beam.
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Figure 2.14: Saturation of the signal S with a coefficient of 3 waves for the fourteenth
mode.
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Figure 2.15: Example of an aberrated wavefront in a gaussian beam. On the top the
estimated wavefront by the FFT algorithm, on the bottom the wavefront given as input
in the software of propagation.
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Chapter 3

Wavefront curvature sensor

3.1 Experimental setup

In laboratory we tested the wavefront curvature sensing algorithm by using the

apparatus in Figure 3.1. It is composed of a laser with λ = 670 nm, a lens of focal

length f1 = 250 mm which corrects to the infinity the laser, the multi-actuator

lens with 18 actuators described in section 1.7, a telescope with ocular focal length

fo = 250 mm and eyepece with focal length fe = 100 mm. At the exit pupil of

the telescope we set a Shack-Hartmann wavefront sensor, and out of the focus of

the telescope we set a Thorlabs DCC1645C CMOS camera to record the images.

We used a graduated scale to chose the out of focus positions of the camera.

We generated the wavefront with a particular aberration in closed loop by using

the multi-actuator lens and the Shack-Hartmann WFS. Once we set the lens we

recorded two images out of focus of the same quantity.

To perform the analysis of the recorded signal we had to choose the size of the

mask and to set the spatial frequencies for the FFT. The size of the mask was

chosen using geometrical considerations. We can calculate the clear aperture of

the telescope as shown in Figure 3.3. We know the clear aperture of the lens, that

is 10 mm, we can measure the focal length of the objective lens, f in the Figure,

and the distance of the camera from the focus l. Therefore we can calculate also
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3. WAVEFRONT CURVATURE SENSOR

d, according to

d = l tanα + l tan β =
lc

f
. (3.1)

We obtain the dimension in metre, but in MATLAB we work with pixels, so we

have to divide it by the dimension of a single pixel of the CMOS camera, that is

3.6 µm.

T = Telescope
MAL = Multi-Actuator Lens
SH WFS = Shack-Hartmann wavefront sensor
WCS = Wavefront curvature sensor
A,A’ = Conjugate planes

LASER

MAL

SH
WFS

T T

A A’250 mm 250 mm

WCS

100 mm

Figure 3.1: Scheme of the experimental setup.

Figure 3.2: Picture of the experimental setup used to validate the curvature sensing
algorithm.
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3.1. Experimental setup

Figure 3.3: Scheme of the telescope: c is the clear aperture of the lens, B is the focus
of the telescope and e is the focal length of the ocular. Clearly in our case a = b and
α = β.
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3.2 Results

As we have already pointed out in the previous chapter, the curvature sensing

is linear until the signal S saturates. Moreover, if we acquire two out of focus

pictures near the focus, the images are too small to contain enough information

for the analysis. Therefore, we had to chose the out of focus distance to take the

pictures, to balance the dimension of the images and to achieve a large linearity

zone. In fact, these two requests are mutually exclusive: the bigger the out of

focus distance, the greater the dimension of the image in pixels but also lower the

sensitivity, since the difference of the images will saturate earlier. Vice versa, the

shorter the out of focus distance, the smaller the size of the mask but also the

higher the sensitivity, since the image will saturate later.

However, we had to use a single out of focus distance for both the requests, and

after several trials we chose an out of focus distance of 5 mm. In the following

pages we will show some analyses with different aberrations and the analysis of

the linearity.

The first example is astigmatism. We used the closed loop to set astigmatism with

coefficient of 0.3 waves.

In the second example in Figure 3.5 we used the eighth mode, with a coefficient

set on the closed loop of 0.3 waves.

The next example is an aberration with the twelfth mode. We set the closed loop

with a coefficient of 0.15 waves. The out of focus images recorded and analysed

gave us the results in Figure 3.6.

The last example is spherical aberration. We set the closed loop to reach a

spherical wavefront with coefficient of 0.1 waves. The out of focus images recorded

and analysed gave us the results in figure 3.7.

All the analysed modes resulted to validate the algorithm. However, we remark
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3.2. Results

(a) (b)

Figure 3.4: Astigmatic aberration. In (a) the retrieved wavefront, in (b) the coefficients
in waves.

(a) (b)

Figure 3.5: Mode 8. In (a) the retrieved wavefront, in (b) the coefficients in waves.
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3. WAVEFRONT CURVATURE SENSOR

(a) (b)

Figure 3.6: Mode 12. In (a) the retrieved wavefront, in (b) the coefficients in waves.

(a) (b)

Figure 3.7: Spherical aberration. In (a) the retrieved wavefront, in (b) the coefficients
in waves.
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that the retrieved wavefront and the corresponding estimated coefficients are not

the same measured with the Shack-Hartmann wavefront sensor. This is because

the focus of the telescope is not easily found, and only half of millimetre can cause

the wrong retrieval of the wavefront. Moreover, we had problems with diffraction

caused by laser light.

The linear trend of the wavefront curvature sensor is shown in Figure 3.8. As

we can see over a value of 0.9 waves there is a loss of linearity, caused by the

saturation of the signal S = − 1
∆Z

I1−I2
I1+I2

to the values 1
∆z

and - 1
∆z

. The spectral

purity of some Zernike coefficients is shown in Figure 3.9 and we can observe

that it is over the 85% up to an amplitude of the coefficients of one wave. The

result is quite good but on the other hand the spectral purity obtained with the

Shack-Hartmann wavefront sensor is near 100% in all the cases.
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Figure 3.8: Linear trend of several Zernike coefficients.
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Figure 3.9: Spectral purity of several Zernike coefficients.
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Chapter 4

Control of the multi-actuator lens

4.1 Theory of the control

As we have seen in Equation 2.1 the irradiance transport equation (ITE)

∂I

∂z
= −

(
∇I · ∇W + I∇2W

)
(4.1)

can be approximated as

∇2W ≈ − 1

∆z

I1 − I2

I1 + I2

. (4.2)

On the other hand, if we have a piezoelectric material, there is a production of

strain-inducing stress as the result of an applied electric field [20]. In fact, if we

apply a voltage V to the piezoelectric material as in Figure 4.1, the displacement

of the material is proportional to the electric field, and this latter is in turn pro-

portional both to the voltage applied and the distance between the electrodes t.

The variation of the length ∆L in the direction orthogonal of the applied voltage

V is then

∆L = d
V L

t
, (4.3)

where d is the piezoelectric deformation coefficient.

In our case, the shape of the membrane of the multi-actuator lens, that works

with piezoelectric actuators, is then

S = bVi, (4.4)
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Figure 4.1: Piezoelectric material with zero and non-zero applied voltage.

where Vi is the voltage of the i − th actuator and b contains the piezoelectric

deformation coefficient and the dimensions L and t.

The shape of the lens is related to the wavefront according to

S = ∇2W, (4.5)

for the principle of the phase conjugation.

At this point if we combine Equations 4.2 and 4.4 we obtain the following relation

[15, 19]:

I1 − I2

I1 + I2

= kV, (4.6)

where k is a multiplicative constant that we have to determine. Therefore we can

record two out of focus images and use the combination of these two to find the

correct voltage to be applied to the actuators.

Since we used the multi-actuator lens with 18 actuators, 9 in the internal zone

and 9 in the external zone, we firstly had to find the region of interest of each

actuator. We did it by using the influence matrix method obtained with the Shack-

Hartmann wavefront sensor. An example of interferograms of influence matrix is

shown in Figure 4.2. The computer driver that pilots the lens accepts an array of

18 elements, each one ranging from −1 to +1. In order to use the left-hand side of

Equation 4.6 we had to know the multiplicative constant k. Thus we tried several

values until we found the correct one by minimising the RMS between the obtained

wavefront and the flat wavefront. Once we obtained the multiplicative constant,

we calculated the correct voltage to apply and we repeated the procedure with a
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4.2. Experimental validation

Figure 4.2: Influence matrix of the multi-actuator lens.

new pair of I1 and I2 and so on until we reached the minimum aberration. The

used algorithm was the following:

1. Obtain the images I1 and I2.

2. Create the signal S = I1−I2
I1+I2

.

3. Find a mask in which make the calculations. The mask contains 18 regions,

one for each actuator of the lens. This latter is set by using the influence

matrix of the lens.

4. For every region of a single actuator the average value is calculated, so a

value between −1 and +1 is found.

5. The 18 average values are converted in voltage, with a multiplicative constant

k that minimises the RMS error between the estimated wavefront and the

flat wavefront.

6. Repeat from the first point until the RMS reaches a minimum.

4.2 Experimental validation

We used the same setup of the previous chapter to perform a first experiment: a

laser, a lens to correct to infinity, the multi-actuator lens and finally a telescope.

The wavefront at the exit of the telescope was measured by a Shack-Hartmann
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4. CONTROL OF THE MULTI-ACTUATOR LENS

wavefront sensor and the camera to record the out of focus images was manually

inserted and removed whether we needed one sensor or the other.

First we turned on the laser and ”relaxed” the lens, that means we set the actuators

to 0 V . In this condition we measured the wavefront with the Shack-Hartmann

wavefront sensor and obtained the astigmatic wavefront in Figure 4.3.

Figure 4.3: Wavefront of the relaxed lens. RMS error equal to 0.87672 waves.

We then placed the camera out of focus of 5 mm before and after the focus of

the telescope, to obtain Figure 4.3.

Figure 4.4: Out of focus images of the relaxed lens. On the left the image after the
focus, on the right the image before the focus.

We calculated the left-hand side of Equation 4.6 and the mean value for each

region of the corresponding actuator. We noticed that the first images were usually
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high-aberrated, thus the constant value that minimised the RMS was found to be

high (k = 1.8). This is due to the fact that the first iteration had to eliminate the

saturation of the signal S = (I1 − I2)/(I1 + I2). To find the correct value we tried

several values and the one that minimised the RMS error was selected. At this

point we corrected the voltage value of the lens by subtracting at every actuator

the corresponding obtained value. Then we measured again the wavefront with the

Shack-Hartmann wavefront sensor and we recorded the two out of focus images.

Figure 4.5: Out of focus images after the first correction. On the left the image after
the focus, on the right the image before the focus.

At this point the aberration was quite small, so after some tests we chose a

value of the multiplicative constant equal to 0.36 and, with the same procedure of

the first iteration, we calculated the voltage of every actuator and we corrected the

lens consequently. Finally, after the wavefront estimation, we tried to record other

two images but we didn’t improve the RMS of the signal, because we reached the

experimental limit of the setup. The final RMS error calculated with the Shack-

Hartmann wavefront sensor, resulted to be 0.1103 waves, while the RMS error

calculated with the curvature sensor resulted to be 0.1078 waves. In Figure 4.6

In Figure 4.7 two pictures of the spot in the focus before and after the correction

are shown. In Figure 4.8 we plot the corresponding cross sections.
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(a) (b)

Figure 4.6: Comparison of the initial (left) and final (right) wavefronts. Images ob-
tained with the wavefront curvature sensor.

Figure 4.7: Focus spots of the laser before (left) and after (right) the correction with
the multi-actuator lens.
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Figure 4.8: Horizontal cross section of the images in Figure 4.7.
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To validate the curvature sensing control we used another setup. This latter

used the multi-actuator lens to control the wavefront and a deformable mirror to

create the aberration, as we can see in Figure 4.9. The apparatus consists of a

non focused laser, a lens which corrects to the infinity the laser, the deformable

mirror, a telescope to decrease the size of the beam of 2.5x to fit the clear aperture

of the multi-actuator lens and another telescope of demagnification of 2.5x to fit

the Shack-Hartmann wavefront sensor. Near the focus of the second telescope we

inserted a beam splitter to allow the camera to take the out of focus images.

SH
WFS

LASER DM

WCS

T1

T1
MAL T2

T2

DM = Deformable Mirror
T1 = Telescope 1
T2 = Telescope 2
MAL = Multi-Actuator Lens
WCS = Wavefront Curvature Sensor
SH WFS = Shack-Hartmann Wavefront Sensor
A,A’,A’’ = Conjugate Planes

A

A’
A’’

250 mm

500 mm

200 mm 150 mm
60 mm

Figure 4.9: Second apparatus used to validate the curvature control.

In this case the deformable mirror changed the wavefront and the multi-actuator

lens corrected it in order to obtain a flat wavefront.

In what follows we propose an example of this analysis, with initial out of focus

images as in Figure 4.10.

The signal S = − I1−I2
I1+I2

is shown on top of Figure 4.11, while on bottom we can

see the average value for every actuator.
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Figure 4.10: Out of focus images of the initial beam. On the left the image after the
focus, on the right the image before the focus.

Figure 4.11: Signal S of the initial wavefront on the top and average value of the signal
for every actuator on the bottom.
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The initial RMS error calculated with SH wavefront sensor was 0.6142 waves

while wi the curvature sensor 0.6106 waves it was .After the first iteration the

wavefront measure with SH WFS had an RMS error of 0.13987 waves, and the

multiplicative constant that minimised the RMS was chosen to be 1. The out

of focus images in Figure 4.12 were used as input for the second iteration, and

the signal for the actuator is shown in Figure 4.13. For the second iteration we

Figure 4.12: Out of focus images of the beam after the first iteration. On the left the
image after the focus, on the right the image before the focus.

used a multiplicative constant equal to 0.3 and the final RMS error obtained with

SH was 0.12339 waves, while with the curvature sensor it was 0.1210 waves. The

comparison between the initial and the final wavefronts is shown in. The images in

the focus of the telescope before and after the corrections are shown in Figure 4.15,

and the cross section of a horizontal straight line passing for the centre is shown

in Figure 4.16.

The graph of the coefficient k vs. the starting RMS error is shown in Figure 4.17.

We have therefore proved that with our algorithm we were able to correct the

multi-actuator lens with curvature sensing in order to eliminate aberrations.
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Figure 4.13: Comparison between the initial image and the final image on the focus
of the telescope.

(a) (b)

Figure 4.14: Comparison of the initial (left) and final (right) wavefronts. Images
obtained with the wavefront curvature sensor.
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Figure 4.15: Comparison between the initial image and the final image on the focus
of the telescope.

-60 -40 -20 0 20 40 60
0

50

100

150

200

250

 

 

In
te

ns
ity

Distance (µm)

 Initial beam
 Final beam

Figure 4.16: Cross section of the initial beam and the final beam.
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Figure 4.17: Graph of the coefficient vs the beginning RMS. The black linear trend is
of the form y = 0, 128+1, 11x, while the red linear trend is of the form y = 0, 093+0, 26x.
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Chapter 5

Fluorescence Microscopy and
Depth Reconstruction

5.1 Fluorescence

When a molecule or an atom is hit by photons, it reaches an excitation state

before emitting photons in turn with lower energy. This process is known as

fluorescence (see Figure 5.1). In microscopy it usually occurs that a sample under

study is be not fluorescent. Therefore a substance called fluorophore is bounded

to the molecules of the sample with a particular chemical process to enable the

fluorescence. Fluorescence microscopy uses photons to excite the fluorophore into

a vibrational energy level. The fluorophore then rapidly relaxes to the lowest level

Figure 5.1: Scheme of the process of fluorescence.
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of the excited state, with a process called internal conversion. At this point the

molecule may dwell in the lowest excited state for 10−9s and then can emit a

photon to relax to the ground state. We can define the excitation rate as the

product of the absorption cross section and the photon flux density,

kexc = σΦexc =
σIexc
hνexc

, (5.1)

where σ is the cross section of the molecule, Iexc the excitation irradiance and hνexc

the energy of the photon. kexc is in unit of s−1.

If we call n0 the normalised population in the ground state S0 and the normalised

population n1 in the excited state S1, we have the following relation:

n0 + n1 = 1, (5.2)

since the molecule can reside either in S0 or in S1.

Figure 5.2: Ground state and excited population and corresponding rates.

The rate equation will be of the form

dn0

dt
= −kexcn0 + kdexn1, (5.3)

where kdex is the de-excitation rate from the excited state to the ground state.

This rate is given by the sum of the spontaneous fluorescence emission rate and

the non-fluorescent emission rate,: kdex = kf + knf .

At equilibrium the rate is null, thus we can write

0 = −kexcneq0 + kdexn
eq
1 , (5.4)
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Figure 5.3: Fluorescent and-non fluorescent components of kdex.

where the superscript eq indicates the equilibrium population. Equation 5.2 is still

valid, thus we can write Equation 5.4 as

−kexcneq0 + kdex(1− neq0 ) = 0, (5.5)

which leads to

neq0 =
kdex

kexc + kdex
. (5.6)

In abscence of excitation’s photons, all molecules reside in the ground state.

If a brief light pulse excitates the system, the rate equation for the excited popu-

lation just after the excitation (kexc) will be

dn1

dt
= −dn0

dt
= 0 · n0 − kdexn1, (5.7)

and the equation that we obtain is the well known decay law,

n1(t) = n1(0)e−
t
τ , (5.8)

where τ is the excited state lifetime and can be written as

τ =
1

kdex
=

1

kf + knf
. (5.9)

If we irradiate the total population and the rate of de-excitation is the same of the

rate of excitation (kexc = kdex), the corresponding irradiance is known as saturation

irradiance:

Isat =
hνexckdex

σ
. (5.10)
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5.2 Fluorescence microscopy

The basic function of a fluorescence microscope is to irradiate the specimen with a

specific band of wavelengths, then to separate the fluorescence from the excitation

light and finally to show to the user only the fluorescent light. Separation of

excitation from emission is usually performed by filters and dichromatic mirrors.

In fact, due to internal conversion, the energy of the fluorescence photons is less

than the excitation photons, so the wavelength is red-shifted and the corresponding

photons can be separated.

Figure 5.4: Operating diagram of a fluorescence microscope.

It can be demonstrated that the lateral resolution of a fluorescence microscope

is

δrmin =
0.61λ

NA
, (5.11)

where λ is the emission wavelength in vacuum and NA the numerical aperture of

the microscope, while the axial resolution is

δzmin =
2λn

NA2 , (5.12)

where n is the refractive index of the medium.
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5.3 Total internal reflection fluorescence microscopy

This kind of microscopy uses the phenomenon of total internal reflection. The

behaviour of the light between two mediums of refractive indices n1 and n2 is

governed by the Snell’s law

n1 sin(θ1) = n2 sin(θ2), (5.13)

where θ1 and θ2 are the angles of the incident beam with respect to the normal

to the interface. If n1 is the lower refractive index and n2 is the higher refractive

index, then, when the light strikes the interface of the two materials at a sufficient

high angle, the refraction direction is parallel to the interface. At the critical

incidence angle, the Snell’s law reduces to

n1 sin(θc) = n2. (5.14)

Therefore, the critical angle is

θc = arcsin
(n2

n1

)
. (5.15)

In the medium with refractive index n2 there is a small amount of penetration

of the light, which then propagates in parallel to the interface, creating an elec-

tromagnetic field. This field is said to be evanescent and within a region near

the interface, it is capable of exciting fluorophores. The depth penetration of the

evanescent wave is an exponential decay

E(z) = E(0) e−
z
d , (5.16)

where z is the depth, normal to the interface and d is the penetration depth. Typ-

ically the evanescent wave can excite fluorophores restricted to a region that is less

than 100 nm in thickness.
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Figure 5.5: Scheme of the laser illumination on total internal reflection microscopy
(TIRFM).

Generally, total internal reflection is implemented in a microscope with the objec-

tive lens technique. In this method, a high numerical aperture objective is used to

obtain light which is incident to the sample with an angle higher than the critical

one.

5.4 Confocal microscopy

In wide field microscopy, the entire depth of the sample over a wide area is illumi-

nated, resulting in weak contrast and axial blurring. This is due to the fact that

out of focus objects produce unwanted light that is collected by the objective.

On the other hand, in confocal microscopy, every point of the sample is illuminated

once at a time by using a pinhole. A collimated laser is focused into the pinhole.

The objective acts as a condenser for the laser, projecting a demagnified image

of the pinhole on the sample (diffraction-limited spot). The fluorescent light from

the sample is then collected by the detector by using another pinhole in front of
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it. In this kind of microscopy, the lateral resolution i given by

δrminconf = 0.7δrmin =
0.4λ

NA
, (5.17)

and the axial resolution is

δzminconf = 0.7δzmin =
1.4λn

NA2
. (5.18)

These latter are better than corresponding resolution of the fluorescence microscopy.

5.5 Single molecule microscopy

In 2006 Rust, Bates and Zhuang [18] have presented the stochastic optical recon-

struction microscopy (STORM). This kind of microscopy can reach an imaging

resolution of 20 nm with the use of a simple total internal reflection fluorescence

microscope, low-power continuous lasers and a photoswitchable fluorophore. If a

fluorophore can be switched from fluorescent to dark state with the use of red and

green laser respectively, we can use pulsed laser to turn on and off few molecules

per cycle and repeat this cycle more and more times. By using multiple imaging

cycles, we can obtain several positions for a single fluorophore, and if we find the

centroid of the set of positions it is possible to resolve objects up to 20 nm (super

resolution)

Unfortunately, STORM does not allow to obtain a 3D image of the sample, since

the stimulated fluorophores can be in the focal plane of the objective or out of it,

so the only super resolved coordinates are the two in the focal plane, say x and y,

while the z-coordinate is at the diffraction limit.

However, in 2008 Wang, Wang, Bates and Zhuang [25] have presented a method

to obtain three dimensional super resolution with STORM. To reach such a result,

they have mounted a weak cylindrical lens on a microscope to create two different

focal planes for the x and y direction. In fact, if the fluorophore is in the average
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focal plane, it appears round, while if it is above or below the average focal plane,

it appears stretched in the x or in the y direction (see Figure 5.7). The calibration

has been made by fitting a gaussian waist function for the x and y dimension as a

function of the depth z. Finally, they have used the calibrating curves to find the

z-coordinate of fluorophores on a sample by using their x and y dimensions.

Figure 5.6: Sample labelled with red fluorophores that can be switched on and off
with green and red. In each cycle the green laser is pulsed, so only a fraction emits
fluorescence at the same time. Next, under red illumination, the molecules turn back
to dark state, allowing their position (white crosses) to be determined. Finally multiple
imaging cycles are repeated.

Figure 5.7: On the left, scheme of the three-dimensional STORM apparatus. On the
right, change of shape of a fluorophore due to astigmatism at different depths.
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5.6 Z-coordinate reconstruction with astigmatic

wavefront on a microscope

In the last experiment, we have used the multi-actuator lens mounted on a fluores-

cence microscope. By using the lens with an astigmatic wavefront, we were able to

reconstruct the depth (z-coordinate) of a specimen of quantum beads. This is only

a preliminar experiment: in fact with fluorescence microscopy we could record a

series of images at multiple depths and reconstruct the 3D image. However, this

kind of analysis can be very useful in a future use of a single molecule microscope,

because if we know how every molecule changes shape with astigmatism, with a

single astigmatic image we could estimate the depth of every molecule in it.

The microscope used is schematised in Figure 5.8. The light emitted from a LED

reflects at a dichroic mirror and passes through the objective lens before reaching

the specimen. The fluorescence emitted from the specimen passes through the

objective lens again and enters in a cooled 12 bit CCD camera, that captures the

image and displayed it on the monitor of a computer.

The objective was an Olympus 60x with numerical aperture NA = 1.35. Over the

objective it was mounted a piezoelectric actuator, Piezosystem Jena Mipos 100

driven by the Piezosystem Jena voltage amplifier 12V40, that was used for the z-

scan. Finally, over the piezo actuator, it was mounted the multi-actuator lens. The

LED which illuminated the sample was a blue high-power led (Thorlabs, M470L2)

that emits light with nominal wavelength λ = 470 nm and a bandwidth (FWHM)

∆λ = 29 nm. The fluorescent sample used to test the algorithms was composed

of some fluorescent quantum beads of diameter 15 − 20 nm with excitation and

emission wavelength compatible with our system. If we calculate the lateral reso-

lution of the microscope with Equation 5.11, it is 226 nm, so the image of every

quantum bead is the PSF of the microscope. The experiment we performed was
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Figure 5.8: Images of the microscope used in the experiment.

80



5.6. Z-coordinate reconstruction with astigmatic wavefront on a microscope

about the reconstruction of the depth of a sample without taking a z-scan with

the microscope. We used the multi-actuator lens with the quantum beads sample

for the analysis of the depth reconstruction.

The first step was the use of the setup described in Chapter 3 to obtain a flat

wavefront in closed loop. We saved the voltage values of the actuators. Once

we obtained the flat wavefront we moved the lens on the microscope and set the

voltage of the flat wavefront to the actuators. The next step was to add a small

astigmatism to the lens to change the out of focus shape of the quantum beads.

In fact, if we modify the flat wavefront with astigmatism, the out of focus images

of the beads will be stretched more and more in the x dimension when we save

multiple images in the positive z-direction over the focus of a bead. On contrast

will be stretched more and more in the y dimension when we save multiple images

in the negative z-direction with respect to the focus of the bead. In the focus the

bead will appear as almost round. We measured the x and y dimension and plot

these dimensions vs. the z-coordinate, see Figure 5.9.

The tendency of the lines is given by the waist of a gaussian beam, that is

w = w0

√√√√1 +
λ(z − z0)

πw2
0

+

[
λ(z − z0)

πw2
0

]2

+ A

[
λ(z − z0)

πw2
0

]3

+B

[
λ(z − z0)

πw2
0

]4

,

(5.19)

where λ is the wavelength, z0 the z coordinate of the minimum dimension of the

bead and w0 the width of the bead when it is on focus. We used this formula

to fit the data twice, once with the x dimension and once with the y dimension.

Therefore we obtained the constants A and B.

Successively, we used the same sample, the quantum beads, for the analysis of the

depth reconstruction. We chose a portion with some beads and took an image with

astigmatic wavefront. We used an algorithm written in MATLAB to recognise the

saturated signal and the x and y dimension of the non saturated beads. With
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Figure 5.9: Fit of the x and y waist with function in Equation 5.19.

this information we extrapolated the z value by using Equation 5.19. After the

estimation of the z coordinate for every involved bead, we verified the obtained

values with the real analysis of the position of the beads, by making a z-stack of

the sample with the piezoelectric actuator.

For example, the xy image obtained with the astigmatic wavefront is in Figure 5.10.

In the image the bead on the bottom left is saturated (values equal to 212− 1), so

it had not been analysed. Instead the other beads were below the threshold of the

software recognition. After the analysis, the xy image is that shown in Figure 5.11,

and the three dimensional image is in Figure 5.12.

We used the piezoelectric z-stack actuator with step of z-coordinate of 0.1 µm to

obtain multiple images with flat wavefront at several depth of the sample. We then

compared them with the astigmatic method just presented. Once we obtained the

images, we took the same quantum beads and plotted the average value of the

intensity of the bead vs the z-coordinate. The figure obtained was fitted with a

gaussian function and the z-coordinate in correspondence of the maximum value
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(a) (b)

Figure 5.10: Portion of quantum beads with astigmatic wavefront. On the left the
original image, on the right the selected beads and the saturated bead.

was taken as the centre of the bead. The zero z-coordinate in the astigmatic case

was given by the centre of the beads used for the fit of the waist. Instead in the

scan with the piezoelectric actuator, the zero z-coordinate was chosen for the first

image. Consequently, the second image had z-coordinate of 0.1 µm and so on.

To compare the two different results we subtracted the minimum z-coordinate to

the others, see Figure 5.13. The residual of the z coordinate for every bead is shown

in Figure 5.14. The maximum difference resulted to be 45 nm and the posterior

error given by the fit of the waist was 36 nm, instead we obtained a mean σ equal

to 95 nm by the gaussian fit. We then concluded that the z reconstruction with

astigmatism has given a good estimation of the z-coordinate. Another depth

analysis in a different region of the sample is shown in Figures 5.15, 5.16 and

5.17. Other analyses have been made in other regions with the same sample of

quantum beads, and the residuals of the two methods have always been less than

60 nm. Moreover, the uncertainty on the z-coordinate with astigmatic wavefront

has always been lower than the one obtained with the scan with the piezoelectric

actuator.
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Figure 5.11: Graph of the xy-reconstruction with astigmatic wavefront. With the
piezoelectric scan we have obtained the same xy-coordinates.
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5.6. Z-coordinate reconstruction with astigmatic wavefront on a microscope

Figure 5.12: Graph of the xyz-reconstruction with astigmatic wavefront.
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Figure 5.13: Comparison of the z-coordinate of the two methods.
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Figure 5.14: Residual of the z-coordinate obtained with the two methods. Note that
in this case the scale of the z-coordinate is in nanometres.

(a) (b)

Figure 5.15: Portion of quantum beads with astigmatic wavefront. On the left the
original image, on the right the selected beads and the saturated bead.
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Figure 5.16: Comparison of the z coordinate of the two methods.
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Figure 5.17: Residual of the z coordinate obtained with the two methods. Note that
in this case the scale of the z coordinate is in nanometres.
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Conclusions

In this thesis we have implemented a wavefront curvature sensor, we have used

a multi-actuator lens to correct a wavefront by using curvature sensing and we

have used the multi-actuator lens mounted on a microscope to reconstruct a three

dimensional image by using a single image on an xy plane with astigmatic wave-

front.

The wavefront curvature sensor has presented good linearity up to Zernike coeffi-

cients of 1 waves. However, the spectral purity of the sensor could be improved

with a couple of modifications to the setup. In fact, the recorded out of focus im-

ages presented a non negligible noise and sometimes there was diffraction caused

by the laser. A possible improvement can be obtained with a more sensitive sensor

and with a not coherent source.

The wavefront curvature control has shown that with out of focus images it is

possible to drive the multi-actuator lens in order to obtain an almost flat wave-

front. However, this kind of control has not allowed us to get a flat wavefront that

satisfied the Marèchal criterion, thus in this case the change of the sensor and of

the source could let us to satisfy the criterion.

Finally, the z-coordinate reconstruction with the astigmatic wavefront has shown

that the multi-actuator lens can be used for the creation of 3D images. Moreover,

in our setup there is no need to modify the system by adding an astigmatic lens

as in the experiment of Zhuang, because the multi-actuator lens can be used to
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5. FLUORESCENCE MICROSCOPY AND DEPTH RECONSTRUCTION

obtain all the aberrations up to the fourth order of the Zernike polynomials.

The last experiment with the fluorescence microscope can be easily translated to

a single molecule microscope in the future and the multi-actuator lens could avoid

the modification of the system.
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Appendix A

Irradiance Transport Equation

Here we present the derivation of the irraddiance transport equation [21].

Assume that a paraxial beam is propagating along the z axis, and let us compute

the complex amplitude

uz(~r) =
√
Iz(~r)e

ikWz(~r) = sqrtIz(~r)e
iΦz(~r), (A.1)

where r = (x, y) is the radial coordinate orthogonal to the propagation direction,

Iz(~r) is the irradiance, k = 2π/λ the wavenumber and Wz(~r) the phase Φz(~r) in

terms of the wavelength λ. The time-independent wave equation in empty space

can be written as [ ∂2

∂z2
+∇2 + k2

]
ψz(~r) = 0, (A.2)

where ∇2 = ∂2
x + ∂2

y and ψz(~r) an auxiliary function. Another way to write the

same equation is by introducing the two operators

L± =
∂

∂z
∓ ık

[
1 +

(∇
k

)2]1/2

. (A.3)

Therefore the time-independent wave equation becomes

L+L−ψz(~r) = 0. (A.4)

The solution of Equation A.2 thus separate into two classes:

L+uz(~r) (A.5)
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and

L−vz(~r) (A.6)

. The solutions uz describe either oscillatory waves with a positive z component

of the wave vector 2π[r, (1/λ)(1 − λ2r2)1/2] or evanescent waves if λ2r2 > 1 and

z > 0, whereas the solutions vz describe either oscillatory waves with a negative z

of the wave vector 2π[r,−(1/λ)(1− λ2r2)1/2] or evanescent waves if λ2r2 > 1 and

z < 0. In the abscence of scattering by charge matter, the solutions does not mix.

Hereafter, we consider only the solutions uz.

A formal solution of Equation A.5 may be written as

uz(~r) = u0(~r)eikz
(

1+∇
2

k2

)1/2
. (A.7)

The square-root operator is defined in terms of the Fourier transform of Equation

A.7:

Uz(ρ) = U0(ρ)eikz(1−λ
2ρ2)1/2 =

∫
dre−i2πρ·ruz(~r) = F{uz(~r)}. (A.8)

The inverse Fourier transform relationship is

F−1{eikz(1−λ2ρ2)1/2} = − 1

2π

∂

∂z

eikR

R
, (A.9)

where R = (z2 + r2)1/2. Therefore, from Equations A.8 and A.9 we have

uz(~r) = − 1

2π

∂

∂z

[
u0(~r) ∗ e

ikR

R

]
, (A.10)

which is the Rayleigh-Sommerfeld diffraction theory, that gives the wave amplitude

in a transverse plane z ≥ 0 in terms of the wave plane in an earlier plane z = 0.

Notice that ∗ denotes the two dimensional convolution, that for two functions f

and g is

f(~r) ∗ g(~r) =

∫
dr′f(r′)g(r − r′). (A.11)
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The conventional Fresnel diffraction theory results when the square roots in Equa-

tions A.7 and A.8 are expanded to the lowest order to get

uz(~r) = u0(~r)eikzei
λz∇2

4π (A.12)

and

Uz(ρ) = U0(~r)eikze−iπλzρ
2

(A.13)

and, using the inverse Fourier transform relationship,

F−1{e−iπλzρ2} =
eiπr

2/λz

iλz
, (A.14)

we have from Equation A.12

uz(~r) = eikz

[
u0(~r) ∗ e

iπr
2

λz

iλz

]
, (A.15)

which is the Fresnel diffraction theory result.

We can take Equation A.15 and verify that it solves the parabolic equation, that

is (
i
∂

∂z
+
∇2

2k
+ k

)
uz(~r) = 0. (A.16)

If we now multiply Equation A.16 on the left-hand side by u∗z(~r) and the complex

conjugate by uz(~r) on the left-hand side and subtract them, we get

u∗z(~r)

(
i
∂

∂z
+
∇2

2k
+ k

)
uz(~r)− uz(~r)

(
− i ∂

∂z
+
∇2

2k
+ k

)
u∗z(~r) = 0. (A.17)

Now we write the complex amplitude as in Equation A.1, uz(~r) = I
1/2
z

~(r)eiΦz(~r),

so Equation A.17 becomes

I1/2
z

~(r)e−iΦz(~r)

(
i
∂

∂z
+
∇2

2k
+ k

)
I1/2
z

~(r)eiΦz(~r)+

−I1/2
z

~(r)eiΦz(~r)

(
− i ∂

∂z
+
∇2

2k
+ k

)
I1/2
z

~(r)e−iΦz(~r) = 0.

(A.18)
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A. IRRADIANCE TRANSPORT EQUATION

If we develop the above equation we get

iI1/2
z

~(r)
∂

∂z

[
I1/2
z

~(r)
]
+

+ iIz(~r)e
−iΦz(~r) ∂

∂z

[
eiΦz(~r)

]
+

+ I1/2
z

~(r)
∇2

2k

[
I1/2
z

~(r)
]
+

+ Iz(~r)e
−iΦz(~r)∇2

2k

[
e+iΦz(~r)

]
+

+
I

1/2
z

~(r)e−iΦz(~r)

k

(
∇I1/2

z
~(r)
)
·
(
∇eiΦz(~r)

)
+

+ iI1/2
z

~(r)
∂

∂z

[
I1/2
z

~(r)
]
+

+ iIz(~r)e
iΦz(~r) ∂

∂z

[
e−iΦz(~r)

]
+

− I1/2
z

~(r)
∇2

2k

[
I1/2
z

~(r)
]
+

− Iz(~r)eiΦz(~r)∇2

2k

[
e−iΦz(~r)

]
+

− I
1/2
z

~(r)eiΦz(~r)

k

(
∇I1/2

z
~(r)
)
·
(
∇e−iΦz(~r)

)
.

(A.19)

We resort to the following equations

∇
(
I1/2
z (~r)

)
=
∇Iz(~r)
2I

1/2
z

~(r)
(A.20)

∇eiΦz(~r) = i∇Φz(~r)e
iΦz(~r) (A.21)

∇e−iΦz(~r) = −i∇Φz(~r)e
−iΦz(~r) (A.22)

∇2
(
I1/2
z (~r)

)
=

(
∇Iz(~r)

)2

2I
3/2
z (~r)

+
∇2Iz(~r)

2I
1/2
z (~r)

(A.23)

∇2eiΦz(~r) = i∇2Φz(~r)e
iΦz(~r) −

(
∇Φz(~r)

)2
eiΦz(~r) (A.24)

∇2e−iΦz(~r) = −i∇2Φz(~r)e
−iΦz(~r) −

(
∇Φz(~r)

)2
e−iΦz(~r) (A.25)
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to write Equation A.19 as follows:

i

2

∂Iz(~r)

∂z
− Iz(~r)

∂Φz(~r)

∂z
+
I

1/2
z (~r)

2k

[(
∇Iz(~r)

)2

2I
3/2
z (~r)

+
∇2Iz(~r)

2I
1/2
z (~r)

]
+

+
Iz(~r)e

−iΦz(~r)

2k

[
i∇2Φz(~r)e

iΦz(~r) −
(
∇Φz(~r)

)2
eiΦz(~r)

]
+

i

2k

(
∇Iz(~r)

)
·
(
∇Φz(~r)

)
+

+
i

2

∂Iz(~r)

∂z
+ Iz(~r)

∂Φz(~r)

∂z
− I

1/2
z (~r)

2k

[(
∇Iz(~r)

)2

2I
3/2
z (~r)

+
∇2Iz(~r)

2I
1/2
z (~r)

]
+

− Iz(~r)e
iΦz(~r)

2k

[
− i∇2Φz(~r)e

−iΦz(~r) −
(
∇Φz(~r)

)2
e−iΦz(~r)

]
+

+
i

2k

(
∇Iz(~r)

)
·
(
∇Φz(~r)

)
= 0.

(A.26)

If we develop the above equation we obtain

i
∂Iz(~r)

∂z
+
Iz(~r)

2k

[
i∇2Φz(~r)−

(
∇Φz(~r)

)2]
+

i

2k

(
∇Iz(~r)

)
·
(
∇Φz(~r)

)
+

− Iz(~r)

2k

[
− i∇2Φz(~r)−

(
∇Φz(~r)

)2]
+ fraci2k

(
∇Iz(~r)

)
·
(
∇Φz(~r)

)
= 0.

(A.27)

Finally, the result of the previous equation is

k
∂Iz(~r)

∂z
+ Iz(~r)∇2Φz(~r) +

(
∇Iz(~r)

)
·
(
∇Φz(~r)

)
= 0, (A.28)

and if we substitute the phase with Wz(~r) = Φz(~r)/k we obtain

∂Iz(~r)

∂z
+ Iz(~r)∇2Wz(~r) +

(
∇Iz(~r)

)
·
(
∇Wz(~r)

)
= 0, (A.29)

that is the irradiance transport equation given in Chapter 2.
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Appendix B

Matlab Codes

Code B.1: Algorithm of the wavefront curvature sensor.

1 function Wavefront=CalculateWavefront(I1tmp ,I2tmp ,...

2 centerI1tmp ,centerI2tmp ,halfdim ,...

3 f,l,influencematrix ,angle ,cut)

4

5 % cut the images if it is necessary

6 if(cut ==1)

7 I1tmp=CutImage(I1tmp ,centerI1tmp (1) ,...

8 centerI1tmp (2), halfdim );

9 I2tmp=CutImage(I2tmp ,centerI2tmp (1) ,...

10 centerI2tmp (2), halfdim );

11 end

12 aperturelens =10e-3; %metre

13 dimpixel =3.6e-6; %metre

14 deltaz=f*(f-l)/(2*l);

15 zernikeModes =66;

16

17 % Calculate the mask to use

18 mask=CalculateMaskGeometrically(f,l,...

19 aperturelens ,dimpixel );

20

21 center=floor(size(I1tmp ,1)/2);

22 diameterx=size(mask ,1);

23 diametery=size(mask ,1);

24 left=floor(center -diameterx /2);

25 up=floor(center -diametery /2);

26

27 fourierDim=size(mask ,1);
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28

29 aperturePixelSize =( dimpixel*f)/l;

30

31 if(mod(size(mask ,1) ,2)==0)

32 up=up+1;

33 left=left +1;

34 end

35

36 I1=I1tmp(left:left+diameterx -1,up:up+diametery -1);

37 I2=I2tmp(left:left+diameterx -1,up:up+diametery -1);

38 I2=imrotate(I2 ,180);

39

40 % Plot the images cut with the mask

41 I1plot=I1.*mask;

42 I1plot(mask ==0)= nan;

43 figure ,pcolor(I1plot), shading interp ,..

44 title(’Image after focus cut’)

45 I2plot=I2.*mask;

46 I2plot(mask ==0)= nan;

47 figure ,pcolor(I2plot), shading interp ,...

48 title(’Image before focus cut’)

49

50 % Find the indices of nonzero elements

51 ApIdx = find(mask);

52

53 % Find the indices of zero elements

54 outIdx = find(~mask);

55

56 % Find a ring in the border of the mask

57 ApringOut = xor(imdilate(mask ,strel(’disk’ ,1)),mask);

58

59 ApringIn = xor(imerode(mask ,strel(’disk’ ,1)),mask);

60

61 [borderx , bordery] = find(ApringIn );

62

63 % Calculus of spatial frequencies for FFT

64 [u, v] = meshgrid( ( -0.5:1/ fourierDim :0.5 -1/ fourierDim )/...

65 aperturePixelSize );

66 u2v2 = -4*pi^2*(u.*u + v.*v);

67 center=floor(fourierDim /2+1);

68 u2v2(center ,center) = Inf;

69 iu2v2=u2v2;

70 iu2v2(center ,center) = 0;

98



71

72

73 % Creation of the signal S1 = -1/deltaz *(I1-I2)./(I1+I2)

74 num=diameterx -1;

75 x2 = -1:2/num :1;

76 [X,Y] = meshgrid(x2,x2);

77 [theta ,r] = cart2pol(X,Y);

78 Sin=-1/ deltaz *(I1 -I2)./(I1+I2);

79 Sin(isnan(Sin ))=0;

80 S=Sin;

81

82 % Z contains the Zernike polynomials

83 Z=sh_zernikeR_all(X,Y);

84

85 %set the maximum number of iterations

86 iterations =20;

87

88 RMSerror=zeros(iterations ,1);

89 coeff=zeros(zernikeModes ,iterations );

90 Wrms=zeros(fourierDim ,fourierDim ,iterations );

91 Wfinal=zeros(fourierDim ,fourierDim ,iterations );

92 stop =0;

93

94 jj=1;

95

96 while jj <= iterations && stop ==0

97 % Calculus of the wavefront using FFT

98 SFFT = fftshift(fft2( fftshift(S) ));

99 W = fftshift( ifft2( fftshift( SFFT./u2v2 )) );

100

101 Wabs=real(W);

102

103 Wfinal(:,:,jj)=Wabs;

104

105 % Calculate Zernike coefficients

106 coeff(:,jj)= ZernikeCoefficientsMask(zernikeModes ,...

107 mask ,Wabs);

108 Wtmp=Wabs;

109

110 WestdWdn0=Wtmp;

111

112 % 3x3 average in the border of the mask to set

113 % the derivative of the wavefront zero on the border

99



B. MATLAB CODES

114 for ii = 1: length(borderx)

115 reg = Wtmp(borderx(ii)-1: borderx(ii)+1 ,...

116 bordery(ii)-1: bordery(ii )+1);

117 intersectIdx = find(ApringIn(borderx(ii)-1...

118 :borderx(ii),bordery(ii)-1: bordery(ii)));

119 WestdWdn0(borderx(ii),bordery(ii ))=...

120 mean( reg(intersectIdx) );

121 end

122

123 Wt=WestdWdn0;

124

125 %Calculate the signal by using discrete laplacian

126 Wxx = zeros( fourierDim );

127 Wyy = zeros( fourierDim );

128 for kk=1: fourierDim

129 for ll=2: fourierDim -1

130 Wxx(kk ,ll)=(Wt(kk ,ll -1)-2*Wt(kk ,ll)+Wt(kk ,ll +1))/...

131 (aperturePixelSize ^2);

132 end

133 end

134 for kk=2: fourierDim -1

135 for ll=1: fourierDim

136 Wyy(kk ,ll)=(Wt(kk -1,ll)-2*Wt(kk ,ll)+Wt(kk+1,ll ))/...

137 (aperturePixelSize ^2);

138 end

139 end

140

141 Sest = Wxx + Wyy;

142

143 Wrms(:,:,jj)=Wt;

144

145 % Calculate the RMS error

146 RMSerror(jj)=sqrt(sum(sum((Sest.*mask -Sin.*mask ).^2))/...

147 (sum(sum(mask ))));

148

149 if(jj >1 && RMSerror(jj)>RMSerror(jj -1))

150 stop =1;

151 end

152

153 Sest(ApIdx)=Sin(ApIdx);

154 S=Sest;

155

156 jj=jj+1
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157

158 end

159

160 % Calculate the wavefront by using

161 % the calculated coefficients

162 coeff(:,jj -1)= nan;

163 func =0;

164 coeff (1:3 ,:)=0;

165 for kk =1:66

166 func=func+coeff(kk ,jj -2)*Z(:,:,kk);

167 end

168

169 Wavefront=func;

170

171

172 figure ,pcolor(Wavefront .*mask),shading interp;

173

174 end

Code B.2: Algorithm of the wavefront curvature control.

1 function [Signal , actuatorvalue ]= CalculateSignal(I1tmp ,...

2 I2tmp ,centerI1tmp ,centerI2tmp ,halfdim ,f,l,angle ,...

3 influencematrix)

4

5

6 I1tmp=CutImage(I1tmp ,centerI1tmp (1), centerI1tmp (2) ,...

7 halfdim );

8 I2tmp=CutImage(I2tmp ,centerI2tmp (1), centerI2tmp (2) ,...

9 halfdim );

10

11 aperturelens =10e-3; %metre

12 dimpixel =3.6e-6; %metre

13 deltaz =1;

14

15 % Calculate the mask of the actuators

16 [mask ,maskext ,maskactuators ,diameter ]=...

17 CalculateMaskActuators(f,l,aperturelens ,dimpixel ,angle );

18

19 center=floor(size(I1tmp ,1)/2);

20 diameterx=diameter;

21 diametery=diameter;

22 left=floor(center -diameterx /2);

101



B. MATLAB CODES

23 up=floor(center -diametery /2);

24

25 aperturePixelSize=dimpixel*f/(l);

26

27 if(mod(size(mask ,1) ,2)==0)

28 up=up+1;

29 left=left +1;

30 end

31

32 % Create the signal S=-1/ deltaz *(I1-I2)./(I1+I2)

33 I1=I1tmp(left:left+diameterx -1,up:up+diametery -1);

34 I2=I2tmp(left:left+diameterx -1,up:up+diametery -1);

35 I2=imrotate(I2 ,180);

36 S=-(I1 -I2)./(I1+I2);

37

38 ApringIn = xor(imerode(mask ,strel(’disk’ ,1)),mask);

39 Signal=S.* maskext;

40 Signal(ApringIn ==1)=2;

41 Signal(maskext ==0)= nan;

42 figure ,subplot (2,1,1), pcolor(flipud(Signal )),...

43 shading interp ,title ’S=-(I1 -I2)/(I1+I2)’ ,...

44 colorbar ,caxis ([-1,1]),axis equal tight;

45

46 Sactuators=S;

47 actuatorvalue=zeros (19 ,1);

48 for kk =1:19

49 actuatorvalue(kk)=mean(mean(S(maskactuators ==kk)));

50 Sactuators(maskactuators ==kk)= actuatorvalue(kk);

51 end

52

53 Sactuators(maskext ==0)= nan;

54 subplot (2,1,2), pcolor(flipud(Sactuators )),...

55 shading interp ,title ’Voltage of the actuators ’ ,...

56 colorbar ,caxis ([-1,1]),axis equal tight;

Code B.3: Algorithm of z-coordinate retrieval with astigmatic wavefront on a micro-
scope.

1 % Data obtained by the fit

2 Ax = -0.261769;

3 Bx =0.0273014;

4 x0 = -0.0000006;

5 w0x =1.87272E-07;
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6

7 Ay = -0.41266;

8 By = -0.0629869;

9 y0 =0.0000004;

10 w0y =2.27934E-07;

11

12 % Fix the noise of the image

13 noise =200;

14

15 % Calculate the waist in the x and y direction

16 x=linspace(-1e-6,1e-6 ,100);

17 wrowest= w0x*sqrt( 1+ ((500E -09*(x-x0 ))/(3.1415* w0x ^2)).^2...

18 + Ax *((500E-09*(x-x0 ))/(3.1415* w0x ^2)).^3 +Bx *((500E -09*...

19 (x-x0 ))/(3.1415* w0x ^2)).^4 );

20 wcolest= w0y*sqrt( 1+ ((500E -09*(x-y0 ))/(3.1415* w0y ^2)).^2...

21 + Ay *((500E-09*(x-y0 ))/(3.1415* w0y ^2)).^3 +By *((500E -09*...

22 (x-y0 ))/(3.1415* w0y ^2)).^4 );

23

24 % open the data of the points for the plot

25 fileIDx = fopen(’fitxc.txt’,’r’);

26 fileIDy = fopen(’fityc.txt’,’r’);

27 formatSpec=’%f %f’;

28 sizedata = [2 Inf];

29 datax= fscanf(fileIDx ,formatSpec ,sizedata );

30

31 % Error of the width and height of the files

32 errorx=load(’Errorx ’,’Errorx ’);

33 errory=load(’Errory ’,’Errory ’);

34

35 % Error of the fit

36 load(’erry’,’erry’)

37

38 datay=fscanf(fileIDy ,formatSpec ,sizedata );

39

40 % Plot the two waists and the points

41 figure , errorbar(datax(1,:), datax(2,:),errorx ,’rx’), ...

42 axis ([ -8.4e-7 7.4e-7 0 1.2e-6]), xlabel(’z [m]’),...

43 ylabel(’Bead width [m]’),box on , hold on;

44 plot(x,wrowest ,’r’),hold on;

45 errorbar(datay (1,:),datay (2,:),errory ,’bx’),hold on;

46 plot(x,wcolest ,’b’);

47 legend(’Width x-coordinate ’,’Fit x-coordinate ’ ,...

48 ’Width y-coordinate ’,’Fit y-coordinate ’)
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49

50 % Read the image to analyse

51 image=imread(’image36.png’);

52 image=imrotate(image ,10,’crop’);

53 cutim=image (670:790 ,335:480);

54 figure ,imshow(cutim ,[]);

55 bin=cutim;

56 figure , mesh(double(bin));

57 mat=bin;

58

59 dim (1)= length(mat (: ,1));

60 dim (2)= length(mat (1 ,:));

61

62 % Eliminate the saturated points (value 4095)

63 [maxval ,maxidx ]=max(bin);

64 cutpixel =20;

65 while( max(maxval )==4095 )

66 for jj=1: length(maxval)

67 if(maxval(jj )==4095)

68 if( maxidx(jj)>cutpixel && jj >cutpixel)

69 mat(maxidx(jj)-cutpixel:maxidx(jj)+cutpixel ,...

70 jj -cutpixel:jj+cutpixel )=0;

71 end

72 if( maxidx(jj)<=cutpixel && jj >cutpixel)

73 mat (1:2* cutpixel ,jj -cutpixel:jj+cutpixel )=0;

74 end

75 if( maxidx(jj)<=cutpixel && jj <= cutpixel )

76 mat (1:2* cutpixel ,1:2* cutpixel )=0;

77 end

78 if( maxidx(jj)>cutpixel && jj <= cutpixel )

79 mat(maxidx(jj)-cutpixel:maxidx(jj)+cutpixel ,...

80 1:2* cutpixel )=0;

81 end

82 end

83 end

84 [maxval ,maxidx ]=max(mat);

85 end

86

87 mat=mat (1:dim(1),1:dim (2));

88 figure ,mesh(double(mat));

89

90 % Find maximums on the image

91 [maxval ,maxidx ]=max(mat);
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92 % Mimimum intensity of the maximum

93 height =700;

94 while( max(maxval)>height )

95 realmax =-1;

96 idx=1;

97 jj=1;

98 while(jj <= length(maxval ))

99 kk=jj;

100 loop=true;

101 if (maxval(jj)>height)

102 while(kk <= length(maxval) && loop==true &&...

103 maxval(kk)>height)

104 if(maxidx(jj)>=maxidx(kk)-3 && maxidx(jj)<=...

105 maxidx(kk)+3)

106 idxbegin=jj;

107 idxend=kk;

108 else

109 loop=false;

110 end

111 kk=kk+1;

112 end

113

114 [tmp ,colt(idx)]=max(maxval(idxbegin:idxend ));

115 colt(idx)=colt(idx)+idxbegin -1;

116 rowt(idx)= maxidx(colt(idx ));

117

118 % The maximum has been found , so we can delete

119 % the analysed bead

120 cut =8;

121 if(rowt(idx)+cut <= length(mat (:,1)) && colt(idx)+cut <=...

122 length(mat (1,:)) && rowt(idx)-cut >=1 && colt(idx)-...

123 cut >=1 )

124 mat(rowt(idx)-cut:rowt(idx)+cut ,...

125 colt(idx)-cut:colt(idx)+cut )=0;

126 end

127 if(rowt(idx)+cut <= length(mat (:,1)) && colt(idx)+cut >...

128 length(mat (1,:)) && rowt(idx)-cut >=1 )

129 mat( rowt(idx)-cut:rowt(idx)+cut ,...

130 length(mat (1,:)) -2* cut:length(mat (1,:)) )=0;

131 end

132 if(rowt(idx)+cut >length(mat (:,1)) && colt(idx)+cut <=...

133 length(mat (1,:)) && colt(idx)-cut >=1 )

134 mat(length(mat(:,1))-cut:length(mat (: ,1)) ,...

105



B. MATLAB CODES

135 colt(idx)-cut:colt(idx)+cut )=0;

136 end

137 if(rowt(idx)+cut >length(mat (:,1)) && colt(idx)+cut >...

138 length(mat (1 ,:)))

139 mat(length(mat(:,1))-2*cut:length(mat (: ,1)) ,...

140 length(mat (1,:)) -2* cut:length(mat (1 ,:)))=0;

141 end

142 if(rowt(idx)-cut <1 && colt(idx)+cut <= ...

143 length(mat (1,:)) && colt(idx)-cut >=1 )

144 mat (1:2*cut ,colt(idx)-cut:colt(idx)+cut )=0;

145 end

146 if(rowt(idx)+cut <= length(mat (:,1)) && colt(idx)-cut <1 ...

147 && rowt(idx)-cut >=1 )

148 mat(rowt(idx)-cut:rowt(idx)+cut ,1:2* cut )=0;

149 end

150 if(rowt(idx)-cut <1 && colt(idx)-cut <1)

151 mat (1:2*cut ,1:2* cut )=0;

152 end

153 if(rowt(idx)-cut <1 && colt(idx)+cut >length(mat (1 ,:)))

154 mat (1:2*cut ,length(mat(1,:))-2*cut:length(mat (1 ,:)))=0;

155 end

156 if(rowt(idx)+cut >length(mat (:,1)) && colt(idx)-cut <1)

157 mat(length(mat(:,1))-2*cut:length(mat (: ,1)) ,1:2* cut )=0;

158 end

159

160 idx=idx +1;

161 jj=idxend +1;

162 end

163 jj=jj+1;

164 [maxval ,maxidx ]=max(mat);

165 end

166 end

167

168 % Save the x and y coordinate of the maximums

169 idx =1;

170 nt=length(colt);

171 for jj=1:nt

172 if(rowt(jj)<length(bin(:,1))-4 && colt(jj)<...

173 length(bin (1,:)) )

174 row(idx)=rowt(jj);

175 col(idx)=colt(jj);

176 idx=idx +1;

177 end
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178 end

179

180 n=length(col);

181

182 % Find the height and the width of the beads caused

183 % by the astigmatism

184 for jj=1:n

185 right =0;

186 left =0;

187 up=0;

188 down =0;

189 h=bin(row(jj),col(jj));

190 h=h-(h-noise )/2;

191 if(col(jj)>2 && row(jj)>2 && row(jj)<length(bin (: ,1)) -2...

192 && col(jj)<length(bin (1,:)) )

193 tmpr=col(jj);

194 tmpl=col(jj);

195 tmpu=row(jj);

196 tmpd=row(jj);

197 stop=false;

198 while( max(max(bin(row(jj)-2:row(jj)+2,tmpr +1: tmpr +2...

199 )))>h && stop== false)

200 right=right +1;

201 if(tmpr <length(bin (1,:)) -2)

202 tmpr=tmpr +1;

203 else

204 stop=true;

205 end

206 end

207 stop=false;

208 while( max(max(bin(row(jj)-2:row(jj)+2,tmpl -2:tmpl -1)...

209 ))>h && stop== false)

210 left=left +1;

211 if(tmpl >1)

212 tmpl=tmpl -1;

213 else

214 stop=true;

215 end

216 end

217 stop=false;

218 while( max(max(bin(tmpd +1: tmpd+2,col(jj)-2:col(jj)+2 )...

219 ))>h && stop== false)

220 down=down +1;
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221 if(tmpr <length(bin (: ,1)))

222 tmpd=tmpd +1;

223 else

224 stop=true;

225 end

226 end

227 stop=false;

228

229 while(max(max(bin(tmpu -2:tmpu -1,col(jj)-2:col(jj )+2)...

230 ))>h && stop== false)

231 up=up+1;

232 if(tmpu >3)

233 tmpu=tmpu -1;

234 else

235 stop=true;

236 end

237 end

238 lengthrow(jj)=( left+right )*81e-9;

239 lengthcol(jj)=(up+down )*81e-9;

240 end

241 end

242

243 % Extrapolate the z-coordinate from the fit of the waist

244 for jj=1:n

245 [tmp ,idxrow(jj)]=min(abs(lengthrow(jj)-wrowest ));

246 [tmp ,idxcol(jj)]=min(abs(lengthcol(jj)-wcolest ));

247 z(jj)=x(floor(idxrow(jj)+ idxcol(jj )/2));

248 end

249

250 depthz=z;

251 for jj=1:7

252 cutim(row(jj)-6:row(jj)+6,col(jj)-1:col(jj )+6)=0;

253 figure ,imshow(cutim ,[]);

254 end

255

256 % Convert the cooridnate in metre

257 row=row *81e-9;

258 col=col *81e-9;

259

260 % Plot the beads in the 3D space

261 for jj=2:n

262 [a,b,c] = ellipsoid(row(jj),col(jj),z(jj),110e-9 ,...

263 110e-9,erry);
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264 set(gcf ,’Color’,’black’)

265 set(gca ,’Xcolor ’ ,[1 1 1]);

266 set(gca ,’Ycolor ’ ,[1 1 1]);

267 set(gca ,’Zcolor ’ ,[1 1 1]);

268 mesh(a,b,c),xlabel(’y [m]’), ylabel(’x [m]’),...

269 zlabel(’z [m]’),axis ([0 max(row )+10e-7 ...

270 0 max(col )+10e-7 min(z)-1e-7 max(z)+1e-7]) ,...

271 hold on , set(gca ,’Color’,’k’),...

272 title(’Z-stack quantum beads ’);

273 end
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