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Abstract

For the thesis project, we are interested in learning about the Harris-Mumford
modular compactification of the classical Hurwitz stack using log admissible cov-
ers. The classical Hurwitz stack parametrizes 𝑑-sheeted, simple branched cov-
erings of ℙ1 with 𝑏 branched points. Harris and Mumford first introduced the
notion of admissible covers in [16] as a tool for compactifying the classical Hur-
witz space. In this thesis, we present a complete proof of the fact that the stack of
log admissible covers is a proper Deligne-Mumford logarithmic stack. The use of
logarithmic structures is necessary for obtaining a full fledged modular interpre-
tation of the space of admissible covers. In particular, the logarithmic structures
allow the admissibility condition on covers of curves to enjoy scheme-like prop-
erties. Following Mochizuki ([21]), this is achieved by showing the existence of a
minimal logarithmic structure on the family of admissible covers.
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Introduction

Moduli problems deal with one of the most fundamental problems in mathemat-
ics, namely classifying a family of geometric objects modulo an appropriate notion
of isomorphism of the objects. Being interested in classifying families of geomet-
ric objects, we would like a moduli space to be naturally endowed with a geometric
structure such that its points correspond bijectively to isomorphism classes of ob-
jects. Thus, one of the striking properties of a moduli space is that it provides us
ample insights into the properties of the objects we want to classify. For instance,
the projective space ℙ𝑛

ℝ
is a moduli space classifying lines passing through the

origin in ℝ𝑛+1.

If we have a notion of family of objects over a base and a notion of isomorphism
of families; then for any base 𝑆, we would like the moduli spaceM to satisfy the
property that there is a bijection:

{Families over 𝑆}/∼ ←→ {Morphisms 𝑆 −→M}

For instance, if one defines the geometric family over 𝑆 to be families of smooth
algebraic curves of arithmetic genus 𝑔, then this leads to one of the important
objects in algebraic geometry,M𝑔, the moduli space of smooth curves of genus 𝑔.

The solutionM to the moduli problem satisfying the property above is called the
fine moduli space for the moduli problem. One can rephrase this by saying that
the fine moduli spaceM is a space that admits a familyU over it such that every
other family over 𝑆 is determined uniquely up to isomorphism by pulling back
the family U −→ M via a unique map 𝑆 −→ M. The family U −→ M is called
a universal family for the moduli problem. In some sense, the universal family
carries all information about the geometric objects we want to classify.

It is not at all obvious that there exists a universal family for a moduli problem.

1



2 INTRODUCTION

The main problem one faces when trying to construct a universal family is the
presence of non-trivial automorphisms of objects that one tries to classify. The
solution proposed by Deligne and Mumford to study moduli problems was to ex-
pand the notion of geometric objects from schemes and introduce the notion of
stacks. Morally, a stack includes information about the automorphisms of ob-
jects and hence one expects to find a universal family for the concerned moduli
problem.

A preliminary example of moduli space arises from the moduli problem of
parametrizing circles in ℝ2. To define a circle in ℝ2 it is enough to specify its
center (𝑥0, 𝑦0) and its radius 𝑟. Thus the moduli space of circles in ℝ2 is given by

M = {(𝑥0, 𝑦0, 𝑟) ⊂ ℝ3 | 𝑟 > 0}

The universal family for the moduli problem is given by

U = {(𝑥, 𝑦, 𝑥0, 𝑦0, 𝑟) | (𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 = 𝑟2, 𝑟 > 0} −→M

(𝑥, 𝑦, 𝑥0, 𝑦0, 𝑟) ↦−→ (𝑥0, 𝑦0, 𝑟)

Note that this moduli spaceM is not compact.

Formally speaking, a functor that maps a scheme to the set of isomorphism
classes of families over it is called a moduli functor. By the Yoneda’s lemma, the
existence of a universal family for a moduli functor is equivalent to saying that the
moduli functor originates from a scheme, i.e. the moduli functor is representable
by a scheme.

The Hurwitz moduli space H 𝑑,𝑏 parametrizing isomorphism classes of simple
branched coverings of ℙ1 of a fixed degree 𝑑 with 𝑏 branched points plays a cen-
tral role in this thesis. Recall that a connected branched covering 𝑓 : 𝐶 −→ ℙ1 is
simple if for every branch point 𝑝 ∈ ℙ1, there is exactly one point in 𝑓 −1(𝑝) with
ramification index two and all other points in the fiber are unramified. The dis-



INTRODUCTION 3

crete invariants, i.e. the genus of the curve, number of branched points and the
degree of the covering are related by the Riemann-Hurwitz formula 𝑏 = 2𝑑+2𝑔−2.
It was proven by Fulton in [12] that the moduli functor H 𝑑,𝑏 is represented by a
Noetherian scheme 𝐻𝑑,𝑏 and admits a locally finite étale covering

𝛿 : 𝐻𝑑,𝑏 −→ ℙ𝑏
𝑆
\ Δ𝑏

where Δ𝑏 is the discriminant hypersurface and 𝛿 is called the discriminant map.
𝛿 sends the class of a simple branched cover 𝑓 : 𝐶 −→ ℙ1 to its branched locus.
One of the striking properties of the Hurwitz space is that it admits a natural
map to the moduli spaceM𝑔,𝑏 of smooth curves of genus 𝑔 with 𝑏 distinct marked
points by forgetting the map to ℙ1. For 𝑑 ≥ 𝑔 + 1, this map is dominant, hence
the canonical morphismH 𝑑,𝑏 −→M𝑔 serves as an important bridge between the
geometry of the Hurwitz space and the moduli space of curves. For instance, it
was proved in [12] that the Hurwitz spaceH 𝑑,𝑏 is irreducible by showing that the
fundamental group 𝜋1(ℙ𝑏𝑆 \ Δ𝑏) acts transitively on the fibers of 𝛿. This in turn
gives an alternative proof of the irreducibility ofM𝑔. For a detailed survey on the
various constructions of the Hurwitz space and its applications, we shall refer to
Matthieu Romagny and Stefan Wewers’ survey [27].

It may so happen that a moduli space does not contain limits of some families of
objects, hence need not be compact. For instance, the moduli space of circles in ℝ3

is not compact. The moduli spaceM0,4 of smooth curves of genus zero with four
distinct marked points over a field 𝑘 is the open subset ℙ1

𝑘
\ {0, 1,∞}. The moduli

spaceM0,5 of smooth curves of genus zero with five distinct marked points over a
field 𝑘 is the open subset ℙ1

𝑘
×𝑘 ℙ1

𝑘
\ {diagonal} of ℙ1

𝑘
×𝑘 ℙ1

𝑘
(See Figure 1 below).
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Figure 1: Moduli space of genus zero smooth curves with five marked points

Non-compactness of a family of geometric objects can be observed more clearly in
the following example. Consider the family of elliptic curves given by

𝑦2𝑧 = 𝑥(𝑥 − 𝑧) (𝑥 − 𝑡𝑧)

where 𝑡 is the parameter of the family.

Figure 2: 𝑦2𝑧 = 𝑥(𝑥 − 𝑧) (𝑥 − 𝑡𝑧)

This family degenerates into non-singular curves with nodal singularities at 𝑡 =
0, 1. In this example, the family of elliptic curves does not have sufficiently many
objects to be compact. With the exception of M0,3, which is just a point, M𝑔,𝑛

is not compact since a family of smooth curves can degenerate to a curve with
singularities.

Thus a natural question in the study of moduli problems is how to construct a
compactification of a moduli spaceM ⊂ M that satisfies some nice properties.
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Namely,

• The compactificationM should have a nice interpretation as a moduli space.

• The boundary points 𝜕M :=M \M of the compactified space should corre-
spond to degenerate objects of the family we are trying to classify.

• The singularities of the boundary divisors of the compactified space decide
the validity of the modular compactification. Hence, the singularities of the
boundary divisor should be reasonable, like normal crossings.

One of the most important examples is the Deligne-Mumford-Knudsen modular
compactification of the moduli spaceM𝑔,𝑛 of smooth curves of arithmetic genus
𝑔 with 𝑛 distinct marked points. The philosophy behind the Deligne-Mumford-
Knudsen modular compactification is not to allow the marked points to coincide.
For this reason, the limit of the family is obtained by considering curves with
nodes. For the compactification of moduli space of curves to have a modular in-
terpretation, one has to restrict to stable curves. Stable curves are basically nodal
curves with finitely many automorphisms. This philosophy can be illustrated in
the Deligne-Mumford-Knudsen compactification ofM0,5 which is given by blow-
ing up ℙ1

𝑘
×𝑘ℙ1

𝑘
at the three diagonal points. This blow up gives rise to the moduli

space of stable curves of genus zero with five marked points. It was proved by
Deligne-Mumford-Knudsen in [10] that the moduli space M 𝑔,𝑛 of stable curves
of genus 𝑔 with 𝑛 distinct marked points is a modular compactification forM𝑔,𝑛

such that 𝜕M 𝑔,𝑛 := M 𝑔,𝑛 \ M𝑔,𝑛 is an effective Cartier normal crossing divisor.
Note that there may exist mutiple modular compactifications of a moduli space,
depending on what kind of degenerate objects we want to include in the boundary.

The notion of compactness in algebraic geometry is replaced by the notion of
properness which is usually checked by the valuative criterion of properness. This
criterion roughly states that families of geometric objects over a punctured disc
extend uniquely possibly after a base change to the entire disc. Thus the proper-
ness ofM 𝑔,𝑛 is equivalent to being able to extend a family of stable curves to a
stable curve over the special point of the family. For families of stable curves,
such an extension is achieved by the stable reduction theorem [30, Tag 0E8C].

In principle, one generally follows the following standard approach to obtain a
full fledged modular compactification of a moduli spaceM:

https://stacks.math.columbia.edu/tag/0E8C
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• Define a larger family of geometric objectsM ⊂ M we want to parametrize
by including possible degenerate objects.

• Study the local structure ofM. In other words, study the properties of the
diagonalM −→M×ℤM and construct a smooth surjective atlas𝑈 −→M.
The presence of a smooth atlas demands the degenerate objects to behave
very much like schemes.

• Study the coarse moduli space ofM, which acts as a best approximation to
the moduli space, at the cost of losing the universality.

• Verify the valuative criterion for the moduli spaceM and conclude by stan-
dard openness properties thatM ⊂ M is an open substack.

In this thesis we are interested in understanding a full fledged modular interpre-
tation of the compactification of the Hurwitz moduli space H 𝑑,𝑏. We follow Har-
ris and Mumford’s idea which is very similar to the Deligne-Mumford-Knudsen
compactification of the moduli space of smooth curves, namely, do not allow the
branched points to coincide, i.e. include coverings of stable families with an ad-
missibility condition. The admissibility condition captures the idea that in order
to compactify the Hurwitz moduli space, one allows both the source and target
curves to become singular. Moreover, we would like this compactification to be-
have well with respect to the canonical map H 𝑑,𝑏 −→ M𝑔,𝑏, i.e. there exists an
extensionH 𝑑,𝑏 −→M 𝑔,𝑏 ofH 𝑑,𝑏 −→M𝑔,𝑏 such that the following map of moduli
stacks commutes:

H 𝑑,𝑏 M𝑔,𝑏

H 𝑑,𝑏 M 𝑔,𝑏

whereH 𝑑,𝑏
is the compactification of Hurwitz space we are seeking for.

As observed by Mochizuki in [21], the admissibility condition for coverings of
curves, which we define in Definition 3.1.1, does not satisfy the scheme-like prop-
erties that are necessary to obtain a full fledged modular interpretation. The
solution proposed by Mochizuki in [21] is to study moduli problems with logarith-
mic structures. As we will see, the study of logarithmic structures boils down to
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studying certain line bundles. The moduli space of line bundles are classically
well studied, hence, they are easier to deal with. Hence, we shall study in the
thesis how logarithmic structures serve as a natural tool to obtain a modular
interpretation.

Logarithmic structures can be studied from numerous perspectives, namely:

• They make the degenerate/boundary objects behave as if they are smooth.
As mentioned in [17], the motivating philosophy for logarithmic moduli prob-
lems is that log smoothness includes degenerating objects like semistable re-
ductions, hence one expects moduli spaces of log smooth objects to already be
compact.

Hence, logarithmic structures serve as an important tool for modular com-
pactification.

• Logarithmic structures encode schemes with boundary in a natural way.

• They serve as a bridge between algebraic geometry and tropical geometry.

Thus, the primary goal of this thesis is to understand logarithmic moduli prob-
lems, in particular in the case of curves and admissible coverings of curves. In
understanding logarithmic moduli problems, an important step is the hands on
construction of special families, called minimal objects, which capture the geom-
etry of all other families. Following [21], we give a proof of the following main
result in this thesis in Theorem 3.3.1:

Theorem. Fix non-negative integers 𝑔, 𝑟, 𝑞, 𝑠, 𝑑 such that 2𝑔−2+𝑟 = 𝑑(2𝑞−2+𝑠).
Let us consider log admissible covers where the source logarithmic curve is stable
of genus 𝑔 with 𝑛 distinct marked points, the target logarithmic curve is stable of
genus 𝑞 with 𝑠 distinct marked points and the map from the source to the target
curve is of degree 𝑑. Then the moduli space of such log admissible covers

LA𝑑𝑚𝑔,𝑟

𝑞,𝑠,𝑑
−→ LogSch𝑓 𝑠

𝑠𝑡,ℤ[1/𝑑!]

is a logarithmic DM stack, proper of finite type with a separated diagonal. The
open substack LA𝑑𝑚𝑔,𝑟,min

𝑞,𝑠,𝑑
−→ 𝑆𝑐ℎℤ[1/𝑑!] of minimal log admissible covers ad-

mits a finite log étale morphism

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ LMmin
𝑔,𝑟 ≅M𝑞,𝑠
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Moreover, LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ 𝑆𝑐ℎℤ[1/𝑑!] admits a projective coarse moduli space
𝐿𝐴𝑑𝑚

𝑔,𝑟,min
𝑞,𝑠,𝑑

, which is a finite étale scheme over the coarse moduli scheme 𝑀𝑞,𝑠

associated toM𝑞,𝑠.



Notations and conventions

For a scheme 𝑋 , we won’t distinguish between the scheme, its functor of
points ℎ𝑋 := 𝐻𝑜𝑚(·, 𝑋) and the comma category (𝑆𝑐ℎ/𝑋). The objects in
the comma category (𝑆𝑐ℎ/𝑋) are given by pairs (𝑦,𝑌), where 𝑦 : 𝑌 −→ 𝑋 is
a morphism of schemes. An arrow (𝑦,𝑌) −→ (𝑧, 𝑍) is given by a morphism
𝑓 : 𝑌 −→ 𝑍 such that 𝑧 ◦ 𝑓 = 𝑦.

All schemes are assumed to be noetherian of finite type. Since we are in-
terested in noetherian schemes of finite type, we will not distinguish be-
tween the notions of formally smooth morphisms and smooth morphisms
of schemes and algebraic stacks (see [30, Tag 0DNV]).

CFG Category fibered in groupoid

𝔛 Letters in fraktur font such as 𝔛 will be used to denote the two-categorical
CFG, stacks, algebraic spaces and so on

X Calligraphy letters will be used to denote a log scheme. If X = (𝑋,M𝑋 )
is a log scheme, then X denotes the underlying scheme. For a morphism
𝑓 : X −→ Y of log schemes, 𝑓 denotes the morphism of underlying schemes.
Schemes upon which we do not want to keep track of log structures will be
denoted by simple letters

M𝑜𝑛 Category of monoids (see Section 1.1)

𝑃 LOGX Category of pre-log structures on a scheme 𝑋 (see Section 1.1)

LOGX Category of log structures on a scheme 𝑋 (see Section 1.1)

M𝑋 Characteristics sheaf of monoidsM𝑋 :=M𝑋/O∗𝑋 (see Section 1.1)

9

https://stacks.math.columbia.edu/tag/0DNV
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M𝑋/𝑌 For a morphism of logarithmic schemes 𝑓 : X −→ Y, the relative char-
acteristic sheaf of monoidsM𝑋/𝑌 :=M𝑋/im( 𝑓 ∗M𝑌 −→M𝑋 ) (see Section
1.1)

Ω1
X/Y The logarithmic sheaf of relative differentials (see Section 1.5)

(𝑆𝑐ℎ)ét The small étale site on the category of schemes. (see Section A.1)

LogSch𝑓 𝑠𝑠𝑡 The category of fine saturated log schemes with strict morphisms (see
Section 2.2)

LogSch𝑓 𝑠
𝑠𝑡,ét The category of fine saturated log schemes with strict morphisms

endowed with the strict étale topology (see Section 2.2)

LOG 2-Cat/(𝑆𝑐ℎ)ét The category of 2-categories equipped with a log structure
defined over (𝑆𝑐ℎ)ét (see Section 2.2)

LOG CFG/(𝑆𝑐ℎ)ét The category of categories fibered in groupoids equipped with
a log structure defined over (𝑆𝑐ℎ)ét (see Section 2.2)

LOG Stacks/(𝑆𝑐ℎ)ét The category of stacks equipped with a log structure defined
over (𝑆𝑐ℎ)ét (see Section 2.2)

2 − Cat/LogSch𝑓 𝑠
𝑠𝑡,ét The category of 2-categories defined over LogSch𝑓 𝑠

𝑠𝑡,ét (see
Section 2.2)

CFG/LogSch𝑓 𝑠
𝑠𝑡,ét The category of categories fibered in groupids defined over

LogSch𝑓 𝑠
𝑠𝑡,ét (see Section 2.2)

Stacks/LogSch𝑓 𝑠
𝑠𝑡,ét The category of stacks defined over LogSch𝑓 𝑠

𝑠𝑡,ét (see Section
2.2)

H 𝑑,𝑏 The Hurwitz moduli space that parametrizes isomorphism classes of simple
branched coverings of 𝑃1 with 𝑏-branched points of a fixed degree 𝑑 (see
Section 3.4)

LM 𝑔,𝑛 The moduli stack of logarithmic curves of type (𝑔, 𝑛) (see Section 2.1)

LA𝑑𝑚𝑔,𝑟

𝑞,𝑠,𝑑
The moduli stack of admissible covers (see Section 3.1)
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Geometric point of a scheme: Let 𝑥 be a schematic point of a separated scheme
𝑋 . Then a geometric point 𝑥 is a separable closure 𝑘(𝑥) of the residue field 𝑘(𝑥) of
𝑥. In other words, we have a morphism Spec 𝑘(𝑥) −→ 𝑆𝑝𝑒𝑐 𝑘(𝑥) −→ 𝑋 . An étale
neighbourhood of a geometric point 𝑥 is an étale morphism of schemes 𝑈 −→ 𝑋

with a geometric point 𝑘(𝑢) ↩→ 𝑘(𝑢) such that the following diagram commutes:

Spec 𝑘(𝑢) Spec 𝑘(𝑢) 𝑈

Spec 𝑘(𝑥) Spec 𝑘(𝑥) 𝑋

étale

In the notes, we will suppress the geometric point 𝑢 lying over the geometric point
𝑥 while referring to an étale neighbourhood of 𝑥.

The stalk at 𝑥 of the structure sheaf O𝑋 with 𝑋 endowed with the étale topology
is defined as

O𝑋,𝑥 := lim−−→
(𝑢,𝑈)

Γ(𝑈,O𝑈)

where the directed limit is considered over all connected étale neighbourhoods
(𝑢,𝑈) of 𝑥. Indeed, the connected étale neighbourhoods (𝑢,𝑈) of 𝑥 form a directed
set defined by:

(𝑢,𝑈) ≤ (𝑣, 𝑉) if ∃ a map (𝑢,𝑈) −→ (𝑣, 𝑉)

Since we are considering étale morphism of schemes, there exists at most one
morphism𝑈 −→ 𝑉 that maps the geometric point 𝑢 to the geometric point 𝑣.

In the notes, we will use that O𝑋,𝑥 is a noetherian local ring of dimension equal
to that of 𝑋 and

O𝑋,𝑥 ≅ O𝑠ℎ𝑋,𝑥

where O𝑠ℎ
𝑋,𝑥

denotes the strict Henselisation of the local ring O𝑋,𝑥. We can analo-
gously generalize the above definitions for any étale sheaf of monoids over 𝑋 . For
more details, see [20, I.4].

Family of smooth algebraic curves A family of smooth algebraic curves of
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genus 𝑔 over a scheme 𝑆 is a smooth proper morphism of schemes 𝐶 −→ 𝑆 such
that every geometric fiber is an irreducible curve of genus 𝑔. Unless specified,
by genus of a curve we will always refer to the arithmetic genus of the curve, i.e.
𝑔 := dim𝑘 𝐻

1(𝐶,O𝐶).

Nodal curves An algebraic curve 𝐶 over an algebraically closed field 𝑘 has a
nodal singularity at 𝑃 if there exists an isomorphism O∧

𝐶,𝑃
≅ 𝑘[[𝑥, 𝑦]]/(𝑥𝑦). For

any arbitrary field 𝑘, 𝑃 is a nodal point if 𝑃 is a nodal point in 𝐶
𝑘

in the above
sense. Moreover, after a separable extension 𝑘 ↩→ 𝑘′, we have an isomorphism
O∧
𝐶𝑘′ ,𝑃

≅ 𝑘′[[𝑥, 𝑦]]/(𝑥𝑦).

Stable curve A connected algebraic curve 𝐶 over a field 𝑘 with 𝑛 ordered dis-
tinct marked points (𝑝1, . . . , 𝑝𝑛) in the smooth locus in 𝐶 with at worst nodal
singularities is said to be stable if it satisfies either of the following equivalent
conditions:

A Every smooth rational curve ℙ1 ⊂ 𝐶 contains at least three special points,
i.e. either a marked point or a nodal singularity.

B 𝜔𝐶 (𝑝1 + · · · + 𝑝𝑛) is an ample invertible sheaf.

C The automorphism group Aut(𝐶; 𝑝1, . . . , 𝑝𝑛) is finite.

For every 𝑛-pointed stable curve of genus 𝑔, we have 2𝑔 − 2 + 𝑛 > 0. A fam-
ily of curves 𝐶 −→ 𝑆 with sections 𝜎1, . . . ,𝜎𝑛 : 𝐶 −→ 𝑆 is said to be stable if
(𝐶𝑠;𝜎1(𝑠), . . . ,𝜎𝑛(𝑠)) is a stable curve with 𝑛 marked points for all 𝑠 ∈ 𝑆.

The Deligne-Mumford-Knudsen stack of moduli space of 𝑛-pointed stable
curves is defined as the CFG

M 𝑔,𝑛 −→ (𝑆𝑐ℎ/ℤ)é𝑡

with objects and arrows defined as

𝑂𝑏 𝑗(M 𝑔,𝑛) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑋

𝑆

{𝑠𝑖}𝑛𝑖=1 family of stable curves of genus 𝑔 with 𝑛 marked points

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
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𝐴𝑟𝑟(M 𝑔,𝑛) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑋
′

𝑋

𝑆
′

𝑆

𝑓 ′

𝜋′ 𝜋

𝑓

{𝑠′
𝑖
}𝑛
𝑖=1 {𝑠𝑖}𝑛𝑖=1 cartesian diagram with 𝑓 ′ ◦ 𝑠′𝑖 = 𝑠𝑖 ◦ 𝑓 ∀𝑖

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭



CHAPTER 1

Basic logarithmic geometry

In this chapter we will define the basic setting for the study of logarithmic geome-
try, which will be employed throughout the rest of this thesis to study logarithmic
moduli problems. Starting from the prototype examples of normal crossing vari-
eties and the semistable reduction model, we study logarithmic structures, which
should be thought of as the study of functions without poles along a divisor. As we
will see, the study of such functions keeps track of properties of the scheme and the
normal crossing divisor simultaneously. As a result, families with normal cross-
ing singularities in the fiber turn out to be smooth in the logarithmic world. Vital
to the study of functions without poles along a divisor is the study of the geometry
of monoids. We introduce the basic notions in the geometry of monoids necessary
for the subsequent chapters of this thesis and refer to [22] for a detailed analysis.

1.1 Logarithmic schemes

Definition 1.1.1. A monoid (𝑀, ·, 1) is a commutative semigroup with a unit1. A
morphism of commutative monoids preserves the unit element. We denote the
category of monoids asM𝑜𝑛.

Example 1.1.2. 1. {1} is the final and initial object in the category of monoids.
Moreover, this is an abelian group.

2. (ℕ, +, 0), (ℤ, ·, 1) are commutative monoids.

Definition 1.1.3. Let 𝑋 be a scheme. A pre-logarithmic structure on 𝑋 is a pair

1We will interchangably use the additive and multiplicative notation based on convenience.

14
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of datum (M𝑋 ,𝛼𝑋 :M𝑋 −→ O𝑋ét) whereM𝑋 is a sheaf of monoids on the ètale
site 𝑋ét,2 i.e.

M𝑋 : (𝑆𝑐ℎ/𝑋)𝑜𝑝ét −→M𝑜𝑛

is a sheaf and 𝛼𝑋 is a morphism of sheaves of monoids with O𝑋 considered as a
sheaf of monoids with respect to the multiplicative structure.

A pre-logarithmic structure (M𝑋 ,𝛼𝑋 ) is called logarithmic if 𝛼𝑋 identifies the
units, i.e.𝛼−1

𝑋
(O∗

𝑋ét
) ≅ O∗

𝑋ét
. A scheme 𝑋 admitting a logarithmic structure is

called a log scheme. A morphism of log structures (M𝑋 ,𝛼𝑋 ) −→ (N𝑋 ,𝛽𝑋 ) is a
commutative diagram of sheaf of monoids :

N𝑋

M𝑋

O𝑋

𝛽𝑋
𝛼𝑋

A log scheme (𝑋,M𝑋 ) is a scheme 𝑋 equipped with a log structure (M,𝛼𝑋 )
as above. We denote the category of log schemes by LogSch (Morphisms of log
schemes will be defined in the next section). Calligraphy letters will be used to de-
note a log scheme. IfX = (𝑋,M𝑋 ) is a log scheme, thenX denotes the underlying
scheme and 𝑓 denotes the morphism of underlying schemes.

For a log structure (M𝑋 ,𝛼𝑋 ) on 𝑋 , we define the characteristics sheaf of monoids
M𝑋 := M𝑋/O∗𝑋 (where, O∗

𝑋
is considered as a sub-sheaf of monoids ofM𝑋 via

the identification of units, by an abuse of notation). In colloquial language, the
characteristic sheaf takes care of the ‘non-trivial’ part of the log structure.

We denote the category of pre-log and log structures on the scheme 𝑋 as 𝑃 LOGX

and LOGX respectively. Moreover, we have a canonical inclusion functor :

𝑖 : {LOGX} ↩→ {𝑃 LOGX}

Remark 1.1.4. 1. It is not hard to see that the conditions 𝛼−1
𝑋
(O∗

𝑋ét
) ≅ O∗

𝑋ét
is

equivalent to the conditionM∗
𝑋
≅ O∗

𝑋ét
and𝛼−1

𝑋
(O∗

𝑋ét
) =M∗

𝑋
. The last equal-

ity is the analogue of the definition of a local morphism of locally ringed
2In the following chapters we often omit the topology in the notation and use the étale site

unless otherwise specified.
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space. This makes sense by defining ideals, prime ideals and irreducibility
in the categoryM𝑜𝑛. For a monoid 𝑀, 𝑀∗ is the unique maximal ideal of
the monoid, hence we have an analogy:

{Geometry on monoids} ←→ {Geometry on local rings}

Example 1.1.5. 1. Every scheme 𝑋 admits a trivial log structure which is an
initial object in the category LOGX by considering the pair (O∗

𝑋
,O∗

𝑋
↩→ O𝑋 ).

This gives a fully-faithful embedding of the category of schemes in the cate-
gory of log schemes

(𝑆𝑐ℎ) ↩→ LogSch

For any scheme 𝑋 we have the identity log structure which is the final object
in the category LOGX, namely, (M𝑋 ,𝛼𝑋 ) := (O𝑋 ,O𝑋 = O𝑋 )

2. Let 𝑋 be any scheme and 𝑃 be a monoid. ConsiderM𝑋 := O∗
𝑋
⊕ 𝑃𝑋 , where

𝑃𝑋 is the constant sheaf on 𝑋 defined by the monoid 𝑃 and the structure
morphism is defined on local sections by

𝛼𝑋 : O∗𝑋 ⊕ 𝑃𝑋 −→ O𝑋

𝛼𝑋 (𝑠, 𝑝) =
⎧⎪⎪⎨⎪⎪⎩
𝑠 for 𝑝 = 0

0 otherwise

This defines a log structure on 𝑋 . In particular, if 𝑋 := Spec 𝑘, where 𝑘 is a
field, then the log scheme as defined above is called a log point.

3. Let 𝑋 be a regular scheme and 𝐷 ⊂ 𝑋 a normal crossing divisor, then we
have the divisorial log structure on 𝑋 with respect to the divisor 𝐷, étale
locally given by :

M𝐷
𝑋 (𝑉) := {𝑓 ∈ O𝑋 (𝑉) | 𝑓|𝑉−𝐷 ∈ O∗𝑋 (𝑉 − 𝐷)} ⊂ O𝑋 (𝑉)

In other words, if 𝑗 : 𝑈 = 𝑋 − 𝐷 ↩→ 𝑋 is the canonical inclusion, then

M𝐷
𝑋 = 𝑗∗O∗𝑈 ∩ O𝑋
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For instance, take 𝑋 = 𝔸2
𝑘

and 𝐷 = 𝑍(𝑥) ∪ 𝑍(𝑦). Then we have a morphism
of sheaves of monoids

ℕ2
𝑋 −→M

𝐷
𝑋

(𝑛1, 𝑛2) ↦−→ 𝑥𝑛1𝑦𝑛2

The morphism above serves as a prototype for a ‘local chart/ local model’ for
the log scheme. Moreover, the stalks of the sheaf of monoid are given by

M𝐷
𝑋,𝑝 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜙 if 𝑝 ∈ 𝑈
ℕ if 𝑝 ∈ 𝑍(𝑥) or 𝑝 ∈ 𝑍(𝑦)
ℕ2 if 𝑝 = (0, 0)

Note that we have the canonical inclusions O∗
𝑋
⊂ M𝐷

𝑋
⊂ O𝑋 . The second

inclusion need not hold in general, as in example (2). As discussed in the
motivation,M𝐷

𝑋
takes care of invertible elements away from the divisor 𝐷,

in other words, ‘functions’ with zeroes only on 𝐷.

Figure 1.1: Divisorial log structure on {𝑥𝑦 = 0}

Thus, 𝔸2
𝑘
=
⨆︁
𝑖𝑈𝑖 admits a stratification such that the divisorial log struc-

ture is constructible, i.e. the log structureM𝐷

𝑋 is given by a single monoid
on each stratum𝑈𝑖.

4. Consider a family of schemes 𝑋 −→ 𝑆 over a disc, i.e.𝑆 = Spec 𝐴, where
(𝐴, 𝑚) is a DVR with unique closed point 𝑚 = (𝜋) . LetM𝑚

𝑆
be the normal
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crossing log structure on 𝑆 with respect to the divisor 𝑚. Then we have a
divisorial log structureM𝑋𝑚

𝑋
with respect to the fiber 𝑋𝑚.

We will be interested in the case where 𝑋 −→ 𝑆 étale locally has a factori-
sation

𝑋 −→
ét

Spec 𝐴[𝑥1, ...., 𝑥𝑛] (𝑥1 · · · 𝑥𝑑 − 𝜋) −→ 𝑆; 𝑑 ≤ 𝑛,

called the semistable reduction model. Vaguely speaking, we are interested
in ‘classifying’ all log structures on a semistable model. See chapter 2 for
more details.

1.1.1 Log-structure associated to a pre-log structure

Analogously to the sheafification functor, we can define the logarithmification
functor. Recall that we have the canonical inclusion functor

𝑖 : {LOGX} ↩→ {𝑃 LOGX}

We want to associate a log structure 𝛼log
𝑋

:Mlog
𝑋
−→ O𝑋 with a scheme 𝑋 with a

pre-log structure𝛼𝑋 :M𝑋 −→ O𝑋 . It will be defined by the following co-cartesian
diagram in the category of étale sheaf of monoids :

M𝑋

𝛼−1
𝑋
(O∗

𝑋
) Mlog

𝑋
O𝑋

O∗
𝑋

∃ !𝛼log
𝑋

In other words, the log structureMlog
𝑋

associated to the pre-log structureM𝑋 is
obtained by the étale sheafification of the presheaf .

𝑈 ↦−→ (M𝑋 ⊕𝛼−1
𝑋
(O∗

𝑋
) O∗𝑋 ) (𝑈)

for every étale cover𝑈 −→ 𝑋 .
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Remark 1.1.6. In general, the log structures associated withM𝑋 with respect to
the Zariski and étale site need not be isomorphic. In caseM𝑋 is a fine sheaf of
monoid (see Definition 1.2.8), then the sheafification carried out in the Zariski
and étale topologies are isomorphic. See [22, Section III.1.4] for details about the
comparision of log structures in the Zariski and étale topologies.

Theorem 1.1.7. The logarithmification functor

log : {𝑃 LOGX} −→ {LOGX}

{𝛼𝑋 :M𝑋 −→ O𝑋 } ↦−→ {𝛼log
𝑋

:Mlog
𝑋
−→ O𝑋 }

is a left adjoint to the inclusion functor

𝑖 : {LOGX} ↩→ {𝑃 LOGX}

The main part of the proof of the theorem above is constructing a push-out in the
category of monoids, which we recall in the next section.

1.1.2 The geometry of monoids-I

Arbitrary projective limits exist in the categoryM𝑜𝑛 and the projective limit func-
tor commutes with the forgetful functorM𝑜𝑛 −→ (𝑆𝑒𝑡𝑠). This functor has a right
adjoint and hence commutes with all projective limits. In particular we have (ar-
bitrary) products and fiber products in the category of monoids.

Remark 1.1.8. For a morphism 𝑓 : 𝑃 −→ 𝑄 of monoids, 𝑘𝑒𝑟 𝑓 makes sense, being a
projective limit, i.e.the equaliser of the morphisms 𝑓 and the constant morphism
0. The notion of monomorphism inM𝑜𝑛 coincides with the notion of monomor-
phism in (𝑆𝑒𝑡𝑠). Hence, a monomorphism has a trivial kernel, whereas a map
with a trivial kernel is not necessarily a monomorphism. For example, consider
𝑓 : ℕ ⊕ℕ −→ ℕ given by (𝑎, 𝑏) ↦−→ 𝑎 + 𝑏. We see that 𝑘𝑒𝑟 𝑓 = {(0, 0)} but 𝑓 is not
a monomorphism.

Definition 1.1.9. 1. If 𝑃 is a monoid, then a congruence relation on 𝑃 is a sub-
set 𝐸 ⊂ 𝑃 ⊕ 𝑃 which is both a submonoid and a set-theoretic equivalence
relation.
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2. A subset 𝑆 ⊂ 𝐸 generates the congruence relation 𝐸 if 𝐸 is the smallest
congruence relation on 𝑃 containing 𝑆.

Remark 1.1.10. For any equivalence relation 𝐸 on 𝑃, the surjection 𝑃 −→ 𝑃/𝐸
induces a structure of a monoid on 𝑃/𝐸 if and only if 𝐸 is a congruence relation.
Therefore, there is a natural bijection between the isomorphism classes of surjec-
tive maps of monoids 𝑃 −→ 𝑄 and the set of congruence relations on 𝑃. See [22,
I.1.1.1] for more details.

Definition 1.1.11 (Push-outs in the category of monoids). Let 𝑓 : 𝑃 −→ 𝑀 and
𝑔 : 𝑃 −→ 𝑁 be morphism of monoids. Then, we have a co-cartesian square in
M𝑜𝑛

𝑃 𝑀

𝑁 𝑀 ⊕𝑃 𝑁

𝑔

𝑓

where 𝑀 ⊕𝑃 𝑁 := (𝑀 ⊕ 𝑁)/∼ with ‘∼’ being the smallest equivalence relation
stable under the monoid operation such that ( 𝑓 (𝑝), 0) ∼ (0, 𝑔(𝑝)) ∀𝑝 ∈ 𝑃. More
explicitly, the congruence relation ‘∼’ can be described as follows:

Let 𝑆 be the set of pairs ((𝑚1, 𝑛1), (𝑚2, 𝑛2)) ∈ (𝑀 ⊕ 𝑁) × (𝑀 ⊕ 𝑁) such that
there exists a 𝑝 ∈ 𝑃 such that 𝑚2 = 𝑚1 + 𝑓 (𝑝) and 𝑛1 = 𝑛2 + 𝑔(𝑝). Set −𝑆 :=
{(𝑎, 𝑏) | (𝑏, 𝑎) ∈ 𝑆}. Then ‘∼’ is given by the set of pairs (𝑎, 𝑏) ∈ (𝑀⊕𝑁) × (𝑀⊕𝑁)
such that there exists a sequence (𝑟0, . . . , 𝑟𝑛) ∈ (𝑀⊕𝑁)𝑛+1 such that 𝑎 = 𝑟0, 𝑏 = 𝑟𝑛

and satisfying (𝑟𝑖, 𝑟𝑖+1) ∈ 𝑆 if 𝑖 is even and (𝑟𝑖, 𝑟𝑖+1) ∈ −𝑆 if 𝑖 is odd.

Remark 1.1.12. 1. In case in which at least one of 𝑀 and 𝑁 is a group, the con-
gruence relation is generated by: (𝑚1, 𝑛1) ∼ (𝑚2, 𝑛2) if and only if ∃ 𝑐, 𝑑 ∈ 𝑃
such that 𝑚1 + 𝑓 (𝑐) = 𝑚2 + 𝑓 (𝑑), 𝑛1 + 𝑔(𝑑) = 𝑛2 + 𝑔(𝑐). We will see in Def-
inition 1.2.16 that an integral morphism of monoids is characterised by the
above congruence relation.

2. In particular, taking 𝑁 = 0, we obtain the cokernel of the morphism 𝑓 :
𝑃 −→ 𝑀. An epimorphism in M𝑜𝑛 has a trivial cokernel, while a map
with a trivial cokernel is not necessarily an epimorphism. For example, 𝑓 :
ℕ ⊕ ℕ −→ ℕ ⊕ ℕ given by (𝑎, 𝑏) ↦−→ (𝑎, 𝑎 + 𝑏) has trivial cokernel but is not
a surjective map of monoids.
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1.1.3 Functoriality of log structures

Definition 1.1.13. 1. Let 𝑓 : 𝑋 −→ 𝑌 be a morphism of schemes. The pull-
back functor

𝑓 ∗ log : 𝐿𝑜𝑔𝑌 −→ 𝐿𝑜𝑔𝑋

M𝑌 ↦−→ 𝑓 ∗ log(M𝑌 )

is defined as the log structure associated to the canonical morphism
𝑓 −1M𝑌 −→ 𝑓 −1O𝑌 −→ O𝑋 .

2. A morphism of log schemes ( 𝑓 , 𝑓 @) : (𝑋,M𝑋 ) −→ (𝑌,M𝑌 ) is given by a
morphism 𝑓 : 𝑋 −→ 𝑌 of the underlying schemes and together with mor-
phism of log structures on 𝑋 :

𝑓 @ : 𝑓 ∗ logM𝑌 −→M𝑋

such that the morphism 𝑓 @ is compatible with the structure morphism,
i.e.the following diagram commutes :

𝑓 ∗ log(M𝑌 ) M𝑋

𝑓 ∗O𝑌 O𝑋

𝑓 @

𝑓 ∗ (𝛼𝑋 ) 𝛼𝑋

Thus, this defines morphisms in LogSch. The relative characteristic sheaf
of 𝑓 is defined byM𝑋/𝑌 :=M𝑋/im( 𝑓 ∗ logM𝑌 −→M𝑋 ).

3. A morphism of log schemes ( 𝑓 , 𝑓 @) : (𝑋,M𝑋 ) −→ (𝑌,M𝑌 ) is called strict
if the morphism 𝑓 @ : 𝑓 ∗ logM𝑌 −→ M𝑋 is an isomorphism of sheaves of
monoids. For instance, the pull-back of the trivial log structure O∗

𝑌
on 𝑌 is

isomorphic to the trivial log structure O∗
𝑋

on 𝑋 , hence is a strict morphism
of log schemes.

Furthermore, for any log scheme (𝑋,M𝑋 ), we have a canonical morphism
of log schemes 𝑝𝑋 : (𝑋,M𝑋 ) −→ (𝑋,O∗𝑋 ).

4. The cartesian product of log schemes is given by :
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(𝑋 ×𝑍 𝑌,M𝑋×𝑍𝑌 ) (𝑋,M𝑋 )

(𝑌,M𝑌 ) (𝑍,M𝑍)

𝜋𝑋

𝜋𝑌
𝜋𝑍

where the log structureM𝑋×𝑍𝑌 −→ O𝑋×𝑍𝑌 is given by the logarithmification
of the push out under 𝜋2 of the following diagram :

𝜋∗
𝑍
M𝑍 𝜋∗

𝑋
M𝑋

𝜋∗
𝑌
M𝑌 𝜋∗

𝑋
M𝑋 ⊕𝜋∗

𝑍
M𝑍

𝜋∗
𝑌
M𝑌

Thus, the formation of fiber products in the category LogSch commutes
with the forgetful functor:

LogSch −→ 𝑆𝑐ℎ

X −→ X

5. Let 𝑓 : 𝑋 −→ 𝑌 be a morphism of schemes. For a log structure𝛼𝑋 :M𝑋 −→
O𝑋 on 𝑋 , the pushforward functor

𝑓
log
∗ : 𝐿𝑜𝑔𝑋 −→ 𝐿𝑜𝑔𝑌

is defined as the fiber product of the below diagram in the category of étale
sheaves of monoids :

𝑓
log
∗ M𝑋 O𝑌

𝑓∗M𝑋 𝑓∗O𝑋

𝑓
log
∗ (𝛼𝑋 )

𝑓∗ (𝛼𝑋 )

Remark 1.1.14. 1. The pushforward functor 𝑓 log
∗ is right adjoint to the pull back

functor 𝑓 ∗ log.

2. Any morphism of log schemes ( 𝑓 , 𝑓 @) : (𝑋,M𝑋 ) −→ (𝑌,M𝑌 ) can be

uniquely factored as (𝑋,M𝑋 )
(𝐼𝑑,𝑓 @)
−−−−−−→ (𝑋, 𝑓 ∗ log(M𝑌 ))

𝑓 strict

−−−−→ (𝑌,M𝑌 ), where
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𝑓 strict is a strict morphism of log schemes. Equivalently by adjointness, we
also have a unique factorization of ( 𝑓 , 𝑓 @) : (𝑋,M𝑋 ) −→ (𝑌, 𝑓 log

∗ (M𝑋 )) −→
(𝑌,M𝑌 ) such that the following diagram commutes :

(𝑋,M𝑋 ) (𝑋, 𝑓 ∗ log(M𝑌 ))

𝑓
log
∗ (M𝑋 ) (𝑌,M𝑌 )

𝑓 strict

3. A morphism of log schemes ( 𝑓 , 𝑓 @) : (𝑋,M𝑋 ) −→ (𝑌,M𝑌 ) is strict if and
only if the diagram

(𝑋,M𝑋 ) (𝑌,M𝑌 )

(𝑋,O∗
𝑋
) (𝑌,O∗

𝑌
)

𝑓

𝜋𝑋 𝜋𝑌
𝑓

is cartesian in the category of log schemes.

4. The characteristics sheaves are stable under pull-backs, i.e.the canonical
morphism 𝑓 −1(M𝑌 ) −→ 𝑓 ∗ log(M𝑌 ) is an isomorphism for every morphism
𝑓 of log schemes.

5. For the sake of simplicity, from now on we will omit the log in the super-
scripts of the notation of the pullback and pushforward functors.

1.1.4 Charts of log schemes

Just as affine schemes give a local picture of schemes and assist in the local geom-
etry, affine log schemes serve as a similar analogue in the category of log schemes.

Example 1.1.15. Affine log scheme:

Let 𝐴 be a commutative ring. LetM𝑜𝑛𝐴 be the category where the objects are
given by pairs (𝑦, 𝑃), where 𝑃 is a monoid and 𝑦 : 𝑃 −→ 𝐴 is a morphism of
monoids. Here 𝐴 is considered as a monoid with respect to its multiplicative
structure. An arrow (𝑦, 𝑃) −→ (𝑧, 𝑄) is given a morphism 𝑓 : 𝑃 −→ 𝑄 such that
𝑧 ◦ 𝑓 = 𝑦. An object 𝑃 −→ 𝐴 inM𝑜𝑛𝐴 induces a morphism of monoidal algebras

𝑃 −→ 𝐴[𝑃]
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where 𝐴[𝑃] is the free 𝐴-module generated by the elements {𝑒𝑝 | 𝑝 ∈ 𝑃} with
multiplication defined as 𝑒𝑝 · 𝑒𝑞 := 𝑒𝑝+𝑞 extended linearly over 𝐴. Thus,the forget-
ful functor from the category of 𝐴-algebras to the category of monoids

A𝑙𝑔𝐴 −→M𝑜𝑛

(𝑅, +, ·) ↦−→ (𝑅, +)

admits a left adjoint (in particular, commutes with colimits) given by

M𝑜𝑛𝐴 −→ A𝑙𝑔𝐴

𝑃 −→ 𝐴[𝑃]

This induces a unique morphism of sheaves of monoids

𝑃Spec 𝐴[𝑃] −→ OSpec 𝐴[𝑃]

where 𝑃Spec 𝐴[𝑃] is the constant sheaf on Spec 𝐴[𝑃]. Let 𝑃log
Spec 𝐴[𝑃] −→ OSpec 𝐴[𝑃]

be the morphism of associated sheaves of monoids. Thus,we have a log scheme,
called the affine log scheme 𝔸1

𝑃
:= (Spec 𝐴[𝑃], 𝑃log

Spec 𝐴[𝑃]). Moreover, for every
morphism of 𝐴-monoids 𝑃 −→ 𝑄, there exists a commutative diagram :

𝑃 𝑄

𝐴[𝑃] 𝐴[𝑄]∃ !

This in turn induces a morphism between the affine log schemes

(Spec 𝐴[𝑄], 𝑄log
Spec 𝐴[𝑄]) −→ (Spec 𝐴[𝑃], 𝑃log

Spec 𝐴[𝑃])

Thus, we have a contravariant functor :

LogSpec :M𝑜𝑛𝑜𝑝 −→ AffLogSch ↩→ LogSch

Lemma 1.1.16. The canonical association

𝐻𝑜𝑚LogSch((𝑋,M𝑋 ), (Specℤ[𝑃], 𝑃log
Specℤ[𝑃])) −→ 𝐻𝑜𝑚M𝑜𝑛(𝑃,Γ(𝑋,M𝑋 ))
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is bijective.

Proof. Given a morphism 𝑓 : (𝑋,M𝑋 ) −→ (Specℤ[𝑃], 𝑃log
𝑋
), we have a mor-

phism 𝑓 −1𝑃log
𝑋
−→ M𝑋 of sheaves of monoids. Taking global sections of the

sheaves, we obtain 𝑃 −→ Γ(𝑋,M𝑋 )).

Conversely, a morphism 𝑃 −→ Γ(𝑋,M𝑋 )) −→ Γ(𝑋,O𝑋 )) uniquely induces a
morphism of 𝐴-algebras ℤ[𝑃] −→ Γ(𝑋,O𝑋 )), which induces a morphism of
schemes 𝑋 −→ Specℤ[𝑃]. The morphism of log structures is induced by the
logarithmification of the morphism 𝑃𝑋 −→M𝑋 .

The fact that both the constructions are inverse to one another follows as in the
case of schemes. See [22] for more details.

■

Definition 1.1.17 (Charts for log schemes). Let (𝑋,M𝑋 ) be a log scheme, let 𝑃
be a monoid and consider the constant sheaf 𝑃𝑋 on 𝑋 . A global chart for (𝑋,M𝑋 )
over the monoid 𝑃 is a strict morphism of log schemes

𝑐 : (𝑋,M𝑋 ) −→ (Specℤ[𝑃], 𝑃log
Specℤ[𝑃]) = 𝔸1

𝑃

Equivalently, a morphism of monoids 𝑃 −→ Γ(𝑋,M𝑋 ), i.e. a morphism of
sheaves of monoids 𝑃𝑋 −→ M𝑋 such that the associated morphism of log struc-
tures 𝑃log

𝑋
−→ M𝑋 is an isomorphism, gives a global chart for (𝑋,M𝑋 ) over the

monoid 𝑃.

Example 1.1.18 (Divisorial log structure). Take 𝑋 = 𝔸2
𝑘

and 𝐷 = 𝑍(𝑥) ∪ 𝑍(𝑦).
Then we have a morphism of sheaves of monoids

ℕ2
𝑋 −→M

𝐷
𝑋

(𝑛1, 𝑛2) ↦−→ 𝑥𝑛1𝑦𝑛2

The morphism above is a local chart for the log scheme.

Definition 1.1.19. Charts for morphisms of log schemes

Let 𝑓 : X = (𝑋,M𝑋 ) −→ (𝑌,M𝑌 ) = Y be a morphism of log schemes. A chart
for the morphism 𝑓 is a morphism of monoids \ : 𝑄 −→ 𝑃 such that there exists
twp charts 𝑐𝑃 : X −→ 𝔸1

𝑃
and 𝑐𝑄 : Y −→ 𝔸1

𝑄
, making the following diagram

commute.
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X Y

𝔸1
𝑃

𝔸1
𝑄

𝑓

𝑐𝑃 𝑐𝑄

𝔸1
\

In the above setup, we have a commuatative diagram of log schemes

X

Y\ 𝔸1
𝑃

Y 𝔸1
𝑄

𝑐𝑃

𝑓

𝑏\

𝑏

𝑓\ 𝔸1
\

𝑐𝑄

where the underlying scheme of Y\ is given by 𝑌 ×𝔸1
𝑄
𝔸1
𝑃

and the log structure is

given by the pullback of the log structure on the affine log scheme 𝔸1
𝑃

via 𝑏. The
morphisms 𝑐𝑄, 𝑏 and 𝑐𝑃 are strict morphisms of log schemes. The commutative
square is cartesian in the category of log schemes. Hence, there exists a unique
morphism of log schemes 𝑏\ : X −→ Y\ which is strict by construction.

Equivalently, it is sufficient to give two morphisms 𝑃𝑋 −→ M𝑋 and 𝑄𝑌 −→ M𝑌

with isomorphisms of associated log structures such that the following diagram
commutes:

𝑄𝑋 𝑃𝑋

𝑓 ∗M𝑌 M𝑋

Remark 1.1.20. 1. Since we are dealing with log structures, the morphism of
monoids \ : 𝑄 −→ 𝑃 is automatically local, i.e. \−1(𝑄∗) = 𝑃∗.

Example 1.1.21 (Semistable reduction). Let 𝑋 −→ 𝑆 be a semistable reduction
model with divisorial log structures on the base and the total space as introduced
in example 3 of Example 1.1.5, with a factorisation

𝑋 −→
ét

Spec 𝐴[𝑥1, ...., 𝑥𝑛] (𝑥1 · · · 𝑥𝑑 − 𝜋) −→ 𝑆; 𝑑 ≤ 𝑛

Thus, we have local charts
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ℕ −→ O𝑆; 1 ↦−→ 𝜋

ℕ𝑑 −→ O𝑋 ; (𝑛1, . . . , 𝑛𝑑) ↦−→
𝑑∏︂
𝑖=1

𝑥
𝑛𝑖
𝑖

Δ : ℕ −→ ℕ𝑑; 1 ↦−→ (1, . . . , 1)

X

S\ 𝔸1
ℕ𝑑

S 𝔸1
ℕ

𝑐
ℕ𝑑

𝑓

𝑏\

𝑏

𝑓\ 𝔸1
Δ

𝑐ℕ

1.2 The geometry of monoids-II

In this section we review some properties of morphisms of monoids, for in-
stance exact (Definition 1.2.12), integral (Definition 1.2.16) and saturated (Def-
inition 1.2.20) morphisms. These properties serve as important tools to translate
the classical geometric notions of flat morphisms of schemes and morphisms of
schemes with reduced fibers to the logarithmic world.

A monoid 𝑃 has an associated group defined by 𝑃gp := (𝑃 × 𝑃)/∼ where (𝑎, 𝑏) ∼
(𝑐, 𝑑) if and only if ∃ 𝑠 ∈ 𝑃 such that 𝑠+𝑎+𝑑 = 𝑠+𝑏+ 𝑐. Thus, we have a canonical
morphism 𝑃 −→ 𝑃gp. For instance, ℕgp = ℤ and if 𝑃 is a group, then 𝑃gp ≅ 𝑃.

Definition 1.2.1 (Integral monoid). A monoid 𝑃 is integral if the canonical map
𝑃 −→ 𝑃gp is injective, i.e. for any 𝑎, 𝑏, 𝑐 ∈ 𝑃 we have 𝑎 + 𝑏 = 𝑎 + 𝑐 =⇒ 𝑏 = 𝑐.
Define 𝑃int := img(𝑃 −→ 𝑃gp) which is an integral monoid. In other words, 𝑃 is
integral if and only if 𝑃 = 𝑃int. Thus, we have a factorisation 𝑃 −→ 𝑃int −→ 𝑃gp.
Moreover, by definition the canonical morphism 𝑃gp −→ (𝑃gp)int is an isomor-
phism. The association 𝑃 −→ 𝑃int is a left adjoint to the inclusion functor from
the subcategory of integral monoidsM𝑜𝑛int to the category monoidsM𝑜𝑛.

M𝑜𝑛int ↩→M𝑜𝑛 −→M𝑜𝑛int

𝑃 ↦−→ 𝑃 ↦−→ 𝑃int

For instance, ℕ ↩→ ℤ is an integral monoid.

Definition 1.2.2 (Saturated monoid). An integral monoid 𝑃 is said to be sat-
urated if for any 𝑥 ∈ 𝑃gp with 𝑛𝑥 ∈ 𝑃 for some 𝑛 ≥ 1, then 𝑥 ∈ 𝑃. Define
𝑃sat := {𝑥 ∈ 𝑃gp | ∃𝑛 ≥ such that 𝑛𝑥 ∈ 𝑃} which is a saturated monoid. In
other words, 𝑃 is saturated if and only if 𝑃 = 𝑃sat. The association 𝑃 −→ 𝑃sat is
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a left adjoint to the inclusion functor from the subcategory of saturated monoids
M𝑜𝑛sat to the category integral monoids.

M𝑜𝑛sat ↩→M𝑜𝑛int −→M𝑜𝑛sat

𝑃 ↦−→ 𝑃 ↦−→ 𝑃sat

Definition 1.2.3 (Sharp monoid). Let 𝑃 be a monoid. We denote the group of
units of 𝑃 by 𝑃∗. We denote the quotient monoid 𝑃/𝑃∗ by 𝑃. A monoid 𝑃 is said
to be sharp if 𝑃∗ = {0}.

Remark 1.2.4. If 𝑃 is saturated, then 𝑃
gp
≅ 𝑃gp/𝑃∗ is torsion free. In fact, as

we will see later, torsion freeness of cokernel of morphisms characterizes smooth
integral morphisms of log schemes with reduced fibers.

Example 1.2.5. 𝑃 = ℕ \ {1} is not saturated.

Definition 1.2.6 (Coherent monoid). A monoid 𝑃 is said to be coherent if it admits
a finite family of generators, i.e. if and only if there exists a surjective morphism
ℕ𝑚 −→ 𝑃.

Lemma 1.2.7. A monoid 𝑃 is coherent if and only if 𝑃∗ is finitely generated as a
group and 𝑃 is coherent.

Proof. If 𝑃 is coherent then clearly 𝑃∗ is finitely generated as a group and 𝑃 is
coherent. Conversely, let {𝑠𝑖} and {𝑡 𝑗} be finite set of generators for 𝑃∗ and 𝑃
respectively. Then the finite set {𝑠𝑖,−𝑠𝑖, 𝑡 𝑗} generates the monoid 𝑃.

■

Definition 1.2.8 (Fine saturated (fs) monoids). A monoid 𝑃 is fine if it is coherent
and integral; fs (fine and saturated) if it is both fine and saturated; toric if it is fs
and torsion-free.

Remark 1.2.9. If 𝑃 is toric, then 𝑃gp ≅ ℤ𝑑.

Definition 1.2.10 (Irreducible elements). If 𝑃 is a sharp monoid, then an element
𝑝 ∈ 𝑃 is irreducible if for any equality 𝑝1 + 𝑝2 = 𝑝 in 𝑃 we have 𝑝1 = 0 or 𝑝2 = 0.

We will use the following result about irreducible elements of a fs monoid in the
upcoming sections. It is analogous to the unique factorisation of elements into
irreducibles in a unique factorisation domain.
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Theorem 1.2.11. If 𝑃 is a fine sharp monoid, then the set Irr(𝑃) of irreducible
elements in 𝑃 is a finite set which generates 𝑃 as a monoid.

Proof. See [22, Section I.2.1].

■

Definition 1.2.12 (Exact morphism). A morphism 𝑓 : 𝑃 −→ 𝑄 of monoids is exact
if the following commutative diagram is cartesian int the category of monoids3:

𝑃 𝑄

𝑃gp 𝑄gp

𝑓

𝑓 gp

Remark 1.2.13. 1. If 𝑃 is integral, then 𝑓 : 𝑃 −→ 𝑄 is exact if and only if
( 𝑓 gp)−1(𝑄) = 𝑃. Intuitively, exactness can be thought of as the equivalence
𝑓 (𝑎) | 𝑓 (𝑏) ⇔ 𝑎|𝑏 for any 𝑎, 𝑏 ∈ 𝑃.

2. Since the diagram is cartesian, the canonical map ker 𝑓 −→ ker 𝑓 gp is an
isomorphism. Thus, 𝑓 is a monomorphism (i.e. injective) if and only if ker( 𝑓 )
is trivial. In the subsequent chapters, we will be dealing with morphisms
which are exact, hence we don’t have to deal with the fallacy mentioned in
Remark 1.1.8.

3. 𝑓 : 𝑃 −→ 𝑄 is exact if and only if 𝑓 : 𝑃 −→ 𝑄 is an exact morphism.

4. The family of exact morphisms is stable under composition, pullback and
pushout.

Example 1.2.14. The diagonal morphismΔ : ℕ −→ ℕ𝑛 is exact, hence by definition
the semistable reduction X −→ S in Example 1.5.9 is exact.

Remark 1.2.15. Pushouts in the category of integral and saturated monoids are
subtler compared to the category of monoids as the family of integral and satu-
rated morphisms need not be closed under pushouts. This motivates the following
definition, which also has important geometric consequences.

Definition 1.2.16 (Integral morphism). A morphism 𝑓 : 𝑃 −→ 𝑄 of integral
monoids is integral if the following equivalent conditions hold4:

3See [22, section I.4.2] for more details on exact morphisms
4See [22, sections I.4.5 and I.4.6] for the equivalence of (1) − (3).
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1. For any morphism 𝑔 : 𝑃 −→ 𝑅 of integral monoids, the push-out 𝑄 ⊕𝑃 𝑅 in
the category of monoids is integral.

2. For any morphism 𝑃 −→ 𝑅 of integral monoids, the push-out 𝑄 ⊕𝑃 𝑅 in the
category of monoids is described as the quotient of 𝑄 ⊕ 𝑅 by the equivalence
relation. (𝑚1, 𝑛1) ∼ (𝑚2, 𝑛2) if and only if ∃ 𝑐, 𝑑 ∈ 𝑃 such that 𝑚1 + 𝑓 (𝑐) =
𝑚2 + 𝑓 (𝑑), 𝑛1 + 𝑔(𝑑) = 𝑛2 + 𝑔(𝑐). Note that this is the same equivalence
relation used to define the push-out in the category of groups.

3. The transporter category T𝑃𝑄 is cofiltering, i.e. whenerver 𝑞1, 𝑞2 ∈ 𝑄 and
𝑝1, 𝑝2 ∈ 𝑃 satisfy 𝑓 (𝑝1) +𝑞1 = 𝑓 (𝑝2) +𝑞2, then there exists 𝑞′ ∈ 𝑄 and 𝑝′

𝑖
∈ 𝑃

such that 𝑞𝑖 = 𝑓 (𝑝𝑖′) + 𝑞′ and 𝑝1 + 𝑝′1 = 𝑝2 + 𝑝′2. In other words, the following
diagram is completed by the dotted arrows

𝑞′ 𝑞1

𝑠2 𝑞

𝑝′1

𝑝′2 𝑝1
𝑝2

Recall that the objects of the transporter category T𝑃𝑄 are the elements of
𝑄 and for which the morphisms from an object 𝑞1 to an object 𝑞2 are the
elements 𝑝 of 𝑃 such that 𝑓 (𝑝) + 𝑞1 = 𝑞2.

If 𝑃 is a sharp monoid (which implies 𝑓 is injective), then we have the following
important geometric consequence.

Theorem 1.2.17. Let 𝑓 : 𝑃 −→ 𝑄 be a morphism of integral monoids with 𝑃 a
sharp monoid. Then the following conditions are equivalent.

1. 𝑓 is integral.

2. The homomorphism ℤ[ 𝑓 ] : ℤ[𝑃] −→ ℤ[𝑃] is a flat morphism of ℤ-algebras.

3. For any field 𝑘, the homomorphism 𝑘[ 𝑓 ] : 𝑘[𝑃] −→ 𝑘[𝑃] is a flat morphism.

Proof. See [22, I.4.6.7]. ■

Remark 1.2.18. 1. A morphism of monoids 𝑓 : 𝑃 −→ 𝑄 is integral if and only if
𝑓 : 𝑃 −→ 𝑄 is an integral morphism.
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2. The family of integral morphisms is stable under compositions, pullbacks
and pushouts.

3. An integral morphism is exact if and only if it is local (i.e. 𝑓 −1(𝑄∗) = 𝑃∗).
All our morphisms in the subsequent chapters will fall under this category.

Example 1.2.19. The diagonal morphism Δ : ℕ −→ ℕ𝑛 is integral, hence by defi-
nition the semistable reduction X −→ S in Example 1.5.9 is integral. Moreover,
the map 𝑓 : ℕ𝑚 −→ ℕ𝑚+𝑛 defined by

𝑒𝑖 ↦−→
⎧⎪⎪⎨⎪⎪⎩
𝑒𝑖 𝑖 ≠ 𝑚

𝑒𝑚 + · · · + 𝑒𝑚+𝑛 𝑖 = 𝑚

is integral since it is a base change of the diagonal Δ : ℕ −→ ℕ𝑛+1.

Definition 1.2.20 (Saturated morphism). An integral morphism 𝑓 : 𝑃 −→ 𝑄

of saturated monoids is called saturated if for any morphism 𝑃 −→ 𝑅 with 𝑅 a
saturated monoid, the push-out 𝑄 ⊕𝑃 𝑅 in the category of integral monoids is a
saturated monoid.

Example 1.2.21. The diagonal morphism Δ : ℕ −→ ℕ𝑛 is saturated, hence by
definition the semistable reduction X −→ S in Example 1.5.9 is saturated.

Remark 1.2.22. 1. In addition, if 𝑃 and 𝑄 are sharp monoids, then 𝑓 : 𝑃 −→ 𝑄

is saturated if and only if Coker ( 𝑓 gp) is torsion free. See [22, Section I.4.8]
for more details. All our morphisms in the subsequent chapters will fall
under this category.

2. 𝑓 : 𝑃 −→ 𝑄 is saturated if and only if 𝑓 : 𝑃 −→ 𝑄 is an integral saturated
morphism.

3. The family of saturated morphisms is stable under composition, pullback
and pushout.

1.3 Properties of morphisms of log schemes

Definition 1.3.1. Let Q be one of the properties of monoids defined in Section 1.2.
For example, fine, integral, saturated, etc. Then a log structureM𝑋 on 𝑋 is said
to satisfy property if 𝑋 admits an open covering {𝑈𝛼}𝛼 in the étale topology such
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that the restriction ofM𝑋 to each {𝑈𝛼} admits a chart 𝑃𝛼 −→M𝑋 |𝑈𝛼
where the

monoid 𝑃𝛼 satisfies the property Q.

Remark 1.3.2. M𝑋 satisfies property Q if and only if the monoidM𝑋,𝑥 has prop-
erty Q for all geometrc points 𝑥 ∈ 𝑋 . See [22, II.1.1.3] for more details.

Definition 1.3.3. Let 𝑓 : X −→ Y be a morphism of fine log schemes in the sense
of Definition 1.3.1. Let P be one of the properties (integral or saturated morphism)
of monoids as defined in Section 1.2. Let 𝑥 be a geometric point lying over a point
𝑥 ∈ 𝑋 . Then, 𝑓 is said to satisfy the property P if for every geometric point 𝑥 lying
over 𝑥 and every point 𝑥 ∈ 𝑋 , the morphism of monoids 𝑓 @

𝑥
: M𝑌,𝑓 (𝑥) −→ M𝑋,𝑥

satisfies P.

The properties P of morphisms of log schemes above obey the usual functoriality
and openness conditions. Namely,

Theorem 1.3.4. Let 𝑓 : X −→ Y and 𝑔 : Y −→ Z be morphisms of fine log
schemes. Let ∈ 𝑋, 𝑦 := 𝑓 (𝑥), 𝑧 := 𝑔(𝑦).

1. Openness of P: If 𝑓 has property P at 𝑥, then the property holds in an étale
neighbourhood of 𝑥.

2. Stable under composition: If 𝑓 has property P at 𝑥 and 𝑔 has property P at 𝑦,
then 𝑔 ◦ 𝑓 has property P at 𝑥. If 𝑔 ◦ 𝑓 has property P at 𝑥 and 𝑓 has property
P at 𝑥 then 𝑔 has property P at 𝑦.

3. Stable under base change: The family of morphisms satisfying P is stable
under base change in the category of log schemes. Moreover, if 𝑓 : X −→ Y
and 𝑔 : W −→ Y are morphisms of fine (resp. fine saturated) log schemes
and 𝑓 is integral (resp. saturated) morphism of log schemes, then X ×YW
is an integral (resp. saturated) log scheme with the parallel transport X ×Y
W −→W an integral (resp. saturated) morphism.

Proof. The proof follows from the corresponding statements for monoids sat-
isfying P. See [22, III.2.5.3]. ■

1.4 More about charts of log schemes

In this section we recall some facts about the existence of neat charts for fs log
schemes that we will be using in the subsequent chapters.
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Remark 1.4.1. We first observe that for a log scheme (𝑋,M𝑋 ), the morphism 𝑓 :
(𝑋,M𝑋 ) −→ 𝔸1

𝑃
is a chart if 𝑓 @

𝑥 : M𝔸1
𝑃
,𝑦 −→ M𝑋,𝑥 is an isomorphism for every

geometric point 𝑥 ∈ 𝑋 and 𝑦 := 𝑓 (𝑥). Conversely, if M𝑋,𝑥 (equivalently M𝑋,𝑥)

is an integral monoid and 𝑓 @
𝑥 : M𝔸1

𝑃
,𝑓 (𝑥) −→ M𝑋,𝑥 is an isomorphism for every

geometric point 𝑥 ∈ 𝑋 , then 𝑓 : (𝑋,M𝑋 ) −→ 𝔸1
𝑃

is a chart. The converse basically
follows from the fact that in the commutative diagram below, \ is an isomorphism
if and only if \ is an isomorphism whenever 𝑄 is an integral monoid.

𝑃 𝑄

𝑃 𝑄

\

\

Definition 1.4.2. Let (𝑋,M𝑋 ) be an integral log scheme and let \ : 𝑃𝑋 −→M𝑋

be a chart. By the above remark 𝑃 is also an integral monoid. Let 𝑥 −→ 𝑋 be a
geometric point of 𝑋 . Then, \(𝑋) : 𝑃 −→M𝑋 (𝑋) is a neat chart at 𝑥 if it satisfies
one of the following equivalent conditions:

1. The canonical map 𝑃 −→M𝑋,𝑥 is an isomorphism.

2. The canonical map 𝑃gp −→Mgp
𝑋,𝑥 is an isomorphism.

Remark 1.4.3. 1. By the above conditions, 𝑃 is in fact a sharp monoid.

2. Since 𝑃 −→ M𝑋 is a chart and 𝑃 ≅ Mgp
𝑋,𝑥, the morphismMgp

𝑋,𝑥
−→ Mgp

𝑋,𝑥

admits a section.

3. Moreover, any chart of a fs log scheme étale locally factors through a neat
chart.

Theorem 1.4.4 (Neat charts for fine log schemes). Let (𝑋,M𝑋 ) be a fine log
scheme and let 𝑥 ∈ 𝑋 be a point. Then

1. (𝑋,M𝑋 ) admits a local neat chart at a geometric point 𝑥 lying over 𝑥 if and
only if there is a split short exact sequence

0 M∗
𝑋,𝑥
≅ O∗

𝑋,𝑥
Mgp

𝑋,𝑥
Mgp

𝑋,𝑥 0𝛼

𝑠

(1.4.1)
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2. There exists an fppf neighbourhood 𝑌 −→ 𝑋 of 𝑥 such that the short exact
sequence 1.4.1 splits.

3. In caseMgp
𝑋,𝑥 ⊗ 𝑘(𝑥) is torsion free (for instance ifM𝑋,𝑥 is saturated), then

the sequence 1.4.1 always splits in an étale neighbourhood 𝑌 −→ 𝑋 of 𝑥.

Sketch of proof. 1. For a local neat chart at 𝑥, the spliting is clear from Remark
1.4.3. Conversely, if the sequence splits, by Remark 1.4.1 it is enough to prove
Mlog

𝑋,𝑥 ≅ M𝑋,𝑥. Then by a standard openness argument, we can extend the
chart to a neighbourhood of 𝑥. We have a commutative diagram of short
exact sequences

0 M∗
𝑋,𝑥
≅ O∗

𝑋,𝑥
M

𝑋,𝑥
≅Mgp

𝑋,𝑥
×Mgp

𝑋,𝑥
M𝑋,𝑥 M𝑋,𝑥 0

0 M∗
𝑋,𝑥
≅ O∗

𝑋,𝑥
Mgp

𝑋,𝑥
Mgp

𝑋,𝑥 0
∃ !

𝑠

such that the right hand sidesquare is cartesian sinceM𝑋,𝑥 −→M𝑋,𝑥 is an
exact morphism. Hence, there exists a unique morphismM𝑋,𝑥 −→ M𝑋,𝑥.
Now by a similar argument as in Remark 1.4.1 and the construction of log-
arithmification, we haveMlog

𝑋,𝑥 ≅M𝑋,𝑥.

2. Since we are working over coherent log structures, there exists an isomor-
phism Mgp

𝑋,𝑥 ≅ ℤ𝑟
⨁︁𝑚

𝑖=1𝐶𝑖, where for 𝑖 ∈ {1, . . . , 𝑚}, 𝐶𝑖 is a cyclic group
of order 𝑑𝑖 with generator 𝑔𝑖. For the free part ℤ𝑟, there always exists a
section ℤ𝑟 −→Mgp

𝑋,𝑥
. For the torsion part 𝐶𝑖, consider the lifts 𝑔𝑖 of the gen-

erators 𝑔𝑖. Then by the exactness in Equation 1.4.1, there exists 𝑢𝑖 ∈ O∗𝑋,𝑥
such that 𝑑𝑖𝑔𝑖 = 𝛼(𝑢𝑖) for each 𝑖. Replacing 𝑥 by an fppf neighbourhood
with the new local ring isomorphic to

O
𝑋,𝑥
[𝑇1,...,𝑇𝑚]

(𝑇𝑑1
1 −𝑢1...𝑇

𝑑𝑚
𝑚 −𝑢𝑚)

, then the morphisms

𝑔𝑖 ↦−→ 𝑔𝑖 −𝛼(𝑇𝑖) serve as sections since 𝑇𝑖’s are units in
O
𝑋,𝑥
[𝑇1,...,𝑇𝑚]

(𝑇𝑑1
1 −𝑢1...𝑇

𝑑𝑚
𝑚 −𝑢𝑚)

.

3. Since Mgp
𝑋,𝑥 ⊗ 𝑘(𝑥) is torsion free and finitely generated, it is free, hence

the short exact sequence splits. Moreover,
O
𝑋,𝑥
[𝑇1,...,𝑇𝑚]

(𝑇𝑑1
1 −𝑢1...𝑇

𝑑𝑚
𝑚 −𝑢𝑚)

is an étale O𝑋,𝑥-
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algebra if and only if 𝑑𝑖’s are invertible in 𝑘(𝑥), i.e.the torsion part ofMgp
𝑋,𝑥⊗

𝑘(𝑥) vanishes.

■

In the proof of (1) above, we extended a chart to a neighbourhood of 𝑥. This can
be done precisely by the following result.

Lemma 1.4.5. Let (𝑋,M𝑋 ) be a fs log scheme. Let 𝑥 ∈ 𝑋 be a point and 𝐺 a
finitely generated abelian group. Let ℎgp : 𝐺 −→ Mgp

𝑋,𝑥
be a homomorphism such

that𝐺 −→Mgp
𝑋,𝑥 is surjective. Then 𝑃 := (ℎgp)−1(M𝑋,𝑥) −→ M𝑋,𝑥 can be extended

to a chart 𝑃𝑌 −→M𝑋 |𝑌 in an étale neighbourhood 𝑌 of 𝑥.

Proof. See [18, Lemma 2.10]. ■

The next corollary shows the existence of a local neat chart for morphisms of fine
saturated log schemes.

Corollary 1.4.6 (Neat charts for fs log morphisms ). Let X −→ Y be a mophism
of fine log schemes. Let 𝑥 −→ 𝑋 be a geometric point with 𝑓 (𝑥) = 𝑦. Let 𝑃 −→M𝑌

be a fine chart. Then fppf locally around 𝑥, 𝑓 admits a chart 𝑃 −→ 𝑄 such that
𝑄 −→ M𝑋 is neat at 𝑥. IfMgp

𝑋/𝑌,𝑥 is torsion free (for instance if 𝑓 is a saturated
morphism), then we can replace the chart in an étale neighbourhood of 𝑥.

Moreover, étale locally, the morphism 𝑃 −→ 𝑄 can be always chosen to be injec-
tive, which implies that 𝑃 −→M𝑌 is also neat at 𝑦.

Proof. Follows by applying Theorem 1.4.4. ■

Remark 1.4.7. The proof of the openness of property P in the first part of Theorem
1.3.4 follows now by choosing a neat chart in an fppf neighbourhood.

Example 1.4.8 (Log point). Recall example 2 in Example 1.1.5. Let 𝑋 = Spec 𝑘
where 𝑘 is an algebraically closed field. Let M𝑋 := 𝑘∗ ⊕ 𝑃𝑋 , where 𝑃𝑋 is the
constant sheaf on 𝑋 defined by a coherent monoid 𝑃 such that 𝑃 is sharp. The
structure morphism is defined on local sections by

𝛼𝑋 : O∗𝑋 ⊕ 𝑃𝑋 −→ O𝑋

𝛼𝑋 (𝑠, 𝑝) =
⎧⎪⎪⎨⎪⎪⎩
𝑠 for 𝑝 = 0

0 otherwise
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Note that 𝑃 −→ M𝑋 is a chart for the log point. Since 𝑃 is sharp, we have an
isomorphism M𝑋 ≅ 𝑃. Hence, 𝑃 −→ M𝑋 is a neat chart. Equivalently, the
following short exact sequence of splits.

0 M∗
𝑋
≅ 𝑘∗ Mgp

𝑋
Mgp

𝑋 0𝛼

𝑠

(1.4.2)

Corollary 1.4.9. Let (𝑋,M𝑋 ) be a coherent log scheme. Let 𝑛 ∈ ℕ. Then 𝑋𝑛 :=
{𝑥 ∈ 𝑋 | rank(Mgp

𝑋,𝑥) ≤ 𝑛} is an open subscheme of 𝑋 . In particular, 𝑋1 := {𝑥 ∈
𝑋 |M∗

𝑋,𝑥
=M𝑋,𝑥} is an open subscheme of 𝑋 . Note that 𝑋1 need not be non-empty.

Moreover, we have a stratification of a log scheme by constructible subschemes
𝑋 = 𝐶0 ⊇ 𝐶1 ⊇ · · · ⊇ 𝐶𝑚 ⊇ . . . .

An alternative way to think about the characteristic sheaf of fs log structures is by
considering the log structure on each strata as observed in example 2 of Example
1.1.5. Precisely, for a finitely generated monoid 𝑃, the space 𝔸1

𝑃
is a Kolmogoroff

space, i.e. for any 𝑥 ≠ 𝑦 ∈ 𝔸1
𝑃

, either 𝑥 ∉ {𝑦} or 𝑦 ∉ {𝑥}. Thus, every point
is locally closed and hence every sheaf of monoids on 𝔸1

𝑃
is constructible. The

following result gives a converse to the above discussion.

Theorem 1.4.10. LetM𝑋 be an integral saturated log structure on a scheme 𝑋 .
ThenM𝑋 is coherent if and only if it satisfies the following conditions

1. 𝑋 admits an open covering on whichM𝑋 is constructible.

2. M𝑋,𝑥 is coherent for every geometric point 𝑥 ∈ 𝑋 .

Proof. The converse uses Theorem 1.4.4. See [22, II.2.5.4] for more details.

■

Remark 1.4.11. The advantage of working with constructible sheaves on the étale
site is that they are representable by étale algebraic spaces (see Definition A.1.3
for the definition) as we shall see later.

1.5 Log derivations and differentials

Definition 1.5.1. Let 𝑓 : X −→ Y be a morphism of log schemes and let F be a
sheaf of O𝑋 -modules. A log derivation of X/Y with values in F is a pair (𝐷, 𝛿),
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where 𝐷 : O𝑋 −→ F is a morphism of abelian sheaves and 𝛿 : M𝑋 −→ F is a
morphism of sheaves of monoids such that the following conditions are satisfied:

1. 𝐷(𝛼𝑋 (𝑚)) = 𝛼𝑋 (𝑚)𝛿(𝑚) for every local section 𝑚 of M𝑋 , where 𝛼𝑋 :
M𝑋 −→ O𝑋 .

2. 𝛿( 𝑓 @(𝑛)) = 0 for every local section 𝑛 of 𝑓 −1(M𝑌 ).

3. 𝐷(𝑎𝑏) = 𝑎𝐷(𝑏) + 𝑏𝐷(𝑎) for all local sections 𝑎, 𝑏 of O𝑋 .

4. 𝐷( 𝑓 ∗(𝑐)) = 0 for every local section 𝑐 of 𝑓 −1O𝑌 .

We define DerX/Y (F ) to be the set of all such log derivations. Then the functor

DerX/Y : O𝑋 −Mod −→ (𝑆𝑒𝑡𝑠)

F ↦−→ DerX/Y (F )

is representable, with a universal object

O𝑋
𝑑−→ Ω1

X/Y M𝑋

𝑑𝑙𝑜𝑔−−−→ Ω1
X/Y

where Ω1
X/Y := (Ω1

𝑋/𝑌
⨁︁
(O𝑋 ⊗ℤMgp

𝑋
))/∼ and ∼ is generated by the relations:

i (𝑑𝛼𝑋 (𝑚), 0) − (0,𝛼𝑋 (𝑚) ⊗ 𝑚) for all 𝑚 ∈ M𝑋 .

ii (0, 1 ⊗ 𝑓 @(𝑛)) for all local section 𝑛 of 𝑓 −1(M𝑌 ).

Thus, we have the canonical morphisms

O𝑋
𝑑−→ Ω1

X/Y

𝑏 ↦−→ 𝑑𝑏

M𝑋

𝑑𝑙𝑜𝑔−−−→ Ω1
X/Y

𝑚 ↦−→ [(0, 1 ⊗ 𝑚)]

Moreover, the first relation above ensures that 𝛼𝑋 (𝑚)𝑑𝑙𝑜𝑔(𝑚) = 𝑑𝛼𝑋 (𝑚). See
[22, IV.1.1 and IV.1.2] for more details on log derivations and differentials.
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Remark 1.5.2. The logarithmic sheaf of differentials Ω1
X/Y is a quasi-coherent

sheaf of O𝑋 -modules. In fact, let 𝔸1
𝑃
−→ 𝔸1

𝑄
be a (local) chart for 𝑓 : X −→ Y.

Then Ω1
X/Y |𝔸1

𝑃
= ̃︆Ω1

𝔸1
𝑃
/𝔸1

𝑄

. We denote Ω1
𝑃/𝑄 := Ω1

𝔸1
𝑃
/𝔸1

𝑄

. Moreover, the morphism

1 ⊗ 𝑑𝑙𝑜𝑔 : ℤ[𝑃] ⊗ℤ (𝑃gp/𝑄gp) ∼−→ Ω1
𝑃/𝑄

is an isomorphism of ℤ[𝑃]-modules.
Example 1.5.3. Consider the morphism X := Spec(𝑘[𝑥1, . . . , 𝑥𝑛]/(𝑥1 · · · 𝑥𝑟)) −→
Spec𝑘 endowed with the divisorial logarithmic structure. Then using the above
remark, Ω1

X/𝑘 is a free O𝑋 module generated by 𝑑𝑥1
𝑥1
, . . . ,

𝑑𝑥𝑟
𝑥𝑟
, 𝑑𝑥𝑟+1, . . . , 𝑑𝑥𝑛 such

that

Σ𝑟1=1
𝑑𝑥𝑖

𝑥𝑖
= 0

1.5.1 Log smooth and log étale morphisms

In this section we recall various local properties of morphisms of log schemes. All
the definitions and results below hold true for arbitrary morphisms of log schemes
but to stick to our purpose, we restrict to working over fine saturated log schemes.

Definition 1.5.4 (Log thickening). A 𝑛-th order log thickening is a strict closed
immersion (i.e. a closed immersion of underlying schemes and a strict morphism
of log structures) 𝑖 : S −→ T of log schemes such that sheaf of ideals I defining
𝑖 : 𝑆 −→ 𝑇 is nilpotent, i.e. I𝑛+1 = 0 for some 𝑛 ∈ ℕ.

Remark 1.5.5. 1. The action of 1 + I ⊆ O∗
𝑇
≅ O∗

𝑇
onM𝑇 (resp. Mgp

𝑇
) makes it

a torsor overM𝑆 (resp.Mgp
𝑆

), i.e.the canonical morphisms

(1 + I) ×M𝑇

∼−→M𝑇 ×M𝑆
Mgp

𝑇

(1 + I) ×Mgp
𝑇

∼−→Mgp
𝑇
×Mgp

𝑆
Mgp

𝑇

(𝑢, 𝑚) ↦−→ (𝑚, 𝑢𝑚)

M𝑇

∼−→M𝑆 ×Mgp
𝑆
Mgp

𝑇

are isomorphisms.

2. ker(O∗
𝑇
−→ O∗

𝑆
) = ker(M∗

𝑇
−→M∗

𝑆
) = 1 + I
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3. By standard reductions as in the classical setup, it is enough to study only
first order thickenings, i.e. I2 = 0.

As in the classical setup, we study infinitesimal liftings aka deformations of a
morphism 𝑓 : X −→ Y of log schemes. By a log infinitesimal lifting we refer to
the existence of a lifting �̃� : T −→ X in the following commutative diagram of log
schemes

S X

T Y

𝑔

𝑖 𝑓

ℎ

�̃� (1.5.1)

where 𝑖 : S −→ T is a log thickening.

Moreover, let LifX/Y (𝑔,T) denote the set of liftings �̃� in the above diagram. Then
there is a natural action

DerX/Y (𝑔∗I) × 𝑔∗LifX/Y (𝑔,T) −→ 𝑔∗LifX/Y (𝑔,T) (1.5.2)

Definition 1.5.6 (Log smooth, log unramified and log étale morphisms). A mor-
phism of log schemes 𝑓 : X −→ Y is said to be log smooth (resp. log unramified,
resp. log étale) if for every 𝑛-th order log thickening 𝑖 : S −→ T , there exists at
least one (resp. at most one, resp. a unique) local lifting for the Diagram 1.5.1.

Remark 1.5.7. 1. The family of smooth (resp. unramified, resp. étale) mor-
phisms is stable under composition and base change and satisfies the stan-
dard openness properties in the category of fs log schemes.

2. Let 𝑓 : X −→ Y be a log smooth morphism of fs log schemes. For any
geometric point 𝑥 ∈ 𝑋 , 𝑓 factors (not necessarily uniquely) as

X −→ Y ×𝔸1
ℕ𝑟 −→ Y

in a strict étale neighbourhood of 𝑥 such that X −→ Y×𝔸1
ℕ𝑟

is log étale and
𝑟 := rank Ω1

X/Y,𝑥.

3. A morphism of log schemes 𝑓 : X −→ Y is log smooth if and only if Ω1
X/Y is

a locally free O𝑋 -module of finite rank. See [22, IV.3.2.1].
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This implies that the morphism from Spec(𝑘[𝑥1, . . . , 𝑥𝑛]/(𝑥1 · · · 𝑥𝑟)) to Spec 𝑘
endowed with the divisorial logarithmic structure is log smooth.

4. A morphism of log schemes 𝑓 : X −→ Y is log unramified if and only if
Ω1
X/Y = 0. See [22, IV.3.1.3].

5. A strict morphism of log schemes is log smooth (resp. log unramified, resp.
log étale) if and only if the underlying morphism of schemes is smooth (un-
ramified, resp. étale). See [22, IV.3.1.6].

6. A morphism of log schemes 𝑓 : X −→ Y is log smooth (resp. log étale) if the
action in Equation 1.5.2 is pseudo-torsorial (torsorial).

1.5.2 Chart criterion

In this section we recall K. Kato’s chart criterion (also called toroidal criterion)
for log smooth (resp. log étale) morphisms and illustrate that to show that our
prototype example of semistable reduction is log smooth.

Theorem 1.5.8 (Chart criterion). Let 𝑓 : X −→ Y be a morphism of log schemes
and let Y −→ 𝔸1

𝑃
be a chart of Y. Then the following are equivalent:

1. 𝑓 is log smooth (resp. log étale).

2. Étale locally there exists a chart \ : 𝑃 −→ 𝑄 for 𝑓 with the following proper-
ties:

(a) The morphism \ : 𝑃 −→ 𝑄 is injective and the torsion part of coker(\)gp

has order invertible in O𝑋 (resp. is of finite order in O𝑋 ).

(b) The morphism 𝑏\ in the following diagram is log étale and strict (In
other words, 𝑏\ : 𝑋 −→ 𝑌 ×𝔸1

𝑄
𝔸1
𝑃

is étale in the classical sense).

X

Y\ 𝔸1
𝑃

Y 𝔸1
𝑄

𝑐𝑃

𝑓

𝑏\

𝑏

𝑓\ 𝔸1
\

𝑐𝑄
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Moreover, if either of the two conditions hold, then for every 𝑥 in the local
neighbourhood, the chart 𝑏 is exact at 𝑥. If 𝑓 is log étale, the chart can be cho-
sen to be neat at 𝑥. If 𝑓 is log smooth and the order of the torsion subgroup of
Mgp

𝑋/𝑌,𝑥 is invertible in 𝑘(𝑥), the chart can be chosen to be neat at 𝑥, provided
𝑏\ is allowed to be log smooth (but not necessarily étale).

Proof. See [22, IV.3.1.13 and IV.3.3.1]. ■

Example 1.5.9 (Semistable reduction). Let 𝑋 −→ 𝑆 be a semistable reduction
model with divisorial log structures on the base and the total space as introduced
earlier, with a factorisation

𝑋 −→
ét

Spec 𝐴[𝑥1, ...., 𝑥𝑛] (𝑥1 · · · 𝑥𝑑 − 𝜋) −→ 𝑆; 𝑑 ≤ 𝑛

Thus, we have local charts

ℕ −→ O𝑆; 1 ↦−→ 𝜋

ℕ𝑑 −→ O𝑋 ; (𝑛1, . . . , 𝑛𝑑) ↦−→
𝑑∏︂
𝑖=1

𝑥𝑖

Δ : ℕ −→ ℕ𝑑; 1 ↦−→ (1, . . . , 1)

X

S\ 𝔸1
ℕ𝑑

S 𝔸1
ℕ

𝑐
ℕ𝑑

𝑓

𝑏\

𝑏

𝑓\ 𝔸1
Δ

𝑐ℕ

Clearly, Δ : ℕ −→ ℕ𝑑 is injective and coker(Δgp)tor = 0 and thus has an invertible
order. Moreover, locally 𝑏\ = 𝐼𝑑, hence, by Theorem 1.5.8 the semistable model
above is log étale.

1.5.3 Log flatness

Definition 1.5.10. A morphism of log schemes 𝑓 : X −→ Y is log flat if fppf
locally on 𝑋 and 𝑌 , there exists a chart \ : 𝑃 −→ 𝑄 for 𝑓 with \ injective such
that the morphism 𝑏\ : 𝑋 −→ 𝑌 ×𝔸1

𝑄
𝔸1
𝑃

is a flat morphism of schemes.

X

Y\ 𝔸1
𝑃

Y 𝔸1
𝑄

𝑐𝑃

𝑓

𝑏\

𝑏

𝑓\ 𝔸1
\

𝑐𝑄
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Remark 1.5.11. 1. Log smooth morphisms are log flat. This follows directly
from the chart criterion Theorem 1.5.8.

2. A strict morphism of log schemes is log flat if and only if the underlying
morphism of schemes is flat. See [22, IV.4.1.2].

3. Log flat morphisms are stable under composition and base change in the
category of log schemes.

Next, we state two results used in the subsequent chapters which states that for
a log smooth integral morphism of fine log schemes, the underlying morphism of
schemes is flat in the classical sense. Moreover, a log smooth integral morphism of
fine log schemes is saturated if and only if the fibers of the underlying morphisms
of schemes are reduced.

Theorem 1.5.12. Let 𝑓 : X −→ Y be a morphism of locally noetherian fine log
schemes, where 𝑓 is locally of finite presentation.

1. If 𝑓 is log flat and integral, then 𝑓 is also flat.

2. If 𝑓 is log smooth and integral, then the morphisms 𝑓 and 𝑓 are flat, and if
in addition X andY are saturated, then the fibers of 𝑓 are Cohen–Macaulay.

Proof. See [22, IV.3.5]. ■

Theorem 1.5.13. Let 𝑓 : X −→ Y be a log smooth and integral morphism of
fine saturated log schemes. Then 𝑓 is a saturated morphism if and only if 𝑓 has
reduced fibers.

Proof. See [22] IV.4.3.6.

■

1.6 An altenative viewpoint: DF log structures

As motivated earlier, log structures keep track of a divisor and its inclusion in the
ambient scheme. This viewpoint is made concrete by the following definition first
introduced in [18].
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Definition 1.6.1. A Deligne-Faltings (DF) log structure of rank 𝑟 on a scheme 𝑋 is
given by a pair (M𝑋 , 𝑙) whereM𝑋 is a fine log structure on 𝑋 and 𝑙 : ℕ𝑟 −→M𝑋

is a morphism which étale locally lifts to a chart forM𝑋 .

A morphism (M𝑋 , 𝑙) −→ (M′𝑋 , 𝑙
′) of DF log structures of rank 𝑟 on 𝑋 is given by

a pair of morphismsM𝑋 −→M′𝑋 and ℕ𝑟 −→ ℕ𝑟
′ such that the following diagram

commutes

ℕ𝑟 M𝑋

ℕ𝑟
′ M′

𝑋

Theorem 1.6.2. A DF log structure of rank 𝑟 on a scheme 𝑋 is equivalent to the
data of a finite sequence of line bundles {L𝑖}𝑟𝑖=1 and a finite sequence of sections
𝛾𝑖 : L𝑖 −→ O𝑋 , ∀1 ≤ 𝑖 ≤ 𝑟.

Sketch proof. Let 𝜋 : M𝑋 −→ M𝑋 be the canonical map. Since, locally there
exists a lifting of 𝑙 : ℕ𝑟 −→ M𝑋 to a chart 𝑙 : ℕ𝑟 −→ M𝑋 , then 𝜋−1(𝑙(𝜖𝑖)) is a
O∗
𝑋

torsor, for every generator 𝜖𝑖 of ℕ𝑟. Hence, 𝜋−1(𝑙(𝜖𝑖)) defines a line bundle L𝑖
with sections given by 𝜋−1(𝑙(𝜖𝑖)) ↩→M𝑋 −→ O𝑋 .

Conversely, consider a sheaf F whose sections on a connected open set𝑈 consists
of pairs (𝑎, 𝐼), where 𝐼 := (𝐼1, . . . , 𝐼𝑛) ∈ ℕ𝑛 and 𝑎 is a local generator ofL𝐼 := L𝐼11 ⊗
· · · ⊗ L𝐼𝑛𝑛 . The sections {𝛾}𝑖 define a morphism 𝛾𝐼 := 𝛾𝐼1 ⊗ · · · ⊗ 𝛾𝐼𝑛 : L𝐼 −→ O𝑋 .
Let

𝛾 : F −→ O𝑋

be defined as
(𝑎, 𝐼) ↦−→ 𝛾𝐼 (𝑎)

Then defineM𝑋 to be the log structure associated to the morphism above. More-
over, we have a natural homomorphism F −→ ℕ𝑟 mapping (𝑎, 𝐼) ↦−→ 𝐼. Con-
versely, on a common trivialising neighbourhood of the line bundles L𝑖, we have
a morphism ℕ𝑟 −→ F defined by 𝐼 ↦−→ (𝑎𝐼11 . . . 𝑎

𝐼𝑛
𝑛 , 𝐼) where 𝑎𝑖 ∈ L𝐼𝑖𝑖 is a local

generator in a common trivialising neighborhood of all the line bundles for every
𝑖. Thus, we have a morphism ℕ𝑟 −→M𝑋 which one verifies lifts to a local chart.
See [22, II.1.7.3] for more details.

■
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Remark 1.6.3. If 𝑓 : 𝑋 −→ 𝑌 is a morphism of schemes, then a DF log structure
on 𝑌 pulls back naturally to a DF log structure on 𝑋 via 𝑓 .

Example 1.6.4. Let 𝐷 be an effective Cartier divisor on a scheme 𝑋 equipped
with the divisorial log structureM𝐷

𝑋
as in example 2 of Example 1.1.5. Then the

inclusion O𝑋 (−𝐷) ↩→ O𝑋 defines a DF log structure on 𝑋 .



CHAPTER 2

Log stacks and moduli space of log curves

In this chapter, we use logarithmic structures to understand moduli problems, in
particular the moduli stack of stable curves. Following Kato’s philosophy, loga-
rithmic structures serve as natural tools to compactify moduli spaces since they
already include degenerate objects. After defining logarithmic (stable) curves in
the first section, we proceed to define the various notions of logarithmic stacks. An
important notion to obtain a full fledged logarithmic moduli problem, in particular
studying algebraicity of the moduli stack, is defining ‘minimal logarithmic objects’
in the moduli space of interest. In fact, the minimal logarithmic objects capture
the geometry of all objects parameterized by the moduli problem. Using the general
theory of minimal logarithmic objects as in [13], we give a concrete construction of
minimal logarithmic stable curves, following [17] in the last section.

2.1 Log curves: Definition and examples

Definition 2.1.1. A log curve over a fine saturated log schemeY is a log-smooth,
integral morphism of fs log schemes 𝑓 : X −→ Y such that the underlying mor-
phism of schemes 𝑓 is a proper family of curves with the geometric fibers con-
nected and reduced.

Remark 2.1.2. 1. The first simple example of a log curve is given by a smooth
proper family of curves 𝑓 : 𝑋 −→ 𝑌 such that all the geometric fibers are
connected and reduced, endowed with the trivial log structures.

2. The assumption of log smoothness and integrality in Definition 2.1.1 ensures
that the underlying morphism of schemes is flat (see [22, IV.4.3.5)].

45
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3. The assumption of log smoothness and reduced fibers in Definition 2.1.1 is
equivalent to the fact that the morphism of log schemes 𝑓 : X −→ Y is
saturated (see [22, IV.4.3.6]).

Counterexample: Consider a morphism of affine log schemes over 𝑘

𝔸1
𝑃

𝑓−→ 𝔸1
ℕ

where 𝑃 is the monoid generated by 𝑎, 𝑏, 𝑐 satisfying the relation 2𝑎 + 𝑏 = 𝑐
and 𝑓 is induced by the morphism

ℕ −→ 𝑃

1 ↦−→ 𝑐

Then the morphism of 𝑘-algebras

𝑘[𝑥, 𝑦, 𝑧] −→ 𝑘[𝑃]

𝑥 ↦−→ 𝑒𝑎

𝑦 ↦−→ 𝑒𝑏

𝑧 ↦−→ 𝑒𝑐

where 𝑒 : 𝑃 −→ 𝑘[𝑃] is the canonical morphism from the monoid 𝑃 to its
associated monoidal 𝑘-algebra, gives the following underlying morphism of
schemes

𝔸1
𝑃 ≅ 𝑆𝑝𝑒𝑐 𝑘[𝑥, 𝑦, 𝑧]/(𝑥

2𝑦 − 𝑧) −→ Spec 𝑘[𝑧]

which has a reduced fiber Spec 𝑘[𝑥, 𝑦]/(𝑥2𝑦) over the point 𝑧 = 0. This
happens since the morphism of monoids ℕ −→ 𝑃 given by 1 ↦−→ 𝑐 is not
saturated. Indeed the pushout 𝑃 ⊕ℕ ℕ along the morphism ℕ −→ ℕ given
by 𝑛 ↦−→ 2𝑛 is generated by 𝑎, 𝑏, 𝑐′ satisfying the relation 2𝑎 + 𝑏 = 2𝑐′ in ℕ

and it is not saturated (see [22, I.4.8.10] for equivalent characterisations of
saturated morphism of monoids).
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4. The assumption of saturation in Definition 2.1.1 ensures that we have at
worst nodal singularities in the underlying morphism of schemes.

Counterexample: Consider the affine log scheme 𝔸1
𝑃

over a field 𝑘 with the
trivial log structure, where 𝑃 is the monoid generated by 𝑎, 𝑏 satisfying the
relation 2𝑎 = 3𝑏. Note that 𝑃 is not saturated. The morphism of 𝑘-algebras

𝑘[𝑥, 𝑦] −→ 𝑘[𝑃]

𝑥 ↦−→ 𝑒𝑎

𝑦 ↦−→ 𝑒𝑏

where 𝑒 : 𝑃 −→ 𝑘[𝑃] is the canonical morphism from the monoid 𝑃 to its
associated monoidal 𝑘-algebra, gives the following underlying morphism of
schemes

𝔸1
𝑃 ≅ 𝑆𝑝𝑒𝑐 𝑘[𝑥, 𝑦]/(𝑥

2 − 𝑦3) −→ Spec 𝑘

which has cuspidal singularities.

Thus, the definition of log curve itself gives a good hold on the singularities
of the underlying morphism of schemes.

5. Let 𝐴 be a henselian local ring with uniformiser 𝜋. Endow 𝑌 := Spec 𝐴 with
a log structureM𝑌 determined by the chart ℕ −→ 𝐴 given by 1 ↦−→ 𝜋. En-
dow the nodal curve 𝑋 := Spec 𝐴[𝑥, 𝑦]/(𝑥𝑦) with a chartℕ2 −→ 𝐴[𝑥, 𝑦]/(𝑥𝑦)
given by (𝑚, 𝑛) ↦−→ 𝑥𝑚𝑦𝑛, i.e. the log structureM𝐷

𝑋
associated to the normal

crosing divisor 𝐷 := {𝑥𝑦 = 0}. Then the diagonal morphism Δ : ℕ −→ ℕ2

gives a chart for the morphism of log schemes 𝑓 : (𝑋,M𝑋 ) −→ (𝑌,M𝑌 ).
Hence, 𝑓 is a log curve since Δ is an integral, saturated morphism of fs log
schemes and it is log smooth by the chart criterion (see [22, IV.3.1.18 and
IV.3.1.19] for the more general example of a morphism arising from a semi-
stable reduction).

This example serves as a prototype for many of the constructions below.

In view of Kato’s philosophy that logarithmic objects contain degenerate objects,
we will prove the following structure theorem of log curves in Theorem 2.3.1.
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Theorem 2.1.3. Let 𝑘 be a separably closed field and consider Y = 𝑆𝑝𝑒𝑐 𝑘 with
the canonical log structure. Let 𝑓 : X −→ Y be a log curve such that 𝑟1, . . . , 𝑟𝑙 are
the nodes of X, then there exist smooth points 𝑠1, . . . , 𝑠𝑛 of X such that:

M𝑋/𝑌 ≅ ℤ𝑟1 ⊕ · · · ⊕ ℤ𝑟𝑙 ⊕ ℕ𝑠1 ⊕ · · · ⊕ ℕ𝑠𝑛

where ℤ𝑟𝑖 and ℕ𝑠𝑖 are the skyscraper sheaves of monoids supported on the nodal
points and the smooth points, respectively.

Remark 2.1.4. Thus, the smooth points 𝑠1, . . . , 𝑠𝑛 in the theorem above can be
thought of as the 𝑛 disjoint sections (or marked points) in the classical case of
(pre)-stable curves.

In the classical set up, stable curves are characterized among pre-stable curves
by the absence of infinitesimal deformations. Using the above Theorem 2.1.3, we
can define log stable curves of type (g,n) as follows:

Definition 2.1.5. A log curve 𝑓 : X −→ Y is called a stable log curve of type
(𝑔, 𝑛) if for any geometric point 𝑡 ofY and a characterisation of the characteristic
sheaves of monoids as in the theorem:

M𝑋/Spec 𝑘(𝑡) ≅ ℤ𝑟1 ⊕ · · · ⊕ ℤ𝑟𝑙(𝑡) ⊕ ℕ𝑠1 ⊕ · · · ⊕ ℕ𝑠𝑛(𝑡)

we have

1. 𝑛(𝑡) = 𝑛 for every geometric point 𝑡 ∈ Y,

2. the underlying family of curves has genus 𝑔,

3. The stability condition is captured by the vanishing of the global sections of
the tangent bundle of all the geometric fibers, i.e:

𝐻0(X
𝑡
, 𝑇X

𝑡
) = 0

for every geometric point 𝑡 in the base scheme.

Remark 2.1.6. In the section on log curves and its characterisations, we will in-
deed see a proof of the fact that the underlying scheme of a log stable curve of
type (𝑔, 𝑛) is indeed an 𝑛−pointed stable curve of genus 𝑔 in the classical sense.
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Thus, in view of the above remark, we can define the stack of log stable curves of
type (𝑔, 𝑛) with the forgetful morphism mapping to the base fine saturated log
scheme:

LM 𝑔,𝑛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét

Precisely, we have

𝑂𝑏 𝑗(LM 𝑔,𝑛) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X

Y

stable log curves of type (𝑔, 𝑛)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
𝐴𝑟𝑟(LM 𝑔,𝑛) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X′ X

Y′ Y

𝑓 ′

𝜋′ 𝜋

𝑓

cartesian diagram of stable log curves of type (𝑔, 𝑛)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Remark 2.1.7. 1. The fibered product above is considered in the category of fs

log schemes. Since by assumption the log curves X −→ Y are integral and
saturated, the fibered product is indeed isomorphic to the one considered in
the category of log schemes. Hence, in what follows, a commutative diagram
of log curves is cartesian if and only if the underlying diagram of schemes
is cartesian and the diagram of sheaves of monoids is co-cartesian (See [22,
III.2.1] for more about fibered products in LogSch𝑓 𝑠).

2. The standard pull back properties of fs log schemes, integral, saturated, log
smooth morphisms, see Remark 2.1.6 and Corollary 2.3.3, imply that log
stable curves of type (𝑔, 𝑛) are stable under pull-back.

3. The sections of the underlying morphisms of log stable curves are automat-
ically compatible. This follows from the last assertion in Corollary 2.3.3.

4. To conclude that LM 𝑔,𝑛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét is a stack (see Definition A.0.1 for

the definition of a stack), we assume étale descent in the category of fine
saturated sheaves of monoids.

Moreover, we have the classical Deligne–Mumford–Knudsen moduli stack

M 𝑔,𝑛 −→ (𝑆𝑐ℎ)ét
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of stable curves. Thus, our next major goal would be the following:

Goal 2.1.8. Compare the stacks M 𝑔,𝑛 −→ (𝑆𝑐ℎ)ét and LM 𝑔,𝑛 −→
LogSch𝑓 𝑠

𝑠𝑡,ét −→ (𝑆𝑐ℎ)ét, where the latter arrow is the forgetful functor, forgetting
the log structure on the fs log schemes.

To this end, we equip the stackM 𝑔,𝑛 −→ (𝑆𝑐ℎ)ét with a log structure as defined
in the next section and consider what nice log structures on the moduli stack of
pointed stable curves help us compare it with the logarithmic stack.

As we will see below, this is equivalent to answering following the question: what
log structures can we equip a classical pointed stable curve with so that the geomet-
ric properties of every stable log curve can be read off from these special objects?

2.2 Stacks equipped with a log structure

Definition 2.2.1 (Log stacks). A stack (resp. algebraic space) 𝑝 : 𝔛 −→ (𝑆𝑐ℎ)ét is
said to be equipped with a log structure if there exists a morphism of 2-categories
M𝔛 : 𝔛 −→ LogSch𝑓 𝑠𝑠𝑡, 𝑒𝑡 such thatM𝔛 = 𝑝, i.e. such that the following diagram
commutes:

𝔛 LogSch𝑓 𝑠
𝑠𝑡,ét

(𝑆𝑐ℎ)ét

M𝔛

𝑝 (2.2.1)

where the vertical morphism is the forgetful functor. Stacks (resp. algebraic
spaces) equipped with a log structure are also called log stacks.

Moreover, if the stack 𝑝 : 𝔛 −→ (𝑆𝑐ℎ)ét is algebraic (resp. DM), we call the log
stack (𝔛,M𝔛) a log algebraic (resp. DM) stack. (See Definition A.1.3, Definition
A.1.6 and Definition A.1.7 for the definitions of an algebraic space, a DM stack
and an algebraic stack respectively.

Remark 2.2.2. 1. The morphism LogSch𝑓 𝑠
𝑠𝑡,ét −→ (𝑆𝑐ℎ)ét is a CFG. The distin-

tion between the fibered categoriesM𝑋 : 𝔛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét and 𝑝 : 𝔛 −→



Stacks equipped with a log structure 51

(𝑆𝑐ℎ)ét is that morphisms in the former are required to be cartesian over
the category of schemes, while in the latter they are only required to be
cartesian over the category of logarithmic schemes.

2. The definition of a log stack is compatible with the definition of log structure
on a scheme when the stack represents an honest scheme.

Indeed, let us suppose we have a commutative diagram with 𝑋 a scheme

ℎ𝑋 LogSch𝑓 𝑠
𝑠𝑡,ét

(𝑆𝑐ℎ)ét

M𝑋

ThenM𝑋 (𝑖𝑑𝑋 ) defines a log structure on 𝑋 .

Conversely, suppose we have a log scheme X = (𝑋,M𝑋 ), then a commuta-
tive diagram

ℎ𝑋 LogSch𝑓 𝑠
𝑠𝑡,ét

(𝑆𝑐ℎ)ét

M𝑋

can be defined by sending 𝑓 : 𝑌 −→ 𝑋 in ℎ𝑋 (𝑌) to the pullback of the log
structureM𝑋 .

3. Analogously to the definition of a log structure on a scheme in the fppf (resp.
Zariski) topology, we can also define a log structure on an algebraic (DM)
stack in the fppf (resp. Zariski) topology.

Morphisms of log stacks

A 1-morphism of log stacks ( 𝑓 , 𝑓 ′) : (𝔛,M𝔛) −→ (𝔜,M𝔜) is given by a morphism
of stacks 𝑓 : 𝔛 −→ 𝔜 and a natural transformation of functors 𝑓 ′ :M𝔜 −→ 𝑓 ∗M𝔛

where 𝑓 ∗ = M𝔜 ◦ 𝑓 such that the underlying morphism of schemes satisfies
𝑓 ′(𝑥) = 𝐼𝑑𝑥, ∀ 𝑥 ∈ 𝑂𝑏 𝑗(𝔛). This definition of morphism of log stacks is com-
patible with the definition of morphism of log schemes. The 2-morphisms are
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defined in the usual manner. A 2-morphism ( 𝑓 , 𝑓 ′) −→ (𝑔, 𝑔′) is given by a natu-
ral transformation

[ : 𝑓 −→ 𝑔

with [(𝑥) = 𝐼𝑑𝑥, ∀ 𝑥 ∈ 𝑂𝑏 𝑗(𝔛) such that the following diagram commutes:

M𝑋 M𝑌 ◦ 𝑔

M𝑌 ◦ 𝑓

𝑓 ′

𝑔′
M𝑌 (𝑥)

Thus, we can consider the following 2-categories equipped with a log structure
defined over (𝑆𝑐ℎ)ét:

LOG 2-Cat/(𝑆𝑐ℎ)ét ⊂ LOG CFG/(𝑆𝑐ℎ)ét ⊂ LOG stack/(𝑆𝑐ℎ)ét

Analogously to the definition of strict morphisms of log schemes, we can define
strict morphisms of log stacks. Precisely,

Definition 2.2.3. A 1-morphism of log stacks (resp. log algebraic spaces) ( 𝑓 , 𝑓 ′) :
(𝔛,M𝔛) −→ (𝔜,M𝔜) is is said to be strict if the natural transformation of func-
tors

𝑓 ′ :M𝔜 −→ 𝑓 ∗M𝔛

is an isomorphism, where 𝑓 ∗ = M𝔜 ◦ 𝑓 such that the underlying morphism of
schemes satisfies 𝑓 ′(𝑥) = 𝐼𝑑𝑥, ∀ 𝑥 ∈ 𝑂𝑏 𝑗(𝔛).

Another definition of log (algebraic/ DM) stack

Definition 2.2.4. Let 𝔛 −→ (𝑆𝑐ℎ)ét be an algebraic (resp. DM) stack. A log
structure M𝔛 on 𝔛 is given by a morphism of sheaves of monoids on the fppf
(resp. étale) site of the stack 𝛼 : M𝔛 −→ O𝔛 such that 𝛼 preserves units. (The
structure sheaf O𝔛 is defined on the stack using atlasses in the standard manner.)

A 1-morphism of log stacks ( 𝑓 , 𝑓 ′) : (𝔛,M𝔛) −→ (𝔜,M𝔜) is given by a morphism
of stacks 𝑓 : 𝔛 −→ 𝔜 and a natural transformation of functors 𝑓 ′ :M𝔜 −→ 𝑓 ∗M𝔛

where 𝑓 ∗ =M𝔜 ◦ 𝑓 . The 2- morphisms are defined in the usual manner.

Similarly, we can define a log structure on an algebraic space using this alterna-
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tive Definition 2.2.4.
Remark 2.2.5. The category of fine log structures on an algebraic stack (resp.
DM) 𝔛 as in Definition 2.2.4 is equivalent to the datum of smooth (étale) charts
𝑐𝑖 : 𝑈𝑖 −→ 𝔛 together with pairs (M𝑖,𝜎

𝑗

𝑖
)𝑖, 𝑗, whereM𝑖 is a fs log structure on the

schemes𝑈𝑖, the 𝜎 𝑗

𝑖
are isomorphisms

𝜎 𝑗

𝑖
: 𝑝𝑟∗𝑖 𝑗M𝑖 ≅ 𝑝𝑟

∗
𝑗𝑖M 𝑗

where 𝑝𝑟𝑖 𝑗 : 𝑈𝑖 ×𝔛 𝑈 𝑗 −→ 𝑈 𝑗 are the canonical projections such that the pairs
(M𝑖,𝜎

𝑗

𝑖
)𝑖, 𝑗 also agree on triple intersections (i.e. they satisfy a co-cycle condition).

We have the following natural functors:

{(M𝑖,𝜎
𝑗

𝑖
)𝑖, 𝑗}

{fs log str. on 𝔛 as in Definition 2.2.4}

{(𝔛,M𝔛) | as in Definition 2.2.1}

𝐺

𝐹

𝐻

The fact that the arrow 𝐹 defines an equivalence of categories follows from [24,
Proposition 5.6]. The arrow 𝐺 defines an equivalence of categories in view of the
2-Yoneda’s lemma. Thus, this rough sketch argues the equivalence of Definition
2.2.1 and Definition 2.2.4 of log algebraic (resp. DM) stacks.

Since we are interested in working with fine saturated sheaves of monoids, we
define the following notion:

Definition 2.2.6. A log structureM𝔛 on an algebraic stack 𝔛 −→ (𝑆𝑐ℎ)ét is said
to be fine saturated (fs) if for each smooth atlas𝑈 −→ 𝔛, the pullback of the sheaf
of monoidsM𝔛 |𝑈 is a fine saturated sheaf of monoids on the scheme𝑈.

We now define log étale (resp. log unramified, log smooth) morphism of log al-
gebraic stacks, analogously to the corresponding definition for morphisms of log
schemes (see Definition 1.5.6).

Definition 2.2.7 (Log smooth, log unramified and log étale morphisms of log
stacks). A morphism of log algebraic stacks 𝑓 : (𝔛,M𝔛) −→ (𝔜,M𝔜) is said to
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be log smooth (resp. log unramified, resp. log étale) if for every 𝑛-th order log
thickening 𝑖 : S −→ T (see Definition 1.5.4), there exists at least one (resp. at
most one, resp. a unique) local lifting for the following diagram:

S (𝔛,M𝔛)

T (𝔜,M𝔜)

𝑔

𝑖 𝑓

ℎ

�̃�

Analogously, we can define log étale (resp. log unramified, log smooth) morphisms
of log algebraic spaces.

Recall that according to Goal 2.1.8, we want to equipM 𝑔,𝑛 with a nice log struc-
ture and compare its geometry with that of the stack LM 𝑔,𝑛 −→ LogSch𝑓 𝑠

𝑠𝑡,ét of
log stable curves of type (𝑔, 𝑛) over the category of fs log schemes in the strict étale
topology. In order to compare these two stacks, we define the following morphism
between 2-categories:

Φ𝐶𝑎𝑡 : LOG 2-Cat/(𝑆𝑐ℎ)ét −→ 2 − Cat/LogSch𝑓 𝑠
𝑠𝑡,ét

(𝔛,M𝔛) ↦−→ (𝔛log −→ LogSch𝑓 𝑠
𝑠𝑡,ét)

where for each S = (𝑆,M𝑆) ∈ LogSch𝑓 𝑠
𝑠𝑡,ét, the objects in the fiber category 𝔛

log
S

are given by pairs

{(𝑥, 𝑓 ) | 𝑥 ∈ 𝑂𝑏 𝑗(𝔛𝑆), 𝑓 : S −→M𝔛(𝑥) is a strict morphism of log schemes, 𝑓 = 𝐼𝑑S}

In other words, the log structureM𝑆 on 𝑆 and the log structure induced on 𝑆 by
the composition 𝑆 𝑥−→ 𝔛

M𝔛−−−→ LogSch𝑓 𝑠
𝑠𝑡,ét are isomorphic. A morphism between

the objects of 𝔛log

((𝑥, 𝑓 ) | 𝑓 : S −→M𝔛(𝑥) ) −→ ((𝑦, 𝑔) | 𝑔 : T −→M𝔛(𝑦))

is given by 𝑎 : 𝑥 −→ 𝑦 and 𝑏 : S −→ T such that the following diagram commutes:
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S M𝔛(𝑥)

T M𝔛(𝑦)

𝑓

𝑏 M(𝑎)
𝑔

Remark 2.2.8. It is not hard to verify that:

1. The association in Φ𝐶𝑎𝑡 is functorial.

2. Φ𝐶𝑎𝑡 maps to 2-morphisms in LOG 2-Cat/(𝑆𝑐ℎ)ét to 2-morphisms in 2 −
Cat/LogSch𝑓 𝑠

𝑠𝑡,ét.

3. Φ𝐶𝑎𝑡 restricts to morphisms of 2-categories

ΦCFG : LOG CFG/(𝑆𝑐ℎ)ét −→ CFG/LogSch𝑓 𝑠
𝑠𝑡,ét

Φ𝑆𝑡𝑎𝑐𝑘 : LOG Stack/(𝑆𝑐ℎ)ét −→ Stack/LogSch𝑓 𝑠
𝑠𝑡,ét

In other words, if (𝔛,M𝔛) is a stack over (𝑆𝑐ℎ)ét in the étale topology, then
𝔛log is a stack over LogSch𝑓 𝑠

𝑠𝑡,ét in the strict étale topology.

4. There is nothing sacred about étale or smooth topology here, the notations
are used till now just in view of the examples we have in mind. But one
needs to be careful while in the fppf topology where we need to use Olsson’s
results that there is a bijective correspondence of log structures on a scheme
in either étale, smooth or fppf topology.

We are interested in studying our moduli problems in the logarithmic world,
i.e. we are interested in the category Stack/LogSch𝑓 𝑠

𝑠𝑡,ét of stacks over the cat-
egory of fs log schemes in the strict étale topology. A priori it is not clear how
to define the geometric phenomena of algebraicity and so on on stacks over
LogSch𝑓 𝑠

𝑠𝑡,ét. One way out is to resort to geometric properties of objects in the
category LOG Stack/(𝑆𝑐ℎ)ét. Thus, this boils down to answering the following
question.

Question 2.2.9. Under what conditions is a stack 𝔛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét obtained

from a stack 𝔜 −→ (𝑆𝑐ℎ)ét equipped with a log structure? In other words, the
question boils down to studying the essential image of the morphism ΦCFG.
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Suppose 𝔛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét is a stack, we can canonically obtain a stack 𝔛′ −→

(𝑆𝑥ℎ) by composing 𝔛 with the forgetful functor LogSch𝑓 𝑠
𝑠𝑡,ét → (𝑆𝑐ℎ)ét. More

explicitly, the objects of the fiber category 𝔛′
𝑆
, 𝑆 ∈ (𝑆𝑐ℎ)ét are given by

{(M𝑆, 𝑎) | M𝑆 ∈ 𝐿𝑜𝑔𝑆, 𝑎 ∈ 𝑂𝑏 𝑗(𝔛𝑆)}

In other words, we have a functorial association

ΨCFG : CFG/LogSch𝑓 𝑠
𝑠𝑡,ét −→ LOG CFG/(𝑆𝑐ℎ)ét

𝔛 −→ 𝔛′

Thus, following Gillam’s idea, one defines a full substack 𝔛min of 𝔛 consisting of
minimal objects such that equipping 𝔛min with the canonical log structure ob-
tained from ΨCFG gives an answer to Question 2.2.9 above. Thus, studying the
essential image of ΦCFG is essentially the same as defining and studying the min-
imal objects in the stack 𝔛 −→ LogSch𝑓 𝑠

𝑠𝑡,ét.

As we will see in the following sections, defining the minimal objects of the stack
LM 𝑔,𝑛 gives a comparison with the classical stackM 𝑔,𝑛, as we needed in Goal
2.1.8.

2.2.1 Minimal objects in a stack over log schemes

As mentioned in the previous section, we want to study the essential image of
ΦCFG, which is encoded in the following result of Gillam:

Definition 2.2.10. An object 𝑧 in the CFG 𝐹 : 𝔛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét is said to be

minimal if for any object 𝑥, 𝑦 in 𝔛, the following diagram in 𝔛

𝑥

𝑦

𝑧

∃ ! 𝑎

𝑏

𝑐

with 𝐹 (𝑏) = 𝐹 (𝑐) = 𝐼𝑑 has a unique completion/retract 𝑎 : 𝑥 −→ 𝑧

Theorem 2.2.11 (Gillam’s main theorem). A CFG 𝐹 : 𝔛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét lies in

the essential image of ΦCFG if and only if it satisfies the following conditions:
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1. 𝔛 has enough minimal objects, i.e. for every 𝑤 ∈ 𝔛 there exists a minimal
object 𝑧 ∈ 𝔛 and a morphism 𝑖 : 𝑤 −→ 𝑧 such that 𝐹 (𝑖) = 𝐼𝑑.

2. For any morphism 𝑖 : 𝑤 −→ 𝑧 in 𝔛 with 𝑧 a minimal object, then 𝐹 (𝑖) is a
strict morphism of fs log schemes if and only if 𝑤 is a minimal object.

If the above two conditions are satisfied, then we have an isomorphism of
stacks over log schemes

(𝔛min,′)log ≅ 𝔛

where 𝔛min −→ LogSch𝑓 𝑠
𝑠𝑡,ét is the full sub-category of 𝔛 −→ LogSch𝑓 𝑠

𝑠𝑡,ét
consisting of the minimal objects and 𝔛min,′ −→ (𝑆𝑐ℎ)ét is the CFG obtained
by forgetting the log structure on the base.

In other words, the minimal objects of 𝔛 equipped with the log structure ob-
tained from the canonical forgetful functor gives a comparison with the stack
𝔛 −→ LogSch𝑓 𝑠

𝑠𝑡,ét.

Remark 2.2.12. 1. Condition (2) in the above theorem guarantees that if 𝔛 −→
LogSch𝑓 𝑠

𝑠𝑡,ét −→ (𝑆𝑐ℎ)ét is a groupoid fibration, then so is (𝔛min,′)log.
Similarly, if 𝐹 : 𝔛 −→ LogSch𝑓 𝑠

𝑠𝑡,ét is a stack, then 𝔛min ↩→ 𝔛 −→
LogSch𝑓 𝑠

𝑠𝑡,ét −→ (𝑆𝑐ℎ)ét is also a stack. In particular, LMmin
𝑔,𝑛 −→ (𝑆𝑐ℎ)ét

is a stack.

2. For the stack LM 𝑔,𝑛 , the statement (1) above says that every 𝑛−pointed
stable curve of genus 𝑔 in the classical sense is the underlying morphism of
schemes of a unique minimal stable log curve of type (𝑔, 𝑛). In other words,
the canonical morphism of stacks considered over (𝑆𝑐ℎ)ét forgetting the log
structures on the log curves

LMmin
𝑔,𝑛 −→M 𝑔,𝑛

is an isomorphism of stacks. Thus, Mlog
𝑔,𝑛 ≅ LM 𝑔,𝑛 is the comparison we

were seeking for and hence LM 𝑔,𝑛 is a log DM stack.

3. Thus, an important step in logarithmic moduli problems is the explicit con-
struction of the minimal objects.
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Before proving Theorem 2.2.11, we prove the following lemma which asserts that
minimality is an open condition for families of log objects obtained from a stack
with a log structure. Precisely,

Lemma 2.2.13. Let 𝔛min −→ LogSch𝑓 𝑠
𝑠𝑡,ét −→ (𝑆𝑐ℎ)ét be the full sub-stack of a

stack 𝐹 : 𝔛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét −→ (𝑆𝑐ℎ)ét consisting of the minimal objects. Further

assume that 𝔛 satisfies the conditions (1) and (2) in Theorem 2.2.11. Then 𝔛min

is an open sub-stack of 𝔛.

Proof. Consider a morphism 𝑓 : 𝑆 −→ 𝔛 with 𝑆 ∈ (𝑆𝑐ℎ)ét corresponding to an
object 𝑥𝑓 lying over 𝑆, i.e. 𝑥𝑓 ∈ 𝔛𝑆. We need to show that 𝔛min ×𝔛 𝑆 −→ 𝑆 is
an open immersion of schemes (in the étale topology). Equivalently, we need to
show that the locus {𝑠 ∈ 𝑆 | 𝑥𝑓𝑠 is minimal} is an open subscheme of 𝑆 (in the
étale topology); here 𝑥𝑓𝑠 is the pull back (chosen up to isomorphism) of 𝑥 via the
morphism {𝑠} ↩→ 𝑆 in the category fibered in groupoids 𝔛 −→ (𝑆𝑐ℎ)ét. Using
condition (1) of Theorem 2.2.11, there exists a unique minimal object 𝑧 ∈ 𝔛min

and a morphism 𝑖 : 𝑥𝑓 −→ 𝑤 such that 𝐹 (𝑖) = 𝐼𝑑. LetM𝑥𝑓 andM𝑤 be the log
structures associated with the schemes 𝐹 (𝑥𝑓 ) = 𝐹 (𝑤) = 𝑆 respectively via 𝐹.
Using condition (2) of Theorem 2.2.11 and the fact that 𝐹 : 𝔛 −→ LogSch𝑓 𝑠

𝑠𝑡,ét is
a category fibered in groupoids, we have {𝑠 ∈ 𝑆 | 𝑥𝑓𝑠 is minimal} = {𝑠 ∈ 𝑆 | 𝑥𝑓𝑠 ≅
𝑤𝑠} = {𝑠 ∈ 𝑆 | M𝑥𝑓 |𝑠 ≅M𝑤 |𝑠}.

Thus, if 𝑠 ∈ 𝑆 is a geometric point, then we need to show that the isomorphism
M𝑥𝑓 |𝑠 ≅ M𝑤 |𝑠 can be extended over an étale neighbourhood of 𝑠. Using [22,
III.1.2.7], in an étale neighbourhood 𝑆0

étale−−−→ 𝑆 of 𝑠, we can find neat charts, i.e.
𝑃 −→ M𝑥𝑓

𝑆0
and 𝑄 −→ M𝑤

𝑆0
are charts such that 𝑃 ≅ M𝑥𝑓 |𝑠 and 𝑄 ≅ M𝑤 |𝑠.

Hence, in the étale neighbourhood 𝑆0, we have the isomorphismM𝑥𝑓

𝑆0
≅ M𝑤

𝑆0
as

required.

■

2.2.2 Proof of Gillam’s minimality criterion

In this section, we give a sketch of the proof of Gillams’s Theorem 2.2.11. We shall
refer to [13, Section 2.5] for a detailed proof of the theorem.

Lemma 2.2.14. An object (𝑚, 𝑓 : X −→ M𝔛) of 𝔛log is minimal if and only
if 𝑓 is an isomorphism. It follows from this that the essential image of Φ𝐶𝐹𝐺 :
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LOG CFG/(𝑆𝑐ℎ)ét −→ CFG/LogSch𝑓 𝑠
𝑠𝑡,ét satisfies the hypothesis (1) − (2) in The-

orem 2.2.11.

Proof: Assume that the morphism 𝑓 : X −→ M𝔛 is an isomorphism. Suppose
we have a diagram as in Definition 2.2.10, we need to find a completion 𝑐 in the
diagram below,

(𝑚1, 𝑓 : X1 −→M𝔛)

(𝑚2, 𝑓 : X2 −→M𝔛)

(𝑚, 𝑓 : X −→M𝔛)

∃ ! 𝑐

Thus, by definition we have commutative diagrams:

X1 ≅M(𝑚)

X

X2 X1

M(𝑚1)

M(𝑚2) M(𝑚)

≅

M(𝑎) M(𝑏)

𝑚1

𝑚2

𝑚

∃ ! 𝑐

𝑎

𝑏

such that the underlying morphism of schemes is the identity. Consider the tower
of maps in the fibered categories:

𝑚1

𝑚2 𝑚

M(𝑚1)

M(𝑚2) M

M(𝑚1)

M(𝑚2) M

𝑎 𝑏

∃ !

M(𝑎)

′

M(𝑏)

∃ !

M(𝑎)
M(𝑏)
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Since X −→ (𝑆𝑐ℎ) is a CFG andM(𝑎) = 𝐼𝑑, the retraction maps are obtained
from the above diagram.

Conversely, let (𝑚, 𝑓 : X −→ M𝔛) be a minimal object. Now consider the mor-
phism (𝑚, 𝑖𝑑 : M(𝑚) −→ M(𝑚)) −→ (𝑚, 𝑓 : X −→ M𝔛). Since the object
(𝑚, 𝑖𝑑 :M(𝑚) −→ M(𝑚)) is minimal by definition, we are done.

Thus, the required direction of Gillam’s minimality result follows using the ele-
ment (𝑚, 𝑖𝑑 :M(𝑚) −→ M(𝑚)) as the minimal element above.

Now we show the other direction of the theorem, namely,

Lemma 2.2.15. If the stack 𝔛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét satisfies the conditions (1) − (2),

then it lies in the essential image of the functor Φ𝐶𝐹𝐺. In other words, it suffices to
prove that we have an isomorphism of stacks 𝔛min,log ≅ 𝔛

Proof: We first define a 1-morphism Ψ : 𝔛min,log −→ 𝔛 as stacks over LogSch𝑓 𝑠
𝑠𝑡,ét

by mapping (𝑥, 𝑓 : X to M𝔛) ↦−→ 𝑧𝑥, where 𝑧𝑥 is the unique element obtained
from the following diagram:

∃ ! 𝑧𝑥 𝔛 𝔛

𝑥 M(𝑥) M(𝑥)

such that 𝑓 = 𝐼𝑑

The action of morphisms (𝑥, 𝑓 : X −→ M(𝑥) −→ (𝑦, 𝑔 : Y −→ M(𝑦)) is the
unique morphism obtained from the following towers in fibered categories

𝑥 𝑦

𝑧𝑥 𝑧𝑦

M(𝑥) M(𝑦)

𝑋 𝑌

M(𝑥) M(𝑦)

𝑋 𝑌

M(𝑥) M(𝑦)

𝑋 𝑌

The 1-morphism 𝜙 : 𝔛 −→ 𝔛min,log in the other direction is defined as follows: For
any 𝑧 ∈ 𝔛, there exists a unique 𝑥𝑧 and a morphism 𝑓𝑧 : 𝑧 −→ 𝑥𝑧, Thus, we map
𝑧 to the object (𝑥𝑧,M( 𝑓𝑧)) : M(𝑧) −→ M(𝑥𝑧). It is easy to verify that that both
the morphisms are inverses. See [13, Section 2.5] for more details.
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2.2.3 An equivalent definition of logarithmic algebraic
stacks

In view of Theorem 2.2.11, we now give an equivalent definition of a logarithmic
algebraic stack which is more consistent with the classical definition of an alge-
braic stack (see Definition A.1.7).

In this section, a log algebraic space refers to an algebraic space equipped with a
log structure as defined in Definition 2.2.1.

Definition 2.2.16. Let 𝔛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét be a stack that satisfies conditions (1)

and (2) in Theorem 2.2.11. Then 𝔛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét is said to be a log algebraic

stack if it satisfies the following conditions:

1. The diagonal 𝔛 −→ 𝔛×LogSch𝑓 𝑠
𝑠𝑡,ét

𝔛 is representable by a log algebraic space,

i.e. for any morphismU −→ 𝔛×LogSch𝑓 𝑠𝑠𝑡
𝔛 withU ∈ LogSch𝑓 𝑠

𝑠𝑡,ét considered
as a stack equipped with a log structure (see Remark 2.2.2), the fibre product
U ×𝔛×𝔛 𝔛 in the category of stacks over LogSch𝑓 𝑠

𝑠𝑡,ét is representable by a
log algebraic space and the morphism U ×𝔛×𝔛 𝔛 −→ U in the cartesian
diagram

U ×𝔛×𝔛 𝔛 U

𝔛 𝔛 × 𝔛

is a strict morphism of log algebraic spaces (see Definition 2.2.3).

2. The stack 𝔛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét admits a smooth strict cover, i.e. there exists

U ∈ LogSch𝑓 𝑠
𝑠𝑡,ét and a morphismU −→ 𝔛 such that for allV ∈ LogSch𝑓 𝑠

𝑠𝑡,ét
and for all morphisms V −→ 𝔛, the fibre product U ×𝔛 V in the category
of stacks over LogSch𝑓 𝑠

𝑠𝑡,ét is representable by a log algebraic space and the
morphismU ×𝔛V −→ V in the cartesian diagram

U ×𝔛V V

U 𝔛
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is a smooth (see Definition 2.2.7), strict and surjective morphism of log al-
gebraic spaces.

Similarly, one can define𝔛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét to be a log DM stack by requiring

that it admits an étale strict coverU −→ 𝔛.

Remark 2.2.17. The equivalence of Definition 2.2.1 and Definition 2.2.16 of log
algebraic stacks follows from the construction of 𝔛log in Section 2.2 and Theorem
2.2.11.

Thus, in order to study a logarithmic moduli problem 𝔛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét, we iden-

tify the minimal objects in the category 𝔛 and work with either of the definitions
based on our convenience.
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2.3 Characterization of log curves

In this section we will present the local structure theorem for log curves following
[17] and [13].

Theorem 2.3.1 (Local structure of log curves). Let 𝑓 : X −→ Y be a log curve.
Let 𝑥 be a schematic point of 𝑋 and 𝑥 a geometric point corresponding to 𝑥. Let
𝑦 := 𝑓 (𝑥) ∈ 𝑌 a schematic point with 𝑦 a geometric point corresponding to 𝑦. Then,
M𝑋/𝑌,𝑥 is isomorphic to either 0, ℕ or ℤ. Thus, we have the following three cases:

Case 1: (Smooth points in the fiber) If M𝑋/𝑌,𝑥 ≅ 0, then 𝑓 is strict in an étale
neighbourhood of 𝑥 and 𝑓 is smooth near 𝑥.

Case 2: (Sections defining the marked points in the fiber) IfM𝑋/𝑌,𝑥 ≅ ℕ, then
there exists a unique 𝑝 ∈ M𝑋,𝑥 such that

( 𝑓 @
𝑥 , 𝑝) :M𝑌,𝑦 ⊕ ℕ ≅M𝑋,𝑥

is an isomorphism of fine saturated monoids, where 𝑓
@
𝑥 is the induced mor-

phism

𝑓
@
𝑥 :M𝑌,𝑦 −→M𝑋,𝑥

Thus, we have the following short exact sequence:

0 Mgp
𝑌,𝑦 Mgp

𝑋,𝑥 ℤ 0
𝑓

@,gp
𝑥

𝑝

Furthermore, there exists a lift 𝑝 ∈ M𝑈 (𝑈) of 𝑝 in an étale neighbourhood
𝑈

étale−−−→ 𝑋 of 𝑥 and an étale neighbourhood 𝑉 étale−−−→ 𝑌 of 𝑦 such that for the
morphism

( 𝑓 @, 𝑝) : 𝑓 −1M𝑉 ⊕ ℕ −→M𝑈

induces an isomorphism of the the morphism of associated log structures.
Moreover, the underlying morphism of schemes
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𝑈 −→ 𝑉 ×𝔸1

is an étale morphism determined by

O𝑉 [𝑡] −→ O𝑈

𝑡 ↦−→ 𝛼𝑈 (𝑝)

where 𝛼𝑈 : M𝑈 −→ O𝑈 is the log structure. In particular, 𝑓 is smooth
in an étale neighbourhood of 𝑥 and 𝑓 is strict away from the zero locus of
𝛼𝑈 (𝑝) ∈ O𝑈 (𝑈).

Furthermore, there exists a strict étale covering {Y𝑖 −→ Y}𝑖∈𝐼 such that for
each 𝑖 ∈ 𝐼, there exist sections 𝜎𝑖, 𝑗 : 𝑌𝑖 −→ 𝑋𝑖 := 𝑋 ×𝑌 𝑌𝑖 such that for each
𝑥 ∈ 𝑋𝑖 withM𝑋/𝑌,𝑥 ≅ ℕ, the log structure of an étale neighbourhood of 𝑥 ∈ 𝑋𝑖
is determined by the divisor defined by the sections 𝜎𝑖, 𝑗.

Thus, using the last claim, the points 𝑥 ∈ 𝑋 withM𝑋/𝑌,𝑥 ≅ ℕ can be though
of as ‘smooth marked points’.

Case 3: (Nodes in the fiber) If M𝑋/𝑌,𝑥 ≅ ℤ, then there is a unique morphism
𝑞𝑥 : ℕ −→ M𝑌,𝑦 (called the smoothing parameter of the node 𝑥) and a pair
(𝑝1, 𝑝2) ∈ M𝑋,𝑥 unique up to transposition such that the following diagram
is co-cartesian in the category of fine saturated monoids:

ℕ M𝑌,𝑦

ℕ2 M𝑋,𝑥

Δ

𝑞𝑥

𝑓
@
𝑥

(𝑝1,𝑝2)

(2.3.1)

The element 𝑞𝑥 (1) is irreducible in the monoidM𝑌,𝑦. Thus, we have a mor-
phism of sets

{Nodal points over 𝑦} −→M𝑌,𝑦 = Irr(M𝑌,𝑦)

𝑥 ↦−→ 𝑞𝑥 (1)
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Furthermore, there exist étale neighbourhoods𝑈 and𝑉 of 𝑥 and 𝑦 respectively
such that there exist lifts 𝑞 ∈ M𝑉 (𝑉) of 𝑞𝑥 (1) and (𝑝1, 𝑝2) ∈ (M𝑈 (𝑈))2

satisfying 𝑝1+𝑝2 = 𝑓 @𝑞 and such that the morphism of log structures induced
by

( 𝑓 @, 𝑝1, 𝑝2) : 𝑓 ∗M𝑉 ⊕ℕ ℕ2 −→M𝑈

is an isomorphism. Moreover, the underlying morphism of schemes

𝑈 −→ 𝑉 ×𝔸1 𝔸2 = SpecO𝑉 (𝑉) [𝑢, 𝑣]/(𝑢𝑣 −𝛼𝑉 (𝑞))

is an étale morphism determined by

O𝑉 (𝑉) [𝑢, 𝑣]/(𝑢𝑣 −𝛼𝑉 (𝑞)) −→ O𝑈 (𝑈)

𝑢 ↦−→ 𝛼𝑈 (𝑝1)

𝑣 ↦−→ 𝛼𝑈 (𝑝2)

where 𝛼𝑉 : M𝑉 −→ O𝑉 is the log structure. In particular, 𝑥 is a nodal
singularity in the fiber over 𝑦 and 𝑓 is smooth away from the common zero
locus of 𝛼𝑈 (𝑝1),𝛼𝑈 (𝑝2) ∈ O𝑈 (𝑈).

Thus, this case justifies the motivation that log smooth objects contain degen-
erations like semi-stable reduction.

Remark 2.3.2 (See [14]). IfM𝑋/𝑌,𝑥 ≅ ℤ, thenM𝑋,𝑥 ≅M𝑌,𝑦 ⊕ℕ ℕ2 can be consid-
ered as a submonoid ofM𝑌,𝑦 ⊕M𝑌,𝑦 via the morphism:

𝑖 :M𝑌,𝑦 ⊕ℕ ℕ2 −→M𝑌,𝑦 ⊕M𝑌,𝑦

[(𝑚, (𝑎, 𝑏))] ↦−→ (𝑚 + 𝑎 · 𝑞𝑥 (1), 𝑚 + 𝑏 · 𝑞𝑥 (1))

where 𝑞𝑥 is as above in Case 3 of Theorem 2.3.1. SinceM𝑌,𝑦 −→M𝑋,𝑥 is an inte-
gral morphism of integral monoids, the pushout above is defined by the relations

(𝑥1, 𝑥2) ∼ (𝑦1, 𝑦2)

if and only if there exists 𝑐, 𝑑 ∈ ℕ such that
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𝑥1 + 𝑑𝑞𝑥 (1) = 𝑦1 + 𝑐𝑞𝑥 (1)

𝑥2 + Δ(𝑑) = 𝑦2 + Δ(𝑐)

Thus, using the above relations 𝑖 is well defined. If 𝑖[(𝑚, (𝑎, 𝑏))] = 0, then
𝑚 + 𝑎.𝑞𝑥 (1) = 𝑚 + 𝑏.𝑞𝑥 (1) = 0. Since 𝑞𝑥 (1) ≠ 0, we have 𝑎 = 𝑏. Moreover,
[(𝑚, (𝑎, 𝑎))] = [(𝑚 + 𝑎𝑞𝑥 (1), (0, 0))] = [(0M𝑌,𝑦

, (0, 0)] using the above relations.
Hence, 𝑖 is injective.

Moreover, the image of 𝑖 can be explicitly described as

M𝑋,𝑥 ≅M𝑌,𝑦 ⊕ℕ ℕ2 ≅ {(𝑚1, 𝑚2) ∈ M𝑌,𝑦 ⊕M𝑌,𝑦 | 𝑚1 − 𝑚2 ∈ ℤ𝑞𝑥 (1) inMgp
𝑌,𝑦}

An important consequence of the local structure theorem of log curves is the fol-
lowing corollary, which justifies that log curves behave nicely under pull back (see
Remark 2.1.7).

Corollary 2.3.3. Let 𝑓 : X −→ Y and 𝑓 ′ : X′ −→ Y′ be log curves. Then a
commutative diagram of log curves

X X′

Y Y′

ℎ

𝑓 𝑓 ′

𝑔

is cartesian if the underlying diagram of underlying schemes is cartesian. In
particular, we have an isomorphism of fine saturated sheaves of monoids

M𝑋/𝑌,𝑥 ≅M𝑋 ′/𝑌 ′,𝑥′ for each 𝑥 ∈ 𝑋, 𝑥′ ∈ 𝑋 ′ such that ℎ(𝑥) = 𝑥′

The last assertion shows that the sections defining the marked points in the fibre
of 𝑓 (see Case 2 of Theorem 2.3.1) are mapped to the sections defining the marked
points in the fibre of 𝑓 ′, i.e. it guarantees that the sections of the underlying stable
curves are compatible.

Proof. Since 𝑓 : X −→ Y and 𝑓 ′ : X′ −→ Y′ are saturated (in particu-
lar integral) morphisms of fine saturated log schemes, it suffices to show that
the corresponding commutative diagram of log structures is co-cartesian. It is
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enough to show this at the level of stalks. Hence, without loss of generality, let
Y′ = Y = Spec 𝑘 = 𝑦, for some separably closed field 𝑘 be a geometric point in the
base and 𝑓 ′ = 𝑓 . Let 𝑥 be a geometric point lying over Spec 𝑘 = 𝑦. Let us check
the property case by case.

Case 1:M𝑋/𝑌,𝑥 ≅ 0. In this case we have a commutative diagram

M𝑌 ′,𝑦 M𝑌,𝑦

M𝑋 ′,𝑥 M𝑋 ,𝑥

≅ ≅

As in Theorem 2.3.1, the log curve X −→ Y is strict near 𝑥. Hence, our required
diagram of monoids is co-cartesian.

Case 2:M𝑋/𝑌,𝑥 ≅ ℕ. In this case we have a commutative diagram

0 M𝑌 ′,𝑦 M𝑌,𝑦 ℕ 0

0 M𝑋 ′,𝑥 M𝑋 ,𝑥 ℕ 0

𝑓
′@
𝑥 𝑓 @

𝑥

and it follows from Theorem 2.3.1 that the left hand side square in the diagram
is co-cartesian.

Case 3:M𝑋/𝑌,𝑥 ≅ ℤ. In this case we have a commutative diagram

ℕ M𝑌 ′,𝑦 M𝑌 ,𝑦

ℕ2 M𝑋 ′,𝑥 M𝑋 ,𝑥

𝑞𝑥

Δ 𝑓
′@
𝑥 𝑓 @

𝑥

(𝑝1,𝑝2)

and using Theorem 2.3.1, the left hand side square and the big rectangle are co-
cartesian. Hence, the right hand side square is co-cartesian as required.

The co-cartesian diagrams in the above three cases induce an isomorphism of the
cokernels of the vertical arrows:

coker 𝑓 @
𝑥 =M𝑋/𝑌,𝑥 ≅ M𝑋 ′/𝑌 ′,𝑥 = coker 𝑓 ′@𝑥 for each 𝑥 ∈ 𝑋.
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Remark 2.3.4. The cokernels of the vertical (resp. horizontal) arrows in a co-
cartesian diagram of monoids are always isomorphic (i.e. we did not use that the
morphisms are integral or saturated for concluding the last assertion).

■

Before proving the main structure theorem for log curves Theorem 2.3.1, we prove
some facts in the category of fine saturated monoids.

Definition 2.3.5. Let ℎ : 𝑄 ↩→ 𝑃 be a monomorphism of integral, saturated and
sharp (i.e. with trivial group of units) monoids.

1. An element 𝑝 ∈ 𝑃 is said to be 𝑄-primitive if 𝑝 = 𝑝1+𝑞 for some 𝑞 ∈ 𝑄, 𝑝1 ∈
𝑃 implies 𝑞 = 0.

2. We set 𝐼𝑄 ⊆ 𝑃 to be the ideal (𝑄 \ {0}) + 𝑃 = { 𝑞 + 𝑝 | 𝑞 ∈ 𝑄 \ {0}, 𝑝 ∈ 𝑃}.

3. An element 𝑝 ∈ 𝑃 is said to be nilpotent with respect to the morphism ℎ if
𝑝 ∉ 𝐼𝑄 but 𝑛𝑝 ∈ 𝐼𝑄 for some 𝑛 ∈ ℤ≥1.

Lemma 2.3.6 (Integral splitting lemma). Let ℎ : 𝑄 ↩→ 𝑃 be a monomorphism of
fine, saturated and sharp monoids. Then every 𝑝 ∈ 𝑃 can be uniquely written as
𝑝 = 𝑝1 + 𝑞 for a 𝑄-primitive element 𝑝1 ∈ 𝑃 , 𝑞 ∈ 𝑄. In other words, every element
of 𝑃/𝑄 has a unique 𝑄-primitive representative in 𝑃.

Proof. Let 𝑝1, 𝑝2 ∈ 𝑃. Set 𝑝1 ≤ 𝑝2 if and only if there exists a 𝑝 ∈ 𝑃 such that
𝑝1 + 𝑝 = 𝑝2. Since 𝑃 is finitely generated, there is no infinitely strictly decreasing
chain in 𝑃. So, for every 𝑝 ∈ 𝑃, there exists 𝑝′ ∈ 𝑃 with the same image as 𝑝 in
𝑃/𝑄 such that 𝑝′ is minimal with respect to this order. Hence, by definition 𝑝′ is
𝑄-primitive. Thus, 𝑝 = 𝑝′′ + 𝑞, 𝑝′ = 𝑝′′ + 𝑞′ for 𝑝′′ ∈ 𝑃, 𝑞, 𝑞′ ∈ 𝑄. By 𝑄-primitivity
of 𝑝′, we have 𝑞′ = 0, so 𝑝′ = 𝑝′′ and hence 𝑝 = 𝑝′ + 𝑞 is the required unique
decomposition.

■

Lemma 2.3.7. Let ℎ : 𝑄 ↩→ 𝑃 be an integral injective morphism1 of fine, sharp
monoids without nilpotents. Then:

1Any integral morphism ℎ : 𝑄 −→ 𝑃 of fine and sharp monoids is automatically injective.
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1. If 𝑃 is saturated then 𝑃gp/𝑄gp is a toric monoid, i.e. it is tor-
sion free.2 If 𝑃gp/𝑄gp ≅ ℤ then 𝑃/𝑄 is saturated. Thus,
𝑃/𝑄 is isomorphic to either 0,ℕ or ℤ.

2. If 𝑃/𝑄 ≅ ℕ, then there is a unique 𝑝 ∈ 𝑃 such that

(ℎ, 𝑝) : 𝑄 ⊕ ℕ −→ 𝑃

(𝑞, 𝑛) ↦−→ ℎ(𝑞) + 𝑛𝑝

is an isomorphism of monoids.

3. If 𝑃/𝑄 ≅ ℤ, then there is a unique 𝑞 ∈ 𝑄 and 𝑝1, 𝑝2 ∈ 𝑃 unique up to
transposition such that the following diagram is co-cartesian in the category
of fine saturated monoids

ℕ 𝑄

ℕ2 𝑃

Δ

𝑞

ℎ

(𝑝1,𝑝2)

Moreover, 𝑞(1) is an irreducible (see Definition 1.2.10) element in 𝑄.

Proof. (1) Let 𝑝1, 𝑝2 ∈ 𝑃 such that 𝑝1 − 𝑝2 ∉ 𝑄gp but 𝑛𝑝1 − 𝑛𝑝2 ∈ 𝑄gp for some
positive integer 𝑛, i.e. 𝑃gp/𝑄gp has a torsion element. Then there exist 𝑞1, 𝑞2 ∈ 𝑄
such that 𝑛𝑝1 + 𝑞1 = 𝑛𝑝2 + 𝑞2. By Lemma 2.3.6, we can without loss of generality
assume 𝑝1, 𝑝2 are 𝑄-primitive and write 𝑛𝑝1 = 𝑎1 + 𝑏, 𝑛𝑝2 = 𝑎2 + 𝑏, where 𝑏 ∈ 𝑃
is 𝑄-primitive. Note that either 𝑎1 or 𝑎2 is non-zero. Indeed, if 𝑎1 = 𝑎2 = 0, then
𝑛(𝑝1−𝑝2) = 0 and 𝑃 is saturated, hence 𝑝1−𝑝2 ∈ 𝑃 and by symmetry, 𝑝2−𝑝1 ∈ 𝑃.
Thus, 𝑝1 − 𝑝2 is a unit in 𝑃 but 𝑃 is a sharp monoid, which implies 𝑝1 = 𝑝2. But
this contradicts 0 = 𝑝1 − 𝑝2 ∉ 𝑄gp. So, without loss of generality let 𝑎1 ≠ 0.
Then 𝑛𝑝1 = 𝑎1 + 𝑏 ∈ 𝐼𝑄 (see Definition 2.3.5). Hence, we have 𝑝1 ∈ 𝐼𝑄, otherwise
ℎ would be nilpotent and by 𝑄-primitivity, 𝑝1 ∈ 𝑄. This implies 𝑏 = 0 so that
𝑛𝑝2 = 𝑎2 ∈ 𝑄 and in particular 𝑛𝑝2 ∈ 𝐼𝑄, in contradiction with 𝑝1 − 𝑝2 ∉ 𝑄gp.

If 𝑃gp/𝑄gp ≅ ℤ, then we need to show that 𝑃/𝑄 is saturated, so that we can
conclude that 𝑃/𝑄 ≅ 0,ℤ or ℕ by [22, I.2.4.2] .

2If ℎ is also assumed to be saturated (without finitely generated and sharpness assumptions),
then 𝑃gp/𝑄gp being torsion free also holds true. See [22, I.4.8.11].
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Since 𝑃gp/𝑄gp ≅ ℤ and we are working over integral monoids, we can consider
𝑃/𝑄 ↩→ ℤ. So, there exist 𝑚, 𝑛 ∈ 𝑃/𝑄 ⊆ ℤ with (𝑚, 𝑛) = 1 such that 𝑎𝑚 −
𝑏𝑛 = ±1 for some 𝑎, 𝑏 ∈ ℕ. For 𝑚 ∈ 𝑃/𝑄, let 𝑝𝑚 ∈ 𝑃 be its unique 𝑄-primitive
represenatative. Now consider 𝑎𝑝𝑚 − 𝑏𝑝𝑛 ∈ 𝑃gp.

We claim that 𝑎𝑝𝑚 − 𝑏𝑝𝑛 ∈ 𝑃 is an element of 𝑃. Then since 𝑎𝑝𝑚 − 𝑏𝑝𝑛 maps to
±1 ∈ 𝑃/𝑄 ⊆ ℤ and any submonoid containing ±1 is saturated. Note that for any
𝑡 ∈ ℕ, we have 𝑡𝑝𝑚 = 𝑝𝑚𝑡 by the nilpotent free assumption. Thus, 𝑚(𝑎𝑝𝑚−𝑏𝑝𝑛) =
𝑝𝑎𝑚𝑛 − 𝑝𝑏𝑚𝑛. By Definition 2.3.5, we have

𝑝𝑎𝑚𝑛 + 𝑞 = 𝑝𝑏𝑚𝑛 + 𝑝𝑚 = 𝑏𝑛𝑝𝑚 + 𝑝𝑚 = (𝑏𝑛 + 1)𝑝𝑚

for some 𝑞 ∈ 𝑄.

Since ℎ is nilpotent free, 𝑞 = 0 and by saturatedness of 𝑃, we have 𝑎𝑝𝑚− 𝑏𝑝𝑛 ∈ 𝑃
as required.

(2) The splitting (ℎ, 𝑝) : 𝑄 ⊕ ℕ −→ 𝑃 is easily obtained from the existence of
𝑄-primitive representative as in Definition 2.3.5.

(3) Since 𝑃/𝑄 ≅ ℤ for each 𝑛 ∈ ℤ, there is a unique 𝑄-primitive 𝑝𝑛 ∈ 𝑃 mapping
to 𝑛 ∈ ℤ. Set 𝑞0 := 𝑝1 + 𝑝−1. Now we can define the map of monoids ℕ −→ 𝑄

by 𝑛 ↦−→ 𝑛𝑞0 and ℕ2 −→ 𝑃 by (𝑚, 𝑛) ↦−→ 𝑝𝑚 + 𝑝−𝑛. As in the proof of (1), we
have 𝑝𝑛 = 𝑛𝑝1. Thus, by the above definition the diagram in the claim commutes.
Hence, it is enough to check that the canonical map

𝑄 ⊕ℕ (ℕ ⊕ ℕ) −→ 𝑃

[𝑞, (𝑚, 𝑛)] ↦−→ 𝑞 + 𝑝𝑚 + 𝑝−𝑛

is an isomorphism. Surjectivity is clear and injectivity follows from the fact that
the pushout of an integral morphism is integral. (See [22, I.4.6.2]).
Remark 2.3.8. Since 𝑞 = 𝑝1 + 𝑝2 in the co-cartesian diagram in Lemma 2.3.7, 𝑞 is
not an irreducible element when considered as an element of 𝑃 via the injective
map ℎ : 𝑄 −→ 𝑃.

■

With the above results at our disposal, we are now ready to present the proof of
the local structure theorem of log curves (Theorem 2.3.1).
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Proof. For a log curve 𝑓 : X −→ Y, let 𝑥 be a schematic point of 𝑋 and 𝑥 a
geometric point corresponding to 𝑥. Let 𝑦 := 𝑓 (𝑥) ∈ 𝑌 a schematic point with 𝑦 a
geometric point corresponding to 𝑦.

Step 1: We first verify that the integral (and saturated) morphism of fine sat-

urated monoids M𝑌,𝑦

𝑓 @
𝑥−−→ M𝑋,𝑥 satisfies the hypothesis of Lemma 2.3.7 with

ℎ = 𝑓 @
𝑥 , 𝑄 =M𝑌,𝑦 and 𝑃 =M𝑋,𝑥.

1. Since 𝑓 : X −→ Y is an integral morphism,M𝑌,𝑦

𝑓 @
𝑥−−→ M𝑋,𝑥 is an integral

morphism of monoids by definition. The canonical morphisms M𝑌,𝑦 −→

M𝑌,𝑦 andM𝑋,𝑥 −→ M𝑋,𝑥 are always integral. This implies thatM𝑌,𝑦

𝑓 @
𝑥−−→

M𝑋,𝑥 is also integral. By the same same argumentM𝑌,𝑦

𝑓 @
𝑥−−→ M𝑋,𝑥 is also

saturated.

2. Since 𝑓 : X −→ Y is a saturated morphism of monoids,Mgp
𝑋/𝑌,𝑥 is torsion

free (see [22, III.2.5.5]). In particular, one does not need the monoids to be
sharp as in Lemma 2.3.7.

3. Let us prove that 𝑄 =M𝑌,𝑦

ℎ=𝑓 @
𝑥−−−−→M𝑋,𝑥 = 𝑃 is an exact injective morphism

of integral monoids:

Let 𝑞1 − 𝑞2 ∈ 𝑄gp such that 𝑝 := ℎ(𝑞1 − 𝑞2) ∈ 𝑃. Since ℎ is an integral
morphism, ℎ(𝑞1) = ℎ(𝑞2) + 𝑝 in 𝑃 and there exists 𝑝′ ∈ 𝑃 and 𝑞′

𝑖
∈ 𝑄 such

that ℎ(𝑞′1) + 𝑝
′ = 0 , 𝑝 = ℎ(𝑞′2) + 𝑝

′ and 𝑞′1 + 𝑞1 = 𝑞′2 + 𝑞2. Then 𝑝′ is a unit
in 𝑃 and 𝑞′1 is an unit in 𝑄. Thus, 𝑞1 − 𝑞2 = 𝑞′2 − 𝑞

′
1 ∈ 𝑄. Thus, ℎ is an exact

morphism.

To show injectivity, let 𝑎, 𝑏 ∈ 𝑄 be such that ℎ(𝑎) = ℎ(𝑏) holds. Then
ℎgp(𝑎 − 𝑏) = 0 ∈ 𝑃 implies 𝑎 − 𝑏 ∈ 𝑄 by exactness of ℎ, where
ℎgp is the induced morphism 𝑄gp −→ 𝑃gp. Similarly 𝑏 − 𝑎 ∈ 𝑄. Thus,
𝑎 − 𝑏 ∈ 𝑄∗ = {0} (since 𝑄 is sharp). Hence, 𝑎 = 𝑏.

4. Now we verify that the morphism 𝑄 = M𝑌,𝑦

ℎ=𝑓 @
𝑥−−−−→ M𝑋,𝑥 = 𝑃 has no nilpo-

tents.

Without loss of generality, let us assume 𝑌 = Spec 𝑘 for some separably
closed field 𝑘 and replace 𝑋 by an etale neighbourhood (Spec 𝐴, 𝑢) étale−−−→
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(𝑋, 𝑥) of 𝑥. Since 𝑓 is log smooth, by the chart criterion for log smoothness
(see [22, III.3.3.1]), there exist fine charts which fit into the following com-
mutative diagram of fine saturated monoids

𝑄 M𝑌 (𝑌) 𝑘

𝑃1 M𝑋 (𝑋) 𝐴

𝛼𝑌 (𝑌)

𝛼𝑋 (𝑋)

such that the morphism 𝑘⊗ℤ[𝑄]ℤ[𝑃1] −→ 𝐴 is étale. Here, 𝑘⊗ℤ[𝑄]ℤ[𝑃1] ≅
𝑘[𝑃1]/𝐼𝑘𝑃1

, where 𝐼𝑘
𝑃1

:= {Σ𝑖𝑎𝑖𝑝𝑖 | 𝑝𝑖 ∈ (𝑄1 \ {0}) + 𝑃1}. Moreover, 𝑘[𝑃1]/𝐼𝑘𝑃1

is reduced since 𝐴 is reduced (𝑄 −→ 𝑃 is saturated) and 𝑘⊗ℤ[𝑄]ℤ[𝑃1] −→ 𝐴

is étale. Since 𝑃 −→ M𝑋 (𝑋) is a chart,the morphism 𝑃1 −→ M𝑋,𝑥 = 𝑃 is
surjective and we have the follwing commutative diagram of monoids

𝑄 𝑃1

𝑃 =M𝑋,𝑥

ℎ

Let 𝑝 ∈ 𝑃 such that 𝑝 ∉ 𝑄 \ {0} + 𝑃 and there exists 𝑛 ∈ ℤ≥1 such that
𝑛𝑝 ∈ 𝑄− {0} + 𝑃. Let �̄� be a lift of 𝑝 ∈ 𝑃 to 𝑃1. Clearly, �̄� ∉ 𝑄− {0} + 𝑃1 and
𝑛�̄� ∈ 𝑄 − {0} + 𝑃1. Thus, 𝑘 ⊗ℤ[𝑄] ℤ[𝑃1] ≅ 𝑘[𝑃1]/𝐼𝑘𝑃1

is non-reduced, which
is a contradiction. Hence, ℎ : 𝑄 ↩→ 𝑃 is without nilpotents.

5. Finally it remains to verify that Mgp
𝑋/𝑌,𝑥 ≅ ℤ , for all 𝑥 ∈ Supp(M𝑋/𝑌 ).

Then by Lemma 2.3.7,M𝑋/𝑌,𝑥 ≅ 0,ℕ or ℤ:

Without loss of generality, let us assume 𝑌 = Spec 𝑘 for some separably
closed field 𝑘. Since 𝑓 is log smooth, by the chart criterion for log smoothness
(see [22, III.3.3.1]), étale locally around 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 (by an abuse of
notation, we again denote the étale neighbourhoods by 𝑋 and𝑌 ), there exist
fine charts 𝑏 : X −→ 𝔸1

𝑃1
and 𝑎 : Y −→ 𝔸1

𝑄1
with ℎ1 : 𝑄1 −→ 𝑃1 injective

such that they fits into a diagram:
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X

Y′ 𝔸1
𝑃1

Y 𝔸1
𝑄1

𝑏

𝑓

𝑏ℎ1

𝑏′

𝑓ℎ1 𝔸1
ℎ1

𝑎

where the square is cartesian with Y = Spec 𝑘, Y′ = 𝑆𝑝𝑒𝑐(𝑘 ⊗ℤ[𝑄1]
ℤ[𝑃1]) ≅ 𝑆𝑝𝑒𝑐(𝑘[𝑃1]/𝐼𝑘𝑃1

), 𝐼𝑘
𝑃1

:= {Σ𝑖𝑎𝑖𝑝𝑖 | 𝑝𝑖 ∈ (𝑄1 \ {0}) + 𝑃1} and 𝑏′

is a strict morphism and 𝑏ℎ1 is a log étale morphism. Moreover the chart
𝑏 : X −→ 𝔸1

𝑃1
can be chosen to be neat at 𝑥, i.e. 𝑃gp

1 ≅M
gp
𝑋,𝑥 (see [22, II.2.3]

for more details). Thus, we have the following commutative diagram:

0 𝑄
gp
1 𝑃

gp
1 𝑃

gp
1 /𝑄

gp
1 0

0 Mgp
𝑌,𝑦 Mgp

𝑋,𝑥 Mgp
𝑋/𝑌,𝑥 0

≅

Hence,we conclude that:

1 = dim (𝑋/𝑌) = dim 𝑆𝑝𝑒𝑐(𝑘[𝑃1]/𝐼𝑘𝑃1
) = Rankℤ(𝑃gp

1 /𝑄
gp
1 ) ≥ RankℤM

gp
𝑋/𝑌,𝑥 > 0

where the first inequality follows from the discussion in [22, Cor. I.2.3.8].
Thus, we have the assertionMgp

𝑋/𝑌,𝑥 ≅ ℤ , for all 𝑥 ∈ Supp(M𝑋/𝑌 ).

Thus, the above verification together with Lemma 2.3.7 proves the assertions at
the level of stalks in Case 2 and Case 3 of Theorem 2.3.1.

Proof of Case 1: The injective integral morphismM𝑌,𝑦

𝑓 @
𝑥−−→ M𝑋,𝑥 of fine, sharp

and saturated monoids is an isomorphism since 0 = M𝑋/𝑌,𝑥 = coker 𝑓 @
𝑥 . Then

𝑓 @
𝑥 :M𝑌,𝑦 −→M𝑋,𝑥 is surjective by the commutativity of the diagram
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M𝑌,𝑦 M𝑋,𝑥

M𝑌,𝑦 M𝑋,𝑥

𝑓 @
𝑥

≅

If 𝑓 @
𝑥 (𝑝1) = 𝑓 @

𝑥 (𝑝2) for some 𝑝1, 𝑝2 ∈ M𝑌,𝑦, then 𝑓 @
𝑥 is an isomorphism implies

there exists 𝑢 ∈ M∗𝑌,𝑦 such that 𝑝2 = 𝑝1 + 𝑢. Then 𝑓 @
𝑥 (𝑝2) = 𝑓 @

𝑥 (𝑝1) + 𝑓 @
𝑥 (𝑢) =

𝑓 @
𝑥 (𝑝2) + 𝑓 @

𝑥 (𝑢).M𝑋,𝑥 is integral implies that 𝑓 @
𝑥 (𝑢) = 0 and 𝑓 @

𝑥 is an isomorphism
implies that 𝑢 = 0. Hence, 𝑝1 = 𝑝2. Thus, 𝑓 @

𝑥 is an isomorphism ∀𝑥 ∈ 𝑋 such that
M𝑋/𝑌,𝑥 = 0. Hence, 𝑓 is strict in an étale neighbourhood of 𝑥 (see [22, II.2.1.6] for
more details) and hence the underlying morphism of schemes is smooth by [22,
IV.3.1.6].

Proof of Case 2: We have shown that there exists a unique 𝑝 ∈ M𝑋,𝑥 such that

( 𝑓 @
𝑥 , 𝑝) :M𝑌,𝑦 ⊕ ℕ ≅M𝑋,𝑥

is an isomorphism of fine saturated monoids. In an étale neighbourhood of 𝑥
(which we by an abuse of notation denote by 𝑋 ), we can lift 𝑝 to 𝑝 ∈ M𝑋 (𝑋) such
that the morphism

( 𝑓 @, 𝑝) : 𝑓 ∗M𝑌 ⊕ ℕ −→M𝑋

is an isomorphism. Let Y −→ 𝔸1
𝑄

be a local chart in an étale neighbourhood
(which we again denote by 𝑌 ) of 𝑦 = 𝑓 (𝑥). Since 𝑄 ⊕ ℕ ≅ M𝑌,𝑦 ⊕ ℕ ≅ M𝑋,𝑥,
we can indeed consider X −→ 𝔸1

𝑄+ℕ to be a local chart in an étale neighbourhood
(which we again call as 𝑋 ) of 𝑥. Thus, we have the following commutative diagram
of log schemes

X

Y′ 𝔸1
𝑄⊕ℕ 𝔸1

ℕ

Y 𝔸1
𝑄

𝔸1
ℤ

𝑓
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where the horizontal arrows in the left hand side square and X −→ 𝔸1
𝑄⊕ℕ are

strict. Hence, X −→ Y′ is a strict morphism of log schemes. Since 𝑓 is log smooth
andΩ1

X/Y andΩ1
𝑄⊕ℕ/𝑄 are free of rank one,X −→ Y′ is log étale and in particular,

the underlying morphism of schemes

𝑋 −→ 𝑌 ×Specℤ[𝑄] Specℤ[𝑄 ⊕ ℕ] ≅ 𝑌 ×Specℤ Specℤ[ℕ] ≅ 𝑌 ×Specℤ Specℤ[𝑡]

is étale.

Now we need to show the existence of local sections which define the marked
points in the fiber. Set 𝑋ℕ := {𝑥 ∈ 𝑋 | M𝑋/𝑌,𝑥 ≅ ℕ}. Note that 𝑋ℕ is closed by

[22, II.2.1.6]. We have the morphism 𝑄 = M𝑌,𝑦

ℎ=𝑓 @
𝑥−−−−→ M𝑋,𝑥 = 𝑃 as before and

by the above arguments we have that 𝑃 ≅ 𝑄 ⊕ ℕ and we can indeed consider
X −→ 𝔸1

𝑃
to be a fine chart in an étale neighbourhood of 𝑥 which we denote again

by 𝑋 . Hence,we have the morphisms

ℕ −→ 𝑃 −→M𝑋 (𝑋) −→ O𝑋ét (𝑋) −→ O𝑋,𝑥

The image of 1 ∈ ℕ in O𝑋,𝑥 defines the closed subscheme 𝑋ℕ. Thus, 𝑋ℕ −→ 𝑌

defines the necessary sections étale locally. One only needs to verify that the
choice of étale local charts above is compatible with the construction of 𝑋ℕ, which
we omit here3.

Proof of Case 3: We have shown that there is a unique 𝑞𝑥 : ℕ −→ M𝑌,𝑦 and
elements (𝑝1, 𝑝2) ∈ M𝑋,𝑥 unique up to order such that the following diagram is
co-cartesian in the category of fine saturated monoids:

ℕ M𝑌,𝑦

ℕ2 M𝑋,𝑥

Δ

𝑞𝑥

𝑓
@
𝑥

(𝑝1,𝑝2)

In an étale neighbourhood of 𝑦 (which by an abuse of notation we again denote by
𝑌 ), we can lift 𝑞𝑥 (1) to 𝑞 ∈ M𝑌 (𝑌) and 𝑝1(1, 0) and 𝑝2(0, 1) to 𝑝1 and 𝑝2 in an

3See [22, III.1.7.3] for a similar discussion using Deligne-Faltings structures determined by
closed subschemes
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étale neighbourhood of 𝑥 (denoted again by 𝑋 for the sake of simplicity) satisfying

𝑝1 + 𝑝2 = 𝑓 ∗𝑞

and such that the morphism of log structure induced by

( 𝑓 @, 𝑝1, 𝑝2) : 𝑓 ∗M𝑌 ⊕ℕ ℕ2 −→M𝑋

is an isomorphism. Let Y −→ 𝔸1
𝑄

be a local chart in an étale neighbourhood
(which we again denote by 𝑌 ) of 𝑦 = 𝑓 (𝑥). Since 𝑄 ⊕ℕ ℕ2 ≅M𝑌,𝑦 ⊕ℕ ℕ2 ≅M𝑋,𝑥,
we can indeed considerX −→ 𝔸1

𝑄⊕ℕℕ2 to be a local chart in an étale neighbourhood
(which we again denote by 𝑋 ) of 𝑥. Thus, we have the following commutative
diagram of log schemes

X

Y′ 𝔸1
𝑄⊕ℕℕ2 𝔸1

ℕ2

Y 𝔸1
𝑄

𝔸1
ℕ

𝑓
Specℤ[Δ]

where both the horizontal arrows in the left hand side cartesian square andX −→
𝔸1
𝑄⊕ℕℕ2 are strict.

Note that the right hand side square in the diagram above is cartesian since
the forgetful functor from the category of 𝐴-algebras to the category of monoids
A𝑙𝑔𝐴 −→M𝑜𝑛 admits a left adjoint given byM𝑜𝑛 −→ A𝑙𝑔𝐴, 𝑃 −→ 𝐴[𝑃].

Hence, X −→ Y′ is a strict morphism of log schemes. Since 𝑓 is log smooth and
Ω1
X/Y and Ω1

𝑄⊕ℕℕ2/𝑄 are free of rank one, X −→ Y′ is log étale and in particular,
the underlying morphism of schemes

𝑋 −→ 𝑌 ×Specℤ[𝑄] Specℤ[𝑄 ⊕ℕ ℕ2] ≅ 𝑌 ×Specℤ[𝑁] Specℤ[ℕ2] ≅ 𝑌 ×𝔸1 𝔸2

is étale, where 𝔸1 −→ 𝔸2 is induced by the diagonal morphism of monoids Δ :
ℕ −→ ℕ2. The fact that Ω1

𝑄⊕ℕℕ2/𝑄 are free of rank one follows from the fact that
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for a morphism of monoids 𝑄 −→ 𝑃, we have a natural isomorphism of OSpecℤ[𝑃]-
modules Ω1

𝔸1
𝑃
/𝔸1

𝑄

≅ ̃︆ℤ[𝑃] ⊗ℤ (𝑃gp/𝑄gp). See [22, IV.1.1.4] for a proof of this fact.

■
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2.4 Minimal logarithmic curves

Following [13], we will present the construction of minimal log objects in the cat-
egory of log (stable) curves.

Consider a log curve:

X

Y
𝑓

Let 𝑦 ∈ 𝑌 be a scheme theoretic point in the underlying scheme 𝑌 .

Denote by 𝑋 𝑦
ℤ

:= {𝑥 ∈ 𝑓 −1(𝑦) | M𝑋/𝑌,𝑥 ≅ ℤ}, the set of nodal points in the
fiber over 𝑦. We recall from Theorem 2.3.1 that 𝑋 𝑦

ℤ
is a finite set. Further we

have a unique element 𝑞𝑥 (1) ∈ M𝑌,𝑦 and unique elements (up to transposition)
𝑝1, 𝑝−1 ∈ M𝑋,𝑥 such that the diagram

ℕ M𝑌,𝑦

ℕ2 M𝑋,𝑥

Δ

𝑞𝑥

𝑓 @
𝑥

(𝑝1, 𝑝2)

is co-cartesian in the category of monoids.

We have a map of sets

𝑞 : 𝑋 𝑦
ℤ
−→M𝑌,𝑦 = Irr(M𝑌,𝑦)

𝑥 ↦−→ 𝑞𝑥 (1)

Let 𝑃𝑦 be the free monoid ℕ𝑋
𝑦

ℤ over the finite set of nodal points over 𝑦, which is
unique up to an automorphism of ℕ𝑋

𝑦

ℤ . The morphism

𝑋
𝑦

ℤ
−→ ℕ𝑋

𝑦

ℤ ≅ 𝑃𝑦

𝑥 ↦−→ 𝑒𝑥

gives an adjunction
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HomM𝑜𝑛(𝑃𝑦,M𝑌,𝑦) ≅ Hom𝑆𝑒𝑡𝑠(𝑋 𝑦ℤ,M𝑌,𝑦) ≅ Hom𝑆𝑒𝑡𝑠(𝑋 𝑦ℤ, Irr(M𝑌,𝑦))

Thus, by an abuse of notation, the morphism 𝑞 above induces a morphism of
monoids

𝑞 : 𝑃𝑦 −→M𝑌,𝑦

We shall see in the next results (Theorem 2.4.1 and Theorem 2.4.4) that minimal
log curves are characterized by the isomorphism of 𝑞 : 𝑃𝑦 −→ M𝑌,𝑦, i.e. the log
structure on the base is étale locally given by a neat chart whose generators are
parametrized by the nodes in the fiber.

More specifically, the log structure on a minimal log curve would look as in the
following schematic diagram.

Figure 2.1: The left hand side picture is a nodal curve with three nodal points
𝑃1, 𝑃2, 𝑃3 and one marked point (red). The right hand side is a schematic picture
of the minimal log structure on the same nodal curve. The log structure on the base
𝑦 corresponds to the free monoid generated by the nodal points over 𝑦. Each nodal
point in the total space corresponds to ℕ2 obtained from the diagonal Δ : ℕ −→ ℕ2.
The marked point corresponding to ℕ is labelled in red.
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The minimal log structure obtained over the point 𝑦 can be extended to an étale
neighbourhood and we then have to check the gluing of these sheaves of monoids.

Theorem 2.4.1. Let 𝑓 : X −→ Y be a log curve such that the morphism of monoids
𝑞 : 𝑃𝑦 −→ M𝑌,𝑦 is an isomorphism for all 𝑦 ∈ 𝑌 . In other words, the smoothing
parameters 𝑞𝑥 of the nodes 𝑥 lying over 𝑦 generateM𝑌,𝑦 as a free monoid. Then
𝑓 : X −→ Y is a minimal log curve, i.e. it is a minimal object in the category of
log curves LM 𝑔 as per Definition 2.2.10.

Proof. Given any commutative triangle of log curves 𝑓 , 𝑓 ′ and 𝑓 ′′ as below, we
need to find unique morphisms ℎ : X′′ −→ X and 𝑘 : Y′′ −→ Y completing the
diagram with 𝑘 = 𝐼𝑑.

X′

X′′ X

Y′

Y′′ Y

𝑎
𝑓 ′

𝑏

∃ ! ℎ

𝑓 ′′ 𝑓

𝑖 𝑗

∃ ! 𝑘

𝑖 = 𝑗 = 𝐼𝑑

All the squares in the above diagram are cartesian by definition of morphism of log
curves in the category LM 𝑔. (Both the solid squares are cartesian automatically
guarantee that the dotted square is cartesian if ℎ and 𝑘 exist.) In particular, the
corresponding squares of underlying morphism of schemes is cartesian. Since
𝑖 = 𝑗 = 𝐼𝑑, we can without loss of generality assume 𝑎 = 𝑏 = 𝐼𝑑. Further we can
assume that the underlying morphism of schemes 𝑓 = 𝑓 ′ = 𝑓 ′′ = 𝜋.

Hence, we can now restrict our attention to only the log structures involved, i.e.
it is enough to prove there exist unique morphisms of log structures

𝑘@ :M𝑌 −→M𝑌 ′′, ℎ
@ :M𝑋 −→M𝑋 ′′

completing the following co-cartesian diagram:
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𝜋∗M𝑌

𝜋∗M𝑌 ′′ 𝜋∗M𝑌 ′

M𝑋

M𝑋 ′′ M𝑋 ′

∃ ! 𝑘@ 𝑗@

𝑖@

∃ ! ℎ@ 𝑏@

𝑎@

Step 1: Proving the uniqueness of the extension pair (𝑘@, ℎ@).

Let 𝑦 ∈ 𝑌 be a schematic point and let 𝑋 𝑦
ℤ
= {𝑥1, ...., 𝑥𝑛} be the nodal points in

the fiber over 𝑦. Assuming the existence of the pair (𝑘@, ℎ@), we have the fol-
lowing commutative diagram with every square co-cartesian in the category of
fine saturated sheaves of monoids for every 𝑥𝑖 ∈ 𝑋 𝑦ℤ (the left hand side square
is co-cartesian using Theorem 2.3.1 and the right hand square is co-cartesian by
definition of morphism of log curves in LM 𝑔.

ℕ 𝑃𝑦 ≅M𝑌,𝑦 M𝑌 ′′,𝑦

ℕ2 M𝑋,𝑥𝑖 M𝑋 ′′,𝑥

𝑞𝑥𝑖

Δ

𝑘
@
𝑦

(𝑝1,𝑝2) ℎ
@
𝑥𝑖

𝑦, 𝑥𝑖 are geometric points

The morphism of fine saturated monoids 𝑘@
𝑦 : M𝑌,𝑦 −→ M𝑌 ′′,𝑦 is determined

uniquely by the images of 𝑞𝑥 (1) under 𝑘@
𝑦 for 𝑥 varying over 𝑋 𝑦

ℤ
since 𝑞 : 𝑃𝑦 ≅

M𝑌,𝑦, where 𝑃𝑦 = ℕ𝑋
𝑦

ℤ . If 𝑘@,1
𝑦 is another morphism completing the top dotted

arrow, then using the structure Theorem 2.3.1 for the log curve X′′ −→ Y′′ we
have 𝑘@,1

𝑦 (𝑞𝑥𝑖 (1)) = 𝑘
@
𝑦 (𝑞𝑥𝑖 (1)), for all 𝑥𝑖 ∈ 𝑋

𝑦

ℤ
. (In view of the uniqueness

of the morphism 𝑞𝑥𝑖 for each commutative diagram as above corresponding to
the nodal points 𝑥𝑖). Since the morphisms are determined by 𝑞𝑥𝑖 (1)’s, we have
𝑘

@
𝑦 = 𝑘

@,1
𝑦 : M𝑌,𝑦 −→ M𝑌 ′′,𝑦. Since the morphisms 𝑘@

, 𝑘
@,1 agree on the stalk

of the characteristic sheaves of monoids of the log structure on 𝑌 (i.e. the units
of the monoids can be identified) for every 𝑦 ∈ 𝑌 , the morphism 𝑘

@ exists and is
unique. More precisely, we are in the following situation:

If 𝐹 : 𝑃 −→ 𝑄 is a morphism of monoids such that under 𝐹, 𝑃∗ ≅ 𝑄∗, 𝐹−1(𝑄∗) =
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𝑃∗, then if 𝐹 = 0, then 𝐹 = 0

Let 𝑝 ∈ 𝑃 such that 𝐹 (𝑝) = 𝑞 s.t 𝑞 ≠ 0. Since 𝐹 (𝑝) = 0, we have 𝑞 ∈ 𝑄∗. Hence,
by the identification of units, 𝑞 = 𝐹 (𝑝′), for some 𝑝′ ∈ 𝑃∗. Since we are assuming
𝐹 is logarithmic, i,e satisfies the two identification of units, we have 𝐾𝑒𝑟(𝐹) = 0.
Hence, 𝑝 = 𝑝′. Thus, we have the factorisation of 𝐹 as

𝑃∗ ↩→ 𝑃
𝐹−→ 𝑄∗ ≅ 𝑃∗ ≅ img(𝐹) ↩→ 𝑄

The claim now follows from the integrality of 𝑄.

Now, we need to show the uniqueness of

ℎ@ :M𝑋 −→M𝑋 ′′

For any schematic point 𝑥 ∈ 𝑋, 𝑦 := 𝜋(𝑥) ∈ 𝑌 , consider the following three cases
as in Theorem 2.3.1.

Case 1:M𝑋/𝑌,𝑥 ≅ 0

As in Theorem 2.3.1, the log curveX −→ Y is strict near 𝑥. Hence, the uniqueness
of 𝑘@ and the co-cartesian diagram gives the uniqueness of ℎ@

𝑥

M𝑌,𝑦 M𝑌 ′′,𝑦

M𝑋,𝑥 M𝑋 ′′,𝑥

≅

𝑘
@
𝑦

ℎ
@
𝑥

Case 2:M𝑋/𝑌,𝑥 ≅ ℕ

As in Theorem 2.3.1, the isomorphism 𝑞 : ℕ𝑋
𝑦

ℤ −→M𝑌,𝑦 gives us:

M𝑌,𝑦 ⊕ ℕ ≅ ℕ𝑋
𝑦

ℤ ⊕ ℕ ≅M𝑋,𝑥

The morphism ℎ
@
𝑥 : M𝑋,𝑥 ≅ ℕ𝑋

𝑦

ℤ ⊕ ℕ −→ M𝑋 ′′,𝑥 is uniquely determined on
the generators. Hence, the uniqueness of 𝑘@

𝑦 and the co-cartesian diagram below
gives the uniqueness of ℎ@

𝑥 .
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M𝑌,𝑦 ≅ ℕ𝑋
𝑦

ℤ M𝑌 ′′,𝑦

M𝑋,𝑥 ≅ ℕ𝑋
𝑦

ℤ ⊕ ℕ M𝑋 ′′,𝑥

𝑘
@
𝑦

ℎ
@
𝑥

Case 3:M𝑋/𝑌,𝑥 ≅ ℤ.

We have the following co-cartesian diagram as before:

ℕ 𝑃𝑦 ≅M𝑌,𝑦 M𝑌 ′′,𝑦

ℕ2 M𝑋,𝑥 M𝑋 ′′,𝑥

𝑞𝑥

Δ

∃ ! 𝑘@
𝑦

(𝑝1,𝑝2) ℎ
@
𝑥

Thus, ℎ@
𝑥 is unique by the uniqueness of 𝑘@

𝑦 and Theorem 2.3.1. Hence, the unique-
ness of ℎ@ follows as in the case of ℎ@.

Step 2: Constructing 𝑘@ :M𝑌 −→M′′𝑌 étale locally around a point 𝑦 ∈ 𝑌 .

By the assumption that the canonical morphism 𝑞 : 𝑃𝑦 −→ M𝑌,𝑦 is an isomor-
phism, there exists an étale neighbourhood of 𝑦: 𝑌1

étale−−−→ 𝑌 such that 𝑞 extends
to a local chart 𝑞1 : 𝑃𝑦 −→ M𝑌 (𝑌1) = M𝑌1 (𝑌1), i.e. 𝑃log

𝑦 ≅ M𝑌1. Similarly the
canonical map 𝑃𝑦 −→M𝑌 ′′,𝑦 extends to a morphism of sheaves of monoids on an
étale neighbourhood 𝑌2

étale−−−→ 𝑌 of 𝑦: 𝑞2 : 𝑃𝑦 −→M𝑌 ′′ (𝑌2) =M𝑌2 (𝑌2). (This need
not be a local chart for Y′′). Set 𝑌3 := 𝑌1 ×𝑌 𝑌2

étale−−−→ 𝑌 . Moreover, we have the
equality of morphisms of monoids

𝑖@𝑦 ◦ 𝑞2,𝑦 = 𝑗@𝑦 ◦ 𝑞1,𝑦 : 𝑃𝑦 −→M𝑌 ′,𝑦

which extends to an equality on an étale neighbourhood𝑌4
étale−−−→ 𝑌3 −→ 𝑌 . Hence,

the logarithmification of 𝑞2 pulled back to 𝑌4 gives us the necessary local exten-
sionM𝑌4 −→M′′𝑌4

. In other words, the following diagram is commutative:
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M′′
𝑌4

M𝑌4 ≅ 𝑃
log
𝑦

M′
𝑌4

𝑞
log
2

By the construction of 𝑞log
2 , it is not hard to see that these morphism of sheaves

of monoids glue under étale pull-backs.

Step 3: Construct étale local morphisms ℎ@ :M𝑋 −→ M𝑋 ′′ locally around each
𝑥 lying in the fiber over 𝑦 = 𝜋(𝑥), for every schematic point 𝑦 ∈ 𝑌 (Recall that
𝜋 : 𝑋 −→ 𝑌 is the underlying morphism of schemes of the log curve X −→ Y).

As observed in Corollary 2.3.3, since we have cartesian diagrams of log curves,
the relative characteristic sheaves of monoids are isomorphic, i.e.

M𝑋/𝑌,𝑥 ≅ M𝑋 ′/𝑌 ′,𝑥 ≅ M𝑋 ′′/𝑌 ′′,𝑥 for each 𝑥

Thus, we need to complete the diagram in the three cases of Theorem 2.3.1:

Case 1:M𝑋/𝑌,𝑥 ≅ 0

By Theorem 2.3.1, the log curve X −→ Y is strict in an étale neighbourhood of 𝑥.
Thus, we have the following co-cartesian diagram:

ℕ𝑋
𝑦

ℤ ≅M𝑌,𝑦 M𝑌 ′′,𝑦

M𝑋,𝑥 M𝑋 ′′,𝑥

≅

𝑘
@
𝑦

ℎ
@
𝑥

ℎ
@
𝑥 is as constructed in Step 2

And, 𝑘@
𝑦 is the natural morphism ℕ𝑋

𝑦

ℤ −→M𝑌,𝑦. SinceM𝑌,𝑦 ≅ M𝑋,𝑥 in an étale
neighbourhood of 𝑥, we can extend 𝑘@

𝑦 to the same étale neighbourhood.

Case 2:M𝑋/𝑌,𝑥 ≅ ℤ

We have the following co-cartesian diagram as before:
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ℕ 𝑃𝑦 ≅M𝑌,𝑦 M𝑌 ′′,𝑦

ℕ2 M𝑋,𝑥 M𝑋 ′′,𝑥

𝑞𝑥

Δ

∃ ! 𝑘@
𝑦

(𝑝1,𝑝2) ℎ
@
𝑥

SinceM𝑋/𝑌,𝑥 ≅ M𝑋 ′′/𝑌 ′′,𝑥 for each 𝑥, Theorem 2.3.1 says that the outer com-
mutative rectangle above is co-cartesian, hence the right hand side commutative
square is co-cartesian and ℎ@

𝑥 is the unique map to the push-out. Now we need to
extend ℎ@

𝑥 to an étale neighbourhood of 𝑥.

There exists a lift ℎ : 𝑃𝑦 −→ M𝑈 (𝑈) of the isomorphism 𝑞 : 𝑃𝑦 −→ M𝑌,𝑦 to an
étale neighbourhood 𝑈 étale−−−→ 𝑌 of 𝑦 = 𝜋(𝑥) such that ℎ is a local chart forM𝑌 .
Set 𝑉 := 𝑈 ×𝑌 𝑋

étale−−−→ 𝑋 . Let ℎ : 𝑃𝑦
ℎ−→ M𝑈 (𝑈) −→ M𝑉 (𝑉). After intersecting

with another étale neighbourhood of 𝑥, which by an abuse of notation we denote
again by 𝑉 , there exist liftings 𝑝1, 𝑝2 of the unique elements 𝑝1, 𝑝2 ∈ M𝑋,𝑥 that
satisfies

𝑝1 + 𝑝2 = ℎ(𝑞−1(𝑞𝑥 (1)))

where
𝑞 : 𝑃𝑦 −→M𝑌,𝑦

and 𝑞𝑥 (1) is the smoothing parameter as in Theorem 2.3.1. The universal property
for the co-cartesian diagram above gives a morpism

𝑠 := (ℎ, 𝑝1, 𝑝2) :M𝑉,𝑥 ≅ M𝑋,𝑥 ≅ 𝑃𝑦 ⊕ℕ ℕ2 −→M𝑉 (𝑉)

Moreover, 𝑠 : M𝑉,𝑥 −→ M𝑉 (𝑉) can be considered as a chart since M𝑋 is a
saturated sheaf of monoid (see Theorem 1.4.4).

Consider the composition

𝑘 : 𝑃𝑦
ℎ−→M𝑈 (𝑈)

𝑘@
𝑈
(𝑈)

−−−−−→M𝑈 ′′ (𝑈) −→ M𝑉 ′′ (𝑉)

After intersecting with another étale neighbourhood of 𝑥, which by an abuse of
notation we denote again by 𝑉 , there exist liftings 𝑡1, 𝑡2 of the unique elements
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𝑝1, 𝑝2 ∈ M𝑋,𝑥 that satisfies

𝑡1 + 𝑝𝑡2 = ℎ(𝑞−1(𝑞𝑥 (1)))

Thus, we have a morphism

𝑡 := (𝑘, 𝑡1, 𝑡2) :M𝑉 ′′,𝑥 ≅ M𝑋 ′′,𝑥 ≅ 𝑃𝑦 ⊕ℕ ℕ2 −→M𝑉 ′′ (𝑉)

Moreover, we have the equality as in Case 1

𝑎@(𝑉)𝑡 = 𝑏@(𝑉)𝑠

which agrees on the stalks at 𝑥, hence in another étale neighbourhood which by
an abuse of notation is 𝑉 étale−−−→ 𝑋 . Thus, we have a commuatative diagram:

M𝑉 ′′

M𝑉 ≅ (𝑃𝑦 ⊕ℕ ℕ2)log

M′
𝑌4

𝑠log

Thus, 𝑠log induces the local extension of ℎ@ :M𝑋 −→M𝑋 ′′

Case 3:M𝑋/𝑌,𝑥 ≅ ℕ

As in Theorem 2.3.1, the isomorphism 𝑞 : ℕ𝑋
𝑦

ℤ −→M𝑌,𝑦 gives us:

M𝑌,𝑦 ⊕ ℕ ≅ ℕ𝑋
𝑦

ℤ ⊕ ℕ ≅M𝑋,𝑥

We have the following co-cartesian diagram as before:

M𝑌,𝑦 ≅ ℕ𝑋
𝑦

ℤ M𝑌 ′′,𝑦

M𝑋,𝑥 ≅ ℕ𝑋
𝑦

ℤ ⊕ ℕ M𝑋 ′′,𝑥

𝑘
@
𝑦

ℎ
@
𝑥

𝑘
@
𝑦 is as obtained in Step 2

And ℎ@
𝑥 is the unique morphism defined on the generators. As in the previous

case, we will extend this to an étale neighbourhood of 𝑥.
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There exists a lift ℎ : 𝑃𝑦 −→ M𝑈 (𝑈) of the isomorphism 𝑞 : 𝑃𝑦 −→ M𝑌,𝑦 to an
étale neighbourhood 𝑈 étale−−−→ 𝑌 of 𝑦 = 𝜋(𝑥) such that ℎ is a local chart forM𝑌 .
Set 𝑉 := 𝑈 ×𝑌 𝑋

étale−−−→ 𝑋 . Let ℎ : 𝑃𝑦
ℎ−→ M𝑈 (𝑈) −→ M𝑉 (𝑉). After intersecting

with another étale neighbourhood of 𝑥, which by an abuse of notation we denote
again by 𝑉 , there exist liftings 𝑝 of the unique elements 𝑝 ∈ M𝑋,𝑥 The universal
property for the co-cartesian diagram above gives a morpism

𝑠 := (ℎ, 𝑝) :M𝑉,𝑥 ≅ M𝑋,𝑥 ≅ 𝑃𝑦 ⊕ ℕ −→M𝑉 (𝑉)

Moreover, 𝑠 : M𝑈,𝑥 −→ M𝑈 (𝑈) can be considered as a chart since M𝑋 is a
saturated sheaves of monoids (see Theorem 1.4.4).

Consider the composition

𝑘 : 𝑃𝑦
ℎ−→M𝑈 (𝑈)

𝑘@
𝑈
(𝑈)

−−−−−→M𝑈 ′′ (𝑈) −→ M𝑉 ′′ (𝑉)

After intersecting with another étale neighbourhood of 𝑥, which by an abuse of
notation we denote again by 𝑉 , there exist liftings 𝑡 of the unique elements 𝑝 ∈
M𝑋,𝑥.

Thus, we have a morphism

𝑡 := (𝑘, 𝑡) :M𝑉 ′′,𝑥 ≅ M𝑋 ′′,𝑥 ≅ 𝑃𝑦 ⊕ ℕ −→M𝑉 ′′ (𝑉)

Moreover, we have the equality as in Case 2

𝑎@(𝑉)𝑡 = 𝑏@(𝑉)𝑠

which agrees on the stalks at 𝑥, hence in another étale neighbourhood which by
an abuse of notation is 𝑉 étale−−−→ 𝑋 . Thus, we have a commuatative diagram:

M𝑉 ′′

M𝑉 ≅ (𝑃𝑦 ⊕ ℕ)log

M𝑉 ′

𝑠log

Thus, 𝑠log induces the local extension of ℎ@ :M𝑋 −→M𝑋 ′′
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Step 4: All the morphisms in Steps 2 and 3 glue together: This follows from the
following lemma in [21, §3.7 and §3.8]. ■

Lemma 2.4.2. Let (𝐴, 𝑚𝐴) be a noetherian local henselian ring with 𝑠 ∈ 𝑚𝐴. Let
us denote by (𝑅, 𝑚𝑅) := 𝐴[𝑋,𝑌]

(𝑋𝑌−𝑠)
𝑠ℎ

the strict henselization with respect to the ideal
(𝑋,𝑌, 𝑚𝐴). Under the canonical faithfully flat morphism, let

𝐴[𝑋,𝑌]
(𝑋𝑌 − 𝑠) −→ 𝑅

𝑋 ↦−→ 𝑥; 𝑌 ↦−→ 𝑦

1. Suppose there exists 𝑥′, 𝑦′ ∈ 𝑅; 𝑠′ ∈ 𝐴 such that 𝑥′𝑦′ = 𝑠′ and (𝑥, 𝑦, 𝑚𝐴) =
(𝑥′, 𝑦′, 𝑚𝐴). Then the pairs (𝑥, 𝑦) and (𝑥′, 𝑦′) dif and only ifer by units in 𝑅.

2. Suppose there exist units 𝑢𝑥, 𝑢𝑦 ∈ 𝑅∗ such that 𝑥𝑙𝑢𝑥 = 𝑥𝑙, 𝑦𝑙𝑢𝑦 = 𝑦𝑙 for some
𝑙 ∈ ℕ and 𝑢𝑥𝑢𝑦 ∈ 𝐴∗. Then 𝑢𝑥 = 𝑢𝑦 = 1.

Now we will check that the fibered category of log curves LM 𝑔 and hence the
fibered category of stable log curves of type (𝑔, 𝑛): LM 𝑔,𝑛 satisfy the two condi-
tions in Gillam’s main result in Theorem 2.2.11.

First we shall show that every log curve is a pull-back of a unique minimal log
curve (Uniqueness basically follows from the definition of minimality). The idea
of the proof is to locally construct a log curve Xmin −→ Ymin and verify that the
morphism 𝑞 : 𝑃𝑦 −→ M𝑌,𝑦 is an isomorphism for every 𝑦 and then use Theorem
2.4.1 to claim minimality.

Remark 2.4.3. 1. In Theorem 2.4.1, we do not get to see how the log structure
on the total space looks like. This will be described in the next result.

2. The next result also gives a converse to Theorem 2.4.1, i.e. every minimal
log curve satisfies the property that the morphism 𝑞 : 𝑃𝑦 −→ M𝑌,𝑦 is an
isomorphism for every 𝑦. Thus, we will get a complete classification of all
minimal log curves (hence minimal stable log curves) characterized by the
log structure on the base.
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Theorem 2.4.4. For any log curve 𝑓 : X −→ Y, there exists a unique minimal log
curve 𝑓min : Xmin −→ Ymin and a morphism of log curves

X Xmin

Y Ymin

ℎ

𝑓 𝑓min

𝑔

such that 𝑔 = 𝐼𝑑Y .

Proof. The uniqueness statement in the theorem follows once we verify that the
constructed log curve 𝑓min : Xmin −→ Ymin is minimal.

The morphism 𝑔 will be constructed étale locally on 𝑌 . Using the gluing Lemma
2.4.2 in the previous theorem, the minimal log structures will glue together. Let
𝑦 ∈ 𝑌 be any schematic point. Let 𝑋 𝑦

ℤ
= {𝑥1, ...., 𝑥𝑛} be the finite set of nodal

points in the fiber over 𝑦 as before. Similarly, set 𝑋 𝑦
ℕ

:= {𝑥 ∈ 𝑓 −1(𝑦) | M𝑋/𝑌,𝑥 ≅

ℕ} = {𝑥𝑛+1, ...., 𝑥𝑛+𝑚}.

Let 𝑈 étale−−−→ 𝑌 be an étale neighbourhood of 𝑦 to which we extend the unique
elements 𝑞𝑥𝑖 ∈ M𝑌,𝑦 from Theorem 2.3.1 to 𝑞𝑖. Let 𝑈𝑖

étale−−−→ 𝑋 be an étale
neighbourhood of 𝑥𝑖 to which we extend the unique pair of elements (𝑝1,𝑖, 𝑝2,𝑖) to
(𝑝1,𝑖, 𝑝2,𝑖) ∀ 𝑖 ∈ {1, ...., 𝑚} and similarly lift the unique elements 𝑝𝑖 ∈ M𝑋,𝑥𝑖 ∀ 𝑖 ∈
{𝑚+1, ...., 𝑚+𝑛}. Moreover, 𝑓 is a strict morphism of log schemes away from the
union (in the sense of Grothendieck’s topology) of the𝑈𝑖’s.

LetM𝑈min be the log structure associated to the morphism of sheaves of monoids
𝑞 := (𝑞1, ....., 𝑞𝑛) : ℕ𝑛 −→ M𝑈 (𝑈) −→ O𝑈 (𝑈). In other words, ℕ𝑛 −→ M𝑈min (𝑈)
is a chart. Note that, the associated log structure M𝑈min is a fine saturated
sheaves of monoids on 𝑈. Since the associated log structure is defined by the
pushout out diagram

𝑞−1(O∗
𝑈
) O∗

𝑈

ℕ𝑛 (ℕ𝑛)log

Hence, by the universal property of the co-cartesian diagram there exists a unique
morphism
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M𝑈min −→M𝑈

For 𝑖 ∈ {1, ...., 𝑛}, setM𝑈min
𝑖

to be the log structure associated to

ℎ𝑖 := ( 𝑓 @𝑞, 𝑝𝑖,1, 𝑝𝑖,2) : ℕ𝑛 ⊕ℕ ℕ2 −→M𝑈𝑖 (𝑈𝑖) −→ O𝑈𝑖 (𝑈𝑖)

where 𝑓 @𝑞 : ℕ𝑛
𝑓 ∗𝑞
−−→ 𝑓 ∗M𝑈 (𝑈𝑖)

𝑓 @

−−→M𝑈𝑖 (𝑈𝑖) −→ O𝑈𝑖 (𝑈𝑖)

By similar arguments as above, there exists a unique morphism

M𝑈min
𝑖
−→M𝑈𝑖

The logarithmification of the morphism ℕ𝑛 −→ ℕ𝑛 ⊕ℕ ℕ2 determines the mor-
phism ( 𝑓 ∗M𝑈min) |𝑈𝑖 −→M𝑈min

𝑖
. In other words, the morphism of monoids ℕ𝑛 −→

ℕ𝑛 ⊕ℕ ℕ2 serves as a chart for ( 𝑓 ∗M𝑈min) |𝑈𝑖 −→M𝑈min
𝑖
.

ℕ𝑛 ℕ𝑛 ⊕ℕ ℕ2

( 𝑓 ∗M𝑈min) |𝑈𝑖 (𝑈𝑖) M𝑈min
𝑖
(𝑈𝑖)

For 𝑖 ∈ {𝑛 + 1, ...., 𝑚 + 𝑛} set M𝑈min
𝑖

to be the log structure associated to the
morphism

ℎ𝑖 := ( 𝑓 @𝑞, 𝑝𝑖) : ℕ𝑛 ⊕ ℕ −→M𝑈𝑖 (𝑈𝑖) −→ O𝑈𝑖 (𝑈𝑖)

By similar arguments as above, there exists a unique morphism

M𝑈min
𝑖
−→M𝑈𝑖

The logarithmification of the morphism ℕ𝑛 −→ ℕ𝑛 ⊕ℕ determines the morphism
( 𝑓 ∗M𝑈min) |𝑈𝑖 −→M𝑈min

𝑖
. In other words, the morphism of monoids ℕ𝑛 −→ ℕ𝑛 ⊕ℕ

serves as a chart for ( 𝑓 ∗M𝑈min) |𝑈𝑖 −→M𝑈min
𝑖
.
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ℕ𝑛 ℕ𝑛 ⊕ ℕ

( 𝑓 ∗M𝑈min) |𝑈𝑖 (𝑈𝑖) M𝑈min
𝑖
(𝑈𝑖)

Thus, we have a morphism of log schemes

𝑓min
𝑖 : (𝑈𝑖,M𝑈min

𝑖
) −→ (𝑈,M𝑈min) ∀ 𝑖 ∈ {1, ...., 𝑚 + 𝑛}

This is log étale by the torroidal chart criterion (see [22, IV.3.1.13]) and hence
defines a log curve. The morphism 𝑓 ′

𝑖
is an integral morphism of log schemes since

the underlying schemes in the construction remained same as in the original log
curve.

Further, we have a commutative diagram of log schemes:

(𝑈𝑖,M𝑈𝑖) (𝑈𝑖,M𝑈min
𝑖
)

(𝑋,M𝑋 ) (𝑋,M𝑋min)

(𝑈,M𝑈) (𝑈,M𝑈min)

(𝑌,M𝑌 ) (𝑌,M𝑌min)

𝑓𝑖

𝑓min
𝑖

The commutativity of the square behind follows from the construction. More pre-
cisely, we need to check that the following diagram is co-cartesian in the category
of monoids:

M𝑌min,𝑦 M𝑌,𝑦

M𝑋min,𝑥 M𝑋,𝑥

for any 𝑥 ∈ 𝑋, 𝑦 = 𝑓 (𝑥)

We check this for 𝑥 in each of the following cases:

Case 1: 𝑥 does not lie in any of the𝑈𝑖 constructed above. In this case, 𝑓 is a strict
morphism, hence the diagram above is co-cartesian.
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Case 2: 𝑥 ∈ 𝑈𝑖, 𝑖 ∈ {1, ...., 𝑚}. Then we have the following commutative diagram
of monoids (using the explicit chart constructed for the minimal log curves):

ℕ𝑛 ℕ

M𝑌min,𝑦 M𝑌,𝑦

ℕ𝑛 ⊕ℕ ℕ2 ℕ2

M𝑋min,𝑥 M𝑋,𝑥

≅ 𝑞𝑥

Δ

≅ (𝑝1, 𝑝2)

Hence, the claim follows.

Case 3: 𝑥 ∈ 𝑈𝑖, 𝑖 ∈ {𝑛 + 1, ...., 𝑚 + 𝑛}. Then we have the following commutative
diagram of monoids:

M𝑌min,𝑦 ≅ ℕ𝑛 M𝑌,𝑦

M𝑋min,𝑥 ≅ ℕ𝑛 ⊕ ℕ M𝑋,𝑥 ≅M𝑌,𝑦 ⊕ ℕ

Hence, the claim follows.

Remark 2.4.5. The co-cartesian diagrams in Case 2 and Case 3 indeed justify the
schematic diagram in the beginning of this section. More elaborately, in Case 2
each ℕ in the base corresponding to each nodal point in the fibre is embedded
diagonally in ℕ2 whereas in Case 3, the base ℕ has no relations with the log
structure in the total space corresponding to the marked points.

The commutativity of the front diagram follows after checking that the minimal
log structures constructed on the total space can be glued together. This holds
true away from the union (in the sense of Grothendieck’s topology) of the étale
neighbourhoods𝑈𝑖.

We need to show that we have an isomorphism

M𝑈min
𝑖
|𝑈𝑖×𝑈𝑈 𝑗

≅M𝑈min
𝑗
|𝑈𝑖×𝑈𝑈 𝑗

∀𝑖 ≠ 𝑗
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If (𝑖, 𝑗) ∈ {1, ...., 𝑚} or (𝑖, 𝑗) ∈ {𝑚 + 1, ...., 𝑚 + 𝑛}, then the above isomorphism
holds by using Theorem 2.3.1. We need to verify the isomorphism in the case
𝑖 ∈ {1, ...., 𝑚} and 𝑗 ∈ {𝑚 + 1, ...., 𝑚 + 𝑛} (or vice versa).

Lastly we verify that the log curve constructed above satisfies that the morphism
𝑞 : 𝑃𝑦 −→ M𝑌min,𝑦 is an isomorphism for every 𝑦. Thus, using Theorem 2.4.1 we
conclude that the log curve 𝑓min : Xmin −→ Ymin is in minimal. This would also
justify Remark 2.4.3 that every minimal log curve satisfies that the morphism
𝑞 : 𝑃𝑦 −→M𝑌,𝑦 is an isomorphism for every 𝑦.

Here we claim that the morphism of monoids is given by

𝑞 : 𝑃𝑦 ≅ ℕ𝑋
𝑦

ℤ −→M𝑌min,𝑦

𝑒𝑥𝑖 ↦−→ 𝑞𝑖,𝑦

where 𝑥𝑖 are the schematic points in 𝑋min lying over the fibers over 𝑦 ∈ 𝑌min

such that 𝑋 𝑦
ℤ

= {𝑥1, ...., 𝑥𝑛} be the finite set of nodal points in the fiber over 𝑦
as before. Similarly, set 𝑋 𝑦

ℕ
:= {𝑥 ∈ 𝑓 −1(𝑦) | M𝑋/𝑌,𝑥 ≅ ℕ} = {𝑥𝑛+1, ...., 𝑥𝑛+𝑚}.

By the explicit chart description of 𝑓min : Xmin −→ Ymin, we have the following
co-cartesian diagram

ℕ M𝑌min,𝑦 M𝑌,𝑦

ℕ2 M𝑋min,𝑥 M𝑋,𝑥

𝑞𝑖,𝑦

Δ

Again by the structure theorem for log curves Theorem 2.3.1, the morphism 𝑞 as
defined above serves our purpose.

■

Remark 2.4.6. 1. The proof of the above theorem now fully justifies the
schematic picture of minimal log structures.

2. It is evident from the proof of the above theorem that if 𝑓 : 𝑋 −→ 𝑌 is a
family of smooth curves and 𝑌 is the underlying scheme of a fine saturated
log schemeY = (𝑌,M𝑌 ), then the log structure on 𝑋 is uniquely determined
by the log structureM𝑌 .
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Now we verify that a minimal log curve satisfies condition 2 in Gillam’s Theorem
2.2.11. Precisely,

Theorem 2.4.7. Consider a morphism of log curves

X Xmin

Y Ymin

ℎ

𝑓 𝑓min

𝑔

with Xmin −→ Ymin minimal log curve, then X −→ Y is minimal if and only if 𝑔
is a strict morphism of log schemes.

Proof. Since Xmin −→ Ymin is a minimal log curve,

M𝑌min,𝑦 ≅ 𝑃𝑦 M
𝑌,𝑔(𝑦)

M𝑋min,𝑥 M
𝑋,ℎ(𝑥)

for any 𝑥 ∈ 𝑋, 𝑦 = 𝑓 (𝑥)

If 𝑔 is strict then clearly X −→ Y is minimal. Conversely, X −→ Y minimal says
thatM

𝑌 ,𝑔(𝑦) ≅ 𝑃𝑔(𝑦). Since we are working with integral monoids, isomorphism
of characteristic monoids lifts to an isomorphism of monoids (See [22, I.4.1.2] for
details).

■

Remark 2.4.8. An example of a log curve which is not minimal:

Consider 𝑓 : 𝑋 −→ 𝑌 where 𝑌 = Spec 𝐴 is such that 𝐴 is a Henselian local
ring with uniformiser 𝜋. Endow 𝑌 with a log structure M𝑌 determined by the
chart ℕ −→ 𝐴 given by 1 ↦−→ 𝜋. Let the generic fiber 𝑋0 of 𝑓 be a smooth curve
of aritheoremetic genus 𝑔 > 0 and the special fiber 𝑋𝜋 be the gluing up of two
rational curves at two nodes. Endow 𝑋 with the log structure associated to the
normal crossing divisor 𝑋𝜋. Then X −→ Y is a log curve withM𝑌,𝑦 ≅ ℕ while
there are two nodes in the special fiber, hence not minimal by Theorem 2.4.1 and
Theorem 2.4.4.

Thus, for the stack LM 𝑔,𝑛, Gillam’s Theorem 2.2.11 yields that every 𝑛−pointed
stable curve of genus 𝑔 in the classical sense is the underlying morphism of
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schemes of a unique minimal stable log curve of type (𝑔, 𝑛). In other words, the
canonical morphism of stacks considered over (𝑆𝑐ℎ)ét forgetting the log structures
on the log curves

LMmin
𝑔,𝑛 −→M 𝑔,𝑛

is an isomorphism of stacks. Thus, inducingM 𝑔,𝑛, the classical moduli stack of
𝑛−pointed stable curves of genus 𝑔 with the log stack structure obtained from the
obvious log stack structure on LMmin

𝑔,𝑛 −→ (𝑆𝑐ℎ)ét gives us the isomorphism:

LM 𝑔,𝑛

Mlog
𝑔,𝑛

LogSch𝑓 𝑠
𝑠𝑡,ét

≅

This is the comparison we were seeking for. Hence, LM 𝑔,𝑛 −→ LogSch𝑓 𝑠
𝑠𝑡,ét is a

logarithmic Deligne-Mumford stack.

Remark 2.4.9. The construction of minimal logarithmic structures has been gen-
eralised to the case of semi-stable varieties using similar techniques as in the
construction of minimal logarithmic curves in [24, Section 4.3]. Generalising the
definition of a log curve (see Definition 2.1.1), M. Olsson defines the notion of an
essentially semi-stable variety. Precisely,

A log smooth proper morphism of fs log schemes 𝑓 : X −→ Y is said to be es-
sentially semi-stable if for every geometric point 𝑥 ∈ 𝑋 and 𝑦 = 𝑓 (𝑥), there exist
isomorphisms M𝑋,𝑥 ≅ ℕ𝑟+𝑠 and M𝑆,𝑠 ≅ ℕ𝑟 for some positive integers 𝑟 and 𝑠.
Moreover, the morphism

M𝑆,𝑦 ≅ ℕ𝑟 −→M𝑋,𝑥 ≅ ℕ𝑟+𝑠

is determined by

𝜖𝑖 ↦−→
⎧⎪⎪⎨⎪⎪⎩
𝜖𝑖 𝑖 ≠ 𝑟

𝜖𝑚 + · · · + 𝜖𝑚+𝑛 𝑖 = 𝑟
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where 𝜖𝑖 are the standard basis vectors. Recall from Example 1.2.19 that the map
above is integral and saturated.

Analogous to the structure Theorem 2.3.1, M. Olsson proves that the singularities
of an essentially semi-stable variety are at worst normal crossings in the classical
sense. For a singular point 𝑥 lying over 𝑦, we have a co-cartesian diagram of fs
monoids as in the case of Theorem 2.3.1.

ℕ𝑟 M𝑌,𝑦

ℕ𝑟+𝑠 M𝑋,𝑥

𝑞𝑥

𝑓
@
𝑥

(𝑝1,...,𝑝𝑟+𝑠)

Furthermore, there exist étale neighbourhoods 𝑈 and 𝑉 of 𝑥 and 𝑦 respectively
such that there exist lifts 𝑞 ∈ M𝑉 (𝑉) of 𝑞𝑥 (1) and (𝑝1, . . . 𝑝𝑟+𝑠) ∈ (M𝑈 (𝑈))𝑟+𝑠

satisfying 𝑝1 + · · · + 𝑝𝑟+𝑠 = 𝑓 @𝑞. Moreover, the underlying morphism of schemes

𝑈 −→ 𝑉 ×𝔸𝑟 𝔸𝑟+𝑠 = SpecO𝑉 (𝑉) [𝑢𝑟, . . . , 𝑢𝑟+𝑠]/(𝑢𝑟 · · · 𝑢𝑟+𝑠 −𝛼𝑉 (𝑞))

is an étale morphism, where𝛼𝑉 :M𝑉 −→ O𝑉 is the log structure and 𝑢1, . . . , 𝑢𝑟+𝑠

are the affine co-ordinates.

Moreover, we have a morphism of sets

𝑞 : {Nodal points over 𝑦} −→M𝑌,𝑦 = Irr(M𝑌,𝑦)

𝑥 ↦−→ 𝑞𝑥 (1)

Analogous to Theorem 2.4.1, M. Olsson proves that an essentially semi-stable
variety is minimal in the sense of Definition 2.2.11 if and only if the morphism 𝑞

above is an isomorphism and also verifies that the category of essentially semi-
stable varieties has enough minimal objects in the sense of Theorem 2.2.11.

Thus, one obtains a complete classification of log structures on semi-stable vari-
eties, similar to the case of log curves.



CHAPTER 3

The moduli space of admissible covers

In this chapter we first define logarithmic admissible covers following [21] and
give an explicit construction of minimal log admissible covers by identifying the
smoothing deformation parameters of the minimal log structures on the source
and target log curves up to the local ramification indices. Then we give the full
fledged modular interpretation of the space of log admissible covers in Theorem
3.3.1. Finally, we close the chapter by comparing the moduli space of log admissible
covers with the compactification of the classical Hurwitz space as introduced by
Harris and Mumford in [16].

3.1 Logarithmic admissible covers

Definition 3.1.1. Fix non-negative integers 𝑔, 𝑟, 𝑞, 𝑠, 𝑑 such that 2𝑔 − 2 + 𝑟 =

𝑑(2𝑞 − 2 + 𝑠). Let C −→ S and X −→ S be log curves of type (𝑔, 𝑟) and (𝑞, 𝑠)
respectively. A log admissible cover of type (𝑔, 𝑟, 𝑞, 𝑠, 𝑑) is a commutative diagram
of fine saturated log schemes

Z𝐶−→𝑋 :
C X

S

𝜋

ℎ
𝑓

with an underlying morphism of schemes

97
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Z𝐶−→𝑋 :
𝐶 𝑋

𝑆

𝜋

ℎ
𝑓

{𝑠𝑖}𝑠𝑖=1

{𝑠′
𝑖
}𝑟
𝑖=1

such that:

1. 𝜋 is log-étale.

2. 𝜋−1(𝑋𝑠𝑚𝑜𝑜𝑡ℎ) = 𝐶𝑠𝑚𝑜𝑜𝑡ℎ.

3. 𝜋 is a finite morphism of degree 𝑑 > 0 over the smooth locus of the fiber.

4. Sections defining the marked points are compatible, i.e.

O𝐶 (Σ𝑠′𝑖) ⊆ 𝜋∗(O𝑋 (Σ𝑠𝑖)) ⊆ 𝑑.O𝐶 (Σ𝑠′𝑖)

Note that we are considering unordered set of marked points. Hence, to be
precise, we will be considering the quotient of the stack of (log) stable curves
by the appropriate symmetric group.

5. 𝜋 : 𝐶 −→ 𝑋 has at worst nodal singularities and 𝜋−1(𝑋𝑠𝑖𝑛𝑔) = 𝐶𝑠𝑖𝑛𝑔, i.e. the
set of nodes of 𝐶 is precisely the preimage under 𝜋 of the set of nodes of 𝑋 .

6. 𝜋 is étale over the smooth locus of the morphism except over the closed sub-
scheme defined by the sections, where it exhibits tame ramification.

7. Admissibility condition over the nodal points: For every nodal point 𝑃 of 𝐶
lying over a nodal point 𝑄 of 𝑋 , ∃ 𝑙 := 𝑙𝑄,𝑃 ≤ 𝑑 ∈ ℤ and formally étale
neighbourhoods 𝑈 −→ 𝐶 of 𝑃, 𝑉 −→ 𝑋 of 𝑄 and Spec 𝐴 −→ 𝑆 of 𝑠 :=
𝑓 (𝑄) = ℎ(𝑃) such that𝑈 −→ 𝑉 −→ Spec 𝐴 factorises as in the commutative
diagram:
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Spec 𝐴[𝑢, 𝑣]/(𝑢𝑣 − 𝑎)

𝑈 Spec 𝐴[𝑥, 𝑦]/(𝑥𝑦 − 𝑎𝑙) Spec 𝐴

𝑉

for some 𝑎 ∈ 𝑚𝐴 in the local ring 𝐴, where

𝐴[𝑥, 𝑦]/(𝑥𝑦 − 𝑎𝑙) −→ 𝐴[𝑢, 𝑣]/(𝑢𝑣 − 𝑎)

𝑥 ↦−→ 𝑢𝑙

𝑦 ↦−→ 𝑣𝑙

Remark 3.1.2. The admissibility condition above can be restated as: For every
nodal point 𝑃 of 𝐶 lying over a nodal point 𝑄 of 𝑋 , ∃ 𝑙 := 𝑙𝑄,𝑃 ≤ 𝑑 ∈ ℤ and 𝑎 ∈
𝑚𝑆,𝑠 = 𝑚

𝑠ℎ
𝑆,𝑠
⊂ O𝑆,𝑠 =: 𝐴, 𝑢, 𝑣 ∈ 𝑚

𝐶,𝑃
= 𝑚𝑠ℎ

𝐶,𝑃
⊂ O

𝐶,𝑃
, 𝑥, 𝑦 ∈ 𝑚

𝑋,𝑄
= 𝑚𝑠ℎ

𝑋,𝑄
⊂ O

𝑋,𝑄

such that we have a factorisation given by:

𝐴 = O𝑆,𝑠

𝐴[𝑥,𝑦]
(𝑥𝑦−𝑎𝑙)

𝑠ℎ
= O

𝑋,𝑄

𝐴[𝑢,𝑣]
(𝑢𝑣−𝑎)

𝑠ℎ
= O

𝐶,𝑃

𝑥

𝑐1𝑢
𝑙

𝑦

𝑐2𝑣
𝑙

where 𝑐1, 𝑐2 ∈ O∗
𝑋,𝑄
, 𝑐1 · 𝑐2 ∈ 𝐴∗ and the strict henselizations are taken with

respect to the ideals (𝑥, 𝑦, 𝑚𝐴) and (𝑢, 𝑣, 𝑚𝐴) respectively. Moreover, choosing a
smaller étale neighbourhood, we can arrange 𝑎 = 𝛼𝐶 (𝑞𝑃), where 𝑞𝑃 is a lift of
the smoothing parameter 𝑞𝑃 of the node 𝑃 (see Theorem 2.3.1) to the chosen étale
neighbourhood and 𝛼𝐶 is the log structure on the curve 𝐶. The equivalence of
both the definitions follows from Lemma 2.4.2.

Thus, we have the fibered category of log admissible covers of type (𝑔, 𝑟, 𝑞, 𝑠, 𝑑)
defined by
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LA𝑑𝑚𝑔,𝑟

𝑞,𝑠,𝑑
−→ LogSch𝑓 𝑠

𝑠𝑡,ℤ[1/𝑑!]

𝑂𝑏 𝑗(LA𝑑𝑚𝑔,𝑟

𝑞,𝑠,𝑑
) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C X

S

𝜋

ℎ
𝑓 log admissible covers

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

𝐴𝑟𝑟(LA𝑑𝑚𝑔,𝑟

𝑞,𝑠,𝑑
) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C C ′

X X ′

S S′

S S′

cartesian front and back squares

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Remark 3.1.3. 1. The category LogSch𝑓 𝑠

𝑠𝑡,ℤ[1/𝑑!] is considered with the trivial
log structure on Specℤ[1/𝑑!]. Since we are interested in covers with tame
ramifications of degree 𝑑, we need to invert 𝑑!. Apart from that, we shall
need to invert 𝑑! while proving that the stack of log admissible covers is
proper and nowhere else.

2. Except hypothesis (1), all the conditions in Definition 3.1.1 depend only on
the underlying morphism of schemes. Hence, the fact that admissible covers
pull back to admissible covers follows from base the change property of log-
étale morphisms and the standard base change properties for properties
(2) − (7).

3. For a log admissible cover Z𝐶−→𝑋 over 𝑆, we denote the source family of log
curve over 𝑆 (resp. target family of log curve over 𝑆) by Z𝐶 (resp. Z𝑋 ).

4. The above definition of admissible cover generalises Harris and Mumfords’s
original definition in the following sense:

• We are considering covers of arbitrary curves with fixed discrete invari-
ants in our moduli space instead of fixing our target curve.

• The ramification over the closed subscheme defined by the sections is
not assumed to be simple.
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• The integers 𝑙 ≤ 𝑑 in the admissibility condition of Definition 3.1.1 are
allowed to vary depending upon the nodal points.

3.1.1 Minimal log structures on admissible covers

In this section we construct the minimal objects in the fibered category of admis-
sible covers following [21].

Let Z𝐶−→𝑋 be a log admissible cover over a base scheme 𝑆. For a schematic point
𝑠 ∈ 𝑆, set 𝑒 := |𝐶𝑠

ℤ
|, 𝑒′ := |𝑋 𝑠

ℤ
|, the number of nodes lying over 𝑠 ∈ 𝑆 in 𝐶 and 𝑋

respectively as in Section 2.4. Note that by (5) of Definition 3.1.1, we have 𝑒 ≥ 𝑒′.

Let us denote by Smin, C = (𝑆,Mmin,C
𝑆
) to be the minimal log scheme determined

by the nodes in the log curve ℎ : C −→ S as constructed in Section 2.4. Similarly,
let Smin,X = (𝑆,Mmin,X

𝑆
) be the minimal log scheme determined by the nodes in

the log curve 𝑓 : X −→ S. LetMmin
𝐶
, Mmin

𝑋
be the minimal log structures on the

total spaces 𝑋 and 𝐶 respectively. Thus, we have a diagram of log curves with the
front and back square cartesian

C Cmin

X Xmin

S Smin,C

S Smin,X

𝜋
ℎ

ℎmin

𝑓

𝑓min

Moreover, recall from Theorem 2.3.1 that we have the following co-cartesian dia-
grams of fine saturated monoids:

ℕ Mmin,C
𝑆,𝑠 ≅ ℕ𝑒

ℕ2 Mmin
𝐶,𝑃 ≅ ℕ𝑒 ⊕ℕ ℕ2

Δ

𝑞𝑃

(𝑝𝑃1 ,𝑝
𝑃
2 )

ℕ Mmin,X
𝑆,𝑠 ≅ ℕ𝑒

′

ℕ2 Mmin
𝑋,𝑄 ≅ ℕ𝑒

′ ⊕ℕ ℕ2

Δ

𝑞′
𝑄

(𝑝𝑄1 ,𝑝
𝑄

2 )

where 𝑃 and 𝑄 are nodes in the fibers 𝐶𝑠 and 𝑋𝑠, respectively, such that
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⎧⎪⎪⎨⎪⎪⎩
𝑝𝑃1 (1) + 𝑝

𝑃
2 (1) = 𝑞𝑃 (1)

𝑝
𝑄

1 (1) + 𝑝
𝑄

2 (1) = 𝑞
′
𝑄
(1)

(3.1.1)

The structural morphism𝛼min
𝑋

:Mmin
𝑋
−→ O𝑋 preserves units, soO𝑋 is generated

as a sheaf of additive monoids by the image of 𝛼min
𝑋

. Hence, using this and the
relation in Equation (3.1.1), there exists a unique pair ˜︁𝑥,˜︁𝑦 ∈ Mmin

𝑋,𝑄
with ˜︁𝑥 + ˜︁𝑦 =˜︁𝑏 ∈ Mmin,X

𝑆,𝑠
and such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛼min
𝑋,𝑄

:Mmin
𝑋,𝑄
−→ O

𝑋,𝑄˜︁𝑥 ↦−→ 𝑥˜︁𝑦 ↦−→ 𝑦

𝛼min,X
𝑆,𝑠

:Mmin,𝑋
𝑆,𝑠

−→ O𝑆,𝑠˜︁𝑏 ↦−→ 𝑎𝑙

(3.1.2)

To check the uniqueness of the pair, suppose there exists another pair ˜︁𝑥′,˜︁𝑦′ ∈
Mmin

𝑋,𝑄
satisfying the relations in (3.1.2). By the uniqueness of 𝑞′

𝑄
, 𝑝

𝑄

1 , 𝑝
𝑄

2 , we have

that ˜︁𝑥,˜︁𝑥′ map to the same element in Mmin
𝑋,𝑄. Similarly ˜︁𝑦,˜︁𝑦′ map to the same

element inMmin
𝑋,𝑄. Thus, ˜︁𝑥 = ˜︁𝑥′ + 𝑐1 and ˜︁𝑦 = ˜︁𝑦′ + 𝑐2 for some 𝑐1, 𝑐2 ∈ O

∗
𝑋,𝑄. Since˜︁𝑥 +˜︁𝑦, ˜︁𝑥′ +˜︁𝑦′ ∈ Mmin,X

𝑆,𝑠
and˜︁𝑥 +˜︁𝑦 = ˜︁𝑥′ +˜︁𝑦′ ∈ Mmin,X

𝑆,𝑠 , we have 𝑐1.𝑐2 ∈ O
∗
𝑆,𝑠. Thus, by

using Lemma 2.4.2, we have 𝑐1 = 𝑐2 = 1. Hence, ˜︁𝑏 is also uniquely determined.

Similarly, there exist a unique pair ˜︁𝑢,˜︁𝑣 ∈ Mmin
𝐶,𝑃

with ˜︁𝑢+˜︁𝑣 = ˜︁𝑎 ∈ Mmin,X
𝑆,𝑠

and such
that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛼min
𝐶,𝑃

:Mmin
𝐶,𝑃
−→ O

𝐶,𝑃˜︁𝑢 ↦−→ 𝑢˜︁𝑣 ↦−→ 𝑣

𝛼min,C
𝑆,𝑠

:Mmin,𝐶
𝑆,𝑠

−→ O𝑆,𝑠˜︁𝑎 ↦−→ 𝑎

(3.1.3)



Logarithmic admissible covers 103

Note that ˜︁𝑎,˜︁𝑢,˜︁𝑣,˜︁𝑥,˜︁𝑦 are non-units in the respective monoids. We have the canon-
ical morphism induced by the log structures on the log curves

ℕ𝑒 ⊕ ℕ𝑒
′ (𝑞𝑃1 ,...,𝑞𝑃𝑒 ,𝑞𝑄1 ,...,𝑞𝑄𝑒′ )−−−−−−−−−−−−−−−−−−→Mmin,𝐶

𝑆,𝑠
⊕Mmin,𝑋

𝑆,𝑠
−→ O𝑆,𝑠

where (𝑞𝑃1, . . . , 𝑞𝑃𝑒) are the smoothing parameters of the nodes (𝑃1, . . . , 𝑃𝑒) in
𝐶𝑠 and (𝑞𝑄1, . . . , 𝑞𝑄𝑒′) are the smoothing parameters of the nodes (𝑄1, . . . , 𝑄𝑒′)
in 𝑋𝑠.

We can lift ˜︁𝑎 and ˜︁𝑏 to a common étale neighbourhood of 𝑠, which by an abuse of
notation we denote by 𝑆. Furthermore, we can lift ˜︁𝑥,˜︁𝑦 to an étale neighbourhood
of 𝑄 lying over 𝑆, which by an abuse of notation we denote by𝐶. Similarly, we can
lift ˜︁𝑢,˜︁𝑣 to an étale neighbourhood of 𝑃 lying over 𝑆, which by an abuse of notation
we denote by 𝑋 . These étale neighbourhoods can be chosen such that˜︁𝑎,˜︁𝑏,˜︁𝑥,˜︁𝑦,˜︁𝑢,˜︁𝑣
satisfy the relations as in (3.1.2) and (3.1.3). In the étale neighbourhood of the
point 𝑠, we define the minimal log admissible structureMmin,𝐿𝐴

𝑆
on the base as

the log structure associated with the morphism(︂
Mmin,𝐶

𝑆
⊕O∗

𝑆
Mmin,𝑋

𝑆

)︂
/∼ −→ O𝑆 (3.1.4)

where ‘ ∼’ is defined by the minimal congruence relation stable under the monoid
operation inMmin,𝐶

𝑆
⊕O∗

𝑆
Mmin,𝑋

𝑆
that identifies all the local sections (0,˜︁𝑏) ∼ (˜︁𝑎, 0).

In other words, the equivalence relation ‘ ∼’ is defined by the set

{(˜︁𝑏 + 𝑛𝑒, 𝑛𝑒′); (𝑛𝑒,˜︁𝑎 + 𝑛𝑒′) |𝑛𝑒, 𝑛𝑒′ ∈ ℕ}
Thus, (ℕ𝑒 ⊕ ℕ𝑒

′)/∼ −→ Mmin,𝐿𝐴
𝑆

is a chart for the minimal log structure on the
base 𝑆. These charts glue in the étale neighbourhoods in view of Lemma 2.4.2.
Moreover, (ℕ𝑒 ⊕ ℕ𝑒

′)/∼ is a fine saturated monoid as needed in the efinition of a
log curve (see Definition 2.1.1).

An alternative description:

Alternatively, using the equivalent definition of admissibility stated in Remark
3.1.2, the congruence relation ‘∼’ identifies the extension of the smoothing param-
eters of the source and target curve in the étale neighbourhoods up to multiplicity,
i.e.
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(0, 𝑙 · 𝑞𝑄) ∼ (𝑞𝑃, 0) (3.1.5)

Thus, we have a local neat chart ℕ𝑒+𝑒′−𝑘 −→ Mmin,𝐿𝐴
𝑆

where the ‘𝑘’ components
are obtained by identifying the smoothing parameters up to multiplicity as above.

Example 3.1.4. The intuitive idea in compactifying the Hurwitz space is to allow
both the source and the target curve to be singular. Thus, a basic example of
an admissible cover arises by considering smooth branched covers of a curve and
then gluing together certain points away from the branched points. For instance,
consider a degree two cover of 𝜋 : ℙ1

𝑘
−→ ℙ1

𝑘
as shown in Figure 3.1.

Figure 3.1: A degree two branched cover of ℙ1
𝑘

The marked points are labelled in blue over which it has tame ramification. In
the base, we glue together the points 𝑄1 and 𝑄2 to obtain a node 𝑄 as in Figure
3.2. We denote the resulting stable curve by 𝑋𝑠, which lies over a geometric point
𝑠. Similarly, we glue the points 𝑃2

1 and 𝑃2
1 to obtain a node 𝑃1 and glue the points

𝑃1
2 and 𝑃2

2 to obtain a node 𝑃2 in the total space as in Figure 3.2. We denote the
resulting stable curve by 𝐶𝑠, which lies over a geometric point 𝑠.

The nodal curve 𝐶𝑠 has nodes 𝑃1 and 𝑃2 and the nodal curve 𝑋𝑠 has a node 𝑄
such that 𝑃1 ↦−→ 𝑄 and 𝑃2 ↦−→ 𝑄 under 𝜋. The marked points are labelled in
blue in Figure 3.2 such that the cover 𝜋 : 𝐶𝑠 −→ 𝑋𝑠 is branched over the marked
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points. The map 𝜋 : 𝐶 −→ 𝑋 is of degree two with 𝑙 = 1 for every node in the
source and target curve as drawn in Figure 3.2 below. Thus, 𝜋 : 𝐶 −→ 𝑋 satisfies
conditions (2) − (6) in Definition 3.1.1.

Admissibility Condition 7 of the Definition 3.1.1 gives us étale locally a relation

𝐴[𝑥, 𝑦]/(𝑥𝑦 − 𝑎𝑙) −→ 𝐴[𝑢, 𝑣]/(𝑢𝑣 − 𝑎)

𝑥 ↦−→ 𝑢𝑙

𝑦 ↦−→ 𝑣𝑙

over the nodes, where 𝑥, 𝑦, 𝑎 are the local system of parameters as in Definition
3.1.1. In this case, 𝑙 = 1.

The minimal log structure on 𝑠 that comes from 𝐶𝑠 is given by ℕ2, determined by
the smoothing parameters 𝑞𝑃1 and 𝑞𝑃2. Similarly, the minimal log structure on 𝑠
that comes from 𝑋𝑠 is given by ℕ, determined by 𝑞𝑄.

Thus, the minimal log admissible structure on 𝑠 is given by (ℕ2 ⊕ ℕ)/∼ where ∼
identifies 𝑞𝑃𝑖 ∼ 𝑞𝑄 𝑗

if and only if 𝑃𝑖 ↦−→ 𝑄 𝑗 under the map 𝐶 −→ 𝑋 . Thus, the
minimal log structure on the curve is same as the target curve, i.e. ℕ ≅Mmin,𝐿𝐴

𝑆,𝑠 .

Figure 3.2: An admissible cover of degree two with a schematic representation of its
minimal log structure on the base point. The blue dots on the left hand side diagram
are the marked points
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Minimal log structure on the total space

In general, having constructed the minimal log structure on the base, we now
construct the minimal log structure on the total space of the admissible cover
Z𝐶−→𝑋 . We have the canonical morphisms of log schemes

𝑐𝑋 : Smin,𝐿𝐴 −→ Smin,X, 𝑐𝐶 : Smin,𝐿𝐴 −→ Smin,C

induced by

Mmin,𝐶
𝑆

−→
(︂
Mmin,𝐶

𝑆
⊕O∗

𝑆
Mmin,𝑋

𝑆

)︂
/∼ −→ O𝑆

Mmin,𝑋
𝑆

−→
(︂
Mmin,𝐶

𝑆
⊕O∗

𝑆
Mmin,𝑋

𝑆

)︂
/∼ −→ O𝑆

Define the log structureMmin,𝐿𝐴
𝐶

(resp. Mmin,𝐿𝐴
𝑋

) on the total space 𝐶 (resp. 𝑋 )
étale locally (by the same abuse of notation as above) by the log structure associ-
ated with

(ℎmin)∗Mmin,𝐿𝐴
𝑆

⊕(ℎmin)∗Mmin,𝐶
𝑆

Mmin
𝐶 −→ O𝐶 (3.1.6)

( 𝑓min)∗Mmin,𝐿𝐴
𝑆

⊕( 𝑓min)∗Mmin,𝑋
𝑆

Mmin
𝑋 −→ O𝑋 (3.1.7)

Thus, we have a commutative diagram

Cmin,𝐿𝐴 Cmin

Xmin,𝐿𝐴 Xmin

Smin,𝐿𝐴 Smin,C

Smin,𝐿𝐴 Smin,X

∃!𝜋min,𝐿𝐴

ℎmin,𝐿𝐴

ℎmin

𝑓min,𝐿𝐴
𝑓min

where the front and back squares are cartesian in the category of fs log schemes
(since Xmin,𝐿𝐴 −→ Smin,𝐿𝐴 and Cmin,𝐿𝐴 −→ Smin,𝐿𝐴 are integral saturated mor-
phisms). There exists a unique morphism 𝜋min,𝐿𝐴 : Cmin,𝐿𝐴 −→ Xmin,𝐿𝐴 defined
at the level of stalks in the following way:
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Since the underlying schemes of the minimal log admissible cover remains the
same as in the original family, we just need to define the morphism of log struc-
tures 𝜋min,𝐿𝐴

𝑃,𝑄
: Mmin,𝐿𝐴

𝑋,𝑄
−→ Mmin,𝐿𝐴

𝐶,𝑃
and verify 𝜋min,𝐿𝐴

𝑃,𝑄
is log étale for every 𝑃

and 𝑄, where 𝑃 ∈ 𝐶𝑠, 𝑄 ∈ 𝑋𝑠 and 𝜋min,𝐿𝐴(𝑃) = 𝑄. Since we are working over in-
tegral monoids, it is enough to define morphisms 𝜋min,𝐿𝐴

𝑃,𝑄
:Mmin,𝐿𝐴

𝑋,𝑄
−→Mmin,𝐿𝐴

𝐶,𝑃
.

Moreover, recall thatM
𝐶/𝑆,𝑃 ≅M𝑋/𝑆,𝑄 by Corollary 2.3.3.

Case 1: If M
𝐶/𝑆,𝑃 ≅ M𝑋/𝑆,𝑄 ≅ 0, then 𝑓min,𝐿𝐴 and ℎmin,𝐿𝐴 are strict morphisms

in an étale neighbourhood of 𝑃, resp. 𝑄. Thus,Mmin,𝐿𝐴
𝑋,𝑄

−→ Mmin,𝐿𝐴
𝐶,𝑃

is an
isomorphism determined uniquely by the minimal log structure on the base.

Moreover, 𝐶𝑃 −→ 𝑋𝑄 is smooth of relative dimension zero by Theorem 2.3.1
and the definition of log admissible cover. Hence, 𝜋min,𝐿𝐴

𝑃,𝑄
is log étale.

Case 2: IfM
𝐶/𝑆,𝑃 ≅M𝑋/𝑆,𝑄 ≅ ℕ, then by Theorem 2.3.1 the log structuresM

𝐶/𝑆,𝑃
(resp. M

𝑋/𝑆,𝑄) are étale locally given by divisorial log structures corre-
sponding to the sections {𝑠′

𝑖
}𝑟
𝑖=1 (resp. {𝑠𝑖}𝑠𝑖=1). By definition of a log admissi-

ble cover, the sections are compatible. Hence, the morphism of the divisorial
log structuresMmin

𝑋,𝑄
−→Mmin

𝐶,𝑃
is uniquely determined by the compatibility

of the sections. Thus, we have a well defined morphism of fs monoids:

𝜋min,𝐿𝐴
𝑃,𝑄

:Mmin,𝐿𝐴
𝑋,𝑄

≅Mmin
𝑋,𝑄 ⊕ℕ𝑒′M

min,𝐿𝐴
𝑆,𝑠 −→Mmin,𝐿𝐴

𝐶,𝑃
≅Mmin

𝐶,𝑃 ⊕ℕ𝑒M
min,𝐿𝐴
𝑆,𝑠

where 𝑒 and 𝑒′ are the number of nodes in 𝐶𝑠 and 𝑋𝑠 respectively. It is an
easy verification that 𝜋min,𝐿𝐴

𝑃,𝑄
preserves the relations that define the push-

forward monoids. By definition of a log admissible cover, 𝜋 exhibits a tame
ramification over the closed subscheme defined by the sections. Hence, the
above morphism satisfies the hypotheses of the chart criterion (Theorem
1.5.8).

Case 3: IfM
𝐶/𝑆,𝑃 ≅M𝑋/𝑆,𝑄 ≅ ℤ, then 𝑃 and 𝑄 are nodes in their respective fibers.

In order to define 𝜋min,𝐿𝐴
𝑃,𝑄

:Mmin
𝑋,𝑄 ⊕ℕ𝑒′M

min,𝐿𝐴
𝑆,𝑠 −→Mmin

𝐶,𝑃 ⊕ℕ𝑒M
min,𝐿𝐴
𝑆,𝑠 , it is

enough to define the map

Mmin
𝑋,𝑄 −→M

min
𝐶,𝑃
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Recall that in the co-cartesian diagrams

ℕ Mmin,C
𝑆,𝑠 ≅ ℕ𝑒

ℕ2 Mmin
𝐶,𝑃 ≅ ℕ𝑒 ⊕ℕ ℕ2

Δ

𝑞𝑃

(𝑝𝑃1 ,𝑝
𝑃
2 )

ℕ Mmin,X
𝑆,𝑠 ≅ ℕ𝑒

′

ℕ2 Mmin
𝑋,𝑄 ≅ ℕ𝑒

′ ⊕ℕ ℕ2

Δ

𝑞′
𝑄

(𝑝𝑄1 ,𝑝
𝑄

2 )

the parameters (𝑝𝑄1 ,𝑝
𝑄

2 ) are irreducible elements in the monoid Mmin
𝑋,𝑄.

Hence, it is sufficient to define the mapMmin
𝑋,𝑄 −→M

min
𝐶,𝑃 on these elements.

Thus, define

Mmin
𝑋,𝑄 −→M

min
𝐶,𝑃

𝑝
𝑄

1 ↦−→ 𝑙 · 𝑝𝑃1

𝑝
𝑄

2 ↦−→ 𝑙 · 𝑝𝑃2

The uniqueness of the above map can be argued as in the discussion after Equa-
tion 3.1.2 which basically uses Lemma 2.4.2. Moreover, by the chart criterion
𝜋min,𝐿𝐴
𝑃,𝑄

is log étale. Now, we can lift the maps 𝜋min,𝐿𝐴
𝑃,𝑄

to 𝜋min,𝐿𝐴
𝑃,𝑄

since we are
working over integral monoids and further check that these maps glue around
the nodes by invoking Lemma 2.4.2.

In conclusion, the above construction gives a log admissible cover

Cmin,𝐿𝐴 Xmin,𝐿𝐴

Smin,𝐿𝐴

𝜋min,𝐿𝐴

ℎmin,𝐿𝐴
𝑓min,𝐿𝐴

Example 3.1.5. Consider the example of a double admissible cover as in Example
3.1.4. Then the morphism of log structures at the nodes on the total space is given
by the morphism of charts

ℕ2 ⊕ℕ ℕ ⊕ ℕ𝑒 −→ ℕ2 ⊕ℕ ℕ ⊕ ℕ𝑒

(˜︁𝑥,˜︁𝑦, 𝑎) ↦−→ (𝑙.˜︁𝑢, 𝑙.˜︁𝑣, 𝑎)
Theorem 3.1.6. The log admissible cover constructed above is a minimal object
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in the fibered category LA𝑑𝑚𝑔,𝑟

𝑞,𝑠,𝑑
−→ LogSch𝑓 𝑠

𝑠𝑡,ℤ[1/𝑑!] in the sense of Definition
2.2.10.

Proof. Given a commutative diagram of log admissible covers

C′

C ′′ Cmin,𝐿𝐴

X′

X ′′ Xmin,𝐿𝐴

S′

S ′′ Smin,𝐿𝐴

𝜋′

∃ ! 𝛼

𝜋
′′

𝜋min,𝐿𝐴

𝑓 ′

∃ ! 𝛽

𝑓
′′

𝑓min,𝐿𝐴

𝑖 𝑗

∃ ! 𝛾

𝑖 = 𝑗 = 𝐼𝑑

we need to uniquely complete the commutative diagram. As in the proof of The-
orem 2.4.1, without loss of generality we may assume all the admissible covers
have the same underlying schemes, and concentrate only on the log structures
involved. Hence, it is enough to uniquely complete the dotted arrows of log struc-
tures in the following diagram
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Mmin,𝐿𝐴
𝑆

M′′
𝑆

M′
𝑆

Mmin,𝐿𝐴
𝑋

M′′
𝑋

M′
𝑋

Mmin,𝐿𝐴
𝐶

M′′
𝐶

M′
𝐶

∃ !

∃ !

∃ !

For every geometric point 𝑠 ∈ 𝑆, we constructed that

Mmin,𝐿𝐴
𝑆,𝑠 ≅

(︂
ℕ𝑒 ⊕ ℕ𝑒

′
)︂
/∼

where ‘ ∼’ is as defined in Equation 3.1.5. Hence, the morphism

Mmin,𝐿𝐴
𝑆,𝑠 −→M𝑆,𝑠

is uniquely determined by the images of the smoothing parameters

(𝑞𝑃1, . . . , 𝑞𝑃𝑒, 𝑞𝑄1, . . . , 𝑞𝑄𝑒′)

Since the smoothing parameters are unique, the uniqueness ofMmin,𝐿𝐴
𝑆,𝑠 −→M𝑆,𝑠

follows. Since we are dealing with log curves, the uniqueness of the morphisms
Mmin,𝐿𝐴

𝐶
−→M𝐶 andMmin,𝐿𝐴

𝑋
−→M𝑋 in the diagram above follows from exactly

the same argument as the uniqueness statements in Theorem 2.4.1. The existence
statements follow an exact road map as in the proof of Theorem 3.1.8 below.

■

Remark 3.1.7. By construction, the minimal log structureMmin,𝐿𝐴
𝑆

defines a DF
log structure on the base 𝑆.
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The next series of results show that the fibered category

LA𝑑𝑚𝑔,𝑟

𝑞,𝑠,𝑑
−→ LogSch𝑓 𝑠

𝑠𝑡,ℤ[1/𝑑!]

has enough minimal objects in the sense of Theorem 2.2.11.

Theorem 3.1.8. For any log admissible cover Z𝐶−→𝑋 , there exists a unique mini-
mal log admissible cover Z𝐶

min,𝐿𝐴−→𝑋min,𝐿𝐴 such that the diagram

C Cmin,𝐿𝐴

X Xmin,𝐿𝐴

Smin,𝐿𝐴 Smin,𝐿𝐴

S Smin,𝐿𝐴

𝜋
ℎ

ℎmin,𝐿𝐴𝜋min,𝐿𝐴

𝑓

𝑓min,𝐿𝐴

is a morphism of log admissible covers and S = Smin,𝐿𝐴.

Proof. The morphism S −→ Smin,𝐿𝐴 will be constructed étale locally on the
base. Let 𝑠 be a geometric point in 𝑆. Let 𝑄1, . . . , 𝑄𝑒′ be the nodes in 𝑋𝑠 and
let 𝑃1

1 , . . . , 𝑃
𝑗1
1 , . . . , 𝑃

1
𝑒′, . . . , 𝑃

𝑗𝑒′
𝑒′ be the nodes in 𝐶𝑠 such that Σ𝑒

′

𝑛=1 𝑗𝑛 = 𝑒 and
𝜋(𝑃𝑘

𝑖
) = 𝑄𝑖 ∀𝑖, 1 ≤ 𝑘 ≤ 𝑗𝑖. As in the construction of the minimal log admissible

covers, lift the smoothing parameters 𝑞𝑃𝑘
𝑖

and 𝑞𝑄𝑖 to a common étale neighbour-
hood of 𝑠 which by an abuse of notation we again call 𝑆. Then defineMmin,𝐿𝐴

𝑆
to

be the log structure associated with the morphism(︂
ℕ𝑒 ⊕ ℕ𝑒

′
)︂
/∼−→M𝑆 −→ O𝑆

where ‘ ∼’ is the identification of the lifts of smoothing parameters as in the con-
struction of minimal log admissible covers in Equation 3.1.5. Thus, we have a
canonical morphism

Mmin,𝐿𝐴
𝑆

−→M𝑆

Further, extend the parameters (𝑝𝑄𝑖1 , 𝑝
𝑄𝑖
2 ) to an étale neighbourhood of 𝑄𝑖. Then
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defineMmin,𝐿𝐴
𝑋

to be the log structure associated with the morphism

ℕ𝑒
′ ⊕ℕ ℕ2 ⊕ℕ𝑒′

(︂
ℕ𝑒 ⊕ ℕ𝑒

′
)︂
/∼−→M𝑋 −→ O𝑋

Similarly, defineMmin,𝐿𝐴
𝐶

to be the log structure associated with the morphism

ℕ𝑒 ⊕ℕ ℕ2 ⊕ℕ𝑒
(︂
ℕ𝑒 ⊕ ℕ𝑒

′
)︂
/∼−→M𝐶 −→ O𝐶

The morphismMmin,𝐿𝐴
𝑋

−→Mmin,𝐿𝐴
𝐶

is defined as usual by defining

𝑝
𝑄𝑖
1 ↦−→ 𝑙 · 𝑝𝑃

𝑘
𝑖

1

𝑝
𝑄𝑖
2 ↦−→ 𝑙 · 𝑝𝑃

𝑘
𝑖

2

It is easy to see this morphism is log étale, as we have also done before. Other
hypotheses of a log admissible cover depend upon the underlying schemes which
remains the same in the construction of minimal log admissible covers. Hence,
we are done.

For points in the closed subschemes defined by the sections, replace the log part
given by ℕ𝑒 ⊕ℕ ℕ2 with only ℕ𝑒. Similarly, replace the log part given by ℕ𝑒

′ ⊕ℕ ℕ2

with only ℕ𝑒
′, to define the charts of log structures. Log étaleness is clear by tame

ramification and other hypotheses are scheme theoretic. Hence, we are done.

Over the points in the smooth locus of the cover, the log structure on the total
space is defined as the pull back of Mmin,𝐿𝐴

𝑆
. Hence, we are done in this case.

Next we need to verify that the charts constructed above indeed give us minimal
log admissible structures, which one does stalk wise, very similarly to the proof
of Theorem 2.4.4. The uniqueness of Z𝐶min,𝐿𝐴−→𝑋min,𝐿𝐴 follows since it is indeed a
minimal object in the category of log admissible covers.

■

Theorem 3.1.9. Consider a morphism of log admissible covers
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C Cmin,𝐿𝐴

X Xmin,𝐿𝐴

S Smin,𝐿𝐴

S Smin,𝐿𝐴

𝜋
ℎ

ℎmin,𝐿𝐴𝜋min,𝐿𝐴

𝑓

𝑓min,𝐿𝐴

where the family on the right hand side is a minimal log admissible cover. Then
the family on the left hand side is minimal if and only if S −→ Smin,𝐿𝐴 is a strict
morphism of log schemes.

Proof. This clearly follows from the definition of a minimal log admissible struc-
ture on the base.

■

The following corollary immediately follows from the uniqueness of the morphism
𝜋min,𝐿𝐴 : Cmin,𝐿𝐴 −→ Xmin,𝐿𝐴 constructed above.

Corollary 3.1.10. The canonical morphism

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ LMmin
𝑞,𝑠 ×(𝑆𝑐ℎ)ℤ[1/𝑑!] LM

min
𝑔,𝑟

Z𝐶−→𝑋 −→ (Z𝐶, Z𝑋 )

sending a minimal log admissible cover to its source and target family is faithful.

3.1.2 An alternate description of the admissibility condi-
tion

The moral of the construction of the minimal log structures on an admissible
cover is that the tedious admissibility condition (7) in Definition 3.1.1 implies the
existence of the relatively easy to handle log structures. Recall that over the nodes
𝑃 and 𝑄, the morphism of minimal log structures is given by

𝜋min,𝐿𝐴
𝑃,𝑄

:Mmin
𝑋,𝑄 ⊕ℕ𝑒′M

min,𝐿𝐴
𝑆,𝑠 −→Mmin

𝐶,𝑃 ⊕ℕ𝑒M
min,𝐿𝐴
𝑆,𝑠
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Over the log structures not coming from the base 𝑆, the above morphism is given
by

Mmin
𝑋,𝑄 −→M

min
𝐶,𝑃

𝑝
𝑄

1 ↦−→ 𝑙 · 𝑝𝑃1

𝑝
𝑄

2 ↦−→ 𝑙 · 𝑝𝑃2

In the next set of definitions and results, we will see that morphisms of the above
type in fact define the admissibility condition (7) in Definition 3.1.1. Thus, in
the definition of a minimal log admissible cover, we can replace the admissibility
condition (7) by a condition depending purely on log structures.

Definition 3.1.11. 1. A morphism of fs log schemes 𝑓 : (𝑋,M𝑋 ) −→ (𝑌,M𝑌 )
is said to be irreducible of index 𝑙 at a geometric point 𝑥 ∈ 𝑋 if 𝑓 ∗𝑥 is a
monomorphism of monoids and for every irreducible element 𝑚 ∈ M𝑌,𝑓 (𝑥),
there exists an irreducible element 𝑛 ∈ M𝑋,𝑥 such that 𝑓 ∗𝑥 (𝑛) = 𝑙 ·𝑚, where
𝑓
∗
𝑥 is the morphism

𝑓
∗
𝑥 :M𝑌,𝑓 (𝑥) −→M𝑋,𝑥

For instance, if we have étale local charts such that M𝑌,𝑓 (𝑥) ≅ ℕ𝑒 and
M𝑋,𝑥 ≅ ℕ𝑒

′ and 𝑒′ ≥ 𝑒, then the morphism

ℕ𝑒 −→ ℕ𝑒
′

𝜖𝑖 ↦−→ 𝑙 · 𝜖𝑖

is an irreducible morphism, where 𝜖𝑖’s are the standard basis vectors. This
is exactly the situation we are in the case of minimal log admissible covers.

Remark 3.1.12. Let 𝜋 : (𝐶,M𝐶) −→ (𝑋,M𝑋 ) be a morphism of log stable curves
over a base (𝑆,M𝑆). Assume that 𝜋−1(𝑋𝑠𝑖𝑛𝑔) = 𝐶𝑠𝑖𝑛𝑔 and that 𝜋 is irreducible of
index 𝑙𝑃,𝑄 at all the nodal points of 𝑋 over the part of the log structure not coming
from the base 𝑆.

Furthermore, assume that for every node 𝑃 ∈ 𝐶, there exists an (unordered) pair
of elements (𝛼,𝛽) ∈ Γ(𝐶,M𝐶,𝑃) such that 𝛼 + 𝛽 ∈ Γ(𝑆,M𝑆,𝑠), where 𝑠 is the
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image of 𝑃 in 𝑆 and, moreover, étale locally at 𝑃, there exist lifts ˜︁𝛼 and ˜︁𝛽 of the
sections 𝛼 and 𝛽 respectively toM𝐶 such that the images of ˜︁𝛼 and ˜︁𝛽 under the
morphism

M𝐶 −→ O𝐶

generates the maximal ideal ofM𝐶,𝑃. We shall refer to such a pair (𝛼,𝛽) as a log
separating pair for the minimal log stable curve (𝐶,M𝐶) −→ (𝑆,M𝑆).
Moreover, assume also that the log stable curve (𝑋,M𝑋 ) −→ (𝑆,M𝑆) admits a
log separating pair.

Under the above hypotheses, it is easy to verify that we can indeed recover the
admissibility condition (7) in Definition 3.1.1, i.e. étale locally around the nodes,
we have the description

𝐴[𝑥, 𝑦]/(𝑥𝑦 − 𝑎𝑙) −→ 𝐴[𝑢, 𝑣]/(𝑢𝑣 − 𝑎)

𝑥 ↦−→ 𝑢𝑙
𝑃,𝑄

𝑦 ↦−→ 𝑣𝑙
𝑃,𝑄

The irreducibilty hypothesis uniquely determines the minimal log structure con-
structed in Section 3.1.1 on the base 𝑆.

Thus, we have the following alternative definition of a minimal log admissible
cover, purely relying on log structures:

Definition 3.1.13. Fix non-negative integers 𝑔, 𝑟, 𝑞, 𝑠, 𝑑 such that 2𝑔 − 2 + 𝑟 =

𝑑(2𝑞 − 2 + 𝑠). Let C −→ S and X −→ S be log curves of type (𝑔, 𝑟) and (𝑞, 𝑠)
respectively. A minimal log admissible cover of type (𝑔, 𝑟, 𝑞, 𝑠, 𝑑) is a commutative
diagram of fine saturated log schemes

Z𝐶−→𝑋 :
C X

S

𝜋

ℎ
𝑓

with an underlying morphism of schemes
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Z𝐶−→𝑋 :
𝐶 𝑋

𝑆

𝜋

ℎ
𝑓

{𝑠𝑖}𝑠𝑖=1

{𝑠′
𝑖
}𝑟
𝑖=1

such that:

(A) Conditions (1) − (6) in the Definition 3.1.1 hold.

(B) For every node 𝑃 ∈ 𝐶 and 𝑄 ∈ 𝑋 such that 𝜋(𝑃) = 𝑄, the morphism 𝜋 :
(𝐶,M𝐶) −→ (𝑋,M𝑋 ) is irreducible of index 𝑙𝑃,𝑄 for the part of the log
structure not coming fromM𝑆.

(C) Étale locally the log curves C −→ S andX −→ S admit log separating pairs
as defined in Remark 3.1.12.

Following [21, Proposition §3.17], we now show that up to a finite étale covering
of degree two, a log separating pair always exists étale locally on the base of a log
stable curve.

Lemma 3.1.14. Let 𝑓 : C −→ S be a log stable curve. Let 𝑃 be a node in 𝐶

lying over 𝑠 ∈ 𝑆. The, étale locally in a neighbourhood of 𝑠 ∈ 𝑆, there exists a log
separating pair (𝛼,𝛽) ∈ Γ(𝐶,M𝐶).

Proof. Case 1: 𝑃 is étale locally a separating node in the curve 𝐶𝑠, i.e. blowing
up the node at 𝑃 gives rise to two connected components.

In an étale neighborhood of 𝑃, there exist elements 𝑥, 𝑦 ∈ 𝑚𝐶,𝑃 ⊂ O𝐶,𝑃 and
𝑡 ∈ 𝑚𝑆,𝑓 (𝑃) such that 𝑥𝑦 = 𝑡, and such that 𝑥, 𝑦 generate 𝑚𝐶,𝑃 . Then, in a
neighborhood of 𝑃 where 𝑥 is defined and there are no nodes other than 𝑃, we
let 𝛼 to be the element ofM𝐶 defined by 𝑥 ∈ M𝐶 . Away from 𝑃, we define 𝛼 as
follows: Over the connected component where 𝑥 is not identically zero, take 𝛼 to
be the trivial section ofM𝐶. Over the connected component where 𝑥 is identically
zero, take 𝛼 to be the section ofM𝐶 defined by 𝑡 ∈ M𝐶. Similarly, define 𝛽 by
interchanging 𝑥 and 𝑦 in the argument above. By construction, (𝛼,𝛽) forms a
separating pair at 𝑃.

Case 2: 𝑃 is a non-separating node of the curve 𝐶𝑠. In this case, Mochizuki (see
[21, §3.18]) constructs a finite strict étale covering of degree two 𝜙 : ˜︁C −→ C such
that:
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• 𝜙−1(𝑃) consists of two points 𝑃1 and 𝑃2.

• Over 𝐶 \ 𝑃, ˜︁𝐶 consists of two disjoint copies of 𝐶 \ 𝑃.

The existence of a log separating pair for ˜︁𝐶 follows from exactly the same argu-
ment as in Case 1.

■

3.2 The stack of log admissible covers

With the new interpretation of a minimal log admissible cover (Definition 3.1.13)
invoking only log structures, we proceed towards our main goal of giving a stacky
interpretation to the moduli space of log admissible cover. Since the minimal
log structures we are dealing with are basically DF log structures (see Definition
1.6.1), a morphism of log structures boils down to morphisms of the line bundles
that determine the DF log structure, as will see in Lemma 3.2.7. The moduli
space of line bundles are classically well studied, hence, they are easier to deal
with.

In view of the representability of the relative Picard functor 𝑃𝑖𝑐𝑋/𝑆 (see Definition
A.2.1), we will repeatedly use the following fact:

Lemma 3.2.1. Let 𝑓 : 𝑋 −→ 𝑆 be a proper, flat map of noetherian schemes which
is finitely presented and cohomologically flat (i.e. O𝑆 ≅ 𝑓∗O𝑋 ). Let L1 and L2 be
line bundles on 𝑋 . Then, there exists an algebraic space of finite type ℨ −→ 𝑆 such
that for any 𝑇 −→ 𝑆, we have an isomorphism of line bundles 𝜋∗

𝑇
L1 ≅ 𝜋∗

𝑇
L2 if

and only if 𝑇 −→ 𝑆 factors through 𝑇 −→ ℨ −→ 𝑆, where 𝜋𝑇 : 𝑋 ×𝑆 𝑇 −→ 𝑇.

Theorem 3.2.2. The category fibered in groupoids LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ (𝑆𝑐ℎ)ℤ[1/𝑑!]
is a stack over (𝑆𝑐ℎ)ℤ[1/𝑑!] in the étale topology.

Proof. The fact that the isomorphism functor I𝑠𝑜𝑚𝑆 (Z1, Z2) : (𝑆𝑐ℎ/𝑆)𝑜𝑝 −→
(𝑆𝑒𝑡𝑠) is a sheaf in the étale topology for every family of minimal log admissible
covers Z1 and Z2 follows from Theorem 3.2.4 below.

To verify that the étale descent datum is effective for every family of
log admissible cover, let {𝑆𝑖 −→ 𝑆}𝑖 be an étale cover of 𝑆 and let
Z𝐶−→𝑋
𝑖

be elements of LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

(𝑆𝑖) for each 𝑖. Let us assume that we have
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the cocycle condition 𝜙𝑖 𝑗 : Z𝐶−→𝑋
𝑖 |𝑆𝑖×𝑆𝑆 𝑗

≅ Z𝐶−→𝑋
𝑗 |𝑆𝑖×𝑆𝑆 𝑗

for every pair (𝑖, 𝑗). Then there ex-

ists a unique Z𝐶 ∈ LM 𝑔,𝑟 (𝑆) such that Z𝐶|𝑆𝑖 ≅ Z𝐶
𝑖

holds for each 𝑖. Similarly, there
exists a unique Z𝑋 ∈ LM𝑞,𝑠(𝑆) such that we have Z𝑋|𝑆𝑖 ≅ Z𝑋

𝑖
for each 𝑖. Now we

need to argue that the local minimal log admissible covers extend uniquely to a
log admssible cover Z𝐶−→𝑋 . Since log structures are basically étale sheaves, lo-
cal morphisms of log structures extend. For properties (1) − (7) to extend in the
Definition 3.1.1, we invoke the standard results on étale descent.

■

Remark 3.2.3. One can also argue directly that the isomorphism functor is a sheaf
in the étale topology. The isomorphisms of log structures glue tautologically.
Moreover, isomorphisms of the source and target stable curves glue by invoking
the fact that the isomorphism functor for family of stable curves is a sheaf. Thus,
we just need to argue that the glued up log curves indeed extend uniquely to a
log admissible cover. This follows from the standard results on étale descent for
properties (1) − (7) in the Definition 3.1.1.

Theorem 3.2.4. The diagonal morphism

Δ : LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

×(𝑆𝑐ℎ)ℤ[1/𝑑!] LA𝑑𝑚
𝑔,𝑟,min
𝑞,𝑠,𝑑

is representable.

Equivalently, the isomorphism functor I𝑠𝑜𝑚𝑆 (Z𝐶−→𝑋 , Z𝐶
′−→𝑋 ′) : (𝑆𝑐ℎ/𝑆)𝑜𝑝 −→

(𝑆𝑒𝑡𝑠) is representable, hence it is a sheaf in the étale topology for every family of
minimal log admissible covers Z𝐶−→𝑋 , Z𝐶

′−→𝑋 ′ ∈ LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

(𝑆).

Proof. We have the following canonical morphism of functors

I𝑠𝑜𝑚𝑆 (Z𝐶−→𝑋 , Z𝐶
′−→𝑋 ′) I𝑠𝑜𝑚𝑆 (Z𝐶, Z𝐶

′) × I𝑠𝑜𝑚𝑆 (Z𝑋 , Z𝑋
′)

I𝑠𝑜𝑚𝑆 (Z𝐶, Z𝐶
′) × I𝑠𝑜𝑚𝑆 (Z𝑋 , Z𝑋

′)

ℌ𝔦𝔩𝔟𝐶×𝑆𝐶′/𝑆 × ℌ𝔦𝔩𝔟𝑋×𝑆𝑋 ′/𝑆

𝑖

𝑗

𝑘

where ℌ𝔦𝔩𝔟𝐶×𝑆𝐶′/𝑆 and ℌ𝔦𝔩𝔟𝑋×𝑆𝑋 ′/𝑆 are the Hilbert functors as defined in Section
A.2. The morphism 𝑘 above is representable by schemes by Theorem A.2.2. The
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morphism 𝑗 is representable by the openness of minimal log structures as proved
in Lemma 2.2.13. Thus, it is sufficient to show that 𝑖 is a representable morphism.
Equivalently, it is enough to prove the following lemma as discussed after Lemma
A.2.4.

■

Lemma 3.2.5. Let Z 𝑔,𝑟 : C −→ S and Z𝑞,𝑠 : X −→ S be minimal log stable curves
of type (𝑔, 𝑟) and (𝑞, 𝑠) respectively and let 𝜋 : Z 𝑔,𝑟 −→ Z𝑞,𝑠 be any morphism of
families of log stable curves. Then there exists an algebraic space ℨ −→ 𝑆 such
that for any morphism 𝑇 −→ 𝑆, the pullback family Z 𝑔,𝑟

𝑇
−→ Z𝑞,𝑠

𝑇
is a minimal log

admissible cover if and only if 𝑇 −→ 𝑆 factors through 𝑇 −→ ℨ −→ 𝑆.

Proof. We separately verify that the conditions (1) − (7) in Definition 3.1.1 satisfy
the universal property stated in the lemma and then take the intersection (in the
étale topology) of all the algebraic spaces thus obtained.

Being a log étale morphism is an open condition on the target, in other words, the
locus {𝑠 ∈ 𝑆 |𝐶𝑠 −→ 𝑋𝑠 is log étale} is open in 𝑆. Hence, condition (1) satisfies the
required universal property. By the same argument, condition (6) is also taken
care of.

To verify condition (3), note that the locus {𝑠 ∈ 𝑆 |𝐶𝑠 −→ 𝑋𝑠is quasi-finite} is open
in 𝑆, i.e. there exists a finite set of points 𝐶0 ⊂ 𝐶 such that 𝐶 \ 𝐶0 −→ 𝑋 \ 𝜋(𝐶0)
is quasi-finite. Hence, ℨ := 𝑆 \ ℎ(𝐶0) is as required.

Condition (4) is taken care of by Corollary A.2.4.

The smooth locus of 𝐶 −→ 𝑆 can be written as

{𝑠 ∈ 𝑆 | Ω1
𝐶/𝑆,𝑠(𝐷

′) is a locally free O𝐶-module}

where Ω1
𝐶/𝑆 is the relative sheaf of dif and only iferentials of 𝐶 −→ 𝑆 and 𝐷′ is

the closed subscheme defined by the sections 𝑠′
𝑖
. Similarly, the smooth locus of

𝑋 −→ 𝑆 can be written as

{𝑠 ∈ 𝑆 | Ω1
𝑋/𝑆,𝑠(𝐷) is a locally free O𝑋 -module}

where Ω1
𝑋/𝑆 is the relative sheaf of dif and only iferentials of 𝑋 −→ 𝑆 and 𝐷 is

the closed subscheme defined by the sections 𝑠𝑖. Moreover, we have a canonical
morphism
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𝜋∗Ω1
𝑋/𝑆 (𝐷) −→ Ω1

𝐶/𝑆 (𝐷
′)

Thus, condition (2), i.e. 𝜋−1(𝑋𝑠𝑚𝑜𝑜𝑡ℎ) = 𝐶𝑠𝑚𝑜𝑜𝑡ℎ holds if and only if

{𝑠 ∈ 𝑆 | Ω1
𝐶/𝑆,𝑠(𝐷

′) is a locally free O𝐶-module}

{𝑠 ∈ 𝑆 | Ω1
𝑋/𝑆,𝑠(𝐷) is a locally free O𝑋 -module}

and 𝜋∗Ω1
𝑋/𝑆 (𝐷) |𝑇 −→ Ω1

𝐶/𝑆 (𝐷
′) |𝑇 is an isomorphism. The first condition is taken

care of by Corollary A.2.4 and the last consdition is taken care of by the repre-
sentability of the diagonal of the relative Picard functor (see Theorem A.2.9). In
fact, this also proves the claim for condition (5).
Thus, it remains to prove that the log admissibility condition (7) of Definition 3.1.1
satisfies the scheme-like properties as in the lemma. This will be achieved in the
next section while proving the algebraicity of the stack of minimal log admissible
covers.

■

Remark 3.2.6. Instead of working with minimal log admissible covers, one can
also work with the fibered category LA𝑑𝑚𝑔,𝑟

𝑞,𝑠,𝑑
−→ LogSch𝑓 𝑠

𝑠𝑡,ℤ[1/𝑑!] and prove
that the diagonal LA𝑑𝑚𝑔,𝑟

𝑞,𝑠,𝑑
−→ LA𝑑𝑚𝑔,𝑟

𝑞,𝑠,𝑑
× LA𝑑𝑚𝑔,𝑟

𝑞,𝑠,𝑑
is representable by a

log algebraic space. In order to prove that the morphism 𝑗 in the diagram above
is representable, one has to resort to the more general result by J. Wise stated
in Example A.2.7. The rest of the proof is analogous to the proof of Lemma 3.2.5
above.

3.2.1 Algebraicity: Representability of the canonical mor-
phism

In order to prove that LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ (𝑆𝑐ℎ)ℤ[1/𝑑!] is a log DM stack, we will
prove that the canonical morphism

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ LMmin
𝑞,𝑠 ×(𝑆𝑐ℎ)ℤ[1/𝑑!] LM

min
𝑔,𝑟

Z𝐶−→𝑋 −→ (Z𝐶, Z𝑋 )
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sending a minimal log admissible cover to its source and target family is repre-
sentable by an algebraic space of finite type, since LMmin

𝑞,𝑠 ×(𝑆𝑐ℎ)ℤ[1/𝑑!] LM
min
𝑔,𝑟 is

a logarithmic DM stack of finite type. In other words, for any scheme 𝑆 and a
morphism ([𝑞,𝑟, [𝑔,𝑠) : 𝑆 −→ LMmin

𝑞,𝑠 ×(𝑆𝑐ℎ)ℤ[1/𝑑!] LM
min
𝑔,𝑟 determined by minimal

log curves [𝑞,𝑠 ∈ LMmin
𝑞,𝑠 (𝑆) and [𝑔,𝑟 ∈ LMmin

𝑔,𝑟 (𝑆), then the log stack 𝔚 in the
fiber product below is representable by a log algebraic space.

𝔚 𝑆

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

LMmin
𝑞,𝑠 ×(𝑆𝑐ℎ)ℤ[1/𝑑!] LM

min
𝑔,𝑟

([𝑞,𝑠,[𝑔,𝑟)

Note that by definition we have

𝔚(𝑇) = {(Z𝐶−→𝑋 , 𝑇 −→ 𝑆) | Z𝐶−→𝑋 ∈ LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

(𝑇), Z𝐶 = [𝑔,𝑟
𝑇
, Z𝑋 = [𝑞,𝑠

𝑇
}

Equivalently, this can be rewritten as

𝔚(𝑇) = {(𝑇 −→ 𝑆, [𝑞,𝑠
𝜋−→ [𝑔,𝑟) | 𝜋𝑇 is a minimal log admissible cover}

In other words, to show that 𝔚 is representable by an algebraic space, it is enough
to show the following two statements:

• The canonical morphism

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ LMmin
𝑞,𝑠 ×(𝑆𝑐ℎ)ℤ[1/𝑑!] LM

min
𝑔,𝑟

Z𝐶−→𝑋 −→ (Z𝐶, Z𝑋 )

sending a minimal log admissible cover to its source and target family is
faithful.

• For any 𝑆-scheme 𝑇, the presheaf

𝑇 ↦→ {(Z𝐶−→𝑋 ,𝜙𝐶,𝜙𝑋 ) | Z𝐶−→𝑋 ∈ LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

(𝑇), [𝑔,𝑟
𝑇

𝜙𝐶−−→ Z𝐶, [𝑞,𝑠
𝑇

𝜙𝑋−−→
Z𝑋 }/≅

is representable by an algebraic space.

Thus, we are reduced to proving the scheme-like properties for log admissible
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covers, exactly as in Lemma 3.2.5. In fact, we have checked the scheme-like prop-
erties for conditions (1) − (6) in the definition of a log admissible cover in Lemma
3.2.5. Thus, we only need to verify that the admissibility condition (7) in Defini-
tion 3.1.1 or equivalently, condition (B) in Definition 3.1.13 is scheme-like.

Recall from Remark 3.1.7 that the minimal log structure on the base of a log
admissible cover defines a DF structure (see Definition 1.6.1). Hence, the locus
where a morphism of minimal log curves extends to a minimal log admissible
cover is determined by certain conditions on morphisms between the line bundles
that determine the DF log structure. In view of the representability of the relative
Picard functor (See Theorem A.2.9) and of constructible sheaves of sets by a quasi-
finite algebraic space (see Theorem A.1.4), we expect scheme-like properties for
the locus of minimal log admissible covers.

Lemma 3.2.7. There exists an algebraic space ℨ over 𝑆 such that for any mor-
phism of schemes 𝑇 −→ 𝑆 and any morphism [𝑞,𝑠

𝜋−→ [𝑔,𝑟 of minimal log curves,
the morphism [𝑞,𝑠|𝑇

𝜋𝑇−−→ [𝑔,𝑟|𝑇 satisfies the admissibility condition (B) in Definition
3.1.13 if and only if 𝑇 −→ 𝑆 factors through ℨ.

In particular, the morphism [𝑞,𝑠|ℨ
𝜋ℨ−−→ [𝑔,𝑟|ℨ satisfies the admissibility condition.

Proof. Let [𝑞,𝑠 : (𝐶,Mmin
𝐶
) −→ (𝑆,Mmin,𝐶

𝑆
) and [𝑔,𝑟 : (𝑋,Mmin

𝑋
) −→ (𝑆,Mmin,𝑋

𝑆
)

be the given minimal log curves with a morphism

(𝐶,Mmin
𝐶
) (𝑋,Mmin

𝑋
)

(𝑆,Mmin,𝐶
𝑆
) (𝑆,Mmin,𝑋

𝑆
)

𝜋

𝜋𝑆

which we want to extend to a log admissible cover over an algebraic spaceℨ −→ 𝑆.
Let 𝑠 ∈ 𝑆 be a geometric point with𝑄1, . . . , 𝑄𝑒′ nodes of 𝑋𝑠 and 𝑃1, . . . , 𝑃𝑒 nodes of
𝐶𝑠. By the structure theorem of minimal log curves, the log structures define a DF
structure étale locally around 𝑠. Moreover, by Theorem 1.4.10 the sheavesMmin,𝐶

𝑆

andMmin,𝑋
𝑆 are constructible sheaves of sets, hence representable by quasi-finite

étale algebraic spaces. In particular, the morphism

𝜋𝑆 :Mmin,𝑋
𝑆 −→Mmin,𝐶

𝑆

of minimal log structures on the base 𝑆 is representable by a quasi-finite alge-
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braic space. In other words, for any morphism 𝑇 −→Mmin,𝐶
𝑆 , the fiber product 𝔘

defined by the cartesian product

𝔘 𝑇

ℕ𝑒
′
≅Mmin,𝑋

𝑆|𝑍1 ℕ𝑒 ≅Mmin,𝐶
𝑆

𝜋𝑆

is representable by an algebraic space. Hence, by Theorem A.1.4, there exists a
quasi-finite étale algebraic space 𝑍1 −→ 𝑆 such that 𝑇 −→ 𝑆 factors through 𝑍1.
Now it is sufficient to work over 𝑍1 by restricting to the morphism

𝜋𝑆 |𝑍1 :Mmin,𝑋
𝑆|𝑍1 −→M

min,𝐶
𝑆|𝑍1

From Section 2.4, we have the isomorphism ℕ𝑒
≅−→ Mmin,𝐶

𝑆 (étale locally) lifting
to a local chart of Mmin,𝐶

𝑆
. This determines a DF log structure on 𝑆 given by

the sequence of pairs ({L𝑖,𝛾𝑖}𝑒𝑖=1) (see the proof of Theorem 1.6.2). Similarly,
the isomorphism ℕ𝑒

′ ≅−→ Mmin,𝑋
𝑆 (étale locally) lifts to a local chart of Mmin,𝑋

𝑆

determining a DF log structure on 𝑆 given by the sequence of pairs ({L′
𝑖
,𝛾′
𝑖
}𝑒′
𝑖=1).

The morphism𝜋𝑆 |𝑍1 is determined by the values of the standard basis {𝜖𝑖}𝑒
′

𝑖
∈ ℕ𝑒′.

In the commutative diagram,

Mmin,𝑋
𝑆|𝑍1

Mmin,𝐶
𝑆|𝑍1

ℕ𝑒
′
≅Mmin,𝑋

𝑆|𝑍1 ℕ𝑒 ≅Mmin,𝐶
𝑆|𝑍1

𝑃𝑟𝑋 𝑃𝑟𝐶

𝜋𝑆 |𝑍1

let 𝑓𝑖 := 𝜋𝑆 |𝑍1 (𝜖𝑖) for all 1 ≤ 𝑖 ≤ 𝑒′. Denote the line bundles defined by the O∗
𝑆
-

torsors 𝑃𝑟−1
𝐶
( 𝑓𝑖) by ˜︁L𝑖 for all 1 ≤ 𝑖 ≤ 𝑒′. Also, let ˜︁𝛾𝑖 be the corresponding sections

defined by 𝑃𝑟−1
𝐶
( 𝑓𝑖) −→ O𝑆, for all 1 ≤ 𝑖 ≤ 𝑒′. Then, the morphism

Mmin,𝑋
𝑆|𝑍1

−→Mmin,𝐶
𝑆|𝑍1

is uniquely determined by the isomorphisms of the line bundles L𝑖 ≅ ˜︁L𝑖 and the
equality of the sections 𝛾𝑖 = ˜︁𝛾𝑖, for all 1 ≤ 𝑖 ≤ 𝑒′. Let 𝑍2 −→ 𝑍1 be the algebraic
space obtained from Lemma 3.2.1 defining the isomorphisms L𝑖 = ˜︁L𝑖 for every
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1 ≤ 𝑖 ≤ 𝑒′.

We are interested in the locus where 𝜋 extends to a minimal log admissible cover.
𝜋 : C −→ X is a minimal log admissible cover if and only if the morphism
𝜋′ : Mmin

𝑋
−→ 𝜋∗Mmin

𝐶
is determined uniquely by the relation (0,˜︁𝑏) ∼ (˜︁𝑎, 0)

inMmin,𝐶
𝑆

⊕O∗
𝑆
Mmin,𝑋

𝑆
, where ˜︁𝑎 and ˜︁𝑏 are as defined in Equation 3.1.3. This is

equivalent to the fact that 𝜋′ : Mmin
𝑋
−→ 𝜋∗Mmin

𝐶
is irreducible at every node.

Consider the morphism Δ𝑍1 étale locally defined as

Δ𝑍2 :Mmin,𝑋
𝑆|𝑍2

−→Mmin,𝐶
𝑆|𝑍2˜︁𝑏 ↦−→ ˜︁𝑎

Since the smoothing parameters are irreducible elements in the monoid, it is
enough to specify the value of Δ𝑍2 on these smoothing parameters.

As in the previous paragraph, we have a commutative diagram,

Mmin,𝑋
𝑆|𝑍1

Mmin,𝐶
𝑆|𝑍1

ℕ𝑒
′
≅Mmin,𝑋

𝑆|𝑍1 ℕ𝑒 ≅Mmin,𝐶
𝑆|𝑍1

Δ𝑍2

𝑃𝑟𝑋 𝑃𝑟𝐶

Δ𝑍2

Let 𝑓 ′
𝑖

:= Δ𝑆 |𝑍2 (𝜖𝑖) for all 1 ≤ 𝑖 ≤ 𝑒′, where the 𝜖𝑖’s are as usual the standard
basis. Denote the line bundles defined by the O∗

𝑆
-torsors 𝑃𝑟−1

𝐶
( 𝑓 ′
𝑖
) by ˜︁L′

𝑖
for all

1 ≤ 𝑖 ≤ 𝑒′. Also, let ˜︁𝛾′
𝑖

be the corresponding sections defined by 𝑃𝑟−1
𝐶
( 𝑓 ′
𝑖
) −→ O𝑆,

for all 1 ≤ 𝑖 ≤ 𝑒′. Then the morphism

Δ𝑍2 :Mmin,𝑋
𝑆|𝑍2

−→Mmin,𝐶
𝑆|𝑍2

is uniquely determined by the isomorphism of the line bundles L𝑖 ≅ ˜︁L′
𝑖

and the
equality of the sections 𝛾𝑖 = ˜︁𝛾′

𝑖
, for all 1 ≤ 𝑖 ≤ 𝑒′. Let 𝑍3 −→ 𝑍1 be the algebraic

space obtained from Lemma 3.2.1 defining the isomorphisms L𝑖 = ˜︁L′
𝑖

for every
1 ≤ 𝑖 ≤ 𝑒′. Set 𝑍4 := 𝑍1 ×𝑆 𝑍2 ×𝑆 𝑍3. By the above construction, the minimal log
structure on 𝑍4 is obtained as

Mmin,𝐿𝐴
𝑍4

:=
(︂
Mmin,𝐶

𝑆
⊕Mmin,𝑋

𝑆

)︂
|𝑍3
/∼
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where ∼ identifies the smoothing parameters of the source and target minimal
curves as in the construction in Section 3.1.6. Moreover, 𝑇 −→ 𝑆 factors through
𝑍4. Hence, we have the canonical morphisms

(𝑍3,Mmin,𝐿𝐴
𝑍3

) −→ (𝑍3,Mmin,𝐶
𝑆
) −→ LMmin

𝑞,𝑠

(𝑍3,Mmin,𝐿𝐴
𝑍3

) −→ (𝑍3,Mmin,𝑋
𝑆

) −→ LMmin
𝑔,𝑟

which determine minimal log curves C′ −→ (𝑍3,Mmin,𝐿𝐴
𝑍3

) and X′ −→
(𝑍3,Mmin,𝐿𝐴

𝑍3
) respectively.

Hence, it is now enough to study the locus where the morphism of minimal log
curves C′ −→ X′ extends to satisfy the minimal log admissibility condition and
intersect the locus with 𝑍4. By definition 3.1.13, this boils down to verifying the
scheme-like property for a log separating pair. Log separating pairs tautologi-
cally define a DF structure. Hence, the locus where the morphism of minimal log
curves C′ −→ X′ extends to satisfy the minimal log admissibility condition can
be computed in the exact same way as in the first part of the proof.

■

Since LMmin
𝑞,𝑠 ×(𝑆𝑐ℎ)ℤ[1/𝑑!] LM

min
𝑔,𝑟 is a log DM stack, the above lemma implies that

the moduli space of minimal log admissible covers

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ (𝑆𝑐ℎ)ℤ[1/𝑑!]

is a log DM stack. Hence, the stack

LA𝑑𝑚𝑔,𝑟

𝑞,𝑠,𝑑
−→ LogSch𝑓 𝑠

𝑠𝑡,ℤ[1/𝑑!]

is a log DM stack.

Remark 3.2.8 (Log étale cover). Note that by construction, the morphism 𝑍4 −→ 𝑆

is log étale by using the chart criterion (Theorem 1.5.8). In particular, the canon-
ical morphism

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ LMmin
𝑞,𝑠

is a log étale morphism.
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Remark 3.2.9 (Representability by schemes). Since the algebraic space ℨ con-
structed above is quasi-finite, the canonical morphism

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ LMmin
𝑞,𝑠 ×(𝑆𝑐ℎ)ℤ[1/𝑑!] LM

min
𝑔,𝑟

is quasi-finite. Alternatively, one can argue that the number of possible branched
covers of a curve is finite, hence, the morphism

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ LMmin
𝑞,𝑠

is quasi-finite, which in turn implies that

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ LMmin
𝑞,𝑠 ×(𝑆𝑐ℎ)ℤ[1/𝑑!] LM

min
𝑔,𝑟

is quasi-finite since LMmin
𝑞,𝑠 ×(𝑆𝑐ℎ)ℤ[1/𝑑!] LM

min
𝑔,𝑟 −→ LMmin

𝑞,𝑠 ×(𝑆𝑐ℎ)ℤ[1/𝑑!] LM
min
𝑔,𝑟

is a separated morphism of log stacks. In Section 3.2.2 we will show that
LA𝑑𝑚𝑔,𝑟,min

𝑞,𝑠,𝑑
−→ (𝑆𝑐ℎ)ℤ[1/𝑑!] is a proper stack, in particular the morphism

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ LMmin
𝑞,𝑠 ×(𝑆𝑐ℎ)ℤ[1/𝑑!] LM

min
𝑔,𝑟

is separated. Hence, ℨ −→ 𝑆 constructed in Lemma 3.2.7 is separated.

Thus, by invoking the bootstrapping result in [30, Tag 03XX], we conclude that
the canonical morphism

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ LMmin
𝑞,𝑠 ×(𝑆𝑐ℎ)ℤ[1/𝑑!] LM

min
𝑔,𝑟

is representable by schemes. Moreover, the fact that the canonical morphism
LA𝑑𝑚𝑔,𝑟,min

𝑞,𝑠,𝑑
−→ LMmin

𝑞,𝑠 is quasi-finite implies that the dimension of the moduli
stack LA𝑑𝑚𝑔,𝑟,min

𝑞,𝑠,𝑑
has dimension 3𝑞 − 3 + 𝑠.

Remark 3.2.10 (Finite stabilizer group). SinceLA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

is a log DM stack, the
stabilizer group (see Definition A.1.17) of a minimal log admissible cover Z𝐶−→𝑋

over Spec 𝑘 in LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

(𝑘) is a finite group scheme. In fact, this can be di-
rectly checked by using the fact the order of the stabiliser group is determined by
the number of morphisms

ℕ𝑒
′ ⊕ℕ ℕ2 ⊕ℕ𝑒′

(︂
ℕ𝑒 ⊕ ℕ𝑒

′
)︂
/∼−→ ℕ𝑒

′ ⊕ℕ ℕ2 ⊕ℕ𝑒′
(︂
ℕ𝑒 ⊕ ℕ𝑒

′
)︂
/∼

https://stacks.math.columbia.edu/tag/03XX
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such that the relations

𝑝
𝑄

1 ↦−→ 𝑙 · 𝑝𝑃1

𝑝
𝑄

2 ↦−→ 𝑙 · 𝑝𝑃2

hold. Since these parameters are fixed, there are only finitely many choices, hence
the automorphism group is finite.

3.2.2 Properness of moduli space of admissible covers

In this section we show that the moduli stack of log admissible covers is proper.
Since LA𝑑𝑚𝑔,𝑟

𝑞,𝑠,𝑑
−→ LogSch𝑓 𝑠

𝑠𝑡,ℤ[1/𝑑!] is a noetherian log algebraic stack of finite
type, we verify that it satisfies the weak valuative criterion for properness (see
Theorem A.3.3). Since every log admissible cover can be uniquely pulled back from
a minimal log admissible cover up to isomorphism, it suffices to verify Theorem
A.3.3 for the stack of minimal log admissible covers

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ (𝑆𝑐ℎ)ℤ[1/𝑑!]

Now we state a technical result which will be used in the the proof of the proper-
ness of the moduli space of log admissible cover. We shall refer to [21, §3.12] for
the proof of Lemma 3.2.11.

Lemma 3.2.11. Let 𝐴 be a strict henselian discrete valuation ring such that 𝑛 ∈
𝐴∗. Let 𝑠 ∈ 𝐴 be a uniformizer. For each natural number 𝑖 ≥ 1, let 𝑅𝑖 be the strict
henselization of 𝐴[𝑋,𝑌]/(𝑋𝑌 − 𝑠𝑖) at the maximal ideal 𝑚 = (𝑥, 𝑦, 𝑠) (where 𝑥, 𝑦
are the images of 𝑋,𝑌 in 𝑅𝑖). Let 𝑊𝑖 = Spec 𝑅𝑖 \ 𝑚. Then the étale fundamental
group 𝜋1(𝑊𝑛) ≅ ℤ/𝑛ℤ, and the universal cover ˜︁𝑊𝑛 of 𝑊𝑛 is 𝑊1, induced by the
mapping

˜︁𝑊𝑛 −→𝑊𝑛

𝑥 ↦−→ 𝑥𝑛

𝑦 ↦−→ 𝑦𝑛

Theorem 3.2.12. Let O𝐾 be a discrete valuation ring with fraction field 𝐾 such
that 𝑑! is invertible in O𝐾 . Let Z𝐶𝐾−→𝑋𝐾 be a minimal log admissible cover over
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Spec𝐾 . Then after possibly replacing O𝐾 with a tamely ramified extension, the
minimal log admissible cover Z𝐶𝐾−→𝑋𝐾 extends to a minimal log admissible cover
Z𝐶O𝐾−→𝑋O𝐾 over SpecO

𝐾
uniquely up to unique isomorphism.

In other words, there exists a unique minimal log admissible cover up to isomor-
phism Z𝐶O𝐾−→𝑋O𝐾 with a commutative diagram of minimal log admissible covers:

C𝐾 CO𝐾

X𝐾 XO𝐾

Spec𝐾 SpecO
𝐾

Spec𝐾 SpecO
𝐾

𝜋𝐾
ℎ𝐾

ℎO𝐾 ′
𝜋O𝐾

𝑓𝐾

𝑓O𝐾

Proof. We will first deal with extending the underlying morphism of schemes to
an admissible cover satisfying properties (2)−(6) in Definition 3.1.1 and then take
care of the log structures since minimal log structures are uniquely determined
over a point.

After possibly a separable field extension (which by an abuse of notation we gain
refer to as 𝐾 ), the stable curve 𝑋𝐾 −→ Spec𝐾 extends uniquely up to isom-
rophism to a stable curve 𝑋O𝐾 −→ SpecO𝐾 (see [30, Tag 0E8C]). Now, set 𝐶O𝐾 to
be the relative normalization of 𝑋O𝐾 in 𝐶𝐾 . Precisely, if 𝑎∗ : O𝑋O𝐾 −→ 𝑎∗O𝐶𝐾 is
the morphism induced by 𝑎 : 𝐶𝐾 −→ 𝑋O𝐾 , then set

𝐶O𝐾 := Spec
𝑋O𝐾

˜︁O𝑋O𝐾
where ˜︁O𝑋O𝐾 is the integral closure of O𝑋O𝐾 in 𝑎∗O𝐶𝐾 (see [30, Tag 0BAK] for a de-
tail definition of relative normalization of a scheme) and Spec denotes the relative
spectrum (see [30, Tag 01LL]). By the construction of the relative normalization,
𝐶O𝐾 −→ SpecO𝐾 is a family of stable curves and𝐶O𝐾 −→ 𝑋O𝐾 satisfies properties
(2) − (5) in the Definition 3.1.1.

After possibly replacing O𝐾 by a tamely ramified extension, we can assume that
𝐶O𝐾 −→ 𝑋O𝐾 has tame ramification over the closed subscheme defined by the
sections. This follows from Abhyankar’s lemma [30, Tag 0EXT].

https://stacks.math.columbia.edu/tag/0E8C
https://stacks.math.columbia.edu/tag/0BAK
https://stacks.math.columbia.edu/tag/01LL
https://stacks.math.columbia.edu/tag/0EXT
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Hence, it now remains to check that 𝐶O𝐾 −→ 𝑋O𝐾 satisfies that admissibility
condition (7) in the Definition 3.1.1. This follows from Lemma 3.2.11 stated above.
Moreover, since 𝐶𝐾 is a dense subset of 𝐶O𝐾 and 𝐶O𝐾 −→ 𝐶O𝐾 is a separated
morphism of schemes, the uniqueness of the extension follows.

𝐶O𝐾 −→ 𝑋O𝐾 satisfies that admissibility condition (7), hence, it has a minimal
log structure as constructed in Section 3.1.1 which restricts to the minimal log
structure on 𝐶𝐾 −→ 𝑋𝐾 . Moreover the uniqueness of the log structure follows
from Theorem 3.1.9.

■

3.3 The main theorem

Thus, we are now ready to state the full fledged modular interpretation of the
space of log admissible covers.

Theorem 3.3.1. Fix non-negative integers 𝑔, 𝑟, 𝑞, 𝑠, 𝑑 such that 2𝑔−2+𝑟 = 𝑑(2𝑞−
2 + 𝑠). Then the moduli space of log admissible covers

LA𝑑𝑚𝑔,𝑟

𝑞,𝑠,𝑑
−→ LogSch𝑓 𝑠

𝑠𝑡,ℤ[1/𝑑!]

is a logarithmic DM stack, proper of finite type with a separated diagonal. The
open substack LA𝑑𝑚𝑔,𝑟,min

𝑞,𝑠,𝑑
−→ (𝑆𝑐ℎ)ℤ[1/𝑑!] of minimal log admissible covers

admits a finite log étale morphism

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ LMmin
𝑞,𝑠 ≅M𝑞,𝑠

Moreover, LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ (𝑆𝑐ℎ)ℤ[1/𝑑!] admits a projective coarse moduli space
𝐿𝐴𝑑𝑚

𝑔,𝑟,min
𝑞,𝑠,𝑑

, which is a finite étale scheme over the coarse moduli scheme 𝑀𝑞,𝑠

associated toM𝑞,𝑠.

Proof. All but the last assertion the assertions in the theorem follow from the
previous sections. The last assertion follows from the Keel-Mori theorem (The-
orem A.4.2) and Zariski’s main theorem for morphisms of algebraic spaces (see
[30, Tag 05W7]) applied to the morphism 𝐿𝐴𝑑𝑚

𝑔,𝑟,min
𝑞,𝑠,𝑑

−→ 𝑀𝑞,𝑠 in the following
commutative diagram.

https://stacks.math.columbia.edu/tag/05W7


130 Comparison with the classical Hurwitz stack

LA𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

𝐿𝐴𝑑𝑚
𝑔,𝑟,min
𝑞,𝑠,𝑑

M𝑞,𝑠 𝑀𝑞,𝑠

Thus, 𝐿𝐴𝑑𝑚𝑔,𝑟,min
𝑞,𝑠,𝑑

is a projective algebraic space. Furthermore, we know that
𝑀𝑞,𝑠 is a projective scheme (see [19]). Then, using the fact that a finite-type, sep-
arated and quasi-finite morphism of algebraic spaces is representable by schemes
(see [26, Proposition 3.1.] for details), we conclude that the coarse moduli space
𝐿𝐴𝑑𝑚

𝑔,𝑟,min
𝑞,𝑠,𝑑

is indeed a projective scheme.

■

3.4 Comparison with the classical Hurwitz stack

Historically, admissible covers were defined in order to compactify the Hurwitz
moduli space H 𝑑,𝑏, which parametrises isomorphism classes of simple branched
coverings of ℙ1 with 𝑏 branched points of a fixed degree 𝑑. The intuitive idea be-
hind compactifying the moduli space of covers of curves is to allow both the source
and target curves to become singular. This leads to the notion of admissibility.

In view of Theorem 3.3.1, restricting to the closed substack LH 𝑑,𝑏 −→ (𝑆𝑐ℎ)ét of
LA𝑑𝑚𝑔,𝑟,min

𝑞,𝑠,𝑑
−→ (𝑆𝑐ℎ)ét that consists of admissible covers of a fixed genus zero

curve with simple ramification, we obtain a complete modular interpretation of
the compactification of the classical Hurwitz stack, as introduced in [16, Section
§4]. In other words, LH 𝑑,𝑏 is a modular compactification of the open substack
H 𝑑,𝑏.

Moreover, by the main Theorem 3.3.1, there exists a unique extension LH 𝑑,𝑏 −→
M 𝑔,𝑏 of the finite étale morphism H 𝑑,𝑏 −→ M𝑔,𝑏 such that the following map of
moduli stacks commutes:

H 𝑑,𝑏 M𝑔,𝑏

LH 𝑑,𝑏 M 𝑔,𝑏 ≅ LMmin
𝑔,𝑏
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In fact, Theorem 3.3.1 implies that the coarse moduli space associated to the stack
LH 𝑑,𝑏 recovers the coarse moduli space originally mentioned in Harris and Mum-
ford’s paper [16, Theorem 4].



APPENDIX A

Geometry of moduli stacks

In this chapter we mention the basic definitions and results concerning the ge-
ometry of moduli stacks following M. Olsson’s book Algebraic spaces and stacks
[23].

The main hindrance to the existence of a fine moduli space is the presence of non-
trivial automorphisms of families. The non-trivial automorphisms prevent the
moduli functor to enjoy sheaf like properties. This gives rise to the idea of for-
mulating our moduli problem without passing to isomorphism classes. This re-
quires to consider sheaf properties for our functor in the category of groupoids
(a groupoid is a small category in which every morphism is an isomorphism)
instead and this gives rise to the notion of a moduli stack. Morally, moduli
stacks are sheaves in groupoids. In other words the right language to work with
stacks is the two-categorical language of fibered categories (a category fibered in
groupoids is something that has ‘pull - backs’ like vector bundles) and pseudo
functors. We shall refer to [31, Chapter 2. and Chapter 3.] for a detailed survey
on Grothendieck topologies and fibered categories. Formally speaking,

Definition A.0.1 (Stack fibered in groupoids). A category fibered in groupoids
𝔛 −→ (𝑆𝑐ℎ/𝑆) is a stack if

1. The functors I𝑠𝑜𝑚𝑆 (𝑥, 𝑦) : (𝑆𝑐ℎ/𝑆)𝑜𝑝 −→ (𝑆𝑒𝑡𝑠) which associates to any
morphism 𝑓 : 𝑇 −→ 𝑆 the set of isomorphisms in 𝔛(𝑇) between 𝑓 ∗𝑥 and 𝑓 ∗𝑦
are sheaves in the étale topology for every 𝑥, 𝑦 ∈ 𝔛(𝑆).

2. Every étale descent datum for objects in 𝔛 is effective.

132



Algebraic spaces and stacks 133

We shall refer to [31, Chapter 4.] for a detailed definition of descent data for
objects.

A.1 Algebraic spaces and stacks

Definition A.1.1 (Morphisms representable by schemes). 1. A morphism 𝑓 :
𝔛 −→ 𝔜 of stacks over (𝑆𝑐ℎ)ét is representable by schemes if for every mor-
phism𝑈 −→ 𝔜 from a scheme𝑈, the fiber product 𝔛 ×𝔜𝑈 is a scheme.

2. If P is a property of morphisms of schemes (e.g. smooth, étale), a morphism
𝑓 : 𝔛 −→ 𝔜 of stacks representable by schemes has property P if for every
morphism𝑈 −→ 𝔜 from a scheme𝑈, the morphism of schemes𝔛×𝔜𝑈 −→ 𝑈

of schemes has property P.

We would like our moduli functor to enjoy sheaf like properties, i.e. a family of ob-
jects over a scheme should be uniquely determined by its restriction to a collection
of open subschemes. Now we state Grothendieck’s representability criterion which
essentially says that schemes are obtained by locally gluing up open subschemes.

Theorem A.1.2. Let 𝐹 : (𝑆𝑐ℎ)𝑜𝑝 −→ (𝑆𝑒𝑡) be a functor such that :

1. 𝐹 is a Zariski sheaf (i.e a sheaf on (𝑆𝑐ℎ) in the Zariski topology.

2. 𝐹 has an open covering by a collection of representable open subfunctors.

Then 𝐹 is representable by a scheme.

In other words, considering sheaves in the Zariski topology that have an open
cover by schemes, we recover the well known notion of schemes. An immediate
generalisation of the above is the definition of algebraic spaces.

Definition A.1.3 (Algebraic space). An algebraic space is a sheaf 𝔛 on the étale
site (𝑆𝑐ℎ/𝑆)ét such that

1. 𝔛 has an open covering by a collection of representable open subfunctors in
the étale topology.

2. There exists a scheme 𝑈 and a surjective étale morphism 𝑈 −→ 𝔛 repre-
sentable by schemes, called an étale atlas.
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Indeed schemes are algebraic spaces by the Yoneda embedding. Moreover, con-
dition (3) in the definition of algebraic space guarantees that the diagonal of an
algebraic space is representable by schemes.

A.1.1 Constructible sheaves and algebraic spaces

Recall that a sheaf 𝔛 on a scheme 𝑋 in the étale topology is said to be constructible
if every quasi-compact 𝑈 ⊂ 𝑋 is a finite union of locally closed subschemes, 𝑈 =⋃︁
𝑖 𝑍𝑖 such that 𝔛𝑍𝑖 is finite and 𝔛𝑍′

𝑖
is a constant sheaf for some finite étale map

𝑍′
𝑖
−→ 𝑍𝑖. Equivalently, every irreducible closed subscheme 𝑍 ⊂ 𝑋 contains a

non-empty open subscheme𝑈 such that 𝔛𝑈 is a locally constant sheaf.

Following [20], we have the following representability theorem for constructible
sheaves.

Theorem A.1.4. Let 𝔛 be a constructible sheaf on a scheme 𝑋 in the étale topology.
Then 𝔛 is representable by a finite algebraic space.

A.1.2 Deligne-Mumford stacks

In order to do geometry over stacks we would like our moduli stacks to be as close
to as possible to the world of schemes. Thus, one studies those special stacks
X −→ (𝑆𝑐ℎ/𝑈)ét which admit an étale (resp. smooth) atlas, i.e. a surjective
representable étale (resp. smooth) morphism 𝑋 −→ 𝔛. Such stacks are called
as Deligne-Mumford (resp. algebraic) stacks. This leads to the following set of
definitions.

Definition A.1.5 (Representable morphisms). 1. A morphism 𝑓 : 𝔛 −→ 𝔜 of
stacks over (𝑆𝑐ℎ)ét is representable if for every choice of a morphism𝑈 −→
𝔜 from a scheme𝑈, the fiber product 𝔛 ×𝔜𝑈 is an algebraic space.

2. If P is a property of morphisms of schemes (e.g. smooth, étale) which is
étale local on the source, a representable morphism 𝑓 : 𝔛 −→ 𝔜 of stacks
has property P if for every choice of a morphism 𝑈 −→ 𝔜 from a scheme 𝑈
and of an étale atlas 𝑉 −→ 𝔛 ×𝔜𝑈, the composition 𝑉 −→ 𝔛 ×𝔜𝑈 −→ 𝑈 is
a morphism of schemes satisfying property P.

Definition A.1.6 (Deligne-Mumford stack). A stack X is Deligne-Mumford (DM)
if
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• the diagonal ΔX/𝑈 : X −→ X ×𝑈 X is representable, and

• there exists a scheme 𝑆 and an étale surjective morphism 𝑆 −→ X (called
an étale atlas).

Definition A.1.7 (Algebraic stack). A stack X is an algebraic stack if

• the diagonal ΔX/𝑈 : X −→ X ×𝑈 X is representable and,

• there exists a scheme 𝑆 and a smooth surjective morphism 𝑆 −→ X (called
a smooth atlas).

Example A.1.8. The moduli space of 𝑛-pointed stable stable curvesM 𝑔,𝑛 is a DM
stack over ℤ for 2𝑔− 2+𝑛 > 0. The moduli space of smooth curvesM𝑔 is an open
substack ofM 𝑔,0 and hence, is a DM stack over ℤ for all 𝑔 ≥ 2. See [10].

Remark A.1.9. 1. The atlas 𝑆 −→ X is a representable morphism.

2. Some sources add the extra hypothesis in the definition that the diagonal
ΔX/𝑈 : X −→ X ×𝑈 X is quasi-compact and quasi-separated.

3. The surjectivity of the atlas 𝑆 −→ X can be rephrased as requiring that
there exists a family of objects Z over 𝑆 such that for any object [ in 𝔛,
[ ≅ Z𝑥 for some 𝑥 ∈ 𝔛(𝑘), where 𝑘 is an algebraically closed field.

4. {Algebraic schemes} ⊂ {Algebraic spaces} ⊂ {Algebraic stacks}.

5. The category of algebraic spaces and algebraic (resp. DM) stacks are closed
under fiber products.

The following definitions lead to the geometric notions of stacks and morphisms
of stacks.

Definition A.1.10 (Properties of algebraic spaces and stacks). Let P be a smooth
(resp. étale) local property of schemes, then an algebraic (resp. DM) stack 𝔛 has
property P if 𝑈 does, where 𝑈 −→ 𝔛 is a smooth (resp. étale) atlas (eg. normal,
locally noetherian, locally of finite type etc.).

Remark A.1.11. If𝑈 satisfies P for some atlas𝑈 −→ 𝔛, then 𝑉 satisfies P for any
other atlas 𝑉 −→ 𝔛.
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Definition A.1.12 (Properties of morphisms of algebraic spaces and stacks). Let
P be a property of schemes smooth (resp. étale) local on the source and target
and stable under base change and composition. Then a morphism 𝑓 : 𝔛 −→ 𝔜

of algebraic (resp. DM) stacks has P if there exists smooth (resp. étale) atlases
𝑉 −→ 𝔜 and𝑈 −→ 𝔛 ×𝔜 𝑉 in the cartesian diagram

𝑈

𝔛 ×𝔜 𝑉 𝑉

𝔛 𝔜
𝑓

the composition𝑈 −→ 𝑉 has property P.

Remark A.1.13. If 𝑓 : 𝔛 −→ 𝔜 satisfies P as above for some atlas, then one can
show that it satisfies P for every atlas.

In particular, if 𝑓 : 𝔛 −→ 𝔜 is representable by schemes, then the morphism has
property P if for every morphism 𝑈 −→ 𝔜 from a scheme 𝑈, the morphism of
schemes 𝔛 ×𝔜 𝑈 −→ 𝑈 of schemes has property P. This is in accordance with
the definition A.1.1. For example, P could be étale, unramified, smooth, proper,
separated, finite, affine, etc.

Remark A.1.14. If 𝑓 : 𝔛 −→ 𝔜 is a representable morphism of algebraic stacks,
then the relative diagonal Δ𝔛/𝔜 : 𝔛 −→ 𝔛×𝔜𝔛 is representable by schemes. This
fact follows from theorem A.1.21.

More generally, for any morphism of algebraic stacks 𝑓 : 𝔛 −→ 𝔜, the diagonal
Δ𝔛/𝔜 : 𝔛 −→ 𝔛 ×𝔜 𝔛 is representable.

The following definitions give rise to the notion of topology on a stack and topo-
logical properties of stacks and morphisms of stacks.

Definition A.1.15 (Topological space of an algebraic stack). If 𝔛 is an algebraic
stack, the topological space of 𝔛 is the set |𝔛| := {𝑥 ∈ 𝔛(𝑘) | 𝑘 is a field}/∼, where
𝑥1 ∼ 𝑥2, 𝑥1 ∈ 𝔛(𝑘1), 𝑥2 ∈ 𝔛(𝑘2) if there exist field extensions 𝑘1 −→ 𝑘3 and
𝑘2 −→ 𝑘3 such that 𝑥1 |𝑘3 and 𝑥2 |𝑘3 are isomorphic in 𝔛(𝑘3).

Definition A.1.16 (Topological properties of stacks). 1. A substack 𝔜 ⊂ 𝔛 is
an open substack (resp. closed substack) if the inclusion is representable
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by an open immersion (resp. by a closed immersion). Moreover, an open or
closed substack is also an algebraic stack.

Now we can define the Zariski topology on |𝔛| by defining the open subsets
to be the collection |𝔘| where 𝔘 varies over all the open substacks of 𝔛.

2. An algebraic stack 𝔛 is quasi-compact, connected, or irreducible if |𝔛| is.

A.1.3 Characterization of DM stacks

The geometry of a DM stack 𝔛 is encoded in its diagonal morphism 𝔛 −→ 𝔛×𝑈 𝔛.
Indeed, for any 𝑈-scheme 𝑆 and any morphism (𝑋1, 𝑋2) : 𝑆 −→ 𝔛 ×𝑈 𝔛, where
𝑋1, 𝑋2 ∈ 𝔛(𝑆) correspond to the two projections, we have the following 2-cartesian
diagram :

I𝑠𝑜𝑚𝑆 (𝑋1, 𝑋2) 𝑆

𝔛 𝔛 ×𝑈 𝔛

(𝑋1, 𝑋2)
Δ𝔛/𝑈

where I𝑠𝑜𝑚𝑆 (𝑋1, 𝑋2) is an algebraic space.

Definition A.1.17. If 𝑆 = Spec𝐾 , where 𝐾 is a field and 𝑋1 = 𝑋2 = 𝑋 , then the
stabilizer of the point 𝑋 ∈ 𝔛(𝑆) is defined as the group algebraic space 𝐺𝑋 :=
𝐴𝑢𝑡𝑆 (𝑋).

For a DM stack, one can show that the diagonal is an unramified morphism and
hence the algebraic spaceI𝑠𝑜𝑚𝑆 (𝑋1,𝑋2) is a finite reduced group algebraic space.
Moreover, the unramifiedness of the diagonal characterises Deligne-Mumford
stacks. Precisely,

Theorem A.1.18. Let 𝔛 be a noetherian algebraic stack. Then the following are
equivalent:

1. 𝔛 is Deligne–Mumford.

2. The diagonal 𝔛 −→ 𝔛 ×𝑈 𝔛 is unramified.

3. Every point of 𝔛 has a finite and reduced stabilizer group.

In particular, the diagonal of a DM stack is quasi-finite and separated and hence
quasi-affine by Zariki’s main theorem.
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Remark A.1.19. The diagonal morphism 𝔛 −→ 𝔛 ×𝑈 𝔛 of stacks need not be an
immersion, unlike schemes or algebraic spaces. In fact, algebraic spaces are char-
acterised by the fact that the diagonal is a monomorphism. Precisely,

Theorem A.1.20. Let 𝔛 be a noetherian algebraic stack such that its diagonal is
representable by schemes. Then the following are equivalent:

1. 𝔛 is an algebraic space.

2. The diagonal 𝔛 −→ 𝔛 ×𝑈 𝔛 is a monomorphism.

3. Every point of 𝔛 has a trivial stabilizer group.

In general, the diagonal of a stack need not be representable by a scheme. Under
certain separation axioms, we have the following fact:

Theorem A.1.21. Let 𝑆 be a scheme. Let 𝑓 : 𝔛 −→ 𝑇 be a morphism of algebraic
spaces such that 𝑇 is a scheme and 𝑓 is locally quasi-finite and separated. Then 𝔛

is representable by schemes. See [30, Tag 03XX]

A.2 The Hilbert scheme and its applications

The study of Hilbert schemes is central to understanding the diagonal of moduli
stacks, hence we discuss that in the next section.

The Hilbert functor seeks to classify flat families of finitely presented closed sub-
schemes of proper families. To be precise, let 𝑓 : 𝑋 −→ 𝑆 be a projective mor-
phism of noetherian schemes of finite type. Implicitly, we have a fixed embedding
𝑋 −→ ℙ𝑛

𝑆
, hence a fixed very ample line bundleL𝑋/𝑆 on 𝑋 corresponding to which

we can consider a Hilbert polynomial.

Consider the Hilbert functor

ℌ𝔦𝔩𝔟𝑋/𝑆 : (𝑆𝑐ℎ/𝑆)𝑜𝑝 −→ (𝑆𝑒𝑡𝑠)

𝑇/𝑆 −→ {closed subschemes 𝑍 ⊂ 𝑋𝑇 := 𝑋 ×𝑆 𝑇 | 𝑍 −→ 𝑇 is proper and flat}

For any polynomial 𝑃, we also define a subfunctor ℌ𝔦𝔩𝔟𝑃
𝑋/𝑆 ⊂ ℌ𝔦𝔩𝔟𝑋/𝑆

ℌ𝔦𝔩𝔟𝑃
𝑋/𝑆 : (𝑆𝑐ℎ/𝑆)𝑜𝑝 −→ (𝑆𝑒𝑡𝑠)

https://stacks.math.columbia.edu/tag/03XX
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𝑇/𝑆 −→ {𝑍 ∈ ℌ𝔦𝔩𝔟𝑋/𝑆 (𝑇) | 𝑃𝑍𝑡 (𝑛) = 𝑃(𝑛) ∀𝑡 ∈ 𝑇}

where 𝑃𝑍𝑡 is the Hilbert polynomial corresponding to the closed fiber 𝑍𝑡. Since
the Hilbert polynomials are locally constant for proper flat families, we have a
decomposition

ℌ𝔦𝔩𝔟𝑋/𝑆 =
⨆︂
𝑃

ℌ𝔦𝔩𝔟𝑃
𝑋/𝑆

One of Grothendieck’s significant results was to prove the representability of
Hilbert functors by a projective scheme. Precisely,

Theorem A.2.1 (Grothendieck). The Hilbert functor ℌ𝔦𝔩𝔟𝑃
𝑋/𝑆 : (𝑆𝑐ℎ/𝑆)𝑜𝑝 −→

(𝑆𝑒𝑡𝑠) is representable by a finite type projective 𝑆 scheme hilb𝑃
𝑋/𝑆 equipped with

an 𝑆-very ample line bundle. Hence, ℌ𝔦𝔩𝔟𝑋/𝑆 is representable by a projective
scheme hilb𝑋/𝑆 =

⨆︁
𝑃 hilb𝑃

𝑋/𝑆

Proof. See [11, chapter 5].

■

In this section, we are interested in studying the application of Hilbert schemes
to understand the properties of the diagonal of a moduli space 𝔛 −→ (𝑆𝑐ℎ/𝑆).
In particular, we are interested in studying the automorphism group of families
parametrized by the moduli problem.

Let 𝑋,𝑌 be projective noetherian schemes of finite type over 𝑆. Consider the
functorH𝑜𝑚𝑆 (𝑋,𝑌) parametrizing morphisms of schemes, i.e.

H𝑜𝑚𝑆 (𝑋,𝑌) : (𝑆𝑐ℎ/𝑆)𝑜𝑝 −→ (𝑆𝑒𝑡𝑠)

𝑇/𝑆 −→ {morphisms 𝑋𝑇 −→ 𝑌𝑇}

Theorem A.2.2. Suppose 𝑋 and 𝑌 are projective schemes over 𝑆 with 𝑋 −→ 𝑆

flat. Then the functor H𝑜𝑚𝑆 (𝑋,𝑌) is a representable open subfunctor of the
Hilbert functor ℌ𝔦𝔩𝔟𝑋×𝑆𝑌/𝑆. In particular, H𝑜𝑚𝑆 (𝑋,𝑌) is representable by a
quasi-projective scheme 𝐻𝑜𝑚𝑆 (𝑋,𝑌) of ℎ𝑖𝑙𝑏𝑋×𝑆𝑌/𝑆.

As a corollary, we obtain that the functor

I𝑠𝑜𝑚𝑆 (𝑋,𝑌) : (𝑆𝑐ℎ/𝑆)𝑜𝑝 −→ (𝑆𝑒𝑡𝑠)
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classifying isomorphisms 𝑋𝑇 ≅ 𝑌𝑇 is representable by a quasi-projective scheme
𝐼𝑠𝑜𝑚𝑆 (𝑋,𝑌) of ℎ𝑖𝑙𝑏𝑋×𝑆𝑌/𝑆.

Proof. For every 𝑆-scheme 𝑇, define the morphism

H𝑜𝑚𝑆 (𝑋,𝑌) (𝑇) −→ ℌ𝔦𝔩𝔟𝑋×𝑆𝑌/𝑆 (𝑇)

𝑓 : 𝑋𝑇 −→ 𝑌𝑇 ↦−→ Γ𝑓

where Γ𝑓 = Img(𝐼𝑑, 𝑓 ) is the graph of the morphism 𝑓 obtained as the image of
the following maps

𝑋𝑇
(𝐼𝑑,𝑓 )
−−−−−→ 𝑋𝑇 ×𝑇 𝑌𝑇

∼−→ 𝑋 ×𝑆 𝑌 ×𝑆 𝑇 = (𝑋 ×𝑆 𝑌)𝑇

Since we are working over separated schemes, the graph Γ𝑓 ≅ 𝑋𝑇 is a closed
subscheme of 𝑋 ×𝑆 𝑇 and it is projective and flat over 𝑇 since 𝑋 −→ 𝑆 is so.
By the universal property of fiber product of schemes, a morphism is uniquely
determined by its graph. Hence, H𝑜𝑚𝑆 (𝑋,𝑌) is considered as a subfunctor of
ℌ𝔦𝔩𝔟𝑋×𝑆𝑌/𝑆 by the identification

H𝑜𝑚𝑆 (𝑋,𝑌) (𝑇) = {flat closed subscheme 𝑍 ⊂ 𝑋 ×𝑆 𝑌 | 𝑍 ≅ (𝑋 ×𝑆 𝑌)𝑇}

In order to prove

H𝑜𝑚𝑆 (𝑋,𝑌) (𝑇) −→ ℌ𝔦𝔩𝔟𝑋×𝑆𝑌/𝑆 (𝑇)

is a a representable open subfunctor, it suffices to show that for all 𝑆-schemes
𝑇 and maps ℨ : 𝑇 −→ ℌ𝔦𝔩𝔟𝑋×𝑆𝑌/𝑆 determined by the closed subscheme ℨ ⊂
(𝑋 ×𝑆 𝑌)𝑇 , the fiber product

H𝑜𝑚𝑆 (𝑋,𝑌) ×ℌ𝔦𝔩𝔟𝑋×𝑆𝑌/𝑆 𝑇 𝑇

H𝑜𝑚𝑆 (𝑋,𝑌) ℌ𝔦𝔩𝔟𝑋×𝑆𝑌/𝑆

is represented by an open subscheme of 𝑇. In other words, we need to show that
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for any 𝑇-scheme 𝑇′, the set(︂
H𝑜𝑚𝑆 (𝑋,𝑌) ×ℌ𝔦𝔩𝔟𝑋×𝑆𝑌/𝑆 𝑇

)︂
(𝑇′) = {(𝑇′ 𝛼−→ 𝑇, 𝑋𝑇 ′

𝑓−→ 𝑌𝑇 ′) | ℨ𝑇 ′ = Γ𝑓 }

is an open subscheme of 𝑇′. Hence, by the description of the graph Γ𝑓 above as a
unique flat closed subscheme 𝑍 ⊂ (𝑋 ×𝑆 𝑌)𝑇 with 𝑍 ≅ 𝑋𝑇 , it is enough to show
that the conditions ℨ𝑇 ′ ≅ 𝑋 ′

𝑇
and ℨ𝑇 ′ −→ 𝑇′ is flat are open conditions in the

sense of the following important lemmas.

■

Lemma A.2.3. Let 𝑓 : 𝑈 −→ 𝑆 and 𝑔 : 𝑉 −→ 𝑆 be flat projective morphisms of
noetherian schemes. Let 𝜋 : 𝑈 −→ 𝑉 be a projective morphism such that 𝜋 ◦ 𝑔 = 𝑓 .
Then 𝑆 has uniquely determined open subschemes 𝑆2 ⊂ 𝑆1 ⊂ 𝑆 with the following
universal properties:

1. For any 𝑆-scheme 𝑇, the morphism 𝜋𝑇 : 𝑈𝑇 −→ 𝑉𝑇 is flat if and only if the
structure morphism 𝑇 −→ 𝑆 factors uniquely as 𝑇 −→ 𝑆1 −→ 𝑆.

2. For any 𝑆-scheme 𝑇, the morphism 𝜋𝑇 : 𝑈𝑇 −→ 𝑉𝑇 is an isomorphism if and
only if the structure morphism 𝑇 −→ 𝑆 factors uniquely as 𝑇 −→ 𝑆2 −→ 𝑆.

Sketch of proof: By the openness of the flat locus, the subset

𝑈′ := {𝑣 ∈ 𝑉 | 𝜋 is flat at 𝑣} ⊂ 𝑈

is an open subset. Since 𝑓 is proper, 𝑓 (𝑈 −𝑈′) ⊂ 𝑆 is a closed subscheme. Then
the open subscheme 𝑆1 := 𝑆 − 𝑓 (𝑈 − 𝑈′) ⊂ 𝑆 satisfies the required universal
property by the fiber local property of flat morphisms (see [30, Tag 039C]).

Using (1), we can assume 𝑆 = 𝑆1 (hence, 𝜋 is flat) and prove (2). Let L := L𝑈/𝑉
be a very ample invertible sheaf on 𝑋 corresponding to 𝑈 −→ ℙ𝑚

𝑉
−→ 𝑉 . Since,

𝑈 −→ 𝑉 is projective, there exists 𝑛 ∈ ℕ such that 𝑅𝑖𝜋∗L(𝑛) = 0, forall 𝑖 > 0 and
L(𝑛) is generated by global sections. By flatness of 𝜋 and Grauerts’s theorem (see
[30, Tag 0AXD]), 𝜋∗L(𝑛) is an invertible sheaf. Let𝑉′ ⊂ 𝑉 such that 𝜋∗L(𝑛) |𝑉 ′ ≅
O𝑉 ′. Then 𝑆2 := 𝑆 − 𝑔(𝑉 − 𝑉′) satisfies the required universality.

■

An immediate corollary of the above lemma asserts that ‘compatibility of sections
of morphisms of schemes’ satisfies a universal property. Precisely,

https://stacks.math.columbia.edu/tag/039C
https://stacks.math.columbia.edu/tag/0AXD
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Corollary A.2.4. Let 𝑓 : 𝑋 −→ 𝑆 be a flat, projective morphism of noetherian
schemes. Let 𝐶, 𝐷 be closed subschemes of 𝑋 flat over 𝑆. Then 𝑆 has uniquely
determined subscheme 𝑆1 ⊂ 𝑆 such that for any morphism 𝑇 −→ 𝑆, we have
𝐶𝑇 ⊆ 𝐷𝑇 if and only if 𝑇 −→ 𝑆 factors through 𝑆1.

The above lemma can be generalised to any moduli problem parametrizing a fam-
ily of geometric objects. In order to study the representability of the diagonal of
a moduli space, we need to verify that all the properties of the family of geomet-
ric objects parametrized by the moduli problem satisfies a ‘universal property’ as
above. Precisely,

Let 𝑓 : 𝑈 −→ 𝑆 and 𝑔 : 𝑉 −→ 𝑆 be a family of schemes with property P. Let
𝜋 : 𝑈 −→ 𝑉 be a projective morphism such that 𝜋 ◦ 𝑔 = 𝑓 . Then 𝑆 has a uniquely
determined subscheme 𝑆1 ⊂ 𝑆 with the following universal property: For any 𝑆-
scheme𝑇, the morphism 𝜋𝑇 : 𝑈𝑇 −→ 𝑉𝑇 has property P if and only if the structure
morphism 𝑇 −→ 𝑆 factors uniquely as 𝑇 −→ 𝑆1 −→ 𝑆.

Example A.2.5 (Moduli space of stable curves). In this example, we show that if
[1, [2 ∈ M 𝑔,𝑛 are families of 𝑛-pointed stable curves of genus 𝑔, then the isomor-
phism functor I𝑠𝑜𝑚𝑆 ([1, [2) is representable by a scheme.

For any scheme 𝑋/𝑆, define a functor

𝔰𝔢𝔠𝔥𝔦𝔩𝔟𝑋/𝑆 : (𝑆𝑐ℎ/𝑆)𝑜𝑝 −→ (𝑆𝑒𝑡𝑠)

𝑇/𝑆 ↦−→ {(𝑍, 𝑠) | 𝑍 ∈ 𝔥𝔦𝔩𝔟𝑋/𝑆 (𝑇), 𝑠 : 𝑇 −→ 𝑍 a section}

For every 𝑆-scheme 𝑇, we have a canonical map

𝔰𝔢𝔠𝔥𝔦𝔩𝔟𝑋/𝑆 (𝑇) −→ 𝔥𝔦𝔩𝔟𝑋/𝑆 (𝑇)

(𝑍, 𝑠) ↦−→ 𝑍

Let 𝑢 : 𝔘 −→ hilb𝑋/𝑆 be the universal object of the Hilbert functor. Given any
(𝑍, 𝑠) ∈ 𝔰𝔢𝔠𝔥𝔦𝔩𝔟𝑋/𝑆 (𝑇), by the definition of a fine moduli space, there exists a
unique map 𝑓 : 𝑇 −→ hilb𝑋/𝑆 such that 𝑍 ≅ 𝑇×hilb𝑋/𝑆𝔘. Thus, by composition, we
have a uniquely determined morphism 𝑇 −→ 𝑍 ≅ 𝑇 ×hilb𝑋/𝑆 𝔘 −→ 𝔘. Conversely,
given a morphism 𝑔 : 𝑇 −→ 𝔘, there is a unique morphism 𝑇

𝑔−→ 𝔘
𝑢−→ hilb𝑋/𝑆.

Then the pair 𝑍 := 𝑇 ×hilb𝑋/𝑆 𝔘 and 𝑠 := (𝐼𝑑, 𝑔) : 𝑇 −→ 𝑍 determine an element
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in 𝔰𝔢𝔠𝔥𝔦𝔩𝔟𝑋/𝑆 (𝑇).

𝑍 ≅ 𝑇 ×hilb𝑋/𝑆 𝔘 𝔘

𝑇 hilb𝑋/𝑆

𝑢
𝑠

In other words, the above discussion shows that the moduli functor 𝔰𝔢𝔠𝔥𝔦𝔩𝔟𝑋/𝑆 is
representable by the universal object 𝔘 of the Hilbert functor. Iteratively, the
functor

𝔰𝔢𝔠𝔥𝔦𝔩𝔟𝑛
𝑋/𝑆 : (𝑆𝑐ℎ/𝑆)𝑜𝑝 −→ (𝑆𝑒𝑡𝑠)

𝑇/𝑆 ↦−→ {(𝑍, 𝑠1, . . . , 𝑠𝑛) | 𝑍 ∈ 𝔥𝔦𝔩𝔟𝑋/𝑆 (𝑇), 𝑠1, . . . , 𝑠𝑛 : 𝑇 −→ 𝑍 ordered sections}

is represented by the scheme 𝔘(𝑛) := 𝔘 ×hilb𝑋/𝑆 · · · ×hilb𝑋/𝑆 𝔘⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑛 times

consisting of or-

dered copies of 𝔘. Let (𝔙(𝑛),𝜎1, . . . ,𝜎𝑛) be the universal object of 𝔰𝔢𝔠𝔥𝔦𝔩𝔟𝑛
𝑋/𝑆.

Moreover, imposing the additional condition that the sections are pairwise mu-
tually disjoint, the functor 𝔰𝔢𝔠𝔥𝔦𝔩𝔟𝑛

𝑋/𝑆 is represented by the complement of the
pairwise diagonal of 𝔘 ×hilb𝑋/𝑆 · · · ×hilb𝑋/𝑆 𝔘. In particular, if 𝑋 −→ 𝑆 is an 𝑛-
pointed stable curve of genus 𝑔, then geometrically connected fibers and am-
pleness of the relative dualising sheaf (stability) are open conditions, hence
they satisfy the universal property mentioned above. The condition that each
section 𝑠𝑖 lies in the smooth locus of the fiber is taken care of by considering
𝔘(𝑛) −⨆︁𝑛

𝑖=1 𝜎
−1
𝑖
(𝔙(𝑛) −𝔙(𝑛),smooth). The compatibility of sections in morphisms of

family of stable curves is taken care of by Corollary A.2.4.

Thus, keeping track of the subschemes involved above, we get that I𝑠𝑜𝑚𝑆 ([1, [2)
is representable by a noetherian group scheme of finite type over 𝑆. In particular,
working over the field of complex numbers, I𝑠𝑜𝑚𝑆 ([1, [2) is representable by a
complex Lie group.1

The following non-trivial examples generalise the moduli functor I𝑠𝑜𝑚𝑆 ([1, [2)
to morphisms of stacks (resp. algebraic spaces) and logarithmic stacks (resp. al-
gebraic spaces).

1For complex manifolds 𝑋 , the result is true more generally for compact complex manifolds.
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Example A.2.6 (HOM Stack). Let 𝔛 be an algebraic space of finite type, flat and
proper over S and 𝔜 be an algebraic stack of finite type with quasi-compact and
quasi-separated diagonal and affine stabilizers. Then the functor

H𝑜𝑚𝑆 (𝔛,𝔜) : (𝑆𝑐ℎ/𝑆)𝑜𝑝 −→ (𝑆𝑒𝑡𝑠)

T /𝑆 −→ {morphisms 𝔛𝑇 −→ 𝔜𝑇}

is representable by an algebraic space over 𝑆.

This is the work of M. Aoki in [4].

Example A.2.7 (Logarithmic HOM Stack). Let 𝔛 be an algebraic space of finite
type, flat and proper with fs log structure over a logarithmic scheme S and 𝔜 be
a log algebraic stack (in the sense of Definition 2.2.1) of finite type with quasi-
compact and quasi-separated diagonal and affine stabilizers. Then the functor

H𝑜𝑚S (𝔛,𝔜) : (LogSch𝑓 𝑠𝑠𝑡,𝑡/S)
𝑜𝑝 −→ (𝑆𝑒𝑡𝑠)

T /S −→ {morphisms 𝔛T −→ 𝔜T }

is representable by a logarithmic algebraic space over S.

This is the work of J. Wise in [32].

A.2.1 The relative Picard functor

For any scheme 𝑋 , let 𝑃𝑖𝑐(𝑋) := 𝐻1(𝑋,O∗
𝑋
) be the group of isomorphism class of

line bundles on 𝑋 . Consider the absolute Picard functor classifying line bundles:

𝑃𝑖𝑐𝑋/𝑆 : (𝑆𝑐ℎ/𝑆)𝑜𝑝 −→ (𝑆𝑒𝑡𝑠)

𝑇 ↦−→ 𝑃𝑖𝑐(𝑋 ×𝑆 𝑇)

Remark A.2.8. The absolute Picard functor 𝑃𝑖𝑐𝑋/𝑆 need not be representable. In
fact, if there is a universal family L −→ M for 𝑃𝑖𝑐𝑋/𝑆, then for every scheme 𝑌
and a non-trivial class of L′ ∈ 𝑃𝑖𝑐𝑋/𝑆 (𝑌), there exists a unique map 𝑓 : 𝑌 −→M
such that 𝑓 ∗L ≅ L′. In other words, this basically tells us that if𝑌 =

⋃︁
𝑈𝑖, where

𝑈′
𝑖
s are the trivialising neighbourhoods of the line bundleL′, then the line bundle
L′|𝑋×𝑆𝑌 is trivial, a contradiction.
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Thus, to obtain a full-fledged modular interpretation, one defines the relative
Picard functor:

𝑃𝑖𝑐𝑟𝑒𝑙
𝑋/𝑆 : (𝑆𝑐ℎ/𝑆)𝑜𝑝 −→ (𝑆𝑒𝑡𝑠)

𝑇 ↦−→ 𝑃𝑖𝑐(𝑋 ×𝑆 𝑇)/𝜋∗𝑇𝑃𝑖𝑐(𝑇)

where 𝜋𝑇 : 𝑋 ×𝑆 𝑇 −→ 𝑇 is the canonical projection.

Equivalently, the relative Picard functor can be defined as

𝑇 ↦−→ 𝐻0(𝑇, 𝑅1𝜋𝑇∗𝔾𝑚)

where 𝜋𝑇 : 𝑋 ×𝑆𝑇 −→ 𝑇 and 𝔾𝑚 is the sheaf of units on 𝑋 ×𝑆𝑇. It was proven by
M. Artin in [7, Theorem 7.3] that under the additional hypothesis of cohomological
flattness, the relative Picard functor is representable by an algebraic space locally
of finite type by using Artin’s axioms [7, Theorem 5.3].

Theorem A.2.9. Let 𝑓 : 𝑋 −→ 𝑆 be a proper, flat map of noetherian schemes
which is finitely presented and cohomologically flat (i.e. O𝑆 ≅ 𝑓∗O𝑋 ). Then the
relative Picard functor 𝑃𝑖𝑐𝑟𝑒𝑙

𝑋/𝑆 is represented by an algebraic space locally of finite
type over 𝑆.

A.3 Properness for morphisms of algebraic
stacks

Definition A.3.1. 1. A morphism 𝔛 −→ 𝔜 of algebraic stacks (not necessar-
ily representable) is universally closed if for every morphism 𝔜′ −→ 𝔜

of algebraic stacks, the morphism 𝔛 ×𝔜 𝔜′ −→ 𝔜′ induces a closed map
|𝔛 ×𝔜 𝔜′| −→ |𝔜′|.

2. A morphism 𝔛 −→ 𝔜 of algebraic stacks (not necessarily representable) is
separated if the diagonal morphism Δ𝔛/𝔜 : 𝔛 −→ 𝔛 ×𝔜 𝔛 is proper (see
Remark A.1.14 which says that the diagonal is representable).

3. A morphism 𝔛 −→ 𝔜 of algebraic stacks (not necessarily representable) is
proper if it is universally closed, separated and of finite type.
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Remark A.3.2. The subtle point is that for a morphism of algebraic stacks 𝔛 −→
𝔜, the diagonal Δ𝔛/𝔜 : 𝔛 −→ 𝔛 ×𝔜 𝔛 need not be a monomorphism unlike in
the case of morphism of schemes or algebraic spaces. The above definitions are
consisitent with the usual definitions in the category of schemes. In fact, since
proper monomorphisms of schemes are closed immersions, the diagonal is proper
if and only if it is a closed immersion.

Theorem A.3.3 (Weak valuative criterion for properness). Let 𝑓 : 𝔛 −→ 𝔜 be
a finite type morphism of noetherian algebraic stacks. Consider a 2-commutative
diagram

Spec𝐾 𝔛

Spec 𝑅 𝔜

where 𝑅 is a discrete valuation ring with fraction field 𝐾 . Then 𝑓 : 𝔛 −→ 𝔜 is
proper if and only if there exists extensions (which we can take of finite transcen-
dence degree) 𝑅 −→ 𝑅′ and 𝐾 −→ 𝐾 ′ extending the following diagram uniquely
up to 2-isomorphism.

Spec𝐾 ′ Spec𝐾 𝔛

Spec 𝑅′ Spec 𝑅 𝔜

𝑓

A.4 Coarse moduli space: Keel-Mori theorem

In order to remove the stacky interpretation of the moduli problem, one considers
the associated coarse moduli space, at the risk of losing the universal object. The
coarse moduli space is in some sense, the closest approximation to an algebraic
stack by an algebraic space. The Keel-Mori theorem guarantees the existence of
the coarse moduli space under certain hypotheses.

Definition A.4.1 (Coarse moduli space). A morphism 𝜋 : 𝔛 −→ 𝑋 from an alge-
braic stack to an algebraic space is a coarse moduli space if:

1. Points are in bijection with the objects being parametrized, i.e. for any alge-
braically closed field 𝑘, the induced map of 𝑘-valued points 𝔛(𝑘)/∼−→ 𝑋 (𝑘),
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from the set of isomorphism classes of objects of 𝔛 over 𝑘 is bijective.

2. 𝜋 is universal for maps to algebraic spaces, i.e. for any other map 𝑓 : 𝔛 −→ 𝑌

to an algebraic space 𝑌 , 𝑓 uniquely factors as

𝔛 𝑋

𝑌

𝜋

𝑓

Theorem A.4.2 (Keel-Mori). Let 𝔛 be a Deligne-Mumford stack which is sepa-
rated and of finite type over a noetherian algebraic space 𝑆. Then there exists a
coarse moduli space 𝜋 : 𝔛 −→ 𝑋 with O𝑋 = 𝜋∗O𝔛 such that

1. 𝑋 is separated and of finite type over 𝑆.

2. 𝜋 is a proper universal homeomorphism.

3. Coarse moduli spaces are stable under flat base changes.

We shall refer to [23, Theorem 11.1.2] for the proof of the Keel-Mori theorem.
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