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Introduction

One of the oldest problems in mathematics is the study of Diophantine equations, that
is the study of solutions of (systems of) polynomial equations with integer coefficients

f(X1, X2, . . . , Xn) = 0

in integers, rational numbers, or sometimes more general number rings. This is a prob-
lem that has been studied since the dawn of mathematics, with examples in texts of
the ancient Babylonians, Chinese, Egyptians and Greeks. The interesting thing about
those equations is that understanding the rational and integer solutions to seemingly
simple Diophantine equations, like

xn + yn = zn for n ≥ 3

often involves unexpectedly advanced tools, and sometimes yields to the creation of
new tools or even new areas of research.

At first, Diophantine equations were mainly studied using algebraic tools. How-
ever, at the start of the 20th century, with the development of modern algebraic geom-
etry, mathematicians started to realize that those equations define algebraic varieties
and, therefore, they could use the geometric properties of the associated variety to
deduce arithmetic properties of the Diophantine equation. Hence, integer or rational
solutions of Diophantine equations correspond to points with integral or rational coor-
dinates on the corresponding varieties. This area of research is now called Diophantine
geometry.

The simplest case to study (and the main focus of this thesis) is when the associated
variety has dimension 1, i.e. it is a curve. We will see that for every curve C, there exists
a non-negative integer g ≥ 0, called the genus of C (see Definition 1.39). In this case,
the genus fully characterizes the properties of C(Q), the set of rational points1 of C.

Curves of genus 0. For (smooth, projective) curves C of genus g = 0 defined over
Q, the study of rational points is particularly easy, since the Riemann-Roch theorem
(Theorem 1.38) implies that every such curve is isomorphic over Q to a (possibly de-
generate) conic C in P2 (see [46, Theorem A.4.3.1] for a proof). Moreover, if C(Q) 6= ∅,
then we can also prove that it is isomorphic to P1 over Q.

1We could be more general and work over a number field K instead of Q. All theorems would be
(almost) the same but, for ease of exposition, we will continue to work over Q.
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The argument is very easy: suppose that this conic has at least one rational point.
Up to a change of coordinates, we can assume that this point is P0 = [0, 0, 1]. Therefore
the conic has equation

C/Q : aX2 + bXY + cY 2 + dXZ + eY Z = 0

with a, b, c, d, e ∈ Z, (a, b, c) 6= (0, 0, 0), (d, e) 6= (0, 0) (otherwise it would be either a
line or the union of two lines, which is an even easier case to study). Notice that for
every rational point P ∈ C(Q), the line through P and P0 has rational coefficients and,
conversely, the line with equation tX + uY = 0 ([t, u] ∈ P1(Q)) intersects the conic at
the points [0, 0, 1] and

[
du2 − etu,−dtu+ et2,−(au2 − btu+ ct2)

]
.

This defines an isomorphism:

Φ : P1(Q) −→ C(Q)

[t, u] 7−→
[
du2 − etu,−dtu+ et2,−(au2 − btu+ ct2)

]
So, the only thing left to do in this case is determining if C(Q) = ∅. Luckily, we have
the following theorem

Theorem 0.1 (Hasse-Minkowski). C(Q) 6= ∅ if and only if C(R) 6= ∅ and C(Qp) 6= ∅ for
every prime p.

Curves of genus 1. A genus one curve over Q with a rational point O is called an
elliptic curve. Again, using the Riemann-Roch Theorem (see [68, Proposition III.3.1]
for a proof), we can show that an elliptic curve E over Q is isomorphic (over Q) to a
smooth plane curve with equation:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

More importantly, it can be shown that E can be given the structure of an algebraic
group [68, Chapter III]. In this case, the Mordell-Weil theorem (Theorem 1.50) tells us
that the group of rational points E(Q) is actually a finitely generated abelian group,
i.e. we have:

E(Q) ∼= E(Q)tors ⊕ Zr

whereE(Q)tors is the (finite) subgroup of points of finite order. Computing the torsion
subgroup is quite easy, and we know a lot about it. For example:

Theorem 0.2 (Nagell-Lutz). Let E/Q be an elliptic curve with equation y2 = x3 + ax+ b,
where a, b ∈ Z and 4a3 + 27b2 6= 0, and let P ∈ E(Q) a non trivial torsion point, then:

1. x(P ), y(P ) ∈ Z

2. Either 2P = O or y(P )2 divides 4a3 + 27b2
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Theorem 0.3 (Mazur). Let E/Q be an elliptic curve. Then the subgroup E(Q)tors is isomor-
phic to one of the following 15 groups:

Z/nZ with 1 ≤ n ≤ 10 or n = 12

Z/2Z× Z/2nZ with 1 ≤ n ≤ 4

On the other hand, computing the generators of infinite order is much more diffi-
cult. There are some algorithms that work really well in practice [68, Chapter X], but
we do not know if they work for every elliptic curve.

Curves of genus ≥ 2. In contrast with the previous cases, in 1922 Mordell [57] con-
jectured the following result, which was first proven by Faltings [37] in 1983.

Theorem 0.4 (Faltings). Let C/Q be a curve of genus g ≥ 2. Then C(Q) is finite.

Faltings’ theorem was later proved independently by Vojta [79] , using Diophan-
tine approximation, and simplifications of Vojta’s proof were found by Faltings and
by Bombieri, who presented a relatively elementary proof in [14]. Another proof was
found in 2020 by Lawrence and Venkatesh [52], using p-adic Hodge theory.

However, all of the proofs of Faltings’ theorem are not completely effective, mean-
ing that they do not give an algorithm which is able to find all the rational points.
Ironically, other methods (mostly older), which so far have failed to prove the Mordell
conjecture in full generality, are the ones that have succeeded in determining C(Q) in
many examples.

In this thesis, we will focus on a class of those methods, which rely heavily on
the properties of Qp and on functions defined over Qp, and are therefore called p-adic
methods. The first ideas behind them were originally developed by Chabauty in 1941.

Chabauty [22] proved (Theorem 2.3) that the Mordell conjecture holds if there is an
additional condition regarding the rank of an abelian variety over Q associated with
the curve, called the Jacobian variety. Later, in 1985, Coleman [27] used Chabauty’s
ideas to prove (Theorem 2.17) that under similar hypotheses, we can find a bound for
#C(Q).

Together, those two theorems are at the base of the so-called Chabauty-Coleman
method which is the main method that we will study in this thesis. We will also study
some of its generalizations and variants, and we will also see how to apply those
methods to explicitely find rational solutions of Diophantine equations.
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Chapter 1

Review of algebraic geometry

This thesis will focus only on curves, i.e. varieties of dimension one, so in this section
we will only talk about curves, even though many of the following arguments could be
generalized to arbitrary varieties. For simplicity, we will mainly work on algebraically
closed fieldsK but, again, most of what we will say can be generalized to more general
fields (in particular we only need K to be perfect).

Let C/K be a curve. Since it has dimension 1, its function field K(C) has transcen-
dence degree one. Therefore K(C) is algebraic over any subfield K(x) generated by a
nonconstant function x ∈ k(C). It follows that there are two nonconstant functions on
C, x, y ∈ K(C), satisfying an algebraic relation P (x, y) = O such that K(C) = K(x, y).
Let C0 ⊆ A2 be the affine plane curve defined by P , and let C1 ⊆ P2 be the projective
plane curve defined by the homogenized polynomial

Phom(X,Y, Z) = ZdegPP

(
X

Z
,
Y

Z

)

Clearly, C is birational to both C0 and C1.

We will say that any curve birational to C is a model of C, so that any curve has a
plane affine model and a plane projective model. However, we can show that these
model cannot be always smooth. Despite this, we have the following theorem.

Theorem 1.1. Any algebraic curve is birational to a unique (up to isomorphism) smooth
projective curve.

Proof. See [41, Theorem 7.5.3] or [44, Corollary I.6.11].The idea is to repeatedly blow
up the singular points and show that after a finite number of steps the resulting curve
is smooth.

In light of this result, in the following we will always assume (unless explicitly
stated) that all the curves are smooth and projective.

1



2 CHAPTER 1. REVIEW OF ALGEBRAIC GEOMETRY

1.1 Differentials

Definition 1.2. Let K be a field, R be a ring containing K and M be a R-module. A
derivation of R into M over K is a K-linear map D : R→M such that

D(xy) = xD(y) + yD(x)

for all x, y ∈ R.

Remark 1.3. Notice that we must have D(λ) = 0 for every λ ∈ K, since

D(1) = D(1 · 1) = 1 ·D(1) + 1 ·D(1) = D(1) +D(1)

so D(1) = 0 and therefore D(λ) = λD(1) = 0 by the K-linearity. This also implies that
theK-linearity in the definition above is equivalent to say that D is identically 0 onK.

By using properties of polynomials, we easily see that such a map acts on polyno-
mials K [X1, . . . , Xn] as follows:

D(P (x1, . . . , xn)) =
n∑
i=0

∂P

∂Xi
(x1, . . . , xn)D(xi)

for any x1, . . . , xn ∈ R.

Proposition 1.4. Let R be a domain with field of fractions k and let M be a vector space over
k. Then a derivation D : R→M extends uniquely to a derivation D̃ : K →M .

Proof. Let z = x/y ∈ k with x, y ∈ R. Then, if such a D̃ exists, we must have:

D(x) = D̃(x) = D̃(yz) = yD̃(z) + zD̃(y) = yD̃(z) + zD(y)

since D and D̃ coincide on R. Therefore we must have:

D̃(z) =
1

y
(D(x)− zD(y))

So we can take this as a definition of D̃, proving existence and uniqueness. In order to
see that this equation actually defines a derivation, we need to check that this map is
K-linear (which is trivial) and that it satisfies the Leibniz rule:

D̃
(a
b
· c
d

)
=

1

bd

(
D(ac)− ac

bd
D(bd)

)
=

1

bd

(
aD(c) + cD(a)− ac

bd
(bD(d) + dD(b))

)
=

1

bd

(
cD(a)− ac

b
D(b) + aD(c)− ac

d
D(d)

)
=
c

d
· 1

b

(
D(a)− a

b
D(b)

)
+
a

b
· 1

d

(
D(c)− c

d
D(d)

)
=
c

d
D̃
(a
b

)
+
a

b
D̃
( c
d

)
Hence this is indeed a derivation. Finally, we check that D̃ actually extends D. Using
remark 1.3 and writing x = x

1 shows that D̃ agrees with D on R, as:

D̃ (x) = D̃
(x

1

)
= D(x)− xD(1) = D(x)
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Now, let F be a free R-module with generating set R. That is, an element in F is a
formal (finite) sum of elements in R with coefficients in R and with scalar multiplica-
tion given by multiplication in R.

Let N be the submodule of F generated by

(x+ y)− x− y, (λx)− λ · x, (xy)− x · y − y · x

where λ ∈ R is just a scalar, while x, y, x+ y, xy, λx must be considered as elements of
F , and · represents scalar multiplication in F (so that the expression x · y means that
we are multiplying y ∈ F by the scalar x ∈ R).

Definition 1.5. Define Ω1
R/K = F/N . We can call dx the image of x under the quo-

tient map (take this as the definition of the map d). We will call this set the module of
differentials of R over K.

Remark 1.6. The map d is a derivation. In fact, for all x, y ∈ R ⊆ F and λ ∈ R we have:

d(x+ y) = (x+ y) (mod N) = (x (mod N)) + (y (mod N)) = dx+ dy

d(λx) = (λx) (mod N) = λ(x (mod N)) = λdx

d(xy) = (xy) (mod N) = y(x (mod N)) + x(y (mod N)) = ydx+ xdy

using the definition of N . So d : F → Ω1
R/K = F/N is an R-linear map which satisfies

the Leibniz rule and we have

d
(∑

λixi

)
=
∑

λidxi

We also have the following Proposition, which follows directly from the action of
a derivation on a polynomial in K[x1, . . . , xn] described earlier.

Proposition 1.7. Suppose that x1, . . . , xn ∈ R are generators for R as a free K-module, then
Ω1
R/K is generated by the elements dx1, . . . , dxn as an R-module.

Now, we can define the module of differentials for a curve.

Definition 1.8. If X is the nonsingular model of a projective curve C over K, then we
define the space of differentials of C over K as the module Ω1

K(X)/K , where K(X) is the
function field of X (if the field is trivial from the context we will write Ω1(X)). These
are analogous to the 1-forms in the case where K = C.

Until now, we have defined differentials only algebraically, but we can take a more
geometrical approach.

Let P be a point on a variety V .

Definition 1.9. The local ring of V at P is the ring OP,V (or OV if there is no confusion)
of functions f : V → K which are regular at P , where we identify two such functions
if they coincide on an open neighborhood of P . We define MP,V to be the (unique)
maximal ideal of OP,V which consists of the functions which vanish at P .
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Definition 1.10. The tangent space to V at P (denoted as TanP (V )) is the dual of the K-
vector spaceMP,V /M2

P,V . TheK-vector spaceMP,V /M2
P,V is also called the cotangent

space to V at P .

It can be proved that both the tangent and the cotangent space have finite dimen-
sion as K-vector spaces. Moreover, we have the following theorem.

Theorem 1.11. We have that dim(TanP (V )) ≥ dim(V ) for all P ∈ V . Furthermore, there
exists a nonempty open subset U ⊆ V such that dim(TanP (V )) = dim(V ) for all P ∈ U .

Proof. See [44, Proposition I.5.2A and Theorem I.5.3] or [65, Theorem II.2.3].

Definition 1.12. A point P on a variety V is called singular if dim(TanP (V )) > dim(V )

and nonsingular (or smooth) if dim(TanP (V )) = dim(V ). The variety V is called nonsin-
gular (or smooth) if all of its points are nonsingular.

Now consider a rational map f : V → W which is regular at P and let Q = f(P ).
It is known (see [46, Theorem A.1.2.5]) that f induces an homomorphism of local rings
f∗ : OQ,W → OP,V and hence a K-linear map

f∗ :MQ,W /M2
Q,W →MP,V /M2

P,V

Definition 1.13. The tangent map df(P ) : TanP (V )→ TanQ(W ) is the transpose of the
map f∗ :MQ,W /M2

Q,W →MP,V /M2
P,V .

Now take a function f ∈ K(V )×, for any point x in its domain we have a tangent
map df(x) : Tanx(V ) → Tanf(x)(A1(K)) = K. This implies that df(x) is a linear form
on Tanx(V ) and we have the identities

d(f + g) = df + dg and d(fg) = f dg + g df

where all the operations on f, g are defined pointwise.
This means that we can see df as a map that sends each point x in which f is

defined to a linear form on Tanx(V ) (i.e. a cotangent vector). We call such a map an
abstract differential form.

Definition 1.14. A regular differential 1-form on a variety V is an abstract differential
form ω such that for all x ∈ V there is a neighborhood U of x and regular functions
fi, gi ∈ O(U) such that ω =

∑
fidgi on U . We denote this set as Ω1 [V ].

Definition 1.15. Let U,U ′ ⊆ V two open subsets of V and let ω ∈ Ω1 [U ] , ω′ ∈ Ω1 [U ′].
We define an equivalence relation on the pairs (ω,U) as follows:

(ω,U) ∼ (ω′, U ′)⇐⇒ ω ≡ ω′ on U ∩ U ′

An equivalence class under this relation is called a rational differential 1-form on V . The
set of all rational differential 1-forms on V is denoted by Ω1 (V ).
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Clearly, Ω1 [V ] is a K-vector space and Ω1 (V ) is K(V )-vector space.

Theorem 1.16. Let V be a smooth variety, then the dimension of Ω1(V ) as a K(V )-vector
space is equal to dim(V ).

Proof. This is a special case of Theorem III.3.19 from [65].

In particular, if C/K is a curve, then Ω1(C) is a 1-dimensional K(C)-vector space,
and therefore a general differential can be written as ω = fdg where f, g ∈ K(X) with
dg 6= 0. If we fix g this representation is unique.

Moreover, if we have ω, ω′ ∈ Ω1(C) with ω′ 6= 0, then there is a unique f ∈ K(C)

such that ω = fω′.

Definition 1.17. Let 0 6= ω ∈ Ω1(C) and P ∈ C(K). Moreover, let t ∈ K(C) be a
uniformizer at P . Then we can define vP (ω) as vP (ω/dt), where in the second case the
valuation is the P -adic valuation on the field K(C). This valuation is nonzero for only
finitely many points P ∈ C(K).

If vP (ω) ≥ 0 then ω is regular at P and ω is said to be regular if it is regular at all
points P ∈ C(K). Regular differentials are also called differentials of the first kind.

A differential of the second kind has residue zero at all points P ∈ C(K).
A differential of the third kind has at most a simple pole at all points P ∈ C(K) (and

integer residues there in some references).

1.2 Divisors and Riemann-Roch

Consider a nonsingular, irreducible and projective curve C.

Definition 1.18. The group of divisors on C is the free abelian group Div(C) generated
by its K-rational points1. Alternatively, a divisor on C is a formal finite sum

D =
∑

niPi

of points Pi ∈ C(K) with coefficients ni ∈ Z. If D1 =
∑
niPi and D2 =

∑
miPi, then

we will write D1 +D2 to denote the divisor
∑

(ni +mi)Pi.

Remark 1.19. The divisors we just defined are called Weil divisors. There is another
way to define divisors, due to Cartier, but for smooth curves the two definition are
equivalent, so we will only use the one above.

Definition 1.20. The support of the divisor D =
∑
niPi is the set of points Pi such

that ni 6= 0. This subset of C is denoted by supp(D).

Definition 1.21. The degree of a divisor D =
∑
niPi is the integer deg(D) =

∑
ni.

Clearly deg(D1 +D2) = deg(D1) + deg(D2). So we can interpret deg : Div(C) → Z as
a group homomorphism; its kernel we be denoted by Div0(C).

1For this definition we need that C is a curve. For general varieties we use closed subvarieties of
codimension 1 instead of points.
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Definition 1.22. If all the ni ≥ 0, then the divisor D =
∑
niPi is called effective (or

positive) and we will write D ≥ 0. We will write D1 ≥ D2 if D1 −D2 ≥ 0.

So far, we have only used K-rational points of C, but this is not suitable to study
the arithmetic of C over K. So we need to know what it means for a divisor to be
defined over K.

Definition 1.23. The group Gal
(
K/K

)
acts on C(K) in a natural way, hence it also

acts on Div(C). The fixed points for this action are called K-rational divisors and they
form a subgroup, which we denote by DivK(C).

Remark 1.24. IfP1, . . . , Pr ∈ C(K), then clearlyD =
∑
niPi ∈ DivK(C), since Gal

(
K/K

)
acts trivially on the support. However, a divisor can be K-rational even if the points
in its support are not. For example, on the curve C/Q : y2 = x2 + 1, the divisor
D = (i, 0) + (−i, 0) is Q-rational, but (±i, 0) /∈ C(Q).

Recall that for any f ∈ K(C)×, vP (f) denotes the order of P as a zero or a pole of
f . Then we have the following lemma.

Lemma 1.25. The valuation function vP : K(C)× → Z has the following properties:
• vP (fg) = vP (f) + vP (g) for all f, g ∈ K(C)×.
• Fix f ∈ K(C)×. Then there are only finitely many points P such that vP (f) 6= 0.
• Let f ∈ K(C)×. Then vP (f) ≥ 0 if and only if f ∈ OP,C . Similarly, vP (f) = 0 if and

only if f ∈ O×P,C .
• If C is projective and f ∈ K(C)×, then the following are equivalent:

– vP (f) ≥ 0 for every P .
– vP (f) = 0 for every P .
– f ∈ K×.

This lemma allows us to define the divisor of a function.

Definition 1.26. Let f ∈ K(C)× be a rational function on C. The divisor of f is the
divisor

div(f) =
∑
P∈C

vP (f)P ∈ Div(C)

A divisor is said to be principal if it is the divisor of a function. Note that since a
rational function has the same number of zeros and poles (counting the zeros/poles
at the point at infinity), a principal divisor will always have degree 0.

Definition 1.27. Two divisors D1, D2 ∈ Div(C) are said to be linearly equivalent, de-
noted by D1 ∼ D2, if their difference is a principal divisor.

Remark 1.28. Clearly, if f, g ∈ K(C)× , then:

div(f) = div(g)⇐⇒ f = λg

for some λ ∈ K×.
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Proposition 1.29. Linear equivalence of divisors is an equivalence relation.

Proof. Reflexivity is trivial, as we can write D as the sum of itself plus the divisor of
the constant function 1 which has no zeros nor poles.

Symmetry is also trivial, because if we have D1 ∼ D2, so that D1 = D2 + div(f),
then D2 = D1 − div(f), but −div(f) = div(1/f).

For transitivity, let D1, D2, D3 be divisors such that D1 ∼ D2 and D2 ∼ D3. Equiv-
alently,

D1 = D2 + div(f) and D2 = D3 + div(g)

for some f, g ∈ K(C)×. Then we have:

D1 = D2 + div(f) = D3 + div(f) + div(g) = D3 + div(f · g)

Hence linear equivalence is an equivalence relation.

Remark 1.30. Clearly D ∼ 0 if and only if D is principal and, since the degree of a
divisor is an additive function, we also have that linearly equivalent divisors have the
same degree.

It is easy to prove that the principal divisors form a subgroup of Div(C), which we
will denote by Princ(C).

Definition 1.31. We define the Picard group of C as the quotient

Pic(C) = Div(C)/Princ(C)

and
Pic0(C) = Div0(C)/Princ(C)

Equivalently, Pic(C) is the set of divisors modulo linear equivalence. We denote by
[D] the class of the divisor D in Pic(C).

Definition 1.32. Let D be a divisor of C. We define:

L(D) =
{
f ∈ K(C)× : div(f) +D ≥ 0

}
∪ {0}

This is a K-vector space whose dimension will be denoted by l(D).

Proposition 1.33. If D1 ≤ D2 then L(D1) ⊆ L(D2) and

dim(L(D2)/L(D1)) ≤ deg(D2 −D1)

Proof. We can write D2 = D1 +
∑k

i=0 Pi for some k ∈ N (where the Pi are not neces-
sarily distinct). Thus, it is obvious that if f ∈ L(D1) then f ∈ L

(
D1 +

∑k
i=0 Pi

)
by

definition. So we’ve proven the first part of the statement.
We’ll omit the proof of the second which involves a few more technical definitions

(see [41, Chapter 8]).
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Lemma 1.34. L(D) = 0 if deg(D) < 0.

Proof. Recall that deg(div(f)) = 0 for any f ∈ K(C)×, so if deg(D) < 0, then deg(div(f)+

D) = deg(div(f))+deg(D) = deg(D) < 0 and therefore we cannot have div(f)+D ≥ 0.
This means that there are no nonzero functions in L(D).

Lemma 1.35. • L(0) = K

• K ⊆ L(D) if and only if D ≥ 0

Proof. • As in the previous proof, we have deg(div(f)) = 0 for any f ∈ K(C)×.
This means that either f ∈ K is a constant or has a zero, and therefore also a
pole. Thus the only rational functions in L(0) must be the functions without
zeros or poles, which are the constant functions. This proves that L(0) = K.

• If D ≥ 0, then for every constant function c ∈ K we have that div(c) + D =

0 + D = D ≥ 0, so all the constants are in L(D). Conversely, if K ⊆ L(D), then
0 ≤ div(1) +D = D.

Proposition 1.36. L(D) is a finite dimensional K-vector space for all D. In particular, if
deg(D) ≥ 0, then l(D) ≤ deg(D) + 1.

Proof. Let deg(D) = n ≥ 0 (we already saw that if n < 0, then L(D) = 0). Then
choose a P ∈ C and consider the divisor D − (n + 1)P . The degree of this divisor is
deg(D) − (n + 1) = −1, so L(D − (n + 1)P ) = 0. By Proposition 1.33, we must have
dim(L(D)/L(D−(n+1)P )) ≤ n+1, which implies that l(D) = dim(L(D)) ≤ n+1.

Proposition 1.37. If D1 ∼ D2 then l(D1) = l(D2).

Proof. Since D1 ∼ D2, we must have D1 = D2 + div(f) for some f ∈ K(C). So we can
define a linear map between L(D1) and L(D2) by sending g to fg. Clearly this is an
isomorphism of vector spaces and since the vector spaces are finite dimensional their
dimensions must be equal.

We define the divisor of ω ∈ Ω1(C) as we did for functions

div(ω) =
∑
P∈C

vP (ω)P ∈ Div(C)

where vP (ω) is the valuation defined in definition 1.17. Recall also that if ω, ω′ ∈ Ω1(C)

with ω′ 6= 0, then there is a unique f ∈ K(C) such that ω = fω′. In particular, we must
have

div(ω)− div(ω′) = div
( ω
ω′

)
= div(f)

This proves that all the divisors of differentials are linearly equivalent. We call any of
those divisors a canonical divisor.
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Theorem 1.38 (Riemann-Roch). Let C be a smooth projective curve and W be a canonical
divisor on C. Then there exists an integer g ≥ 0 such that for any divisor D ∈ Div(C):

l(D)− l(W −D) = deg(D) + 1− g

Proof. See [41, Section 8.6].

Definition 1.39. The integer g is called the genus of the smooth projective curve C. If
C is not smooth or projective, then its genus is defined to be the genus of a smooth
projective model of C.

Theorem 1.40. Let C be a smooth projective plane curve of degree n. Then the genus of g of
C is given by

g =
(n− 1)(n− 2)

2
If C has only ordinary singularities, its genus is given by

g =
(n− 1)(n− 2)

2
−
∑
P∈S

mP (mP − 1)

2

where S is the set of singular points and mP is the multiplicity of C at P .

Proof. See Theorems A.4.2.6 and A.2.4.7. of [46].

1.3 Abelian varieties and Jacobians

Definition 1.41. An algebraic group over K is a variety G, defined over K, with a
marked point e ∈ G(K) and morphisms m : G × G → G, i : G → G satisfying
the axioms of a group law:

• m(e, x) = m(x, e) = x.
• m(i(x), x) = m(x, i(x)) = e.
• m(m(x, y), z) = m(x,m(y, z)).

Using this definition, we can easily prove that for any x ∈ G, the right and left
translation maps

Rx : G −→ G Lx : G −→ G

g 7−→ m(x, g) g 7−→ m(g, x)

are isomorphisms. We can use this information to prove the following theorem.

Theorem 1.42. Algebraic groups are smooth varieties.

Proof. For any g1, g2 ∈ G, we define h = m(g2, i(g1)). Then

Rh(g1) = m(h, g1) = m
(
m(g2, i(g1)), g1

)
= m

(
g2,m(i(g1), g1)

)
= m(g2, e) = g2

This proves that if there exists a nonsingular point g ∈ G, then for every x ∈ G there
exists h ∈ G such that Rh(g) = x. However, the property that a point is singular is
invariant under isomorphism, which implies that x is singular, and therefore so are all
the points of G. But this contradicts the fact that the singular points of any algebraic
variety form a proper closed subvariety. Therefore G cannot have singular points.
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Example 1.43. The additive group Ga is the variety A1
K with the group law given by

addition

m : Ga ×Ga −→ Ga
(x, y) 7−→ x+ y

Example 1.44. The multiplicative group Gm is the variety A1
K \ {0} with the group law

given by multiplication

m : Gm ×Gm −→ Gm
(x, y) 7−→ xy

Example 1.45. The general linear group GLn is the group of n × n invertible matrices
with the group law given by matrix multiplication. Note that although GLn is natu-
rally defined as the quasi-projective variety

GLn = {(xij) ∈ An
2

: det(xij) 6= 0}

it is actually an affine variety

GLn = {(xij , t) ∈ An
2 × A1 : tdet(xij) = 1}

It is known that every algebraic group is a subgroup of GLn for some n.

Another family of examples of algebraic groups is given by elliptic curves with the
usual group law. The following definition generalize this last example.

Definition 1.46. An abelian variety is a projective variety that is also an algebraic group.

Notice that it is not immediately clear that an abelian variety must an abelian
group. We will need a few result to prove this.

Lemma 1.47 (Rigidity lemma). Let X be a projective variety, and Y, Z be generic varieties.
Let f : X × Y → Z be a morphism. Suppose that there is a point y0 ∈ Y such that f is
constant on X × {y0}. Then f is constant on every slice X × {y}. If f is also constant on
some slice {x0} × Y , then f is a constant function on all of X × Y .

Proof. We will only prove the first part since the second follows immediately.
SinceX is a projective variety, and projective varieties are proper (see [44, Theorem

11.4.9]), the projection map p : X × Y → Y is closed. So if we take an affine neighbor-
hood U of z0 = f(x, y0) (because by assumption f(x, y0) does not depend on x), then
the set W = p(f−l(Z \ U)) is closed in Y . By hypothesis, y0 /∈ W and thus Y \W is a
dense open subset of Y . For any y /∈W , the projective variety f(X ×{y}) is contained
in the affine open set U , hence is reduced to a point.

Corollary 1.48. Let φ : A → B be a morphism between two abelian varieties. Then we can
write φ as the composition of a translation and a homomorphism.
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Proof. Let eA and eB be the identity elements of A and B, respectively. Up to compos-
ing φ with a translation, we may assume that φ(eA) = eB . Instead of writing mA(x, y)

and iA(x), we will write xy and x−1 to denote the group law and the inverse, without
mentioning the group we are working in, since it will be obvious. Consider the map

f : A×A −→ B

(x, y) 7−→ φ(xy)φ(y)−1φ(x)−1

Clearly,f({eA} ×A) = {eB} and f(A× {eA}) = {eB}, so Lemma 1.47 implies that f is
constant. Therefore f(x, y) = f(eA, eA) = eB , implying that φ is a homomorphism.

Lemma 1.49. An abelian variety is a commutative algebraic group.

Proof. The previous corollary states that the inversion morphism

i : A→ A, i(x) = x−1

must be a homomorphism. Hence i(xy) = i(x)i(y), so A is commutative.

One of the most important theorems in the arithmetic theory of abelian varieties is
the famous Mordell-Weil theorem.

Theorem 1.50 (Mordell-Weil). Let A be an abelian variety defined over a number field K.
Then the group A(K) of K-rational points is finitely generated, that is there exists r ∈ N
(called rank of A/K) and a finite abelian group T such that

A(K) ∼= Zr ⊕ T

Traditionally, the proof is divided into two parts. At first, one proves the following
“weaker” result:

Theorem 1.51 (Weak Mordell-Weil). LetA be an abelian variety defined over a number field
K and let m ≥ 2 be an integer. Then the group A(K)/mA(K) is finite.

Then, one constructs a suitable height function and uses a descent argument to
prove Theorem 1.50. For the details, see [46, Part C].

Finally, one of the most important examples of abelian varieties in this thesis will
be the Jacobian variety of a curve C:

Theorem 1.52. Let C/K be a smooth projective curve of genus g ≥ 1. Then, there exists an
abelian variety J = Jac(C) defined over K, called Jacobian variety of C. The dimension of
J is equal to g and it is equipped with an injection j : C ↪→ J (called the Abel-Jacobi map)
which induces a group isomorphism between J(K) and Pic0(C), when extended by linearity
to Div(C).

Remark 1.53. If P0 ∈ C(K) we can prove that the Abel-Jacobi map j : C ↪→ J is defined
over K. In particular, we can define

j : C ↪→ J

P 7→ [P − P0]



Chapter 2

Chabauty-Coleman theory

Throughout this chapter C/Q will be a smooth, projective, and geometrically irre-
ducible curve of genus g ≥ 2 and J will be its Jacobian variety.

For simplicity, we will only work over Q and Qp, even though all the results of the
chapter can be generalized over number fields K (see also [66]), using Kp (for some
finite place p of K) instead of Qp.

2.1 Chabauty’s theorem

Before stating and prove Chabauty’s theorem, we want to recall some results about
the structure of the p-adic Lie group J(Qp).
Let JQp be the base change from Q to Qp of J . We will denote by H0(JQp ,Ω

1) the g-
dimensionalQp-vector space of regular differential 1-forms on JQp . Let ωJ ∈ H0(JQp ,Ω

1),
then we can use the translational invariance of ωJ to prove that there exists an "an-
tiderivative"

ηJ : J(Qp)→ Qp

Q 7→
∫ Q

0
ωJ

that is uniquely characterized by the following two properties:

1. ηJ is an homomorphism of abelian groups. In order to prove this, denote by
tP : J → J, P ′ 7→ P+P ′ the translation by P , then its derivative dtP : T0J → TPJ

is an isomorphism. Therefore the dual spaces (T0J)∨ and (TPJ)∨ are isomorphic.
So every 1-form ωJ can be written as (dtP )∗(v) for some element v ∈ (T0J)∨ and
we have t∗PωJ = ωJ , thus:

ηJ(P+Q) = ηJ(P )+

∫ P+Q

P
ωJ = ηJ(P )+

∫ Q

0
t∗PωJ = ηJ(P )+

∫ Q

0
ωJ = ηJ(P )+ηJ(Q)

2. There exists an open subgroupU of J(Qp) such that for everyQ ∈ U , ηJ(Q) =
∫ Q
0 ωJ

can be computed by writing ωJ as a power series in the local coordinates, then

12
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finding a formal primitive and computing it in Q. Notice that since the coeffi-
cients in the series expansion of ωJ grow at most geometrically, the formal prim-
itive converges on every sufficiently small U (see [16, Section III.7.6] for more
details).

Remark 2.1. We may choose U as the kernel of the reduction map J(Qp) � J(Fp). If
p is a prime of good reduction, then J(Fp) can be seen as the group of points with
coordinates in Fp on the reduction, but in general J(Fp) should be seen as the group
of Fp-points on the special fiber of the Néron model of J .

Lemma 2.2. There exists a neighborhood U of 0 ∈ J(Qp) which is isomorphic (as a p-adic
analytic group) to Zgp. More precisely, there are local coordinates t1, . . . , tg near 0 and power
series λ1, . . . , λg ∈ Zp [[t1, . . . , tg]] convergent in U and such that for all P,Q ∈ U we have
P = (t1(P ), . . . , tg(P )), Q = (t1(Q), . . . , tg(Q)) e

λi (t1(P +Q), . . . , tg(P +Q)) = λi (t1(P ), . . . , tg(P )) + λi (t1(Q), . . . , tg(Q))

Proof. As dim(T0J) = dim(J) = g we get a g-dimensional set of ηJ ’s which, by the
properties above are power series convergent in U . Now, we only need to choose a
basis λ1, . . . , λg (For more details see [53]).

Theorem 2.3 (Chabauty, 1942 [22]). Let C/Q be a curve of genus g ≥ 2 such that
r = rank(J(Q)) < g, then C(Q) is a finite set.

Proof. Let U, λ1, . . . , λg as in the lemma and let P1, . . . , Pr ∈ J(Q) be generators for the
free part of J(Q). Up to multiplication by a suitable power of p we may assume that
Pi ∈ U . Consider the vectors

vi = (λ1(Pi), . . . , λg(Pi)) ∈ Zgp

then the matrix V ∈ Zr×gp whose rows are the vectors v1, . . . , vr must have rank at
most r < g and therefore the columns are linearly dependent. In other words, there
are a1, . . . , ag ∈ Zp not all zero such that

g∑
i=1

aiλi(Pj) = 0

for every j = 1, . . . , r. We can define the function λ(t1, . . . , tg) =
g∑
i=1

aiλi which is

clearly analytic on U . By construction we know that λ(Pj) = 0 and from the lemma
we deduce that λ is linear on U , so that

λ

 r∑
j=1

njPj

 =

r∑
j=1

njλ(Pj) = 0 ∀nj ∈ Z

In particular we notice that if Q ∈ J(Q) then pmQ ∈ U for a sufficiently large m ∈ N,
so λ(Q) = 1

pmλ(pmQ) = 0.
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Suppose by contradiction that C(Q) is infinite. Then C(Q) ⊆ C(Qp) is compact
(since C is projective) and consequently there is a limit point P0 ∈ C(Qp). So there is
P1 ∈ C(Q) such that [P1 − P0] ∈ U and for every P ∈ C(Q) sufficiently close to P0, we
have [P − P0] ∈ U . This implies that [P − P1] ∈ J(Q)∩U and therefore λ(P −P1) = 0.
However λ is an analytic function on U and C has dimension 1, so either the set of
zeros in C must be 0 dimensional (and therefore is finite since C is compact) or the
map µ : P 7→ λ(P − P1) is identically zero:

• If µ 6≡ 0, the we can find only a finite number of P ’s sufficiently close to P0, but
this contradicts the fact that P0 is a limit point for C(Q).

• If µ ≡ 0, then for all P ∈ C(Q), P − P1 ∈ U . If Q1, . . . , Qg ∈ C(Qp) are close to P1

then

0 =

g∑
i=1

λ(Qi − P1) = λ (Q1 + . . .+Qg − gP1)

However the set {[Q1 + . . .+Qg − gP1] | Q1, . . . , Qg ∈ C(Qp)} is open in J(Qp)
and this implies that λ ≡ 0, which is a contradiction.

Remark 2.4. Although we will only work with curves, the ideas behind the proof can
be used to work even with more general projective varieties V , provided that there
exists a morphism f : V → A, with A an abelian variety such that

dim(V ) ≤ dim(A)− rank(A(Q))

and such that we have some knowledge on the rational points on the fibers of f .
This restriction on the fibers is quite restrictive and rules out many types of vari-

eties (e.g. K3 surfaces, since they only have constant maps to abelian varieties), but
there are some examples for which this generalization works well, like restriction of
scalars of curves or symmetric powers of curves (see [74]).

For the sake of completeness we will state (but not prove) a slightly stronger result
but we need a few other remarks.

We have a bilinear pairing:

J(Qp)×H0(JQp ,Ω
1)→ Qp

(Q,ωJ) 7−→
∫ Q

0
ωJ

and in particular, if we denote T the dual vector space of H0(JQp ,Ω
1), then such pair-

ing can be written as a group homomorphism

log : J(Qp)→ T

Q 7→
(
ωJ 7→

∫ Q

0
ωJ

)
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One can prove that the tangent spaces in 0 of J(Qp) and T (as p-adic Lie groups) can
be identified with T , which implies that the derivative of log in 0 is the identity on T .
This proves that log is also a local diffeomorphism.

So the closure J(Q) of J(Q) in J(Qp) (with the p-adic topology) is an analytical
subgroup of J(Qp) and as such we compute its dimension as a p-adic manifold. We
have the following result:

Lemma 2.5. Let r′ := dim J(Q) and r := rank(J(Q)). Then r′ ≤ r.

Proof. Since log is a local diffeomorphism, r′ = dim J(Q) = dim log
(
J(Q)

)
and since

log is continuous and J(Q) is compact

log
(
J(Q)

)
= log (J(Q)) ⊆ T ∼= Qgp

The closure of every subgroup of Qgp is simply its Zp-span, so:

r′ = dim J(Q) = dim log
(
J(Q)

)
= dim log (J(Q)) = dim(Zp log(J(Q))) =

= rankZp(Zp log(J(Q))) ≤ rankZ(log(J(Q))) ≤ rankZ(J(Q)) = r

Remark 2.6. One can prove that the kernel of log is finite and from this deduce that
actually rankZ(log(J(Q))) = rankZ(J(Q)). However, it’s not always true that

rankZp(Zp log(J(Q))) = rankZ(log(J(Q)))

because Z-independent points on log(J(Q)) need not to be Zp-independent. For ex-
ample, we always have r′ ≤ dim(J) = g but it could happen that r > g, so that r′ < r.

Theorem 2.7. Let C/Q be a curve of genus g ≥ 2 and r′ as above. If r′ < g, then C(Q) is a
finite set.

Remark 2.8. By Lemma 2.5 r′ < g is always true if r < g; however, in practice, com-
puting r′ is significantly more difficult than computing r (which is still not easy). So,
when making computations, it is more common to use the first version of Chabauty’s
theorem rather than the one we just stated.

2.2 Coleman integration

2.2.1 Integration on Jacobians

We want to define an integration map

H0(J,Ω1
J)× J(Qp)→ Qp

(ω, P ) 7→
∫ P

ω

such that:
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• It is Qp-linear in ω;

• It is additive in P , i.e. ∫ P+Q

ω =

∫ P

ω +

∫ Q

ω

• It is non-degenerate up to torsion, i.e.
∫ P

ω = 0 for every ω ∈ H0(J,Ω1
J) if and

only if P has finite order.

Lemma 2.9. Let Cot(J) be the cotangent space to J at 0. Then the evaluation map

ev : H0(J,Ω1
J)→ Cot(J)

ω 7→ ω(0)

is an isomorphism of vector spaces.

Proof. The map J → Cot(J), P 7→ t∗Pω is algebraic. Since J is a complete variety and
Cot(J) is an affine variety, it must be constant. This proves that any differential form
is translation invariant, so ev must be injective.

The map ev is also surjective since the two spaces have both dimension g.

Lemma 2.10. For every ω ∈ H0(J,Ω1
J) here exists a unique analytic map λω : J(Qp)→ Qp

such that dλω = ω, λω(0) = 0 and λω is a group homomorphism.

Proof. We have that ω =
g∑
i=1

Fidzi for some Fi ∈ Qp [[z1, . . . , zg]]. Then by the p-

adic Poincaré lemma, we can write ω = dG, for some G ∈ Qp [[z1, . . . , zg]] such that
G(0) = 0 (otherwise take G − G(0)) and G converges on some open ball B. By
lemma 2.2 there are open subgroups of J(Qp) isomorphic to (piZp)g that form a basis
of neighborhood around 0, so without loss of generality, we can assume that B is an
open subgroup of J(Qp). Since J is compact, we have that N = [J(Qp) : B] is finite,
and we define

λω(P ) =
1

N
G(N · P )

Notice that for every P ∈ J(Qp), N · P ∈ B by definition of N , so λω is well-defined.
Checking that dλω = ω is pretty easy, since it is true on B and therefore on J

because of translation invariance. Clearly, λω(0) = 0 is also true by definition of G.
Then, we have to check that λω is a group homomorphism. Define, for every

a, b ∈ B: ∫ b

a
ω := λω(b)− λω(a)

then this "integral" satisfies all the formal properties of integration, by definition.
Therefore we have, since B is a subgroup:

λω(a+b) =

∫ a+b

0
ω =

∫ a

0
ω+

∫ a+b

a
ω =

∫ a

0
ω+

∫ b

0
t∗aω =

∫ a

0
ω+

∫ b

0
ω = λω(a)+λω(b)

from this, it follows easily that λω is an homomorphism.
Finally, we have to show that λω is unique. This is true because of the local unique-

ness at 0 and because of the fact that λω is an homomorphism.
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Definition 2.11. Define
∫ P

ω = λω(P ), for every P ∈ J(Qp)

Proposition 2.12. This definition satisfies the condition we required for the integration map
at the start of the section.

Proof. • Let ω1, ω2 ∈ H0(J,Ω1
J) and λω1 , λω2 be the two associated homomorphisms.

Then we only need to prove that λω1+ω2 = λω1 + λω2 . Let λ = λω1 + λω2 , then
λ(0) = 0, dλ = d(λω1 + λω2) = ω1 + ω2 and λ is an homomorphism. So by
uniqueness, λ = λω1+ω2 .

• The fact that λω(P +Q) = λω(P ) + λω(Q) is simply the fact that λω is an homo-
morphism.

• Let Tan(J) be the tangent space at the origin of J(Qp), then we have a map:

i : J(Qp)→ Tan(J)

P 7→ (ω 7→ λω(P ))

Clearly, i is linear. Moreover, the differential at 0 of i is the identity, since dλω|0 = ω,
so i is locally injective by translational invariance. So i is a locally injective ho-
momorphism and its kernel is finite, and thus ker(i) ≤ J(Qp)tors.

However, Tan(J) is torsion-free, so i (J(Qp)tors) = 0, hence we have an injective
map

J(Qp)/J(Qp)tors ↪→ Tan(J)

or, equivalently, a pairing

J(Qp)/J(Qp)tors × Tan(J)∨ → Qp

which is non-degenerate on the left. Identifying Tan(J)∨ with H0(J,Ω1
J) con-

cludes the proof.

2.2.2 An alternative proof of theorem 2.3

One can show ([56, Prop. 2.2]) that the Abel-Jacobi embedding ι : C ↪→ J induces an
isomorphism of Qp-vector spaces

ι̃ : H0(JQp ,Ω
1)→ H0(C,Ω1)

Now suppose that ι̃(ωJ) = ω, then for every P,Q ∈ C(Qp) we can define∫ Q

P
ω =

∫ [Q−P ]

0
ωJ = ηJ ([Q− P ])

This suggests the following result.
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Lemma 2.13. Let C/Qp be a curve with good reduction in p. Then for every pair of points
P,Q ∈ C(Qp) and for every regular differential ω ∈ H0(C,Ω1

C(Qp)) we can define a p-adic
integral ∫ Q

P
ω ∈ Qp

such that:

1. The integral is Qp-linear in ω;

2. If P and Q have the same reduction P ∈ CFp(Fp), then the integral (which is also called
tiny integral) can be computed by writing ω = ω(t)dt, where t is a uniformizer at P
which reduces to a uniformizer at P and ω(t) ∈ Qp [[t]], and then integrating (formally)
term by term ω(t). This yields a power series l(t) such that dl(t) = ω(t)dt and l(0) = 0.
In that case

∫ Q
P ω = l(t(Q)). In particular that implies that

∫ P
P ω = 0;

3. For every P, P ′, Q,Q′ ∈ C(Qp) we have∫ Q

P
ω +

∫ Q′

P ′
ω =

∫ Q′

P
ω +

∫ Q

P ′
ω

So we can define ∫
D
ω =

n∑
j=1

∫ Qj

Pj

ω

for every D =
n∑
j=1

(Qj − Pj) ∈ Div0C(Qp);

4. For a fixed P0 ∈ C(Qp) and for every ω 6= 0, the set of points P ∈ C(Qp) such that
reduce to a fixed point CFp(Fp) and

∫ P
P0
ω = 0 is finite.

Remark 2.14. The condition that the curve has good reduction in p is not necessary but
simplifies the statement of the second property.

So we find a pairing

J(Qp)×H0(C,Ω1)→ Qp (2.1)

([D] , ω) 7→ 〈[D] , ω〉 =

∫
D
ω

which is additive in the first entry and Qp-linear in the second. In particular, if
P ∈ C(Qp), then

〈ι(P ), ω〉 =

∫ P

P0

ω

where

ι : C → JC

P 7→ [P − P0]

is the Abel-Jacobi map and P0 ∈ C(Qp) is a fixed point.
This is sufficient to give an alternative proof of Chabauty’s theorem.
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Alternative proof of theorem 2.3. Let p be a prime of good reduction for C and define

A = {ω ∈ H0(C,Ω1)| 〈P, ω〉 = 0 ∀P ∈ J(Q)}

which is a linear subspace of H0(C,Ω1) and whose elements are called annihilating
differentials. By endpoint additivity, ω is an annihilating differential if and only if
〈Pi, ω〉 = 0, where P1, . . . , Pr are a basis for the free part of J(Q). On the other hand, by
theQp-linearity of the argument, these r conditions are linear relations which describe
the subspace A and therefore dimA ≥ g − r > 0 which implies that, in particular, we
can find 0 6= ω ∈ A 6= ∅.

If C(Q) = ∅ we are done, otherwise we choose P0 ∈ C(Q) from which we can fix
the Abel-Jacobi embedding ι : C → JC , P 7→ [P − P0]. Since ι(P ) ∈ J(Q) for every
P ∈ C(Q), we get that

∫ P
P0
ω = 0 for every P ∈ C(Q).

However, every point of C(Q) reduces to unique point of C(Fp), which is a finite
set, but for every point on the reduction there are only finitely many points in C(Q)

such that
∫ P
P0
ω = 0, which implies that C(Q) is finite.

2.3 Coleman’s theorem

We already saw in the proof of Chabauty’s theorem that we could (at least in the-
ory) compute #C(Q) by finding an annihilating differential ω and for every fixed
P1 ∈ C(Fp), the number of points P ∈ C(Q) that reduce to P1 and such that

∫ P
P0
ω = 0.

However, this is not an easy thing to do, but the same idea works if we use C(Qp) in-
stead of C(Q), even though usually C(Q) $ C(Qp) and thus we can only find an upper
bound.

As a matter of fact, we can estimate the number of zeros of
∫ z
P0
ω as a p-adic power

series. Moreover, purely from a set-theoretic point of view, we can regard C(Qp) as a
finite union of residue disks (i.e. the preimages in C(Qp) of points in C(Fp) under the
reduction map), so that in each disk

∫ z
P0
ω has only a finite number of zeros.

In order to do this we have to bound the number of points of a p-adic power series.

Lemma 2.15. Let

0 6= l(t) =
∞∑
n=0

ant
n ∈ Qp [[t]]

such that lim
n→∞

an = 0 (in the p-adic topology). Let v0 = min{vp(an)} and

N = max{n ≥ 0| vp(an) = v0}

Then, there exist a constant c ∈ Q×p , a monic polynomial q(t) ∈ Zp [t] of degreeN and a power
series

h(t) =

∞∑
n=0

bnt
n ∈ 1 + ptZp [[t]]

with lim
n→∞

bn = 0, such that
l(t) = cq(t)h(t)
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Proof. Up to collecting a suitable power of t we can assume that a0 6= 0. Moreover,
after normalizing the coefficients by multiplying l(t) by a−1N , we can also assume that
v0 = 0 and aN = 1, so that l(t) ∈ Zp [[t]]. In that case, the condition that lim

n→∞
an = 0

implies that the image lm(t) of l(t) in (Z/pmZ) [[t]] is a polynomial for every m ≥ 1.
We will proceed inductively by constructing, for everym ≥ 1, some constants cm ∈ (Z/pmZ)×,
some monic polynomials qm ∈ (Z/pmZ) [t] of degreeN and polynomials hm ∈ (Z/pmZ) [t]

with hm ≡ 1 (mod pt), such that

lm(t) = cmqm(t)hm(t)

and with the property that (cm+1, qm+1, hm+1) reduces modulo pm to (cm, qm, hm).
This will allow us to find (unique) c, q and h as in the statement such that

(c, q, h) ≡ (cm, qm, hm) (mod pm)

We start by setting c1 = 1, q1(t) = l1(t) and h1(t) = 1. We can do this because

l1(t) ≡ aN tN + . . .+ a0 (mod p)

as for every n > N we have that vp(an) > v0 = 0 and aN = 1, hence l1(t) is a monic
polynomial of degree N .

Now suppose that we already constructed cm, qm and hm. Let c̃m+1, q̃m+1, h̃m+1arbitrary
lifts of cm, qm, hm at suitable objects over Z/pm+1Z such that q̃m+1(t) is a monic poly-
nomial of degree N and h̃m+1(t) ≡ 1 (mod pt). Then

lm+1 − c̃m+1q̃m+1(t)h̃m+1(t) = pmd(t)

where d(t) ∈ (Z/pZ) [t]. Consequently, we must have

cm+1 = c̃m+1 + pmγ

qm+1(t) = q̃m+1(t) + pmr(t)

hm+1(t) = h̃m+1(t) + pmk(t)

where γ ∈ Z/pZ, r(t) ∈ (Z/pZ) [t] has degree < N and k(t) ∈ (Z/pZ) [t] is such that
k(0) = 0.

However lm+1 = cm+1qm+1(t)hm+1(t) is equivalent to say that

d(t) = (γ + k(t))l1(t) + r(t)

Then, by dividing d(t) by l1(t) in (Z/pZ) [t], we can uniquely find γ, r(t) and k(t) and
therefore cm+1, qm+1, hm+1 are uniquely determined, too.

Now, we will apply this lemma to the study of zeros of p-adic power series.

Theorem 2.16 (Strassman). Let l(t) ∈ Qp [[t]] with formal derivative l′(t) = w(t) ∈ Zp [[t]].
If the reduction w(t) ∈ Fp [[t]] can be written as w(t) = utM + . . . with u ∈ F×p , then l(t)
converges on pZp. If moreover, M < p− 2 then

#{τ ∈ Zp| l(τ) = 0} ≤M + 1
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Proof. Write l(t) = l0 + l1t + . . . ∈ Qp [[t]] and w(t) = l′(t) = w0 + w1t + . . . ∈ Zp [[t]].
Then

ln+1 =
wn
n+ 1

∈ 1

n+ 1
Zp

and since vp(n+ 1) = O(log n), we have that

vp(ln) = vp(wn−1/n) ≥ −c log(n)

for some positive constant c and for every sufficiently large n. Let τ ∈ pZp, then
vp(τ) ≥ 1 and therefore

vp(lnτ
n) ≥ n− c log(n)→∞

if n→∞. So lim
n→∞

lnτ
n = 0 and this implies that l(τ) converges.

Now, consider l(pt) = l0 + pl1t+ p2l2t
2 + . . .; we want to show that, with the same

notations as in the previous lemma, we have N ≤M + 1. We have that

vp(p
M+1lM+1) = M + 1 + vp(lM+1) = M + 1 + vp(wM )− vp(M + 1) ≤M + 1

since by hypothesis w(t) = utM + . . . ∈ Fp [[t]], with u ∈ F×p and thus vp(wn) = 0.
For n > M we get

vp(p
n+1ln+1) = n+ 1 + vp(ln+1) = n+ 1 + vp(wn)− vp(n+ 1) ≥ n+ 1− vp(n+ 1)

since wn ∈ Zp implies vp(wn) ≥ 0. So we only need to prove that n − vp(n + 1) > M

for every n > M .
This is clearly true if vp(n + 1) = 0. Otherwise, let e = vp(n + 1), so that pe | (n + 1)

and, consequently, n + 1 ≥ pe. However, for e = 1 we have p > M + 2 = M + e + 1,
by hypothesis, and if e > 1 then pe ≥ pe−1 + 1 > (M + (e− 1) + 1) + 1 = M + e+ 1 by
induction. For this reason n+ 1 ≥ pe > M + e+ 1 and therefore n− vp(n+ 1) > M for
every n > M .

This proves that v0 ≤ M + 1 and N ≤ M + 1, so that the previous lemma allows
us to write

l(t) = cq(t)h(t)

where c ∈ Q×p , q ∈ Zp[[t] is a monic polynomial of degree N and h(t) ∈ 1 + ptZp [[t]].
Then, for every τ ∈ Zp, h(τ) ≡ 1 (mod p) and therefore h(τ) 6= 0. Then

#{τ ∈ Zp| l(τ) = 0} = #{τ ∈ Zp| q(τ) = 0} ≤ deg(q) = N ≤M + 1

We are now ready to prove Coleman’s theorem.

Theorem 2.17 (Coleman, 1985 [27]). Let C/Q be a curve of genus g ≥ 2, with

r = rank(J(Q)) < g

Let p > 2g be a prime of good reduction for C. Then

#C(Q) ≤ #C(Fp) + 2g − 2
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Proof. If C(Q) is empty, the theorem is trivially true because

#C(Fp) + 2g − 2 ≥ 2 · 2− 2 = 2 ≥ 0 = #C(Q)

So suppose instead that there exists P0 ∈ C(Q) then, as in the alternative proof of the-
orem 2.3, we can prove the existence of an annihilating differential ω ∈ H0(C,Ω1

C/Qp
),

i.e. such that ∫ P

P0

ω = 0

for every P ∈ C(Q). Now fix a point Q ∈ C(Fp) and lift it to Q ∈ C(Qp); we can choose
a uniformizer t ∈ Qp(C)× at Q such that t reduces to a uniformizer t ∈ Fp(C)× at Q.
Up to multiplication by a constant, we can assume that the reduction of ω, ω, is well-
defined and non-zero, so that ω ∈ H0(C,Ω1

C/Fp). Notice that the associated divisor to
ω, div(ω), is effective and has degree 2g − 2.
We define v(Q) = vQ(ω) and we write ω(t) = w(t)dt, with w(t) ∈ Zp [[t]] (all the
coefficients are in Zp because we assumed that the reduction ω is well-defined). Then

ω(t) = w(t)dt = t
v(Q)

(u0 + u1t+ . . .)

Let l(t) ∈ Qp [[t]] a formal primitive of w(t), then we already saw that
∫ P
P0
ω = l(t(P ))

for every P ∈ C(Qp) such that P = Q (in this case t(P ) ∈ pZp) and we can apply
theorem 2.16, which yields

#C(Q) ≤ #

{
P ∈ C(Qp) :

∫ P

P0

ω = 0

}
=

∑
Q∈C(Fp)

#

{
P ∈ C(Qp) : P = Q,

∫ P

P0

ω = 0

}
≤

∑
Q∈C(Fp)

(
v(Q) + 1

)
=

∑
Q∈C(Fp)

v(Q) +
∑

Q∈C(Fp)

1

≤ deg(div(ω)) + #C(Fp)
= #C(Fp) + 2g − 2

2.3.1 Stoll’s refinement of Coleman’s theorem

In 2006, Stoll proved an improvement of Coleman’s result. Even though it is possible
to work over any number field, we continue to work only over Q. For the general
results over number fields we refer the reader to the original article [70].

First of all, we need some notation.
Let D be a Q-defined divisor on C and define Ω(D) as the Q-vector space of differen-
tials ω on C such that div(ω) ≥ D. Define also the function fC : Z≥0 → Z≥0 ∪ {∞}
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as

fC(r) = max{deg(D) | D ≥ 0, dim Ω(D) ≥ g − r}

Clearly, fC(r) =∞whenever r ≥ g, otherwise we have the following result

Lemma 2.18. 1. If 0 ≤ r < g, then r ≤ fC(r) ≤ 2r;

2. fC(0) = 0 and fC(g − 1) = 2g − 2;

3. C is an hyperelliptic curve if and only if fC(1) = 2;

4. If C is an hyperelliptic curve then fC(r) = 2r for any 0 ≤ r < g;

5. If C is a smooth plane curve of degree n, then

fC(r) = r +

(
n− a

2

)
− 1

where

a = max

{
k : r +

(
k

2

)
< g =

(
n− 1

2

)}
=

⌊
1 +
√

4n2 − 12n+ 9− 8r

2

⌋

Proof. 1. Since dim Ω(D) ≥ g − deg(D) for any effective divisor D, then fC(r) ≥ r.
For the opposite inequality, we use Riemann-Roch and the standard bound

dimL(D) ≤ 1 +
1

2
deg(D)

for any divisor D such that 0 ≤ deg(D) ≤ 2g. This implies

g − r ≤ dim Ω(D) = dimL(D)− deg(D) + g − 1 ≤ g − 1

2
deg(D)

and therefore deg(D) ≤ 2r.

2. Clearly fC(0) = 0. For the other equality, just take D equal to the canonical
divisor.

3., 4. and 5. are well-known facts about hyperelliptic and plane curves (see [44]).

We now need to consider fC/Fp(r) for the reduction of C at a prime p of good re-
duction. It is possible that fC/Fp(r) > fC(r) for some p and r (for an example see [35]).
However, we have the following Proposition

Proposition 2.19. There are at most a finite number of primes p of good reduction for C such
that fC/Fp 6≡ fC .

Proof. See [70, Proposition 3.2.].
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Define, for every n ∈ Z≥0:

δp(n) = max{d ≥ 0|vp(n+ 1) + d ≤ vp(n+ d+ 1)}

and for s, r ≥ 0, let

∆p(s, r) = max

{
s∑
i=1

δp(mi) :
s∑
i=1

mi ≤ r,mi ∈ Z≥0
}

Notice that ∆p is obviously an increasing function in both arguments.
We need to bound δp and ∆p from above. We will use the following two lemmas.

Lemma 2.20. If p ≥ 3, then δp(n) ≤
⌊

n

p− 2

⌋
. In particular if n < p− 2, then δp(n) = 0.

Proof. If δp(n) = d, then vp(n+d+1) ≥ vp(n+1)+d ≥ d. Therefore pd divides n+d+1

and, in particular, pd ≤ n+ d+ 1. Hence, we always have

δp(n) ≤ max{d ≥ 0|pd ≤ n+ d+ 1}

If we suppose further that p ≥ 3, then it’s easy to prove by induction that

pd − d− 1 ≥ (p− 2)d

for any d ≥ 0, thus

n ≥ pd − d− 1 ≥ (p− 2)d =⇒ d ≤ n

p− 2

for every d ≥ 0 such that pd ≤ n+ d+ 1.

Lemma 2.21. If p ≥ 3, then ∆p(s, r) ≤
⌊

r

p− 2

⌋
. In particular if r < p − 2, then

∆p(s, r) = 0.

Proof. If
s∑
i=1

mi ≤ r, then

s∑
i=1

δp(mi) ≤
s∑
i=1

⌊
mi

p− 2

⌋
≤


s∑
i=1

mi

p− 2

 ≤ ⌊ r

p− 2

⌋

For any P ∈ C(Fp), we denote byDP ⊆ C(Qp) the residue class of P , i.e. the preim-
age ofP under the reduction map ρ : C(Qp)→ C(Fp), and we writeDP (Qp) = DP ∩ C(Qp).

Let G = {P ∈ J(Qp)|nP ∈ J(Q) for some n > 0} and let

A = {ω ∈ H0(C,Ω1(Qp))| 〈P, ω〉 = 0 ∀P ∈ J(Q)}
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as in the alternative proof of theorem 2.2. Then we already saw that dimA ≥ g − r,
where r = rank(J(Q)). Notice that for every P ∈ G and for every ω ∈ A we have that

〈P, ω〉 =
1

n
〈nP, ω〉 = 0

Define X = {P ∈ C(Qp)| ι(P ) ∈ G}, where ι : C ↪→ J is a fixed Abel-Jacobi map,
and notice that C(Q) ∪ i−1(J(Qp)tors) ⊆ X . Let also X denote the image of X in C(Fp)
under the reduction map.

Let 0 6= ω ∈ H0(C,Ω1(Qp)), then, up to multiplication by a constant, we can as-
sume that its reduction ω is well-defined and not zero, so that ω ∈ H0(C,Ω1

C/Fp). If
P ∈ C(Fp) we denote by n(ω, P ) = vP (ω) the order of vanishing of ω in P . We also
write ν(P ) = #(DP ∩ X).
Then we have the following Proposition.

Proposition 2.22. Let 0 6= ω ∈ A and P ∈ C(Fp). Then

ν(P ) ≤ 1 + n(ω, P ) + δp(n(ω, P ))

Proof. As before, we can assume that ω reduces to ω and let n = n(ω, P ). Choose an
uniformizer t at a point in DP (Qp), so that

ω = (ut
n

+ higher order terms)dt

with u ∈ F×p . But this implies that we can write

ω = (a0 + a1t+ a2t
2 + . . .)dt

where a0, a1, . . . , an−1 have positive p-adic valuation and an is a p-adic unit. Define

Lω(T ) = c+ a0pT + . . .+
am

m+ 1
pm+1Tm+1 + . . .

and 〈Q,ω〉 = lω(Q) = Lω(T ), where t(Q) = pT and T ∈ Zp, for every Q ∈ DP (Qp).
Then, by standard results on Newton polygons (see [43, Section 7.4]), lω has at most
1 + n + δp(n) zeros in DP (Qp), since these zeros correspond to integral zeros of the
power series Lω.

Since X ∩DP is contained in this set of zeros (because for every R ∈ X , ι(R) ∈ G,
thus 〈ι(R), ω〉 = 0), the claim follows.

In light of the above, for every Qp-linear subspace Λ 6= 0 of H0(C,Ω1(Qp)), we
define

n(Λ, P ) = min{n(ω, P )| 0 6= ω ∈ Λ}

N(Λ, C/Qp) =
∑

P∈C(Fp)

n(Λ, P )

We now give a general result.
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Theorem 2.23. Let C/Qp be a smooth projective curve of genus g, and let Λ 6= 0 as above. If
C has good reduction at p, then

N(Λ, C/Qp) ≤ fC/Fp(codim Λ) ≤ 2codim Λ

Proof. Because of good reduction, there is a well-defined reduction map

ρ : P(H0(C,Ω1(Qp)))→ P(H0(C,Ω1(Fp)))

which preserves dimensions of subspaces. Let Λ be the linear subspace ofH0(C,Ω1(Fp))
corresponding to the image of P(Λ), which has dimension dim Λ.

For any ω ∈ P(H0(C,Ω1(Qp))), we have n(ω, P ) = vP (ρ(ω)). Let D be the effective
divisor on C defined as

D =
∑
P∈C

n(Λ, P ) · P

then N(Λ, C/Qp) = deg(D) ≤ 2g − 2 and ω ∈ Λ implies div(ω) ≥ D. Therefore

N(Λ, C/Qp) ≤ max{deg(D)|D ≥ 0,dim Ω(D) ≥ dim Λ} = fC/Fp(codim Λ)

Theorem 2.24. Let G,X,X as above and r = rank(J(Q)). Then we have the bound

#X ≤ #X + fC/Fp(r) + ∆p(#X, fC/Fp(r))

Furthermore, when p > fC/Fp(r) + 2, we have

#X ≤ #X + fC/Fp(r)

Proof. We have that

X =
⋃
P∈X

(DP ∩X) =⇒ #X =
∑
P∈X

#(DP ∩X)

Since the set DP are pairwise disjoint. For each P ∈ C(Fp) let ωP ∈ A be "the best
differential", i.e. such that n(ωP , P ) = n(A,P ). So we have, by Proposition 2.22

#X =
∑
P∈X

ν(P ) ≤
∑
P∈X

[1 + n(ωP , P ) + δp(n(ωP , P ))]

= #X +
∑
P∈X

[n(ωP , P ) + δp(n(ωP , P ))]

≤ #X +
∑

P∈C(Fp)

n(ωP , P ) +
∑
P∈X

δp(n(ωP , P ))

≤ #X +
∑

P∈C(Fp)

n(A,P ) +
∑
P∈X

δp(n(A,P ))

= #X +N(A,C/Qp) + ∆p(#X,N(A,C/Qp))
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By theorem 2.23,N(A,C/Qp) ≤ fC/Fp(codimA) = fC/Fp(r) ≤ 2r, since dimA = g− r.
By recalling that ∆p is increasing in both arguments, we have

#X ≤ #X +N(A,C/Qp) + ∆p(#X,N(A,C/Qp))

≤ #X + fC/Fp(r) + ∆p(#X, fC/Fp(r))

If we further suppose that p > fC/Fp(r)+2 then lemma 2.21 implies that ∆p(#X, fC/Fp(r)) = 0

and therefore
#X ≤ #X + fC/Fp(r)

In order to get an improvement of theorem 2.17, we simply notice that X contains
C(Q) and therefore we have the following corollary.

Corollary 2.25 (Stoll, 2006). Let C/Q a curve of genus g ≥ 2 with good reduction at p > 2.
If r = rank(J(Q)) < g, then

#C(Q) ≤ #C(Fp) + fC/Fp(r) + ∆p(#C(Fp), fC(r))

≤ #C(Fp) + 2r +

⌊
2r

p− 2

⌋
In particular, if p > fC/Fp(r) + 2 (notice that this is always true if p > 2r + 2), then

#C(Q) ≤ #C(Fp) + fC/Fp(r) ≤ #C(Fp) + 2r

2.3.2 Curves with sharp Coleman’s bound

So far we proved that, under some conditions, we can bound the number of rational
points on a curve. However, we did not prove that this bound is the best possible, i.e.
the inequality is actually an equality.

In Chapter 5 we will see some examples of genus 2 curves such that the Coleman’s
bound is sharp. However, we can construct potentially sharp curves of higher genus,
following the ideas in [42].

Let g ≥ 2 and suppose that either 2g + 1 or 2g + 3 is a prime number.
If 2g + 1 = p is prime, then x2g+1 ≡ x (mod p) for every x ∈ Fp and therefore,

if c ∈ Z is a quadratic nonresidue modulo p, then the only Fp-rational point on the
hyperelliptic curve

C/Fp : y2 = x2g+1 − x+ c

is the point at infinity. This means that every rational point reduces to the point at
infinity modulo p, and this can only happen if they are not integers and have denom-
inator divisible by p. Let a1, . . . , ag−1 ∈ Z not divisible by p with distinct absolute
value and b ∈ Z an arbitrary lift of the inverse of (a1 · a2 · . . . · ag−1)2 modulo p, then
the hyperelliptic curve

C : y2 : x2g+1 + b(a21 − p2x)(a22 − p2x) . . . (a2g−1 − p2x)(c− x)
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has at least 2g − 1 rational points, namely:(
a21
p2
,±a

2g+1
1

p2g+1

)
, . . . ,

(
a2g−1
p2

,±
a2g+1
g−1
p2g+1

)
,∞

Notice that the reduction of C modulo p is exactly C, so in this case the Coleman
bound yields

2g − 1 ≤ C(Q) ≤ C(Fp) + 2g − 2 = 2g − 1

if the rank of J(Q) is less than g, which implies that #C(Q) = 2g − 1. Moreover,
corollary 2.25 implies that in this case the rank must exactly be r = g − 1.

Example 2.26. Let g = 3 and a1 = 1, a2 = 6, c = −1, then we can take b = 1 and
therefore we have the genus 3 curve

C3 : y2 = x7 − (49x− 1)(49x− 36)(x+ 1)

Assuming GRH for Magma computations, we have that rank(J3(Q)) = 2 and hence
we have a sharp Coleman bound for this curve, whose rational points are(

1

49
,± 1

77

)
,

(
36

49
,±67

77

)
,∞

If 2g + 3 = p ≥ 5 is prime, then we claim that there exists a pair of consecutive
quadratic nonresidues. If p ≡ 1 (mod 4), then between 2 and p − 2 there are exactly
p−1
2 quadratic nonresidues and therefore two of them must be consecutive. On the

other hand, if p ≡ 3 (mod 4), then −1 and −4 are both quadratic nonresidues and
thus, if either −2 or −3 is a nonresidue then we are done. If not, then 2 and 3 are both
quadratic nonresidues. Now, let c and c+ 1 be two consecutive quadratic nonresidues
modulo p and consider the hyperelliptic curve

C/Fp : y2 = x2g+2 + c

which has only two Fp-rational points, which are the points at infinity, since x2g+2 =

xp−1 ≡ 0, 1 (mod p), for every x ∈ Fp, and therefore

y2 = x2g+2 + c ≡ c, c+ 1 (mod p)

Now we want to find hyperelliptic curves whose reduction modulo p is C.
Let a1, . . . , ag−1 ∈ Z not divisible by p and b ∈ Z an arbitrary lift of the inverse of
a1 · a2 · . . . · ag−1 modulo p, then the hyperelliptic curve

C : y2 : x2g+2 + b(a1 − px)(a2 − px) . . . (ag−1 − px)c

has at least 2g rational points, namely:(
a1
p
,±a

g+1
1

pg+1

)
, . . . ,

(
ag−1
p

,±
ag+1
g−1
pg+1

)
,∞±
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As before, the reduction of C modulo p is exactly C and, if the rank of J(Q) is less than
g, we can compute the Coleman bound

2g ≤ C(Q) ≤ C(Fp) + 2g − 2 = 2 + 2g − 2

which implies that #C(Q) = 2g. Again, by corollary 2.25, the rank must exactly be
r = g − 1.

Example 2.27. Let g = 4, then p = 2g + 3 = 11, and we can choose a1 = 3, a2 = 4,
a3 = 6. Then we can take b = 2 and c = 6 (as 6 and 7 are both quadratic nonresidues
modulo 11), so that we have the genus 4 curve

C4 : y2 = x10 − (11x− 3)(11x− 4)(11x− 6)

As in the example above, we can compute that rank(J4(Q)) = 3 and this means that
the Coleman bound is again sharp. The eight rational points on C4 are(

3

11
,± 35

115

)
,

(
4

11
,± 45

115

)
,

(
6

11
,± 65

115

)
,∞±

Example 2.28. Let g = 5. Following the previous example, we can construct the genus
5 curve

C5 : y2 = x12 − (13x− 1)(13x− 2)(13x− 3)(13x− 12)

Again, we have rank(J5(Q)) = 4 and this means that the Coleman bound is sharp.
The ten rational points on C5 are(

1

13
,± 16

136

)
,

(
2

13
,± 26

136

)
,

(
3

13
,± 36

136

)
,

(
12

13
,±126

136

)
,∞±



Chapter 3

Computational methods

In the previous chapter we described how to bound the number of rational points on
a curve which satisfies some conditions. Now we want to explicitly compute those
rational points.

In order to compute rational points via the Chabauty-Coleman method, we need to
compute the finite set of p-adic points

C(Qp)1 :=

{
z ∈ C(Qp) :

∫ z

P0

ω = 0, for every ω ∈ A
}

where A is the subspace of annihilating differentials. By definition of A, this set con-
tains C(Q), however we could have that C(Qp)1 strictly contains C(Q) or, even worse,
it could be larger than the set of known rational points, so we need a way to provably
extract C(Q). One solution for this problem is the Mordell-Weil sieve. (see appendix A)

We show the kind of problems that one could encounter in practice with the fol-
lowing example from [8, Ex. 1.22].

Example 3.1. We want to compute the rational points on the genus 2 curve

C : y2 = x5 − 2x3 + x+
1

4

which has LMFDB label 971.a.971.1 (https://www.lmfdb.org/Genus2Curve/Q/
971/a/971/1). It’s easy to show that it has at least 7 rational points, namely

∞, (0,±1/2), (−1,±1/2), (1,±1/2)

and we suspect that there aren’t other rational points, but we need to prove that. More-
over, it can be shown that J(Q) ∼= Z and we will see that [(−1,−1/2)− (0, 1/2)] ∈ J(Q)

has infinite order. The conductor of C (i.e. the conductor of J) is N = 971, which is
prime. So C has good reduction at every prime p 6= 971, in particular at p = 3, for
which #C(F3) = 7 and therefore we can use corollary 2.25 and say that

#C(Q) ≤ #C(F3) + 2 · 1 +

⌊
2 · 1
3− 2

⌋
= 11

30

https://www.lmfdb.org/Genus2Curve/Q/971/a/971/1
https://www.lmfdb.org/Genus2Curve/Q/971/a/971/1
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So the Coleman bound isn’t enough to prove that we have found all the rational points,
and therefore we need to come up with a different strategy. We will work overQ3 and
we will find an annihilating differential (notice that since r = 1 and g = 2, it is easy to
show that dim(A) = 1).

As for every hyperelliptic curve, a basis for H0(CQ3 ,Ω
1) is given by

ω0 =
dx

2y
and ω1 =

xdx

2y

So the annihilating differential η is just a Q3-linear combination of ω0 and ω1. We
choose P0 = (0, 1/2) as the basepoint for the Abel-Jacobi map, so that we need η to
satisfy

0 =

∫ (−1,−1/2)

(0,1/2)
η =

∫ (−1,−1/2)

(0,1/2)
(αω0 + βω1) = α

∫ (−1,−1/2)

(0,1/2)
ω0 + β

∫ (−1,−1/2)

(0,1/2)
ω1

therefore we only need to compute
∫ (−1,−1/2)
(0,1/2) ω0 and

∫ (−1,−1/2)
(0,1/2) ω1, which we can do in

SageMath with the following code:

R.<x> = QQ[]

X = HyperellipticCurve(x^5-2*x^3+x+1/4)

p = 3

K = Qp(p,15)

XK = X.change_ring(K)

XK.coleman_integrals_on_basis(XK(0,1/2),XK(-1,-1/2))

which outputs

3 + 3^2 + 3^4 + 3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 3^10 + O(3^11),

2 + 2*3 + 2*3^3 + 3^4 + 3^6 + 2*3^8 + 2*3^9 + O(3^10),

2*3^-1 + 2*3 + 2*3^2 + 3^3 + 3^5 + 3^6 + 3^7 + O(3^9),

2*3^-2 + 3^-1 + 2 + 2*3 + 3^2 + 2*3^3 + 3^4 + 2*3^5 + 2*3^6 + 2*3^7 + O(3^8)

this means that∫ (−1,−1/2)

(0,1/2)
ω0 = 3 + 32 + 34 + 35 + 2 · 36 + 2 · 37 + 2 · 38 + 310 +O(311)

∫ (−1,−1/2)

(0,1/2)
ω1 = 2 + 2 · 3 + 2 · 33 + 34 + 36 + 2 · 38 + 2 · 39 +O(310)

(the last two lines of output correspond to the integrals of ω2 = x2dx
2y and ω3 = x3dx

2y ,
which we don’t need).

Clearly, if we choose α =
∫ (−1,−1/2)
(0,1/2) ω1 and β = −

∫ (−1,−1/2)
(0,1/2) ω0, then

α

∫ (−1,−1/2)

(0,1/2)
ω0 + β

∫ (−1,−1/2)

(0,1/2)
ω1 = 0

which means that η = αω0 + βω1 is an annihilating differential.
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Now, we can use η to compute C(Q3)1, and in order to this we need to compute the
Coleman integrals ∫ Pt

(0,1/2)
η

where Pt ranges over all residue disks, and then find all the z ∈ C(Q3) such that∫ z
(0,1/2) η = 0.

In order to compute these integrals we can choose a lift Q of an F3-point in the same
residue disk ad Pt and then write∫ Pt

(0,1/2)
η =

∫ Q

(0,1/2)
η +

∫ Pt

Q
η

The first integral is just a constant, while the second is a tiny integral which we can
compute using a power series.

To sum up, the Coleman integrals that we need to compute are either tiny integrals,
which are fairly easy to work with, or integrals between points which are not in the
same residue disk, whose computation will be the subject of this chapter.

Remark 3.2. In the rest of the chapter we will explain how to compute Coleman inte-
grals of regular 1-forms using the action of Frobenius on p-adic cohomology (following
[8]), but there is an alternative approach.

In order to compute the Coleman integral
∫ Q
P ω, with P,Q ∈ C(Qp), we start by

computing an integer k such that k(P −Q) ∈ J(Fp) is trivial (e.g. k = #J(Fp)). Then
D = [k(P −Q)] ∈ J(Qp) is in the same residue disk as 0, so we can compute∫ [P−Q]

ω =
1

k

∫ D

ω

as a sum of tiny integrals.
This method has some limitations. First of all, there aren’t implementations of

Jacobian arithmetic over Qp for all curves, but only for special classes, like the hyper-
elliptic curves. Secondly, this only applies to integrals of differentials of first kind, but
there are other cases in which we want to compute integrals of differentials of second
and third kind. Finally, we want to consider iterated integrals, which are not trivial to
define on the Jacobian.

3.1 Construction of Coleman integrals in the rigid setting

We already saw how to construct an integration map in subsection 2.2.1, but that con-
struction relied on the fact that the Jacobian is an abelian variety. Now we want to
sketch a more general construction, but in order to do this, we need some deeper re-
sults, most of which we will not prove (for the missing proofs and other results from
rigid geometry, see [18], [55] and [63]).

In this section K will be a p-adic field (i.e. a finitely generated extension of Qp)
with ring of integers R, uniformizer π, and quotient field k.
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Affine rigid geometry

Definition 3.3. The Tate algebra (or Standard Affinoid algebra) overK is defined, for each
n ∈ N, as

Tn := K〈t1, . . . , tn〉 :=

{∑
aIt

I : lim
|I|→∞

|aI | = 0

}
Notice that this is a subring of the ring of formal power series K [[t1, . . . , tn]].

In other words, the Tate algebra consists of the power series which converge on
the unit polydisk Bn :=

{
(z1, . . . , zn) ∈ Kn

: |zi| ≤ 1
}

.

Definition 3.4. A Weierstrass polynomial is a polynomial of the form

f(t1, . . . , tn) = tm1 + tm−11 gm−1(t2, . . . , tn) + . . .+ g0(t2, . . . , tn)

where gi ∈ Tn−1 and gi(0, . . . , 0) = 0 for every i = 0, . . . ,m− 1.

We have a slight modification of Weierstrass preparation theorem and division.

Theorem 3.5. The following hold:

1. Let f ∈ Tn such that f(0, . . . , 0) = 0. Suppose that the power series f(t1, . . . , tn) has
at least one term involving only one variable (which is always possible with a suitable
change of variables), for instance t1. Then we can write f = uW , where u ∈ T×n is a
unit and W is a Weierstrass polynomial.

2. Given f ∈ Tn and a Weierstrass polynomial g, there exists q ∈ Tn and a Weierstrass
polynomial r such that f = gq + r.

From this one could prove that Tn is a Noetherian ring and a unique factorization
domain.

We also have a version of Noether’s normalization lemma, and therefore this ring
satisfies the weak Nullstellensatz (i.e. every maximal ideal is a Galois conjugacy class
of geometric points). More formally,

mSpec(Tn) =
{
K-homomorphisms ψ : Tn → K

}
/Gal(K/K)

One can also show that mSpec(Tn) ∼= Bn/Gal(K/K).

Definition 3.6. An Affinoid algebra is a K-algebra A with a surjective map Tn → A,
form some n ∈ N.

Example 3.7. The prototypical example of affinoid algebra is A = T2/(t1t2− 1), which
is a p-adic analogue of S1. In this case we have:

mSpec(A) = {(z1, z2) ∈ B2 : z1z2 = 1} /Gal(K/K) =
{
x ∈ K : |x| = 1

}
/Gal(K/K)

Remark 3.8. Define the Gauss norm of a series f =
∑
aIt

I , as ‖f‖ = max
I
|aI |. Then

Tn is a Banach algebra with respect to this norm. Since every ideal in the Tate algebra
is topologically closed, the Gauss norm induces a norm on the quotients of Tn, and
therefore every affinoid algebra inherits a structure of Banach algebra.
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Monsky-Washnitzer cohomology

Definition 3.9. 1. The standard weakly complete finitely generated algebra (wcfg for short)
is

T †n =

{∑
aIt

I : aI ∈ R, ∃r > 1 s.t. lim
|I|→∞

|aI |r|I| = 0

}

2. A wcfg algebra is a R-algebra A† with a surjective homomorphism T †n → A†.

3. Given a wcfg algebra A†, its (π-adic) completion is given by Â := lim
←−

A†/πnA†.

Notice that the Gauss norm on the Tate algebra restricts to a norm on T †n (although
T †n is not complete).

Differentials

The modules of differentials associated with A† = T †n /〈f1, . . . , fm〉 are

Ω1
A† :=

n⊕
i=1

A†dti〈
∂fj
∂ti

dti : j = 1, . . . ,m

〉 and Ωk
A† :=

∧k
Ω1
A†

They are projective A†-modules and their associated de Rham complex Ω•
A†

is

0→ Ω0
A† → Ω1

A† → . . .→ Ωk
A† → . . .

Cohomology

If A† is a wcfg algebra, then A = A†/π is a finitely generated k-algebra.

Definition 3.10. The Monsky-Washnitzer cohomology of A, denoted by HMW (A/K), is
the cohomology of the de Rham complex Ω•

A†
⊗K.

In [11], Berthelot proved that H i
MW (A/K) is a finite-dimensional K-vector space

for every i.

Theorem 3.11. 1. Let A be a smooth finitely generated k-algebra. Then, there exists a flat
wcfg algebra A† such that A = A†/π.

2. Any two such lifts are isomorphic.

3. Any morphism f : A→ B can be lifted to a morphism f † : A† → B†.

4. Any two maps f1, f2 : A† → B† with the same reduction modulo π induce homotopic
maps Ω•

A†
⊗K → Ω•

B†
⊗K.

Proof. See [18, Theorem 1.2.8.], [36] or [77].
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From this result follows that the cohomology of A does not depend on the lift A†.
For computations we will need to compare the Monsky-Washnitzer cohomology

with the de Rham cohomology, since the former works over fields of positive char-
acteristic and is equipped with an action of Frobenius, and we want to have a similar
action on the latter, which is defined over fields of characteristics 0. If we takeK = Qp,
then we have the following theorem.

Theorem 3.12 (Special case of Baldassarri-Chiarellotto [10] and Berthelot [11]). Let Y
be a smooth affine variety over Fp and Ỹ a smooth affine variety overQp that is a lift of Y . Then
the Monsky-Washnitzer cohomology of Y coincides with the algebraic de Rham cohomology of
Ỹ :

H1
dR(Ỹ ) = H1

MW (Y )

The lift of Frobenius

Theorem 3.11 implies that the map

A→ A

x 7→ xp

(which is a well-defined ring homomorphism, since A is a ring of characteristic p) can
be lifted to a map A† → A†. However, we can say more:

Proposition 3.13. Fix an automorphism σ of K that reduces to the p-power map on k and
extend it to K. Then there is a map φ : A† → A† which is σ-linear and φ(x) ≡ xp (mod π).

The map φ in the statement of the previous Proposition induces, by functoriality, a
σ-linear map

φ : H i
MW (A/K)→ H i

MW (A/K)

Moreover, if #k = q = ps, the s-th iterate of x 7→ xp is k-linear, so it lift induce a linear
automorphism φs of H i

MW (A/K).
In order to define Coleman integrals we need some information about the eigen-

values of this lift:

Theorem 3.14 (Chiarellotto [24]). Each eigenvalue of φs acting on H i
MW (A/K) is a q-Weil

number1 of integral weight contained in the interval [i, 2i].

Example 3.15 (Eigenvalues of Frobenius on the thrice-punctured projective line). Con-
sider X = P1 \ {0, 1,∞} as a variety over Qp. As the ring of regular functions of an
integral model w can take

A = Zp [x, y, z] /(xy − 1, (1− x)z − 1)

1A q-Weil number of weight j is an algebraic number whose absolute value is qj/2 under any complex
embedding. Recall that q = ps = #k.
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and we denote by A† its weak completion, that is

A† =

 ∑
(i,j,k)∈N3

ai,j,kx
iyjzk : ai,j,k ∈ Zp, ∃r > 1 s.t. lim

i+j+k→∞
|ai,j,k|ri+j+k = 0

 /(xy−1, (1−x)z−1)

A basis of H1
MW (A/Qp) is given by ω1 = dx

x and ω2 = dx
1−x (or, more formally, by

ω1 = ydx and ω2 = zdx).
As a lift of Frobenius we can take

F : x 7→ xp, y 7→ yp

however, we need to be more careful when defining F (z). As a matter of fact, we have

1 = F (1− x)F (z) = (1− xp)F (z)

so we have
F (z) =

1

1− xp =
1

(1− x)p + (1− xp)− (1− x)p

We want to show that F (z) can be written as an element of A†. In order to do this, let
Hp(x) = (1−x)p−(1−xp)

p ∈ Zp [x], so that

F (z) =
1

(1− x)p + (1− xp)− (1− x)p
=

1

(1− x)p − pHp(x)

=
zp

(z(1− x))p − pzpHp(x)
=

zp

1− pzpHp(x)
= zp

∑
n≥0

(pzpHp(x))n

so we only need to show that the series zp
∑

(pzpHp(x))n converges on a polydisk of
radius strictly greater than 1. Since y does not appear in the series, we will only work
with x and z. We claim that the series converges on

B :=

{
(x, z) ∈ Q2

p : vp(x) ≥ − 1

4p
, vp(z) ≥ −

1

4p

}
=
{

(x, z) ∈ Q2
p : |x|p ≤ p

1
4p , |z|p ≤ p

1
4p

}
(notice that p

1
4p > 1 for every p). Indeed, if (x, z) ∈ B, then

vp(pz
pHp(x)) = 1 + pvp(z) + vp(Hp(x)) ≥ 1 + pvp(z) + min{deg(Hp(x))vp(x), 0}

≥ 1 +

(
−1

4

)
− p · 1

4p
=

1

2

thus |(pzpHp(x))n|p ≤ p−
n
2 → 0, if n→∞. So the series converges on B, proving that

F (z) ∈ A†. Moreover, it is clear that F (z) ≡ zp (mod p), so F is a lift of Frobenius.
We can now compute the action of this lift on the Monsky-Washnitzer cohomology.

We just have to compute this action (given by the pull-back of F ) on the elements of a
basis:

F ∗ω1 = F ∗(ydx) = yp · pxp−1dx = pydx = pω1

F ∗ω2 = F ∗(zdx) = zp
∑
n≥0

(pzpHp(x))n · pxp−1dx
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In order to simplify the last expression we need to compute the cohomology class of
F ∗ω2. We start by writing F ∗ω2 = aω1 + bω2 + ψ, where a, b are constants and ψ is an
exact form. Then a, b can be computed by looking at the residues of F ∗ω2 at x = 0 and
x = 1. For instance, we can notice that F ∗ω2 is regular at x = 0, so that a = 0 because
ω1 is not regular at x = 0.

In order to compute b, we divide the cases p = 2 and p odd. We start with the odd
case first: recall that by definition deg(Hp(x)) = p− 1 and z = (1− x)−1, so that when
we write pzpHp(x) as a Laurent series in (x − 1), the term with highest degree in the
series has degree −p+ (p− 1) = −1. Furthermore,

pzpxp−1dx = p(1− x)−pxp−1dx = p(1− x)−p(1 + (x− 1))p−1dx

= p(1− x)−p
p−1∑
j=0

(
p− 1

j

)
(x− 1)jdx

= −p
p−1∑
j=0

(
p− 1

j

)
(x− 1)j−pdx

contains only terms of negative degree in (x− 1). Now we can write

F ∗ω2 = pzpxp−1
∑
n≥0

(pzpHp(x))n dx = pzpxp−1dx+ pzpxp−1
∑
n≥1

(pzpHp(x))n dx

however, when we write the second term as a Laurent series in (x − 1) we only get
terms of degree ≤ −2, which means that it has residue 0 (and therefore is an exact
form). So the residue of F ∗ω2 comes only from the term pzpxp−1dx which, using the
computations above, can be written as

pzpxp−1dx = −p
p−1∑
j=0

(
p− 1

j

)
(x− 1)j−pdx

= −p(x− 1)−1dx+ (terms of degree ≤ −2)dx

= pω2 + exact form

which means that F ∗ω2 = pω2 + ψ.
Similarly, if p = 2, then we can compute F ∗ω2 and get

F ∗ω2 = 2z2x
∑
n≥0

2n
(
z2H2(x)

)n
dx

= 2z2x
∑
n≥0

2n
(
(1− x)−2(x2 − x)

)n
dx

= 2

(
1

(1− x)2
− 1

1− x

)∑
n≥0

2n
(

1− 1

1− x

)n
dx

= exact form− 2dx

1− x
∑
n≥0

2n

=
2dx

1− x + exact form = 2ω2 + exact form
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since in the 2-adic topology we have
∑
n≥0

2n = −1.

Therefore the action of Frobenius on H1
MW (A/Qp) is just the multiplication by p.

Specialization and the algebra of locally analytic functions

Let A† = T †n /I be a wcfg algebra. The completion of A† with respect to the Gauss
norm induced from T †n is the algebra A = Tn/I . We then obtain an affinoid space
X = mSpec(A) and a reduction Xk = Spec(A). The geometric points Xgeo of X are
the K-linear homomorphisms A→ K.

There is a reduction map, defined on the geometric points:

Xgeo → Xk

(ψ : A→ L ⊂ K) 7→ (ψ : A/π → OL/πL)

Definition 3.16. A residue disk Ux is the inverse image in Xgeo of a geometric point
x : Spec(k)→ Xk under the reduction map. By smoothness and Hensel’s lemma, one
can show that Ux is isomorphic to the space of geometric points of a unit polydisk.

Definition 3.17. A K-locally analytic function on X is a map

f : Xgeo → K

such that

• f is Gal(K/K)-equivariant, i.e. for any τ ∈ Gal(K/K) we have f(τ(x) = τ(f(x))

• On each residue disk, f is defined by a convergent power series.

The K-locally analytic functions on X form a K-algebra Aloc containing A.

Now we want to define how φ acts on points and functions.
Given a morphism ψ : A→ L ⊂ K) (which is a geometric point of X) we define

φ(ψ) = σ−1 ◦ ψ ◦ φ

and if f is a K-locally analytic function we define

φ(f)(x) = σ(f(φ(x)))

where σ is an automorphism of K as in Proposition 3.13.

Construction of the Coleman integral

Now we can construct the Coleman integral on an affinoid space, following [12].

Theorem 3.18. Let A† be a wcfg algebra. Then there is a unique K-linear integration map∫
:
(
Ω1
A† ⊗K

)d=0 → Aloc/K

satisfying:
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1. d ◦
∫

is the canonical map
(
Ω1
A†
⊗K

)d=0 → Ω1
Aloc

2.
∫
◦ d is the canonical map A† ⊗K → Aloc/K

3. φ ◦
∫

=
∫
◦ φ

Proof. Choose forms ω1, . . . , ωr ∈ ΩA† ⊗K whose images in H1
MW (A/K) form a basis.

Notice that now we only need to integrate the ωi’s, since a general 1-form ω has the
form ω = df+

∑
αiωi, for someA†⊗K-function f , and therefore the formal properties

of integration imply that
∫
ω = f +

∑
αi
∫
ωi.

Let ω be the (column) vector of the forms ωi, then there is a matrix M ∈ Kr×r such
that

φω = Mω + dg

for some g ∈ (A† ⊗K)r. Applying
∫

to this identity and using linearity and the third
property we get

φ

∫
ω = M

∫
ω + g

Fix a vector of functions Fω representing
∫
ω, so that we can rewrite the previous

equality as
φFω = MFω + g + c

for some vector of constants c. Then we will need the following lemma (see below for
the proof)

Lemma 3.19. The map σ −M : Kr → Kr is bijective.

This lemma implies that there exists a vector of constants d such that (σ−M)(d) = − c.
Since integration is defined up to constants, we can replace Fω with Fω + d, so that we
can always choose c = 0, since

φ(Fω + d)−M(Fω + d) = g + c+ (σ −M)(d) = g + c− c = g

since φ ≡ σ on K. Because dFω = ω, we only need to compute Fω on a single point
in each residue disk. This is true since on a residue disk the formal integral makes
sense by definition of Ω1

A†
, so that Fω and the formal integral of ω differ at most by a

constant.
Take an arbitrary point x, then:

σFω(φx) = (φFω)(x) = MFω(x) + g(x)

Since x and φx are in the same residue disk, the difference Fω(φx) − Fω(x) = e(x) is
uniquely determined by ω (and it can be found with formal integration). So we can
rewrite the last equation as

(σ −M)(Fω(x)) = g(x)− σ(e(x))

Therefore, since σ −M is bijective, we uniquely determine Fω(x). The properties in
the statement are now trivial by construction.
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Proof of Lemma 3.19. Since the map is linear and the spaces are finite dimensional, we
only need to show that σ −M is injective.

Fix c ∈ Kr and consider the equation (σ−M)x = c, or equivalently, σx = Mx+ c.
Applying σ to both sides yields

σ2x = σ(Mx) + σ(c) = σ(M)σ(x) + σ(c) = σ(M)(Mx+ c) + σ(c)

Then if #k = ps, then σs ≡ idKr , so that

x = σs(x) = σ(M)s−1 · σ(M)s−2 · . . . · σ(M) ·Mx+ c̃

where c̃ is an element of Kr which can be written (albeit in a very convoluted way)
in terms of σ, M and c. Now notice that M̃ = σ(M)s−1 · σ(M)s−2 · . . . · σ(M) ·M is
precisely the matrix of the "linear Frobenius" φs when it acts onH1

MW (A/K). Theorem
3.14 implies that 1 is not an eigenvalue of M̃ , so the matrix I − M̃ is invertible.

Finally, we rewrite the equation x = M̃x+ c̃ as (I − M̃)x = c̃, which proves that it
has only one solution and therefore the original equation (σ −M)x = c must have at
most one solution as well.

3.2 Algorithms for Coleman integrals

Let’s start with some definitions.

Definition 3.20. Let C/Q be a curve. We define the associated rigid analytic space Can
as follows. Let X be a smooth curve over Zp such that

X ⊗Qp ∼= C ⊗Qp

then Can is the generic fiber of X . (for more information about the analytification
functor see [15])

Definition 3.21. A wide open subspace of Can is the complement in Can of the union
of finitely many disjoint closed disks of radius < 1.

The following theorem shows more properties of the Coleman integral

Theorem 3.22 (Coleman [28], Coleman-de Shalit[29]). Let η, ξ be 1-forms on a wide open
subspace V of Can, P,Q,R ∈ V (Qp) and a, b ∈ Qp. The definite Coleman integral has the
following properties:

1. (Linearity) ∫ Q

P
aη + bξ = a

∫ Q

P
η + b

∫ Q

P
ξ

2. (Additivity in endpoints) ∫ Q

P
η =

∫ R

P
η +

∫ Q

R
η
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3. (Change of variables) If V ′ ⊆ X is a wide open subspace of a rigid analytic space X , ω a
1-form on V ′ and φ : V → V ′ a rigid analytic map, then∫ Q

P
φ∗ω =

∫ φ(Q)

φ(P )
ω

4. (Fundamental theorem of Calculus) For every rigid analytic function f on V∫ Q

P
df = f(Q)− f(P )

5. (Galois compatibility) If P,Q ∈ V (Qp) and η is defined over Qp, then
∫ Q
P η ∈ Qp.

Our goal is to integrate differential 1-forms of the first kind, but we will do more
and show how to integrate differentials of the second kind.

We will first explain the algorithms for hyperelliptic curves and then we will move
on to the general case.

For simplicity, we will assume that C is a genus g hyperelliptic curve over Q with
equation y2 = P (x), where P is a monic polynomial of degree 2g+ 1 with no repeated
roots. Suppose that p 6= 2 is a prime of good reduction for C, consider C/Fp, with affine
equation y2 = P (x) and take C = C \ {∞, y = 0}.

Let A = Zp
[
x, y, y−1

]
/(y2 − P (x)) be the coordinate ring of C and let A† be the

weak completion of A. As in example 3.15 we have:

A† =

 ∑
(i,j,k)∈N3

ai,j,kx
iyj(y−1)k : ai,j,k ∈ Zp, ∃r > 1 s.t. lim

i+j+k→∞
|ai,j,k|ri+j+k = 0

 /(y2−P (x))

Alternatively, the elements of A† can be written as series of the form

∞∑
n=−∞

(Sn(x) + Tn(x)y)y2n

where Sn, Tn are polynomials of degree at most 2g such that

lim inf
n→∞

vp(Sn)

n
lim inf
n→∞

vp(S−n)

n
lim inf
n→∞

vp(Tn)

n
lim inf
n→∞

vp(T−n)

n

are all positive. Here vp
(∑d

i=0 aix
i
)

= max{vp(ai) : 0 ≤ i ≤ d}.
Recall that, by Theorem 3.12, the Monsky-Washnitzer cohomology of C coincides

with the de Rham cohomology of C (i.e. H1
dR(A)). Then we have the following result.

Proposition 3.23. The first de Rham cohomology of A splits into two eigenspaces under the
hyperelliptic involution

C → C, (x, y) 7→ (x,−y)

The first eigenspace H1(A)+ is the positive eigenspace generated by{
xidx

y2
: i = 0, . . . , 2g

}
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and the second eigenspace H1(A)− is the negative eigenspace generated by{
xidx

y
: i = 0, . . . , 2g − 1

}
We saw earlier that passing to A† does not change the cohomology, but we have

the advantage of explicit computations for the action of Frobenius on H1(A†)−. To do
this we need to lift the p-power Frobenius to an endomorphism σ of A†.

On Zp [x], we define σ by xσ = xp and then extend it additively. To define yσ, we
recall that y2 = P (x) both in A and A†, so we must have the following identity:

(yσ)2 = (y2)σ = (P (x))σ = P (x)σ
(

y2

P (x)

)p
=
y2pP (x)σ

P (x)p

and therefore we have

σ : y 7→ yp
(
P (x)σ

P (x)p

) 1
2

To prove p-adic convergence we slightly rewrite yσ as

yσ = yp
(

1 +
P (x)σ − P (x)p

P (x)p

) 1
2

and then use the Taylor expansion for (1 + t)−
1
2 to get

1

yσ
=

1

yp

∞∑
j=0

(−1
2

j

)(
P (x)σ − P (x)p

P (x)p

)j
=

1

yp

∞∑
j=0

(−1
2

j

)(
P (x)σ − P (x)p

y2p

)j
(3.1)

Now, we note that P (x)σ − P (x)p is divisible by p, so the summands go to 0 when
j →∞, proving p-adic convergence.

Remark 3.24. Now we see why we removed y = 0 from C, since in those points the
series may diverge. It is possible to compute a Frobenius lift without deleting y = 0

but it would be more difficult.

Finally, we extend the action of the p-power Frobenius to differentials by writing

σ∗ : dx 7→ d(xp) = pxp−1dx

To prove Proposition 3.23 and to compute expressions of the form
(
xidx
y

)σ
, we need

two reduction lemmas.

Lemma 3.25 (Kedlaya [47]). Let R(x), Q1(x), Q2(x) ∈ Qp [x] such that

R(x) = P (x)Q1(x) + P ′(x)Q2(x)

then
R(x)dx

ys
=

(
Q1(x) +

2Q′2(x)

s− 2

)
dx

ys−2

as elements of H1
MW (C).
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Proof. We have

R(x)dx

ys
=
P (x)Q1(x)dx

ys
+
P ′(x)Q2(x)dx

ys

=
y2Q1(x)dx

ys
+
P ′(x)Q2(x)dx

ys
=
Q1(x)dx

ys−2
+
P ′(x)Q2(x)dx

ys

since y2 = P (x). For the second term we have

Q2(x)P ′(x)dx

ys
=

2Q2(x)dy

ys−1

since P ′(x)dx = d(P (x)) = d(y2) = 2ydy. Then

2Q2(x)dy

ys−1
= −2Q2(x)d(y−(s−2))

s− 2

as d
(

1
ys−2

)
= − (s−2)dy

ys−1 . Finally,

−2Q2(x)d(y−(s−2))

s− 2
=

2Q′2(x)dx

(s− 2)ys−2

because in H1
MW (C)

0 ≡ d
(
Q2(x)

ys−2

)
=
d(Q2(x))

ys−2
+Q2(x)d

(
1

ys−2

)
=
Q′2(x)dx

ys−2
+Q2(x)d

(
1

ys−2

)
which implies Q′2(x)dx

ys−2 = −Q2(x)d(y−(s−2)). Putting everything together yields

Q2(x)P ′(x)dx

ys
=

2Q′2(x)dx

(s− 2)ys−2

and this concludes the proof.

Moreover, since dy = P ′(x)dx
2y , we can also compute

d(xiyj) = ixi−1yjdx+ xi · jyj−1dy

= ixi−1yjdx+ xi · jyj−1P
′(x)dx

2y
=

(2ixi−1yj+1 + jxiP ′(x)yj−1)dx

2y

Then, the monomial with largest degree in the formula above is xi−1yj+1 if 1 ≤ i ≤ 2g

and x2gyj−1 if i = 0. Similarly, the monomial with the smallest degree is xkyj−1 with
0 ≤ k ≤ 2g. As a special case we get

d(2Q(x)y) = 2Q(x)dy + 2Q′(x)ydx

= 2Q(x)
P ′(x)dx

2y
+ 2Q′(x)ydx

=
(Q(x)P ′(x) + 2Q′(x)P (x))dx

y

which proves the second reduction lemma.
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Lemma 3.26 (Kedlaya [47]). For any polynomial Q(x) ∈ Qp [x] we have

(Q(x)P ′(x) + 2Q′(x)P (x))dx

y
= d(2Q(x)y) = 0

as elements of H1
MW (C).

Now we are ready to prove Proposition 3.23.

Proof of Proposition 3.23. We only need to show that every element of H1
dR(A) can be

written as
Q1(x)dx

y
+
Q2(x)dx

y2

with deg(Q1(x)) ≤ 2g − 1 and deg(Q2(x)) ≤ 2g . Indeed, any element of H1
dR(A) can

be written as
∞∑

n=−∞

Qn(x)dx

yn

where Qn(x) ∈ Qp [x] are almost all zero. To simplify this expression notice that for
every Q(x) ∈ Qp [x] we have

0 = d

(
Q(x)

yn

)
=
d(Q(x))

yn
+Q(x)d

(
1

yn

)
as elements of H1

dR(A) = H1
MW (C). It follows that

Q′(x)dx

yn
=
nQ(x)dy

yn+1
=
nQ(x)P ′(x)dx

2yn+2

and therefore we can reduce all the terms Qn(x)dx
yn with n < 0 to the cases n = 1 and

n = 0 (which is trivial, see below). On the other hand, when n > 2 we can use
repeatedly Lemma 3.25 (because gcd(P (x), P ′(x)) = 1, as P has no repeated roots) to
reduce n to 1 or 2. This proves that every element of H1

dR(A) can be represented as

Q̃1(x)dx

y
+
Q̃2(x)dx

y2

where Q̃1(x), Q̃2(x) ∈ Qp [x]. If deg(Q̃2(x)) > 2g, then there exist S(x), R(x) ∈ Qp [x]

such that
Q̃2(x) = S(x)P (x) +R(x) and deg(R(x)) ≤ 2g

Thus

Q̃2(x)dx

y2
=

(S(x)P (x) +R(x))dx

y2
=

(S(x)y2 +R(x))dx

y2
= S(x)dx+

R(x)dx

y2

Clearly, there exists S̃(x) ∈ Qp [x] such that S(x) = S̃′(x) and therefore S(x)dx = d(S̃(x)) = 0

in H1
dR(A). So

Q̃2(x)dx

y2
= S(x)dx+

R(x)dx

y2
=
R(x)dx

y2

and deg(R(x)) ≤ 2g, as desired.
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If deg(Q̃1(x)) = m ≤ 2g, then notice that Lemma 3.26 with Q(x) = xm−2g implies
that [

xm−2gP ′(x) + 2(m− 2g)xm−2g−1P (x)
]
dx

y
= 0

and note that the polynomial xm−2gP ′(x) + 2(m− 2g)xm−2g−1P (x) has degree m and
leading term (2g + 1) + 2(m − 2g) = 2m − 2g + 1 6= 0, so a suitable multiple can
be subtracted from Q̃1(x) to reduce its degree at least by 1. Carrying out this process
repeatedly reduces Q̃1(x) to a polynomial of degree ≤ 2g − 1 and we are done.

In order to compute
(
xidx
y

)σ
we use the definition of σ to expand the expression

and then we reduce it with the two lemmas, like we did in the previous proof. Indeed,
we have (

xidx

y

)σ
=

1

yσ
pxpi+p−1dx

we then use equation 3.1 to get the infinite series(
xidx

y

)σ
=
pxpi+p−1

yp

∞∑
j=0

(−1
2

j

)(
P (x)σ − P (x)p

y2p

)j
dx

Remark 3.27. If we apply the hyperelliptic involution to
(
xidx
y

)σ
we see that it changes

sign. In other words
(
xidx
y

)σ
∈ H1(A)− and therefore can be written as a linear com-

bination of the generators of H1(A)− (see Proposition 3.23).

We want to implement this procedure on a computer, so we will have to take a
truncation of this series, i.e. the computer will compute

pxpi+p−1

yp

L∑
j=0

(−1
2

j

)(
P (x)σ − P (x)p

y2p

)j
dx

So, the natural question now is: How large L must be to get provably correct calcula-
tions (i.e. to be sure of a certain number of digits of the results)? Suppose that we have
computed such precision, so that

pxpi+p−1

yp

L∑
j=0

(−1
2

j

)(
P (x)σ − P (x)p

y2p

)j
dx =

L2∑
j=−L1

Rj(x)dx

y2j+1

Now, we use the reduction lemmas to eliminate the j = L2 term, then the j = L2 − 1

term, and so on until there are no term with j > 0. We do the same thing to eliminate
the terms with j < 0, so that at the end there is only the term with j = 0, i.e.(

xidx

y

)σ
= dhi +

2g−1∑
j=0

Mji
xjdx

y

However, dhi ≡ 0 inH1
MW (C), so we have that the action of σ onH1(A)− is linear and

it is given by the Frobenius matrix M = (Mji)i,j=0,...,2g−1.
Precision is lost when we divide by p during the reduction algorithm, so we need

to measure the loss of precision at each step to keep count of how many provably
correct digits we have.
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Lemma 3.28 ([47, Lemma 2]). LetA(x) ∈ Zp [x] be a polynomial of degree≤ 2g and consider
the reduction of

ω =
A(x)dx

y2m+1

By Lemma 3.25 we can write

ω =
A(x)dx

y2m+1
= df +

B(x)dx

y

where B(x) ∈ Qp [x] has degree ≤ 2g − 1 and

f =

m−1∑
k=−1

Fk(x)

y2k+1

with degFk ≤ 2g. Then
pblogp(2m−1)cB(x) ∈ Zp [x]

Lemma 3.29 ([47, Lemma 3]). LetA(x) ∈ Zp [x] be a polynomial of degree≤ 2g and consider
the reduction of

ω = A(x)y2m−1dx =
(A(x)y2m)dx

y

By Lemma 3.26 we can write

ω =
A(x)y2m)dx

y
= df +

B(x)dx

y

where B(x) ∈ Qp [x] has degree ≤ 2g − 1 and

f = Cy2m+1 +
m−1∑
k=0

Fk(x)y2k+1

with degFk ≤ 2g and C ∈ Qp. Then

pblogp((2g+1)(2m+1)cB(x) ∈ Zp [x]

Combining Lemma 3.28 and 3.29 we can prove the following Proposition.

Proposition 3.30 ([23, page 34]). To get N correct digits in the matrix of Frobenius M, we
need to start with precision

N1 = N + max{blogp(2N2 − 3)c, blogp(2g + 1)c}+ 1 + blogp(2g − 1)c

where N2 is the smallest integer such that

N2 −max{blogp(2N2 + 1)c, blogp(2g + 1)c} ≥ N

In particular, we can just need to compute(
xidx

y

)σ
=
pxpi+p−1

yp

N2−1∑
j=0

(−1
2

j

)(
P (x)σ − P (x)p

y2p

)j
dx
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Kedlaya in [47], showed an algorithm to compute the zeta function of an hyper-
elliptic curve and used it to show how to compute the number of points over finite
fields. We now show a slight variation of Kedlaya’s algorithm which allows to com-
pute the Frobenius matrix.

Algorithm Kedlaya’s Algorithm
Input:

• The basis of differentials
{
ωi = xidx

y : i = 0, . . . , 2g − 1
}

of H1
dR(CQp) for a genus

g hyperelliptic curveC given by a monic odd degree model, with good reduction
at p.

• The desired precision N .
Output:

• The 2g × 2g matrix M of a p-power lift of Frobenius φ
• Functions hi ∈ A† such that φ∗(ωi) = dhi +

∑2g−1
j=0 Mjiωj

Description:

1: Compute the working precision N1 from Proposition 3.30, so that all the compu-
tations will be done modulo pN1 .

2: For each i, compute Fi := φ∗(ωi) and group the resulting terms as(∑
pk+1ci,j,k(x)yj

)
dx/y, where ci,j,k(x) ∈ Zp [x] have degree ≤ 2g + 1.

3: Compute a list of differentials d(xiyj), where 0 ≤ i ≤ 2g + 1 and j is odd.
4: If Fi has a term (xiyj)dx/y, with j < 0, consider the term (ci,j,k(x)yj)dx/y with
j minimal. Take the unique linear combination of the d(xky1+j) such that when
this linear combination is subtracted from Fi the term (ci,j,k(x)yj)dx/y cancels off.
Re-initialize this as Fi. Do this until Fi no longer has terms of the form (xiyj)dx/y

with j < 0.
5: If Fi has a term (xiyj)dx/y, with j ≥ 0, consider the term (xmyj)dx/y with
m + j maximal. Let (xkyl)dx/y be the term such that d(xkyl) has highest term
(xmyj)dx/y and subtract off the appropriate multiple of d(xkyl) such that the
resulting sum no longer has terms of the form (xmyj)dx/y with j ≥ 0. Re-
initialize this as Fi and repeat this process until the resulting Fi is of the form(
M0,i +M1,ix+ . . .+M2g−1,ix

2g−1) dx/y.
6: For each i, return the expression

φ∗(ωi) = dhi +

2g−1∑
j=0

Mjiωj

Now we are ready to show the Balakrishnan-Bradshaw-Kedlaya algorithm for
Coleman integration on hyperelliptic curves.
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Algorithm Coleman integration on a hyperelliptic curve [3]
Input:

• A prime p > 2 of good reduction for a hyperelliptic curve C.
• Points P,Q ∈ C(Qp) not contained in a Weierstrass residue disk.
• A 1-form ω of the second kind.

Output: The Coleman integral
∫ Q
P ω.

Description:

1: Since ω is of the second kind, we may write it as a linear combination of a basis
{ωi : i = 0, . . . , 2g − 1} for H1

dR(C) together with an exact form. Use Kedlaya’s
algorithm to write ω = dh +

∑
i=0 aiωi, which allows us to reduce to the case of

Coleman integrals of basis differentials.
2: Use Kedlaya’s algorithm to write, for each basis differential ωi, the expression

φ∗(ωi) = dhi +

2g−1∑
j=0

Mjiωj

3: Using properties of the Coleman integral, we have
...∫ Q

P ωj
...

 = (Mt − I)−1


...

hi(P )− hi(Q)−
∫ φ(P )
P ωj −

∫ Q
φ(Q) ωj

...

 (3.2)

4: Compute
∫ Q
P ω = h(P )− h(Q) +

∑2g−1
i=0 ai

∫ Q
P ωi.

Remark 3.31. For the sake of clarity, we explain how to deduce equation 3.2. By prop-
erty 3 of theorem 3.22, we have ∫ φ(Q)

φ(P )
ωi =

∫ Q

P
φ∗ωi

Using Kedlaya’s algorithm we can rewrite the RHS as∫ Q

P
φ∗ωi =

∫ Q

P

dhi +

2g−1∑
j=0

Mjiωj


=

∫ Q

P
dhi +

2g−1∑
j=0

Mji

∫ Q

P
ωj = hi(Q)− hi(P ) +

2g−1∑
j=0

Mji

∫ Q

P
ωj

By property 2 of theorem 3.22, we get∫ Q

P
ωi =

∫ φ(P )

P
ωi+

∫ φ(Q)

φ(P )
ωi+

∫ Q

φ(Q)
ωi =

∫ φ(P )

P
ωi+

∫ Q

φ(Q)
ωi+hi(Q)−hi(P )+

2g−1∑
j=0

Mji

∫ Q

P
ωj

Now, P and φ(P ) are in the same residue disk, so
∫ φ(P )
P ωi is a tiny integral, which is

computable via its power series expansion. The hi are give by the Kedlaya algorithm
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and we can evaluate them on P and Q. Now, equation 3.2 follows from the equation
above after using linear algebra to rearrange the terms.

Notice that Mt − I is invertible since, by the Weil conjectures, the eigenvalues of
M have norm

√
p 6= 1. This proves that the RHS of equation 3.2 is easily computable.

Remark 3.32. For Weierstrass residue disks, because of overconvergence, the lift of
Frobenius is only defined near the boundary of the residue disk. So if W is a Weier-
strass point and we want to compute

∫ P
W ωi, we choose a point S close to the boundary

of the Weierstrass disk of W and decompose the integral as∫ P

W
ωi =

∫ S

W
ωi +

∫ P

S
ωi

The term
∫ S
W ωi is a tiny integral and the term

∫ P
S ωi can be computed as above. How-

ever, this is computationally hard, because we have to work over a totally ramified
extension of Qp to compute the integral.

Example 3.33. In Example 3.1 we studied the rational points on the genus 2 hyperel-
liptic curve

C : y2 = x5 − 2x3 + x+
1

4

Recall that we have at least 7 rational points:

C(Q)known = {∞, (0,±1/2), (−1,±1/2), (1,±1/2)}

We also computed an annihilating differential over Q3

η = αω0 − βω1

where
ω0 =

dx

2y
ω1 =

xdx

2y

β :=

∫ (−1,−1/2)

(0,1/2)
ω0 = 3 + 32 + 34 + 35 + 2 · 36 + 2 · 37 + 2 · 38 + 310 +O(311)

α :=

∫ (−1,−1/2)

(0,1/2)
ω1 = 2 + 2 · 3 + 2 · 33 + 34 + 36 + 2 · 38 + 2 · 39 +O(310)

We didn’t say anything about how Magma actually computed those values, but now
we can say that it is just an application of the Balakrishnan-Bradshaw-Kedlaya algo-
rithm.

As we said before, we want to compute the set

C(Q3)1 :=

{
z ∈ C(Q3) :

∫ z

(0,1/2)
η = 0

}
⊇ C(Q)

To do that we need to compute the "indefinite" Coleman integrals∫ Pt

(0,1/2)
η
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where Pt ranges over all residue disks, and then find all the z ∈ C(Q3) such that∫ z
(0,1/2) η = 0.

In order to compute these integrals we can choose a lift Q of an F3-point in the same
residue disk ad Pt and then write∫ Pt

(0,1/2)
η =

∫ Q

(0,1/2)
η +

∫ Pt

Q
η

The first integral is just a 3-adic constant, while the second is a tiny integral which
we can compute using a local coordinate at Q and integrating the resulting power
series. However, since each residue disk contains at least one rational point, we can
take Q as that point, in such a way that

∫ Q
(0,1/2) η = 0, by construction of the annihilat-

ing differential. Moreover, since the hyperelliptic involution i is a bijection on C(Q),
we only need to consider the residue disk of Q and not the disk of i(Q), cutting the
computations in half.

So we need to compute the Coleman integrals
∫ Pt

(0,1/2) η =
∫ Pt

Q η where Pt is in the
residue disk of Q =∞, (0, 1/2), (1, 1/2), (−1, 1/2). For example, if Q = (1, 1/2), a local
coordinate is given by

x(t) = 1 + t+O(t20)

y(t) =
1

2
+ 4t2 + 8t3 − 11t4 − 63t5 + 24t6 + 680t7 + 695t8 − 7210t9 − 19881t10 + 64544t11

+ 374802t12 − 301946t13 − 5872722t14 − 5265422t15 + 78467963t16 + 210631116t17

− 840861878t18 − 4667976084t19 +O(t20)

and the power series for
∫ Pt

(0,1/2) η =
∫ Pt

Q η is

(2 + 3 + 2 · 32 + 33 + 2 · 35 + 36 + 2 · 38 + 39 +O(310))t+ (32 + 2 · 33 + 2 · 34 + 2 · 36 + 37 + 38 + 39 + 2 · 310 +O(312))t2

+ (2 · 3 + 32 + 35 + 37 + 38 + 310 +O(311))t3 + (33 + 34 + 35 + 2 · 36 + 2 · 37 + 2 · 38 + 312 +O(313))t4

+ (2 · 34 + 2 · 37 + 38 + 39 + 2 · 311 + 2 · 312 + 2 · 313 +O(314))t5 + (34 + 2 · 35 + 36 + 37 + 2 · 38 + 39 + 311 + 312 +O(314))t6

+ (2 · 36 + 2 · 37 + 38 + 310 + 2 · 311 + 312 + 2 · 314 +O(316))t7 + (2 · 38 + 2 · 39 + 311 + 312 + 2 · 314 + 2 · 315 + 2 · 316 +O(318))t8

+ (2 · 36 + 2 · 39 + 2 · 310 + 312 + 2 · 314 + 2 · 315 +O(316))t9 + (2 · 39 + 310 + 2 · 311 + 313 + 316 + 317 +O(319))t10 + . . .

Strassman’s theorem implies that it only has one simple zero, namely t = 0, which
corresponds to the point (1, 1/2). Similarly, the same argument shows that for each
Q, the power series has only one simple zero, which corresponds to the point Q, and
therefore

C(Q3)1 = C(Q)known = {∞, (0,±1/2), (−1,±1/2), (1,±1/2)}

This proves that

C(Q) = {∞, (0,±1/2), (−1,±1/2), (1,±1/2)}

Now we want to show how to compute Coleman integrals on general curves. In
order to do this we need to generalize Kedlaya’s algorithm to compute the action
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of Frobenius on general curves. This generalization is given by Tuitman’s algorithm
([75, 76]), which computes efficiently the action of Frobenius on rigid cohomology on
smooth curves, by using a plane model with a map to P1. In particular, we will follow
the exposition given in [9] and in [8].

Let C be a smooth, projective and geometrically irreducible curve over Q of genus
g, birational to

Q(x, y) = ydx +Qdx−1(x)ydx−1 + . . .+Q0(x) = 0

where Qi(x) ∈ Z [x] for every i = 0, . . . , dx − 1, such that Q(x, y) is irreducible. The
idea of Tuitman’s algorithm is the following

1. Consider the map x : C → P1, and remove the ramification locus r(x) of x (this
is similar to removing the Weierstrass points in Kedlaya’s algorithm).

2. Choose a lift φ of the p-power Frobenius in such a way that x 7→ xp and then
compute the image of y via Hensel lifting.

3. Compute the action of Frobenius on differentials and reduce pole orders using
relations in cohomology via Lauder’s fibration algorithm

4. Finally, given a basis {ωi : i = 0, . . . , 2g − 1} of H1
rig(C ⊗Qp), we compute

φ∗(ωi) = dhi +

2g−1∑
j=0

Mjiωj

Let ∆(x) ∈ Z [x] be the discriminant of Q with respect to y and define

r(x) =
∆(x)

gcd(∆(x),∆′(x)

so that r(x) is squarefree and divides ∆(x). We also define

R = Zp〈x, 1/r, y〉/(Q) R† = Zp〈x, 1/r, y〉†/(Q)

where 〈•〉† stands for the ring of overconvergent functions given by the weak comple-
tion of the corresponding polynomial ring. A Frobenius lift φ : R† → R† is defined
as a continuous ring homomorphism that reduces to the p-th power Frobenius map
modulo p.

Theorem 3.34. There exists a Frobenius lift φ : R† → R† for which φ(x) = xp.

Proof. See [76, Thm. 2.6].

Definition 3.35. For a point P on a smooth curve, we let ordP denote the correspond-
ing discrete valuation on the function field of the curve. In particular, ord0 and ord∞
are the discrete valuations on the rational function field Q(x) corresponding to the
points 0 and∞ on P1(Q). We extend these definitions to matrices by taking the mini-
mum over their entries.
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Definition 3.36. Let W 0 ∈ GLdx(Q [x, 1/r]) and W∞ ∈ GLdx(Q [x, 1/x, 1/r]) be matri-
ces such that, if we denote

b0j =

dx−1∑
i=0

W 0
i+1,j+1y

i and b∞j =

dx−1∑
i=0

W∞i+1,j+1y
i

for each j = 0, . . . , dx − 1, then

•
{
b00, . . . , b

0
dx−1

}
is an integral basis for Q(C) over Q [x].

•
{
b∞0 , . . . , b

∞
dx−1

}
is an integral basis for Q(C) over Q [1/x].

where Q(C) is the function field of C. Furthermore, we define W ∈ GLdx(Q [x, 1/x]) to
be the change of basis matrix, i.e. W = (W 0)−1W∞.

Example 3.37. Let C/Q be a hyperelliptic curve of genus g with an odd degree monic
plane model

C : Q(x, y) = y2 − f(x) = 0

Then we have that r(x) = f(x) and

W 0 =

(
1 0

0 1

)
W∞ =

(
1 0

0 1/xg+1

)

In other words, {1, y} and
{

1, y/xg+1
}

are integral bases forQ(C) overQ [x] andQ [1/x],
respectively.

Definition 3.38. We say that the triple (Q,W 0,W∞) has good reduction at a prime p
if the following conditions are satisfied:

1. The discriminant of r(x) is in Z×p .

2. If we define Fp(x, y) := Frac(Fp [x, y] /(Q)), then:

• The reduction modulo p of
{
b00, . . . , b

0
dx−1

}
is an integral basis for Fp(x, y)

over Fp [x].

• The reduction modulo p of
{
b∞0 , . . . , b

∞
dx−1

}
is an integral basis for Fp(x, y)

over Fp [1/x].

3. W 0 ∈ GLdx(Zp [x, 1/r]) and W∞ ∈ GLdx(Zp [x, 1/x, 1/r]).

4. Let

R0 = Zp [x] b00 + . . .+ Zp [x] b0dx−1

R∞ = Zp [1/x] b∞0 + . . .+ Zp [1/x] b∞dx−1

then the discriminants of the finite Zp-algebras R0/(r(x)) R∞/(1/x) are invert-
ible in Zp.
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Definition 3.39. We say that a point in Can is very infinite if its x-coordinate is∞ and
very bad if it is either very infinite or its x-coordinate is a zero of r(x).

Definition 3.40. We say that a residue disk (and any point inside it) in infinite or bad if
it contains a very infinite or a very bad point, respectively. A point or residue disk is
called finite if it is not infinite and good if it is not bad. Let U be the complement of the
very bad points in Can.

From the assumption that (Q,W 0,W∞) has good reduction at p, it follows that
the rigid cohomology spaces H1

rig(U ⊗ Qp) and H1
rig(C ⊗ Qp) are isomorphic to their

algebraic de Rham counterparts (see [10]).

Proposition 3.41. There are p-adically integral 1-forms on U (see [75, 76] for an algorithm),
ω0, . . . , ω2g−1, such that:

1. ω0, . . . , ωg−1 is a basis for H0(CQP
,Ω1).

2. ω0, . . . , ω2g−1 is a basis for H1
rig(C ⊗QP ).

3. ordP (ωi) ≥ −1 for all i, at all finite very bad points P .
4. ordP (ωi) ≥ −1 + (ord0(W ) + 1)eP for all i, at all very infinite points P (eP is the

ramification index of P ).

Definition 3.42. The p-power Frobenius φ acts on H1
rig(C ⊗ Qp), so that there exist a

matrix M ∈ Q2g×2g
p and functions h0, . . . , h2g−1 ∈ R† ⊗Qp such that

φ∗(ωi) = dhi +

2g−1∑
j=0

Mjiωj

for i = 0, . . . , 2g−1, where the ωi are the 1-form described in the previous Proposition.

This implies that we can compute the action of Frobenius on a general 1-form, but
after that we need to reduce the pole order using relations in cohomology, much like
what we did with Lemmas 3.25 and 3.26. Tuitman’s algorithm uses Lauder’s fibra-
tion algorithm, but we will not go into detail, instead we directly state the following
lemmas.

Lemma 3.43. Let r′ denote dr/dx for points not over infinity. For all n ∈ N and for every
vector w ∈ Qp [x]⊕dx , there exist vectors u, v ∈ Qp [x]⊕dx such that deg(v) < deg(r) and∑dx−1

i=0 wib
0
i

rn
dx

r
= d

(∑dx−1
i=0 vib

0
i

rn

)
+

∑dx−1
i=0 uib

0
i

rn−1
dx

r

Lemma 3.44. For every vector w ∈ Qp [x, 1/x]⊕dx with ord∞(w) ≤ −deg(r), there exist
vectors u, v ∈ Qp [x, 1/x]⊕dx such that ord∞(u) > ord∞(w) and(

dx−1∑
i=0

wib
∞
i

)
dx

r
= d

(
dx−1∑
i=0

vib
∞
i

)
+

(
dx−1∑
i=0

uib
∞
i

)
dx

r
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Algorithm Tuitman’s Algorithm [75, 76]
Input:

• A prime p > 2 of good reduction (in the sense of definition 3.38) for a smooth,
projective and geometrically irreducible curve C/Q

• A basis
{
ωi = xidx

y : i = 0, . . . , 2g − 1
}

of H1
rig(C ⊗Qp).

Output: The 2g × 2g Qp-matrix M and overconvergent functions hi ∈ R† ⊗Qp such
that φ∗(ωi) = dhi +

∑2g−1
j=0 Mjiωj

Description:

1: Compute the Frobenius lift φ: set φ(x) = xp and determine φ(1/x) ∈ Zp〈x, 1/r〉†,
φ(y) ∈ R† by Hensel lifting.

2: Finite pole reduction: for i = 0, . . . , 2g − 1, find hi,0 ∈ R⊗Qp such that

φ∗(ωi) = dhi,0 +Gi

(
dx

r(x)

)
where Gi ∈ R⊗Qp has poles only at very infinite points.

3: Infinite pole reduction: for i = 0, . . . , 2g − 1, find hi,∞ ∈ R† ⊗Qp such that

φ∗(ωi) = dhi,0 + dhi,∞ +Hi

(
dx

r(x)

)
where Hi ∈ R⊗Qp has poles only at very infinite points and satisfies

ordP (Hi) ≥ (ord0(W )− deg(r) + 2)eP

4: Final reduction: for i = 0, . . . , 2g − 1, find hi,end ∈ R⊗Qp such that

φ∗(ωi) = dhi,0 + dhi,∞ + dhi,end +

2g−1∑
j=0

Mjiωj

where M ∈ Q2g×2g
p is the matrix of φ∗ on H1

rig(U ⊗ Qp) with respect to the basis
{ωi = xidx

y : i = 0, . . . , 2g − 1}.
5: For each i = 0, . . . , 2g − 1 compute the functions hi := hi,0 + hi,∞ + hi,end.
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Algorithm Coleman integration on a plane curve [9]
Input:

• A prime p > 2 of good reduction (in the sense of definition 3.38) for a smooth,
projective and geometrically irreducible curve C/Q.

• Points P,Q ∈ C(Qp) not contained in very bad residue disks.
• A 1-form ω of the second kind.

Output: The Coleman integral
∫ Q
P ω.

Description:

1: Since ω is of the second kind, we may write it as a linear combination of a basis
{ωi : i = 0, . . . , 2g−1} forH1

rig(C⊗Qp) together with an exact form. Use Tuitman’s
algorithm to write ω = dh +

∑
i=0 aiωi, which allows us to reduce to the case of

Coleman integrals of basis differentials.
2: Use Tuitman’s algorithm to compute the matrix M and the functions h0, . . . , h2g−1.

3: Compute the integrals
∫ φ(P )
P ωi and

∫ Q
φ(Q) ωi, for i = 0, . . . , 2g − 1, using local coor-

dinates and tiny integrals.
4: Compute hi(P )−hi(Q) for i = 0, . . . , 2g−1 and use the system of linear equations

2g−1∑
j=0

(Mji− δij)
∫ Q

P
ωj = hi(P )− hi(Q)−

∫ φ(P )

P
ωi −

∫ Q

φ(Q)
ωi

to solve for the
∫ Q
P ωi.

Remark 3.45. The case of points in a very bad disk is analogous to the case of Weier-
strass points on a hyperelliptic curve, and it can be treated similarly. Let B a very
bad point and B′ a point near the boundary of the residue disk of B, then split up the
integral ∫ Q

B
ω =

∫ B′

B
ω +

∫ Q

B′
ω

The integral
∫ B′
B ω is a tiny integral and

∫ Q
B′ ω can be computed with the previous

algorithm.



Chapter 4

Generalizations

So far, we only dealt with the case in which r < g, where r = rank(J(Q)) and g is the
genus of the curve that we are studying. So it is natural to ask what happens if r ≥ g.
The Chabauty-Coleman method no longer works, but Faltings’ theorem implies that
the curve has still a finite number of rational points.

In this chapter we want to talk about some generalizations of the classical Chabauty-
Coleman method which can be applied even when r ≥ g. In particular, some of these
form an active area of research.

4.1 Elliptic Chabauty

The elliptic Chabauty method works by transforming the problem of finding the ra-
tional points on a curve into the problem of finding points on certain elliptic curves
over number fields with x-coordinate in Q. This works particularly well if r = g.

Let E be an elliptic curve defined by the equation

E : y2 = a0x
3 + a2x

2 + a4x+ a6

over a number field Q(α) of degree d with a0 6= 0. As we said before the aim of this
method is to find all points (x, y) ∈ E(Q(α)) such that x ∈ Q. Following Chapter 4
of [68], we recall that the change of variables z = −x

y , w = − 1
y allows us to define a

formal group law on E. In other words, if P1 = (z1, w1), P2 = (z2, w2) ∈ E, then the
z-coordinate of P1 + P2 can be written as a formal series in z1, z2 with coefficients in
Z [a0, a2, a4, a6] and we will write z(P1 + P2) = F(z1, z2) ∈ Z [a0, a2, a4, a6] [[z1, z2]]. In
the same chapter it is also described the construction of the formal logarithm and the
formal exponential, i.e. formal series with coefficients in Q [a0, a2, a4, a6] such that

Log ◦ Exp(T ) = Exp ◦ Log(T ) = T

Log(F(z1, z2)) = Log(z1) + Log(z2)

F(Exp(z1),Exp(z2)) = Exp(z1 + z2)

56
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By writing the w-coordinate as a formal series in z, we can also write the inverse of the
x-coordinate of a pointP = (z, w) ∈ E(Q(α)) as a formal series Φ ∈ Z [a0, a2, a4, a6] [[z]]

and, similarly, the x-coordinate of the sum of P with the point (x0, y0) ∈ E(Q(α)) as a
formal series Ψ ∈ Z [a0, a2, a4, a6, x0, y0] [[z]]:

Φ(z) = a0(z
2 + a2z

4 + (a4a0 + a22)z
6) +O(z8)

Ψ(x0,y0)(z) = x0 + 2y0z + (3a0x
2
0 + 2a2x0 + a4)z

2 + (4a0x0y0 + 2a2y0)z
3 +O(z4)

We will assume that the rank of E(Q(α)) is non zero (the case of rank 0 is trivial) and
that it is strictly less than d = [Q(α) : Q]. This is the analogue of the condition on the
rank of the Jacobian in the classical Chabauty method. We will also suppose that the
structure of the Mordell-Weil group E(Q(α)) is known, i.e.

E(Q(α)) = E(Q(α))tors ⊕ P1Z⊕ . . .⊕ PrZ

Now consider an odd prime p which satisfies the following conditions (here, −̃ is
the reduction modulo p):

1. [Qp(α) : Qp] = d

2. p is not ramified in Q(α)

3. |α|p = 1

4. The residue field of Qp(α) is Fp(α̃)

5. E has good reduction in p

6. |ai|p ≤ 1, for i = 0, 2, 4, 6

The first condition is the most difficult to realize. As a matter of fact, it is always
verified if d = 2 or 3 but, for example, it is not possible in biquadratic fields. However,
sometimes one can work around this condition as Flynn and Wetherell did in [40].
The meaning of conditions 3 and 4 is that α (and its reduction) must be a generator of
every ring of integers we need to consider.

In light of condition 5, the reduction Ẽ is an elliptic curve over Fp(α̃). Then, we can
define for every i = 1, . . . , r,mi as the order of P̃i in Ẽ(Fp(α̃)) andQi = miPi ∈ E(Q(α))

so that Qi is in the kernel of the reduction for every i.
Define the finite set

U =
{
T + k1P1 + . . .+ krPr : T ∈ E(Q(α)),

⌊
−mi

2

⌋
+ 1 ≤ ki ≤

⌊mi

2

⌋}
Then every point P ∈ E(Q(α)) can be uniquely written as

P = U + n1Q1 + . . .+ nrQr

where U ∈ U and n1, . . . , nr ∈ Z.
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Now, we want to write the x-coordinate of P as a formal series in n1, . . . , nr using
the formal series that we saw above. For example, by using the formal logarithm and
exponential we can easily see that the z-coordinate of n1Q1 + . . .+nrQr can be written
as a formal series in n1, . . . , nr, as

z(n1Q1 + . . .+ nrQr) = Exp(n1Log(z(Q1)) + . . .+ nrLog(z(Qr)))

in particular, condition 6 and the fact that the points Qi are in the kernel of the reduc-
tion map, imply that the coefficient of ne11 . . . nerr in this formal series is in Zp [α] and
tend to 0 as e1 + . . .+ er tend to infinity.

In order to write a formal series θU (n1, . . . , nr) for the x-coordinate of P we distin-
guish two cases. If U is the point at infinity then we have that

θU (n1, . . . , nr) =
1

x(n1Q1 + . . .+ nrQr)
= Φ(n1Q1 + . . .+ nrQr) ∈ Zp [α] [[n1, . . . , nr]]

Otherwise, if U is not the point at infinity, then

θU (n1, . . . , nr) = x(U+n1Q1+. . .+nrQr) = ΨU (n1Q1+. . .+nrQr) ∈ Zp [α] [[n1, . . . , nr]]

Decompose θU into its components as follows

θU = θ
(0)
U + θ

(1)
U α+ . . .+ θ

(d−1)
U αd−1

where each θ(i)U ∈ Zp [[n1, . . . , nr]], then the condition on the rationality of x(P ) can be
written as

θ
(1)
U (n1, . . . , nr) = . . . = θ

(d−1)
U (n1, . . . , nr) = 0 (4.1)

Remark 4.1. Now it should be clear why we imposed that the rank r must be strictly
less than d. We have d − 1 equations in r variables so it should be natural to suppose
r ≤ d− 1.

So we have translated the problem of searching points with rational x-coordinate
into the problem of searching for zeros of formal series. If r = 1, it suffices to bound the
number of zeros of only one of these (univariate) series, so we can apply Strassman’s
theorem (Theorem 2.16). On the other hand, if r > 1, then Flynn and Wetherell [39]
suggest applying a version of Weierstrass’ preparation theorem in several variables in
order to reduce to the previous case.

Finally, suppose that we have a bound on the number of zeros of Equation 4.1 for
every U ∈ U , this yields a bound on the number of points of the form U + n1Q1 +

. . .+nrQr for a fixed U with rational x-coordinates. Summing over the (finitely many)
U ∈ U yields a bound on the number of points in E(Q(α)) with x-coordinate in Q.

The main problem with this argument is that it only gives us a bound on the num-
ber of points without giving the point explicitly. In general, this bound is usually
sharp and allows us to conclude that there aren’t points other than the one already
found. However, there could be some obstacles:
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• The bound given by Strassman’s theorem could be not sharp.

• The Strassman’s bound is sharp, but one of the zeros of the formal series could
not correspond to a point on the elliptic curve.

• The Strassman’s bound is sharp, every p-adic zero of the formal series corre-
sponds to a point on the elliptic curve, but some of those points could be un-
known, for example because their height is too large.

Now, we want to describe some techniques for reducing the computation of rational
points on a curve to an elliptic Chabauty problem.

4.1.1 How to apply Elliptic Chabauty

We will discuss 3 methods, but the basic principle is always the same: find an abelian
varietyAwith an isogeny to the Jacobian JC . Now, find a set of embeddings of C into J
and take the preimages of those embeddings by the isogeny; this yields a set of curves
on A such that their rational points cover the set C(Q).

Covers with isogenies

We start by describing the argument used by Flynn and Wetherell in [39] for biellitpic
curves, i.e. curves defined by equation of the following type:

C : Y 2 = G(X2)

where G(X) ∈ Z [X] is a degree 3 polynomial, with three distinct roots γ1, γ2, γ3 ∈ Q.
This is a curve of genus 2, so if the Mordell-Weil rank of the Jacobian is 0 or 1 we can
use Theorem 2.3 and Theorem 2.17 to conclude. So, we will assume that the rank is at
least 2.

Define the two maps

f1 : C −→ E1

(X,Y ) 7−→ (X2, Y )

f2 : C −→ E2

(X,Y ) 7−→
(

1

X2
,
Y

X3

)
from C to the elliptic curves

E1 : Y 2 = G(X) = (X − γ1)(X − γ2)(X − γ3)

E2 : y2 = x3G

(
1

x

)
= (1− γ1x)(1− γ2x)(1− γ3x)

and let A = E1 × E2. Following chapter 1 of [25], any member of J(Q) may be rep-
resented by a divisor of the form P1 + P2 − ∞+ − ∞−, where ∞+,∞− are the two
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points at infinity in C(Q), P1, P2 are points on C and either P1, P2 are both Q-rational
or P1, P2 are quadratic overQ and conjugate. We will denote such a divisor as {P1, P2}.
This representation defines a bijection with J(Q), except that everything of the form
{(x, y), (x,−y)} must be identified into a single point O, which should be seen as the
group identity in J(Q).

Then we can find two isogenies

φ : A −→ J(
(X,Y ), (x, y)

)
7−→

{
(
√
X,Y ), (−

√
X,Y )

}
+

{(
1√
x
,
y

x
√
x

)
,

(
− 1√

x
,− y

x
√
x

)}
φ′ : J −→ A

{(X1, Y1), (X2, Y2)} 7−→
(

(X2
1 , Y1) + (X2

2 , Y2),

(
1

X2
1

,
Y1
X3

1

)
+

(
1

X2
2

,
Y2
X3

2

))
Both their kernels have order 4 and are isomorphic to the Klein 4-group V4:

ker(φ) =

{
O1 ×O2, (γ1, 0)×

(
1

γ1
, 0

)
, (γ2, 0)×

(
1

γ2
, 0

)
, (γ3, 0)×

(
1

γ3
, 0

)}
ker(φ′) =

{
O, {(√γ1, 0) , (−√γ1, 0)} , {(√γ2, 0) , (−√γ2, 0)} , {(√γ3, 0) , (−√γ3, 0)}

}
Moreover, their compositions φ◦φ′ and φ′ ◦φ are both multiplication by 2 maps on the
respective abelian varieties. As in [61], there is an injective homomorphism

µ : J(Q)/φ(A(Q)) −→ L×1 /(L
×
1 )2 × L×2 /(L×2 )2 × L×3 /(L×3 )2

{(X1, Y1), (X2, Y2)} 7−→
[
(X2

1 − γ1)(X2
2 − γ1), (X2

1 − γ2)(X2
2 − γ2), (X2

1 − γ3)(X2
2 − γ3)

]
where Li = Q(γi).

Since J(Q)/2J(Q) is finite by the weak Mordell-Weil theorem (Theorem 1.51) and
2J(Q) = φ (φ′ (J(Q))) ⊆ φ (A(Q)) we find that

J(Q)/φ (A(Q)) ∼= J(Q)/2J(Q)�φ (A(Q)) /2J(Q)

is finite as well and can be explicitly determined (for example with a descent). So,
suppose that we’d done that:

J(Q)/φ(A(Q)) = {D1, . . . , Dm}

then for every (X,Y ) ∈ C(Q) there exists an i = 1, . . . ,m such that {(X,Y ),∞+} = Di

in J(Q)/φ(A(Q)) and thus µ(j)(Di) = µ(j) ({(X,Y ),∞+}), which is equivalent to say
that µ(j)(Di) = X2 − γj in L×j /(L

×
j )2.

Since G(X2) = Y 2 is a square, there exists Yi,j ∈ Lj such that

Y 2
i,j = µ(j)(Di)

G(X2)

X2 − γj
Multiplying by X2 both sides and applying the change of variables yi,j = XYi,j ,
x = X2 we get the identity

y2i,j = µ(j)(Di)
xG(x)

x− γj
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So we get a point (x, yi,j) ∈ Q× Lj on the elliptic curve

Ei,j : V 2 = µ(j)(Di)
WG(W )

W − γj
Thus we can use the method outlined above to find those points and therefore the
rational points on C.

As an example we solve the only Diophantine equation of genus ≥ 2 in Diophan-
tus’ Arithmetica (problem VI.17)

Theorem 4.2 (Wetherell, [80, Prop. 5.1.] ). The only rational solutions of the equation

y2 = x8 + x4 + x2

are (0, 0) and
(
±1

2
,± 9

16

)
.

Proof. By removing the singularity at (0, 0) we get the bielliptic curve

C : y2 = x6 + x2 + 1

Applying the theory that we developed above we get the elliptic curves

E1 : y2 = x3 + x+ 1 and E2 : y2 = x3 + x2 + 1

Let γ1 = α, where α3 + α+ 1 = 0 and note that

G(x) = x3 + x+ 1 = (x− α)(x2 + αx+ α2 − 1)

From Magma computations we get that J(Q) has rank 2 and it is generated by {(0, 1), (0, 1)}
and {(0, 1),∞+}. By explicit computations, φ

((
(0, 1),O2

))
= {(0, 1), (0, 1)}, hence

{(0, 1), (0, 1)} is trivial in J(Q)/φ(A(Q)); moreover µ ({(0, 1),∞+}) 6= [1, 1, 1] but

µ
(
2
{

(0, 1),∞+
})

= µ
({

(0, 1),∞+
})2

= [1, 1, 1]

so, since µ is injective, we have that {(0, 1),∞+} is a point of exact order 2 in J(Q)/φ(A(Q)).
Therefore we conclude that

J(Q)/φ(A(Q)) = {D1 = O, D2 =
{

(0, 1),∞+
}
}

Now, for every (X,Y ) ∈ C(Q) we must have {(X,Y ),∞+} = D1 orD2 in J(Q)/φ(A(Q))

so x = X2 ∈ Qmust satisfy one of the equations

E1,1 : y21,1 = x(x2 + αx+ α2 − 1)

E2,1 : y22,1 = −αx(x2 + αx+ α2 − 1)

By using Magmawe find thatE1,1(Q(α)) = 〈(0, 0)〉⊕(−α, 1)Z (the point (0, 0) has order
2) and E2,1(Q(α)) = {O, (0, 0)}.

So we will work only on E1,1. Using the same notations as above, let P1 = (−α, 1)

and use p = 5. We can take m1 = 28, i.e. 28P1 is in the kernel of the reduction modulo
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5, however it is more efficient to take Q1 = 14P1 + (0, 0) which is also int the kernel of
the reduction modulo 5. So we have

U = {kP1 : −6 ≤ k ≤ 7} ∪ {(0, 0) + kP1 : −6 ≤ k ≤ 7}

in this way, every P ∈ E1,1(Q(α)) can be written uniquely as P = U + nQ1, for some
U ∈ U and n ∈ Z.

We can compute

z(nQ1) = Exp(nLog(z(Q1))) ≡ 5(21 + 15α+ 21α2)n (mod 53)

By using the formulas given above for θU in the caseU = −2P1 = (1/4, 1/8−α/2 +α2/4),
we get

θ−2P1(n) ≡ 94 + 5(17α+ 9α2)n+ 52(2 + α+ α2)n2 (mod 53)

We apply Strassman’s theorem on θ
(2)
−2P1

(n) ≡ 45n + 25n2 (mod 53) and we deduce

that θ(2)−2P1
(n) has at most one root. However, n = 0 is a root, since −2P1 + 0 · Q1 has

x-coordinate equal to 1/4 ∈ Q, hence n = 0 is the only solution.

Similarly, the same argument implies that for U = O, (0, 0), 2P1, n = 0 is the only
value such that U + nQ1 has rational x-coordinate.

For the remaining values of U ∈ U , we can show that the constant term of θ(2)U (n)

has 5-adic absolute value strictly greater than all the other terms, so we have no roots
in these cases.

This proves that the only points inE1,1(Q(α)) with rational x-coordinate areO, (0, 0)

and ±2P1 = ±(1/4, 1/8− α/2 + α2/4).

Therefore the only rational values that x may assume are ∞, 0, 1/4 which imply
that X = ∞, 0,±1/2. The corresponding points on C are ∞±, (0,±1), (±1/2,±9/8),
which correspond to the solutions that we were looking for.

Covers with multiplication-by-2 maps

Now, we want to generalize the previous argument to more general curves.

Let C be an hyperelliptic curve defined over a number field K, with a known K-
rational point mapped to infinity

C : y2 = F (x) = xn + an−1x
n−1 + an−2x

n−2 + . . .+ a1x+ a0 = F1(x) . . . Fk(x)

where ai ∈ K and F1(X), . . . , Fk(X) are the irreducible factors of F (X) over K. For
each i, let αi be a root of Fi(X) and let Li = K(αi). When n is even1, we have to
K-rational points∞+,∞− ∈ C(K) that lie over the point at infinity on C; while, if n
is odd, we have only one such point∞+ ∈ C(K). Define a map q (the analogue of the

1If we suppose further that 4 - n, then every 2-torsion element of J(K) would be represented by a
K-rational set of Weierstrass points on C; but we do not need this hypothesis.
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map µ in the previous method) on J(K) by

q : J(K) −→
(
L×1 /(L

×
1 )2 × . . .× L×k /(L×k )2

)
/ ∼ m∑

j=1

nj(xj , yj)

 7−→
 m∏
j=1

(xj − α1)
nj , . . . ,

m∏
j=1

(xj − αk)nj


where the equivalence relation ∼ is defined by

n even: [a1, . . . , ak] ∼ [b1, . . . , bk]⇐⇒ a1 = λb1, . . . , ak = λbk, for some λ ∈ K×

n odd: [a1, . . . , ak] ∼ [b1, . . . , bk]⇐⇒ a1 = b1, . . . , ak = bk

In the definition of the map q, xj − αi should be taken to be 1 when (xj , yj) is any
point at infinity. Moreover, in both cases the square brackets denote an equivalence
class: in the LHS a class of divisors modulo linear equivalence, in the RHS a class
k-tuples modulo ∼. When n is odd, ker(q) = 2J(K); while if n is even, then either
ker(q) = 2J(K) or ker(q) has index 2 in 2J(K) (see [60], [69]).

Now suppose that G(X) ∈ K [X] divides F (X), then there is an induced map

qG : J(K) −→
(
L×G/(L

×
G)2
)
/ ∼ m∑

j=1

nj(xj , yj)

 7−→
 m∏
j=1

G(xj)
nj

 (4.2)

where LG denotes the smallest field containing K over which G(X) is defined. As in
the previous method, J(K)/ ker(q) is finite and can be computed once J(K)/2J(K) is
found, so that we can write

J(Q)/ ker(q) = {D1, . . . , Dr}

Let P = (x0, y0) ∈ C(K), then [P −∞+] ∈ J(K) and for some i = 1, . . . , r we
must have q ([P −∞+]) = q(Di) and therefore qG ([P −∞+]) = qG(Di) for every
G(X) | F (X). In other words,

qG(Di)G(x0) ∈ (L×G)2 for all G(X) | F (X)

Thus, every choice of G yields an hyperelliptic curve over LG on which there must
be an LG-rational point with K-rational x-coordinate. We define Bi to be the curve
defined by all (or some) of these equations

Bi = {v2i,G = qG(Di)G(x) : G(X) | F (X)}

So, in order to determine all points P ∈ C(K) is sufficient to find all points on Bi with
x ∈ K, vi,G ∈ L×G, for every i = 1, . . . , r. Notice that when G(X) has degree 3 or
4, then v2i,G = qG(Di)G(x) is potentially an elliptic curve, and if its rank is less than
[LG : K] then we can apply the techniques we saw before. We will use this method in
section 5.2 to prove Theorem 5.3.
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Using resultants

This last method uses a more classic approach and does not rely on the more complex
tools of the previous methods.

Suppose that C is an hyperelliptic curve defined over Q by

C : y2 = F (x) = F1(x)F2(x)

where F (X) ∈ Q [X] is square-free, F1(X), F2(X) ∈ K [X], K is a number field,
deg(F ) ≥ 6 and deg(F1) = 3 or 4. Suppose that K has class number 1 and let
(x0, y0) ∈ C(Q). Then, there are y1, y2, α ∈ K such that

αy21 = F1(x0) and αy22 = F2(x0)

It is clear that we can choose α to be square-free. Moreover, we can prove that α must
divide the resultant of the polynomials F1(X) and F2(X), so that we have only a finite
number of possible values for α. Hence we find a finite number of elliptic curves over
K with equations

Eα : y2 = αF1(x)

and notice that (x0,±αy1) ∈ Eα(K) has Q-rational x-coordinate. So the problem of
finding C(Q) can again be reduced to the problem of finding points of Eα(K) with
x-coordinate in Q, which we already know how to do. We will apply those ideas in
section 5.3 and in the following paragraph.

4.1.2 An explicit example

We said above that we can use Strassman’s theorem in order to apply elliptic Chabauty
when the resulting elliptic curves have rank 1. So we want to show what we can do
when the rank is larger, and we will do it by proving the following result (taken from
[32]).

Theorem 4.3. Let C be the hyperelliptic curve over Q defined by the equation

C : y2 = F (x) = x9 − 6x8 + 31x7 − 81x6 + 177x5 − 176x4 − 9x3 + 107x2 + 19x+ 1

Then C(Q) = {∞, (1,±8), (0,±1)}.

Clearly C has genus 9−1
2 = 4 and we using Magma we can find that the rank of

J(Q) is 4, so we cannot use Chabauty’s theorem directly.
Let K = Q(β), where β is a zero of x3 + 2x+ 1; then F (X) factorizes over K with

irreducible factors:

F1(X) = X3 − 2X2 + (−4β2 − β + 1)X + 1

F2(X) = X6 − 4X5 + (4β2 + β + 22)X4 + (−8β2 − 2β − 34)X3+

+ (37β2 − 15β + 83)X2 + (4β2 + β + 18)X + 1
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We saw above that if (x0, y0) ∈ C(Q), then there exists y1 ∈ K such that (x0, y1) ∈ E(K),
where E is the elliptic curve

E : y2 = F1(x) = x3 − 2x2 + (−4β2 − β + 1)x+ 1

which has Mordell-Weil rank 2 overK, thus we can apply the elliptic Chabauty method.
However, in order to do this, we have to bound the number of p-adic zeros of a system
of two formal series in two variables. This can be done by using a generalization of
Strassman’s theorem which relies on a version of Weierstrass’ preparation theorem.

An explicit Weierstrass’ preparation theorem in 2 variables

Define, like in definition 3.3, the ring

Zp〈x1, x2〉 :=

∑
i,j≥0

ai,jx
i
1x
j
2 : ai,j ∈ Zp, lim

i+j→∞
|ai,j |p = 0


and recall the definition of the Gauss norm (see remark 3.8) on Zp〈x1, x2〉:

‖f‖ = max
i,j≥0

|ai,j |p

Similarly, we can define Zp〈x2〉 and equip it with the Gauss norm, which we will
denote by ‖·‖1. Now, it is easy to define the set Zp〈x2〉〈x1〉 as the subset of Zp〈x2〉 [[x1]]
in which the norm of the coefficients tends to 0 in Zp〈x2〉.

Then we identify Zp〈x2〉〈x1〉 with Zp〈x1, x2〉, since for every f ∈ Zp〈x1, x2〉 we can
write

f =
∞∑
i=0

fix
i
1

where fi ∈ Zp〈x2〉 and ‖fi‖1 → 0 when i→∞.

It is easy to show that f ∈ Zp〈x2〉 is invertible if and only if |a0|p = 1 and |ai|p < 1

for every i > 0 and, similarly, f ∈ Zp〈x1, x2〉 is invertible if and only if |a0,0|p = 1 and
|ai,j |p < 1 for every (i, j) 6= (0, 0).

Finally, f =
∞∑
i=0

fix
i
1 ∈ Zp〈x2〉〈x1〉 is called general in x1 of order s if fs ∈ Zp〈x2〉×

and ‖fi‖1 < 1 for every i > s.

Theorem 4.4 (Sugatani [72]). Let f ∈ Zp〈x1, x2〉, general in x1 of order s. Then, there exist
unique functions h, g0, . . . , gs−1, gs such that

• h ∈ Zp〈x1, x2〉× and h0(x2) = 1.

• g0, . . . , gs−1 ∈ Zp〈x2〉 and gs ∈ Zp〈x2〉×.

• f(x1, x2) = h(x1, x2) · (gs(x2)xs1 + . . .+ g1(x2)x1 + g0(x2)).



66 CHAPTER 4. GENERALIZATIONS

In order to bound the number of common p-adic zeros of two formal series in
two variables, we need a way of finding effectively the functions in the statement of
Theorem 4.4. By "effectively", we mean that if f is given with some precision, then we
should be able to find h, g0, . . . , gs with the same precision. Let

f(x1, x2) =
∑
i,j≥0

ai,jx
i
1x
j
2 ∈ Zp〈x1, x2〉 (4.3)

g(x1, x2) = g0(x2) + g1(x2)x1 + . . .+ gs(x2)x
s
1 (4.4)

h(x1, x2) = 1 +
∞∑
i=0

hn(x2)x
n
1 (4.5)

as in Theorem 4.4. Comparing the coefficients of the term xn1 in the equation

f(x1, x2) = h(x1, x2) g(x1, x2)

gives
hn(x2)g0(x2) + hn−1(x2)g1(x2) + . . .+ hn−s(x2)gs(x2) = fn(x2) (4.6)

where we will say that h0(x2) = 1 and hn(x2) = 0 if n < 0.
Since h is inveritble in Zp〈x1, x2〉, we know that ‖hi(x2)‖1 < 1 for every i ≥ 1.

Moreover, as fs(x2) is invertible in Zp〈x2〉, equation 4.6 with n = s implies that gs(x2)
is invertible in Zp〈x2〉. This allows to prove the following result.

Proposition 4.5 (Duquesne [31]). We can explicitly compute the functions hi from g0, . . . , gs

using the following formula

hn =
∞∑
k=0

(−1)k

gk+1
s

∑
i0+...+is−1=k

(
k

i0, . . . , is−1

)
find(n,k,s,i)

s−1∏
j=0

g
ij
j

where

• i = (i0, . . . , is−1);

• ind(n, k, s, i) = n+ s+
s−1∑
j=0

(s− j)ij ;

•
(

k
i0,...,is−1

)
=

k!

i0! · . . . · is−1!
is the multinomial coefficient.

On the other hand, since we defined h0 = 1 and hn = 0 if n < 0, we can use
equation 4.6 to derive the following identities:

g0 = f0

gi = fi −
i∑

j=1

hjgi−j for every 1 ≤ i ≤ s

This allows to compute the formal series gi by using recursively the formulas above
and Proposition 4.5. However these computations may become very challenging, so
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we will present a more useful method to compute the functions gi with the same pre-
cision as the fi.

Suppose that we know the formal series gi and hi modulo some power of p (e.g.
pk0), we want to show how we can compute the same series but modulo pk0+1 if we
know the formal series fi modulo pk0+1.

• First of all, we compute the inverse of gs modulo pk0 .

• Secondly, we compute the series h1, . . . , hs modulo pk0+1, using Proposition 4.5.
This is possible because the series gj are known modulo pk0 and the series fi
are known modulo pk0+1 and are divisible by p, so that the products gjfi are
computable modulo pk0+1. We remark that not all series fi are divisible by p,
but this is true for every i ≥ s + 1, by definition of s. However, the indices
ind(n, k, s, i) that appear in the statement of Proposition 4.5 are always greater
than or equal to s+1. Moreover, the sum for hn in the same Proposition is a finite
sum modulo pk0+1, since it is trivial that ind(n, k, s, i) ≥ n + s + k and fk ≡ 0

(mod pk0+1) for every sufficiently large k, as fk → 0 in Zp〈x2〉.

• Finally, we compute g0, . . . , gs modulo pk0+1 using the recursive formulas given
above. This can be done since the previous step gave us hi (mod pk0+1) and, ex-
cept h0, every hi is divisible by p (because h ∈ Zp〈x1, x2〉×), so that the products
gjhi are computable modulo pk0+1.

Now that we know how to compute the functions involved in Theorem 4.4 with
desired precision, we would like to apply those ideas to the elliptic Chabauty method.
We already saw that the elliptic Chabauty method yields d− 1 formal series in r vari-
ables (d = [K : Q] and r is the rank over K of the elliptic curve we are consider-
ing), of which we want to find the common zeros (see Equation 4.1). In our case,
K = Q(β) has degree d = 3 and E has rank r = 2 over K, so we get two formal series
θ
(1)
U , θ

(2)
U ∈ Zp [[n1, n2]], which are actually elements of Zp〈n1, n2〉.

Thus, we can apply Theorem 4.4 to θ(1)U . The formal series h(1) obtained is a unit in
Zp〈n1, n2〉 so it can never vanish, therefore θ(1)U (n1, n2) = 0 is equivalent to

g
(1)
0 (n2) + g

(1)
1 (n2)n1 + . . .+ g(1)s (n2)n

s
1 = 0

so that the study of the vanishing of a formal series can be reduced to the study of the
zeros of a degree s polynomial with coefficients in Zp〈n2〉. In particular, this means
that for a fixed n2, there are at most s zeros of θ(1)U . By applying the same argument on
θ
(2)
U , we get a system of two polynomial equations in Zp〈n2〉 [n1].

Then, the resultant of those polynomials is a formal series in Zp〈n2〉, whose zeros
can be used to find the common zeros of θ(1)U and θ

(2)
U . So, it suffices to use Strass-

man’s theorem to bound the number of zeros of the resultant. Finally, we hope that
this bound is sharp, meaning that the number of known zeros is exactly equal to the
bound, so that there aren’t more zeros other than the known ones. This yields a finite
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number of values for n2, which can be then substituted into either one of the equations
g
(i)
0 (n2) + g

(i)
1 (n2)n1 + . . .+ g

(i)
s (n2)n

s
1 = 0. Solve those polynomial equations in n1 and

compute the common zeros, then continue with the elliptic Chabauty method.

Proof of Theorem 4.3

Now that we have developed all the necessary tools, we can return to the proof of
theorem 4.3.

Recall that, in order to conclude the proof, we only need to find the points (x, y)

on E(Q(β)) with x ∈ Q on the elliptic curve

E : y2 = F1(x) = x3 − 2x2 + (−4β2 − β + 1)x+ 1

We start by computing the structure of the Mordell-Weil group of E over K = Q(β).
With the help of Magma we find that E(K) = ZG1 ⊕ ZG2, where G0 = (0, 1) and
G1 = (1, 1 − β2). In this case p = 3 satisfies the six conditions outlined at the start of
this section.

The orders of the reductions of G0 and G1 modulo 3 on the elliptic curve Ẽ are 11
and 33, respectively. In order to have smaller coefficients we useG2 = G0−3G1 instead
of G0, since G1, G2 are generators of E(K) and G̃2 has order 1 on Ẽ. Hence,following
the same notations as before, we can define

• m1 = 33 and m2 = 1, the orders of G̃1 and G̃2 modulo 3,

• Q1 = 33G1 and Q2 = G2, the smallest multiples of the generators which lie in
the kernel od the reduction map modulo 3,

• U = {kG1 : −16 ≤ k ≤ 16}

in such a way that any point P ∈ E(K) may be written as

P = U + n1Q1 + n2Q2

with U ∈ U and n1, n2 ∈ Z. Our aim is to find, for each fixed U , the values of n1, n2 ∈ Z
such that P has x-coordinate inQ. First of all, we notice that we can reduce the number
of U we need to try: since P has rational x-coordinate and Q1, Q2 are in the kernel of
the reduction modulo 3, the x-coordinate of Ũ must be in F3, but the only elements
of U for which this is true are∞,±G1,±3G1 and ±14G1. Moreover, since P and −P
have the same x-coordinate and n1, n2 are in Z, we don’t need to do computations for
both U and −U . So we have reduced our problem to finding all the points on E(K)

with x-coordinate in Q which can be written as U + n1q1 + n2Q2, with n1, n2 ∈ Z and
U ∈ U ′ = {∞, G1, 3G1, 14G1}.

For eachU ∈ U ′we find the corresponding formal series θU (n1, n2) ∈ Z3 [β] 〈n1, n2〉.
Using the appropriate formulas we can compute (see [31] for details) θU modulo 35 for
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every U ∈ U ′, for example:

θ∞(n1, n2) =
[
189n41 + (81n32 + 54n2)n31 + (162n22 + 108)n21 + (162n32 + 225n2)n1 + (189n42 + 54n22)

]
β2+[

54n41 + (162n32 + 162n2)n31 + 123n21 + (189n32 + 144n2)n1 + (189n42 + 126n22)
]
β+

27n41 + 81n32n
3
1 + (81n22 + 207)n21 + (27n32 + 117n2)n1 + (189n42 + 198n22) (mod 35)

In particular, we only need to compute the series which appear as coefficients of β
and β2, which we called θ(1)∞ and θ(2)∞ , respectively.θ

(1)
∞ = 54n41 + (162n32 + 162n2)n31 + 123n21 + (189n32 + 144n2)n1 + (189n42 + 126n22)

θ
(2)
∞ = 189n41 + (81n32 + 54n2)n31 + (162n22 + 108)n21 + (162n32 + 225n2)n1 + (189n42 + 54n22)

(mod 35)

We already know that (n1, n2) = (0, 0) is a common zero of θ(1)∞ and θ
(2)
∞ . The re-

sults of the previous paragraph and Strassman’s theorem allows us (see [31, subsub-
section II.4.5.2] for more details) to prove that this is the only common zero over
Z3 (and therefore over Z), so this proves that the only point in E(K) of the form
∞ + n1Q1 + n2Q2 with rational x-coordinate is ∞. Similarly, we can prove (see [31,
subsubsection II.4.5.1]) that for U = G1 the only solution of

θ
(1)
G1

(n1, n2) = θ
(2)
G1

(n1, n2) = 0

is again (n1, n2) = (0, 0) which corresponds to the point G1 = (1, 1− β2).
For U = 3G1 the only solution of

θ
(1)
3G1

(n1, n2) = θ
(2)
3G1

(n1, n2) = 0

is again (n1, n2) = (1, 0) which corresponds to the point 3G1 +Q1 = G0(0, 1).
Finally, for U = 14G1, there are no solution of

θ
(1)
14G1

(n1, n2) = θ
(2)
14G1

(n1, n2) = 0

This proves that the only points onE(K) with rational x-coordinate are∞, (0,±1) and
(1,±(1− β2)) and therefore the only possible values for the x-coordinate of a point on
C(Q) are 0 and 1, concluding the proof of Theorem 4.3.

4.2 Non-abelian Chabauty

A further generalization of Chabauty’s ideas is given by the non-abelian Chabauty
method (also called Chabauty-Kim method). The theory behind it is very complex
and it would be enough for another thesis, so we are going to give only a short intro-
duction.

Another way to look at the Chabauty method is to embed the curve C in its Jacobian
J with the Abel–Jacobi embedding associated to a rational point P0 ∈ C(Q) and then
study the relationships between Qp-points of C and the Q-points of J . So we have the
following commutative diagram
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C(Q) C(Qp)

J(Q) J(Qp)

Suppose that the Mordell–Weil rank r of J(Q) is strictly less than the genus g of C and
that p is a prime of good reduction for C, then another proof of Chabauty’s theorem
starts with proving that the image of C(Qp) in theQp-vector space J(Qp)⊗ZQp is dense,
while the image of J(Q) in J(Qp)⊗ZQp is contained in the vanishing of some nonzero
form f ; thus C(Q) lies in the vanishing locus of f in C(Qp). By the Zariski-density,
f |C(Qp) is nonzero, so that its vanishing locus, and therefore also C(Q), is finite.

On the other hand, Minhyong Kim’s idea (see [48], [49], [51], [26]), which was mo-
tivated by Grothendieck’s anabelian approach, was to replace the Jacobian of C with
a geometric object similar (but more general) to the fundamental group, allowing a
variant of Chabauty’s argument to work even when r is large. Before we deal with the
non-abelian setting, we study the cohomological version of the previous commutative
diagram:

C(Q) C(Qp)

H1
f (GQ, Vp) H1

f (Gp, Vp) Lie(J)

where GQ and Gp are the absolute Galois groups of Q and Qp, respectively. Vp is the
Qp-Tate module of J and H1

f denotes the pro-p-Selmer group.
In the Chabauty-Kim method we replace Vp, which is essentially equivalent to

the abelianization of the geometric (étale) fundamental group of C, with the Qp-pro-
unipotent completion ΠC of the geometric fundamental group of C. Since we would
like to work with schemes of finite type, instead of working with ΠC , we will work
with ΠC,n which is the quotient of ΠC by the (n+ 1)-th level of the lower central series
of ΠC .

Kim [49] showed that, for each n ≥ 1, the spaces H1
f (GQ,ΠC,n) and H1

f (Gp,ΠC,n)

can be seen as algebraic varieties over Qp, which are called the (global and local)
Selmer varieties of C. Furthermore, we replace Lie(J) with the de Rham fundamental
group of C, ΠdR

C and, as before, we can get some "finite level" version of this funda-
mental group, denoted by ΠdR

C,n, which, again, can be seen as an algebraic variety over
Qp.

Similarly to the abelian case, there are analogues of the Abel–Jacobi map, which
are called by Kim the (local and global) unipotent Albanese maps, Albl and Albg, re-
spectively. Putting all of this together, we get a commutative diagram

C(Q) C(Qp)

H1
f (GQ,ΠC,n) H1

f (Gp,ΠC,n) ΠdR
C,n/F

0

Albg Albl

locp D
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Kim showed that the image of C(Qp) under the map Albl is Zariski-dense in the
de Rham local Selmer variety H1

f (Gp,ΠC,n). Suppose the image of the localization
map logp := D ◦ locp is non-Zariski-dense. In other words, there exists an algebraic
function F on ΠdR

C,n which vanishes on the image of logp. Since the image of C(Fp) is
Zariski dense, the pullback f of F to C(Qp) is nonzero. But the image of C(Q) in C(Qp)
lies in the vanishing of f , which is necessarily finite. Therefore, C(Q) is finite as well.

Since logp is algebraic, in order to prove the desired non-Zariski density of the
image of logp , it is enough to prove the following “dimension hypothesis” (which is
the analogue of the condition r < g in the classical Chabauty method) for n > 0:

dim(H1
f (GQ,ΠC,n)) < dim(ΠdR

C,n)

To make this method computationally viable, instead of Coleman integrals, we can
use iterated Coleman integrals which are more natural to define on Selmer varieties.
This allows us to define a sequence of sets

C(Q) ⊆ . . . ⊆ C(Qp)n ⊆ C(Qp)n−1 ⊆ . . . ⊆ C(Qp)2 ⊆ C(Qp)1 ⊆ C(Qp)

where the set C(Qp)n can be described by equations in terms of n-fold iterated Cole-
man integrals.

Clearly, in order to prove that C(Q) is finite, we only need to prove that C(Qp)n is
finite. This is exactly what Kim conjectured:

Conjecture 4.6 ([49]). For every n sufficiently large, C(Qp)n is finite.

There is strong evidence that this is true and one can prove it if some other conjec-
tures (like the Bloch-Kato conjecture or the Fontaine-Mazur conjecture) are supposed
true.

Although this conjecture is enough to prove Faltings’ theorem, it does not give any
way to actually compute the set C(Q). However, used together with the Mordell-Weil
sieve (see appendix A), this is sufficient to compute the set of rational points in most of
the cases (some heuristics by Poonen imply that it should always work). Nevertheless,
Kim stated another conjecture that improves the previous one and removes the need
for the Mordell-Weil sieve.

Conjecture 4.7 ([4]). For every n sufficiently large, C(Qp)n = C(Q).

Notice that the two n in the conjectures need to to be the same. For example in the
setting of classical Chabauty-Coleman, when r < g, we have that C(Qp)1 is finite but
there are examples in which C(Qp)1 6= C(Q).

Recently, research on Kim’s method has focused on trying to prove the dimension
hypothesis unconditionally for larger classes of curves, and making the method more
explicit in various ways (e.g. by bounding the number or height of points identified
by the method, or using the method to construct and implement practical algorithms
for finding integral/rational points). As an example of results that we can expect, we
have the following theorem
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Theorem 4.8 ([26]). Let C/Q be a smooth, projective and geometrically irreducible curve of
genus g ≥ 2 and suppose that its Jacobian J is isogenous over Q to a product

∏
Ai of abelian

varieties, with Ai having CM by a number field Ki of degree 2 dim(Ai). Then the dimension
hypothesis holds for n� 0 and therefore C(Qp)n is finite for every sufficiently large n.

4.2.1 Quadratic Chabauty

In the paragraph above we defined a sequence of sets

C(Q) ⊆ . . . ⊆ C(Qp)n ⊆ C(Qp)n−1 ⊆ . . . ⊆ C(Qp)2 ⊆ C(Qp)1 ⊆ C(Qp)

We already described the set C(Qp)1 as

C(Qp)1 :=

{
z ∈ C(Qp) :

∫ z

P0

ω = 0, for every ω ∈ A
}

and we saw in chapter 1 and 3 that if the Mordell-Weil rank of J(Q) is less than the
genus of C, then the set C(Qp)1 is finite and effectively computable. However, if this
condition on the rank is not satisfied, then C(Qp)1 could be infinite. In that case, we
could study the set C(Qp)2, hoping that it is finite. This is one of the goals of the
Quadratic Chabauty method, the other being constructing explicit functions on C(Qp)
that vanish only on C(Qp)2 (or a finite set containing it).

From a computational point of view, the main idea of quadratic Chabauty is to
replace the linear relations in the method of Chabauty–Coleman by bilinear relations,
using double Coleman integrals∫ Q

P
ωiωj :=

∫ Q

P
ωi(R)

∫ R

P
ωj

instead of the classical Coleman integrals that we described in the previous chapters.
This can be done using p-adic heights, which were developed by a number of authors,
including Néron, Mazur–Tate, Iovita–Werner, Besser, Coleman–Gross and Nekovář
(for references see [8, Chapter 2]). For example, we have:

Definition 4.9. The Coleman-Gross (cyclotomic) p-adic height pairing is a symmetric bi-
additive pairing

h : Div0(C)×Div0(C)→ Qp
(D1, D2) 7→ h(D1, D2)

defined for all D1, D2 ∈ Div0(C) with disjoint support, such that

• We have

h(D1, D2) =
∑

v prime

hv(D1, D2) = hp(D1, D2) +
∑
q 6=p

hq(D1, D2)

where hp(D1, D2) can be computed via a Coleman integral of a suitable differ-
ential of the third kind and hq(D1, D2) are almost all zero and can be computed
using intersection theory.
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• For every g ∈ Q(C)×, we have h(D,div(g)) = 0. This implies that h defines a
symmetric bilinear pairing J(Q)× J(Q)→ Qp.

This construction was used by Balakrishnan, Besser and Müller to study inte-
gral points on certain hyperelliptic curves (see [1, Theorem 3.1] and [8, Section 2.3]),
but this approach does not generalize to rational points. To do that we need to use
Nekovář’s construction of p-adic heights, which uses more difficult tools, like p-adic
Hodge theory. For more details on that see Nekovář’s original article ([58]), [5] or [8,
Chapter 3].

Recall the following definition:

Definition 4.10. The Néron-Severi group of J is defined as

NS(J) := Pic(J)/Pic0(J)

Its rank as Z-module is denoted by ρ(J) and it is called the Picard number of J .

Then, using Nekovář’s p-adic heights, Balakrishnan and Dogra proved the follow-
ing theorem:

Theorem 4.11 (Balakrishnan-Dogra, [5, Lemma 3.2]). Suppose that

rank(J(Q)) < g + ρ(J)− 1

Then C(Qp)2 is finite. In particular, this is always true if rank(J(Q)) = g and ρ(J) > 1.

As an application of the Quadratic Chabauty method, we briefly talk about the
split Cartan modular curve Xs(13), also known as the “cursed curve”, whose model
is

−x3y + 2x2y2 − xy3 − x3z + x2yz + xy2z − 2xyz2 + 2y2z2 + xz3 − 3yz3 = 0

This is a curve of genus g = 3 for which rank(J(Q)) = 3, so we cannot apply the
classical Chabauty-Coleman method. However, in this case ρ(J) = 3 > 1, so we can
apply Theorem 4.11 and say that this curve has a finite number of rational points. In
2002, Galbraith found that

Xs(13)(Q) ⊇ {[0, 1, 0] , [0, 0, 1] , [−1, 0, 1] , [1, 0, 0] , [1, 1, 0] , [0, 3, 2] , [1, 0, 1]}

but he could not show that this was actually an equality. However, in 2019 this was
finally proved using Quadratic Chabauty.

Theorem 4.12 (Balakrishnan-Dogra-Müller-Tuitman-Vonk, [7] ). We have

#Xs(13)(Q) = 7

This theorem shows that Galbraith’s list was complete and completes the classifi-
cation of rational points on split Cartan curves by Bilu-Parent-Rebolledo.



Chapter 5

Applications to Diophantine
equations

5.1 A question about triangles

In this section we follow the article by Hirakawa and Matsumura [45]. We will start
by ask a question from Euclidean geometry, which will lead to a Diophantine problem
that we will be able to solve using the techniques from chapter 2 and a bit of help from
Magma.

Definition 5.1. A rational triangle (resp. integral triangle) is a triangle in which each
side has rational (resp. integral) length.

As an example, we recall that every rational right triangle has sides of length
k(1 + x2), k(1− x2) and 2kx, where k, x > 0 are positive rational numbers.

While it is clear that every rational triangle has rational perimeter, there are ra-
tional triangles with irrational area (the easiest example being an equilateral triangle
with side length 1, which has area

√
3/4). However, perimeter and area are important

quantities for a rational triangle, but they don’t suffice to uniquely characterize a ra-
tional triangle. As a matter of fact, there are a number of works describing infinitely
many pairs of rational triangles with the same perimeter and area (see for example
[17] and [78]).

We want to prove the following theorem.

Theorem 5.2. Up to similitude, there exists a unique pair of a rational right triangle and a
rational isosceles triangle which have the same perimeter and the same area. The unique pair
consists of the right triangle with sides of lengths (377, 135, 352) and the isosceles triangle
with sides of lengths (366, 366, 132).

Proof. We start by noticing that, since a rational right triangle has always rational area,
then the isosceles triangle must have rational area, too. But, if a rational isosceles trian-
gle has rational area, then it must have rational heights and therefore we can divide it

74
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into two copies of a rational right triangle. In other words, using the parametrization
of rational right triangles given above, we have have two cases:

where h, k, t, u are positive rational numbers. Since we are considering triangles
up to similitude, we can assume that h = 1. In the first case, by equating perimeters
and area we get the equationsk + kt = 1 + 2u+ u2

k2t(1− t2) = 2u(1− u2)

By setting w = u+ 1 we get the systemt =
w2 − 1

k

(w2 − k)w(2k − w2) = 2k(w − 1)(w − 2);

So it is clear that we only need to find the solutions with w > 1, k > 0 of the second
equation, that is

−w5 + 3kw3 − 2k2w = 2kw2 − 6kw + 4k

or, equivalently
2wk2 + (−3w3 + 2w2 − 6w + 4)k + w5 = 0

Since k is a rational number, the discriminant of the equation (as a polynomial in k)
must be the square of a rational number, i.e.

∆ = (−3w3 + 2w2 − 6w + 4)2 − 8w6 = r2
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for some rational r > 0. This defines an affine curve, whose smooth compactification
is an hyperelliptic curve and we will call it by C1.

It is easy to check that C1 has at least 10 rational points, namely

(w, r) = (0,±4), (1,±1), (2,±8), (12,±868)

and the two points at infinity. Notice that we are looking for solution with w > 1, so
(w, r) = (0,±4), (1,±1) do not give a pair of triangles. Moreover, if w = 2 or w = 12,
then u = 1 or u = 11, but this implies that the height of the isosceles triangle 1 − u2
is not positive. Moreover, we can use the following code in Magma to compute the
Mordell-Weil rank of the Jacobian J1 of C1:

> R<w>:=PolynomialRing(Rationals());

> C:=HyperellipticCurve((-3*w^3+2*w^2-6*w+4)^2-8*w^6);

> J:=Jacobian(C);

> RankBounds(J);

which gives the outputs 1 1, i.e. the lower and upper bound for the Mordell-Weil
rank of J1, proving that rank(J1(Q)) = 1. Now, it’s easy to check that C1 has good
reduction at p = 5 > 2g = 4 and that #C1(F5) = 8, then theorem 2.17 yields

#C1(Q) ≤ #C1(F5) + 2 · 2− 2 = 10

so, this proves that C1 does not have any other rational points other than the ten listed
above, and therefore we don not have any pair of triangles in this case.

In the second case, by the same reasoning as before, we get the systemk + kt = 2

k2t(1− t2) = 2u(1− u2)

By multiplying the second equation by k and substituting t = 2−k
k , we getk + kt = 2

(2− k)(2k − 2) = ku(1− u2)

As above, we only need to solve the second equation, which after expanding looks
like this

2k2 + (−u3 + u− 6)k + 4 = 0

and again, by looking at the discriminant, we must have

s2 = (u3 − u+ 6)2 − 32

for some rational number s. This equation defines an affine curve, whose smooth
compactification C2 is an hyperelliptic curve1. As before, C2 has at least 10 rational

1Actually, the two curves C1 and C2 are isomorphic to each other via the isomorphism induced by
the birational map given by (u, s) = (1− 2/w, 2r/w3).
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points, namely

(u, s) = (0,±2), (1,±2), (−1,±2),

(
5

6
,±217

216

)
and the two points at infinity. In this case, the points (u, s) = (0,±2), (1,±2), (−1,±2)

do not give any acceptable pair of triangles, while the other two points give the solu-
tions

(k, t, u) =

(
27

16
,

5

27
,
5

6

)
and

(
32

27
,
11

16
,
5

6

)
which correspond to the triangles in the statement, up to similitude. Finally, with the
same code as before we can check that rank(J2(Q)) = 1, and applying again theorem
2.17 with p = 5 gives us #C2(Q) ≤ 10, which means that C2 has exactly 10 rational
points, which are the ones given above. This concludes the proof.

5.2 A challenge from Serre

Serre, in [64, p. 67], studied Fermat quartics (i.e. Diophantine equations of the form
ax4 + by4 = cz4, with a, b, c ∈ Z) and in particular, the special case

Dc : x4 + y4 = cz4

where c ∈ Z is fourth-power-free. Simple considerations of modular arithmetic im-
ply that if there is a non trivial solution, then any odd prime p dividing c must be
congruent to 1 modulo 8 and c must satisfy

c ≡ 1, 2 (mod 16)

c 6≡ 3, 4 (mod 5)

c 6≡ 7, 8, 11 (mod 13)

c 6≡ 4, 5, 6, 9, 13, 22, 28 (mod 29)

Moreover, it can be shown that these conditions are necessary and sufficient to
ensure that the curve x4 + y4 = cz4 has points everywhere locally.

So this local considerations allow us to exclude all values of c ≤ 300 except

c = 1, 2, 17, 82, 97, 146, 226, 257

Furthermore, if local considerations fail, then we can use the following maps

φ1 : Dc −→ F1 : x2z2 + y4 = cz4

(x, y, z) 7−→ (x2, yz, z2)

φ2 : Dc −→ F2 : x4 + y4 = cx2z2

(x, y, z) 7−→ (x2, xy, z2)
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Notice that the curves F1,F2 are both genus 1 curves, therefore their Jacobians are
elliptic curves:

E1 : Y 2Z = X3 + 4cXZ2 E2 : Y 2Z = X3 − 4

c2
XZ2

If we can show that either E1(Q) or E2(Q) have rank 0, then it easy to find all points in
D(Q) by inverting the Abel-Jacobi map and φ1 or φ2. This allows to solve the cases
c = 1, 2, 146, 226, leaving only the cases c = 17, 82, 97, 257 (for c ≤ 300). Notice
that in the four remaining cases for c, there are "small" points on Dc, for example:
(2, 1, 1), (3, 1, 1), (3, 2, 1), (4, 1, 1), respectively.

Notice that Dc is always a curve of genus (4−1)(4−2)
2 = 3 and for c = 17, 82, 97, 257

the Jacobian ofDc has rank 6, so we cannot apply Chabauty’s theorem. Serre also tried
other approaches, like the Manin-Dem’yanenko method, but for c = 17, 82, 97, 257 this
is still not applicable.

We will start by proving the following result:

Theorem 5.3 (Flynn, Wetherell [40]). The only rational points on the projective curve

D17 : x4 + y4 = 17z4

are [±1,±2, 1] and [±2,±1, 1].

First of all, we note that the equation for D17 can be rewritten as(
17z2 + (5x2 − 4xy + 5y2)

)(
17z2 − (5x2 − 4xy + 5y2)

)
= −2(2x2 − 5xy + 2y2)2

The two factors on the LHS do not have any common factors on D17, so the double
cover of D17 defined by the equations

17z2 + (5x2 − 4xy + 5y2) = dR2

dR2
(
17z2 − (5x2 − 4xy + 5y2)

)
= −2(2x2 − 5xy + 2y2)2

(5.1)

is an unramified cover for every non-zero (squarefree) d ∈ Z. In other words, any
rational point on D17 can be lifted to a rational point on the cover for some value of
d. We claim that, up to automorphisms, every rational point corresponds on a rational
point on the cover with d = 34.

Let (X,Y, Z) ∈ D17(Q) so that we can choose X,Y, Z to be coprime integers. Then
X and Y cannot be both divisible by 17, since this would imply that 17 | Z; further-
more, if 17 | X , then Y 4 ≡ 0 (mod 17), which implies Y ≡ 0 (mod 17). So we can
assume that neither X nor Y is divisible by 17.

Moreover, X and Y cannot be both even, because Z would be even too. However,
they cannot be both odd, since modulo 4 we would have

2 ≡ X4 + Y 4 = 17Z4 ≡ Z4 ≡ 0, 1 (mod 4)

which is impossible. So, without loss of generality, X,Z are odd and Y is even, which
implies that 5X2 − 4XY + 5Y 2 is positive and congruent to 1 modulo 4. Therefore

17Z2 + (5X2 − 4XY + 5Y 2) ≡ 2 (mod 4)
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which implies that d ≡ 2 (mod 4).
Since X4 + Y 4 ≡ (X − 8Y )(X − 2Y )(X + 2Y )(X + 8Y ) ≡ 0 (mod 17), we can

always assume that

2X2 − 5XY + 2Y 2 = (2X − Y )(X − 2Y ) ≡ 0 (mod 17)

after considering −Y instead of Y , if needed. Hence, the product(
17Z2 + (5X2 − 4XY + 5Y 2)

)(
17Z2 − (5X2 − 4XY + 5Y 2)

)
must be divisible by 17, which implies that 17 divides at least one of the factors. How-
ever, it is easy to see that if one of the factors is divisible by 17, the other is divisible by
17 as well, proving that both factors are divisible by 17.

Lemma 5.4. At least one between

v17
(
17Z2 + (5X2 − 4XY + 5Y 2)

)
and v17

(
17Z2 − (5X2 − 4XY + 5Y 2)

)
is equal to 1. Equivalently, the 17-adic valuation of the greatest common divisor of(
17Z2 + (5X2 − 4XY + 5Y 2)

)
and

(
17Z2 − (5X2 − 4XY + 5Y 2)

)
is exactly 1.

Proof. Recall that

v17
(
17Z2 + (5X2 − 4XY + 5Y 2)

)
, v17

(
17Z2 − (5X2 − 4XY + 5Y 2)

)
≥ 1

and that, up to automorphisms, 2X2−5XY +2Y 2 = (2X−Y )(X−2Y ) ≡ 0 (mod 17).
However,X−2Y and 2X−Y cannot be both divisible by 17. Otherwise we would have
X ≡ 2Y ≡ 2(2X) = 4X (mod 17) which implies that X ≡ 0 (mod 17), contradicting
our previous assumptions. So, without loss of generality, we may assume that

v17(2X
2 − 5XY + 2Y 2) = v17(2X − Y ) = k ≥ 1

We consider three cases:
• If k = 1, then

2 = 2k = v17(−2(2X2 − 5XY + 2Y 2)2) =

= v17
(
17Z2 + (5X2 − 4XY + 5Y 2)

)
+ v17

(
17Z2 − (5X2 − 4XY + 5Y 2)

)
Therefore they must be both equal to 1.

• If k = 2, then

v17
(
17Z2 + (5X2 − 4XY + 5Y 2)

)
+ v17

(
17Z2 − (5X2 − 4XY + 5Y 2)

)
= 2k = 4

So it suffices to prove that they cannot be both equal to 2.
Suppose the contrary, so that 17Z2 + (5X2 − 4XY + 5Y 2) and
17Z2− (5X2− 4XY + 5Y 2) are both divisible by 172. Since v17(2X −Y ) = 2, we
have that Y ≡ 2X (mod 172) and thus

17Z2 + (5X2 − 4XY + 5Y 2) ≡ 17Z2 + 17X2 ≡ 0 (mod 172)

17Z2 − (5X2 − 4XY + 5Y 2) ≡ 17Z2 − 17X2 ≡ 0 (mod 172)



80 CHAPTER 5. APPLICATIONS TO DIOPHANTINE EQUATIONS

which means that Z2 +X2 ≡ 0

Z2 −X2 ≡ 0
(mod 17)

This implies that X2 ≡ Z2 ≡ 0 (mod 17) and therefore X ≡ Z ≡ 0 (mod 17).
Contradiction.

• If k ≥ 3, then Y ≡ 2X (mod 17k) and therefore

17Z4 = X4 + Y 4 ≡ 17X4 (mod 17k)

or, equivalently,Z4 ≡ X4 (mod 17k−1). This implies thatZ2 ≡ ±X2 (mod 17k−1),
because 17 - X . If Z2 ≡ X2 (mod 17k−1), then

17Z2 + (5X2 − 4XY + 5Y 2) ≡ 34X2 (mod 17k−1)

Hence, 17 | 17Z2 + (5X2 − 4XY + 5Y 2), but 172 - 17Z2 + (5X2 − 4XY + 5Y 2),
because otherwise

0 ≡ 17Z2 + (5X2 − 4XY + 5Y 2) ≡ 34X2 6≡ 0 (mod 172)

as k−1 ≥ 2 and 17 - X . Therefore v17
(
17Z2+(5X2−4XY +5Y 2)

)
= 1. Similarly,

if Z2 ≡ −X2 (mod 17k−1), then

17Z2 − (5X2 − 4XY + 5Y 2) ≡ −34X2 (mod 17k−1)

and therefore, by the same argument, v17
(
17Z2 − (5X2 − 4XY + 5Y 2)

)
= 1.

A consequence of this lemma is that

gcd
(
17Z2 + (5X2 − 4XY + 5Y 2), 17Z2 − (5X2 − 4XY + 5Y 2)

)
is divisible by 34, and it also divides d. Moreover, d must divide the resultant of the
polynomials

17z2 + (5x2 − 4xy + 5y2), 17z2 − (5x2 − 4xy + 5y2)

which is 28900 = 22 · 52 · 172.

Lemma 5.5. d is not divisible by 5.

Proof. Notice that 17Z2 +(5X2−4XY +5Y 2), 17Z2− (5X2−4XY +5Y 2) cannot both
be multiples of 5, since otherwise 17Z2 − 4XY ≡ 17Z2 + 4XY ≡ 0 (mod 5) which
implies that 34Z2 ≡ 8XY ≡ 0 (mod 5), contradicting our assumption that X,Y, Z are
coprime. So we have that at least one between

v5
(
17Z2 + (5X2 − 4XY + 5Y 2)

)
and v5

(
17Z2 − (5X2 − 4XY + 5Y 2)

)
is equal to 0.
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If v5
(
17Z2 + (5X2 − 4XY + 5Y 2)

)
= 0, then v5(dR2) = 0.This means that d is not

divisible by 5.
If v5

(
17Z2 − (5X2 − 4XY + 5Y 2)

)
= 0, then we have that

v5
(
− 2(2X2 − 5XY + 2Y 2)2

)
= 2v5(2X

2 − 5XY + 2Y 2)

is always even. However,

v5
(
− 2(2X2 − 5XY + 2Y 2)2

)
= v5

(
17Z2 + (5X2 − 4XY + 5Y 2)

)
+ v5

(
17Z2 − (5X2 − 4XY + 5Y 2)

)
= v5

(
17Z2 + (5X2 − 4XY + 5Y 2)

)
= v5(dR2) = v5(d) + 2v5(R)

So v5(d) must be even, but since d is square-free, v5(d) = 0, 1. Therefore v5(d) = 0.

Combining the previous results, we have that d is square-free, is divisible by 34,
but not by 5, and divides 22 · 52 · 172. This shows that, up to automorphism, every
rational point on D17 comes from a rational point on Equation 5.1 with d = 34.

So we can rewrite equation 5.1 as

17z2 + (5x2 − 4xy + 5y2) = 34R2

17z2 − (5x2 − 4xy + 5y2) = −68S2

2x2 − 5xy + 2y2 = 34RS

(5.2)

for some integers R,S. This can be further rearranged as

(x+ y)2 = 9(R2 + 2S2)− 28RS

(x− y)2 = R2 + 2S2 + 12RS

z2 = R2 − 2S2

(5.3)

The equations 5.3 define a curve of genus 5, which is a cover of the genus 2 curve

T 2S4 = (9R2 − 28RS + 18S2)(R2 + 12RS + 2S2)(R2 − 2S2)

In order to prove Theorem 5.3 we only need to show that the only rational points on
this curve are the ones with S = 0, because

(2x− y)(x− 2y) = 2x2 − 5xy + 2y2 = 34RS = 0

implies that the only points on D17(Q) are the ones in the statement of the theorem.
By dehomogenizing the equation with respect to S, we get the affine hyperelliptic

curve
C : y2 = (9x2 − 28x+ 18)(x2 + 12x+ 2)(x2 − 2)

of which we hope to find the rational points. In particular, we want to prove that
C(Q) = {∞+,∞−}. To do this we could try to apply Chabauty’s theorem, but we will
see that the Jacobian of C has Mordell-Weil rank 2.

Instead, we will first prove that the rational points on C correspond to K-rational
points on a suitable genus 1 curve with x-coordinate in Q and then apply the elliptic
Chabauty method.
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Proposition 5.6. Let C be the genus 2 curve defined over Q by

C : y2 = (9x2 − 28x+ 18)(x2 + 12x+ 2)(x2 − 2)

and let F be the genus 1 curve defined over K = Q(
√

2,
√

34) by

F : v2 = (9x2 − 28x+ 18)(x− (−6 +
√

34))(x−
√

2)

If x0 ∈ Q is the x-coordinate for some rational affine point (x0, y0) ∈ C(Q), then it is also the
x-coordinate for some K-rational affine point (x0, v0) ∈ F(K).

This Proposition is the central idea of the proof of theorem 5.3. If we can prove that
the set of K-rational points on F with x-coordinate in Q is finite and we are able to
explicitly compute this set, then we can use this information to compute the set C(Q).
But, before we do that, we need some intermediate results. We define α1, α2 to be the
roots of 9x2− 28x+ 18 and β1, β2 to be the roots of x2 + 12x+ 2. Then, using 2-descent
in Magma we can prove the following lemma.

Lemma 5.7. Let C the curve of genus 2 defined in Proposition 5.6 and let J be its Jacobian.
Then J(Q) ∼= Z2 × (Z/2Z)2, where the torsion subgroup is generated by the divisors classes

T1 = [(α1, 0)− (α2, 0)] and T2 = [(β1, 0)− (β2, 0)]

and the quotient group J(Q)/2J(Q) is generated by

D1 =
[
∞+ −∞−

]
and D2 =

[
(x1, y1) + (x2, y2)−∞+ −∞−

]
where x1, x2 are the roots of 5x2 − 18x+ 17 and yj =

3(−603xj+1187)
50 for j = 1, 2.

Proof of Proposition 5.6. Let F (x) = (9x2 − 28x + 18)(x − (−6 +
√

34))(x −
√

2) and
consider it as a K-rational function on C. The associated divisor of F is 2D, where

D = (α1, 0) + (α2, 0) + (−6 +
√

34, 0) + (
√

2, 0)− 2∞+ − 2∞−

Let DivD(C(K)) be the set of K-rational divisors on C whose support is disjoint from
that of D. We define the homomorphism (notice the similarities with equation 4.2)

qF : DivD(C(K)) −→ K×∑
nj(xj , yj) 7−→

∏
F (xj)

nj

and extend qF to all K-rational divisors by defining qF (∞+) = qF (∞−) = 1 and
qF ((γ, 0)) =

(
F (X)
X−γ

)
(γ) if F (γ) = 0.

Actually, it can be shown that qF induces a homomorphism (see equation 4.2)

q̃F : J(K)/2J(K)→ K×/(K×)2

This follows from Weil reciprocity and the fact that div(F ) is twice aK-rational divisor
(see [61] and [69] for details).
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It is easily computed that

q̃F (T1) = q̃F (T2) = q̃F (D1) = q̃F (D2) = 1 ∈ K×/(K×)2

which implies that for every P ∈ C(Q), qF (P ) ∈ (K×)2.
In particular, if P = (x0, y0) ∈ C(Q), then F (x0) 6= 0 and qF (P ) = F (x0) ∈ (K×)2.

From this we deduce that there exists v0 ∈ K× such that

v20 = (9x20 − 28x0 + 18)(x0 − (−6 +
√

34))(x0 −
√

2)

which concludes the proof.

We saw before that an unexpected point onD17(Q) would give an affineQ-rational
point on C and Proposition 5.6 proved that this implies the existence of a K-rational
point on F with x-coordinate in Q. So, we only need to prove that such points do not
exist, which is exactly the content of the next Proposition.

Proposition 5.8. Let F as above, then there is no affine point (x, v) ∈ F(K) with x ∈ Q.

Proof. The curve F has two K-rational points at infinity, namely ∞+ and ∞−. To
distinguish them, we will call ∞+ the point at which v/x2 is equal to 3. Since F ha
genus 1, we may regard it as an elliptic curve with∞+ as the group identity.

Computations in Magma show that

F(K) ∼= Z× (Z/2Z)2

and that the point P = (−6 +
√

34, 0) is a generator of infinite order.
Let (x0, v0) ∈ F(K), with x0 ∈ Q. In K there are two primes lying over p = 7,

p1 = (7, 3−
√

2) and p2 = (7, 3 +
√

2)

both primes are unramified, have the same residue field: k1 ∼= k2 ∼= F49 = F7(
√

34)

and F has good reduction at both primes. Let F1,F2 be the reductions of F at p1 and
p2 respectively.

It is easy to see that F1(k1) has 36 points, 9 of which have order 3, so that F1(k1) ∼=
(Z/6Z)2. Similarly,F2(k2) ∼= Z/26Z×Z/2Z. Moreover, the reduction P = (−6+

√
34, 0)

modulo p1 has order 3 in F1(k1), and its reduction modulo p2 has order 13 in F2(k2).
Since P is a generator of F(K), we can show that the image of the reduction map
F(K)→ F1(k1)×F2(k2) has order 4 · 3 · 13.

Now, let (x0, v0) ∈ F(K) with x0 ∈ Q. Then x0 reduces to the same value modulo
p1 and p2 (since this is equivalent to reduce modulo p = 7), and this value must be
in F7 ∪ {∞}. We look for points in F(K) with the same property, and we do this by
computing the reduction of T + nP in F1(k1) × F2(k2) for every T ∈ F(K) [2] and
for every 0 ≤ n ≤ 38. At the end, we find that the only times x(T + nP ) reduces to
the same value in F7 ∪ {∞} at both primes are when that value is ∞. Therefore the
denominator of x0 must be divisible by 7.
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Now, we consider only p1. With the usual change of variables s = 1
x , t = y

x3
, the

equation for F becomes

F : t2 = (18s2 − 28s+ 9)((−6 +
√

34)s− 1)(s
√

2− 1)

Our problem now is to find a point (s0, t0) ∈ F(K) with s0 ∈ Q× and 7 | s0. By looking
at the equation modulo p1 we see that t20 ≡ 9 (mod p1), so without loss of generality
we may assume that t0 ≡ 3 (mod p1).

Since ∞+ is written as (0, 3) in (s, t)-coordinates, we see that the points we are
looking for are exactly the ones which lie in the same residue class of ∞+. Alterna-
tively, we need to study the set

R∞+ = {(s, t) ∈ F(Kp1) : (s, t) ≡ (0, 3) (mod p1)}

Assume that (s, t) ∈ R∞+ . Then we can write s = 7is′, with s′ ∈ Z×p1 . Since p1

is unramified, we know that the s-coordinate of 7nm · (s, t) is congruent to 7i+nms′

modulo 7i+n+1. We will call s′ the leading term of the point (s, t).
We already know that P has order 3 modulo p1, which implies that 3 · P ∈ R∞+

is non trivial. We can compute s(3 · P ) ≡ 7 · (3 + 2
√

34) (mod 72). Then, since F(K)

has rank 1, we see that any K-rational point in R∞+ is either the identity or its leading
term is an integer multiple of 3+2

√
34 modulo 7. However, the leading term of (s0, t0)

is a non zero rational number, hence it cannot involve
√

34 and that’s a contradiction.
So we have just proved that there are no points (s0, t0) ∈ F(K) with the desired

properties, and therefore no (x0, v0) cannot exists. This implies that there is no affine
point (x, v) ∈ F(K) with x ∈ Q, completing the proof of this Proposition and the proof
of theorem 5.3.

5.3 Generalized Fermat equations

In this section, we want to discuss special instances of generalized Fermat equations,
i.e. equation of the form

Axr +Bys = Czt (5.4)

where A,B,C, x, y, z, r, s, t ∈ Z are all variables, with A,B,C 6= 0 and r, s, t > 0.
In 1995 Darmon and Granville ([30]) proved that for fixed, nonzero A,B,C and

fixed r, s, t satisfying
1

r
+

1

s
+

1

t
< 1

the primitive solutions x, y, z correspond to rational points on finitely many algebraic
curves, from which follows, by Faltings’ theorem, that there are only finitely many
primitive solutions. Unfortunately, their proof does not provide a method to produce
such curves.
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Another important result is due to Tijdeman ([73]), stating that the ABC-conjecture
implies that for A,B,C fixed and r, s, t such that 1/r+ 1/s+ 1/t < 1, then the number
of primitive solutions to Axr +Bys = Czt is still finite.

However, the case that has received the most attention is the case A = B = C = 1.
There is an infinite family of exponents (r, s, t) such that the equation 5.4 has primitive
solutions, namely 23 + 1s = 32. However, apart from {r, s, t} = {2, 3, n} there are only
4 other known cases in which there are non zero primitive solutions:

{r, s, t} = {2, 3, 7} , {2, 3, 8} , {2, 3, 9} , {2, 4, 5}

In this section we will prove the following theorems (following the article [20]).

Theorem 5.9. If x, y, z ∈ Z satisfy x2 + y4 = z5 and gcd(x, y, z) = 1, then xyz = 0

Theorem 5.10. The only integral, pairwise coprime solutions of x2 − y4 = z5 are

(x, y, z) = (0,±1,−1), (±1, 0, 1), (±1,±1, 0), (±7,±3,−2), (±122,±11, 3)

Theorem 5.11. The only integral, pairwise coprime solutions of x8 + y3 = z2 are

(x, y, z) = (0, 1,±1), (±1, 0,±1), (±1,−1, 0), (±1, 2,±3), (±43, 96222,±30042907)

Before starting we fix some notations. For a number field K, OK will denote its
ring of integers. For a finite prime p of K, we will denote by Kp the p-adic completion
of K and by Op the ring of local integers in Kp. We will take vp : Kp → Z as the
normalized valuation on Kp. Moreover, let S be a finite set of primes of K and let
L/K be a finite extension. If q is a prime of L, then we write q | S if q lies over some
prime in S. Otherwise, we write q - S. We define

L(S,m) :=
{
a ∈ L× : vq(a) ≡ 0 (mod m), for all primes q - S

}
/(L×)m

and
OL,S = {a ∈ L : vq(a) ≥ 0, ∀q - S}

Finally, a tuple (x1, . . . , xn) ∈ (OL)n is called S-primitive if min {vq(xi) : i = 1, . . . , n} = 0

for all q - S. If S = ∅, then an S-primitive tuple is also called primitive.
We will call cover any non constant map between curves ϕ : D → C. In the fol-

lowing we will allow covers to be ramified. We will say that D is a cover of C and
we will write D/C if the map ϕ is obvious. We say that two covers ϕ1 : D1 → C

and ϕ2 : D2 → C, defined over K, are isomorphic if there exists an isomorphism
ψ : D1 → D2 over K such that ϕ1 = ϕ2 ◦ ψ.

Let AutK(C) be the group of automorphisms of C over K. We will write

Aut(C) = AutK(C)

for an algebraic closure K of the field of definition of C. In a similar fashion, we write
AutK(D/C) and Aut(D/C) for the group of automorphisms of the cover D/C. We
say that a cover D/C is Galois if #Aut(C) = deg(D/C).

We start by proving a lemma about the parametrization of the solutions of certain
Diophantine equations over number fields.
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Lemma 5.12. Let K be a number field, F,G ∈ OK [X,Y ] be coprime homogeneous polyno-
mials, m ∈ Z≥0 and D ∈ OK . Suppose that S is a set of primes such that

res(F (X,Y ), G(X,Y )), D ∈ O×K,S

If (x, y, z) ∈ K3 is S-primitive and satisfies

F (x, y)G(x, y) = Dzm

then there are z1, z2 ∈ K, with (z1, z2) S-primitive and δ1, δ2 ∈ K(S,m) with δ1δ2
D ∈ (K×)m

and such that
F (x, y) = δ1z

m
1 G(x, y) = δ2z

m
2

Proof. Suppose that p /∈ S is a prime of K, then

mvp(z) = vp

(
F (x, y)G(x, y)

D

)
≥ min(vp(x), vp(y))

since F,G have integral coefficients and D ∈ O×p . This implies that (x, y) is also S-
primitive and therefore, (x, y) 6≡ (0, 0) (mod p). By hypothesis,

vp(res(F (X,Y ), G(X,Y ))) = 0

which means that either vp(F (x, y)) = 0 or vp(G(x, y)) = 0. Finally, we have

mvp(z) = vp(Dz
m) = vp(F (x, y)G(x, y)) = vp(F (x, y)) + vp(G(x, y))

This means that for every p - S, vp(F (x, y)), vp(G(x, y)) ∈ mZ, proving the existence
of z1, z2 as in the statement. The existence and the properties of δ1, δ2 follow trivially
from this.

Let F (X,Y ) ∈ OK [X,Y ] be an homogeneous polynomial of degree n and let D ∈
OK . We define S to be a (finite) set of primes such that disc(F (X,Y )), D ∈ O×K,S . Up
to a change of variables, we can assume that F is monic in X . Let L be a splitting field
for F (X, 1) over K, so we have α1, . . . , αn ∈ L such that

F (X,Y ) =
n∏
i=1

(X − αiY )

Suppose that x, y, z is a S-primitive solution in K of the equation F (X,Y ) = DZm. By
applying Lemma 5.12 repeatedly overL, we get δ1, . . . , δn ∈ L(S,m) with δ1·...·δn

D ∈ (K×)m

and an S-primitive n-uple (z1, . . . , zn) ∈ Ln such that

x− αiy = δiz
m
i z = z1 · . . . · zn m

√
δ1 · . . . · δn

D

If we eliminate x and y from these equation, we see that (z1, . . . , zn) is a zero of every
polynomial in the ideal generated by the set

Iδ :=
{

(αi − αj)(δkZmk − δlZml )− (αk − αl)(δiZmi − δjZmj ) : 1 ≤ i, j, k, l ≤ n
}
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Furthermore, the image of (z1, . . . , zn) under the map

Φδ : (Z1, . . . , Zn) 7→
αjδiZ

m
i − αiδjZmj

δiZmi − δjZmj
is K-rational, because it is equal to x/y (notice that by definition of Iδ, the image of Φδ

does not depend on the choice of i and j).
Bruin, in [20], proved that the model Cδ described by Iδ is a smooth projective

model of a curve over L in Pn−1. This construction is at the heart of the proof of the
following theorem.

Theorem 5.13. Let K, F (x, y) = Dzm and S as above. Then there is a finite number of
Galois-covers ΦP : CP → P1 over K with Gal(CP /P1) ∼= (Z/mZ)n−1, where CP has genus

1 +mn−2
(
n(m− 1)

2
−m

)
and has good reduction outside S ∪ {p : p | m}, such that⋃
CP

ΦP (CP (K)) =
{

[x, y] ∈ P1(K) : ∃z ∈ K s.t. F (x, y) = Dzm and (x, y, z) is S-primitive
}

Moreover, the CP are all birational equivalent over K and the ΦP are ramified exactly above
the points [x, y] for which F (x, y) = 0.

Proof. See [20, pages 31-32].

In order to prove Theorem 5.9 and 5.10, we first find a parametrization of the prim-
itive integer solutions of the equations x2 ± u2 = z5, then we write y2 = u = U(s, t) so
that we can apply Theorem 5.13.

Lemma 5.14. Let x, u, z ∈ Z be coprime integers satisfying x2 + u2 = z5. Then there are
coprime s, t ∈ Z, such that 

x = t(t4 − 10t2s2 + 5s4)

u = s(s4 − 10t2s2 + 5t4)

z = s2 + t2

Proof. Working in Q(i), we have x2 + u2 = (x+ iu)(x− iu). Since x, u are coprime, we
have gcd(x + iu, x − iu) | 2, and therefore x + iu = δ(t + is)5, for some δ ∈ Z [i] fifth
power free which divides 2 and such that its norm is a fifth power. Since 2 = −i(1+i)2,
δ must be a unit; but every unit in Z [i] is a fifth power, so we can assume δ = 1. The
formulas above follow easily from expanding (t+ is)5.

Lemma 5.15. Let x, u, z ∈ Z be coprime integers satisfying x2 − u2 = z5. Then there are
s, t ∈ Z coprime, such that

x = ±s
5 + t5

2

u =
s5 − t5

2

z = ±st

or


x = ±(s5 + 8t5)

u = s5 − 8t5

z = ±2st
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Proof. By the usual properties of the gcd, we have:

d = gcd(x+ u, x− u) = gcd(x+ u, 2x)

Suppose that d′ = gcd(x, d) 6= 1, then d′ | x and d′ | d = gcd(x + u, 2x) and therefore
d′ | x + u, which implies d′ | u, contradicting gcd(x, u) = 1. So d′ = 1 and therefore
d = gcd(x+ u, 2x) = gcd(x+ u, 2) = 1, 2.

If d = 1, then x+ u and x− u are coprime and therefore x+ u = s5, x− u = t5 for
some s, t ∈ Z, leading to the first parametrization.

If d = 2, then there are α, β ∈ Z coprime such that x − u = 2α and x + u = 2β,
meaning that 4αβ = z5 and therefore, z = 2γ for some γ ∈ Z. So αβ = 8γ5 but, since
α and β are coprime, we must haveα = s5

β = 8t5
or

α = 8s5

β = t5

which lead to equivalent parametrizations, up to exchanging s and t (we have chosen
the former to find the formula above).

So, the previous lemmas imply that any primitive solution to x2 ± y4 = z5 can be
obtained from the primitive solutions of one of the equations

y2 = s(s4 − 10t2s2 + 5t4) y2 =
s5 − t5

2
y2 = s5 − 8t5

Using Theorem 5.13, the solutions for the equations above are parametrized by ratio-
nal points on genus 5 curves. However, those curves cover elliptic curves, so it suffices
to find points on those elliptic curves over suitable number fields (see [20, Section 3.3]
for details).

In the next three lemmas we will refer to the following table:

j Ej φj(X,Y ) L

1 Y 2 = X4 − 10X2 + 5 X Q
2 5Y 2 = X4 − 10X2 + 5 X Q
3 (−2β3 + 8β − 6)Y 2 = β3X3 + (4β2 − 5)X2 + (β3 − 4β)X − 1 1/X Q(β)

4 (2β3 − 8β − 6)Y 2 = β3X3 + (4β2 − 5)X2 + (β3 − 4β)X − 1 1/X Q(β)

5 5Y 2 = X4 +X3 +X2 +X + 1 X Q
6 2(−ζ2 + ζ − 1)Y 2 = X4 − ζX3 + ζ2X2 − ζ3X + ζ4 X Q(ζ)

7 2(ζ2 − ζ + 1)Y 2 = X4 − ζX3 + ζ2X2 − ζ3X + ζ4 X Q(ζ)

8 Y 2 = X4 + α3X3 + 2αX2 + 2α4X + 4α2 X Q(α)

9 (α3 + α2 − 1)Y 2 = X4 + α3X3 + 2αX2 + 2α4X + 4α2 X Q(α)

where
β4 − 5β2 + 5 = 0 ζ4 − ζ3 + ζ2 − ζ + 1 = 0 α5 − 2 = 0

We will only prove Lemma 5.17, as the proofs of the other lemmas are similar.
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Lemma 5.16. The {2, 5}-primitive solutions to y2 = s(s4−10t2s2 +5t4) have s/t = φj(P ),
where P ∈ Ej(L) and j = 1, 2, 3, 4.

Lemma 5.17. The {2, 5}-primitive solutions to 2y2 = s5 − t5 have s/t = φj(P ), where
P ∈ Ej(L) and j = 5, 6, 7.

Proof. Let ζ as above, then

s5 − t5 = (s− t)(s+ ζt)(s− ζ2t)(s+ ζ3t)(s− ζ4t)

By applying Lemma 5.12 over L = Q(ζ), we see that if there is a {2, 5}-primitive
solutions, then there exists δ ∈ L(S, 2) and rational numbers a0, a1, a2, a3, a4 such that:

s− t = 2NQ(ζ)/Q(δ)a24

s+ ζt = δ(a0 + a1ζ + a2ζ
2 + a3ζ

3)2

It follows that (s
t

)4
+
(s
t

)3
+
(s
t

)2
+
(s
t

)
+ 1 =

1

NQ(ζ)/Q(δ)

(
y

a4t2

)2

So, we let X = s/t and we get the equation

ED : DY 2 = X4 +X3 +X2 +X + 1

of which we want to find theQ-rational points. However, it’s not too difficult to prove
that ED(Q) 6= ∅ if and only if D = 1 or 5. For D = 5 we get the curve E5.

For D = 1, we find an elliptic curve of rank 1, so we need to study the case where
the norm NQ(ζ)/Q(δ) is a square in more detail. We can take δ a multiplicative com-
bination of

{
2, ζ3 + ζ − 1, ζ

}
. Local arguments at 2 and 5 show that, without loss of

generality, we can take δ = ±(ζ3 − 1). It follows that for some y1 ∈ Q(ζ) and x = s/t

we have
x5 − 1

x+ ζ
=

2NQ(ζ)/Q(δ)

δ
y21

leading to E6 and E7.

Lemma 5.18. The {2, 5}-primitive solutions to y2 = s5 − 8t5 have s/t = φj(P ), where
P ∈ Ej(L) and j = 8, 9.

For Theorem 5.11, we could use the same arguments as above: We first find a
parametrization of the solutions of the equation u2−z2 = −y3, where x4 = u = U(s, t)

for some homogeneous polynomial U of degree 3 and then we find parametrizing
curves for x4 = U(s, t). However, Beukers, Edwards and Zagier in [13] and [34] com-
puted parametrizations of u4 + y3 = z2, allowing us to state the following lemma.
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Lemma 5.19. Let x, y, z ∈ Z be a primitive solution of x8 + y3 = z2. Then, there is a Ci from
the list below, with P ∈ Ci(Q) and t ∈ Q such that x = t3Y (P ).

C1 : Y 2 = (X2 − 3)(X4 + 18X2 + 9)

C2 : Y 2 = −(X2 − 3)(X4 + 18X2 + 9)

C3 : Y 2 = 6X(X4 + 12)

C4 : Y 2 = 6X(3X4 + 4)

C5 : Y 2 = X6 + 40X3 − 32

C6 : Y 2 = −X6 − 40X3 + 32

C7 : Y 2 = X6 + 6X5 − 15X4 + 20X3 + 15X2 + 30X − 17

C8 : Y 2 = −X6 − 6X5 + 15X4 − 20X3 − 15X2 − 30X + 17

C9 : Y 2 = X6 − 6X5 + 45X4 − 180X3 + 135X2 + 162X − 405

C10 : Y 2 = −X6 + 6X5 − 45X4 + 180X3 − 135X2 − 162X + 405

C11 : Y 2 = 2(X2 − 3)(X4 + 18X2 + 9)

C12 : Y 2 = −2(X2 − 3)(X4 + 18X2 + 9)

For some of the curves in the lemma above, it is easy to compute their rational
points.

Lemma 5.20. C1(Q) = {∞+,∞−}

Proof. The curve C1 : Y 2 = (X2 − 3)(X4 + 18X2 + 9) is a double cover of the elliptic
curve Y 2 = (X − 3)(X2 + 18X + 9) by X 7→ X2. This elliptic curve has only two
rational points∞ and (3, 0), which correspond to the points∞± and (±

√
3, 0) on C1,

but only the first two are in C1(Q).

Lemma 5.21. The curves C2, C6, C8, C10, C11 and C12 have no Q-rational points.

Proof. Each of the curves has no points over Q2 or Q3.

Lemma 5.22. C3(Q) = {∞, (0, 0)} and C4(Q) = {∞, (0, 0)}.

Proof. In both cases the curves have the form Y 2 = Q(X)R(X), where R(X) ∈ Z [X]

has degree 4, so we can use the same argument for both. In particular, we show only
the proof for C3, since the other is the same.

If X 6= 0,∞, then we must have X4 + 12 = δY 2
1 for some δ | 6 and Y1 ∈ Q. Clearly,

δ ≥ 0. Let v2 : Q → Z the usual 2-adic valuation and suppose that δ is even (i.e.
δ = 2, 6), then

1 + 2v2(Y ) = v2(δY
2) = v2(X

4 + 12) ≥ min(4v2(X), 2)

however, since v2(X) ∈ Z, we can never have 4v2(X) = 2, so the inequality is actu-
ally an equality and therefore v2(X4 + 12) is always even, contradicting the fact that
v2(δY

2) = 1 + 2v2(Y ) is always odd. So δ must be odd.
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Thus we are left with the two elliptic curves

X4 + 12 = Y 2
1 and X4 + 12 = 3Y 2

1

which have both rank 0 with only two rational points: the two points at infinity and
(X,Y1) = (0,±2), respectively.

We can use a similar argument for the curves C5, C7 and C9. However, the RHS of
those equations are irreducible over Q, so we need to work over a suitable extension

Lemma 5.23. The Q-rational points on C5, C7 and C9 correspond to L-rational points G on
the genus 1 covers φ = X : Ej → P1 with φ(G) ∈ P1(Q). As Ej and L we can choose:

Cj L Ej
C5 Q(ρ) E10 : Y 2 = X4 − 2ρX3 + 6ρ2X2 + 8X + 8ρ

C7 Q(γ) E11 : Y 2 = R1(X)

C9 Q(γ) E12 : Y 2 = R2(X)

where ρ3 − 2 = 0, γ12 + 6γ10 + 39γ8 + 64γ6 + 15γ4 − 6γ2 − 3 = 0, and R1, R2 ∈ Q(γ) [X]

have degree 4 (their coefficients are difficult to write, so for their explicit forms we refer to [19,
Lemma 4.7.2]).

Proof. Let Fi(X) be the RHS of the equation for the hyperelliptic model of the curve Ci
and let L be an extension of Q such that Fi = R ·Q with R,Q ∈ L [X]. Then, if (x, y) ∈
Ci(Q), there are δ, y1, y2 ∈ L such that R(x) = δy21 and Q(x) = δy22 . Without loss
of generality, we can take δ square-free S-unit, where S contains the primes dividing
2disc(F ) (so there are only finitely many possibilities for δ).

So every rational point on Ci corresponds to an x ∈ Q such that δR(x) and δQ(x)

are both squares, however it can be showed that, for all three curves, this happens
only if δ = 1.

Finally, since R and Q cannot have degree 1, one of them must have degree 3 or 4

and this is how we find the elliptic curves in the statement.

Now, thanks to Lemmas 5.17, 5.18, 5.19 and 5.23, we have reduced the problem
of proving theorems 5.9, 5.10 and 5.11, to finding the sets φ(Ej) ∩ P1(Q), for Ej as
before. Bruin, in [19, 20], accomplished to compute those intersections by using a
slight variation of Elliptic Chabauty (see [20, Section 4] for details). We summarize his
results in the following Proposition.

Proposition 5.24. For each of the curves Ej above we have

j φj(Ej(L)) ∩ P1(Q)

1 {∞}
2 {0}
3 {0}
4 {0}
5 {∞}
6 {1,−1}

j φj(Ej(L)) ∩ P1(Q)

7 {1, 1/3, 3}
8 {0,−2,∞}
9 {−1}

10 {0, 1,∞}
11 {1/2,∞}
12 {9/2,∞}
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Now we are ready to prove the main theorems.

Proof of Theorem 5.9. To find the primitive solutions of the equation x2 + y4 = z5, we
use Lemma 5.14 and 5.16, to reduce the problem to finding the points P ∈ Ej(L) with
φj(P ) ∈ P1(Q), for j = 1, 2, 3, 4, and then retrieve the values s and t from that. By
using Proposition 5.24, we see that we must have s/t = φj(P ) = 0,∞, so either s = 0

or t = 0, but this implies that x = 0 or y = 0.

Proof of Theorem 5.10. To find the primitive solutions of the equation x2 − y4 = z5, we
use Lemma 5.15, 5.17 and 5.18, to reduce the problem to finding the points P ∈ Ej(L)

with φj(P ) ∈ P1(Q), for j = 5, 6, 7, 8, 9, and then retrieve the values s and t from that.
By using Proposition 5.24, we get the list of possible values for s/t = φj(P ).

By Lemma 5.17, the values of s/t = ∞, 1,−1 lead to solutions with z = 0, y = 0

or x = 0, respectively. On the other hand, the values s/t = 3, 1/3 lead to the solutions
(x, y, z) = (±122,±11, 3).

If s/t = ∞ on E8, we have t = 0 and therefore z = 0 which was already covered.
If s/t = −2, then the only pairs of coprime integers s, t are (s, t) = (2,−1) and (−2, 1),
and in both cases s5 − 8t5 is not a perfect square. Finally, if s/t = −1 on E9, we get
s = 1, t = −1 which corresponds to the solutions (x, y, z) = (±7,±3,−2).

Proof of Theorem 5.11. Lemma 5.19 implies that the primitive solutions of x8 + y3 = z2

are parametrized by rational points on the curves Ci. We know the rational points (or
the lack of them) on Ci, for i = 1, 2, 3, 4, 6, 8, 10, 11, 12. On these curves the points with
X = 0,∞ correspond2 to solutions with xyz = 0, which are easy to find.

On C5 we still have the point with X = 1, namely (1,±3). This point corresponds
to the solution

(x, y, z) = (±3, 23 · 32 · 5,±33 · 11 · 23)

which, unfortunately, is not primitive.
On C7, the points∞± correspond to (±1, 2,±3) and the points (1/2,±15/8) corre-

spond to (±3 · 5, 2 · 32 · 29 · 37,±33 · 99431), which is not primitive.
On C9, the points∞± correspond to (±3,−2 ·32,±33) and the points (9/2,±387/8)

correspond to

(±43, 2 · 3 · 7 · 29 · 79,±109 · 275623) = (±43, 96222,±30042907)

which is the last of the primitive solutions we were looking for.

2We need to use the Beukers-Edwards-Zagier parametrizations cited before (which can be found in
[13, 34]).



Appendix A

The Mordell-Weil sieve

Let C/Q be a smooth projective curve of genus g ≥ 2 and let J be its Jacobian1. The
Mordell-Weil sieve is a method that allows to find information on C(Q) using informa-
tion about J(Q) and local information over finite fields.

It was first developed by Scharaschkin in his PhD thesis [62] and later it was
adapted and applied by many authors (see [21]). The Mordell-Weil sieve is partic-
ularly useful for proving that C(Q) is empty, but it can be modified to have other
applications as well (see for example [21, Section 4]).

Assume that the generators of J(Q) are known and suppose that we can define an
Abel-Jacobi map ι : C → J over Q (that is, we need to know a Q-rational divisor of
degree 1 on C). Then, for a prime p of good reduction for C, we have the following
commutative diagram:

C(Q) J(Q)

C(Fp) J(Fp)

redp

ι

redp

ιp

where redp is the reduction by p map. Notice that if P ∈ C(Q), then

(ιp ◦ redp)(P ) = (redp ◦ ι)(P ) ∈ ιp(C(Fp)) ∩ redp(J(Q))

So, if we can prove that ιp(C(Fp)) ∩ redp(J(Q)) = ∅, then C(Q) = ∅ as well.

We can improve this idea in two ways: by working with more than one prime of
good reduction at the same time and by using J(Q)/MJ(Q) instead of J(Q) (since the
former is a finite group, by Theorem 1.51).

Let S be a finite set of primes of good reduction for C and M ≥ 2 an integer. We
can extend the commutative diagram above as follows:

1In [71] this method is generalized to the case of a subvariety of an abelian variety, but the idea is the
same.
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C(Q) J(Q) J(Q)/MJ(Q)

∏
p∈S C(Fp)

∏
p∈S J(Fp)

∏
p∈S J(Fp)/MJ(Fp)

redS

ι

redS

πM

αS,M

ιp

where we call the composition along the bottom row as βS,M . Suppose that

CM ⊆ J(Q)/MJ(Q)

is a set of residue classes for which we want to show that no rational point P ∈ C(Q)

maps to CM under πM ◦ ι. Then, the same argument as before shows that it suffices to
show that

αS,M (CM ) ∩ βS,M

∏
p∈S
C(Fp)

 = ∅

In other words, we want to find S such that

A(S,CM ) =

c ∈ CM : αS,M (c) ∈ βS,M

∏
p∈S
C(Fp)


is empty. Some heuristics by Poonen [59] imply that if C(Q) = ∅, then we can always
find a suitable S.
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