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Preface

The purpose of this project is to analyze the interaction between horizontal and
vertical civil structures and the soil. First, it is important to define the “interaction
between soil and structure”: there is interaction when the response, under load, of
the soil is influenced by the response of the structure, according to the stiffness and
the geometrical characteristics of the latter.

Horizontal structures are analyzed in the first part of this report: the theoretical
introduction of Winkler’s solution has been exposed and Winkler’s constant was
calculated by studying the trend of stresses within the ground; the adopted method
allows the estimation of the stress distribution within the ground under an
embankment: this issue adequately represents the plain strain model that will be
used in the FEM solution; subsequently a calculation for a beam foundation has been
produced (the 2D plain strain is used: the beam is a section of an infinitely extended
element in the orthogonal direction to the plane of the section) using the previously
found Winkler’s constant applied to the differential equations for an elastic soil
(implementation of solutions on a spreadsheet). Then, a comparison between
analytical solutions of the beam on elastic foundation, and FEM models has been
made. With FEM, elastic and elastic-plastic solutions have been compared; particular
focus has been placed on the dependence between the solution and the choice of
parameters, the constitutive model of the soil and of the stresses within the ground:
the purpose is to understand whether the elastic model adopted in previous analysis
adequately describes the issue. Alternative analytical solution of Pasternak has been
illustrated and compared with the previous solutions of Winkler and FEM, then
applications of this theory has been shown, both in 2D and 3D models.

In the second part the focus shifts on the vertical structures: theoretical description
of the methods used in the study of the behavior of sheet piles under horizontal load
of the soil after excavation has been made. Simplified limit equilibrium method,
numerical solution based on the theory of Winkler’s elastic-plastic springs
(dependent pressure) and FEM methods are used. Comparison of the solutions
obtained by the different approaches has been made, distinguishing the case of an
excavation in a clay soil from that in a sandy soil. For both cases the behavior of the
structure has been observed, either when the embedment length widely ensures the
equilibrium, also in situations close to instability: in particular the contribution that
the “interface” element provides to the solution has been studied.

The effect of the water table on the soil-structure interaction was not taken into
account in this report.

Aims and workflow can be summarized as follows:

e Analytical methods: theoretical description, implementation, results
¢ Numerical methods: description of the model, modeling, calculation
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Comparison: systematic observation of the different results from different
solutions, verify the compatibility of the approaches

Approximation: determination of which approach better simulates the real
behavior of the soil-structure model

Analytical versus numerical analyses: acceptability, limits of both of them
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1 Horizontal structures

1.1 Winkler’s solution
1.1.1 Theoretical introduction

In order to transfer the upper load of a building or another layer into the soil, a
structure is required and the purpose of this structure is to support the super-
structure, avoiding the failure and having settlements inside certain acceptable
limits (Figure 1). The half-space of the soil could be nonhomogeneous, anisotropic in
its material, and the constitutive relations will be complex and unknown or even
undeterminable, so simplifications must be taken.

$$$TTTIIS8S

Figure 1: Winkler’s springs

The behavior of the soil is taken as linearly elastic or rigid plastic when
mathematical analyses are used (Figure 2). The Boussinesq problem is when a
linearly elastic material is used, that’s to say where all layers have the same elastic
properties.

Figure 2: Winkler’s model

A used calculation technique refers to Winkler model, and concentrates on the
behavior of the upper stiff layer, “the structure”, a “beam” usually; according to this
theory the soil has only a supporting role. The continuum representation of half
space can’t be used for this model. The foundation material which Winkler adopted
is now called Winkler foundation, and is a model substitution. In this model the
pressure, p, acting at a point is equal to the deflection of the ground at that point, w,
multiplied by a proportionality constant, ko, so that

p = kow 1)
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The constant, Ko, is the foundation stiffness, but other used names are “coefficient of
subgrade reaction” or “subgrade modulus”. Its dimensions are FL-3.

The first analysis deals with the behavior of the rigid beam,: the complete problem is
one of plane strain, in fact the focus could be on either a real beam of finite width b
or may a strip of unit width, that’s to say a typical element of a slab impressed with
line loads, moments, or displacements. The situation in either of these cases is two-
dimensional, so the basic subgrade modulus ko, to give an appropriate value for use
in analysis, must be multiplied by the beam (b) or strip (1) width:

or

k=ko*1 3)

and has dimensions FL-3 [1].
Anyway, the focus will be on the flexible beams on Winkler foundation.

1.1.2 Flexible beams on Winkler foundation

For a general description has been considered a beam of constant cross section and
with its axis in the x-direction; q is the load on the beam (a force per unit length), w
is the vertical displacement (in z-direction)(Figure 3).

PETeYY!

L.

The formulae describing the behavior of a beam are listed below. In order to respect
the condition of equilibrium in z-direction (the direction perpendicular to the axis of
the beam) the following condition must be satisfied (Figure 4):

Figure 3: Beam with uniform load

dT(x)
dx

= —q() @

where T is the shear force. It's been assumed that, when the force on a surface with
its normal in the positive x-direction is acting in the positive z-direction, then it is
conventionally positive.
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The second condition to be satisfied is the equation of equilibrium of moments

= T(x) (5)

where M is the bending moment. In this case a positive stress (tension) on the
positive side of the axis of the beam it’s equivalent of a positive bending moment.

L)L

M+AM

=

W

4
e Q+4Q

M
W

Figure 4: Equilibrium of a part of a beam

The combination of these two equations gives the first basic equation of the theory
of bending of moments

d’M(x)

e - 1 ©)

It's been applied the Bernoulli’s hypothesis for the plane cross sections of the beam
(it remains plane after deformation) and it’s been assumed that the rotation dw/dx
is small compared to one. In this way it's possible to obtain the second basic
equation of the theory of bending of moments which concerns the deformation of
the beam

EI = —M(x) (7)

where El is the flexural rigidity of the beam.

The combination of these two equations gives the basic equation of the classical
theory of bending of beams, a fourth order differential equation for the lateral
displacement
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d*w(x)

El
dx*

= q®) Q

A

=

Figure 5: Beam on elastic soil

The external load and the soil reaction are considered the lateral load in case of a
beam resting on an elastic foundation (Figure 5). As a first approximation it's
possible to assume that the soil reaction is equal to the lateral displacement
multiplied by the subgrade modulus k, and in this case the differential equation is

d*w(x)

El
dx*

=q() —kw(x) = ©

d'w() a9 _kw(x)

= (10)
dx* EI EIl
with typical substitution
4| k
= |— (11)
A 4EI
leads to the Winkler’s formula
d*w(x) . q(x)
_ (12)
o + 42*w(x) T

The form of the solution of the homogeneous equation (when q = 0) is

w(x) = e™(C; sin(Ax) + C, cos(Ax)) + e((=2x) (C3sin(Ax) + C4 cos(Ax))  (13)
[2] [3].
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1.1.3 Winkler's constant

The first target to be achieved is the Winkler's constant “k”. On a spreadsheet a
general situation of double layer of soil has been created, the first one is composed
of sand (coarse soil), and the second one of clay (fine soil). The characteristics of the
materials have been chosen so as to be absolutely generic. These are the values:

Table 1: Soil’s parameters

SAND - COARSE CLAY - FINE

T1 El c'l $'1 | v T2 E2 c'2 $2 | v2
(m] (kPa] [kPa] ('] (] (m] [kPa] [kPa] (] (]
5 37000 0 37 | 03 5 8000 0 25 | 03

The layers have a depth of 5 meters each, and above the first layer there is a
concrete beam foundation with general characteristics. Two concentrated forces act
on the beam (Figure 6), but for this topic they are considered as distributed force on
the surface: it is a strong approximation, because the two models are different. In the
next chapters the solution with two forces on the beam has been considered more
adequate for the analysis, hence this first schematization has been considered
acceptable, considering the stiffness of the beam that allows to estimate the
foundation as a “rigid” element. The dimension of the beam and the magnitude of the
force have been varied so as to have an interpretation of the behavior of the
Winkler's “K”.

L

Figure 6: Loaded beam

According to find the “k” for a particular combination of forces and dimensions, the
layers have been divided in substrates and in each one the stress has been calculated
using the formula adopted to estimate the trend of stress under an embankment:
this issue, as said in the preface, properly describes the “plain strain” model which is
implemented in the FEM programs that will be adopted in the following chapters
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(the beam is a section of an infinitely extended foundation in the orthogonal
direction to the plane of the section).

The formula (14) could be substituted by Navfac’s abacus (1982) [4], and it is
usually used for the calculation of stresses under embankments (Figure 7).

b |

Ty zZ
X |
I
Figure 7: Stress under an embankment [4]
q .
Ao, = - [a + sin a cos(a + 2B)] (14)
L1 l L , L2
i A
AR 7 K
T SAND

Ts CLAY .

Figure 8: The analyzed model

From the stress, the displacement for each substrate has been estimated and,
accordingly, the total displacement has been calculated. Finally the “k” has been
obtained from the ratio between the pressure on the beam and the displacement.
Below the parameters (Table 2) adopted in the spreadsheet, the ground settlement
“w” and “k” are listed: the latter is the value which will be used in the further
calculations.

10
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Table 2: Parameters for the calculation of "k"

w k H B L L/B A P1 P2 q
(m] [N/m’1] ] | fml | Om] | | Im? | RN] | [kND | [kN/m]
0'0:;096 182:'06 1 1 10 10 10 100 100 20

As illustrated in the table, the settlements that will be considered in the following
calculations are the ones obtained with L/B = 10 m, P1 = P2 = 100 kN and q = (P1 +
P2) /L =20 kN/m.

A graphic (Figure 9) has been created to illustrate the variation of the stress under
the foundation varying the depth and the load on the beam.

Ao,
Ao,
[kPa]
0 50 100 150 200 250 =——q=200kPa
0 ; : — ' ———q=100kPa
2 1] q=67kPa
41 ——q=50kPa
z/B
[-1 617 = q=40kPa
8 '_, g=20kPa
10
12

Figure 9: Stress distribution varying the pressure on the ground

1.1.4 Theoretical solution - Winkler

On a new spreadsheet, according to simulate the behavior of the beam on Winkler's
springs , have been used the values taken from the previous spreadsheet obtained
with a 10 meters beam with two forces of 100 kN each acting 1 m inside the two
edges.

According to simplify the structure the beam has been divided into two parts of 5
meters each, with boundary conditions that respect the former situation of forces
and constraints. The new beam rests on the Winkler's springs obtained from the
previous spreadsheet and has been divided into fifty parts, and for each part has
been calculated the settlement obtained with the formula from Winkler's theory of
the beam on elastic soil, and for the same part has been calculated from the first to
the fourth derivative of the previous formula. In this way is easy to calculate the
settlement, the shear force, bending moment and rotation in each part of the beam.
As said before, it’s been considered only half-beam, the left one: to find the solution
one need to adopte k, in this case it's been used the k obtained by the former

spreadsheet adopted for the stress calculation.

11
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P Ts=P+Td
WS=Wp
M=0 w's=w’'p T=0
T=0 Ms=Md w’'=0

3330 13333333

Figure 10: Border conditions for Winkler’s solution

Solution of the beam on the left-hand side of point of application of the force:

w1 (%) = e(Cy 4 sin(Ax) + C; ; cos(Ax)) + e(MY(C; ; sin(Ax) + C4 ; cos(Ax))  (15)

Solution of the beam on the right-hand side of point of application of the force:

w;(x) = eM(Cy 5 sin(Ax) + C3 5 cos(Ax)) + e(MX)(C3 , sin(Ax) + C4 5 cos(Ax))  (16)

Conditions for the eight constants.

On the right end of the beam (telescope):

L
T (wz x),x = E) =0 (7)
dw, (x) L
=_) = (18)
dx (X 2) 0

At the section of action of the force:

T (wl(x),x = %) =T (WZ(X),X = 1—%) + P1 (19)
M (W1 x),x = %) =M (WZ(X),X = 1—L;)> (20)
w; (X) (X = %) =w,(x) (X = %) (21)

12
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dx

On the left end of the beam:

dw, (x) ( L )

XZE

M(w,(x),x=0)=0

e

T(w;(x),x=0)=0

_L>
*=70

(22)

(23)

(24)

Have been created graphics to show the trend of these variables (bending moment,
shear force, displacement) along the beam, and the tables illustrate the main values
of the beam.

Table 3: Parameters of the beam

c1.1 c2.1 c3.1 ca_1 C1.2 €22 C3.2 ca_2
-0.00032 | 0.005325 | -0.00032 | 0.005975 | 0.002163 | 0.002179 | 0.003644 | 0.009114
H B L L1 L2 E J
[m] [m] [m] [m] [m] [kPa] [m*]
1 1 5 1 4 30000000 0.083333
EJ A A*L k P1 P2 Ax
[kNm’] [m™] (-] [kN/m’] [kN] [kN] | [m]
2500000 0.116214 0.581072 1824.064 100 100 0.1
Tmax Tmin Mmax Mmin Wmax Wmin
[kN] [kN] [kNm] [kNm] [w] [w]
20.4727 -79.5273 10.25935 -147.808 0.011299 0.010759
Displacement
-0.0107 T T )
-0.0108 0 2 A 6
-0.0109 //
w(x) 0011 /
[m] -0.0111 / = Displacement
-0.0112
-0.0113
-0.0114
X
[m]

Figure 11: Displacement (analytical)
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Bending Moment

200
150 /-

100

M(x) /

kN

[kNm] 50 / Bending Moment
0

(i) 2 4 6
-50
X
[m]
Figure 12: Bending moment (analytical)
Shear Force
40
20

T(x) -
/ e Shear Force
-60

X

[m]

Figure 13: Shear force (analytical)

1.1.5 Beam on 2D model

The results obtained with the analytical model, that's to say from mathematical
solution, are compared with the ones from 2D models done by GeoStudio FEM
program. The soil has been assumed as linear elastic material (chapter 1.3.1): the
parameters are the Young’s modulus E, the self-weight y and the Poisson’s ration v.
Also the cohesion and friction angle are taken into account as data in this model:
they aren’t used in the solution but the Contour program uses them as well as Mohr-
Coulomb failure criterion to better illustrate yield regions; in fact in this way the lack
of a yield value, that cannot be defined in a linear elastic model and could cause
unrealistic strains in the calculation, is filled, and the theoretical yield stresses may
be compared visually with shear stresses obtained by the calculation [5].

14
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Table 4: Parameters of the soils and of the beam

SAND CLAY
H % v Es H Y v Es
[m] [kN/m?] (-] [kPa] [m] [kN/m®] [-] [kPa]

5 0 0.3 37x10° 5 0 0.3 8x10°
- eaw ]
Eb L A J P1 P2 q
[kPa] [m] [m?] [m?] [kN] [kN] [kN/m]

30x10° 10 1 0.083333 100 100 20

In the following chapters different models of the same problem will be analyzed and
a comparison between them will be made.

1.1.5.1 First model - Beam 1

The first model is based on a beam of 10 meters resting on two layers of soil, 5
meters of depth each, with the same characteristics of the analytical model. The
length of the two layers is 30 meters (for a good approximation it's necessary to
have at least the same meters of the length of the beam on the right and on the left).
The boundary conditions are applied to the borders of the whole macro region, and
they fixed the x and y displacements on the base, and fixed the x displacement on the
sides. In the following graphics it's possible to check the differences between this
model and the analytical one.

A different approach to the discretization has been also considered: in fact first has

been made a model (“rough version”) in which the discretization is not accurate, so
the results are not acceptable. Then a “refined” model has been made: it uses a good
discretization, and gives acceptable results. The other two models (“1st and 2nd
discretization) show that the previous discretization doesn’t need other
improvements (that could cause an increase of the computational effort), and is
sufficient to describe the situation. The mesh is different according to the level of
discretization used, and for the same reason also the size of the elements has been
modified in the points where the accuracy of the solution could be increased. In the
following examples each level of discretization will be more widely explained.

1.1.5.1.1 Rough version

The mesh has 341 nodes and 300 elements and is composed by 4-noded
quadrilaterals and 3-noded triangles, thus the integration points (and the
integration orders) are four and three respectively; the approximate global element
size is 1 m. There is no increase of discretization at strategic points or along the
beam. This mesh has been automatically generated by the program. In this case it's

15
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easy to see how a too simple model gives unacceptable results: the aim is to have an
accurate distribution of displacement, bending moment and shear force on the
beam: the 4-noded quadrilaterals and 3-noded triangles (default element) can’t give
adequate information regarding the behavior of the beam element.

1
T
]
=T
Il
|2
i
0
14
4
¥
PR

i
2 .,\ ]\_,‘_ Lo _.._.-= —

Figure 16: Displacement beam 1 “Rough Version”
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Figure 17: Total stress YY beam 1 “Rough version”

The mesh is too large, too “simple”, and because of this the graphics of bending
moment, shear force and displacement aren’t precise.

W (emecmen)

7] Generate mesh dlong lne

P e r—
HementSize:  L0DOMSAm  #ofEdges: 8
Flenerste merfsce dements  Trcicess: [0

: Discretization beam 1 “Rough version”

Displacement 1 1

-0.00668

-0.0067
-0.00672
-0.00674 / \
-0.00676
-0.00678 / \\
-0.0068

-0.00682 / \

-0.00684
12 16 20 24 28
X(m)

Y-Displacement (m)

Figure 19: Displacement beam 1 “Rough version”
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Bending Moment 1 1
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Figure 20: Bending moment beam 1 “Rough version”
Shear Force 1 1
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Figure 21: Shear force beam 1 “Rough version”

The problems are more evident for the shear force because it is the third derivative
of the displacement, so the error is bigger.

1.1.5.1.2 Refined version

In this model, secondary nodes have been applied to the mesh elements, and their
integration order has been increased; the mesh has been generated along the line of
the beam, decreasing the size of the mesh elements under the beam and near the
most important points of the latter: the edges and the forces’ application points. This
level of discretization will also be used in the next models. The mesh contains 1434
nodes and 453 elements, and is composed of 8-noded quadrilaterals and 6-noded
triangles, thus the integration points (and the integration orders) are four (with nine
Gauss points the element would be too rigid) and three respectively; the
approximate global element size is 1 m.

18
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Figure 22: Mesh beam “Refined version”-A
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Figure 23: Mesh beam “Refined version”-B

Figure 25: Discretization of mesh A-B
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Figure 28: Total Stress YY Beam 1 “Refined version”

This better discretization gives better results; in fact the graphics are much more
precise.

Figure 29: Discretization Beam 1 “Refined version”

20



Soil - structure interaction: review of the fundamental theories

Y-Displacement (m)

Moment (kN-m)

Shear Force (kN)

Displacement 1 1

-0.00685
-0.0069+
-0.00695+
-0.0071
-0.00705+
-0.0071 f f f {
12 16 20 24 28
X(m)
Figure 30: Displacement beam 1 “Refined version”
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Figure 31: Bending moment beam 1 “Refined version”
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Figure 32: Shear force beam 1 “Refined version”
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1.1.5.1.3 1stdiscretization

It is quite evident that this discretization does not significantly affect the results of
the previous model; this means that the former model was rather accurate: such an
accurate discretization is excessively high. The mesh has 5479 nodes and 1778
elements and is composed by 8-noded quadrilaterals and 6-noded triangles, thus the
integration points (and the integration orders) are four and three respectively; the
approximate global element size is 0.5 m. The computational effort is high and
unnecessary.
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Figure 35: 1st discretization particular A-B
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Figure 37: Displacement beam 1 “1st discretization”
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Figure 38: Bending moment beam 1 “1st discretization”
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Figure 39: Shear force beam 1 “1st discretization”

1.1.5.1.4 2nd discretization

This discretization is a little less precise than the “refined” one, but nevertheless not
so different to have completely incompatible results. The mesh has 459 nodes and
149 elements and it is composed by 8-noded quadrilaterals and 6-noded triangles,
thus the integration points (and the integration orders) are four and three
respectively; the global element size is 2 m.

Figure 41: Mesh 2nd discretization A
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Figure 44: Displacement beam 1 “2nd discretization”
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Figure 45: Bending moment beam 1 “2nd discretization”
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Figure 46: Shear force beam 1 “2nd discretization”

1.1.5.1.5 Comparison of results from various discretizations

In these graphics it’s possible to check how the difference between the last three
models is not significant: on the contrary the first “rough” model is too simple. After
this comparison the “refined version” has been chosen as the most suitable to
describe the problem, and it is also cost effective for the computational calculation.

Regarding the displacement in the right hand side of the beam, it’s interesting to
notice the difference between “1st discretization”, “refined” and “2rd discretization”,
probably due to a numerical error.
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Figure 47: Displacement, different discretization

Bending Moment

e st discretization

e )nd discretization

Rough
Refined
-60
X
[m]
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Figure 49: Shear force, different discretization
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1.1.5.1.6 Comparison with analytical result

Considering the “refined version” as the correct solution for the 1st model a
comparison between the analytical solution and that obtained with GeoStudio has
been made.
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Figure 50: Displacement, Analytical-beam 1 GeoStudio
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Figure 51: Bending Moment, Analytical -beam 1 GeoStudio
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Figure 52: Shear force, Analytical -beam 1 GeoStudio

1.1.5.2 Second model - Beam 2

The second model represent half beam, that's to say 5 meters only, and as boundary
condition on the section of division it's been created a proper beam, a “link”, with a
stiffness of an order of magnitude more than that of the previous beam, in this way
the conditions of the complete beam are fulfilled. The soil below the beam is divided
into two layers of 5 meters each, the characteristics are the same of the previous
examples. The solution completely matches the previous one, thus it hasn’t been

represented.
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Figure 53: Mesh beam 2, rigid link 1, rigid link 2
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1.1.5.3 Third model - Beam 3N

The third model (where “N” is for “normal”) is completely different from the former
ones, because in this case hasn't been used the soil below the 10 m beam, but the
beam is free. In order to have the same conditions of the soil this beam has as
boundary conditions, in addition to the forces, Winkler's springs acting on each node
of the beam. The constant of the springs is the one obtained from the analytical
model: the influence length of the concentrated spring is 1 m.

In this model and in all the models with “springs”, the bending moment has opposite
values compared to those of the solution with no springs due to the sign convention:
consequently, in the comparison with the other solutions the diagram of the
aforementioned stress parameter has been inverted. These are the results.

Figure 54: Mesh beam 3N, trick
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Figure 55: Displacement beam 3N
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Figure 56: Bending moment beam 3N
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Figure 57: Shear force beam 3N

1.1.5.3.1 Comparison with analytical result

As for the previous chapter the following graphics compare the analytical solution
and Geostudio; in order to have a suitable comparison between the two solutions
the bending moment’s diagram obtained with GeoStudio will be inverted.
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Figure 58: Displacement, Analytical-beam 3N GeoStudio
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Figure 59: Bending moment, Analytical-beam 3N GeoStudio
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Figure 60: Shear force, Analytical-beam 3N GeoStudio
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1.1.5.4 Fourth model - Beam 3BD

The fourth model (where “BD” is for “better discretization”) is the same of the
previous one, but with a better discretization: in fact each spring is applied on an
area of 0.1 cm multiplied by 1 m, so the value of the k of each spring is equal to the
value of the former k divided by ten.

The solution is shown below.

Figure 61: Mesh beam 3BD
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Figure 62: Displacement beam 3BD
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Figure 63: Bending moment beam 3BD
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Figure 64: Shear force beam 3BD

1.1.5.4.1 Comparison with analytical result

Graphics with a comparison between the results obtained with the analytical
solution and with GeoStudio will be proposed. As for the former chapter the bending
moment’s diagram obtained with GeoStudio will be inverted. These solutions match
almost perfectly because both of them adopt the same “k”, and because the
distribution of the springs along the beam is thicker.
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Figure 65: Displacement, Analytical-beam 3BD GeoStudio
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Figure 66: Bending moment, Analytical-beam 3BD GeoStudio
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Figure 67: Shear force, Analytical-beam 3BD GeoStudio

35




Soil - structure interaction: review of the fundamental theories

1.1.5.5 Fifth model - Beam 4N

The fifth model (where “N” is for “normal”) represents the same situation of the
third, but only half beam with a link as boundary condition (as the second model)
has been created, the springs replace the soil.

The results are the following.
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Figure 68: Mesh beam 4N, rigid link 3
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Figure 69: Displacement beam 4N
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Figure 70: Bending moment beam 4N
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Figure 71: Shear force beam 4N

1.1.5.5.1 Comparison with analytical result

As for the former chapters, a comparison between the solution obtained with
analytical solution and the one obtained with GeoStudio will be proposed. As in the
previous graphics the GeoStudio’s bending moment’s diagram will be inverted.
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Figure 72: Displacement, Analytical-beam 4N GeoStudio
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Figure 73: Bending moment, Analytical-beam 4N GeoStudio
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Figure 74: Shear force, Analytical-beam 4N GeoStudio
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1.1.5.6 Sixth model - Beam 4BD

The sixth model has the same characteristics of the fifth one (half beam on springs),

but the discretization is the same as the one adopted to the third model (springs
every 0.1 m).

Figure 75: Mesh beam 4BD
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Figure 76: Displacement beam 4BD
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Figure 77: Moment 4BD
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Figure 78: Shear force beam 4BD

1.1.5.6.1 Comparison with analytical result

In this section a comparison between the solution obtained with GeoStudio and the
one obtained with the analytical solution will proposed. As in the previous graphics
the GeoStudio’s bending moment’s diagram will be inverted.
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Figure 80: Bending moment, Analytical-beam 4BD GeoStudio
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Figure 81: Shear force, Analytical-beam 4BD GeoStudio
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1.1.5.7 Comparison

In the following graphics it's possible to compare all the models with the one
obtained with the analytical solution. The results of the models that take into
account the “springs” match the analytical one because in these for the springs have
been used the same value of k used for the analytical solution, on the contrary the
models with “real” layers of soil use the parameters required for the linear-elastic
analysis and not “k”.

The only case which differs is “Beam 3N” regarding the displacement, probably
because of the low discretization; fact that is replied regarding the shear force with
“Beam 3N” and “Beam 4N”".
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Figure 82: Displacement, different models
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Figure 83: Bending moment, different models
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Figure 84: Shear force, different models

1.2 Pasternak's solution

1.2.1 Theoretical introduction

Pasternak created a model a little more complex than the Winkler’s one. As for the
Winkler’s model, it’s important to understand how the soil deformation influences
the behavior of the beam. One can notice that the stress at the interface and the soil-
beam interaction depend on the geometrical characteristics of the beam and on the
mechanical properties (elastic) of the soil.

The Pasternak solution takes into account both the soil below the beam and the soil
next to it (Figure 85): this is an obvious difference from Winkler’s model, in which
only the loaded region under the beam settles, while the adjacent surface remains
unchanged. The soil nearby the beam forms a “wave” due to the deformation and
because the material is a connected continuum. Pasternak created a model to get sag
which qualitatively describes this behavior.

Figure 85: Pasternak’s behavior of the soil

It is assumed that the reaction at each point of the ground under the beam is in
proportion to the displacement of the ground at that point (Winkler setting), but this
component of the reaction depends on the curvature of the beam at that point. The
constant of proportionality is the modulus of soil stiffness, the Winkler’s k.
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The curvature coefficient is used for the reaction coefficient (S) introduced by
Pasternak, and it’s interpreted as a traction force under the beam (slab) provided by
a fictitious membrane placed between the beam (slab) and the soil.

Pasternak model has two parameters (not only 4, but also @ and ).

Other assumptions are chosen without changing the scheme of the Winkler beam:
movement of the beam and displacement of the ground are the same only when the
soil is compressed and, only in special cases, when it is in traction. In the formulation
of the problem is not taken into account the possibility of a difference between the
displacement of the beam and the movement of the soil.

The description can be as follows: a membrane layer between the ground and the
beam (thick gray line in the Figure 86). This layer is a "diaphragm" which is placed
in traction by a constant force S that acts in the tangential direction to the
membrane surface. The vertical resultant force acts on the bottom of the beam (or
plate). It's possible to analyze the linear section of the diaphragm (black section in
the Figure 86):

Figure 86: Membrane behavior

The sum of projections on the tangential axis to the membrane results in:

2S sin¥ zs%

Y 2 (25)
—= = =
2S sin > pdL 1L a6
because dL = Ry where R is the local radius of curvature, one can write:
Sy S 1 d?w
:—:—:S—:—S— (26)
PTAL™R™°R dx?
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The inverse of the curvature radius is approximately equal to the second derivative
of the deflection line.

The relationship between the pressure force resulting from the curvature of the

beam and the force of the "membrane" is shown as follows:

d*w
pp = — W (27)

This extra load is a supplement to the Winkler’'s model and leads to the following
equations.

Starting from the equilibrium equations of the beam:

d*M(x)
dx?

+p(x) =0 (28)

where M is the bending moment, p is the load perpendicular to the axis of the beam:
the axis the of the beam is oriented to the x-direction.

We take into account the Winkler assumption, total load on the ground is p,
distributed load is q and soil reaction is r = -kw(x).

2
p(x) = q(x) —kw(x) + S d ;”(EX) (29)
2
M(x) + q(x) —kw(x) + S d (;/;/(gx) =0 (30)

If EI (flexural stiffness of the beam, E Young's modulus of the beam’s material, I
moment of inertia about the axis of the center) is independent of x, we can obtain a
simple equation:

d*w(x) d?*w(x)
dx* dx?

El + kw(x) = qx) = (31)
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d*w(x) S d*w(x) kwx) q(x)

= (32)
dx* El dx? + EI EIl
with the typical substitution:
4 k
= |— (33)
A 4E]
leads to the Pasternak’s formula:
d*w(x S d?w(x X

&) ) + 4Atw(x) = —qél) (34)

dx*  EI dx2

particular solution of the equation (with zero on the right) (which is easy to check
by substitution) is of the form:

w(x) = eP*(C; sin(ax) + C, cos(ax)) + e((‘B)X)(C3 sin(ax) + C, cos(ax))  (35)

2 =
AP Tm (36)
2
5
2 —
;- NSl (37)
2

S is a concentrated force ([kN]) that already takes into account the membrane
thickness and the width of the interval (for example, the width of the beam B).

If one want to check, for S = 0 is obtained the solution of the Winkler equation.
Complete solution is obtained by adding any specific solution.

If q(x) is (as usual) solid (or solid pieces), it is a particular solution and is, as before,
in Winkler, the following:
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q
= — 38
w K (38)

Note further that, in accordance with the intuitive interpretation, one may assume
that the solution of the "membrane" refers to the surface of the ground "outside" the
beam.

This is important because in the case of ground covered by an actual membrane
(geosynthetics) the equation outside the beam is as follows:

d?w(x)
0 =qx) — kw(x) + ST (39)

The solution of this equation is the special form:

k k
W(X) = Cle\/;x + Cze_\/;x (40)

Coefficient k is the coefficient of Winkler, calculated as it was shown before.

The “S” coefficient has a simple interpretation of the "strength of the membrane."
Unfortunately, this membrane is fictitious. Therefore, S is a highly speculative factor.

Even if the membrane was real (geostucture), unfortunately, the “S” factor is still
difficult to determine, because it can be interpreted as the strength of the membrane
and therefore it would be part of the solution task and not the output value.

The problem gets "non-linear”, and a method of trial and correction is required.

Starting from the theory of elastic half-space, the resultant of the horizontal stress
that occur within the soil when the area under the beam (plate) is compressed can
be calculated.

Figure 87: Pasternak’s model

S is the resultant of the layer with a certain thickness H.
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The Figure 87 above shows the intuitive cooperation of the land beyond the line of
the foundation.

According to the method of Vlasov and Leontiev, the following formula it has been
obtained (commonly, also different formulae are used, giving similar results):
_ E¢B
T 24 2v,

f g(z)? dz (41)
0

g is a function describing the change in the vertical displacement with the depth. One
can take g from the formula:

g(z) =e™ M2 (42)

where u can be reasonably taken as a constant.
E is Young's modulus, v is Poisson's ratio.

In practice, the condition to be fulfilled is:

L2 (43)
B M3

Assuming the lower limit for y one obtains:

S = (44)

Using geosynthetics (membrane, geogrid) under the foundation, the classical
solutions is not correct (geosynthetics have 10, max 20 years). Pasternak model
could be useful in that application but in this case S is a part of the solution:
nevertheless the value of S per unit of width (“B”) can be is easily found [6].

1.2.2 Theoretical solution - Pasternak

In the example the same beam used on the Winkler’s soil has been considered, but
on the left-hand side there is a new element, the fictitious geosynthetic. For this part
the formulae shown in the previous pages have been used. The boundary conditions
are different from the Winkler’s ones.
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Under consideration, the left half-beam and the soil with the fictitious geosynthetic:
in order to find the solution one need to calculate k, to adopt S and then calculate a
and S.

P Ts=P+Td
S M=0 WS=wp
—_ WS=wp w's=w’'p T=0
T=Ssen® Ms=Md w’=0

3330 13333333

Figure 88: Border conditions of Pasternak’s solution

Solution of the beam on the left-hand side of point of application of the force:

w;(x) = eBX(Cl_l sin(ax) + C; 4 cos(ax))

(45)
+ e((_ﬁ)x)(C3_1 sin(ax) + Cy 4 cos(ax))
Solution of the beam on the right-hand side of point of application of the force:
w,(x) = ef*(Cy , sin(ax) + C, , cos(ax)) 46)
+ e((‘B)X)(C3_2 sin(ax) + C4 cos(ax))
Solution on the left, for the "membrane":
K K
WM (X) = Cl_Me\/;X + Cz_Me_\/;X (47)
Conditions for the ten constants:
on the right end of the beam (telescope):
L
T (WZ x),x = E) =0 (48)
dw, (x) L
N (49)
dx (X 2) 0

At the section of action of the force:
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L L
= — | = = — 50
T (Wl(X),X 10) T (WZ(X),X 10) + P1 (50)
M (w60, x = 75) = M (wa(0,x = ) 51
W1X,X—10 = WZX,X—lo
L L
w1 () (X 10) w2 () (X 10) 2)
d L d L
w; (X) (X _ _) _ dw,(®) (X _ _) (53)
dx 10 dx 10
On the left end of the beam:
wy () (x = 0) = w; (x)(x = 0) )
dw, (x)
S x=0)=T(w;x),x=0) (55)
dx
M(w;(x),x=0)=0 (56)
The last condition is satisfied placing:
Cim=0 (57)

in this way, the curve tends to infinity on the left side.

In the following graphics it is possible to notice the comparison between the
solution obtained with Winkler and with Pasternak; three different outputs of the
Pasternak’s solution changing the value of S have been illustrated: the first is
obtained with the previous formula, the second is obtained placing S = 1 kN, the
third obtained placing S = 1 kN.

The results that obtained with GeoStudio are more similar to the ones obtained with
the Pasternak’s model (analytical) than the ones obtained with Winkler (analytical)
(Figure 89): in particular the Pasternak’s model simulates with good accuracy the
behavior of the soil nearby the beam, the bending moment and the shear force. With
S= 1 kN Pasternak’s model (analytical) matches the solution of Winkler (analytical),
that’s to say that the “membrane” doesn’t work (Figure 92).
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Table 5: Parameters for the calculation with Pasternak (analytical); the implemented values is for the

case “S calc”

ClM| C2 M Cl1 c2.1 C3.1 C4 1 Cl2 C2.2 C3 2 C4 2
0 0.00804 | -0.0013 | 0.00474 | -0.0009 | 0.00310 | 0.00136 | 0.00166 | 0.00305 | 0.0064

H B L L1 L2 E J EJ A A*L

[m] | [m] | [m] | [m] | [m] [kPa] [m’] [kNm?] [m™] []

1 1 5 1 4 30000000 0.083333 2500000 0.116214 0.581072
a B E1l v S S*SENO k P1 P2 | Ax
[m™] [m™] [kPa] | [-] [kN] [kN] [kN/m°] | [kN] | [kN] | [m]

0.113112 | 0.119236 | 37000 | 0.3 | 7115.385 | 28.95427 | 1824.064 | 100 | 100 | 0.1
Tmax Tmin Mmax Mmin Wmax Wmin
[kN] [kN] [kNm] [kNm] [m] [m]
43.59109 -56.4089 33.11338 -57.6556 0.008037 0.007729

Displacement
0 r T T T T T T T T T T 1
-1012345¢6 7 8 91011
-0.002
-0.004
w(x) -0.006 _\ / === Winkler_Analytical
[m] [ .
= Beam 1_GeoStudio
-0.008 —
Pasternak S calc
-0.01
/
-0.012
X
[m]

Figure 89: Displacement obtained with Winkler (analytical), GeoStudio (FEM), Pasternak (analytical)

M(x)
[kNm]
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e \\inkler_Analytical
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-1 + 2 3
-50

\

Pasternak S calc

45678%011

X

[m]

Beam 1_GeoStudio

Figure 90: Bending moment obtained with Winkler (analytical), GeoStudio (FEM), Pasternak (analytical)
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Shear Force

T(x) O
[kN] -20

— === \Ninkler_Analytical

= Beam 1_GeoStudio

Pasternak S calc

Figure 91: Shear force obtained with Winkler (analytical), GeoStudio (FEM), Pasternak (analytical)

Displacement
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V[Vr(nX]) -0.006 \| I/ e Beam 1_GeoStudio
-0.008 — Pasternak S calc
001 —! Pasternak S=1
‘7"—”'~
-0.012 Pasternak $=10000
-0.014
X

Figure 92: Displacement obtained with Winkler (analytical), GeoStudio (FEM), Pasternak (analytical)
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-50

X
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Figure 93: Bending moment obtained with Winkler (analytical), GeoStudio (FEM), Pasternak (analytical)
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Shear Force

Y,
20 '/ / Winkler_Analytical

o V e

T(x) T gt T T [ == Beam 1_GeoStudio
kN] -20 1—‘£—l 1
[kN] /4 Pasternak S calc

-40 7 1 4

60 v/ Pasternak S=1

V4
-80 Vv == == Pasternak S=10000
-100

Figure 94: Shear force obtained with Winkler (analytical), GeoStudio (FEM), Pasternak (analytical)

Displacement
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Figure 95: Displacement obtained with Winkler (analytical), GeoStudio (FEM), Pasternak (analytical)
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Figure 96: Bending moment obtained with Winkler (analytical), GeoStudio (FEM), Pasternak (analytical)
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Shear Force

Tx) O — 7 Pasternak S calc
IkN] 2010123456 7891011

Pasternak S=1
-40 4

-60 Pasternak S=10000

X

[m]

Figure 97: Shear obtained with Winkler (analytical), GeoStudio (FEM), Pasternak (analytical)

As it is easy to see, the solution with the Pasternak model (analytical) using the S
calculated with the equation (44) better simulates the behavior of the continuum
solution (GeoStudio, FEM) than the Winkler’s solution (analytical). Pasternak model
is useful to describe this kind of situation (long beam resting on elastic soil), but it is
also helpful to study some interesting application that will be shortly described.

1.2.2.1 Pasternak - Symmetrical solution

In this application has been considered a symmetrical situation of a soil, with a
distributed load applied on it to a length of 2 meters, and half a meter of free soil
(not loaded) beside the two edges of the loaded soil: this model could describe the
behavior of a loaded membrane (real as geosynthetics, or fictitious) resting on an
elastic soil. The equations that describe the behavior of the "membrane” and of the
ground around are the same used in chapter of the theoretical beam (in addiction
there is the distributed load), but with some simplifications caused by the
symmetry: in fact the equation of the membrane needs only two constants of
integration (and not two for half membrane and other two for the other half)), and
as for the free soil the equation needs one constant (no more two, that’s to say the
same situation of the theoretical beam) because in that way the displacement curve
tends to infinite on the far side of the piece of soil, so the other constant can be
placed equal to zero. This simplification provides a computational advantage.

On the left side of the loaded membrane the equation is

k k
wy (x) = Cl_Me\/;X + Cz_Me_J;X +% (58)
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and the equation of the unloaded part, left side, is

k k
wi(x) = C3_Me\f§X + C4_Me_‘f§X

On the right side of the loaded membrane the equation is

k k
WM(X) = Cl_Me\/;X + Cz_Me_\/gX +%

and the equation of the unloaded part, right side, is

k k
WR(X) = C4_Me\/;x + C3_Me SX
where k is the subgrade modulus and S is the membrane force.
Conditions for the four constants:

on the left end of the loaded area:

wX)(x=-1) = wy(x)(x = -1)

dwy, (x) (x=—1) = dwy (x) <
dx

On the right end of the loaded area:

wu)(x=1) = wpx)(x =1)

The last condition is satisfied placing:

C4-_M - O
[7].

(59)

(6
0)

(61)

(62)

(63)

(64)

(65)

In the following graphics the trend of the displacement in function of k, q and S will
be illustrated: for the values of “k” have been chosen the results of the previous

calculations by the Winkler’s method plus two arbitrary values of k = 5000 kN/m3

and k=10000 kN/m3.
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Table 6: Parameters for the solution; the implemented values are the chosen ones for one of the analyzed
cases

L k $'1 S q P1 P2 P1+P2 | Ax
[m] [kN/m’] [°] [kN] [kN/m] [kN] | [kN] [kN] [m]
2 1824.063816 37 | 1000 -100 100 | 100 200 0.1
C1M 2 M 3 M
0.0071 0.007102004 -0.0987

Displacement (S) - Winkler - q = 100

0-04
A\ pv s N

/ 2 Winkler

e K\N\/-S=1

w(x)

[m] e kW-5=10

e kW-5=100

e KW-5=1000

ot
Feny
D

e K\W-S=10000

ost
ey
N

X

[m]

Figure 98: Displacement of the membrane varying S, k assumes the value adopted in the Winkler’s
solution and indicated in Table 6, q = 100 kN/m
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Figure 99: Displacement of the membrane varying S, k1 = 5000 kN/m3, q = 100 kN/m
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Displacement (s) - k2 - q = 100

/

2 =—k=10000

—k-S=1

w(x)

[m]

e k-S$=10
e k-5=100

e -5=1000
e -$=10000

x[m]

"]

igure 100: Displacement of the membrane varying S, k1 =10000 kN/m3, q = 100 kN/

m

Displacement (k) - S =1000 - q = 100

e =1-5=1000
e k=10-5=1000
e k=100-5=1000
e =1000-S=1000
== k=10000-S=1000

Figure 101: Displacement of the membrane varying k, S = 1000 kN, q = 100 kN/m
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Figure 102: Displacement of the membrane varying k, S = 1000 kN, q = 100 kN/m
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Displacement (q) - Winkler - S= 1000
D e e
wix) 0.02 W
[m] 0.03 ——KkW-g=10
oul kW-q=100
0.05 .
[m]

Figure 103: Displacement of the membrane varying q, k assumes the value adopted in the Winkler’s
solution and indicated in Table 6,S = 1000 kN

Displacement (q) - Winkler - S= 1000
P e mm—
w(x) 2 e K\W -0 =100
[m] 3 KW-q=1000
ol kW-g=10000
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Figure 104: Displacement of the membrane varying q, k assumes the value adopted in the Winkler’s
solution and indicated in Table 6, S = 1000 kN

1.2.2.2 Pasternak - Reinforced soil

This example considers a part of ground of 3 m of length, with a distributed load
applied on it. The soil has two different subgrade moduli: in fact on the two edges of
this piece of ground, for 0.5 m on each side, has a ten times greater stiffness than the
soil in the middle. This distribution of stiffness tries to simulate the situation that is
possible to find when are used gravel columns in the soil, or piles, but always
materials with greater stiffness than the soil. The geometry and the loads are
symmetrical, so one can imagine a description similar to the one used in the
previous chapter, with similar simplifications and advantages. As in the previous
case, the model can show the behavior of a loaded membrane resting on an elastic
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soil (with two different stiffnesses). So the equations that describe this application
are the same used before, with the accuracy of using two different k. The
simplifications caused by the symmetry permit to consider only half of the area (1.5
m), only two constants of integration for the part with "normal soil" and only two for
the "reinforced soil" (so have been found the constants only for half of the
considered zone, because in the other part the constants are the same because of the
symmetry). On the left side of the loaded membrane resting on the normal soil the
equation is

k K
wyu(x) = Cl_Me\f§ *+ Cz_Me_‘EX +% (66)

and the equation of the reinforced part, left side, is

kf kf
wi(x) = C3_Me\E *+ C4_Me_\/; * +kﬂf (67)

On the right side of the loaded membrane resting on the normal soil the equation is

k K
wyu(x) = Cl_Me\f§ S CZ_Me_\EX +% (68)

and the equation of the reinforced part, right side, is

kf _ [kt 6
WR(X) = C4_Me\/gx + C3_Me \/zx +% t(a)

where k is the subgrade modulus for the normal soil, kf the subgrade modulus for
the reinforced soil and S is the membrane force.
Conditions for the four constants:

on the left end of the loaded area on the normal soil:

w()(x=-1) =wyx)(x=-1) (70)
dWL(X)( — 1= dwy (%) (x = —1) 71)
dx dx

On the right end of the loaded area on the normal soil:

dwy (%)
dx

(x=0)=0 (72)
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On the left end of the loaded area on the reinforced soil:

[7].

dwy, (%)

x=-15)=0

(73)

As in the previous application the following graphics illustrate the trend of the
displacement in function of k, q and S: the results of the previous calculations by the
Winkler’s method plus two arbitrary values of k (k = 5000 kN/m3, k = 10000 kN/m3)
have been used as “k” for the comparison.

Table 7: Parameters for the solution; the implemented values are the chosen ones for one of the analyzed

cases

— /

e k\W-5=2000

= kW-5=3000
kW-5=5000
kW-S=10000

L k kf $'1 S q P1 P2 P1+P2
[m] | [kN/m’] [kN/m2] | [ | [kN] | [kN/m] | [kN] | [kN] | [kN]
2 1824.064 18240.64 37 1000 -100 100 100 200
c1 c3 ca
0.009328 0.009328 -0.77104 -2.1E-06
Displacement (S) - Winkler - g = 100
'2_§!l ) Ilz—z e \Winkler

53 ——kW-5=100

9. e K\W-S=500

v[vrg(]) \\. '/// e kW-5=1000

Figure 105: Displacement of the membrane varying S, k assumes the value adopted in the Winkler’s

solution and indicated in Table 7, q = 100 kN/m
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Displacement (S) - k1-q =100
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Figure 106: Displacement of the membrane varying S, k1 = 5000 kN/m2, q = 100 kN/m
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igure 107: Displacement of the membrane varying S, k2 = 10000 kN/m2, q = 100 kN/m
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Figure 108: Displacement of the membrane varying k, S = 1000 kN, q = 100 kN/m
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Figure 109: Displacement of the membrane varying k, S = 1000 kN, q = 100 kN/m
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Figure 110: Displacement of the membrane varying k, S = 1000 kN, q = 100 kN/m
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Figure 111: Displacement of the membrane varying q, k assumes the value adopted in the Winkler’s
solution and indicated in Table 7, S = 1000 kN
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Displacement (q) - Winkler - S= 1000
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Figure 112: Displacement of the membrane varying q, k assumes the value adopted in the Winkler’s
solution and indicated in Table 7,S = 1000 kN

1.2.2.3 Pasternak - Finite difference

The third and probably most remarkable example deals with the situation analyzed
in the second example but extended in a 2D loaded area, with deformative effects
along the third axis (3D). First of all the equation of the membrane is similar to the
one used in the previous chapter, but in this case represents a surface in two
variables:

*w(x, 0*w(x,
_g (W) | 0Tw(xy)
0x? dy?

> +kw(xy) =qxy) (74)

where w is the displacement, k the subgrade modulus, q the load, S the membrane
force.

This equation can be easily solved with the finite difference method applied on a
spreadsheet. The 2D area the area has the shape of a square of 3 m from the side; in
each of the four corners there is a square of 0.5 m from the side that represents the
soil with greater stiffness (piles, gravel columns). The second derivative of a function
f(x) can be approximated in this way:

d?f(x)

dx?

(75)

AZf(x) = f(x + h) — 2f(x) + f(x — h) (76)

where 0 is the center, h the step, 4 the variation.
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The equation of the membrane has a second partial derivative, so the solution used
in the spreadsheet is a little more complicated:

1 1
— —_ — - — = 77
S(AXZ(L 2C+R) +5—5 (D 2C+U)>+kw q 77)

where Ax is placed equal to Ay (the discretization of the membrane along the two
axis), L, C, R, D, U (respectively left, central, right, down, up) are the values of w in
the cells nearby (and in) a selected cell, k is the subgrade modulus, S the membrane
force, w and q are considered constants in the selected cell. In the cells where the
stiffness is greater (in the corners) kf takes the place of k in the equation.

The equation of the membrane is valid in all the area, exept to the borders. Thus all
the cells among the border must be placed equal to the cells that have (respectively)

on the inner side of the left. This application has circular references, but you can set
spreadsheet to find an iterative solution [7].

The 3D-graphics show the behavior of the membrane varying q, k (the value of “k” is

the one obtained by the Winkler’s method plus an arbitrary value of k = 10000
kN/m3) and S.

Table 8: Parameters for the solution; the implemented values are the chosen ones for one of the analyzed

cases

q delta kw kf S cm cf p
[kN/m2] [m] [kN/m’] [kN/m’] | [kN/m] [-] [-] [m]
100 0.1 1824.064 18240.64 10000 0.249886 0.248865 0.0001
w(x,y) - q.= =107
0.5-1
0.?. %/ 1-1.5
1.5 - i 1.5-2
2 2 2-2.5
Z.g . m25-3
] m3-3.5
w(x,y) 3-3 1 3.5-4
ml 45 - m4-4.5
5 m4.5-5
>2 ] ®5-5.5
6.5 - m5.5-6
7 1 H6-6.5
7-2 ] H6.5-7
m7-7.5
m7.5-8

Figure 113: Displacement of the membrane for q = 10000 kN/m, k =1000 kN/m3, S =1000 kN/m
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Figure 114: Displacement of the membrane for q = 10000 kN/m, k = 1000 kN/m3, S =1000 kN/m
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Figure 115: Displacement of the membrane for q = 10000 kN/m, k assumes the value adopted in the
Winkler’s solution and indicated in Table 8,S = 1000 kN
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Figure 116: Displacement of the membrane for q = 100 kN/m, k assumes the value adopted in the
Winkler’s solution and indicated in Table 8, S = 1000 kN/m

m 0-0.005

1 0.005-0.01
5 0.01-0.015
m 0.015-0.02
m 0.02-0.025
= 0.025-0.03
m 0.03-0.035

m 0.035-0.04

Figure 117: Displacement of the membrane for q = 100 kN/m, , k assumes the value adopted in the
Winkler’s solution and indicated in Table 8, S = 10000 KN/m
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Figure 118: Displacement of the membrane for q = 100 kN/m, k = 1000 kN/m3, S = 10000 kN/m

1.3 Linear elastic versus elastic - plastic model

1.3.1 Theoretical introduction

In this chapter will be introduced a new FEM program in order to analyze the same
problem studied in the former chapters, but changing the constitutive model from
linear elastic into elastic-plastic: the program is Midas GTS, and the adopted
constitutive model is Mohr-Coulomb. The purpose is to highlight the differences that
occur between the two models, focusing on the behavior of the soil changing the
constitutive parameters and in particular understand if the choice of the elastic
model for the former analyses is suitable or not; that’s to say that in the following
chapter it has been verified until which value of the ratio between the load and the
strength of the material an elastic model could be replace an elastic-plastic model.

Linear elastic model is the simplest constitutive model, its coefficients are the elastic
modulus E and the Poisson’s ratio v. In 3D analysis the stress-strain relationship is
expressed by the equation (78).

1—v Y Y
o Y 1—v Y 0 c
(GX] v v 1—v SX
y 1-—2v y
{ o, } _ E v 0 € 78)
Ty (1+v)(1-2v) 1—2v Yxy
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T v Y
ZX 1 _ 2V ZX
0
Y

67



Soil - structure interaction: review of the fundamental theories

In 2D analyses Ty, = T:x = ¥yz = Y2x = 0, and especially for plain strain analyses &, = 0.

The parameter v represents the pure volumetric strain, and as it approaches 0.5 the
volumetric strain becomes close to 0 (incompressibility): in order to not have
numerical problems is programs usually the assumed value is v = 0.49.

In this model the strain is directly proportional to the stress (Figure 119); the slope
of linear curve is constant and depending on E and v.

'
k=
(4]
u..l -
= )
a
[ 75}
1
o
strain &

Figure 119: Stress-strain relationship of linear elastic model [8]

Generally the elastic model describes the behavior of the soil immediately after the
load is applied and for small deformation. This method based on the Hook’s Law is
highly used for simple and preliminary analysis. The stress-strain relationship of soil
is very complex: it depends on the material composition, porosity, stress history and
loading method and exhibits a nonlinear material characteristics: it is very difficult
to approximate soil as an elastic material. For this reason the key parameter, E, must
be clearly defined to adequately replace the real behavior of soil.

Linear elastic analysis usually refers to deformability of the ground whereas elastic-
plastic analysis refers either to deformability or instability of ground. Instability is
determined by the shear strength of a material, deformability by both shear strength
and elastic properties. If the load is greater of the shear strength capacity of the
ground, some areas could reach the failure limit (plastic state), confined yield zones,
surrounded by elastic zones; anyway some local failures do not necessarily cause a
global failure. An elastic-plastic model distinguishes between reversible (elastic) and
irreversible (plastic) deformation. The yield function defines the stress-condition at
which deformation may occur. If the yield function is not satisfied the deformations
will be fully elastic.
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In the stress-strain relationship of an elastic and perfectly plastic model the stress is
directly proportional to strain until the yield point after which the curve becomes
completely horizontal (Figure 120).

A
glastic | parfect plastic

T

- Yield point

0

i

"l

.

i F

1
-
strain &

Figure 120: Stress-strain relationship of elastic-plastic model [8]

The parameters that define the model are the elastic modulus E, the Poisson’s ratio
v, the cohesion ¢, the friction angle ¢, the dilatancy angle .

Usually the deformation caused by a load is composed by components: elastic and
plastic strain.

g=gf+eP (79)

Where ¢ is the total strain, g¢ is the elastic strain, gP is the plastic strain.

Some concepts are important to define the constitutive equations in plasticity: yield
criteria (set the starting point of plastic deformation), flow rule (define plastic
deformation), hardening rule (define deformation hardening)

The yield function (or loading function), F, which defines the limit of the elastic
response range of a material is defined:

F(o, £, k) = 0P(o,£P) — k(&) < 0 (80)

In plasticity theory the yield function can’t be a positive value. When yielding occurs,
the stress state is modified by accumulating plastic strains until the yield function is
reduced to zero. This process is known as the “Plastic Corrector” phase or “Return
Mapping”.

Where g, g, k, €P are the current stress, the equivalent or effective stress, hardening
factor, equivalent plastic strain respectively.
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The plastic deformation that uses the plastic rule shown in is expressed by the
following equations:

ag
deP=dA—==dAb (81)

Where dg/dg is the direction of plastic straining and dA the plastic multiplier that
defines the magnitude of plastic straining.

dg? =08

og

Plastic potential &

= Failure surface F'

= J

Figure 121: Geometric illustration of associated flow rule and singularity [8]

The function g is the “Plastic potential”, usually defined in terms of stress invariants.
If g is equal to F it is termed as “Associated flow rule” and the direction of the plastic
strain vector is orthogonal to the yield surface; if g and F are unequal it is referred as
“Non-associated flow rule”. The former can be expressed by the following equation:

J0F
deP=dA—=dAa (82)
= do

Special consideration is required if singular points (Figure 121) occur at a corner or
flat surface (impossibility to define the plastic flow path).

The equation (83) is the standard constitutive equation. Stress increments are
determined by the elastic part of the strain increments.

do=D°(de—deP) =D(de—dLra) (83)

Where De is the elastic constitutive matrix. The following consistency condition
needs to be satisfied so as the stresses are always maintained on the yield surface.
Therefore the equation (93) allows to calculate the infinitesimal stress increments.

70



Soil - structure interaction: review of the fundamental theories

(84)

D¢aaTDeT
do=Cde—dACa= (D¢ - £

a’Dea +h

Using the full Newton-Raphson iteration procedure and a consistent stiffness matrix
the convergence can be much faster due to the second-order convergence
characteristic of the aforementioned method.

do=Cde—diCa—ic Pdo=(r- K2R, (85)
g= s a 90 27 aTRea+h) -
Where
da\ "
R=(I+dADe == (86)
do
De=(I+dAD®a)"'D® (87)

In the elastic-plastic analyses carried out in this chapter (and also using GeoStudio
and Plaxis in chapter 2) the Mohr-Coulomb failure criterion (1900) has been
adopted; it is expressed by:

|T| = f(o) (88)

The limiting stress state, 75, in a plane is only related to the normal stress, g, in the
same plane. The failure envelope expressed by the equation (88) is experimentally
determined. The Mohr’s criterion affirms that a material fails when the largest
Mohr’s circle is tangent to the envelope. For this reason no effect on the failure
condition is due to the intermediate principal stress oi (01, 02, 03).

The straight line defined by equation (89) represents the simplest representation of
the Mohr’s failure envelope:

|t =c+otang (89)

Where c is the cohesion and ¢ the friction angle.
The Mohr-Coulomb failure criterion is usually described by the equation (98).

There are three limitations in using the Mohr-Coulomb criterion. Firstly, when the
failure envelope is reached by the largest Mohr’s circle the intermediate principal
stress ai (01, 02, 03) doesn’t influence the failure stress: this is inconsistent with
experimental results. Secondly, the meridians and failure envelop of the Mohr’s
circle are straight lines and independent of strength parameter (¢) and hydraulic
(or confining) pressure (Figure 122)Figure 122:: the precision of the criterion is
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good for limited hydraulic pressure, but it decreases by increasing the hydraulic
pressure area. Numerical errors may occur due to the discontinuity of the yield
surface (that is not smooth) at the corner. Lastly, the Mohr-Coulomb cannot describe
the compaction of soil.

7\

Mohr-Coulomb

( ¢ - constant )

/ ~w Reg| soll
‘ —

P

Figure 122: Schematization of yield function [9].

Despite this limitations, adopting this criterion within practical hydraulic pressure
limits leads to relatively good results; it is a widely used criterion to model granular
materials (such as soil and concrete) due to its precision and simplicity and has been
successfully used in geotechnical engineering; assuming this model the solutions in
nonlinear analyses are reliable.

The Mohr-Coulomb equation can also be expressed in terms of the principle stresses
(01=02503), in terms of stress invariants J1, ]2 and 8o, or in terms of the variables &, p
and 6.

..02
Figure 123: The Mohr-Coulomb yield surface in principal stress space (c=0) [10]
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In the following chapter the applications of this model will be carried out [9], [8],
[10].

1.3.2 Overview of the results

In this chapter have been analyzed the behavior of the same model studied in
chapter 0 but adopting an elastic plastic constitutive model. The aim is to verify if
the previous model is adequate to describe the system of loaded beam resting on the
soil for the given set of conditions. The used program is Midas GTS.

Table 9: Parameters of the soils and of the beam (Mohr-Coulomb constitutive model)

SAND
H Y [0) (o v P Es Ko
[m] [kN/m’] [°] [kPa] [-] [°] [kPa] [-]
5 18 37 0 0.3 5 37x10° 0.5
CLAY
H " [0) C v Y Es Ko
[m] [kN/m’] [°] [kPa] [-] [°] [kPa] [-]

5 20 25 0 0.3 0 9x10° 0.5
e ]
Eb L A J P1 P2 q
[kPa] [m] [m?] [m*] [kN] [kN] [kN/m]

30x10° 10 1 0.083333 100 100 20

The mesh is composed by 4-noded quadrilateral elements (four integration points)
and 3-noded triangular elements (one integration point), that's to say “linear
elements” with “linear interpolation”. The first type of elements leads to accurate
displacement and stress result, whereas the second type provides poor accuracy of
stresses, the displacements are good: the geometry and the system beam-loads is
not so detailed or complex, so these elements are suitable to the problem,
furthermore the use of “quadratic elements” could lead to a rigid behavior not
consistent with the real soil.

The used analyses is “construction stage”, that’s to say that first the “in situ analysis”
has been performed by using the “Ko method” which allows to determine the
stresses within the soil caused by the self-weight of ground before the “activation” of
loads, then the displacements (by choosing an option in the program) have been
deleted (in fact a new parameter which wasn’t considered in the elastic method is
the non-dimensional quantity Ko = on / gv, where on and ov the horizontal and the
vertical stress within the ground respectively). The second step is the activation of
the loads and the consequent analysis.
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The iteration method adopted is the “Newton-Raphson method”, the load increment
is the “equidistant load step”, the convergence criterion is “force norm ratio”: all
these parameters are summarized in Figure 124.

Analysis Control [= e =5 I
= Analysis Option :
Construction Stage | Noninear | Seepage | Construction Stage  Nonlinear | seepage | e
Final Calculation Stage Tteration Equation Solver
Scheme )
* EndStage ¢ MiddeStage [Onlysol " Constant Stiffness Method T Skyline
(" Secant Method * Multi Frontal Sparse Gaussian

% Newton Raphson Method

Mumber of Thread 1 J:

I Specify Restart Stage | 2:8eam
(" Modified Newton Raphson Method
¥ Initial Stage for Stress Analysis  |OnlySoil - Masimum Number of [terationsjLoad Step 100 =
. [V Indude Line Search. (™ Tterative Solver
¥ Ko Condition i e
onvergence Criteria AI orithm Loy iy
Restart Option [~ Energy Morm 0.001 :
" save only user specified stages I Displacement Norm Preconditioner Type o ~
€ If ot converged, save its previous stage v [ oot
§ ¥ Force Norm 0.001 . .
Maximum Iteration

# Save sl stages
Convergence Tolerance

Load Steps
Stepping pracedures
¥ Manual with Equidistance steps 0= Number of Thread
" Manual with User-defined steps
" Automatic Load Step " Pardiso
—— Mumber of Thread 1 4:

[ ArcLength Method

Memory for Analysis

Save Step
' LastStep  AllStep = mato - iner 54 Mbytes
ok Cancel Cancel

Figure 124: Midas GTS analysis set up

A comparison between elastic model and elastic-plastic model (both performed by
Midas GTS) have been performed, by using for the second type a cohesion c = 0.1
Kpa (the “0” value causes numerical error in the calculation of the stiffness matrix),
and by varying the entity of loads (from two forces of 100 kN each to two forces of
20000 kN each): the purpose is to verify if the behavior of the soil is still elastic or
turned into elastic-plastic, in the latter case the model assumed in chapter 0 would
be incorrect. In the following graphics (Figure 125, Figure 126) one can see the
displacement of the beam for both elastic and elastic-plastic case (with ¢ = 0.1 kPa)

by varying the entity of load.
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Displacement
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Figure 125: Displacement of the beam on linear elastic soil by varying the entity of load
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Figure 126: Displacement of the beam on elastic-plastic soil (c=0.1 kPa) by varying the entity of load

As it is easy to see for the load “F = 100 kN” (that’s to say two forces of 100 kN each),
the assumed load in chapter 0, the behavior seems to be similar either for elastic or
elastic-plastic model. In order to prove this hypothesis the displacement of two
nodes along the symmetry axis of the beam has been calculated: the load has been
varied with the same modality as the previous analysis, both for the elastic model
that the elastic-plastic model. The first point is located 1 m below ground level (in
the sandy soil), the second 6 m below the ground level (in the clay soil). The
following force-displacement graphics (from Figure 127 to Figure 131) illustrate the
trend of the solution. One can see the level of plasticity of soil in the following
screenshots from Figure 132 to Figure 135: in the first image only some plastic
points appear under the right force (one can notice the asymmetry of the response
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of the soil, probably because of a numerical error in the post processing procedure,
Figure 132) under a load of two forces of 100 kN each. In the second image (Figure
133) appear the first plastic points in the clay soil under a load of two forces 600 kN
each. In the third image (Figure 134) appear plastic points around the node (in clay)
considered in the analysis (6 m below the ground level, along the axis of symmetry
of the beam) under a load of two forces of 2000 kN each. The fourth image shows the
spread of plasticity in the clay soil under a load of two forces of 5000kN each.

For this reason it’s possible to say that the behavior of the point of in clay is elastic
until a load of two forces of 2000 kN is applied when plasticity occurs. From the
graphics force-displacement the point in sand seems to behave like the one in sand,
that's to say that is seems to gradually plasticize: in the screenshots this
phenomenon doesn’t appear, probably because a numerical error in the post
processing procedure.

Anyway the important achievement is that the soil (sand and clay) is surely in an
elastic state for a load of two forces of 100 kN each and consequently the model used
in the chapter 0 is suitable to characterize the issue described.

Force -Displacement

25000

20000 7 »

15000 / ,-///

// F e Sand_-1m_EP
// Clay_-6ém_EP
/

5000 e = Sand_-1m_LE

0 T T . ; . . , = = Clay_-6m_LE

Figure 127: Force-displacement graphic of the two points in sand and clay, linear elastic constitutive
model and elastic-plastic constitutive model
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Force -Displacement
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Figure 128: Force-displacement graphic of the point in sand, linear elastic and elastic-plastic constitutive
model
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Figure 129: Force-displacement graphic of the point in clay, linear elastic and elastic-plastic constitutive
model
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Figure 130: Force-displacement graphic of the two points in sand and clay, linear elastic constitutive

model
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Figure 131: Force-displacement graphic of the two points in sand and clay, elastic-plastic constitutive

model
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Figure 132: Plastic points under a load of two forces of 100 kN each
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Figure 133: Plastic points under a load of two forces of 600 kN each
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Figure 134: Plastic points under a load of two forces of 2000 kN each
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Figure 135: Plastic points under a load of two forces of 5000 kN each

In order to have a whole description of the behavior of the points of in sand and clay
under the three topic loads described before (100 kN, 2000 kN and 5000 kN)
screenshots of some characteristics of the model will be shown in the following
pages; in addiction for every load with graphics will be shown the trend of the
displacement of the beam, the displacement of the points along the axis of
symmetry, the stress SYY below the left force, the mid-point of the beam, the right
either for the elastic model or for the elastic-plastic one varying the cohesion (from c
= (0.1 kPa to 20 kPa). Increasing the load the soil diverges from the elastic behavior,
and consequently the displacement and the stress increase. The variation of the
cohesion modifies the response of the soil but not significantly than the elastic
model.

Remarkable is the trend of the bending moment and of the shear force of the beam
(from Figure 175 to Figure 177): as for the other characteristics of the model also
this stress parameters diverge from the elastic solution.
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Figure 136: Displacement DY, F=100 kN, linear elastic
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Figure 137: Bending moment, F=100 kN, linear elastic
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Figure 138: Shear force, F=100 kN, linear elastic
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Figure 139: Stress SXX, F=100 kN, linear elastic
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Figure 140: Stress SYY, F=100 kN, linear elastic
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Figure 141: Displacement DY, F=100 kN, elastic plastic, c=0.1 kPa
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Figure 142: Bending moment, F=100 kN, elastic plastic, c=0.1 kPa
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Figure 143: Shear force, F=100 kN, elastic plastic, c=0.1 kPa

felled 5T A

1D ELEMENT FORCE|

Beam Fz

LINITCkR)
L4 g1 EZe 001

C7 44 2530304001
~¥3 BE2ZR+001

50%
+3.03852e+001

10i0%
2:43082e+001
20%
1.82311e+001
+1.21541e+001
G 07 T 04+ 000
——+1 27167e-012
.07 704e+000
50%
-1.2154 1 e+001
S0%
———-1.8231 1e+001

su%

-2 430522001
| |10low
- 30385264001
50% 3
5 BB 24001
10,0%
4 25393+001

5.0%
4861 sae]bm

0.000 2.730 5460 8.190 1 10.921

|
S ——— |

I 1

o S By

REEREEY

[UNITT KM -m
[DATA] CEML: soil -, Soil SR+ Center-, Bearn-Step 01013

Figure 144: Stress SXX, F=100 kN, elastic plastic, c=0.1 kPa
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Figure 145: Stress SYY, F=100 kN, elastic plastic, c=0.1 kPa
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Figure 146: Displacement DY, F=2000 kN, linear elastic
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Figure 147: Bending moment, F=2000 kN, linear elastic
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Figure 148: Shear force, F=2000 kN, linear elastic
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Figure 149: Stress SXX, F—2000 kN, llnear elastic

oopo 2724

T
'

E R B e e e DELEMENTSTRE-SS
|

Soﬂ SYY Center

[UNITL KN
| i 50|I SWCemer Eleanwateprm

Figure 150: Stress SYY, F=2000 kN, linear elastic

TUNITT kN i %
[DATA] CSML: sail | DY(W EleamSlep UTEl(1). o
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Figure 152: Bending moment, F=2000 kN, elastic plastlc, c=0.1 kPa
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Figure 153: Shear force, F=2000 kN, elastic plastlc, c=0.1 kPa
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Figure 154: Stress SXX, F=2000 kN, elastic plastic, c=0.1 kPa
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Figure 155: Stress SYY, F=2000 kN, elastic plastic, c=0.1 kPa
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Figure 156: Displacement DY, F=5000 kN, linear elastic
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Figure 157: Bending moment, F=5000 kN, linear elastic
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Figure 158: Shear force, F=5000 kN, linear elastic
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Figure 159: Stress SXX, F-5000 kN llnear elastlc
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Figure 161: Displacement DY, F=5000 kN, elastic plastic, c=0.1 kPa
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Figure 162: Bending moment, F=5000 kN, elastic plastic, c=0.1 kPa
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Figure 163: Shear force, F=5000 kN, elastic plastic, c=0.1 kPa
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Figure 164: Stress SXX, F—5000 kN, elastlc plastlc, c= 0 1 kPa
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Figure 165: Stress SYY F—5000 kN elastlc plastlc, c= 0 1 kPa
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Figure 166: Displacement of the beam and of the nodes along the axis of symmetry, F=100 kN
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Figure 167: Stress SYY calculated at 0.5 m, 2.5 m, 7.5 m below the ground level, F=100 kN
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Figure 168: Stress SYY calculated below the left force,the mid-point of the beam,the right force, F=100 kN
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94



Soil - structure interaction: review of the fundamental theories

o,_Yy=-0.5m

-15 -10 -5 0 5 10 15

a}
r T T U T

e F|astic

——EP_C=0.1

——EP_C=0.2

ﬁ% = EP_C=0.5
[:;;] I;':'CC \Q\ :E:_Zi

| g
7 ———EP_C=5
00
609 ~—EP_C=10
760 EP_C=15
X
[m] ———EP_C=20

-15 -10 -5 0 5 10 15 .
" e E|astic
e EP_C=0.1
2N\ 100 a i
\\ / / ——EP_C=0.2
200 e—EP_C=0.5
Oyy EP_C=1
[kPa]
e EP_C=2
400 -
\ ! e EP_C=5
e EP_C=10
660 EP_C=15
X _
[m] e EP_C=20
o =-7.5m
yy_y e F|aStiC
-15 -10 -5 ) 0 5 10 15 EP C=0.1
100 EP_C=0.5
156 EP_C=1
Oy 200 e EP_C=2
[kPa] 250
N\ o /7 ———EP_C=5
e EP_C=10
EP_C=15
AN
o0 ———EP_C=20

X

[m]

Figure 170: Stress SYY calculated at 0.5 m, 2.5 m, 7.5 m below the ground level, F=2000 kN
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Figure 173: Stress SYY calculated at 0.5 m, 2.5 m, 7.5 m below the ground level, F=5000 kN
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Figure 176: Bending moment and shear force, F=2000 kN
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[11], [12], [13], [8].
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2 Vertical structures

2.1 Introduction

The interaction between soil and structure can also be studied in vertical elements,
such as sheet pile retaining walls. In this case the interaction is very complicated
because the soil has the dual purpose of loading the structure on the active side of
the sheet pile and support it on the passive side, in fact it has a portion embedded in
the soil. That's why a part from the FEM techniques, the other kind of methods are
based on empirical or empirically based factors and a theoretically correct solution
can’t be achieved.

The design of a retaining wall needs two sets of calculation, one to achieve the
equilibrium of the structure, the other to determine, from the values of bending
moments and shear forces obtained from equilibrium, the characteristics of the
structure. Generally retaining walls can be divided into two categories: cantilever
and supported walls. The first type requires a sufficient embedment, that’s to say the
fixity of the toe, and this attribute depends on the penetration into the ground. The
second type, either tied or strutted, shares the supporting role between soil and
supporting members. Usually the effectiveness of a cantilever depends on its
“acceptable deflection under load”. The height determines whether it is more
effective a cantilever or a propped wall. The design of the wall must be carried out
taking into account either the Ultimate Limit State or the Serviceability Limit State:
the latter is important when the deflection of the wall and the movement of the
ground are significant.

The designer has also to decide either to use free earth model or fixed earth model
for the toe of the wall, and the difference between the two assumptions is based on
the influence that the depth of embedment has on the wall deflection. A wall
designed as a free earth support behaves like a supported vertical beam, the toe is
allowed to rotate and not to translate; a tie or a prop on the top could be the other
support; this kind of model, for a given set of conditions, requires less depth of
embedment but the beam has a maximum for bending moment. A fixed earth
support avoids either translation or rotation of the toe, so it acts like a propped
cantilever (fixed end); the upper support could be provided by a prop or a tie. In this
case the maximum bending moment along the beam decreases but the toe fixity
creates a fixed end moment in the wall and an increase of the depth of embedment
of the beam is required. This design approach must be adopted when the end of the
sheet pile is fixed and the embedment in the soil provides the support of the wall. No
failure mechanism exists to check the stability of the sheet piles once the fixed earth
support is assumed, but many empirical approach have been studied. Both methods
are valid only if support is provided over the middle of the retained height.
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An important topic of wall design is the distribution of pressures and the bending
moment reduction. In fact the triangular distribution of earth pressure is a
simplification that doesn’t take into account the interaction between soil and
structure, feature that influences the distribution of bending moments and shear
forces along the wall, and of earth pressure itself. The soil and the flexibility of the
wall influence this reduction and this deflection of the wall causes a movement away
from the soil (between the embedded part and the position of the support). This
movement could cause an arching effect within the soil: the internal capabilities are
improved and the pressure on the wall decreases. A reduction of the maximum
bending moment and an increase of the reaction in the support obviously occurs: in
fact, usually, the reaction calculated by a soil structure interaction is higher than that
obtained by a limit equilibrium analysis. This arching effect could not be taken into
account (or can be but with caution) in vibrational situation, stratified soils, yielding
of the support or movement of the toe. Programs based on soil-structure interaction
automatically take into account the arching effect on bending moment, thus for a
calculation by simple equilibrium is it recommended to increase the load of a certain
percentage on the support.

Anyway the pressure on the wall that is commonly assumed, with its simplified
triangular shape, doesn’t take into account the movement of the wall (this lack
nevertheless gives a conservative solution), which caused a decrease of pressure
where it is large, and an increase where it is small: features that can be seen with a
computer program. The shape of pressure can be further improved by a program
based on the interaction between soil and structure, and the modification would be
an increase of the passive pressure and a decrease of the active. As said previously
it’s also important to keep in mind that the deflection is a function either of the
section and the material of the wall or the compression of the soil in a passive/active
state: that's to say that a stiff wall with less props could be as effective as a flexible
wall with more props. Thus when the soil-structure interaction is taken into account
a flexible wall solution could be more cost effective than one based on a stiff wall,
because a reduction in strength demand occurs so the required bending moment
section is minimized [14].

In this chapter will be described some different approaches that can be used to
study a retaining sheet pile wall. The first will be the classic method, it is highly
simplified but can give some general indication about the length of the wall. A
second approach will be a computational program based on dependent pressures.
The last approach will be an analysis done with two FEM programs. The case study
will be an excavation by a sheet pile: the parameters of the soil and of the structure
have been chosen in an arbitrary manner and only for schematic purpose, the water
table is not taken into account. Each approach will analyze two different conditions:
a granular soil and a cohesive soil, for both of them will be offered a comparison
between the different assumed methods.
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All these descriptions will be made in the proper chapters.

2.2 C(Classic method - Theoretical introduction

The aim of this method is to find the required length of the wall to achieve
equilibrium of the structure: the soil has been assumed to be at the yielding limit
state so the theory of Rankine for rigid-plastic material has been assumed. The
adopted failure criterion for the soil is that of Mohr-Coulomb.

The vertical pressure in the ground is:

0y =) (i b+ q ©0)

where q is the load [kN/m?], h; the thickness of the layer, yi the self-weight of the i-th
layer; for a system where there are layers of soil below the water table (it won’t be
take into account in this work) shall be used the effective weight y’; expressed by the
formula:

Yi= Yi— Y0 (91)

where yn20 is the self-weight of water (assumed 9.81 kN/m3).

The active horizontal pressure is calculated by the following formula:

on = oy K, —2c K, (92)

In this formula oy is the vertical stress from the weight of the soil, c is the cohesion,
and K is the coefficient of Rankine active pressure. It amounts to:

K, = tan? (g - %) (93)

where @ is the angle of internal friction of the soil.

The passive horizontal pressure is:

on = oy Ky + 2¢ /Kp (94)
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where oy and c are as above the vertical stress from the weight of the soil and the
cohesion respectively; K, is the coefficient of Rankine passive pressure. It amounts
to:

K, = tan? (g + %) (95)

where @ is the angle of internal friction of the soil.

This method has been applied to the problem under consideration using a
spreadsheet. As said before, the purpose is to achieve equilibrium by varying the
length of the wall, that’s to say by trial and correction. One enters the value of the
depth of embedding in the spreadsheet: immediately the bending moment about the
toe is calculated: the length can be assumed as correct when passive moment is
slightly greater than the active moment.

Where the area of the active pressure below the ground level is equal to the area of
the passive pressure below the ground level, the shear force is equal to zero. The
sum of the values of the bending moments about and above the level of zero shear
gives the value of maximum bending moment. With the spreadsheet it's also
possible to have the trend of the bending moment along the wall.

A suggestion for the design in order to find the proper penetration depth of the pile
is to increase by 20% the depth below the point where passive and active pressure
are equal. [7], [15], [14].

2.3 Dependent pressures method - Theoretical introduction

This approach assumes that the soil in the vicinity of the wall behaves as ideally
elastic-plastic Winkler material; the method is based on the Winkler model of
subgrade reaction modulus that characterizes the behavior of the material in the
elastic region: by exceeding the limit of deformation that occurs when passive
pressure is reached, the soil behaves as ideally plastic material; the parameter kp is
the stiffness on an ideal elastic support, so as for the horizontal beam, and a system
of these “springs” replaces the reaction of the soil in contact with the wall. It has
been assumed that the wall is an elastic beam and the horizontal elastic reaction of
the soil is equal to the horizontal displacement at that point multiplied by kx:

px = kp x (96)

And

X = x(z) (97)
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The kn parameter isn’t the Winkler coefficient for horizontal foundation, it doesn’t
have a physical meaning and it depends on the stiffness and the geometry of the wall
and on the condition of the soil. As the in-situ methods can’t define a value of ku,
either empirical or theoretical methods have been developed, the latters based on
the classic theory of elasticity: some of these are Terzaghi’s method, Chadeisson and
Monnet method, Menard and Bourdon method.

In this work has been used a program based on Chadeisson and Monnet method: its
aim is to calculate the displacement with which the soil reaches the limit of passive
pressure defined by Rankine. The ky evaluated by this empirical method depends on
the shear force of the soil by the parameters ¢’ and ¢’ (the adopted failure criterion
is that of Mohr-Coulomb), and on the stiffness of the wall; for given subsoil:

(98)

where 7 is the self-weight of soil, K;, the passive pressure coefficient, Ko the pressure
coefficient at rest, dro the characteristic displacement (0.015 m), ¢’ the effective
cohesion, Ap the coefficient allowing for soil cohesion, co is equal to 30 kPa

The formulae used in this method to determine the pressure along the wall are the
same as those used for the classic method, and the coefficient of active and passive
pressure are defined by the theory of Rankine: so all the formulae showed in the
chapter concerning the classic method are still valid in this one.

In addition the constitutive equation of the beam with small displacement is
required:

d’x(z)  M(z)
dzz2 ~ EI

(99)

where x(z) is a function of displacement, M(z) is the bending moment, EI is the
flexural rigidity of the beam.

This formula combined with the load function

d?M(z)
dz2

= —p:(2) (100)
Gives

d*x(z) _p.(2)

= (101)
dz* El
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Taking into account the elastic reaction of the soil the previous equation is extended
in the following way
d*x(z) pr(2)

i 4 — (102)
azr Tk X =g

where ki, is the coefficient of elasticity defined in the chapter.

It has been assumed that the value of the pressure acting on the wall may vary
between the two bounds of passive or active pressure, but without falling outside of
them, and that the acting pressure on an undeformed structure is the pressure at
rest. For a deformed structure the pressure is

o =o,—kyw (103)
o =o0, for 0 <o, (104)
o = o, for 0 > o (105)

where o is the pressure at rest, kn is the modulus of subsoil reaction, w is the
deformation of structure, g, is the active earth pressure, o, is the passive earth
pressure.

The computational procedure starts with the pressure at rest acting on the wall and
the ky assigned to all the system of supports (Figure 178:).

Cr ky, ky Gr

Figure 178: 1st step of the computational procedure [7]
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The following step requires that the program to check the locations at which the
condition for allowable magnitudes of pressures acting on the wall is satisfied or
violated. In the latter case the value of kn = 0 has been assigned, and the wall is
loaded by active or passive pressure

|

Figure 179: 2nd step of the computational procedure [7]

The above iteration procedure continues until all required conditions are satisfied.

In analyses of subsequent stages of construction the program accounts for plastic
deformation of the wall. This is also the reason for specifying individual stages of
construction that comply with the actual construction process. The program based
on this method and used in the analyses is SheetPile2.0. [7], [16], [17], [15], [18].

2.4 FEM solution - Theoretical introduction

As said before the third approach that has been used for the case study is a
calculation by finite element method programs. To better understand the problems
related with the modeling of soil-structure interaction the analysis has been carried
out by two different programs: GeoStudio and Plaxis. The latter has been used with
two different modalities.

The solution is highly influenced by the modeling procedure, and elements which
have been properly created to replace the interaction are the key for a better result:
thus a comparison between different programs is necessary to analyze this feature.

A significant issue is also the construction by stage that either in GeoStudio or in
Plaxis has been taken into account. The “in situ analysis” for the former and the
“initial analysis” for the latter are followed by a “load-deformation analysis” and a
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“phase-1”" respectively: these “two-phase” analyses allow the system soil-structure
to simulate the actual excavation. The first phase occurs before the excavation and
the second one after it: the latter stage is based on the values of deformation and
stress obtained from the former one, in this way the sequence of staged construction
develops like a common time continuum. In first phase the gravity is applied to the
elements through the material self-weight, in order so simulate the existing state of
stress. In the second phase loads are applied as boundary conditions and the new
state of stress is implemented. The simulation is performed by adding or removing
elements from the mesh, that’s to say activating or deactivating regions. The soil has
been set as an elastic-plastic material (Mohr-Coulomb model, see chapter 1.3.1) [5],
[19].

2.4.1 Plaxis solution

In Plaxis the soil has been set up as an linear elastic perfectly-plastic material, and
the failure criterion that has been adopted is that of Mohr-Coulomb (chapter 1.3.1),
thus the parameters that define the material are (1.3.1) the Young’s modulus E
[kKN/m?Z], the Poisson’s ratio v [-], the cohesion c [kN/m?], the friction angle ¢ [°], the
dilatancy Y [°]

The issue has been analyzed as a plane strain model, thus the finite elements have
two dimensions and with two translational degree of freedom per node.

Figure 180: Example of a plain strain [19]

A “coarse” element distribution has been set up, it's enough to have an accurate
solution as a first approach: as will be explained in the following chapters this
distribution will be turned into a “medium” or “fine” one according to the
requirement. The average element [ size is assumed equal to:

Ie _ (Xmax - Xmin)(Ymax - Ymin) (106)

Ne
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Where Xmax, Xmin, Ymax, Xmin are the geometry dimensions of the mesh, and nc is a value
that takes into account the global coarseness

Very coarse: ne.=25  Around 75 elements

Coarse: ne =50  Around 150 elements
Medium: n. =100 Around 300 elements
Fine: ne = 200 Around 600 elements
Very fine: ne = 400 Around 1200 elements

Figure 181: Global coarseness [19]

The element that has been used is the default 15-node triangle for the first analyses
and changed into a 6-node triangle in the subsequent ones: for the first one the
displacements are obtained by an interpolation of the fourth order, and twelve
Gauss points (stress points) are involved in the numerical integration; for the
second one the displacements are obtained by an interpolation of the second order,
and three Gauss points (stress points) are involved in the numerical integration. The
15 - node triangle provides high quality stress results for difficult problems, the 6 -
node triangle provides good results in standard deformation analyses.

- =
Ii h L i:-c -x"-a___. b
] - T - '-_I | = e -
¢ * . et I'-.I :;pr " At ke
i i ¥ Tl [2= x i
nodes stress points

a. 15-node triangle

ll f E'l. [
‘I! ™ 2 '¢ i k- o il
nodes stress points

b. 6-node triangle

Figure 182: Distribution of nodes and Gauss points [19].

A particular element must be described with more accuracy: the interface. This
peculiar feature of Plaxis has a fundamental importance in the analysis, in fact it
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takes into account the soil-structure interaction. A fictitious thickness defines the
material properties of this element. The elastic deformation increases with the
thickness: generally a little deformation is required for an interface, but you must
consider that a too little thickness may ill-condition the numerical process. The
parameter of the interface is Ri: “Rinter: this parameter relates the strength of the
soil to the strength in the interfaces” [20]; “Hence, using the entered Rinter-value
gives a reduced interface friction and interface cohesion (adhesion) compared to the
friction angle and the cohesion in the adjacent soil” [20].

The equations are:

tan Qinterface = Rinter tan Psoil < tan Psoil (107)
Cinter = RinterCsoil (108)
P; = 0° for Rjpeer < 1, otherwise y; = Pgoy (109)

An elastic-plastic model is used to describe the relationship between soil and
structure, and the Coulomb criterion is used to distinguish the elastic behavior from
the plastic one. The interface to remain elastic:

|T] < o, tan @; + ¢ (110)

And to behave as a plastic material:

|T| = o, tan @; + ¢; (111)

Where oy, is the effective normal stress, 7 the shear stress, @i and c; are the friction
angle and the cohesion of the soil.

The shear and compression moduli are related by the expressions:

1-— Vi
Eoedi = 2Gi T 2, (112)
G = Riznteeroil < Gsoil (113)
v; = 0.45 (114)

A 15-nodes soil element is connected to the corresponding interface element by five
points; thus an interface element requires two pairs of five nodes to be define (one
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pair for each side). A 6-nodes soil element is connected to the corresponding
interface element by three points; thus an interface element requires two pairs of
three nodes to be define (one pair for each side). This element has zero thickness
because in the FEM formulation two nodes pair have the same coordinates. The
Newton-Cotes integration allow to obtain the stiffness matrix of the interface
element; the 10-node interface element uses five Newton-Cotes stress points while
the 6-node interface element uses five Newton-Cotes stress points and for both of
them these coincide with a node pairs.

* nodes
stress g

a. 6-node soil element b. 15-node soil element

Figure 183: Distribution of nodes and stress points on an interface element [19]

This element reproduces the soil-structure interaction because allows the sliding
between the two surfaces, issue that is not taken into account without the interface
element because the points are chained together [19], [20].

2.4.2 GeoStudio solution

As for the previous program, in the analyses performed by GeoStudio the soil has
been assumed as linear elastic perfectly-plastic material, with a Mohr-Coulomb yield
criterion (chapter 1.3.1). Hence the parameters required by the model are the same
as those described in the former chapter. The model is a plane strain, the same as
Plaxis.

The mesh is composed by 6-noded triangles, thus the integration points (and the
integration orders) are three. This mesh have been chosen in order to have a
homogeneous comparison with Plaxis (as said in the previous chapter the 15-nodes
triangle element used for the first calculation with Plaxis will be turned to a 6-nodes
triangle for the comparison with GeoStudio).

The size of the elements has been modified (in some strategic points for instance) in
order to have a better discretization. An interface has been generated along the
structure and it describes the friction properties between soil and structure.
Material properties (elastic-plastic behavior, with the parameters that are required)
have been assigned to the interface. However the thickness of this element doesn’t
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have a physical meaning and it isn’t taken into account in the solution. This interface
is important for the solution, but it doesn’t have the properties that are specified in
Plaxis. The results indeed are highly dependent on the stiffness of the interface
material and on the other parameters that will be specified in the proper chapter. In
order to have a homogeneous comparison with Plaxis the parameters of the
interface in GeoStudio are calculated by the suggested formulae of chapter 2.4.1,
these formulae could relate the two programs [5].

2.5 Overview of the results -Sand

2.5.1 Introduction: searching for the length to compare

In order to have an uniform length of the sheet pile that allows the expected
comparison, it is necessary to choose the best solution, that’s to say to compare the
solutions obtained by different approaches for a given set of conditions, and decide
which of them could be the suitable one. The first length that provides an acceptable
solution for the “Classic Method” is 7 m (it's important to remember that this
method gives a simplified solution, so it is reasonable to use a “minimum value”
obtained by a more precise approach). The minimum value for Sheetpile2.0 is 7.5 m,
but the displacement is 8.43 cm. The minimum value for Plaxis is 8.5 m, but the
displacement is 1.395 cm (peak value). GeoStudio in this case is considered a
“comparison program”. Plaxis provides an acceptable solution (0.957 cm) with a 10
m length sheet pile, and the length to be analyzed will be chosen by varying the
length of the sheet pile adopting this program. Using a 12 m length sheet pile the
maximum displacement is 0.923 cm, from 13 m on there isn’t a significant
improvement of the performance. In order to compare two different behaviors have
been chosen two different “comparison lengths” for the sheet pile: the first one is
close to the instability (9 m), the second one widely ensures the equilibrium (12 m).
The solution by Plaxis has been obtained by assuming a “coarse” distribution of the
mesh, that’s to say that around 150 elements compose the mesh (2.4.1). The average
element size, [, for the assumed geometry of the model is Ie = 4 m. In order to have a
coherent comparison with GeoStudio it is necessary to have the same characteristics
of the mesh in both programs, but with this number and dimension of elements
GeoStudio can’t ensure an adequate solution. For this reason the choice of the length
of the sheet pile has been made using a “coarse” mesh in Plaxis; then, for the chosen
lengths, in order to compare the results from the different approaches, the mesh of
Plaxis has been changed into a “medium” mesh with around 300 elements and I =
2.8 m for the solution with the 9 m length sheet pile. The elements of Plaxis have
been changed too, from 15-nodes triangle to 6 -nodes triangles because GeoStudio
supports only this second kind of elements. In the following graphics (Figure 186)
one can notice how this change doesn’t significantly modify the solution.
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For the second comparison (12 m) instead of GeoStudio a different solution by Plaxis
has been assumed; in this case the mesh has been set “fine” (around 600 elements
and I = 2 m) keeping a 6-nodes triangle element, the value of R; is changed from R; =
0.8 into Ri = 1 (“rigid”): this situation simulates the lack of the interface (only soil
and plate).

In the following graphic and table one can notice how the displacement varies
changing the length of the sheet pile (Plaxis solution): the chosen solutions
represent behaviors either close to stability or close to instability.

Displacement

0 T T T T T T 1
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z =10
-8
[m] /1 \ _
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-14 =13
16 L=14
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Figure 184: Horizontal displacement of the sheet pile varying its length

Table 10: Maximum and minimum values of the displacement of the sheet pile varying its length,
absolute and relative difference of displacement between sheet piles with different lengths

DISPLACEMENT [m]

MAXIMUM

L=8.5 L=9 L=10 L=11 L=12 L=13 L=14 L=15
0.013949 | 0.011653 | 0.009567 | 0.009856391 | 0.009234 | 0.009391 | 0.009367 | 0.009413
ABS_DIFF 16% 31% 29% 34% 33% 33% 33%
REL_DIFF 16% 18% -3% 6% -2% 0% 0%

. Y

L=8.5 L=9 L=10 L=11 L=12 L=13 L=14 L=15
0.002899 | 0.003534 | 0.004046 | 0.004120155 | 0.004126 | 0.004172 | 0.004198 | 0.004022
ABS_DIFF -22% -40% -42% -42% -44% -45% -39%
REL_DIFF -22% -14% -2% 0% -1% -1% 4%
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Figure 185: The mesh: “coarse” with tri-15 elements used at the beginning for the choice of the sheet
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Figure 186: Displacement of a sheet pile of 9 m in sand using Plaxis with: coarse mesh and tri-15
elements, medium mesh and tri-6 elements

Table 11: Maximum and minimum values of the displacement in the sheet pile of 9 m in sand using Plaxis
with a coarse mesh and tri-15 elements, and with a medium mesh and tri-6 elements, absolute

difference
DISPLACEMENT [m]
COARSE MEDIUM COARSE MEDIUM
0.01165 0.01083 0.00353 0.00360
ABS_DIFF 7% ABS_DIFF -2%
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2.5.2 C(lassic Method - Sand - 1st case (9 m) results

As said in the previous chapter, this method considers the wall as a rigid element, so
the parameters of the sheet pile aren’t required, a part from the length that must be
varied with a method of trial and correction until the equilibrium is achieved (see
chapter 2.2). The only comparable stress parameter that this method provides is the
bending moment.

Table 12: Parameters required in the Classic Method

H | [0) c q dex L
[m] [kN/m®] [°] [kPa] [kN/m] [m] [m]
20 18 37 0 10 4 9

Where H is thickness of the layer, y the self-weight of sand, ¢ the angle of friction of
sand, c the cohesion of sand, q is the load, dex the excavation, L the final length that
is required for equilibrium.

These are the graphics obtained by this approach. As the minimum required length
to have equilibrium is 7 m, the trend of the bending moment is taken into account
only within this length and not for the remaining part of the sheet pile (Figure 189).
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Figure 187: Vertical stress along a sheet pile of 9 m in sand using the Classic Method
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Horizontal Stress
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Figure 188: Horizontal stress along a sheet pile of 9 m in sand using the Classic Method
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Figure 189: Bending moment of a sheet pile of 9 m in sand using the Classic Method
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Figure 190: Shear force of a sheet pile of 9 m in sand using the Classic Method
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2.5.3 SheetPile2.0 - Sand - 15t case (9 m) results

This program, based on the dependent pressure method, gives the values of
displacement, angle of rotation, bending moment, shear force and reaction.

Table 13: Parameters required in SheetPile2.0

SAND
H Y (o) C q dex | dwl t Ep L
[m] [kN/m’] [°] | [kPa] [kN/m] [m] | [m] | [m] [kPa] [m]
20 18 37 0 10 4 0 0.5 20x10° 9

Where H is thickness of the layer, y the self-weight of sand, ¢ the angle of friction of
sand, c the cohesion of sand, q is the load, dex the excavation, dwl the depth of the
groundwater level, t, Ep and L are the thickness, the elastic modulus and the length
of the sheet pile respectively.

This is the graphic interface of the program.

5l SheetPile 20 =@ 5
[Grurt | Scianka | Kotwy |

© Grubosé m] 0.50

% Mom. bezw. fomd]: [13640.00

Material: | Beton o
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E [GFa]
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RAPORT:
Obliczenia OK,

Figure 191: Graphic interface of SheetPile2.0

The following graphic shows the value of the displacement obtained with a 7.5 m
sheet pile, the minimum length that ensures a solution with this program: the value
is too high to be acceptable.
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Figure 192: Displacement of a sheet pile of 7.5 m in sand using SheetPile2.0

The following graphics consider the chosen length: 9 m.
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Figure 193: Displacement of a sheet pile of 9 m in sand using SheetPile2.0

Table 14: Maximum and minimum values of the displacement in the sheet pile of 7.5 m and in the sheet
pile of 9 m in sand using SheetPile2.0, absolute difference

DISPLACEMENT [m]
MAXIMUM

SP2.0-7.5m SP2.0-9m SP2.0-7.5m SP2.0-9m
0.08430 0.02300 -0.00728 -0.00115
ABS_DIFF 73% ABS_DIFF 84%
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Angle of rotation
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Figure 194: Angle of rotation of a sheet pile of 9 m in sand using SheetPile2.0
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Figure 195: Bending moment of a sheet pile of 9 m in sand using SheetPile2.0
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Figure 196: Shear force of a sheet pile of 9 m in sand using SheetPile2.0
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Figure 197: Reaction of a sheet pile of 9 m in sand using SheetPile2.0

2.5.4 Plaxis - Sand - 15t case (9 m) results

Plaxis provides an accurate solution for this kind of problems, in particular because
of its geometry issue “interface” which adequately represents the interaction
between soil and sheet pile. The assumed model is represented in the following
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Figure 198: Model for the case of a sheet pile of 9 m in sand using Plaxis, particular of the interface

The generated mesh (Figure 199) is a medium element distribution.
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Figure 199: The mesh: “medium” with tri-6 elements

These are the main characteristics of the model.

Table 15: Parameters required in Plaxis

SAND

H Y [0) c v P Es q dex

[m] [kN/m’] [’] [kPa] -1 | [l [kPa] [kN/m] [m]
20 18 37 0 0.3 5 37x10° 10 4

- kel [

L W EA EJ v Ri
(m] [kN/m/m] (kN/m] [kNm’] -] [-]

9 12.5 10x10° 208333.3 0.3 0.8

Where H is thickness of the layer, y the self-weight of sand, ¢ the angle of friction of
sand, c the cohesion of sand, v the Poisson’s ratio, y the dilatation angle, Es elastic
modulus of the soil, q is the load, dex the excavation, L, w, EA, E]J, v are the length, the
weight of 1m?, the axial stiffness, the flexural rigidity (bending stiffness), the
Poisson’s ratio of the sheet pile respectively, Ri is a parameter of the interface
(2.4.1).

The results obtained by this program will be exposed in the following screenshots.
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Figure 200: Deformed mesh for the case of a sheet pile of 9 m in sand using Plaxis
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Figure 202: Bending moment of a sheet pile of 9 m in sand using Plaxis
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Figure 203: Shear force of a sheet pile of 9 m in sand using Plaxis
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Figure 204: Total displacement u for the case of a sheet pile of 9 m in sand using Plaxis
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Figure 205: Total stress oxx for the case of a sheet pile of 9 m in sand using Plaxis
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Figure 206: Total stress oyy for the case of a sheet pile of 9 m in sand using Plaxis
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Figure 207: Total stress oxy for the case of a sheet pile of 9 m in sand using Plaxis
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Figure 208: Plastic points for the case of a sheet pile of 9 m in sand using Plaxis
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2.5.5 GeoStudio - Sand - 1st case (9 m) results
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Figure 210: Set up of the mesh

The mesh is composed by 826 nodes and 391 elements, the elements are tri-6, the
approximate element size is 2.8 m.

Table 16: Parameters required in GeoStudio

SAND
H Y [0) C v P Es q dex
[m] [kN/m?] [°] [kPa] [-] [°] [kPa] [kN/m] [m]
20 18 37 0 0.3 5 37x10° 10 4
= -
t Ep L A J
[m] [kPa] [m] [m?] [m’]
0.5 20x10° 9 0.5 0.010417
INTERFACE
\’ [0) C v P Ei
[kN/m?] [°] [kPa] [-] [°] [kPa]
18 31 0 0.45 0 9107.2
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Where H is thickness of the layer, y the self-weight of sand, ¢ the angle of friction of
sand, c the cohesion of sand, v the Poisson’s ratio, 1 the dilatation angle, Es elastic
modulus of the soil, q is the load, dex the excavation, t, Ep, L, A, ] are the thickness,
the elastic modulus, the length, the area, the moment of inertia of the sheet pile
respectively, y, ¢, c, v, i, Ei are self-weight, the angle of friction, the cohesion, the
Poisson’s ratio, the dilatation angle, elastic modulus of the interface respectively.
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Figure 211: Deformed mesh for the case of a sheet pile of 9 m in sand using GeoStudio
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Figure 212: Total displacement uyy for the case of a sheet pile of 9 m in sand using GeoStudio
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Figure 213: Total stress oxx for the case of a sheet pile of 9 m in sand using GeoStudio
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Figure 214: Total stress agyy for the case of a sheet pile of 9 m in sand using GeoStudio
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Figure 215: Plastic points for the case of a sheet pile of 9 m in sand using GeoStudio
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2.5.6 Sand - 1stcase (9 m) comparison

The values obtained by SheetPile2.0 and by the Classic Method (that provides only
the bending moment) can be considered conservative and useful for a preliminary
evaluation of the parameters, whereas the FEM solutions can be chosen as more
coherent with the real behavior of the soil-structure system. Regarding the bending
moment obtained with the Classic Method (see chapter 2.5.2): as the minimum
required length to have equilibrium is 7 m, the trend of the bending moment is taken
into account only within this length and not for the remaining part of the sheet pile
(Figure 217).
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Figure 216: Displacement of a sheet pile of 9 m in sand using Plaxis, SheetPile2.0, GeoStudio
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Figure 217: Bending moment of a sheet pile of 9 m in sand using Plaxis, SheetPile2.0, Geostudio, the
Classic Method
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Figure 218: Shear force of a sheet pile of 9 m in sand using Plaxis, SheetPile2.0, Geostudio

Table 17: Maximum and minimum values of the displacement, bending moment, shear force in the sheet
pile of 9 m in sand using Plaxis, SheetPile2.0, GeoStudio and the Classic method, absolute difference

DISPLACEMENT [m]

Plaxis SP2.0 GS CM Plaxis SP2.0 GS CM
0.010832 0.02303 0.008406 - 0.003599 -0.00115 0.003836 -
ABS_DIFF -113% 22% - ABS_DIFF 132% -7% -

BENDING MOMENT [kNm]

Plaxis SP2.0 GS CM Plaxis SP2.0 GS CM
1.74E-14 0 5.82E-11 0 -79.9085 -123.373 -72.5062 -134.696
ABS_DIFF - - - ABS_DIFF -54% 9% -69%

SHEAR FORCE [kN]
Plaxis SP2.0 GS CM Plaxis SP2.0 GS CM
40.0987 49.13711 33.39534 - -28.6003 -60.7047 -22.8175 -
ABS_DIFF -23% 17% - ABS_DIFF -112% 20% -

2.5.7 Classic Method - Sand - 2nd case (12 m) results

The only parameter that has been changed from the Ist case is the length of the sheet
pile “L”, from L = 9 m into L = 12 m. The other parameters are the same as chapter
2.5.2. The results are exposed in the following graphics. As the minimum required
length to have equilibrium is 7 m, the trend of the bending moment is taken into
account only within this length and not for the remaining part of the sheet pile
(Figure 221)
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Figure 219: Vertical stress along a sheet pile of 12 m in sand using the Classic Method
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Figure 220: Horizontal stress along a sheet pile of 12 m in sand using the Classic Method
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Figure 221: Bending moment of a sheet pile of 12 m in sand using the Classic Method
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Figure 222: Shear force of a sheet pile of 12 m in sand using the Classic Method

2.5.8 SheetPile2.0 - Sand - 2" case (12 m) results

The only parameter that has been changed from the 1st case is the length of the sheet
pile “L”, from L = 9 m into L = 12 m. The other parameters are the same as chapter
2.5.3. The results are exposed in the following graphics.

Table 18: Maximum and minimum values of the displacement in the sheet pile of 7.5 m and in the sheet
pile of 12 m in sand using SheetPile2.0, absolute difference

DISPLACEMENT [m]
MAXIMUM

SP2.0-7.5m SP2.0-12m SP2.0-7.5m SP2.0-12m
0.08430 0.01820 -0.00728 0.00095
ABS DIFF 78% ABS DIFF 113%

Displacement
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; 6
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-10
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Figure 223: Displacement of a sheet pile of 12 m in sand using SheetPile2.0
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Figure 224: Angle of rotation of a sheet pile of 12 m in sand using SheetPile2.0
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Figure 225: Bending moment of a sheet pile of 12 m in sand using SheetPile2.0
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Figure 226: Shear force of a sheet pile of 12 m in sand using SheetPile2.0
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Figure 227: Reaction of a sheet pile of 12 m in sand using SheetPile2.0

2.5.9 Plaxis - Sand - 2nd case (12 m) results
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Figure 228: Model for the case of a sheet pile of 12 m in sand using Plaxis, particular of the interface

The only parameter that has been changed from the Ist case is the length of the sheet
pile “L”, from L = 9 m into L = 12 m. The other parameters are the same as chapter
2.5.4. The generated mesh (Figure 200) is a fine element distribution. The results are
illustrated in the following screenshots.
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Figure 230: Deformed mesh for the case of a sheet pile of 12 m in sand using Plaxis
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Figure 231: Displacement ux of a sheet pile of 12 m in sand using Plaxis
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Figure 232: Bending moment of a sheet pile of 12 m in sand using Plaxis
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Figure 234: Total displacement u for the case of a sheet pile of 12 m in sand using Plaxis
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Figure 237: Total stress gxy for the case of a sheet pile of 12 m in sand using Plaxis
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Figure 238: Plastic points for the case of a sheet pile of 9 m in sand using Plaxis

2.5.10 Plaxis No Interface - Sand - 2nd case (12 m) results

The only parameter that has been changed from previous chapter is the parameter
Ri of the interface: it has been changed from Ri = 0.8 into Ri = 1 (“rigid”), this new
condition simulates the lack of the interface between soil and structure. The other
parameters are the same as chapter 2.5.9. The solutions with coarse and fine mesh
are quite the same, whereas the model with fine mesh but with no interface differs
from the previous solutions and provides lower displacement (Figure 241).
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Figure 239: The mesh: “coarse” with tri-15 elements used at the beginning for the choice of the sheet
pile’s length
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ntrg

Figure 240: The mesh: “fine” with tri-6 elements with no interface (Ri=1)
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Figure 241: Displacement of a sheet pile of 12 m in sand using Plaxis with: coarse mesh and tri-15
elements, fine mesh and tri-6 elements, fine mesh and tri-6 elements with no interface

Table 19: Maximum and minimum values of the displacement in the sheet pile of 12 m in sand using
Plaxis with: coarse mesh and tri-15 elements, fine mesh and tri-6 elements, fine mesh and tri-6 elements
with no interface, absolute difference

DISPLACEMENT [m]
COARSE FINE NI COARSE FINE NI
0.00923 0.00955 0.00837 0.00413 0.00406 0.00370
ABS_DIFF -3% 9% ABS_DIFF 1% 10%

2.5.11 Sand - 2st case (12 m) comparison

As for the 15t case the values obtained with SheetPile2.0 and with the Classic Method
can be considered useful to estimate the order of magnitude of the solution whereas
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the FEM solutions can be chosen as more coherent with the real behavior of the soil-
structure system. The difference between Plaxis and SheetPile2.0 decreases by 20%
(Table 17, Table 20) by increasing the length of the sheet pile.

Displacement
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Figure 242: Displacement of a sheet pile of 12 m in sand using Plaxis, SheetPile2.0, Plaxis with no
interface
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Figure 243: Bending moment of a sheet pile of 9 m in sand using Plaxis, SheetPile2.0, Plaxis with no
interface, the Classic Method
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Figure 244: Shear force of a sheet pile of 9 m in sand using Plaxis, SheetPile2.0, Plaxis with no interface

Table 20: Maximum and minimum values of the displacement, bending moment, shear force in the sheet
pile of 9 m in sand using Plaxis, SheetPile2.0, Plaxis with no interface and the Classic method, absolute

difference
DISPLACEMENT [m]

Plaxis SP2.0 PlaxisNI CM Plaxis SP2.0 PlaxisNI CM
0.009552 | 0.018183 | 0.008368 - 0.00406 | 0.000946 | 0.003696 -
ABS_DIFF -90% 12% - ABS_DIFF 77% 9% -

BENDING MOMENT [kNm]
MAXIMUM

Plaxis SP2.0 PlaxisNI CM Plaxis SP2.0 PlaxisNI CM
5.851003 0 8.898036 0 -85.1901 | -134.674 | -79.4205 | -134.696
ABS_DIFF - -52% - ABS_DIFF -58% 7% -58%

SHEAR FORCE [kN]

Plaxis SP2.0 PlaxisNI C™M Plaxis SP2.0 PlaxisNI c™M
42.37765 | 49.13711 | 41.29931 - -29.5903 | -39.6012 | -24.8323 -
ABS_DIFF -16% 3% - ABS_DIFF -34% 16% -

2.6 Overview of the results - Clay

2.6.1 Introduction: searching for the length to compare

As for the sheet pile embedded in the granular soil, also for the case of cohesive soil
it is necessary to find the suitable length that could be compared in each solution.
The “Classic Method” gives a solution already with 8.5 m, but as said before, because
of its simplicity, this method is just considered a comparison solution. The minimum
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value for Sheetpile2.0 is 10 m, but the displacement is 33.4 cm. The minimum value
for Plaxis is 8.5 m, but the displacement is 37.870 cm (peak value). Plaxis provides
an acceptable solution (6.811 cm) with a 12 m length sheet pile (by an increment of
1 m length the displacement decreases by 2%), but a stable solution is reached with
14 m (06.572 cm). Using a 15 m length sheet pile the performance worsens. As for
the solution in the sandy soil two different “comparison lengths” for the sheet pile
has been chosen: the first one is close to instability (10 m), the second one widely
ensures the equilibrium (14 m). The other solution (for both 10 m and 14 m) has
been made by using Plaxis but in this case the mesh has been set “fine” (around 600
elements and le = 2 m) keeping a 6-nodes triangle element, the value of R; has been
changed from R; = 0.8 into R; = 1 (“rigid”): this situation simulates the lack of the
interface (only soil and plate).

Displacement
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4 L=9.5
6 % / =10
[.:,]_'87 —_—L=11
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- B —1=13
16 L=14
x(2) 1=15

[m]

Figure 245: Horizontal displacement of the sheet pile varying its length

Table 21: Maximum and minimum values of the displacement of the sheet pile varying its length,
absolute and relative difference of displacement between sheet piles with different lengths

DISPLACEMENT [m]

MAXIMUM

L=8.5 L=9.5 L=10 L=11 L=12 L=13 L=14 L=15
0.37870 0.14802 | 0.10823 | 0.07439 | 0.06811 | 0.06670 | 0.06572 | 0.06675
ABS_DIFF 61% 71% 80% 82% 82% 83% 82%
REL_DIFF 61% 27% 31% 8% 2% 1% -2%

. mNmMwmw.

L=8.5 L=9.5 L=10 L=11 L=12 L=13 L=14 L=15
-0.01131 0.00840 | 0.01394 | 0.01995 | 0.02136 | 0.02164 | 0.02120 | 0.01995
ABS_DIFF 174% 223% 276% 289% 291% 287% 276%
REL_DIFF 174% -66% -43% -7% -1% 2% 6%
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2.6.2 C(lassic Method - Clay - 15t case (10 m) results

Table 22: Parameters required in the Classic Method

H v [0) c o} dex L
[m] (kN/m’] [°] [kPa] [kN/m] [m] [m]
20 20 25 0 10 4 10

Where H is thickness of the layer, y the self-weight of sand, ¢ the angle of friction of
sand, c the cohesion of sand, q is the load, dex the excavation, L the final length that
is required for equilibrium. The results are exposed in the following graphics. As the
minimum required length to have equilibrium is 8.5 m, the trend of the bending
moment is taken into account only within this length and not for the remaining part

of the sheet pile (Figure 248).
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Figure 246: Vertical stress along a sheet pile of 10 m in clay using the Classic Method
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Figure 247: Horizontal stress along a sheet pile of 10 m in clay using the Classic Metho

Bending Moment

M(z)
[kNm]
-200 -150 -100 -50 0

0
2
/ = Bending Moment
6
m] <

[0

[REY
[e»]

N

1
ES

Figure 248: Bending moment of a sheet pile of 10 m in clay using the Classic Method
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Figure 249: Shear force of a sheet pile of 10 m in clay using the Classic Method
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2.6.3 SheetPile2.0 - Clay - 1st case (10 m) results

Table 23: Parameters required in SheetPile2.0

H Y [0) C q dex dwl t Ep L
[m] [kN/m’] [*] | [kPa] [kN/m] [(m] | [m] | [m] [kPa] [m]
20 20 25 0 10 4 0 0.5 20x10° 10

Where H is thickness of the layer, y the self-weight of sand, ¢ the angle of friction of
sand, c the cohesion of sand, q is the load, dex the excavation, dwl the depth of the
groundwater level, t, Ep and L are the thickness, the elastic modulus and the length
of the sheet pile respectively. The results are exposed in the following graphics.
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Figure 250: Displacement of a sheet pile of 10 m in clay using SheetPile2.0

Table 24: Maximum and minimum values of the displacement in the sheet pile of 10 m in clay using

SheetPile2.0
DISPLACEMENT [m]

MAXIMUM
SP2.0-10m SP2.0-10m
0.33400 -0.02200
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Figure 251: Angle of rotation of a sheet pile of 10 m in clay using SheetPile2.0
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Figure 252: Bending moment of a sheet pile of 10 m in clay using SheetPile2.0
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Figure 253: Shear force of a sheet pile of 10 m in clay using SheetPile2.0
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Figure 254: Reaction of a sheet pile of 10 m in clay using SheetPile2.0

2.6.4 Plaxis - Clay - 15t case (10 m) results
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The generated mesh (Figure 256) is a fine element distribution.
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Figure 256: The mesh: “fine” with tri-6 elements

These are the main characteristics of the model. The results are illustrated in the
following screenshots.

Table 25: Parameters required in Plaxis
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Figure 257: Deformed mesh for the case of a sheet pile of 10 m in clay using Plaxis
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Figure 258: Displacement ux of a sheet pile of 10 m in clay using Plaxis

1=

ntroductory version

Introductory version

Introductpry version

Bending moments M (scaled up 0.0100 times)

Maximum value = -0.4344*10 12 kim/m (Element 42 at Node 4418)

Minimum value = -209.4kNm/m (Element 20 at Node 2756)

Introducto

Figure 259: Bending moment of a sheet pile of 10 m in clay using Plaxis
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Figure 260: Shear force of a sheet pile of 10 m in clay using Plaxis
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Figure 261: Total displacement u for the case of a sheet pile of 10 m in clay using Plaxis
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Figure 262: Total stress oxx for the case of a sheet pile of 10 m in clay using Plaxis
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Figure 263: Total stress ayy for the case of a sheet pile of 10 m in clay using Plaxis
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Figure 264: Total stress oxy for the case of a sheet pile of 10 m in clay using Plaxis
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Figure 265: Plastic points for the case of a sheet pile of 10 m in clay using Plaxis

2.6.5 Plaxis No Interface - Clay - 15t case (10 m) results

The only parameter that has been changed from previous chapter is the parameter
Ri of the interface: it has been changed from Ri = 0.8 into Ri = 1 (“rigid”), this new
condition simulates the lack of the interface between soil and structure. The other
parameters are the same as chapter 2.6.4. The solutions with coarse and fine mesh
are quite the same, whereas the model with fine mesh but with no interface differs
from the previous solutions and provides lower displacement (Figure 241).
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X

Figure 266: The mesh: “coarse” with tri-15 elements used at the beginning for the choice of the sheet
pile’s length

X

Figure 267: The mesh: “fine” with tri-6 elements with no interface (Ri=1)
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Figure 268: Displacement of a sheet pile of 10 m in clay using Plaxis with: coarse mesh and tri-15
elements, fine mesh and tri-6 elements, fine mesh and tri-6 elements with no interface

Table 26: Maximum and minimum values of the displacement in the sheet pile of 10 m in clay using
Plaxis with: coarse mesh and tri-15 elements, fine mesh and tri-6 elements, fine mesh and tri-6 elements
with no interface, absolute difference

DISPLACEMENT [m]
COARSE FINE NI COARSE FINE NI
0.10823 0.10278 0.09372 0.01394 0.01461 0.01468
ABS_DIFF 5% 13% ABS_DIFF -5% -5%

2.6.6 Clay- 1stcase (10 m) comparison

As for the solution with sand, the values obtained with SheetPile2.0 and with the
Classic Method (as the minimum required length to have equilibrium is 8.5 m, the
trend of the bending moment is taken into account only within this length and not
for the remaining part of the sheet pile, Figure 270) can be considered adequate for
a first approach to the problem whereas the FEM solutions can be chosen as more
coherent with the real behavior of the soil-structure system. The latter behaves
rigidly with small (Plaxis) or with almost no (SheetPile2.0) curvature (Figure 269)
because the sheet pile is short.
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Figure 269: Displacement of a sheet pile of 10 m in clay using Plaxis, SheetPile2.0, Plaxis with no
interface
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Figure 270: Bending moment of a sheet pile of 10 m in clay using Plaxis, SheetPile2.0, Plaxis with no
interface, the Classic Method
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Figure 271: Shear force of a sheet pile of 10 m in clay using Plaxis, SheetPile2.0, Plaxis with no interface

Table 27: Maximum and minimum values of the displacement, bending moment, shear force in the sheet
pile of 10 m in clay using Plaxis, SheetPile2.0, Plaxis with no interface and the Classic method, absolute

difference
DISPLACEMENT [m]
Plaxis SP2.0 PlaxisNI CM Plaxis SP2.0 PlaxisNI CM
0.10278 0.02696 0.09372 - 0.01461 | -0.00036 | 0.01468 -
ABS_DIFF 74% 9% - ABS_DIFF 102% -1% -
BENDING MOMENT [kNm]
MAXIMUM
Plaxis SP2.0 PlaxisNI CM Plaxis SP2.0 PlaxisNI CM
-4.3E-13 0 1.72E-13 0 -209.388 -164.7 -201.806 | -181.198
ABS_DIFF 100% 140% 100% | ABS_DIFF 21% 4% 13%
SHEAR FORCE [kN]
Plaxis SP2.0 PlaxisNI c™M Plaxis SP2.0 PlaxisNI c™M
77.11684 | 59.63999 | 73.98901 - -76.8479 | -66.3923 | -74.2937 -
ABS_DIFF 23% 4% - ABS_DIFF 14% 3% -

2.6.7 Classic Method - Clay - 25t case (14 m) results

The only parameter that has been changed from the Ist case is the length of the sheet
pile “L”, from L = 10 m into L = 14 m. The other parameters are the same as chapter
2.6.2. The results are exposed in the following graphics. As the minimum required
length to have equilibrium is 8.5 m, the trend of the bending moment is taken into
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account only within this length and not for the remaining part of the sheet pile
(Figure 274).
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Figure 272: Vertical stress along a sheet pile of 14 m in clay using the Classic Method
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Figure 273: Horizontal stress along a sheet pile of 14 m in clay using the Classic Method
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Figure 274: Bending moment of a sheet pile of 14 m in clay using the Classic Method

Shear Force

T(z)
[kN]
-2000 -1000 0 1000 2000 3000
. . o . . | e SUM (PA)
2
4 Sum(PP)

» Equilibrum of Shear
[m] N a

/ N

H R
[« I V)

Figure 275: Shear force of a sheet pile of 14 m in clay using the Classic Method

2.6.8 SheetPile2.0 - Clay - 2st case (14 m) results

The only parameter that has been changed from the 1st case is the length of the sheet
pile “L”, from L = 10 m into L = 14 m. The other parameters are the same as chapter
2.6.3. The results are exposed in the following graphics.

Table 28: Maximum and minimum values of the displacement in the sheet pile 10 m and in the sheet pile
of 14 m in clay using SheetPile2.0, absolute difference

DISPLACEMENT [m]

MAXIMUM
SP2.0-10m SP2.0-14m SP2.0-10m SP2.0-14m
0.33400 0.05780 -0.02200 0.00302
ABS_DIFF 83% ABS_DIFF 114%
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Figure 276: Displacement of a sheet pile of 14 m in clay using SheetPile2.0
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Figure 277: Angle of rotation of a sheet pile of 14 m in clay using SheetPile2.0
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Figure 278: Bending moment of a sheet pile of 14 m in clay using SheetPile2.0
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Figure 279: Shear force of a sheet pile of 14 m in clay using SheetPile2.0
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Figure 280: Reaction of a sheet pile of 14 m in clay using SheetPile2.0
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2.6.9 Plaxis - Clay - 2st case (14 m) results
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Figure 281: Model for the case of a sheet pile of 14 m in clay using Plaxis, particular of the interface

The only parameter that has been changed from the Ist case is the length of the sheet
pile “L”, from L = 10 m into L = 14 m. The other parameters are the same as chapter
2.6.4. The generated mesh (Figure 282) is a fine element distribution. The results are
illustrated in the following screenshots.
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Figure 282: The mesh: “fine” with tri-6 elements
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Figure 283: Deformed mesh for the case of a sheet pile of 14 m in clay using Plaxis

A‘A ictory versior

Introduct:

Introductory version

Introductory version

Introduct

pry version

Introductol

Total displacements u,, (scaled up 50.0 times)
Maximum value = 0.05476 m (Element 61 at Node 5817)
Minimum value = 002142 m (Eiement 1 atNode 1620)

Figure 284: Displacement ux of a sheet pile of 14 m in clay using Plaxis

R

ntroductory version

Introductory version

Introduct

pry version

Bending moments M (scaled up 0.0100 times)
Maximum value = 0,4091 kimm (Element 3 3t Node 1107)
Minimum value = -214.0 kim/m (Element 38 at Node 5554)

Introductoi

Figure 285: Bending moment of a sheet pile of 14 m in clay using Plaxis

[m]

Im]

[khimjfm}

2000

1750

1500

162



Soil - structure interaction: review of the fundamental theories

[knv/m]
Introductory version Introductpry version B
Y
Introductory version Introductol | ..
X
Shear forces Q (scaled up 0.0200 times)
Maximum value = 48,27 ki/m (Element 29 at Node 4350)
Minimum value = -74.71 kN/m (Element 46 at Node 5571)
Figure 286: Shear force of a sheet pile of 14 m in clay using Plaxis
=103 m]

—— 9000

pllLictory versior

80.00

’ —— .00
vy

T %
Aé{%é %ﬁ%"h-‘ —— &0.00

B O S KT
v
1 . 40.00
Y e
30.00
Introduct: -
X 10.00

Total displacements [u]
Maximum value = 0.1251m (Element 2105 at Node 4085)
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2.6.10 Plaxis No Interface - Clay - 25t case (14 m) results

The only parameter that has been changed from previous chapter is the parameter
Ri of the interface: it has been changed from Ri = 0.8 into Ri = 1 (“rigid”), this new
condition simulates the lack of the interface between soil and structure. The other
parameters are the same as chapter 2.6.9. As for the previous cases the solutions
with coarse and fine mesh are quite the same, whereas the model with fine mesh but
with no interface differs from the previous solutions and provides lower
displacement (Figure 294).

A

LU LT

ntrg o I ol

X

Figure 292: The mesh: “coarse” with tri-15 elements used at the beginning for the choice of the sheet
pile’s length
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Figure 293: The mesh: “fine” with tri-6 elements with no interface (Ri=1)
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Figure 294: Displacement of a sheet pile of 14 m in clay using Plaxis with: coarse mesh and tri-15
elements, fine mesh and tri-6 elements, fine mesh and tri-6 elements with no interface

Table 29: Maximum and minimum values of the displacement in the sheet pile of 14 m in clay using
Plaxis with: coarse mesh and tri-15 elements, fine mesh and tri-6 elements, fine mesh and tri-6 elements
with no interface, absolute difference

DISPLACEMENT [m]

MAXIMUM
COARSE FINE NI COARSE FINE NI
0.06572 0.06476 0.05797 0.02120 0.02142 0.02193
ABS_DIFF 1% 12% ABS_DIFF -1% -3%

2.6.11 Clay- 2st case (14 m) comparison

The comparison replies the evaluations exposed in the previous cases and can be
assumed as a general description of the phenomenon: the solutions achieved with
SheetPile2.0 and with the Classic Method (as the minimum required length to have
equilibrium is 8.5 m, the trend of the bending moment is taken into account only
within this length and not for the remaining part of the sheet pile, Figure 296) are
more conservative than the ones obtained with Plaxis which; the latter better
simulate the real behavior of the sheet pile and of the soil. By increasing the length
of the sheet pile, the difference between Plaxis and SheetPile2.0 decreases by 60%
(Table 27, Table 30): much more than the case of the sheet pile in sand. For this
length of the sheet pile (14 m), the maximum displacement obtained with Plaxis
differs only by 11% from the one of SheetPile2.0.
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Figure 295: Displacement of a sheet pile of 14 m in clay using Plaxis, SheetPile2.0, Plaxis with no
interface
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Figure 296: Bending moment of a sheet pile of 14 m in clay using Plaxis, SheetPile2.0, Plaxis with no
interface, the Classic Method
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Figure 297: Shear force of a sheet pile of 14 m in clay using Plaxis, SheetPile2.0, Plaxis with no interface

167



Soil - structure interaction: review of the fundamental theories

Table 30: Maximum and minimum values of the displacement, bending moment, shear force in the sheet
pile of 14 m in clay using Plaxis, SheetPile2.0, Plaxis with no interface and the Classic method, absolute
difference

DISPLACEMENT [m]
Plaxis SP2.0 PlaxisNI CM Plaxis SP2.0 PlaxisNI CM
0.06476 0.05780 0.05797 - 0.02142 0.00296 | 0.02193 -
ABS_DIFF 11% 10% - ABS_DIFF 86% -2% -
BENDING MOMENT [kNm]

Plaxis SP2.0 PlaxisNI CM Plaxis SP2.0 PlaxisNI CM
0.409128 0 2.901867 0 -213.999 | -342.322 | -204.991 | -181.198
ABS_DIFF 100% -609% 100% | ABS_DIFF -60% 4% 15%

SHEAR FORCE [kN]

Plaxis SP2.0 PlaxisNI c™M Plaxis SP2.0 PlaxisNI c™M
74.70678 | 97.58181 | 74.56294 - -48.2688 -89.446 | -52.4327 -
ABS_DIFF -31% 0% - ABS_DIFF -85% -9% -
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3 Conclusions

In this report, regarding the horizontal structures, the analytical methods of Winkler
and Pasternak have been exposed, pointing out the equations that describe the
theories (chapters 1.1.1, 1.1.2, 1.2.1, 1.2.2). The formulae have been implemented in
a spreadsheet and applied to soil with absolutely generic characteristics; then the
results were graphically shown (chapters 1.1.3, 0, 1.2.2). Applications of Pasternak’s
theory have been highlighted (chapter 1.2). The numerical solution obtained with
FEM program GeoStudio has been illustrated and compared to the analytical
solutions (chapter 0). Description of the constitutive material models has been
made; results obtained by elastic and elastic-plastic analysis applied to the previous
issue using the FEM program Midas GTS have been exposed (chapter 1.3). In the
following graphics and table a comparison between all these approaches is shown,
highlighting the topic values (Figure 298, Figure 299, Figure 300, Table 31).

One can see that the Winkler’s approach is the most conservative, and is matched by
the solution of Pasternak adopting S = 1 kN (the membrane doesn’t work), see
Figure 298.

The solution of Pasternak adopting S calculated by the formula suggested in chapter
1.2.1 m provides lower displacement than the one of Winkler, and is closer to the
solution by FEM.

Results by FEM programs GeoStudio (elastic) and Midas (elastic and elastic-plastic)
match, with no differences between elastic and elastic-plastic due to the limited
value of load applied to the foundations.

FEM programs give the most accurate solution to the problem considering the
theoretical feedback that is compulsory in their implementation, but the simplified
theories of Winkler and Pasternak can be successfully used in order to obtain an
approximate solution to the problem and general information regarding the order of
magnitude of the results.

The implementation of the analytical methods of Winkler and Pasternak is efficient
because one obtains an immediate evaluation of the parameters changing the input
data.

The solution with the spreadsheet is versatile because one can analyze different load
conditions modifying the border conditions of the equation that describes the
problem.
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Table 31: Maximum and minimum values of the displacement, bending moment, shear force of the
loaded beam varying the calculation approach (Winkle implemented in a spreadsheet, GeoStudio,
Pasternak implemented in a spreadsheet with S calculated by the formula suggested in the chapter 1.2.1,
Pasternak implemented in a spreadsheet with S=1 kN, Midas linear elastic, Midas elastic-plastic),
absolute difference

DISPLACEMENT [m]
MAXIMUM
Winkler GeoStudio_LE Pasternak S calc Pasternak S=1 | Midas_LE | Midas_EP
-0.01076 -0.00688 -0.00773 -0.01069 -0.00674 -0.00674
ABS_DIFF 36% 28% 1% 37% 37%
S MNMmM
Winkler GeoStudio_LE Pasternak S calc Pasternak S=1 | Midas_LE | Midas_EP
-0.01130 -0.00708 -0.00804 -0.01129 -0.00693 -0.00693
ABS_DIFF 37% 29% 0% 39% 39%
BENDING MOMENT [kNm]
MAXIMUM
Winkler GeoStudio_LE Pasternak S calc Pasternak S=1 | Midas_LE | Midas_EP
147.80820 60.20951 57.65565 123.92126 60.73399 | 60.73399
ABS_DIFF 59% 61% 16% 59% 59%

Winkler GeoStudio_LE Pasternak S calc Pasternak S=1 | Midas_LE | Midas_EP
-10.25935 -30.86267 -33.11338 -9.38980 -34.47295 | -34.47295
ABS_DIFF -201% -223% 8% -236% -236%

SHEAR FORCE [kN]
MAXIMUM

Winkler GeoStudio_LE Pasternak S calc Pasternak S=1 | Midas_LE | Midas_EP
20.47270 52.81734 43.59109 20.91220 48.61631 | 48.61631
ABS_DIFF -158% -113% -2% -137% -137%

Winkler GeoStudio_LE Pasternak S calc Pasternak S=1 | Midas_LE | Midas_EP
-79.52730 -52.81648 -56.40891 -79.08780 -48.61631 | -48.61631
ABS_DIFF 34% 29% 1% 39% 39%
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Regarding the vertical structures, the simplified limit equilibrium method has been
exposed (chapter 2.2) and application of it on sheet pile embedded in either sandy
or clay soil has been implemented (chapters 2.5, 2.6). The theory of the dependent
pressure method has been illustrated (chapter 2.3) and the calculation with the
relative program has been made, considering the same set of conditions (sand or
clay, length of the sheet pile) used in the previous approach (chapters 2.5, 2.6). The
FEM programs Plaxis and GeoStudio have been described (chapter 2.4), and the
obtained results on the set of conditions previously enounced have been shown
(chapters 2.5, 2.6). Comparison between all these approaches has been made,
preliminarily varying the length of the sheet pile (using Plaxis) and afterwards
choosing the comparison lengths: firstly, an embedment that widely ensures the
equilibrium, secondly, a solution close to instability (chapters 2.5, 2.6). In the
following graphics the topic results are summarized.

In Figure 301 one can see the behavior of the sheet pile varying the embedment
length from an instable condition to a stable one, for sandy and clay soil.

In Figure 302 one can see the case of a sheet pile of 9 m embedded in sand studied
by the support of the Classic Method, SheetPile2.0, GeoStudio and Plaxis. The FEM
programs ensure the most accurate results, but SheetPile2.0 and the Classic Method
(which can only estimate the bending moment along the sheet pile) could give an
approximate evaluation of the solution which can be useful for preliminary studies
on the issue.

In Figure 303 the behavior of a sheet pile of 10 m (close to instability) and that of a
14 m one (stable situation), both embedded in clay and with varying mesh
coarseness, element types and both first considering then ignoring the interface
element, is shown (using Plaxis). The accuracy of the solution changes according to
the choice of the element and the coarseness, but not significantly: of course it
depends on the precision required by the analysis. The lack of the interface element
changes the solution providing lower displacement to the sheet pile, whereas the
use of the interface element provides conservative results.

172



Soil - structure interaction: review of the fundamental theories

Displacement

x(z)

[m]

Displacement

—| =85

L=9.5

s | =10

— =11

—| =1 )

H
No

—| =] 3

[uky
B

e | =14

H
[e)}

x(z) =15
[m]

Figure 301: Searching for the length to compare by using Plaxis, sandy soil and clay soil
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Figure 303: Displacement of a sheet pile of 10 m and of 14 m in clay using Plaxis varying the mesh

coarseness, the element type and considering or not the interface element

Some further applications or studies can be suggested and summarized as follows:

Analyses of the response of the foundation studied in chapter 1.3, modelized
with “plate elements” instead of the “beam element”, either with an elastic or
elastic-plastic constitutive model: in this way the focus would be on the
behavior of the foundations, simulating more accurately the trend of
compression and tensile stress within the concrete

Validation of the Pasternak 3D model illustrated in the chapter 1.2.2.3 (Figure
304) by comparison with real data from loaded membrane applied on gravel
columns

To verify if a further improvement of SheetPile2.0 program is achievable in
order to gain more accuracy in terms of displacement and stress parameters
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e Further studies on the “interface element”, characteristic which highly
influences both the response of the sheet pile in excavation and under load,
and the soil-structure interaction considered in other application fields.

Figure 304: Behavior of a loaded membrane applied on gravel columns
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