
Università degli Studi di Padova

Dipartimento di Ingegneria

dell'Informazione

Corso di Laurea Triennale in Ingegneria

dell'Informazione

Reed-Solomon Codes

(Codici di Reed-Solomon)

Laureando Relatore

Tommaso Martini Prof. Tomaso Erseghe

25 luglio 2013

Anno Accademico 2012/2013

ii

Abstract

This bachelor degree thesis has the purpose of presenting a general overview
on Reed-Solomon codes as a subclass of cyclic codes and BCH codes, using a
mathematical approach to describe and prove their many practical aspects.
After brie�y exposing GaloisF ields theory, fundamental for the creation
of error correcting codes, we will introduce a systematic encoding strategy
through generator polynomial and a decoder based on Berlekamp-Massey and
Forney algorithms. Every explanation will be followed by examples referring
to a RS(255, 223) code. Moreover a Matlab implementation af a system en-
coder - channel - decoder has been realised and the whole code can be found
in this work.

Questa tesi di laurea triennale ha lo scopo di fornire una panoramica
generale sui codici di Reed-Solomon come sottoclasse dei codici ciclici e dei
codici BCH, utilizzando un approccio matematico per descrivere e dimostrare
i loro numerosi aspetti vantaggiosi. Dopo aver brevemente esposto la teo-
ria dei Campi di Galois, fondamentali per la costruzione di codici correttori
d'errore, presenteremo una strategia di codi�ca sistematica tramite polinomio
generatore e un decodi�catore basato sugli algoritmi di Berlekamp-Massey e
di Forney. Ogni spiegazione sarà seguita da esempi che fanno riferimento
ad un codice RS(255, 223). È stata, inoltre, realizzata un'implementazione
in codice Matlab di un sistema codi�catore - canale - decodi�catore e l'intero
codice può essere trovato all'interno di questo elaborato.

iv

CONTENTS

Contents

1 Introduction 1

1.1 Channel coding . 1
1.2 Hystorical overview . 2
1.3 Original approach to Reed-Solomon codes 3
1.4 Chapters contents . 4

2 Galois Fields 7

2.1 Groups . 7
2.1.1 Finite Groups . 7

2.2 Rings . 9
2.2.1 Operations modulo-p 10
2.2.2 Examples of important Rings 11

2.3 Fields . 11
2.4 Galois Fields . 12

2.4.1 Examples of important Galois Fields 13
2.4.2 Properties of Galois Fields 15

2.5 Operations in the Galois Fields 19
2.5.1 Addition . 19
2.5.2 Subtraction . 20
2.5.3 Multiplication . 20
2.5.4 Division . 21

3 Reed-Solomon Codes 23

3.1 Block codes . 23
3.2 Linear block codes . 24

3.2.1 Error detection . 25
3.2.2 Error correction . 26

3.3 Cyclic codes . 27
3.3.1 Primitive cyclic codes 31

3.4 BCH codes . 36
3.5 Reed-Solomon codes . 39

v

CONTENTS

3.5.1 RS(255, 223) code . 41

4 Reed-Solomon Encoder 43

4.1 Building the Galois Field . 43
4.2 Creating the generator polynomial 44
4.3 Encoding . 44

4.3.1 Systematic encoding 45

5 Reed-Solomon Decoder 47

5.1 Syndromes . 48
5.2 Error locator polynomial . 50
5.3 Forney Algorithm . 61

5.3.1 Finite �eld polynomial derivative 64

6 Matlab Implementation 67

6.1 Encoder initialization . 67
6.1.1 Parameters . 68
6.1.2 polTab and logTab 68
6.1.3 sumTab, mulTab and divTab 71

6.2 Generator polynomial . 74
6.3 Input word generation . 75
6.4 Systematic encoding . 76

6.4.1 Addition between polynomials 76
6.4.2 Division between polynomials 76

6.5 Noise generation . 79
6.6 Decoder initialization and syndromes 80
6.7 Error locator polynomial . 81
6.8 Forney algorithm . 85

A Primitive polynomials on GF (2) i

vi

Chapter 1

Introduction

1.1 Channel coding

Imagine you have to write a letter to a friend: �rst of all you have to
compose your message by lining up the words you need. Every word is made
by one or more symbols taken from a �nite set: in this case the alphabet (we
will assume not to use punctuation).

Once the letter has been written, you have to send the paper on which the
message is reported. The paper will probably travel through several stages
before arriving to the receiver and, most times, your letter will not have an
easy path to the destination: it could get wet, ripped or partially erased and
a part of it could even be lost. In the worst case some letters can not be read
by your friend or they could be misunderstood (e.g. a "i" could be damaged
to transform into an "l"). All of these eventualities undermine the possibility
for the receiver to properly understand your message or a part of that.

In telecommunication the question about transmitting a digital message
has to face the same problems: a message made by sequences of symbols
taken by a �nite alphabet has to be sent through a noisy channel, which
could damage or lose some of them.

A practical solution to the loss of a part of the message, and the easiest
one, is trivially sending it twice or more times. Once the receiver owns
several copies of the letter, even if all of those are partially unintellegible, he
can interpolate them to piece together the original message. Of course this
is a very expensive and wasteful solution, because we have to send twice all
the letter even if only a word will be corrupted.

The smartest and most adopted strategy is adding to every word some
redundancy symbols: if a word is made by k symbols (we will assume for

1

CHAPTER 1. INTRODUCTION

sake of simplicity that all the words have the same length), m symbols that
are totally insigni�cant for the message itself can be added in order to help
the receiver to correctly decode what has been written. Redundancy allows
a decoder, under certain conditions, to detect corrupted symbols and even to
correct them. This technique of a controlled addition of redundancy is called
channel coding.

It is interesting to notice that spoken languages already provide a basic
form of channel coding; as a matter of fact a language vocabulary does not
contains any combination of alphabet characters. This assure a certain re-
dundancy of the language, which is fundamental to help a listener to clearly
understand a speech even though some letters or some sounds are not cor-
rectly received or heard at all.

For example: osberve tht evon f some lettrs are missong or put i thy
wkong place anp sme wods are not corpectpy writoen, hte sontence is stull
cowprehensibme, unlss thepe are toi manc erros.

As noticed by Pierce in [19, p. 143], intrinsic channel coding of the English
language allows us to decode a sequence of sounds, or letters in the above
example, as a known word that has a large part of tokens in common with
the received one.

There are several ways to encode information words before transmitting
them through a noisy channel. This document has been written to give a
general overview on Reed-Solomon codes.

1.2 Hystorical overview

The birth of channel coding can be traced back to 1946, when a mathe-
matician named Richard Wesley Hamming of the Bell Laboratories created
a �rst trivial example of code using 7-bit words with three reduncancy bits:
the Hamming Code (7, 4), able to correct one bit error (a related article
was published only in 1950: [9]). In 1948 Claude Elwood Shannon, also
employed at the Bell Laboratories, published one of the milestones of in-
formation theory: article "A Mathematical Theory of Communication" [23],
where he proved that the error probability on the message symbols of a
transmission can be arbitrarily low if a suitable coding is applied. This re-
sult, based on Nyquist and Hartley works of 1928 [17][10] and known with
the name of Channel Capacity Theorem, is fundamental because it tells us
that, thanks to channel coding, we are able to reach the highest reliability in
digital communication, considering, of course, some tradeo�s between elec-
trical power, circuitry and computational complexity, information rate and

2

1.3. ORIGINAL APPROACH TO REED-SOLOMON CODES

so on. After Hamming Codes, Golay Codes (1946) and Reed-Muller Codes
(1954) represented the development of the �rst block codes, o�ering a higher
robustness, transmission power being equal.

In 1957 Eugene Prange, code thorist at the Air Force Cambridge Re-
search Laboratory of Massachusetts, �rst introduced the idea of cyclic codes
and studied their many properties [20]. A subclass of cyclic codes was the
subject of the research of French mathematician Alexis Hocquenghem and
of Indian American mathematician Ray Chandra Bose and his student Dijen
K. Ray-Chaudhuri. The former published a paper about these new and more
powerful codes in 1959 [11], the latter in 1960 [5]. Because of the simultaneity
and independence of the discoveries, the codes are now referred to by using
the three scientists initials: BCH codes.

Irving Reed and Gustave Solomon were two mathematicians working at
the Lincoln Laboratory of the Massachusetts Institute of Technology (MIT)
of Boston. In 1960 they presented their particular class of non-binary BCH
codes in the paper "Polynomial Codes over Certain Finite Fields" [21]. Even
though their codes presented signi�cant bene�ts with respect to previous
codes, they have been used only since almost 1970, because of their oner-
ous decoding computation, as also explained by Berlekamp in [2, p. vii]. In
1960 computer scientist William Wesley Peterson had already suggested a
decoding algorithm with complexity O(d3min) [18], as also said in [4, p. 176],
but the turning point occurred in 1968, when American mathematician El-
wyn Berlekamp proposed his version of a O(d2min) decoder for BCH codes
[2], as explained in [4, p. 180]. A few months later information theorist
James Lee Massey realised that Berlekamp algorithm was applicable to linear
feedback shift registers (LFSR) and thus easily implementable by electrical
circuits [15]. The Berlekamp-Massey algorithm allowed the wide spred of
Reed-Solomon codes in telecommunication systems.

Reed-Solomon codes are nowadays one of the best encoding strategies to
correct and control errors and they are used in several areas: data storage
in digital devices (CD, DVD, Blue-Ray), satellite transmissions, high speed
modems (ADSL), deep space communications, digital television, secret shar-
ing techniques, QR-codes, wireless and mobile communications and so on.

1.3 Original approach to Reed-Solomon codes

The original logic behind the coding technique, as Reed and Solomon
described in their paper [21], is very simple. Suppose you have a word of k
symbols [m0 m1 m2 . . . mk−1] to transmit. A polynomial of degree k−1 can

3

CHAPTER 1. INTRODUCTION

be made up using the k symbols as coe�cients:

p(x) = m0 +m1x+m2x
2 + . . .+mk−2x

k−2 +mk−1x
k−1 (1.1)

The polynomial p(x) is then evaluated in n settled points [q0 q1 q2 . . . qn−1]
in order to obtain a vector of n symbols (it must be n > k), which will rep-
resent the code word:

c0 = p(q0)

c1 = p(q1)

c2 = p(q2)

...

cn−1 = p(qn−1)

The word actually transmitted is [c0 c1 c2 . . . cn−1]. The receiver, who
must know the n values in which the polynomial has been evaluated, has to re-
construct original coe�cients by solving a system of k variables [m0 m1 m2 . . . mk−1]
and n equations:

c0
c1
c2
...

cn−1

 =


p(q0)
p(q1)
p(q2)
...

p(qn−1)

 =


1 q0 q20 · · · qk−10

1 q1 q21 · · · qk−11

1 q2 q22 · · · qk−12
...

...
...

. . .
...

1 qn−1 q2n−1 · · · qk−1n−1

 ·

m0

m1

m2
...

mk−1

 (1.2)

Of course some of the transmitted symbols [c0 c1 c2 . . . cn−1] will be
corrupted by the noisy channel (scratches on the CD surface, imperfections
of the hard disk, radio frequency interference . . .) and the received n-ple
[ĉ0 ĉ1 ĉ2 . . . ĉn−1] will be di�erent from the original one. Luckily algebra tells
us that k points are su�cient to uniquely identify a k− 1 degree polynomial
[26, p. 3-4] and, unless too much errors have been introduced or a too small
number of points q has been used, the reconstructed polynomial will properly
approximate the original one, p(x).

1.4 Chapters contents

Coding as introduced is a valid way to use Reed-Solomon codes, but this
is not the only approach, and not the most used as well. In the following
chapters another de�nition, with its related encoding technique, will be ex-
posed. Before reaching it, however, it is worth recalling and presenting the

4

1.4. CHAPTERS CONTENTS

background algebraic tools that will be used. Chapter 2: Galois Fields

gives a brief revision of algebraic theory, focusing on the theory of �nite �elds
and their properties, essential for the construction of e�cient error correct-
ing codes. Chapter 3: Reed-Solomon Codes can be seen as a sort of
matryoshka: using a quite chronological slant, we will start from the most
generic class of block codes, linear codes, and we will go deeper and deeper
to Reed-Solomon codes, the most speci�c class. For every subclass of codes
(linear, cyclic, BCH) we will focus only on the characteristics which are fun-
damental to understand and build RS codes. In the end of the chapter we will
investigate one of the most employed codes: the RS(255, 223), which will
be used as example for the whole document. Chapter 4: Reed-Solomon

Encoder explains the basic strategy to encode in systematic form an in-
put word through a Reed-Solomon code, while Chapter 5: Reed-Solomon

Decoder illustrates the Berlekamp-Massey algorithm for a quick decoding.
Chapter 4 makes use of the RS(255, 223) to integrate the explanation, while,
for the sake of clearness, exmaples in Chapter 5 concern a shorter code RS(7,
4). Eventually, Chapter 6: Matlab Implementation exposes the practi-
cal side of this work, giving a brief view of what and how has been made by
the Matlab programming language.

Chapters 2, 3, 4 and 5 have as main reference Monti's work: Teoria
dei Codici: Codici a Blocco [16]. Quite all the here exposed de�nitions and
theorems are investigated in more detail in this book and, unless di�erent
speci�ed, the reader is addressed to that for further information.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Galois Fields

Reed-Solomon codes are realised by the use of some as powerful as simple
algebraic structures, which are the basic background for coding theory. In
this section a short summary about these fundamental mathematical instru-
ments will be exposed, introducing the concepts of group, ring, �eld and,
eventually, of Galois Field. A more detailed view on these topics can be
found in [4, pp. 16-41, 65-90] and [14, pp. 1-13] and, for a more complete
mathematical explanation, in [3] and [25].

2.1 Groups

A group G with an operation "∗" is referred to with notation: (G, ∗) and
can be de�ned as it follows:

• (G, ∗) is non-empty: ∃a ∈ G.

• Operation "∗" is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c with a, b, c ∈ G.

• Operation "∗" has the identity element, indicated with the symbol e,
that is: ∀a ∈ G a ∗ e = e ∗ a = a.

• Every element a in G has an inverse with respect to operation "∗",
indicated with symbol a′, that is: ∀a ∈ G ∃ a′ ∈ G | a ∗ a′ = a′ ∗ a = e.

A group is said to be abelian, or commutative, if operation "∗" is commu-
tative, that is: ∀a, b ∈ G a ∗ b = b ∗ a.

2.1.1 Finite Groups

When a group G has a �nite number of elements, then we can talk about
a �nite group and its numerosity q is called its group order. Let's consider

7

CHAPTER 2. GALOIS FIELDS

any element a of the �nite group G. Operating on a through "∗" we will
obtain:

a2 = a ∗ a
a3 = a ∗ a ∗ a
a4 = a ∗ a ∗ a ∗ a
...

Since the group has a �nite number of elements, sooner or later we will
�nd two powers of a equal to each other: ai = aj with i < j.

Then, it is possible to execute these following steps:

ai = aj

(ai)′ ∗ ai = (ai)′ ∗ aj

e = aj−i

Notice that aj−i makes sense beacuse j > i, but i and j are not the only
values that verify the equality. If we de�ne m as the smallest integer such
that am = e, that is the lowest di�erence j− i, then m is said to be the order
of a with respect to operation "∗".

If an element a has got order m, then the �rst m powers of a are certainly
distinct, otherwise the order would be lower. As a matter of fact, assuming
that ah = ak with 0 < h < k < m, then we should have e = ak−h, with
k − h < m, which is in contradiction with the hypotheses of order m. It
follows that, since in G there are only q di�erent elements, the order of an
element is always lower or equal to q.

Theorem 1. Let m be the maximum among element orders of an abelian
�nite group, then m is a multiple of the order of any other element of the
group.

Proof. Let a be the element of the abelian �nite group G of maximum order
m. Let's choose another element of G with order n < m: both m and n can
be divided in a certain number of factors. Let's write m and n using all the
divisors p1, p2, . . . , pν of both m and n, with 0 as exponent in case any integer
is not present in the decomposition of one of the two values:

m = pm1
1 · pm2

2 · . . . · pmνν
n = pn1

1 · pn2
2 · . . . · pnνν

Let's impose an absurd condition: m is not a multiple of n. This means that
there is at least one factor pi which has an exponent in n greater than its
exponent in m: ni > mi with 1 ≤ i ≤ ν.

8

2.2. RINGS

For any positive integer 1 ≤ j ≤ ν it is possible to �nd an element aj of
G which has got order pmjj , as a matter of fact we can take:

aj = a

m

p
mj
j = a

p
m1
1 ·pm2

2 ·...·p
mj
j

·...·pmνν

p
mj
j = ap

m1
1 ·p

m2
2 ·...·p̃

mj
j ·...·p

mν
ν (2.1)

where notation p̃j means that element pj is not present in the product. Then

a
p
mj
j

j = ap
m1
1 ·p

m2
2 ·...·p

mj
j ·...·p

mν
ν = am = e.

In the same way let's take an element bi of G with order pnii and let's
consider the element

c = a1 ∗ a2 ∗ . . . ∗ ai−1 ∗ bi ∗ ai+1 ∗ . . . ∗ aν

where al, l = 1, 2, . . . , ν, is a generic element made up as exposed in (2.1).
Since all the pl are prime factors, c has order:

pm1
1 · pm2

2 · . . . · p
mi−1

i−1 · p
n1
i · p

mi+1

i+1 · . . . · pmνν = m
pnii
pmii

We can notice that pnii > pmii , because ni > mi. This implies that p
ni
i

p
mi
i

> 1

and m p
ni
i

p
mi
i

> m, which is equivalent to say that c has greater order than a,
which is, for hypotheses, the maximum order element. In this fact we �nd
the contradiction, therefore ∀i 1 ≤ i ≤ ν we must have mi ≤ ni, that is m is
a multiple of n.

This demonstrates that the maximum order of an abelian �nite group is
multiple of the order of any of its elements.

A cyclic group is a �nite group in which there exists at least one element
a whose powers cover all the elements of the group; in other words, its order
is m = q:

a, a2, . . . , aq−1, aq = e, aq+1 = a, aq+2 = a2, . . .

Since we cannot have higher order than the cardinality of the set, we can
deduce that, for cyclic groups, the order q of the set is also the maximum
order of the elements and, from the previous theorem, also a multiple value
for every other order.

2.2 Rings

A ring R is a set of elements in which two algebraic operations, "+"
(called addition) and "·" (called multiplication), are de�ned. Intuitively it

9

CHAPTER 2. GALOIS FIELDS

is a set where addition, subtraction and multiplication, but not division, are
allowed. All of these operations between two elements of the ring give as
result another element belonging to the ring.

A ring is a set (R,+, ·) with the following characteristics:

• (R,+) is an abelian group:

1. Operation "+" is associative: a+(b+c) = (a+b)+c with a, b, c ∈ R

2. Operation "+" has got the identity element, indicated with the
symbol 0, that is: ∀a ∈ R a+ 0 = 0 + a = a

3. Every element a in R has an inverse with respect to the operation
"+", indicated with the symbol −a, that is: ∀a ∈ R ∃ − a ∈
R | a+ (−a) = 0

4. Operation "+" is commutative, that is ∀a, b ∈ R a+ b = b+ a.

• Operation "·" is associative: a · (b · c) = (a · b) · c with a, b, c ∈ R.

• Multiplication "·" is distributive with respect to addition "+", that is:
∀a, b, c ∈ R a · (b+ c) = a · b+ a · c.

2.2.1 Operations modulo-p

It is useful, before moving on to �nite sets, to introduce operations mod-
ulo-p, which will be widely used in the following. In order to describe this
kind of operations it is worth de�ning the operator reminder, Rp[·]:

a = q · p+ r with r < q and r < p ⇒ Rp[a] = r

Addition modulo-p

Addition modulo-p can be indicated with notation Rp[a + b] and it is
de�ned as:

Rp[a+ b] = r ⇔ (a+ b) = q · p+ r with r < q and r < p

Multiplication modulo-p

Multiplication modulo-p can be indicated with notation Rp[a · b] and it is
de�ned as:

Rp[a · b] = r ⇔ (a · b) = q · p+ r with r < q and r < p

10

2.3. FIELDS

2.2.2 Examples of important Rings

In the following we will make a wide use of two particular rings, thus it is
worth brie�y introducing them right now. Moreover, also the �nite version
of these two rings are now introduced.

Ring of integer numbers

Let's start by considering the ring of integer numbers: Z. It is easy to
see that this set satis�es all the properties of the rings, as a matter of fact Z
is provided with the operation of addition "+" and multiplication "·" with
the respective identity elements 0 and 1 and it has an inverse element with
respect to addition, but not to multiplication. We can now build a ring R,
also called Z/q, with a �nite number q of elements, as it follows:

1. consider the set of the �rst q positive integers, and 0, in Z: {0, 1, 2, . . . , q−
1}

2. de�ne the operation addition as the addition modulo q: ∀a, b ∈ R a+
b =̇ Rq[a + b] where the symbol "+" in the left memeber denotes the
operation of addition in the set Z

3. de�ne the operation multiplication as the multiplication modulo q:
∀a, b ∈ R a · b =̇ Rq[a · b] where the symbol "·" in the left meme-
ber denotes the operation of multiplication in the set Z

It is easy to show that the set got in this way is still an algebraic ring,
but we will omit here this trivial proof.

Ring of polynomials

The set of all the polynomials with coe�cients in Z forms a ring. It
is always possible to sum and multiply two polynomials, but not always the
result of a division between two polynomials is still included in the polynomial
ring because of the presence of a possible reminder (e.g. x3÷ (x2 +x) = x−1
with x as reminder). It is possible to create a �nite ring of polynomials, but,
as we would need to use �nite �elds in order to de�ne them, we will postpone
the analysis of this set.

2.3 Fields

A �eld F is a set of elements in which two algebraic operations, "+"
(called addition) and "·" (called multiplication), are de�ned. Intuitively it

11

CHAPTER 2. GALOIS FIELDS

is a set where addition, subtraction, multiplication and division are allowed.
All of these operations between two elements of the �eld give as result an-
other element belonging to the �eld.

Formally a �eld is a set (F,+, ·) with the following characteristics:

• (F,+) is an abelian group:

1. Operation "+" is associative: a+(b+c) = (a+b)+c with a, b, c ∈ F

2. Operation "+" has got the identity element, indicated with the
symbol 0, that is: ∀a ∈ F a+ 0 = 0 + a = a

3. Every element a in F has an inverse with respect to the operation
"+", indicated with the symbol −a, that is: ∀a ∈ F ∃ − a ∈
F | a+ (−a) = 0

4. Operation "+" is commutative, that is ∀a, b ∈ F a+ b = b+ a.

• (F0̃, ·), that is the set F deprived of the identity element of the addition,
0, is an abelian group:

1. Operation "·" is associative: a · (b · c) = (a · b) · c with a, b, c ∈ F0̃

2. Operation "·" has the identity element, indicated with the symbol
1, that is: ∀a ∈ F0̃ a · 1 = 1 · a = a

3. Every element a in F0̃ has an inverse with respect to operation
"·", indicated with the symbol a−1, that is: ∀a ∈ F0̃ ∃ a−1 ∈
F0̃ | a · a−1 = 1

4. Operation "·" is commutative, that is ∀a, b ∈ F0̃ a · b = b · a.

• Multiplication is distributive with respect to addition, that is: ∀a, b, c ∈
F a · (b+ c) = a · b+ a · c.

2.4 Galois Fields

A �nite �eld, or Galois Field, is a �eld with a �nite number of elements
and it is usually referred to with the symbol GF (q) where q is the number of
elements in it. The special properties of this kind of sets make them suitable
for the composition of error correcting codes particularly simple to encode
and decode.

12

2.4. GALOIS FIELDS

2.4.1 Examples of important Galois Fields

In the following we will make use, above all, of two kinds of Galois Field,
which we will prove to be equivalent: �nite �eld of integer numbers and �nite
�eld of polynomials.

Finite �eld of integer numbers

It is possible to prove that a ring of integer numbers Z/q, as de�ned in
(2.2.2), is a �nite �eld if and only if q is prime.

Theorem 2. Z/q is a �nite �eld GF (q) ⇔ q is prime.

Proof. ⇒) Let's proceed by contradiciton: q is not prime. Then there exists
a, b ∈ [1, q − 1] such that q = a · b. Since Z/q is a �eld for hypotheses, every
element has got an inverse: ∃ a−1 | a · a−1 = 1; then (a · a−1) · b = 1 · b = b.

Hence:

a−1 · [a · b] = Rq[a
−1 · Rq[a · b]] = Rq[a

−1 · Rq[q]] = Rq[a
−1 · 0] = Rq[0] = 0

Then we would have: [a · a−1] · b = b = 0, but this is impossible, because
q = a · b = a · 0 cannot be a zero element. Therefore, q must be prime.

⇐) The purpose is now to prove that, if q is prime, then every element
has got an inverse with respect to multiplication. Given two positive integers
s and t, it is always possible to �nd a couple of integers a and b such that
MCD[s, t] = as + bt [16, p. 83]. Then, since MCD[s, q] = 1 for any s ∈
[1, q − 1],

1 = Rq[1]

= Rq[as+ bq] = Rq[as] +Rq[bq]

= Rq[Rq[a]Rq[s]] +Rq[Rq[b]Rq[q]]

= Rq[Rq[a]s] +Rq[Rq[b] · 0]

= Rq[Rq[a]s] + 0

= Rq[Rq[a]s]

Since Rq[1] = Rq[Rq[a] · s], then Rq[a] · s = 1 and thus s−1 = Rq[a]. In
the same way we can �nd an inverse element for every element of the �nite
�eld.

13

CHAPTER 2. GALOIS FIELDS

Finite �eld of polynomials

Before de�ning the �nite �eld of polynomials, it is worth completing the
de�nition of a ring of polynomials beginned in section (2.2.2): it is possible
to create a ring of this kind by using the following proceeding:

1. choose a �nite �eld of integers C and a polynomial p(x) with coe�cients
in C whose degree is an arbitrary integer n > 0 (for n = 0 we would
still get C)

2. consider the set of polynomials with coe�cients in the �nite �eld C
with degree less than n

3. de�ne the operation addition as the usual addition between polynomials
(remember that coe�cients now belongs to a �nite �eld, so their sum
gives as result the sum modulo q)

4. de�ne the operation multiplication as the reminder modulo p(x) of the
polynomial product, that is: ∀a(x), b(x) ∈ C[x], set of the polynomials
with coe�cients in C, a(x)·b(x) = Rp(x)[a(x)·b(x)], whereRp(x)[f(x)]
denotes the reminder polynomial of the division of f(x) by p(x).

It can be shown that the set thus obtained is a �nite ring, but we will
omit here the proof. It is also interesting to note that the numbers of element
in this ring is qn, because for each of the n coe�cients corresponding to a
power of the variable x (from x0 = 1 to xn−1) we can choose one of the q
elements in the �nite �eld C.

Theorem 3. GF (q)[x]/f(x) is a �nite �eld ⇔ p(x) is an irreducible poly-
nomial in C = GF (q).

Proof. ⇒) Let's proceed by contradiciton: p(x) is not irreducible. Then there
exists a(x), b(x) ∈ GF (q)[x] such that p(x) = a(x)b(x), with deg[a(x)] <
deg[p(x)] and deg[b(x)] < deg[p(x)]. Since GF (q)[x] is a �eld for hypothe-
ses, every element has got an inverse: ∃ a−1(x) | a(x)a−1(x) = 1, then
(a(x)a−1(x))b(x) = 1 · b(x) = b(x). Therefore:

a−1(x)(a(x)b(x)) = Rp(x)[a
−1(x)Rp(x)[a(x)b(x)]]

= Rp(x)[a
−1(x)Rp(x)[p(x)]]

= Rp(x)[a
−1(x) · 0] = Rp(x)[0] = 0

Then we would have: (a(x)a−1(x))b(x) = b(x) = 0, but this is impossible,
because p(x) = a(x)b(x) = a(x) · 0 cannot be a zero element, otherwise the
chosen polynomial p(x) would be an integer, breaking the rule saying that

14

2.4. GALOIS FIELDS

its degree must be n > 0. Therefore, p(x) must be irreducible.

⇐) The purpose is now to prove that, if p(x) is irreducible, then ev-
ery element has got an inverse. Given two polynomials s(x) and t(x), it
is always possible to �nd a couple of polynomials a(x) and b(x) such that
MCD[s(x), t(x)] = a(x)s(x)+b(x)t(x) [16, p. 91]. Then, sinceMCD[s(x), q(x)] =
1 for any s(x) ∈ GF (q)[x]:

1 = Rp(x)[1]

= Rp(x)[a(x)s(x) + b(x)q(x)] = Rp(x)[a(x)s(x)] +Rp(x)[b(x)p(x)]

= Rp(x)[Rp(x)[a(x)]Rp(x)[s(x)]] +Rp(x)[Rp(x)[b(x)]Rp(x)[p(x)]]

= Rp(x)[Rp(x)[a(x)]s(x)] +Rp(x)[Rp(x)[b(x)] · 0]

= Rp(x)[Rp(x)[a(x)]s(x)] + 0

= Rp(x)[Rp(x)[a(x)]s(x)]

Since Rp(x)[1] = Rp(x)[Rp(x)[a(x)]s(x)], then Rp(x)[a(x)]s(x) = 1 and thus
s−1(x) = Rp(x)[a(x)]. In the same way we can �nd an inverse element for
every element of the �nite �eld.

It is now possible to build any Galois Field of cardinality q = pn just
by creating a �nite �eld of polynomials in C with degree less than n and
considering each of them as an element of the new �nite �eld. For example,
since 4 is not prime, we can not build the �nite �eld of cardinality 4 just
using the modulo 4 operations (2 would not have an inverse element with
respect to the operation "·"). Instead, we can build a �eld GF (4) = GF (22)
using x2 + x+ 1 as prime polynomial in GF (2) = {0, 1}.

2.4.2 Properties of Galois Fields

Thanks to their special properties, Galois Fields are a very powerful
mathematical tool and thay are the foundation of Reed-Solomon codes theory.
In this section we introduce an overview of all their most useful characteris-
tics.

Fermat Theorem

Theorem 4 (Fermat Theorem). Let α1, α2, α3, . . . , αq−1 be non-zero ele-
ments of a �nite �eld C with order q ⇒

xq−1 =

q−1∏
i=1

(x− αi)

15

CHAPTER 2. GALOIS FIELDS

Proof. From the de�nition of �nite �eld, non-zero elements form a �nite
multiplicative group of cardinality q − 1. For Theorem 1 every element of
the multiplicative group has order which divides the maximum order, q − 1.
Let's consider a generic element αl ∈ C0̃ with order h:

αq−1l = (αhl)
q−1
h = 1

q−1
h = 1

Since αq−1l = 1 we deduce that every αl ∈ C0̃ is a root of the polynomial
xq−1 − 1.

On the other hand, since xq−1− 1 has got q− 1 factors (x−αl) and there
are exactly q−1 di�erent non-zero element αl of C, these are all and the only
roots of xq−1 − 1:

xq−1 =

q−1∏
i=1

(x− αl) with αl ∈ C0̃

Primitive Element and Primitive Polynomial

A primitive element α of a �nite �eld C with order q is an element with
multiplicative order q− 1, that is its multiplicative powers cover all the non-
zero elements of the Galois Field. Powers of α provide a very comfortble way
to point an element of the finitefield and in the following we will often refer
to an element in GF (q) with the relative power of the primitive element.

Theorem 5. Every �nite �eld has got at least one primitive element.

Proof. For Theorem 1 the order h of any of the non-zero elements of C, αl,
divides the maximum order, let's say m. Since m = h · p for any integer p:

αml = αh·pl = (αhl)p = (1)p = 1

Therefore: αml = 1, that is any αl is a root of xm − 1. Since there are q − 1
non-zero elements of C, xm−1 must have at least q−1 roots, that ism ≥ q−1.
On the other hand, since any of the element order divides the group order,
m ≤ q − 1. These two implications bring to m = q − 1. Then, every �nite
�eld has got an element with order q − 1, that is a primitive element.

From this theorem it follows that every Galois Field deprived by the zero
constitutes a cyclic multiplicative group.

A primitive polynomial f(x) is a prime polynomial (that is irreducible
and monic) such that GF (q)[x]/f(x), that is extension modulo f(x) of any

16

2.4. GALOIS FIELDS

Galois Field GF (q), has got polynomial x as primitive element. If we build
a Galois Field by using a primitive polynomial, we can refer to every element
of the �eld GF (qn), with n degree of f(x), as a power of x. Since we do
not treat here how to �nd primitive polynomials, we will take them from
pre-compiled tables.

Theorem 6. ∀p prime integer and ∀n ∈ N ∃ f(x) primitive polynomial with
degree n on GF (p).

Minimal Polynomial

Let C0 be a Galois �eld, GF (p), let C be an extension of GF (p), GF (pn),
and let α 6= 0 be any element in C. The monic polynomial whose coe�cients
are taken from C0, which have the least degree and such that it vanishes when
evaluated in α, is called minimal polynomial of α on C0 and it is expressed
by notation: fα(x).

Theorem 7. Let C be a �nite �eld extension of the �nite �eld C0 and let be
α ∈ C, α 6= 0 ⇒ ∃! fα(x), minimal polynomial of α on C0.

Proof. First of all we can prove that for every element of a �nite �eld with
cardinality q there exists at least one polynomial with coe�cients in C0 which
vanishes if evaluated in it. Let's consider any element α ∈ C. For Fermat
Theorem 4, α is a root of xq−1 − 1, which has got coe�cients in C0. Thus,
we are sure that a polynomial of this kind exists, because element 1 and −1
must belong to every �eld.

Let's prove that fα(x) is irreducible by contradiction: if we suppose fα(x)
is not irreducible, then fα(x) = s(x)t(x) with deg[s(x)] ≥ 1 and deg[t(x)] ≥ 1.
Since fα(α) = 0, then necesserily s(α) = 0 or t(α) = 0. In this case fα(x)
would not be the polynomial with coe�cients in C0 which vanishes in α with
the least degree, that is in contradiction with the hypotheses. Therefore,
fα(x) must be irreducible.

Eventually, we have to demonstrate that fα(x) is the only minimal poly-
nomial. Suppose there is a polynomial g(x) such that g(x) = q(x)fα(x)+r(x)
with deg[r(x)] < deg[fα(x)]. If g(α) = 0, that is α is a root of g(x), then
it must be g(α) = q(α)fα(α) + r(α) = q(α) · 0 + r(α) = r(α) = 0. Since a
polynomial with smaller degree than fα(x) which vanishes in α cannot exist,
r(x) must be the null polynomial: r(x) = 0. Therefore: g(x) = q(x)fα(x)
and g(x) is a multiple of fα(x).

If we suppose g(x) is monic and with the same degree than fα(x), that is
if we assume there are two minimal polynomials, then q(x) must be q(x) = 1.

17

CHAPTER 2. GALOIS FIELDS

This implies that g(x) and fα(x) are the same polynomial. In other words
fα(x) is the only minimal polynomial.

Numerosity and existance of Galois Fields

Theorem 8. The number of elements of any Galois �eld can be expressed
in the form q = pn with p prime integer and n > 0, n ∈ N.

Proof. Let fα(x) = xn +fn−1x
n−1 + . . .+f1x+f0 be the minimal polynomial

for α with coe�cients in GF (p), where α belongs to the extension C of
C0 = GF (p). This means that

fα(α) = αn + fn−1α
n−1 + . . .+ f1α + f0 = 0

and then

αn = −(fn−1α
n−1 + . . .+ f1α + f0)

= −
n−1∑
i=0

fiα
i with fi ∈ C0

We have, thus, found a representation of the element αn through elements
that belong to C0. This can be done for every power of α as well, as a matter
of fact:

αn+1 =

(
−

n−1∑
i=0

fiα
i

)
· α

= −
n−1∑
i=0

fiα
i+1

= −fn−1αn −
n−2∑
i=0

fiα
i+1

= −fn−1

(
−

n−1∑
i=0

fiα
i

)
−

n−2∑
i=0

fiα
i+1

If we choose α a primitive element, which always exists in �nite �elds (see
Theorem 6), then we can write every element of C through coe�cients in C0
just by iterating the shown proceeding.

This notation with elements in C0 is unique for every element of C; if there
were two representations of α:

sn−1α
n−1 + sn−2α

n−2 + . . .+ s1α+ s0 = tn−1α
n−1 + tn−2α

n−2 + . . .+ t1α+ t0

18

2.5. OPERATIONS IN THE GALOIS FIELDS

then we could subtract them, getting:

(sn−1 − tn−1)αn−1 + (sn−2 − tn−2)αn−2 + . . .+ (s1 − t1)α + (s0 − t0) = 0

which would be a polynomial with smaller degree than n vanishing in α; but
this is impossible because the minimal polynomial has degree n for hypothe-
ses.

We can represent pn elements with this notation, because we can choose
the n coe�cients of the polynomial with maximum degree n−1 in p di�erent
ways among p elements of C0 = GF (p). Thanks to the linearity of �elds,
every linear combination of elements in C must give as result still an element
in C. This guarantees that the pn elements written through the exposed
notation must all belong to C. Therefore, any Galois Field has pn elements,
with p a certain prime integer an n a positive value.

Theorem 8 has got a great relevance for �nite �elds theory, because it tells
us that we can build every Galois Field just by choosing a prime integer p and
any prime polynomial with degree n and coe�cients in GF (p) and evaluate
GF (q) = GF (pn) = GF (p)[x]/f(x). It is possible to prove that, given a
�nite �eld GF (p) and a positive integer n, it is always possible to �nd a
prime polynomial of degree n with coe�cients in GF (p) [16, p. 109-110].

2.5 Operations in the Galois Fields

Once we know what is and how to build a �nite �eld, we would like
to use it for executing some operations between its elements. The possible
operations on a �nite �eld are the fundamental four operations: addition,
subtraction, multiplication and division. In the next following we will examine
each of them, observing how thay can be computed in the easiest way.

Suppose we have a Galois Field GF (q) = GF (pn) where p is prime and
n is any positive integer. For what has been said in the previous section
by Theorem 8, every �nite �eld can be expressed in this way. Moreover, if
n = 1 we simply have the set of the �rst n integers and the operations are
de�ned as operations modulo p, otherwise, if n > 1, we can associate to every
element of GF (pn) a polynomial in GF (p)[x]/f(x), where f(x) is a primitive
polynomial of degree n. It is much more convenient to use the polynomial
notation when n > 1.

2.5.1 Addition

If n = 1 the addition is easily de�ned as addition modulo p (see section
(2.2.1) for its formal description).

19

CHAPTER 2. GALOIS FIELDS

If n > 1, we can replace the two elements to sum, let's say c1 and c2, with
their relative polynomial representations with coe�cients in GF (p):

c1 → a0 + a1x+ ...+ an−1x
n−1

c2 → b0 + b1x+ ...+ bn−1x
n−1

and sum the two polynomials. This operation is now very easy to execute,
because we can simply sum the corresponding couples of coe�cients relative
to each power and, since p is prime and the coe�cients belong to GF (p),
the addition is made modulo p. Once we have the resulting polynomial, we
have to convert it to its corresponding element of GF (pn). To speed up this
operation we can make use of a precompiled table which associates to every
element its polynomial form.

2.5.2 Subtraction

Subtraction is very similar to addition and we can proceed in the same
way: operation modulo p if n = 1 and polynomial subtraction if n > 1.

2.5.3 Multiplication

If n = 1 the multiplication is de�ned as multiplication modulo p (see
section (2.2.1) for its formal description).

If n > 1, it is comfortable to take advantage of the properties of primitive
elements: if we consider every non-zero element of the �nite �eld as a power
of the primitive element α, multiplication between two elements reduces to
the sum of their exponents:

αi · αj = αi+j

If i+ j is greater than pn − 1, we can reduce it to a lower power remem-
bering that αp

n−1 = 1 and therefore

αi+j = αk+(pn−1) = αk · αpn−1 = αk · 1 = αk

Also in this case, as for addition and subtraction, it is useful to have a
table associating every element of GF (pn) to its logarithmic representation
to quickly compute multiplication between two elements.

20

2.5. OPERATIONS IN THE GALOIS FIELDS

2.5.4 Division

Division is very similar to multiplication and we can proceed in the same
way: operation modulo p if n = 1 and di�erence between the esponents of
the logarithmic form if n > 1.

21

CHAPTER 2. GALOIS FIELDS

22

Chapter 3

Reed-Solomon Codes

Reed-Solomon codes can be seen as a special subclass of BCH codes. In
order to de�ne what a Reed-Solomon code is, following a di�erent approach
from the polynomial one exposed in section (1.3), it is �rst necessary to
introduce more general types of codes for channel coding, each a particular
subclass of another:

block codes
↑

linear block codes
↑

cyclic codes
↑

BCH codes
↑

Reed-Solomon codes

3.1 Block codes

Given a �nite alphabet A of q symbols, a block code is a function that
assigns to a k-symbol word an n-symbol word. A stream of symbols belonging
to the alphabet A arrives to the encoder, which "cuts" it in blocks of k
symbols each that are uniquely mapped in a set of words of n symbols. It is
easy to see that there are qk possible words which are uniquely mapped in
one of the qn possible code words.

23

CHAPTER 3. REED-SOLOMON CODES

3.2 Linear block codes

A block code is linear if its words are a vectorial subspace of the vectorial
space made by all the n-ples whose elements are in the �nite �eld GF (q):
V(q)
n =̇ (GF (q))n [16, p. 31]; addition between two code words always gives

as result a code word as well. This property is very useful in the decoding
process, especially decoding by syndrome. Thanks to linearity, a linear block
code is uniquely identi�ed by a generator matrix G.

A code is said to be systematic if the n-symbol code word c is made up
by adding n− k redundancy symbols to the k-symbol input word u:

u = [u0 u1 . . . uk−1] → c = [c0 c1 . . . cn−k−1 u0 u1 ... uk−1]

Systematic codes are comfortable because they allow to know the original
input word just by observing the resulting code word. As one can suppose,
however, channel noise corruption does not permit such an easy decoding.

For linear block codes we can de�ne some useful and important parameters
we will often use in the following (we will refer to a generic word with the
vector v).

• Hamming weigth w(v): number of non-zero components in the word
v.

For binary codes Hamming weigth also represents the number of posi-
tions in the code word �lled by "1".

• Hamming distance d(v, u): number of positions at which the two
words contain di�erent symbols:

d(v,u) =
l∑

i=0

xi where xi =

{
1 if vi 6= ui

0 if vi = ui

and l is the vector length of v and u.

• minimum Hamming weigth of a code C: wmin
.
= min{w(v)}

with v ∈ C, v 6= 0.

• minimum Hamming distance of a code C: dmin
.
= min{d(v,u)}

with v,u ∈ C, v 6= u.

Theorem 9. C is a binary linear block code ⇒ dmin = wmin.

24

3.2. LINEAR BLOCK CODES

Proof. Since C is binary d(v,u) = w(v − u) because the di�erence between
two binary vectors, equal to their addition, is made by a XOR comparison.
This means that v−u has a "0" in the positions where the two vectors have
equal symbols and "1" in the positions where the two vectors have di�erent
symbols. Therefore the vector v − u has got as many "1" as the number of
positions at which the two original vectors di�er each others.

Theorem 10 (Singleton bound). C is a linear block code⇒ dmin ≤ n−k+1

Proof. Since dmin = wmin, we can demonstrate the sentence for the lowest
weigth code word.

It can be proved that every code has an equivalent systematic code [16,
p. 34][?, p. 50], that is every code can be transformed into a systematic code
thorugh elementary algebraic operations on the generator matrix without
changing any of its carachteristics (we will not investigate this property in
more detail). Let's consider the systematic code equivalent to the code C.
A codeword of this code is made by an input word preceded (or followed)
by n − k redundancy symbols. Among the input words there is certainly a
vector in the form: [0 0 . . . 0 1]. As a matter of fact the input dictionary
includes all the combinations of q = 2 symbols in k positions. Therefore the
minimum weight word is formed in this way:

[x x . . . x 0 0 . . . 0 1]

where x can be either "0" or "1". In the worst case (highest weigth) each
of the n − k leftmost symbols (x) are all "1". The minimum number of
"1" in a code word is thus over limited by 1 + (n − k). This means that
dmin = wmin < n− k + 1.

3.2.1 Error detection

A code C detects an error when it recognises that some symbols of the
received word have been corrupted by the channel. This is easy to do thanks
to redundancy: valid code words are only qk of the qn possible words of the
vectorial space V(q)

n =̇ GF n(q). If the received code word does not belong to
the code dictionary, then some errors must have changed the original (valid)
word. Remember that some very unlucky cases may happen: if the noisy
channel modi�es the sent codeword so that to change it into another valid
codeword, the code will not be able to detect any error. In order to avoid this
eventuality, we must ensure a certain di�erence between the qn code words,
which increases with the amount of reduncancy: the more symbols we add

25

CHAPTER 3. REED-SOLOMON CODES

the less probably a corrupted code word will become exactly another valid
word.

A linear block code is able to properly detect an error only if the number
of corrupted symbols t is smaller than dmin. For greater weight error vectors
we have no warranty of correctly decoding the received word, since symbol
errors may be so many as to transform the word into another valid code word.
Furthermore there is no way to know the error vector: we can only act on
the code in order to make probability of having t ≥ dmin errors very remote.
The only precaution we can take is trying to make this kind of events very
unlikely, or, equivalently, to require a minumum Hamming distance as great
as possible. Once a wrong codeword is detected, the receiver can ask the
sender for a re-transmission.

3.2.2 Error correction

A code C corrects an error when it recognises that some symbols of the
received word have been corrupted by the channel, but it manages to guess
the original sent word. If the input words are all equally likely, the reasoning
is still very naive: if the received word di�ers from a word u for a number of
symbols smaller than from any other word, then it is more likely that u has
been sent. Of course we are assuming that the system is "well-done", that is
a small number of errors is more probable than a great amount of distortion.

Any word v in GF n(q) not belonging to C is nearer, in terms of Hamming
distance, to one or more code words than to others. To be sure to properly
interpret the sent word we must have the assurance that the decoded code
word c is nearer to received word v than any other code word. This is trivially
true if the distance between the two words is less than dmin

2
. As a matter

of fact if t symbols, with t ≥ dmin
2
, are di�erent from the choosen codeword,

there might be another code word with less distance; while, if t < dmin
2

we
are sure that d(v, c) is the least possible distance. The following theorem
formalises that, being v the received word, if v di�ers from the code word
c for less than dmin

2
symbols, then v is nearer to c than to any other code

word.

Theorem 11. d(v, c) < bdmin
2
c and d(w, c) ≥ dmin ⇒ d(v, c) < d(v,w).

Proof. Because of the tringular inequality for distances we have:

d(w, c) ≤ d(w,v) + d(v, c)

and therefore:
d(w, c)− d(v, c) ≤ d(w,v)

26

3.3. CYCLIC CODES

In the worst case, when dmin is even and thus bdmin2
c is as great as possible:

d(w, c)− d(v, c) = dmin −
(
dmin

2
− 1

)
=
dmin

2
+ 1

and, in general:

d(w, c)− d(v, c) ≥ dmin
2

+ 1

It follows that:

d(w,v) ≥ d(w, c)− d(v, c) ≥ dmin
2

+ 1 > bdmin
2
c > d(v, c)

In conclusion:
d(v, c) < d(w,v) ∀ w 6= v

A linear block code is able to properly correct an error only if the number
of corrupted symbols t is smaller than bdmin

2
c.

3.3 Cyclic codes

Cy clic codes are linear block codes with the property that, given a code
word, every vector obtained by shifting its components on the left or on the
right of any number of positions is still a code word. That is:

[c0 c1 . . . cn−1] ∈ C ⇒ [cl cl+1 . . . cn−1 c0 c1 . . . cl−1] ∈ C

Let's consider the polynomial ring de�ned as GF (q)[x]/(xn − 1). In this
set, multiplying by x corresponds to shifting the coe�cients to the right of
one position:

v(x) ∈ GF (q)[x]/(xn − 1)

x · v(x) = Rxn−1[x · v(x)]

= Rxn−1[x · (v0 + v1x+ . . .+ vn−1x
n−1)]

= Rxn−1[v0x+ v1x
2 + . . .+ vn−1x

n]

= Rxn−1[v0x+ v1x
2 + . . .+ vn−1x

n − vn−1 + vn−1]

= Rxn−1[v0x+ v1x
2 + . . .+ vn−1(x

n − 1) + vn−1]

= Rxn−1[vn−1 + v0x+ v1x
2 + . . .+ vn−2x

n−1 + vn−1(x
n − 1)]

= vn−1 + v0x+ v1x
2 + . . .+ vn−2x

n−1

27

CHAPTER 3. REED-SOLOMON CODES

We can obtain a cyclic code by considering a subset of polynomials in
GF (q)[x]/(xn − 1): if we choose one or more polynomials in this set and we
also take every polynomial got by shifting the original one, the vectors of
their coe�cients represent a cyclic code. Furthermore it is worth noting that
we could associate any of the possible code words to an element of the Galois
Field GF (qn).

It is possible to prove that codes of this type are totally identi�ed by a
generator polynomial g(x). Every code word is obtained by multiplying the
input word for the generator polynomial, but, before talking about it, we
�rst need to introduce some basic results.

Theorem 12. C is a cyclic code ⇒ ∃! g(x) ∈ C, monic polynomial of least
degree with coe�cient of x0 = 1: g0 6= 0.

Proof. We will prove it by contradiction, assuming there are two monic poly-
nomials g(x) and f(x) both with minimum degree m:

g(x) = g0 + g1x+ . . .+ gm−1x
m−1 + xm

f(x) = f0 + f1x+ . . .+ fm−1x
m−1 + xm

Then, since cyclic codes are also linear codes by de�nition, g(x) − f(x)
must belong to C:

g(x)− f(x) = (g0 + g1x+ . . .+ xm)− (f0 + f1x+ . . .+ xm)

= (g0 − f0) + (g1 − f1)x+ . . . (gm−1 − fm−1)xm−1

which has got degree less than m. The contradiction lies in the fact that m
is the minimum degree, then g(x) must be the only minimum degree monic
polynomial in C.

To prove that g0 6= 0 let's still proceed by contradiction, imposing g0 = 0:

g(x) = g0 + g1x+ . . .+ gm−1x
m−1 + xm

= g1x+ . . .+ gm−1x
m−1 + xm

= x(g1 + g2x+ . . .+ gm−1x
m−2 + xm−1)

= x · g̃(x)

Multiplying g(x) by xn−1 gives as result another code polynomial, in
particular:

xn−1 · g(x) = Rxn−1[x
n−1g(x)]

= Rxn−1[x
n−1xg̃(x)] = Rxn−1[x

ng̃(x)]

= Rxn−1[x
n(g1x+ . . .+ gm−1x

m−1)]

28

3.3. CYCLIC CODES

Multiplying g̃(x) by xn means shifting its coe�cients of n positions, that
is equivalent to make an entire circle arriving to the initial con�guration.
Then:

xn−1 · g(x) = g1x+ . . .+ gm−1x
m−1

which has got degree lower than m, hence the contradiction: g0 must not be
null.

Theorem 13. C = GF (qn) is a cyclic code and g(x) is its monic polynomial
of least degree with g0 6= 0, then v(x) on GF (q) with degree smaller than n
is a polynomial code ⇔ v(x) is a multiple of g(x).

Proof. ⇐) The generic polynomial p(x) can be seen as a linear combination
of powers of x; then, multiplying p(x)g(x) means shifting g(x) in any way
and sum all these di�erent new words; the resulting word still belongs to C
because it is linear. Thus if v(x) = p(x)g(x) is a multiple of g(x), it is also a
code polynomial.

⇒) Let's write v(x) as it follows:

v(x) = q(x)g(x) + r(x)

where deg[r(x)] < deg[q(x)] and deg[r(x)] < deg[g(x)]. Then:

v(x)− q(x)g(x) = r(x)

Since C is also a linear block code and q(x)g(x) belongs to C, as we proved
in the �rst part of this demonstration, v(x) − q(x)g(x) must still belong to
C and thus r(x) must belong to C too. We know that deg[r(x)] < deg[g(x)],
but, since g(x) is the minimum degree polynomial, r(x) can only be the null
polynomial: 0. Thus:

r(x) = 0⇒ v(x) = q(x)g(x)

that is v(x) is a multiple of g(x).

The polynomial g(x) introduced in Theorems 12 and 13 is the generator
polynomial of C: it uniquely identi�es the code and through it we can build
the whole C. Let's see other interesting properties of g(x).

Theorem 14. g(x) is the least degree monic polynomial with g0 6= 0 of a
cyclic code C with length n, then it is the generator polynomial of C ⇔ g(x)
divides xn − 1.

29

CHAPTER 3. REED-SOLOMON CODES

Proof. ⇒) It certainly exists a way to write xn − 1 as it follows:

xn − 1 = q(x)g(x) + r(x)

where deg[r(x)] < deg[q(x)] and deg[r(x)] < deg[g(x)]. Therefore:

Rxn−1[x
n − 1] = Rxn−1[q(x)g(x) + r(x)]

0 = Rxn−1[q(x)g(x)] +Rxn−1[r(x)]

and hence:
Rxn−1[q(x)g(x)] = −r(x)

Rxn−1[q(x)g(x)] is deinitely a code word because g(x) is the generator
polynomial, then r(x) must be a code polynomial as well; however, since
deg[r(x)] < deg[g(x)], it must be: r(x) = 0, and then xn − 1 = q(x)g(x). In
other words, g(x) divides xn − 1.

⇐) Let's choose a code polynomial: v(x) = v0 + v1x+ . . .+ vn−1x
n−1. By

de�nition this polynomial is divisible by g(x). Let's shift v(x) of one position
to the right by multiplying it for x:

x · v(x) = x(v0 + v1x+ . . .+ vn−1x
n−1)

= v0x+ v1x
2 + . . .+ vn−1x

n

= v0x+ v1x
2 + . . .+ vn−1x

n − vn−1 + vn−1

= vn−1 + v0x+ v1x
2 + . . .+ vn−1(x

n − 1)

= (vn−1 + v0x+ v1x
2 + . . .+ vn−2x

n−1) + vn−1(x
n − 1)

= ṽ(x) + vn−1(x
n − 1)

It follows that:

ṽ(x) = xv(x)− vn−1(xn − 1)

ṽ(x) = xa(x)g(x)− vn−1b(x)g(x)

ṽ(x) = [xa(x)− vn−1b(x)]g(x)

Last equalities hold because, being v(x) a code polynomial, it is divisible
by g(x) and g(x) divides xn−1 for hypotheses. Then ṽ(x), which was obtained
by shifting a code word, is still a code polynomial as it is a multiple of g(x).
This means that g(x) is a generator polynomial.

Since g(x) has got degree m, with m < n, we can multiply for g(x) only
polynomials with degree less than or equal to n−m−1 in order to get a code
polynomial with degree less than n. Input polynomials have to be formed by

30

3.3. CYCLIC CODES

up to n−m coe�cients and therefore we have qn−m valid input polynomials;
this is the number of vectors we can make up by �lling n−m positions with q
elements. Notice that, for larger degrees, we will not obtain further resulting
polynomials, thanks to multiplication modulo (xn − 1).

It is clear that, in order to build a cyclic code, we have �rst to �nd a proper
generator polynomial. Theorem 14 tells us that, if we need a n-symbol code,
we should look for g(x) among polynomials on GF (q) which divide xn − 1.
Let's de�ne the set of prime polynomials which are divisors of xn − 1:

F = {f1(x), f2(x), . . . , fM(x)}

such that:

xn − 1 =
M∏
l=1

fl(x) (3.1)

The product of every subset of polynomials taken from F forms a possible
generator polynomial: we could build 2M−2 non-banal generator polynomials
(excluding "0" and xn − 1 itself).

3.3.1 Primitive cyclic codes

Let's limit our range of research: we will be interested only on codes
whose symbols are taken from GF (q) and whose length is n = qm−1 for some
m ∈ N. This kind of codes are called primitive cyclic codes. This restriction
brings to the following result, which will reveal to be very comfortable:

xn − 1 = xq
m−1 − 1

Let's consider the �nite �eld GF (qm), extension of GF (q). It follows from
Fermat Theorem 4 that:

xq
m−1 − 1 =

qm−1∏
i=1

(x− αi)

where αi is a non-zero element of GF (q). Using equation (3.1) we see that
a generic prime polynomial fl(x) on GF (q) can be factored in GF (qm) as a
product of some (x−αi) factors. In other words: fl(x), monic polynomial in
GF (q), becomes zero if evaluated in any element αi of the extension GF (qm).
That is to say that fl(x) is a minimal polynomial on GF (q) with respect to a
certain element αi. We can, thus, build a generator polynomial by selecting
its zeros among the elements of the extended �eld GF (qm) as it follows:

1. choose the zeros of g(x): β1, β2, ..., βµ ∈ GF (qm)

31

CHAPTER 3. REED-SOLOMON CODES

2. �nd the minimal polynomials: fβ1(x), fβ2(x), ..., fβµ(x)

3. evaluate g(x) = LCM(fβ1(x), fβ2(x), ..., fβµ(x))

The question is now about how to compute minimal polynomials. Be-
fore introducing another important theorem, we need to have a look to two
relevant lemmas.

Theorem 15. Let GF (q) = GF (pn) be a �nite �eld. For all s(x) and t(x)
on GF (q) and for every integer ν ≥ 1, it holds that:

[s(x) + t(x)]p
ν

= [s(x)]p
ν

+ [t(x)]p
ν

Proof. Let's prove it by induction. The base case is ν = 1:

[s(x) + t(x)]p = [s(x)]p + [t(x)]p

We can use the binomial equation of Newton to get:

[s(x) + t(x)]p =

p∑
k=0

(
p

k

)
[s(x)]k[t(x)]p−k

= [s(x)]p +

p−1∑
k=1

(
p

k

)
[s(x)]k[t(x)]p−k + [t(x)]p (3.2)

Let's have a look to the summation term:(
p

k

)
=

p!

k!(p− k)!
=

p(p− 1)!

k!(p− k)!

Since p is prime for hypotheses and
(
p
k

)
is an integer, then k!(p−k)! must

divide (p − 1)!, because neither k or p − k can divide p, for 1 ≤ k ≤ p − 1.
Thus

(
p
k

)
= pλ. For any k of the summation, we will get:(

p

k

)
[s(x)]k[t(x)]p−k = pλ[s(x)]k[t(x)]p−k = [p · r(x)]λ

In GF (p) the sum of p equal terms gives zero as result, because of addition
modulo p. As a matter of fact, being a ∈ GF (p), a + a + . . . + a p times
is equal to Rp[pa] = 0. Then, remembering that elements of GF (pn) can
be associated to polynomials in GF (q) with degree lower than n, also in
GF (pn) summing p times the same elements gives zero as result, because we
are erasing the relative polynomials coe�cient by coe�cient. This means
that the summation of the equation (3.2) is always null, and then:

[s(x) + t(x)]p = [s(x)]p + [t(x)]p

32

3.3. CYCLIC CODES

If we suppose the sentence has been veri�ed for ν = i > 1, for the (i+1)-th
step it holds that:

[s(x) + t(x)]p
i+1

= [s(x) + t(x)]p
ip =

[
[s(x) + t(x)]p

i
]p

=
[
[s(x)]p

i

+ [t(x)]p
i
]p

= [s(x)]p
i+1

+ [t(x)]p
i+1

Since we proved that the sentence holds for ν = i + 1 as well, we can
a�rm that it holds for every ν > 0.

Theorem 16. Let GF (pn) be a �nite �eld. For every polynomial f(x) with
degree h on GF (q) and for every integer ν ≥ 1, it holds that:

[f(x)]p
ν

=
h∑
i=0

fp
ν

i x
ipν

Proof. Let f(x) be the generic polynomial

f(x) = f0 + f1x+ f2x
2 + . . .+ fh−1x

h−1 + fhx
h

where h is arbitrary. Then:

[f(x)]p
ν

=

[
h∑
i=0

fix
i

]pν

=

[
fhx

h +
h−1∑
i=0

fix
i

]pν

=
[
fhx

h
]pν

+

[
h−1∑
i=0

fix
i

]pν

where last equality holds for Theorem 15. Iterataing this reasoning we will

33

CHAPTER 3. REED-SOLOMON CODES

get:

[f(x)]p
ν

=
[
fhx

h
]pν

+

[
h−1∑
i=0

fix
i

]pν

=
[
fhx

h
]pν

+

[
fh−1x

h−1 +
h−2∑
i=0

fix
i

]pν

=
[
fhx

h
]pν

+
[
fh−1x

h−1]pν +

[
h−2∑
i=0

fix
i

]pν
...

=
[
fhx

h
]pν

+
[
fh−1x

h−1]pν + . . .+ [f1x]p
ν

+ [f0]
pν

=
h∑
i=0

[
fix

i
]pν

=
h∑
i=0

fp
ν

i x
ipν

and this concludes the proof.

Theorem 17. Let be β ∈ GF (qm) and fβ(x) minimal polynomial of β on
GF (q)⇒ fβ(x) is also the minimal polynomial on GF (q) of βq.

Proof. Our aim is proving that fβ(βq) = 0. Using Theorem 16 and supposing
fβ(x) has got degree h, we obtain:

[fβ(x)]q =
h∑
i=0

f qi x
iq

because q = pν with ν = n. Since fi is an element of GF (q), f qi = fi and
then:

[fβ(x)]q =
h∑
i=0

fi(x
q)i = fβ(xq)

For hypotheses fβ(β) = 0, thus [fβ(β)]q = fβ(βq) = 0. Since fβ(x) is
a prime polynomial on GF (q), it is the minimal polynomial on GF (q) for
βq.

Two elements in GF (qm) that have got the same minimal polynomial on
GF (q) are called conjugate with respect to GF (q).

34

3.3. CYCLIC CODES

Thanks to Theorem 17 it is easy to recognise that

Bq
.
= {β, βq, βq2 , ..., βqr−1}

is a set of conjugate elements with respect to GF (q), where qr − 1 is the
multiplicative order of β.

Theorem 18. β ∈ GF (qm)⇒ the minimal polynomial of β on GF (q) is:

fβ(x) =
r−1∏
i=0

(x− βqi)

where r is the lowest integer such that βq
r

= β.

Proof. First of all notice that, thanks to Theorem 17, we know that every
element of Bq is a root of the polynomial fβ(x); then the factors of the poly-
nomial must contain every of the elements of Bq at least once.

Let's introduce the polynomial f(x) =
∏r−1

i=0 (x−βqi) and let's prove that
f(x) = fβ(x), that is f(x) is the minimal polynomial of β. Because of its
de�nition we already know that f(x) is monic. We have to verify that its
coe�cients belong to GF (q).

[f(x)]q =

[
r−1∏
i=0

(x− βqi)

]q
=
[
(x− β)(x− βq)(x− βq2) · . . . · (x− βqr−1

)
]q

= (x− β)q(x− βq)q(x− βq2)q · . . . · (x− βqr−1

)q

= (xq − βq)(xq − βq2)(xq − βq3) · . . . · (xq − βqr)
= (xq − βq)(xq − βq2)(xq − βq3) · . . . · (xq − β)

where we made use of Theorem 15 because q = pν with ν = n. We can write
the last expression as:

[f(x)]q =
r−1∏
i=0

(xq − βqi)

and thus :

[f(x)]q = f(xq) =
r∑
i=0

fi(x
q)i =

r∑
i=0

fix
iq (3.3)

On the other hand, for Theorem 16, we know that:

[f(x)]q =
r−1∑
i=0

f qi x
iq (3.4)

35

CHAPTER 3. REED-SOLOMON CODES

Comparing equations (3.3) and (3.4) we �nd that fi = f qi and then fi ∈
GF (q) for i = 1, 2, . . . , r.

We now have all the knowledge necessary to properly build a primitive
cyclic code:

1. Choose a �nite �eld GF (q) and select n = qm − 1 for any m.

2. Choose the zeros of g(x): β1, β2, ..., βµ ∈ GF (qm).

3. Find out all the conjugate elements of each chosen zero β.

4. Compute the minimal polynomial, fβ(x), for each chosen zero by mul-
tiplying all the factors (x− βqs) related to the conjugate elements of a
zero: βq

s ∈ Bq.

5. Evaluate g(x) = LCM{fβ1(x), fβ2(x), ..., fβµ(x)}.

3.4 BCH codes

BCH codes are a subclass of cyclic codes and are characterized by their
particular construction through minimal polynomials. The construction of
this kind of code is very similar to the ordinary proceeding for generating
cyclic codes, with the only di�erence that, choosing the zeros of g(x), we
have to consider elements of GF (qm) described by consecutive powers of the
primitive element α.

Theorem 19. C is a cyclic code on GF (q) with length n; β ∈ GF (qm) with
multiplicative order n. If among the zeros of g(x), generator polynomial of
C, there are γ ≥ 1 consecutive powers of β, that is g(βξ0+1) = g(βξ0+2) =
... = g(βξ0+γ) = 0, where ξ0 is a generic o�set, then dmin(C) ≥ γ + 1.

Proof. Let's take any code polynomial v(x) = v0 + v1x+ . . .+ vn−1x
n−1 that

satis�es hypotheses. It must hold that:

v(βξ0+1) = v(βξ0+2) = ... = v(βξ0+γ) = 0

Any of these polynomials can be expressed in the form:

v(βξ0+k) = v0 + v1(β
ξ0+k) + v2(β

ξ0+k)2 + . . .+ vn−1(β
ξ0+k)n−1

= v0 + v1β
ξ0+k + v2β

2(ξ0+k) + . . .+ vn−1β
(n−1)(ξ0+k)

36

3.4. BCH CODES

with 1 ≤ k ≤ γ. It is, thus, possible writing all of these polynomials in a
matrix form, introducing the matrix H, de�ned as it follows:

H =̇


1 βξ0+1 β2(ξ0+1) . . . β(n−1)(ξ0+1)

1 βξ0+2 β2(ξ0+2) . . . β(n−1)(ξ0+2)

...
...

...
. . .

...
1 βξ0+γ β2(ξ0+γ) . . . β(n−1)(ξ0+γ)


By de�ning also the vector related to v(x): v = [v0 v1 . . . vn−1], all the

polynomials above said can be computed by the matrix product:

v ·HT = [v0 v1 . . . vn−1]


1 1 . . . 1

βξ0+1 βξ0+2 . . . βξ0+γ

...
...

. . .
...

β(n−1)(ξ0+1) β(n−1)(ξ0+2) . . . β(n−1)(ξ0+γ)

 =

=


v0 + v1β

ξ0+1 + . . .+ vn−1β
(n−1)(ξ0+1)

v0 + v1β
ξ0+2 + . . .+ vn−1β

(n−1)(ξ0+2)

...
v0 + v1β

ξ0+γ + . . .+ vn−1β
(n−1)(ξ0+γ)

 =


0
0
...
0


Let's proceed by contradiction, assuming that the minimum distance of

the code C is not greater than γ: dmin(C) ≤ γ. Then, for Theorem 9,
there exists a code word w with Hamming weight less than or equal to γ:
w(w) = h ≤ γ. If we call p1, p2, . . . , ph its non-zero components, the code
word can be written as:

w = [wp1 wp2 . . . wph]

Since w is a code word, it vanishes in all of the zeros of g(x), thus:

w ·HT = [wp1 wp2 . . . wph]


βp1(ξ0+1) βp1(ξ0+2) . . . βp1(ξ0+h)

βp2(ξ0+1) βp2(ξ0+2) . . . βp2(ξ0+h)

...
...

. . .
...

βph(ξ0+1) βph(ξ0+2) . . . βph(ξ0+h)

 =


0
0
...
0


Product between a vector and a matrix is a way to get a linear combina-

tion of matrix rows. If every of these linear combinations gives zero as result,
then we can deduce that all the rows are linearly dependent and thus the
determinant of the matrix must be zero. Let's re-write the previous matrix

37

CHAPTER 3. REED-SOLOMON CODES

as it follows:

M =


βp1(ξ0+1) βp1(ξ0+2) . . . βp1(ξ0+h)

βp2(ξ0+1) βp2(ξ0+2) . . . βp2(ξ0+h)

...
...

. . .
...

βph(ξ0+1) βph(ξ0+2) . . . βph(ξ0+h)



=


βp1(ξ0+1) βp1(ξ0+1)βp1 . . . βp1(ξ0+1)βp1(h−1)

βp2(ξ0+1) βp2(ξ0+1)βp2 . . . βp2(ξ0+1)βp2(h−1)

...
...

. . .
...

βph(ξ0+1) βph(ξ0+1)βph . . . βph(ξ0+1)βph(h−1)



=


βp1(ξ0+1) 0 . . . 0

0 βp2(ξ0+1) . . . 0
...

...
. . .

...
0 0 . . . βph(ξ0+1)




1 βp1 . . . βp1(h−1)

1 βp2 . . . βp2(h−1)

...
...

. . .
...

1 βph . . . βph(h−1)


and, evaluating the determinants of the two matrices:

det(M) = β(ξ0+1)(p1+p2+...+ph)det


1 βp1 . . . βp1(h−1)

1 βp2 . . . βp2(h−1)

...
...

. . .
...

1 βph . . . βph(h−1)


For what above said, det(M) must be zero.

We are going to prove by induction that the determinant of the second
matrix, which is said to be in Vandermonde form, cannot be null if elements
βp1 , βp2 , . . . , βph are di�erent one from each other and this is guaranteed by
the choice of β: it has got order n by hypotheses and the code polynomials
have maximum degree n−1; then we consider powers of β only from 0 to n−1
and these values must all be di�erent. The base case is simply veri�ed for
a matrix of dimension 2. Let Vϕ−1 be a Vandermonde matrix of dimension
ϕ− 1 in the form: 

1 1 . . . 1
X1 X2 . . . Xϕ−2
...

...
. . .

...
Xϕ−2

1 Xϕ−2
2 . . . Xϕ−2

ϕ−2


For inductive hypotheses we will assume that, if X1, X2, . . . , Xϕ−2 are all
di�erent, then Vϕ−1 is non-singular. Let's consider now Vϕ of dimension ϕ

38

3.5. REED-SOLOMON CODES

and replace the element Xϕ with the variable x. We will get:

Vϕ(x) =


1 1 . . . 1
X1 X2 . . . x
...

...
. . .

...
Xϕ−1

1 Xϕ−1
2 . . . xϕ−1


Evaluating the deteminant by expanding along the last column:

det(Vϕ(x)) = d0 + d1x+ . . .+ dϕ−1x
ϕ−1

where d0, d1, . . . , dϕ−1 are determinants of matrices with dimension ϕ − 1,
but only dϕ−1 is the determinant of a Vandermonde matrix, which is non-
singular because of inductive hypotheses; this guarantees that det(Vϕ(x)) has
got degree ϕ− 1, thus it vanishes for at most ϕ− 1 values. It is easy to see
that X1, X2, . . . , Xϕ−1 are ϕ− 1 distinct solutions of the equations, because,
if x = Xi, Vϕ(x) would have two equal columns and the determinant would
be determinely zero. Then, we can write that:

det(Vϕ(Xϕ−1)) = det(Vϕ) = dϕ−1

ϕ−1∏
i=1

(Xϕ −Xi)

which is not null if and only if X1, X2, . . . , Xϕ are all di�erent one from each
other.

Since the Vandermonde matrix cannot have null determinant, then it
should be β(ξ0+1)(p1+p2+...+ph) = 0, but this is possible only if β = 0, which is
in contradiciton with the hypotheses that β has got order n. We have proved
that a code word with Hamming weigth smaller than or equal to γ cannot
exist, and then dmin(C) ≥ γ + 1.

It should be now clear why we introduced the constraint of choosing the
zeros as consecutive powers of β: it allows us to �x the minimum Hamming
distance of the code C, and therefore we can decide the maximum number
of errors we can detect or correct. As a matter of fact, if we are required to
correct t errors, we have to select 2t consecutive powers, so that to obtain a
minimum distance 2t+ 1, which allows us to correct up to bdmin

2
c = b2t+1

2
c =

bt+ 1
2
c = t corrupted symbols.

3.5 Reed-Solomon codes

In the previous sections we have investigated the powerful classes of
primitive cyclic codes and BCH codes, de�ned on GF (qr), whose length is

39

CHAPTER 3. REED-SOLOMON CODES

n = qr − 1. Reed-Solomon codes are a subclass of non-binary BCH codes on
GF (qr), where r = 1. Let's see what it does mean. Having r = 1 obviously
implies that GF (qr) = GF (q); suppose we have to assure to correct up to t
errors, then we have to choose 2t consecutive powers of the primitive element
α in GF (q). Here comes the �rst advantage: we can build GF (q) as an ex-
tension of a Galois Field GF (p), GF (q) = GF (pm), with p prime. We can do
that, once we have �xed p, evaluating GF (q) = GF (pm) = GF (p)[x]/p(x),
with p(x) primitive polynomial of degree m. In this way we can consider ele-
ments of GF (q) as polynomials and, by choosing p(x) a primitive polynomial
in GF (p) of degree m, we are sure that α = x is the primitive polynomial
in GF (q). For sake of computational simplicity it is usual to take p = 2.
Elements of GF (q) are thus simply expressed as binary polynomials, whose
coe�cients can only be either 0 or 1. This provides a very easy digital imple-
mentation and even �nite �eld operations are trivially computable: addition
modulo 2 is made by XOR function between two vectors and also multipli-
cation is simpli�ed by the use of the shift operator.

Once we have chosen 2t consecutive powers of the primitive element, that
is powers of x ∈ GF (2m), we have to compute all their minimal polynomials.
A minimal polynomial of a on GF (q) is, by de�nition, the minimum degree
monic polynomial with coe�cients in GF (q), such that a ∈ GF (qm) is a
zero of it. Here is a second bene�t: in the case that GF (qm) = GF (q), the
required polynomial is trivially x− a. Therefore, for each consecutive power
of α, the minimal polynomial will be x − αi and the generator polynomial
can be easily evaluated by multiplying all of these elementary factors:

g(x) =
2t∏
i=1

(x− αξ0+i) (3.5)

where ξ0 is an arbitrary o�set. Note that Reed-Solomon codes are easier to
encode than generic BCH codes beacuse they do not require the computation
of minimal polynomials of every zero we choose.

Reed-Solomon codes are minimum distance codes, that is a Reed-Solomon
code of the type (n, k) (hereafter we will refer to it as RS(n, k)) has got the
smallest possible Hamming distance: dmin (RS(n, k)) = n − k + 1. This is
easy to see because, thanks to construction process and Theorem 19:

dmin (RS(n, k)) ≥ 2t+ 1

From equation (3.5) we note that Reed-Solomon generator polynomial has
got degree 2t, but, as a generator polynomial of a code (n, k), its degree must

40

3.5. REED-SOLOMON CODES

also be n− k; then: n− k = 2t and

dmin (RS(n, k)) ≥ 2t+ 1 = n− k + 1

On the other hand, Singleton bound of Theorem 10 tells us that

dmin (RS(n, k)) ≤ n− k + 1

Putting together the two inequalities we �nd:

dmin (RS(n, k)) = n− k + 1

which is the smallest possible.

The here presented Reed-Solomon codes de�nition is quite di�erent from
the one given in section (1.3). These two formulation are equivalent and it
can be proved through discrete-time Fourier transform; we will not explore
this topic in more detail, but a comprehensive description can be found in
[6, pp. 181-188]

3.5.1 RS(255, 223) code

We are going to introduce one of the most commonly used instances of
Reed-Solomon codes : RS(255, 223). This code maps 223 length words in 255
length code words. Let's inspect its parameters:

• k = 223

• n = 255
Since in Reed-Solomon codes n = q − 1, where q is the numerosity of
the employed Galois Field, whose elements represent the code symbols,
we deduce that the �nite �eld we need is GF (q) = GF (256). As
discussed above, choosing the �nite �eld as an extension of GF (2)
makes implementation much easier; thus, it is very comfortable to see
GF (256) as GF (28). The number of bits required to represent in binary
form a symbol is, then, m = 8.

• m = 8
m is the degree of the prime polynomial p(x) which characterizesGF (pm) =
GF (28) = GF (2)[x]/p(x). Every element of GF (256) is uniquely asso-
ciated to a poloynomial with coe�cients in GF (2) with smaller degree
than 8 and it can be, thus, represented as a binary vector of length 8.

As primitive polynomial we will use p(x) = 1 + x2 + x3 + x4 + x8.

41

CHAPTER 3. REED-SOLOMON CODES

• t = 16
t is the greatest number of symbol errors RS(255, 223) can correct:

t =

⌊
dmin

2

⌋
=

⌊
n− k + 1

2

⌋
=

⌊
255− 223 + 1

2

⌋
=

⌊
33

22

⌋
= b16.5c = 16

Since the code corrects symbols, which are made up by 8 bits each, the
capability of Reed-Solomon codes to correct errors is much higher than
it can seem: if we use a binary transmission on the channel, this can
corrupt up to 16× 8 = 128 bits, but, unless more than 16 symbols are
involved, the word can still be properly corrected.

42

Chapter 4

Reed-Solomon Encoder

In this chapter the general encoding proceeding for Reed-Solomon codes
will be exposed. Every theorical description will be followed by the realisation
for a RS(255, 223) code. For the de�nition of Reed-Solomon codes we know
that n = q−1, where q = pm is the numerosity of the Galois Field from which
symbols that made up a code word are taken. It is usual to choose p = 2
to have an easier digital implementation: binary polynomial notation makes
it very easy to perform operations in the �nite �eld, even in an electrical
way; for example the polynomial sum can be implemented just by a XOR
function.

4.1 Building the Galois Field

To make up the set of symbols that will form our alphabet, we have to
compute all the polynomials of GF (p)[x]/p(x), where p(x) is a polynomial
with degree m. Every m-degree polynomial can be chosen, but, for practical
reasons, m-degree primitive polynomials are usually taken. In this document
we will not see how to �nd a primitive polynomial, but in Appendix A a
precompiled table is provided for some primitive polynomials with coe�cients
in GF (2). Using a primitive polynomial allows us to indicate every element
in GF (q) with a power of the primitive element α = x and it is very simple
to build the whole �eld starting from the primitive element: since this one
generates every other element, we have just to multiply x by itself n times
and evaluate the reminder modulo p(x) of the obtained polynomial.

RS(255, 223) As we have to build a GF (256) = GF (28) �nite �eld, the
primitive polynomial we will adopt is: p(x) = 1+x2+x3+x4+x8. Using this
polynomial the primitive element α of GF (28) will be x, thus, 256 consecutive

43

CHAPTER 4. REED-SOLOMON ENCODER

powers of x will cover the whole �nite �eld and will form every disposition
of "1" and "0" in 8 positions.

Let's start by the primitive element α = x to form the whole �eld : the �rst
two elements are, of course, 0 = α−∞ and x = α1. Then, we move to evaluate
α2 = x2, which, having less degree than m = 8, is already a valid polynomial
and so on. At the generic i-th step, we have to evaluate αi = Rp(x)[x

i]. If
everything has been properly computed, αq, that is α(n−1) = α255, should
correspond to 1.

4.2 Creating the generator polynomial

Once the alphabet is de�ned we shall dedicate to build the generator
polynomial g(z) of the code (to avoid confusion we will use the variable "x"
to work with polynomials referring to Galois Field elements, and the variable
"z" to deal with input and code polynomials, whose coe�cients are elements
of GF (q)). To correct t errors, the generator polynomial g(z) must be formed
by at least 2t factors. For sake of simplicity we will take exactly 2t factors:

g(z) = (z − β1)(z − β2) · . . . · (z − β2t)

where β1, β2, . . . , β2t are powers of the primitive element α. It is not impor-
tant from where we start considering the powers, but we have to guarantee
that powers are consecutive.

RS(255, 223) Let's take the �rst 2t = 2 · 16 = 32 powers:

β1 = α, β2 = α2, . . . , β2t = α2t = α32

If we multiply consecutively each of the factors (z − β1)(z − β2) . . . (z − β32)
we will obtain the 32-degree generator polynomial:

g(z) = 45 +216z +239z2 +243 +253z4 +104z5+
+27z6 +40z7 +107z8 +50z9 +163z10 +210z11+
+227z12 +134z13 +224z14 +158z15 +119z16 +13z17+
+158z18 +z19 +238z20 +164z21 +82z22 +43z23+
+15z24 +232z25 +246z26 +142z27 +50z28 +189z29+
+29z30 +232z31 +z32

4.3 Encoding

Once the generator polynomial g(z) has been evaluated, we are ready to
encode an input word: each of the qk possible k length input words can be

44

4.3. ENCODING

transformed into a polynomial of degree k− 1 using each of its k symbols as
a coe�cient:

[u0, u1, u2, ..., uk−1] → u(z) = u0 + u1z + u2z
2 + ...+ uk−1z

k−1

Now, by multiplying the (k − 1)-degree polynomial u(z) for the (n − k)-
degree generator polynomial g(z), we will obtain a code polynomial c(z),
whose degree is:

(k − 1) + (n− k) = n− 1

RS(223, 255) Our code words are 255-length vectors or, equivalently,
254-degree polynomials. Of course the most signi�cant coe�cients must be
null and we could have a lower degree polynomial, but we can never exceed
the maximum degree: 254.

4.3.1 Systematic encoding

Encoding as above illustrated is not yet the most commonly adopted:
we would often like to guess the original input word just by looking at the
produced code word. In other words, we might want to get a systematic code
(see section (3.2)).

Since an input word is made by k symbols and a codeword by n symbols,
n − k redundancy symbols have been added to protect the message. Then,
one could wonder if it is possible to leave the k symbols of the input word
unalterated in the code word and to add the n−k further redundancy symbols
in the beginning (or in the end) of the code word. This is perfectly possible
and, indeed, it does not require much more computation than non-systematic
algorithm does.

If we want to gather together all the input symbols (without chang-
ing their order, of course!) in the end of the code word, we could simply
multiplying the input polynomial for zn−k. The resulting polynomial is a
(n − 1)-degree polynomial with the most signi�cant coe�cients all equal to
the coe�cients of the input polynomial:

u(z) · zn−k = (u0 + u1z + u2z
2 + ...+ uk−1z

k−1) · zn−k

= u0z
n−k + u1z

n−k+1 + u2z
n−k+2 + ...+ uk−1z

n−1

which corresponds to the binary word:

[0 0 . . . 0︸ ︷︷ ︸
n−k

u0 u1 u2 . . . uk−1︸ ︷︷ ︸
k

]

45

CHAPTER 4. REED-SOLOMON ENCODER

Code thus achieved, however, might not be still a Reed-Solomon code or
even a linear code. To be a Reed-Solomon code, every polynomial built in
this way should be divisible for the generator polynomial g(z), but this is
not always true. Let's suppose:

u(z) · zn−k = q(z) · g(z) + r(z) (4.1)

with deg[r(z)] < deg[q(z)] and deg[r(z)] < deg[g(z)]. Then, we can observe
that:

Rg(z)[u(z) · zn−k] = Rg(z)[q(z) · g(z) + r(z)]

= Rg(z)[q(z) · g(z)] +Rg(z)[r(z)]

= r(z) (4.2)

because r(z) has got lower degree than g(z) and the �rst term, clearly divisi-
ble by g(z), has null reminder. Therefore, putting together expressions (4.1)
and (4.2):

u(z) · zn−k −Rg(z)[u(z) · zn−k] = q(z) · g(z)

Polynomial u(z) · zn−k − Rg(z)[u(z) · zn−k] is obviously divisible by g(z)
because it is equal to something divisible by g(z) and since:

deg[r(z)] < deg[g(z)] = 2t = n− k

powers of z in r(z) go from z0 to zn−k−1 and there is not any coe�cient that
is added to the coe�cients of the polynomial u(z) · zn−k before evaluated,
whose powers go from zn−k to zn−1. Thus, the resulting polynomial u(z) ·
zn−k − Rg(z)[u(z) · zn−k] has got the k most signi�cant coe�cients equal to
the coe�cients of the input polynomial u(z); moreover, it is divisible by g(z),
that makes it a valid code polynomial:

c(z) = u(z) · zn−k −Rg(z)[u(z) · zn−k]

This method allows us to build a Reed-Solomon systematic code.

RS(255, 223) The equivalent encoding formula for a RS(255, 223) code
is:

c(z) = u(z) · z32 −Rg(z)[u(z) · z32]

where u(z) is the input word.

46

Chapter 5

Reed-Solomon Decoder

In this chapter we will introduce a decoding algorithm described by
Berlekemp in [2] and by Massey in [15]. We will also compare the e�ciency
of this strategy with the one proposed by Peterson, Gorenstein and Zierler
ten years before. It is interesting making this comparison because, before the
invention of the Berlekamp-Massey algorithm the only available solution of
the decoding problem was represented by the far more expensive technique
proposed by Peterson.

In this chapter, for the sake of clearness, theorical explanation will be
followed by examples using an RS(7, 3) code. It would be impossible making
any simple demonstration with a RS(255, 223) code.

First of all, let's de�ne the notation we will use in the following:

• u is the original k-symbol input word

• c is the n-symbol code word generated by u

• c̃ is the received code word, after the corruption of some symbols be-
cause of the noisy channel

• ũ is the decoded word. If some errors have occurred during the trans-
mission, this vector might be di�erent from u

We can model the corruption of the codeword by adding an error vector
e to the sent word c:

c̃ = c + e

It is obvious that, if we knew e, it would be very easy to subtract it from
the received word and then recover the correct code word. Unfortunately,
we cannot have any idea about the nature of e, because channel noise is a

47

CHAPTER 5. REED-SOLOMON DECODER

consequence of unpredictable factors. We will see, however, that, unless too
many errors have occurred during the transmission, we can deduce e thanks
to redundancy symbols. For a more detailed illustration of noisy channels
and distortion the reader is addressed to [22, ch. 3, 4, 5].

It will be very useful to consider vectors above said as polynomials, with
the leftmost component the less signi�cant. This holds:

c̃(x) = c(x) + e(x) (5.1)

with e(x) = e0 + e1x+ . . .+ en−1x
n−1. In most cases, not all the components

of c will be modi�ed by the noise, thus it is worth de�ning ν as the number
of the non-zero coe�cients of e(x) and re-writing it as:

e(x) = ep1x
p1 + ep2x

p2 + . . .+ epνx
pν (5.2)

where pi represents the power of the variable x, and thus the position of the
components (0 ≤ pi ≤ n− 1), while epi represents the value of the non-zero
coe�cient in the pi position, with 1 ≤ i ≤ ν. In order to completely identify
e(x) we have to know:

• the number ν of the non-zero coe�cients

• the ν positions of the non-zero coe�cients p1, p2, . . . , pν

• the ν values of the non-zero coe�cients ep1 , ep2 , . . . , epν .

RS(7, 4) Let's assume that the information word u = [6 6 1] has to
be transmitted. Using a systematic encoding we will obtain the codeword
c = [5 2 1 2 6 6 1]. Let's suppose, also, that channel corrupts some symbols,
transforming c into c̃ = [1 2 5 2 6 6 1]. Our aim is going back to the original
c.

5.1 Syndromes

The �rst step to decode the received word is computing syndromes, that
is the results obtained by evaluating the word in the roots of the generator
polynomial. Every code word is created so that it can be divided by the
generator polynomial g(x) and in section (3.3) (see Theorem 13) we have
already seen that every polynomial with degree lower than n with this char-
acteristic is a valid code word. Therefore, if we evaluate a word in any of the
roots of g(x), we will obtain 0 as result only if it is a code word. For as the

48

5.1. SYNDROMES

generator polynomial has been created, we know its 2t roots: α, α2, . . . , α2t,
with α primitive element of GF (2m). The i-th syndrome is de�ned as:

Si =̇ c̃(βi) = c(βi) + e(βi) = 0 + e(βi) = e(αi)

= ep1(α
i)p1 + ep2(α

i)p2 + . . .+ epν (α
i)pν

= ep1(α
p1)i + ep2(α

p2)i + . . .+ epν (α
pν)i (5.3)

Since we dispose of 2t di�erent zeros β, we can �nd 2t syndromes: S1, . . . , S2t.
If every syndrome is null, we are sure that the code word is valid and we just
have to extrapolate the information word from the righmost k values, if we
are using a systematic form. Otherwise, if just a syndrome is di�erent by
zero, the code word does not have one of the roots of g(x) as its root, it
cannot be divided by g(x) and, therefore, it is not valid. In this case we have
detected an error. Remember that there is the risk that occurred symbol
errors modify the code word into another eligible one, so that we are not
able to recognise the transformation and the error is not detected. In order
to avoid this eventuality, we take care to provide the largest possible mini-
mum distance dmin of the code. As seen in section (3.5), Reed-Solomon codes
already have the maximum dmin allowed for a code (n, k), thus, in order to
reach a higher robustness, we have to increase the amount of redundancy, by
choosing a greater n.

Of course we are interested in the worst case, when syndromes are not all
zero and we have to go back to the original word analysing S1, S2, . . . , S2t. For
the sake of clearness we will replace in every of the 2t syndrome expressions
(5.3) the generic term epj with the variable Yj and the generic term αpj with
the variable Xj, where j is an integer between 1 and ν. This brings to the
following non-linear system, made of 2t equations and 2ν variables:

S1 = Y1X1 + Y2X2 + . . .+ YνXν

S2 = Y2X
2
2 + Y2X

2
2 + . . .+ YνX

2
ν

...
S2t = Y1X

2t
1 + Y2X

2t
2 + . . .+ YνX

2t
ν

(5.4)

Notice that the above system can be solved only if 2ν < 2t, that is if the
number of symbol errors is less than the maximum number of errors that can
be corrected by the code. If the probability of having more than t errors is
too high, we should use a more powerful code in order to guarantee a reliable
communication.

RS(7, 4) One can easily see that roots of the generator polynomial are
α = 2, α2 = 4, α3 = 3 and α4 = 6. Evaluating the received polynomial,

49

CHAPTER 5. REED-SOLOMON DECODER

c̃(x) = 1 + 2x+ 5x2 + 2x3 + 6x4 + 6x5 + x6, in such elements we will get:

S1 = c̃(α) = α
S2 = c̃(α2) = 1
S3 = c̃(α3) = α4

S4 = c̃(α4) = α5

Since there is at least one non-zero syndrome, we know that the received
one cannot be a valid code word.

5.2 Error locator polynomial

We are not able to �nd a solution in a quick way for the non-linear
system (5.4), but things improve if we make use of an auxiliary polynomial
Λ(x) which has gotX−11 , X−12 , . . . , X−1ν as roots: the error locator polynomial ;
as said by its name, this polynomial will permit us to �nd locations of the
occurred alterations. We can build the error locator polynomial as it follows:

Λ(x) =̇
ν∏
j=1

(1−Xjx) = Λνx
ν + Λν−1x

ν−1 + . . .+ Λ1x+ 1 (5.5)

It is clear that our aim is re-writing the syndrome system as a linear system by
some parametric replacements. Let's see how we can do that. For 1 ≤ j ≤ ν
we know that Λ(X−1j) = 0 and thus it is licit to write: Λ(X−1j)YjX

l+ν
j = 0

with l an arbitrary integer. Estimating the previous equation we get:

Λ(X−1j)YjX
l+ν
j = [Λν(X

−1
j)ν + Λν−1(X

−1
j)ν−1 + . . .+ Λ1(X

−1
j) + 1]YjX

l+ν
j

= [ΛνX
−ν
j X l+ν

j + Λν−1X
1−ν
j X l+ν

j + . . .+ Λ1X
−1
j X l+ν

j +X l+ν
j]Yj

= [ΛνX
l
j + Λν−1X

l+1
j + . . .+ Λ1X

l+ν−1
j +X l+ν

j]Yj

= ΛνYjX
l
j + Λν−1YjX

l+1
j + . . .+ Λ1YjX

l+ν−1
j + YjX

l+ν
j = 0

We can now notice some more similarities with the expression of a syndrome
(5.3). Let's see what happens if we sum the above expression for j that goes

50

5.2. ERROR LOCATOR POLYNOMIAL

from 1 to ν:
ν∑
j=1

Λ(X−1j)YjX
l+ν
j = (ΛνY1X

l
1 + Λν−1Y1X

l+1
1 + . . .+ Λ1Y1X

l+ν−1
1 + Y1X

l+ν
1)+

+ (ΛνY2X
l
2 + Λν−1Y2X

l+1
2 + . . .+ Λ1Y2X

l+ν−1
2 + Y2X

l+ν
2) + . . .+

+ (ΛνYνX
l
ν + Λν−1YνX

l+1
ν + . . .+ Λ1YνX

l+ν−1
ν + YνX

l+ν
ν) =

= Λν(Y1X
l
1 + . . .+ YνX

l
ν)+

+ Λν−1(Y1X
l+1
1 + . . .+ YνX

l+1
ν) + . . .+

+ (Y1X
l+ν
1 + . . .+ YνX

l+ν
ν) =

= ΛνSl + Λν−1Sl+1 + . . .+ Sl+ν = 0

Forcing l to be equal to 1, 2, . . . , ν we will obtain the following linear
system in ν equations and ν variables (Λ1,Λ2, . . . ,Λν):

ΛνS1 + Λν−1S2 + . . .+ Sν+1 = 0
ΛνS2 + Λν−1S3 + . . .+ Sν+2 = 0

...
ΛνSν + Λν−1Sν+1 + . . .+ S2ν = 0

(5.6)

which is much easier to solve. To �nd a solution for the system we can think
about it in a matrix form:

S1 S2 · · · Sν
S2 S3 · · · Sν+1
...

...
. . .

...
Sν Sν+1 · · · S2ν−1




Λν

Λν−1
...

Λ1

 =


−Sν+1

−Sν+2
...
−S2ν

 (5.7)

or, in compact form:
SνΛ = −S(ν + 1, 2ν)

If Sν is invertible, then the system solution is:

Λ = −S−1ν S(ν + 1, 2ν) (5.8)

Once we have found out the coe�cients of Λ(x), we can go back to
X1, X2, . . . , Xν and thus make the system of syndromes (5.4) linear; we could
now solve it to evaluate Y1, Y2, . . . , Yν and eventually recompose the polyno-
mial e(x) to subtract from c̃(x) in (5.1).

In order to solve the system we should invert matrix Sν , but this may
be very expensive in terms of time, especially if this operation has to be
performed several times, as in Peterson algorithm [18], also described in [4,

51

CHAPTER 5. REED-SOLOMON DECODER

pp. 166-174]. Berlekamp proposed a much more e�cient algorithm to solve
system (5.4) in an inductive way: at the r-th step we look for a solution only
the �rst r syndromes, S1, S2, . . . , Sr, ignoring the remaining ones; then we
consider a syndrome related to a zero not yet used and we check whether
the error locator polynomial found at the previous passage still works for
the current system. If it �ts, we can hold the current Λ(x) and add another
syndrome, otherwise we have to compute Λ again. Let's suppose we have
already �nd the vector Λ for this r-th step in any way and let's call it Λ(r).
The corresponding polynomial is:

Λ(r)(x) = Λ
(r)
lr
xlr + Λ

(r)
lr−1x

lr−1 + . . .+ Λ
(r)
1 x+ 1 (5.9)

where lr indicates the maximum degree the polynomial could have at this
step. We do not still know the real weight of the error polynomial e(x), ν, we
can only know that, for r syndromes a polynomial of degree at most lr, with
lr ≤ ν, is su�cient to solve actual r equations system. It is important to
understand that lr may not be the degree of Λ(r)(x), but it is an upper bound
for that. One could wonder what is the real meaning of such a parameter:
it becomes quite clearer by investigating linear feedback shift register theory
[8, ch. 8]; in this work we will not go deeper into this matter because of the
wide extent of this topic, whose relation with algebraic decoding was largely
developed by Massey [15]; we will limit ourselves to say that lr represents
the length of a shift register [4, pp. 177]. A brief, but exhaustive, view of
relation between shift registers and decoding algorithms can be found in [6,
pp. 188-214] and [7, pp. 245-252].

Coe�cients found for the r-th step satisfy the system:
ΛlrS1 + Λlr−1S2 + . . .+ Λ1Slr + Slr+1 = 0

ΛlrS2 + Λlr−1S3 + . . .+ Λ1Slr+1 + Slr+2 = 0

...

ΛlrSr−lr + Λlr−1Sr−lr+1 + . . .+ Λ1Sr−1 + Sr = 0

(5.10)

or, in a shorter form:

−Si =
lr∑
h=1

Λ
(r)
h Si−h (5.11)

for i = lr + 1, lr + 2, . . . , r and, since Λ
(r)
0 = 1 for every r, it can also be seen

as:
lr∑
h=0

Λ
(r)
h Si−h = 0 (5.12)

52

5.2. ERROR LOCATOR POLYNOMIAL

As observed and deeply investigated in [24, p. 145], [7, pp. 245-252] and
[6, pp. 188-191], expressions (5.11) and (5.12) are exactly output equations
for a shift register.

Let Λ(r) be one of the polynomials with the lowest lr such that it satis�es
expressions (5.11) and (5.12), then we call the couple {Λ(r)(x), lr} the min-
imum solution for the �rst r syndromes. Of course, polynomials verifying
system (5.10) could have any degree, but we are interested in �nding the
solution with the least lr because it corresponds to the lower degree error
locator polynomial and, thus, to the least number of errors occurred in the
transmitted word. This is an as strict as reasonable condition, because we
are assuming we are using a code such that our symbol error probability is
quite low and the channel corrupts only a few symbols for each word. If these
hypotheses did not hold, all our e�orts to achieve a reliable communication
would be quite useless, because we could not guarantee any proper correction
of transmission errors. Hence we will consider the most likely event the one
such that number of symbol errors is smaller than or equal to t. For a less
naive treatment of this topic, the reader is addressed to other texts, as [12],
[1] or [22, ch. 3, 4, 5].

Once we know {Λ(r)(x), lr}, we are ready to �nd {Λ(r+1)(x), lr+1} such
that:

lr+1∑
h=0

Λ
(r+1)
h Si−h = 0 (5.13)

for i = lr+1 + 1, lr+1 + 2, . . . , r + 1.

First of all we have to check whether the solution for the r-th step still
�ts for the (r+1)-th one, thus all we have to do is verifying if the polynomial
Λ(r)(x) solves the (r + 1)-th equation, related to the (r + 1)-th syndrome.
We have to evaluate the syndrome Sr+1 thorugh the (r + 1)-th root of g(x)
and compare it to the syndrome computed by Λ(r)(x). Let's de�ne the latter,
recalling (5.11), as:

S̃r+1 =̇ −
lr∑
h=1

Λ
(r)
h Sr+1−h (5.14)

53

CHAPTER 5. REED-SOLOMON DECODER

and the r-th di�erence between real syndrome and equivalent syndrome as:

δr =̇ Sr+1 − S̃r+1

= Sr+1 − (−
lr∑
h=1

Λ
(r)
h Sr+1−h) = Sr+1 +

lr∑
h=1

Λ
(r)
h Sr+1−h

= Sr+1 + Λ
(r)
1 Sr + Λ

(r)
2 Sr−1 + . . .+ Λ

(r)
lr
Sr+1−lr

=
lr∑
h=0

Λ
(r)
h Sr+1−h (5.15)

If δr = 0, then {Λ(r)(x), lr} is a minimum solution still at the (r + 1)-th
step and {Λ(r)(x), lr} = {Λ(r+1)(x), lr+1}. If δr 6= 0 we have to �nd a new
minimum solution. In order to understand how to look for it, we have �rst
to introduce two lemmas and a theorem.

Theorem 20 (Lemma). Let {Λ(r)(x), lr} be the minimum solution for the
�rst r syndromes and let δr 6= 0; let {Λ(m)(x), lm} be a solution (not neces-
sarily minimum) for the �rst m syndromes, with 1 ≤ m < r and δm 6= 0.
Then

{Λ(r+1)(x), lr+1} with Λ(r+1)(x) =̇ Λ(r)(x)− δrδ−1m xr−mΛ(m)(x)
lr+1 =̇ max{lr, lm + r −m}

is a solution for the �rst r + 1 syndromes.

Proof. First of all we can notice that for hypotheses it holds that:

lr∑
h=0

Λ
(r)
h Si−h =

{
0 i = lr + 1, lr + 2, . . . , r

δr 6= 0 i = r + 1

lm∑
h=0

Λ
(m)
h Si−h =

{
0 i = lm + 1, lm + 2, . . . ,m

δm 6= 0 i = m+ 1

{Λ(r+1)(x), lr+1} is a solution for S1, S2, . . . , Sr+1 if

lr+1∑
h=0

Λ
(r+1)
h Si−h = 0 for i = lr+1 + 1, lr+1 + 2, . . . , r + 1

If we re-write the (5.13) using de�nitions given in the hypotheses, we will

54

5.2. ERROR LOCATOR POLYNOMIAL

get:

lr+1∑
h=0

Λ
(r+1)
h Si−h =

lr+1∑
h=0

Si−h[Λ
(r)
h − δrδ

−1
m xr−mΛ

(m)
h]

=

lr+1∑
h=0

Si−hΛ
(r)
h −

lr+1∑
h=0

Si−hδrδ
−1
m xr−mΛ

(m)
h

=
lr∑
h=0

Si−hΛ
(r)
h −

lm∑
h=0

Si−hδrδ
−1
m xr−mΛ

(m)
h = 0

Third equality holds because for de�nition polynomials Λ(r)(x) and Λ(m)(x)
have maximum degree respectively lr and lm and thus Λlr+1 = Λlr+2 = . . . = 0
and Λlm+1 = Λlm+2 = . . . = 0.

Since multiplying a polynomial for xk means traslating its coe�cients of k
steps towards the most signi�cant positions, coe�cients Λ

(m)
0 ,Λ

(m)
1 , . . . ,Λ

(m)
lm

become Λ
(m)
r−m,Λ

(m)
r−m+1, . . . ,Λ

(m)
r−m+lm

. Therefore we can omit the factor xr−m

and hold the same index h going from 0 to lm just by changing the subscripts
of the coe�cients into h− (r −m). The equivalent expression is:

lr∑
h=0

Si−hΛ
(r)
h − δrδ

−1
m

lm+(r−m)∑
h=r−m

Si−hΛ
(m)
h−(r−m)

and, applying the parametric substitution j =̇ h− (r −m):

lr∑
h=0

Si−hΛ
(r)
h − δrδ

−1
m

lm∑
j=0

Si−j−(r−m)Λ
(m)
j

As above seen, the �rst summation vanishes for lr + 1 ≤ i ≤ r, while the
second one vanishes for lm+1 ≤ i−(r−m) ≤ m, or rather: lm+(r−m)+1 ≤
i ≤ r. Therefore, summations vanish for i ≤ r, but they are both zero only if
i ≥ max{lr, lm + r −m}+ 1. This means that, under the condition exposed
in the hypotheses

lr+1∑
h=0

Λ
(r+1)
h Si−h = 0 for max{lr, lm + r −m}+ 1 ≤ i ≤ r

This conludes the proof that {Λ(r+1)(x), lr+1}, found as above described,
is still a solution for the �rst r syndromes, but what about the (r + 1)-th

55

CHAPTER 5. REED-SOLOMON DECODER

one? For i = r + 1 we will get:

lr+1∑
h=0

Λ
(r+1)
h Si−h =

lr∑
h=0

Λ
(r)
h Sr+1−h − δrδ−1m

lm∑
j=0

Λ
(m)
j Sm+1−j

= δr − δrδ−1m δm

= δr − δr = 0

where the (5.15) has been used in the second equality. We can now assert
that {Λ(r+1)(x), lr+1} is a solution also for the (r+1)-th syndrome, but it may
not be the minimum one: since {Λ(m)(x), lm} is not a minimum solution, lm
could be greater than necessary and, by computing lr+1 = max{lr, lm+r−m}
we could �nd a value that is not the minimum allowed.

Lemma 20 tells us that, given a minimum solution for the r-th step and a
generic solution for one of the previous stages, we are able to �nd a solution,
not always minimum, for the (r + 1)-th step.

Theorem 21 (Lemma). Let {Λ(r)(x), lr} be the minimum solution for the
�rst r syndromes, with δr 6= 0; let {Λ(r+1)(x), lr+1} be any solution for the �rst
r + 1 syndromes (not necessarily minimum); {Λ(m)(x), lm}, with 1 ≤ m < r
such that:

axr−mΛ(m)(x) = Λ(r+1)(x)− Λ(r)(x) a 6= 0,Λ
(m)
0 = 1

lm = lr+1 − (r −m)

is a solution for the �rst m syndromes and δm = 0.

Proof. For the hypotheses it holds that:

lr∑
h=0

Λ
(r)
h Si−h =

{
0 i = lr + 1, lr + 2, . . . , r

δr 6= 0 i = r + 1

lr+1∑
h=0

Λ
(r+1)
h Si−h = 0 i = lr+1 + 1, lr+1 + 2, . . . , r + 1

with lr ≤ lr+1 because {Λ(r)(x), lr} is a minimum solution.
Subtracting the two above expressions member to member:

lr+1∑
h=0

[
Λ

(r+1)
h − Λ

(r)
h

]
Si−h =

{
0 i = lr+1 + 1, lr+1 + 2, . . . , r

−δr i = r + 1
(5.16)

because both Λ(r)(x) and Λ(r+1)(x) provide a solution for the �rst r syn-
dromes, while the second result is given by (5.15).

56

5.2. ERROR LOCATOR POLYNOMIAL

Let's call m the integer such that r−m is the number of consecutive zero
coe�cients

[
Λ

(r+1)
h − Λ

(r)
h

]
of the syndromes Si−h in (5.16); we can be sure

there is at least one zero coe�cient because, for h = 0, we have:

Si[Λ
(r+1)
0 − Λ

(r)
0] = Si[1− 1] = Si · 0

Moreover, let's call a the �rst non-zero coe�cient. Then we will get:

Λ
(r+1)
0 − Λ

(r)
0 =

{
0 h = 0, 1, . . . , r −m− 2, r −m− 1

a h = r −m

and then:

lr+1∑
h=0

[
Λ

(r+1)
h − Λ

(r)
h

]
Si−h =

{
0 i = lr+1 + 1, lr+1 + 2, . . . , r

−δr i = r + 1

which, after applying the parametric substitution k =̇ h− (r −m), j =̇ i−
(r −m) and lm =̇ lr+1 − (r −m), becomes:

lr+1−(r−m)∑
k=0

Si−k−(r−m)

[
Λ

(r+1)
k+(r−m) − Λ

(r)
k+(r−m)

]
=

{
0 i = lr+1 + 1, lr+1 + 2, . . . , r

−δr i = r + 1

lr+1−(r−m)∑
k=0

Sj+(r−m)−k−(r−m)

[
Λ

(r+1)
k+(r−m) − Λ

(r)
k+(r−m)

]
=

{
0 j + (r −m) = lr+1 + 1, . . . , r

−δr j + (r −m) = r + 1

lr+1−(r−m)∑
k=0

Sj−k

[
Λ

(r+1)
k+(r−m) − Λ

(r)
k+(r−m)

]
=

{
0 j = lr+1 + 1− (r −m), . . . , r − (r −m)

−δr j = r + 1− (r −m)

lm∑
k=0

Sj−k

[
Λ

(r+1)
k+(r−m) − Λ

(r)
k+(r−m)

]
=

{
0 j = lm + 1, lm + 2, . . . ,m

−δr j = m+ 1

(5.17)

We have, thus, de�ned a new polynomial Λ(m)(x) with Λ
(m)
k = a−1[Λ

(r+1)
k+(r−m)−

Λ
(r)
k+r−m] and we can re-write the (5.17) as

lm∑
k=0

Sj−kΛ
(m)
k =

{
0 j = lm + 1, lm + 2, . . . ,m

−a−1δr j = m+ 1

Since a 6= 0, the couple {Λ(m)(x), lm} represents a solution for the �rst m
syndromes, with δm 6= 0.

57

CHAPTER 5. REED-SOLOMON DECODER

Lemma 21 has not got a great relevance if considered alone, but it is
fundamental in the proof of the following result.

Theorem 22. Let {Λ(r)(x), lr} be a minimum solution for the �rst r syn-
dromes. Among minimum solutions of the previous steps (1, 2, . . . , r− 1) let
{Λ(m)(x), lm}, with 1 ≤ m < r, be one with δm 6= 0 and the one with the
largest value m− lm. Then,

if δr 6= 0 the couple {Λ(r+1)(x), lr+1} with

Λ(r+1)(x) =̇ Λ(r)(x)− δrδ−1m xr−mΛ(m)(x)
lr+1 =̇ max{lr, lm + r −m}

is a minimum solution for the �rst r + 1 syndromes;

if δr = 0 the couple {Λ(r+1)(x), lr+1} with Λ(r+1)(x) = Λ(r)(x) and lr+1 = lr is a
minimum solution for the �rst r + 1 syndromes.

Proof. Since all the hypotheses of Lemma 20 are veri�ed, then Λ(r+1)(x) is
a solution for the �rst r + 1 syndromes. Our purpose is proving that it is
a minimum solution, too. Let's distinguish two cases for the event δr 6= 0:
lr ≥ lm + r −m and lr ≤ lm + r −m.

lr ≥ lm + r−m In this case lr+1 = lr, thus since {Λ(r)(x), lr} is a mini-
mum solution for the �rst r syndromes and lr+1 can't be lower than lr, also
{Λ(r+1)(x), lr+1} must be a minimum solution for the �rst r + 1 syndromes.

lr ≤ lm + r−m In this case lr+1 = lm + r−m. Let's proceed by contradic-
tion, a�rming that there exists a solution {Λ̃(r+1)(x), l̃r+1} with l̃r+1 < lr+1

for the �rst r+1 syndromes. Therefore, Lemma 21 tells us that it must exist
an integer m̃, 1 ≤ m̃ < r, such that there is a solution {Λ(m̃)(x), lm̃} for the
�rst m̃ syndromes with δm̃ 6= 0 and lm̃ = l̃r+1 − (r − m̃).

For the hypotheses, m̃− lm̃ ≤ m− lm, then

l̃r+1 = lm̃ + (r − m̃) = r − (m̃− lm̃) ≥ r − (m− lm) = lr+1

that is: l̃r+1 ≥ lr+1, which is in contradiction with the above condition
l̃r+1 < lr+1. This refutes the absurd statement saying that there is a mini-
mum solution for the �rst r + 1 syndrome di�erent from {Λ(r+1)(x), lr+1}.

On the other hand, if δr = 0, then {Λ(r)(x), lr} is already a solution for
the �rst r + 1 syndromes and, being it minimum for the �rst r, it must be
minimum for the �rst r + 1 as well.

58

5.2. ERROR LOCATOR POLYNOMIAL

Theorem 22 gives us a way to �nd a minimum solution at the r-th step
just by knowing the minimum solution for one of the previous steps. Now,
all we need is a starting point.

To start our algorithm we need an initial minimum solution and a min-
imum solution for one of the previous passages. We may assume that the
�rst step is the one at which we have not yet considered any syndrome and
the related minumum solution can be referred to as: {Λ(0), l0}. Note that,
as de�ned in Theorem 22, degree of the error locator polynomial can only
increase or remain equal between two consecutive steps, but it can never de-
crease. Thus, if we chose Λ(0)(x) with degree greater than 1, it would have at
least one zero, and then there would be at least a non-zero component of the
error vector e, no matter the step or the found syndromes. This brings to a
contradiction in the case of all null syndromes, that is if the received word is
a code word, because the �nal error locator polynomial would �nd an error
even if the sent word has not been corrupted. Therefore, Λ(0)(x) must have
degree 0, that is Λ(0)(x) is a non-zero constant: l0 = 0 and Λ(0)(x) = κ, with
κ ∈ GF (2m), κ 6= 0. However, since Λ(0)(x) is an error locator polynomial,
for de�nition given in (5.5) it must have 1 as known term. Thus, we can set:
Λ(0)(x) = 1. From a simple computation we can �nd δ0 to be:

δ0 =

l0∑
h=0

Λ
(0)
h S0+1−h =

0∑
h=0

Λ
(0)
h S1−h = Λ

(0)
0 S1 = S1

Through the same reasoning, and following what exposed in [16, p. 159]
and [13, pp. 155-156], we can take as previous minimum solution the couple
{Λ(−1)(x), l−1}, where, for what just said, Λ(−1)(x) = 1 and l−1 = 0. In order
to use this couple for the algorithm presented in Theorem 22, δ−1 must be
di�erent from zero; we can assume δ−1 = 1. Our initial conditions are:

m : Λ(−1)(x) = 1 l−1 = 0 δ−1 = 1
r : Λ(0)(x) = 1 l0 = 0 δ0 = S1

Thanks to this starting point we can perform the whole Berlekamp-
Massey algorithm and �nd the error locator polynomial : Λ(x). Its degree
will corresponds to ν, number of symbol errors.

Once the error locator polynomial is de�ned, we have to �nd its roots
in order to know error locations. Since we are dealing with �nite �elds, the
easiest way to discover the zeros is evaluating Λ(x) in each of the elements of
the �nite �eld GF (q). We will found ν roots, that are: X−11 , X−12 , . . . , X−1ν .
Their relative inverse elements point the ν error positions: X1 = ep1 , X2 =

59

CHAPTER 5. REED-SOLOMON DECODER

ep2 , . . . , Xν = epν . At this point we know both how many errors have occurred
and where such errors have modi�ed the transmitted word. Algorithm intro-
duced in the next section gives us a way to compute errors magnitutes.

RS(7, 4) In order to execute the Berlekamp-Massey algorithm, we need
a starting point: an actual minimum solution for the current step and a
minimum solution for one of the previous steps. Let's assume the current
step is that at which we consider 0 syndromes, that is r = 0, where r is
our stage-counter. Of course there is not any real previous step, but we can
assume we know that at −1-th step {Λ(−1)(x), l−1} was a minimum solution,
with δ−1 = 1. Then −1 will become our initial m, that is a minimum solution
for one of the previous passages. At stage r = 0 we have:

m : Λ(−1)(x) = 1 l−1 = 0 −1− l−1 = −1− 0 = −1 δ−1 = 1
r : Λ(0)(x) = 1 l0 = 0 0− l0 = 0− 0 = 0

Evaluating δ0 we will �nd:

δ0 =

l0∑
h=0

Λ
(0)
h S0+1−h =

0∑
h=0

Λ
(0)
h S1−h = Λ

(0)
0 S1 = S1

and, since S1 = α 6= 0 we must �nd a new polynomial �tting also for the
(r + 1)-th step. By using Theorem 22:

Λ(1)(x) = Λ(0)(x)− δ0δ−1−1x0−(−1)Λ(−1)(x) = 1 + αx

and l1 = max{l0, l−1 + 0 − (−1)} = max{0, 1} = 1. Eventually, as 0 − l0 >
−1− l−1, from next step Λ(0)(x) will become the new minimum solution for
a previous passage. Therefore, at step r = 1 we have:

m : Λ(0)(x) = 1 l0 = 0 0− l0 = 0− 0 = 0 δ0 = α
r : Λ(1)(x) = 1 + αx l1 = 1 1− l1 = 1− 1 = 0

Let's check whether Λ(1)(x) is a suitable solution for r + 1 by evaluating
δ1:

δ1 =

l1∑
h=0

Λ
(1)
h S1+1−h =

1∑
h=0

Λ
(1)
h S2−h = Λ

(1)
0 S2+Λ

(1)
1 S1 = S2+αS1 = 1+α2 = α6 6= 0

Using the algorithm we will �nd: Λ(2)(x) = 1 + α6x and l2 = 1. Since
now we have two minimum solutions with the same value of m− lm, that is
0− l0 = 1− l1 = 0, we can choose any one the two solution to carry on; even

60

5.3. FORNEY ALGORITHM

though the choice of two di�erent m will bring to di�erent passages, it can
be proved that the �nal solution will always be the same.

Next passage, for r = 2, has:

m : Λ(0)(x) = 1 l0 = 0 0− l0 = 0− 0 = 0 δ0 = α
r : Λ(2)(x) = 1 + α6x l2 = 1 2− l2 = 2− 1 = 1

with δ2 = α3 6= 0. Therefore we have to proceed with the algorithm and,
after �nding Λ(3)(x) = 1 +α6x+α2x2, l3 = 2 and the new m = 1, step r = 3
will be:

m : Λ(2)(x) = 1 + α6x l2 = 1 2− l2 = 2− 1 = 1 δ0 = α3

r : Λ(3)(x) = 1 + α6x+ α2x2 l3 = 2 3− l3 = 3− 2 = 1

Let's see what happens now. Evaluating δ3 we will �nd:

δ3 =
2∑

h=0

Λ
(3)
h S4−h = α5 + α6α4 + α2 = 0

This means that solution for the third step still �ts for the forth one
and the error locator polynomial does not need to be updated. We could
expect something like this, because, knowing that only two symbols have
been corrupted, we could imagine that Λ(x) would have only two roots. It
would have been possible, however, that Λ(x) changed coe�cients without
increasing its degree.

Finally we have found Λ(x) = 1 + α6x + α2x2 = 1 + 5x + 4x2, from
which we deduce ν = 2. We have, now, to discover its roots. Testing every
element of GF (23) we realise that the only values that make it vanish are:
X−11 = 1 and X−12 = α5, whose inverse elements are X1 = 1 and X2 = α2,
which are related to powers 0 and 2. Hence, we have found that the received
polynomial c̃(x) has got corrupted coe�cients of the known term and x2.
The error polynomial has the following guise:

e = [X 0 X 0 0 0 0]

5.3 Forney Algorithm

Once the error locator polynomial and its ν roots have been found, we
know the number of components of the error vector e and their positions.
Last stage is �nding their values, that is Y1 = ep1 , Y2 = ep2 , . . . , Yν = epν .
Let's de�ne the syndrome polynomial :

S(x) =̇
2t∑
i=1

Six
i−1 = S1 + S2x+ S3x

2 + . . .+ S2t−1x
2t−2 + S2tx

2t−1 (5.18)

61

CHAPTER 5. REED-SOLOMON DECODER

Remembering that:

Si =
ν∑
l=1

YlX
i
l

we can re-write the (5.18) as:

S(x) =̇
2t∑
i=1

Six
i−1 =

2t∑
i=1

[
xi−1

ν∑
l=1

YlX
i
l

]
=

2t∑
i=1

ν∑
l=1

YlX
i
lx
i−1 (5.19)

and, using error locator polynomial de�ned in (5.5), we can �nally introduce
the polynomial Ω(x):

Ω(x) =̇ Rx2t [S(x)Λ(x)] (5.20)

This polynomial, which has no coe�cient with degree greater than 2t, will
permit us to �nd error components Y1, Y2, . . . , Yν .

First of all, we can re-write Ω(x) using expressions (5.19) and (5.5):

Ω(x) = Rx2t

[(
2t∑
i=1

ν∑
l=1

YlX
i
lx
i−1

)(
ν∏
j=1

(1−Xjx)

)]

= Rx2t

[(
ν∑
l=1

YlXl

2t∑
i=1

X i−1
l xi−1

)(
ν∏
j=1

(1−Xjx)

)]

= Rx2t

[(
ν∑
l=1

YlXl

2t∑
i=1

(Xlx)i−1

)(
ν∏
j=1

(1−Xjx)

)]

= Rx2t

[(
ν∑
l=1

YlXl

2t∑
i=1

(Xlx)i−1

)
(1−Xlx)

(
ν∏

j=1,j 6=l

(1−Xjx)

)]

= Rx2t

[
ν∑
l=1

YlXl(1−Xlx)
2t∑
i=1

(Xlx)i−1
ν∏

j=1,j 6=l

(1−Xjx)

]

Term (1−Xlx)
∑2t

i=1(Xlx)i−1 represents a factorization of the expression
1 − (Xlx)2t; as a matter of fact, considering the easier expression 1 − zy, it
holds that:

1− zy = 1 + (z + z2 + . . .+ zy−1)− (z + z2 + . . .+ zy−1)− zy

= (1 + z + z2 + . . .+ zy−1)− z(1 + z + z2 + . . .+ zy−1)

= (1− z)(1 + z + z2 + . . .+ zy−1)

= (1− z)

y∑
i=1

zi−1

62

5.3. FORNEY ALGORITHM

Therefore, Ω(x) can be expressed as:

Ω(x) = Rx2t


(

ν∑
l=1

YlXl

)
︸ ︷︷ ︸

constant λ

(
1− (Xlx)2t

)︸ ︷︷ ︸
A(x)

(
ν∏

j=1,j 6=l

(1−Xjx)

)
︸ ︷︷ ︸

B(x)


= Rx2t [λA(x)B(x)]

= λRx2t [Rx2t [A(x)]Rx2t [B(x)]]

Now, analyzing A(x), we can see that: Rx2t [A(x)] = Rx2t [1− (Xlx)2t] =
1 and thus:

Ω(x) = λRx2t [B(x)] = λB(x) =
ν∑
l=1

YlXl

ν∏
j=1,j 6=l

(1−Xjx) (5.21)

because B(x) has degree ν ≤ t < 2t. Evaluating equation (5.21) in a generic
X−1k , that is in one of the roots of the error locator polynomial Λ(x), we will
get:

Ω(X−1k) =
ν∑
l=1

YlXl

ν∏
j=1,j 6=l

(1−XjX
−1
k)

Every term of the summation vanishes when j = k. The only term that
does not become null is the one for l = k, because the term of the product
that should vanish is skipped, the subscript going from 1 to ν, avoiding l.
Then the expression becomes:

Ω(X−1k) = YkXk

ν∏
j=1,j 6=k

(1−XjX
−1
k)

and therefore:

Yk =
X−1k Ω(X−1k)∏ν

j=1,j 6=k(1−XjX
−1
k)

(5.22)

By using equation (5.22) we can evaluate Yk = epk for k = 1, 2, . . . , ν.
There is, however, an easier equation to compute Yk, that will be here illus-
trated. Let's start by deriving the error locator polynomial Λ(x) using the

63

CHAPTER 5. REED-SOLOMON DECODER

chain rule

Λ′(x) =
d

dx

ν∏
i=1

(1−Xix)

= −X1(1−X2x) · . . . · (1−Xνx) + (1−X1x)
d

dx
[(1−X2x) · . . . · (1−Xνx)]

= . . .

= −
ν∑
l=1

Xl

ν∏
i=1,i 6=l

(1−Xix) (5.23)

and then, evaluating the (5.23) in a generic Xk we will �nd:

Λ′(X−1k) = −
ν∑
l=1

Xl

ν∏
i=1,i 6=l

(1−XiX
−1
k) = −Xk

ν∏
i=1,i 6=k

(1−XiX
−1
k) (5.24)

and, in conclusion, putting together (5.24) and (5.22):

Yk = −Ω(X−1k)

Λ′(X−1k)
(5.25)

Notice that, since Ω(x) is the remainder of the division of a polynomial
by an only polynomial term x2t, this allows a very fast computation of the
remainder, because we can see the dividend polynomial as it follows:

p(x) = knx
n + kn−1x

n−1 + . . .+ k2t+1x
2t+1 + k2tx

2t + k2t−1x
2t−1 + . . .+ k1x+ k0

= (knx
n−2t + kn−1x

n−2t−1 + . . .+ k2t+1x+ k2t)x
2t + k2t−1x

2t−1 + . . .+ k1x+ k0

and the remainder modulo x2t of this polynomial is clearly:

Rx2t [p(x)] = k2t−1x
2t−1 + . . .+ k1x+ k0

Then, in order to evaluate Ω(x) we just have to �nd the polynomial
S(x)Λ(x) and then consider only the term with power smaller than 2t.

5.3.1 Finite �eld polynomial derivative

As explained in important algebra texts as [3, pp. 465-466] or [8, pp. 119-
121], polynomial derivative with coe�cients in a Galois Field can be evalu-
ated as in any other domain:

p(x) = knx
n + kn−1x

n−1 + . . .+ k1x+ k0

p′(x) = nknx
n−1 + (n− 1)kn−1x

n−1 + . . .+ k1 (5.26)

64

5.3. FORNEY ALGORITHM

In �nite �elds in the form GF (2m) this brings to several sempli�cations;
the generic term knx

n becomes:

nknx
n−1 = (kn + kn + . . .+ kn)︸ ︷︷ ︸

n times

xn−1

If n is even we can group the kn in couples whose terms erase each other,
because adding an element to itself always gives zero as result (see section
(2.5.1)). Thus, every term with even power disappears in the �rst derivative
of p(x). On the other hand, for odd powers we can make the same reasoning:
if we group the kn in couples these will all vanishes, leaving an only coe�cient.
Thus, terms with odd power hold the same coe�cient, but their degrees
decrease by one.

Example: derivative Suppose we have to derive p(x) = α4z3 + αz2 +
α2z + α3 with α primitive element for a certain �eld GF (2m). Following
de�nition (5.26) we will get:

p′(x) = 3α4z2 + 2αz + α2

= (α4 + α4 + α4)z2 + (α + α)z + α2

= α4z2 + α2

RS(7, 4) We will use expression (5.25) to compute coe�cients of the error
polynomial. First of all let's briskly �nd Ω(x) and Λ′(x).

S(x)Λ(x) = (α + x+ α4x2 + α5x3)(1 + α6x+ α2x2) = α + α3x4 + x5

and, evaluated modulo x2t = x4:

Ω(x) = α

Using what exposed in section (5.3.1) we quickly �nd that:

Λ′(x) = α6

For pure coincidence both these polynomials are constants, thus the co-
e�cients will have the same magnitude:

Y1 = Y2 = −
Ω(X−11,2)

Λ′(X−11,2)
=

α

α6
= α2 = 4

The error vector is:
e = [α2 0 α2 0 0 0 0]

65

CHAPTER 5. REED-SOLOMON DECODER

and, as subtraction is equivalent to addition in �nite �elds, summing it to
the received word we will get, in decimal form:

ĉ = [5 2 1 2 6 6 1]

which is equal to the original code word c.

66

Chapter 6

Matlab Implementation

In addition to this paper, a Matlab implementation for a Reed-Solomon
systematic encoder and a Berlekemp-Massey decoder has been realised for a
RS(255, 223) code. In this chapter we will introduce a brief presentation of
the code and a short explanation of how it was thought and made.

For reasons of computational e�ciency every function has been included
in the same �le: rs.m. We will browse the whole �le focusing on the func-
tioning and the logic behind every piece of code, investigating how encoding
and decoding functions work. For the sake of clearness we can imagine to
divide the �le in several sections, each dedicated to a particular process. The
�le does not actually respect this division, but, for every section, we will
report the relative piece of code.

6.1 Encoder initialization

The �rst step to the implementation of the encoder is the construction of
an appropriate Galois Field. In order to achieve a reasonable computational
speed and e�ciency we will make use of several look-up tables: a moderate
waste of memory allows signi�cant improvements in terms of evaluating time
for encoding functions. Five look-up tables have been built: two to store
elements of GF (256) in di�erent notations and briskly reach one from an-
other (polTab and logTab) and three to save time during the execution of
fundamental operations in the �nite �eld (sumTab, mulTab and divTab).

There are three notations to indicate Galois Field elements: their e�ective
decimal value (from 0 to 255), polynomial notation, as polynomials with
coe�cients in GF (2) ({0, 1}) with smaller degree than 8, and eventually
logarithmic notation, as powers of the primitive element, which will be called
α in the following. Furthermore, a convention will be used hereafter: even

67

CHAPTER 6. MATLAB IMPLEMENTATION

though both α0 and α255 refers to element "1", in this context we will use
only α255, while exponent "0" will refer to the null element, which would
actually has power "−∞".

6.1.1 Parameters

In the very beginning of the �le we de�ne and store the fundamental
parameters and variables characterizing our RS(255, 223) code:

Section 1: parameters

n = 255;
k = 223;
m = 8;
t = 16;
primPol = [1 0 1 1 1 0 0 0 1];

Let's have a look to each variable:

n : number of symbols of a code word (n = 2m − 1).

k : number of symbols of an input word.

m : number of bits used to express a symbol in binary notation.

t : maximum number of symbol errors the code can correct.

primPol : primitive polynomial of degree m (it has been found in a proper
table, see Appendix A). In the case of a RS(255, 223) code we will use:
f(x) = 1 + x2 + x3 + x4 + x8.

6.1.2 polTab and logTab

The table of the elements, called polTab in the code, is a matrix of
dimension 2m × m, that is 256 × 8, in which every row represents an el-
ement of GF (28) written in the form of a polynomial with coe�cients in
GF (2) of maximum degree 8 (the less signi�cant coe�cient is the leftmost).
The elements are ordered by successive powers of the primitive element:
0, α, α2, α3, . . . , α255. The �rst row represents the zero element, and thus
it contains only a sequence of 8 zeros; the second one represents the primi-
tive element α = x, so it is in the form: [0 1 0 . . . 0]; the last one represents
α255 = 1, thus it is in the form: [1 0 . . . 0]. Every cell of the vector called
logTab contains the exponent that the primitive element α should have to

68

6.1. ENCODER INITIALIZATION

produce its relative row index. In this way, the e�ective value of the element
can be use as index to recover its logarithmic representation.

Let's see how these tables are built: after de�ning the primitive polyno-
mial of degree m = 8, an empty matrix of dimension 28 × 8 and an empty
vector of dimension 28 are initialised.

Section 2: initialization of polTab and logTab

polTab = zeros(2^m, m);
logTab = zeros(1, 2^m);

All the elements will be obtained by multiplying the primitive element
by itself, starting by the second row: α2, α3, In the generic i-th step we
have already evaluated the i-th row of the matrix and we have to compute
the (i+ 1)-th one. Multiplying a0 +a1x+ . . .+am−1x

m−1 by x gives as result
a0x+ a1x

2 + . . .+ am−1x
m, which is equivalent to shift all the components of

the i-th row vector to the right of one position. We have now to evaluate the
new polynomial modulo f(x). If the rightmost element of the new (m+1)-th
position is a "0", then the new polynomial has degree less thanm = 8 and it is
already good to be inserted in the (i+1)-th row. If the rightmost component
is a "1", otherwise, we have to divide this polynomial by f(x) and consider
only the remainder. It is easy to see that the polynomial got by x · vi(x),
where vi(x) denotes the i-th row vector, has as maximum degree m = 8 and,
thus, we can add and subtract the terms of degree less than 8 which compose
the primitive polynomial, remembering that, since we are using polynomials
with binary coe�cients, adding and subtracting is equivalent to adding twice
the term. In the �nal polynomial we can group all the terms that compose
the primitive polynomial: the other ones represent vi(x) modulo f(x).

Example Let be vi(x) = 1 + x2 + x3 + x6 + x7. After evaluating x · vi(x)
we will �nd:

ṽi+1(x) = x+ x3 + x4 + x7 + x8

which is equivalent to:

ṽi+1(x) = x+ x3 + x4 + x7 + x8 + (1 + x2)− (1 + x2)

= x+ x3 + x4 + x7 + x8 + (1 + x2) + (1 + x2)

= (1 + x2 + x3 + x4 + x8) + (1 + x+ x2 + x7)

= f(x) + (1 + x+ x2 + x7)

ṽi+1(x) modulo f(x) is clearly vi+1(x) = 1 + x + x2 + x7. The (i + 1)-th
row will, thus, be [1 1 1 0 0 0 0 1].

69

CHAPTER 6. MATLAB IMPLEMENTATION

All we have to do in order to obtain ṽi+1(x) modulo f(x) is only adding
primitive polynomial terms which do not appear in ṽi+1(x) and remove the
ones that are already present. The easiest way to do that is computing a XOR
function between vectors of the primitive polynomial and the corresponding
vector of ṽi+1(x).

Example Revisiting the previous example, it is su�cient to make the said
operation:

ṽi+1(x)→[0 1 0 1 1 0 0 1 1] XOR

f(x)→[1 0 1 1 1 0 0 0 1] =

vi+1(x)→[1 1 1 0 0 0 0 1 0]

Every polynomial is stored in the row whose index represents the exponent
of the relative power of the primitive element. This allows a fast passage from
logarithmic notation to polynomial notation. Once the binary polynomial is
complete, we can convert it into decimal form as it will explained below and
save the current logarithmic value at the index given by the decimal value.
By iterating this proceeding for all the 2m = 256 elements we will �ll the
whole matrix polTab and the whole vector logTab with all the elements of
GF (256). In this way by using polTab we can quickly pass from logarithmic
notation to polynomial notation and by using logTab from decimal value
to logarithmic notation. Furthermore, one can easily pass from polynomial
notation to the e�ective value acting a transformation from binary to decimal.

We have decided not to use the Matlab native function bi2de() to con-
vert a binary vector into a decimal integer because it takes a lot of time in
order to check many necessary conditions before executing the conversion.
After several empirical tests, this has revealed to be the most expensive piece
of code of the whole program in terms of time, also because it is called hun-
dreds of thousands of times. Therefore, we have settled to omit any correct-
ness check, assuming there are no errors in the rest of the code which could
make this operation fail. The conversion is made simply by multiplying the
binary vector by a precompiled vertical vector (binTab) created in the very
beginning of the �le and containing all the powers of 2, from 20 to 28. Matrix
product has been preferred to nested for cycles to execute this operation.
Transformation from binary to decimal closes the circle which allows us to
quickly pass from one notation to another using only two matrices.

Here is the complete piece of code providing for the creation of the ele-
ments of GF(256):

70

6.1. ENCODER INITIALIZATION

Section 3: filling polTab and logTab

binTab = zeros(m, 1);
for i = 1 : m

binTab(i) = 2^(i - 1);
end

% ...

x = zeros(1, m + 1);
x(1) = 1;
for i = 2 : 2^m

x = circshift(x, [1, 1]);
if x(m + 1) == 1

x = xor(primPol, x);
end
polTab(i, :) = x(1:m);
dec = (x(1:m))*binTab;
logTab(dec + 1) = i - 1;

end

6.1.3 sumTab, mulTab and divTab

In this section we create the three fundamental look-up tables for �nite
�eld operations. To create sumTab every element i of GF (256) is summed to
every other element j and the result is then stored in a matrix of dimension
256 × 256 at indexes (i + 1, j + 1): Matlab indexes go from 1 to 256, but
Galois Field elements go from 0 to 255. In order to sum two values we need
�rst to bring them into binary polynomial form and then apply the XOR
function between the vectors. This operation also provides for subtraction
since, thanks to operations modulo 2 in GF (2): 1 + 1 = 1 − 1 = 0. To
execute the sum between two elements a and b is then su�cient to recover
the element at coordinates (a+ 1, b+ 1).

Here is the code:

Section 4: creation of sumTab

sumTab = zeros(n + 1, n + 1);
for i = 1 : n + 1

p1 = polTab(logTab(i) + 1, :);
for j = i : n + 1

p2 = polTab(logTab(j) + 1, :);
sumTab(i, j) = (xor(p1, p2))*binTab;

71

CHAPTER 6. MATLAB IMPLEMENTATION

if i ~= j
sumTab(j, i) = (xor(p1, p2))*binTab;

end
end

end

To create mulTab every element i of GF (256) is multiplied by every other
element j. The result is then stored in a matrix of dimension 256 × 256 at
indexes (i+ 1, j + 1). In order to multiply two elements, �rst the two values
are brought to logarithmic form and then, since αi · αj = αi+j, we can add
the two values to get the index of polTab at which the resulting element
is stored. If the resulting exponent is greater than 2m − 1 = 255, we have
just to subtract from it the integer 255 until it decreases under the maximum
allowed value: 255 itself.

Example

α134 · α195 = α134+195 = α329 = α255+74 = α255 · α74 = 1 · α74 = α74

As stated in the beginning of this chapter (see section (6.1)) by convention
"0" represents the null element and "255" the unity element, otherwise it
would be impossible to quickly obtain the zero element from the tables. To
execute multiplication between two elements a and b is then su�cient to
recover the element at coordinates (a+ 1, b+ 1).

Here is the code:

Section 5: creation of mulTab

mulTab = zeros(n + 1, n + 1);
for i = 1 : n + 1

p1 = logTab(i);
for j = i : n + 1

p2 = logTab(j);
if p1 == 0 || p2 == 0

mulTab(i, j) = 0;
mulTab(j, i) = 0;

else
res = p1 + p2;
while res >= 2^m

res = res - n;
end
mulTab(i, j) = (polTab(res + 1, :))*binTab;
mulTab(j, i) = (polTab(res + 1, :))*binTab;

end

72

6.1. ENCODER INITIALIZATION

end
end

To create divTab every element i of GF (256) is divided by every other
element j. The result is then stored in a matrix of dimension 256 × 256
at indexes (i + 1, j + 1). The proceeding to divide two elements is very
similar to the multiplication one and we will make use of logarithmic form
again. Dividing by an element is equivalent to multiplying by its inverse and
the inverse of an element is the value such that, multiplied by the element
itself, gives 1 as result. Thus, in order to �nd the inverse of an element it
is su�cient to compute its logarithmic notation as 255 − i where i is the
logarithmic notation of the original value:

αj ÷ αi = αj · α−i = αj · α255−i = α255+j−i

From this point forward we can evaluate the expression just as it was a
multiplication, following what exposed above. To execute division between
two elements a and b is then su�cient to recover the element at coordinates
(a+1, b+1). During the building of this matrix we store also some forbidden
resultss, like division by zero; assuming that such prohibited computations
will be never performed in this code, we have decided to store value −1 in
cells corresponding to αj ÷ 0 so that to get a non-sense value in the case
this operation was executed: we preferred a program failure to a valid result
obtained by impossible operations and, in this way, we are sure that code
will fail if cells like these are called. Here is the code:

Section 6: creation of divTab

divTab = zeros(n + 1, n + 1);
for i = 1 : n + 1

for j = 1 : n + 1
if j == 1

divTab(i, j) = -1;
else

if i == 1
divTab(i, j) = 0;

else
invJ = logTab(j);
if invJ ~= n

invJ = n - invJ;
end
p1 = logTab(i);
res = p1 + invJ;
while res >= 2^m

73

CHAPTER 6. MATLAB IMPLEMENTATION

res = res - n;
end
divTab(i, j) = (polTab(res + 1, :))*binTab;

end
end

end
end

6.2 Generator polynomial

After completing the creation of theGalois Field, we have now to build the
appropriate generator polynomial for the code. The polynomial is evaluated
by multiplying 2t = 32 factors in the form (z + β), where β are consecutive
powers of the primitive element α. Initially the generator polynomial is z+2,
since the primitive element corresponds to the vector [0 1 0 . . . 0] and it can
be always identi�ed with the element "2" after a conversion from binary
to decimal. By using a for cycle with 2t − 1 iterations the polynomial is
completed: at the generic i-th step the successive factor (z+αi) is evaluated
and multiplied by the current generator polynomial, given by the product of
the �rst i − 1 factors. After 2t − 1 iterations the polynomial is the product
of 2t consecutive factors.

To multiply two polynomials with coe�cients in GF (2m), it is comfort-
able �rst writing polynomials as two vectors with leftmost element the less
signi�cant. The �rst step is initializing an empty vector which will be the
result. If the two original vectors has got respectively x and y elements, the
polynomials have degree x− 1 and y− 1, thus the �nal polynomial will have
degree at most (x − 1) + (y − 1). In order to contain a s-degree polyno-
mial, a vector must have s + 1 positions, then our �nal vector must have
(x− 1) + (y − 1) + 1 = x+ y − 1 positions.

To compute the multiplication we have to scan the two whole vectors and
multiply every element of the �rst by every element of the second; this is
implemented through two nested for cycles, one for each vector. In every
step we can evaluate the power related to the current coe�cient and then
add it in the proper position of the �nal vector. Since multiplication between
di�erent couples of terms could give as result coe�cients related to the same
power, once we have computed the product between two terms we do not
have to replace the corresponding position in the �nal vector, but to sum it
to the coe�cient before found. The code is the following:

Section 7: creation of the generator polynomial

74

6.3. INPUT WORD GENERATION

genPol = [2 1]; % polynomial (alpha + x)
for i = 1 : 2*t - 1

p1 = genPol;
succ = (polTab((i + 1) + 1, :))*binTab;
p2 = [succ 1];
l1 = length(p1);
l2 = length(p2);
res = zeros(1, l1 + l2 - 1);
for l = 1 : l1

for j = 1 : l2
index = l + j - 1;
c1 = p1(l);
c2 = p2(j);
val = mulTab(c1 + 1, c2 + 1);
res(index) = sumTab(res(index) + 1, val + 1);

end
end
genPol = res;

end

6.3 Input word generation

The purpose of this section is creating a random input word of k = 223
symbols: �rst an empty vector is allocated, then, through a for cycle, every
position is �lled with a value between 0 and 255. The proceeding adopted to
generate a random value is described in the following:

• through Matlab function rand() a value between 0 and 1 made by
three decimals is randomly generated

• the random value is multiplied by 1000. This guarantees that the cur-
rent value can be greater than 255

• the ceiling of the actual value is evaluated, so that to deal with integer
numbers

• the division modulo n + 1 = 256 is performed on the integer, so as to
get a value between 0 and 255

Section 8: creation of a random input word

inWord = zeros(1, k);

75

CHAPTER 6. MATLAB IMPLEMENTATION

for i = 1 : k
inWord(i) = mod(ceil(rand(1, 1) * 1000), (n + 1));

end

6.4 Systematic encoding

This sections performs the real encoding: it receives a vector of 223 sym-
bols as argument, the input word, and produces a code word of 255 symbols.
First of all, input word is multiplied by zn−k = z32; this is equivalent to shift-
ing the input word of 32 positions to the right, which is nimbly realised by
�lling the rightmost 32 positions of a new 255 length vector with the input
word. Then, we have to add polynomial Rg(z)[z

32u(z)] to this vector. We
can compute this reminder polynomial making use of the division algorithm;
eventually, by using the polynomial addition algorithm we can sum the two
polynomials together to form the �nal code word. Addition and division
algorithms are exposed below.

6.4.1 Addition between polynomials

The polynomials are used as two vectors with leftmost element the less
signi�cant. Addition between polynomials is very easy: we only have to
sum couples of coe�cients corresponding to the same power of the variable.
We extract the two coe�cients in the i-th position, �nd their sum by using
the matrix sumTab and then store the new coe�cient in i-th position of an
empty vector. Notice that, in order to properly work, the function need to
deal with vectors of the same length. Thus, before executing any addition,
the function provides to add some zeros after the most signi�cant component
of the shorter vector in order to reach the length of the longer one.

6.4.2 Division between polynomials

Polynomials are used as two vectors with leftmost element the less sig-
ni�cant. At every step we �nd a dividend of lower and lower degree and we
evaluate a reminder polynomial. When the reminder polynomial has degree
less than the divisor one, algorithm stops. Let's see what happens at each
step:

1. Divide the coe�cient of the maximum degree term of the dividend by
the coe�cient of the maximum degree term of the divisor: the result

76

6.4. SYSTEMATIC ENCODING

will be the coe�cient of the next term of the quotient. This �rst step
is computed by using the divTab matrix.

2. Multiply every term of the divisor by the just found quotient term and,
for each of the obtained values, replace the coe�cient with its opposite
(inverse with respect to addition). Since every element is representable
by a polynomial with coe�cients in GF (2), every element is the inverse
of itself.

3. Subtract the polynomial thus obtained from the actual dividend. The
resulting polynomial is the reminder of this step of the division. If its
degree is still higher than the divisor one, this polynomial becomes the
new dividend and the cycle starts again from the beginning.

The following is the code for the systematic encoding function (in this
piece of code working with vector with leftmost coe�cient the most signi�cant
has been more comfortable):

Section 9: systematic encoding

longInWord = [zeros(1, n - k) inWord];
dvdn = wrev(longInWord);
dvs = wrev(genPol);
degdvdn = length(dvdn) - 1;
degdvs = length(dvs) - 1;
quot = zeros(1, degdvdn - degdvs + 1);
while degdvdn >= degdvs

coeffDvdn = dvdn(1);
coeffDvs = dvs(1);
coeffQuot = divTab(coeffDvdn + 1, coeffDvs + 1);
quotIndex = length(quot) - (degdvdn - degdvs);
quot(quotIndex) = coeffQuot;
aux = zeros(1, degdvdn - degdvs + 1);
aux(1) = coeffQuot;

l1 = length(aux);
l2 = length(dvs);
res = zeros(1, l1 + l2 - 1);
for i = 1 : l1

for j = 1 : l2
index = i + j - 1;
c1 = aux(i);
c2 = dvs(j);
val = mulTab(c1 + 1, c2 + 1);

77

CHAPTER 6. MATLAB IMPLEMENTATION

res(index) = sumTab(res(index) + 1, val + 1);
end

end

long = dvdn;
short = res;
if length(dvdn) < length(res)

long = res;
short = wrev(dvdn);

end
short = [short zeros(1, length(long) - length(short))];

l = length(long);
newDvdn = zeros(1, l);
for i = 1 : l

c1 = short(i);
c2 = long(i);
sum = sumTab(c1 + 1, c2 + 1);
newDvdn(i) = sum;

end

firstNonZero = 0;
for i = 1 : length(newDvdn)

if newDvdn(i) == 0
firstNonZero = firstNonZero + 1;

else
break;

end
end
newDvdn = newDvdn(firstNonZero + 1 : length(newDvdn));
dvdn = newDvdn;
degdvdn = length(dvdn) - 1;

end

dvdn = wrev(dvdn);
long = dvdn;
short = longInWord;
if length(dvdn) < length(longInWord)

long = longInWord;
short = dvdn;

end
short = [short zeros(1, length(long) - length(short))];
l = length(long);

78

6.5. NOISE GENERATION

codeword = zeros(1, l);
for i = 1 : l

c1 = long(i);
c2 = short(i);
sum = sumTab(c1 + 1, c2 + 1);
codeword(i) = sum;

end

6.5 Noise generation

In this section we generate an error vector which will corrupt the code
word. The random process we use to create such a vector does not have any
claim to model a real noisy channel: all we intend to do is simply distorting
the transmitted vector to test the decoder and the robustness of the code.

To generate random noise we create a n length zero vector which we
will �ll with random values in random positions. First we �nd a random
number of error components numErr; then, if the number of errors is not
null (numErr 6= 0), we choose a random position for every error component:
if in that position there is a "0", we �ll it with a random value from 1 to 255.
Once the error vector is created, we sum it to the transmitted code word:

Section 10: noise generation

errCW = codeword;
noise = zeros(1, n);
numErr = mod(ceil(rand(1, 1) * 100), maxNumErr + 1);
if numErr ~= 0

for i = 1 : numErr
errPosition = mod(ceil(rand(1, 1) * 10000), n) + 1;
while noise(errPosition) ~= 0

errPosition = mod(ceil(rand(1, 1) * 10000), n)
+ 1;

end
noise(errPosition) = mod(ceil(rand(1, 1) * 10000),

n) + 1;
end

for i = 1 : n
errCW(i) = sumTab(errCW(i) + 1, noise(i) + 1);

end
end

79

CHAPTER 6. MATLAB IMPLEMENTATION

6.6 Decoder initialization and syndromes

This section has the only aim of preparing some vectors and tables funda-
mental for the decoding process. The very �rst table we build is the matrix
of the powers of all the element of GF (q): every column is reserved to one of
the n+ 1 elements, ordered by logarithmic notation, that is: 0, α, α2, . . . , αn.
Each row represents a power from 0 to n−1: since we will not use any vector
longer than n positions, polynomial we will deal with will not have degree
greater than n− 1.

Section 11: powers table

powers = zeros(n, n + 1);
for i = 2 : n + 1

currElem = polTab(i, :)*binTab;
power = 1;
for j = 1 : n

powers(j, i) = power;
power = mulTab(currElem + 1, power + 1);

end
end

To properly decode we must, obviously, know what code we are using,
that is parameters like n, m, k and t must be known by the receiver, who
can �nd the number of roots of the generator polynomial: 2t. This number
is fundamental to allow us to evaluate all the necessary syndromes. For as
the generator polynomial has been done, we know its roots are the �rst 2t
powers of the primitive element α. To compute the 2t syndromes we have to
evaluate the received polynomial, c̃(x), in every of the generator polynomial
roots: we �rst extrapolate the proper powers from the table powers:

Section 12: generator polynomial roots table

numRoots = 2*t;
rootsPowers = powers(:, 2 : numRoots + 1);

and then execute the multiplication between the vector errCW and one of
the columns of the roots powers:

Section 13: syndromes evaluation

syndrome = zeros(1, numRoots);
for i = 1 : numRoots

res = 0;
for j = 1 : n

80

6.7. ERROR LOCATOR POLYNOMIAL

res = sumTab(res + 1, mulTab(errCW(j) + 1,
rootsPowers(j, i) + 1) + 1);
end
syndrome(i) = res;

end

If all the syndromes are null we are sure that the received word belongs to
the set of the valid codeword. Since we are dealing only with positive integers
we can make this check only by summing every syndrome component; if the
sum is zero, then every syndrome is null, the word is a good code word and
we can extrapolate the information word from the rightmost k symbols:

Section 14: syndorme check

if sum(syndrome) == 0
decInWord = codeword(n - k + 1: n);
disp(’no errors occurred’);
decWord = codeword;

Otherwise, if there is at least one non-zero syndrome we have to �nd out
what and how many errors have occurred.

6.7 Error locator polynomial

This section performs a large part of the decoding process. After these
operation we will know the number ν of occurred errors and positions of
non-zero elements of the error vector.

The �rst thing to do is de�ning initial conditions. We will use r = 0 and
m = −1 as exposed in section (5.2):

Section 15: Berlekamp-Massey algorithm initialization

M = -1;
lambdaR = [1];
lambdaM = [1];
lr = 0;
lm = 0;
dm = 1;

Through a for cycle we will increase the value of r and update error
locator polynomial and its related parameters (lr, δr and r − lr). Once we
have begun the cycle we have to compute δr by using (5.15) to check whether
the solution at the previous step since �ts for the next one:

81

CHAPTER 6. MATLAB IMPLEMENTATION

Section 16: discrepancy

for R = 0 : 2*t - 1
dr = 0;
for h = 0 : lr

dr = sumTab(dr + 1, mulTab(lambdaR(h + 1) + 1,
syndrome(R + 1 - h) + 1) + 1);
end

If δr is not null we can move on to compute Λ(r+1)(x) according to The-
orem 22. We will �nd that in several passages. First we look for δ−1m :

Section 17: finding δ−1m

dmLogInv = -1;
if dm == 0

disp(’Error!’);
else

dmLogInv = logTab(dm + 1);
if dmLogInv ~= n

dmLogInv = n - dmLogInv;
end

end
dmInv = polTab(dmLogInv + 1, :)*binTab;

then we evaluate −δrδ(−1)m xr−mΛ(m)(x):

Section 18: finding −δrδ(−1)m xr−mΛ(m)(x)

trasLambdaM = [zeros(1, R - M) lambdaM];
drdm = mulTab(dr + 1, dmInv + 1);
for i = 1 : length(trasLambdaM)

trasLambdaM(i) = mulTab(trasLambdaM(i) + 1, drdm + 1);
end

and eventually we sum together Λ(r)(x) with the just found polynomial:

Section 19: error locator polynomial at (r + 1)-th step

long = lambdaR;
short = trasLambdaM;
if length(long) < length(short)

long = trasLambdaM;
short = lambdaR;

end
short = [short zeros(1, length(long) - length(short))];

82

6.7. ERROR LOCATOR POLYNOMIAL

l = length(long);
lambdaRR = zeros(1, l);
for i = 1 : l

c1 = long(i);
c2 = short(i);
lambdaRR(i) = sumTab(c1 + 1, c2 + 1);

end

To �nd lr+1 we have to know which one between lr and lm + r−m is the
greater one:

Section 20: shift register length

lrr = -1;
if lr > lm + R - M

lrr = lr;
else

lrr = lm + R - M;
end

Notice that we have saved the new error locator polynomial Λ(r+1)(x) and
the new shift register length lr+1 in two temporary variables lambdaRR and
lrr because we still need current values of lambdaR and lr to understand
whether r would be a suitable m for next stages of the algorithm:

Section 21: new previous minimum solution

if R - lr > M - lm
M = R;
lambdaM = lambdaR;
lm = lr;
dm = dr;

end

lambdaR = lambdaRR;
lr = lrr;

Once the for cycle ends the vector lambdaR contains the coe�cients of
the error locator polynomial and, since there is at least one non-null syn-
drome, and thus at least one error, the polynomial must have at least degree
1 and the relative vector at least two components. The variable nu indi-
cates the locator polynomial degree. Now we have to �nd the roots of this
polynomial by simply evaluating Λ(r)(x) in every elements: every time the
polynomial vanishes we write the related element in logarithmic form in a
vector called invPositions. In positions we save the inverse of each

83

CHAPTER 6. MATLAB IMPLEMENTATION

root stored in invPositions; these values represent the positions of the
non-null components of the error vector.

Section 22: error locator polynomial roots

nu = length(lambdaR) - 1;
index = length(lambdaR);
while lambdaR(index) == 0

nu = nu - 1;
index = index - 1;

end

invPositions = zeros(1, nu);
index = 1;
for i = 1 : n

res = 0;
for j = 1 : length(lambdaR)

res = sumTab(res + 1, mulTab(lambdaR(j) + 1, powers
(j, i + 1) + 1) + 1);
end
if res == 0

invPositions(index) = i;
index = index + 1;

end
end

positions = zeros(1, nu);
for i = 1 : nu

pos = invPositions(i);
if pos == 0

disp(’Error!’);
else

if pos ~= n
pos = n - pos;

end
end
positions(i) = pos;

end

84

6.8. FORNEY ALGORITHM

6.8 Forney algorithm

The last step the complete the decoding is evaluating error component
magnitudes through the Forney algorithm exposed in section (5.3).

We compute the polynomial product S(x)Λ(x) and, after the vector is
formed, we consider only the 2t leftmost components to take the polynomial
modulo x2t:

Section 23: evaluating S(x)Λ(x)

l1 = length(lambdaR);
l2 = length(syndrome);
ltot = l1 + l2 - 1;
synLam = zeros(1, ltot);
for i = 1 : l1

for j = 1 : l2
index = i + j - 1;

synLam(index) = sumTab(synLam(index) + 1, mulTab(
lambdaR(i) + 1, syndrome(j) + 1) + 1);
end

end
synLam = synLam(1 : 2*t);

We now create a vector of the numerators we will use in expression (5.25)
by evaluating Ω(x) in every of the values X−1k contained in invPositions:

Section 24: numerators

lambdaRootsPow = zeros(n, nu);
for i = 1 : nu

lambdaRootsPow(:, i) = powers(:, invPositions(i) + 1);
end

% ...

numerators = zeros(1, nu);
for i = 1 : nu

res = 0;
for j = 1 : length(numerators)

res = sumTab(res + 1, mulTab(lambdaRootsPow(j, i) +
1, synLam(j) + 1) + 1);
end
numerators(i) = res;

end

85

CHAPTER 6. MATLAB IMPLEMENTATION

To get denominators we �rst compute the �rst derivative of Λ(x) and then
evaluate it in every of the elements of invPositions. For what exposed in
section (5.3.1) we can �nd the derivative by transposing the vector lambdaR
one step on the left, so that to decrease the power of each term. Coe�cients
of odd powers will remain unchanged, but even terms are all imposed to
zero. Being the derivative computed, we evaluate it on all the elements of
invPositions to get the vector denominators:

Section 25: derivative of Λ(x) and denominators

derLambda = lambdaR(2 : length(lambdaR));
for i = 1 : floor(length(derLambda) / 2)

derLambda(2*i) = 0;
end

denominators = zeros(1, nu);
for i = 1 : nu

res = 0;
for j = 1 : length(derLambda)

res = sumTab(res + 1, mulTab(lambdaRootsPow(j, i) +
1, derLambda(j) + 1) + 1);
end
denominators(i) = res;

end

We are now ready to compute every magnitude Y by dividing every nu-
merator by the corrispondent denominator:

Section 26: magnitudes

Y = zeros(1, nu);
for i = 1 : nu

Y(i) = divTab(numerators(i) + 1, denominators(i) + 1);
end

We have all the information to build the error vector: we scan the whole
vector positions and, for every index, we save in a zero vector the cor-
respondent value of the coe�cient. We must care that αn does not refer to
the n-th power, which does not exists in a n length vector, but to the known
term, that is to power x0. The last step is adding the error vector to the
received code word:

Section 27: error vector and decoded word

error = zeros(1, n);

86

6.8. FORNEY ALGORITHM

for i = 1 : length(positions)
pos = positions(i);
if pos == n

error(1) = Y(i);
else

error(pos + 1) = Y(i);
end

end

decWord = zeros(1, n);
for i = 1 : n

decWord(i) = sumTab(errCW(i) + 1, error(i) + 1);
end

87

CHAPTER 6. MATLAB IMPLEMENTATION

88

Appendix A

Primitive polynomials on GF (2)

Here is a table of some primitive polynomials with coe�cients in GF (2),
that is in {0, 1}, whose degrees go from 2 to 24. The table gathers some of
the primitive polynomials illustrated in [4, p. 79].

Degree Polynomial
2 1 + x+ x2

3 1 + x+ x3

4 1 + x+ x4

5 1 + x2 + x5

6 1 + x+ x6

7 1 + x3 + x7

8 1 + x2 + x3 + x4 + x8

9 1 + x4 + x9

10 1 + x3 + x10

11 1 + x2 + x11

12 1 + x+ x4 + x6 + x12

13 1 + x+ x3 + x4 + x13

14 1 + x+ x6 + x10 + x14

15 1 + x+ x15

16 1 + x+ x3 + x12 + x16

17 1 + x3 + x17

18 1 + x7 + x18

19 1 + x+ x2 + x5 + x19

20 1 + x3 + x20

21 1 + x2 + x21

22 1 + x+ x22

23 1 + x5 + x23

24 1 + x+ x2 + x7 + x24

i

APPENDIX A. PRIMITIVE POLYNOMIALS ON GF (2)

ii

BIBLIOGRAPHY

Bibliography

[1] N. AMBRAMSON Information Theory and Coding, 1963, McGraw-
Hill, USA.

[2] E.R. BERLEKAMP Algebraic Coding Theory, 1968, McGraw-Hill,
New York (USA).

[3] G. BIRKHOFF and S. Mac LANE A Survey of Modern Algebra, 1953,
Macmillan, New York, (USA).

[4] R.E. BLAHUT Theory and Practice of Error Control Codes, 1983,
Addison-Wesley Publishing Company.

[5] R.C. BOSE and D.K. RAY-CHAUDHURI On a Class of Error-
Correcting Binary Group Codes, 1960, Inform. Contr., vol.3, pp. 68-79.

[6] G.C. CLARK JR. and J. BIBB CAIN Error-Correction Coding for
Digital Communications, 1981, Plenum Press, New York (USA).

[7] R.G. GALLAGER Information Theory and Reliable Communication,
1968, Wiley, USA.

[8] L. GÅRDING and T. TAMBOUR Algebra for Computer Science, 1988,
Springer-Verlag, Berlin (GER).

[9] R.W. HAMMING Error Detecting and Error Correcting Codes, 1950,
Bell System Technical Journal, vol.29, pp. 147-150.

[10] R.V.L. HARTLEY Transmission of Information, 1928, Bell System
Technical Journal, vol.7, num.3.

[11] A. HOCQUENGHEM Codes Correcteurs d'Erreurs, 1959, Chi�res,
vol.2, pp. 147-156.

[12] S. IHARA Information Theory for Continuous Systems, 1993, World
Scienti�c Publishing.

iii

BIBLIOGRAPHY

[13] S. LIN and D.J. COSTELLO JR. Error Control Coding: Fundamentals
and Applications, 1983, Prentice-Hall, Englewood Cli�s, New Jersey
(USA).

[14] J.H. van LINT Introduction to Coding Theory, 1982, Springer, Berlin
(GER).

[15] J.L. MASSEY Shift-Register Synthesis and BCH Decoding, 1969, IEEE
Trans. Inform. Theory, vol.IT-15, num.1, pp. 122-127.

[16] C.M. MONTI Teoria dei Codici: Codici a Blocco, 1995, Libreria Pro-
getto, Padova (ITA).

[17] H. NYQUIST Certain Topics in Telegraph Transmission Theory, 1928,
Transactions of the American Institute of Electrical Engineers, vol.47.

[18] W.W. PETERSON Encoding and Error-Correction Procedures for the
Bose-Chaudhuri Codes, 1960, IRE Trans. Inform. Theory, vol.IT-6.

[19] J.R. PIERCE An Introduction to Information Theory. Symbols, Signals
and Noise, 1980, Dover Publications, New York (USA).

[20] E. PRANGE Cyclic Error Correcting Codes in two Symbols, 1957,
Tech. Note AFCRC-TN-57-103, Air Force Cambridge Research Cen-
ter, Cambridge, MA (USA).

[21] I.S. REED and G. SOLOMON Polynomial Codes over Certain Finite
Fields, 1960, Journal of the Society for Industrial and Applied Mathe-
matics, SIAM, vol.8, pp. 300-304.

[22] T. RICHARDSON and R. URBANKE Modern Coding Theory, 2008,
Cambridge University Press, New York (USA).

[23] C.E. SHANNON A Mathematical Theory of Communication, 1948, Bell
System Technical Journal, vol.27, pp.379-423.

[24] P. SWEENEY Error Control Coding, 2002, Wiley, Chichester, West
Sussex (ENG).

[25] B.L. van der WAERDEN Modern Algebra, 1950, Frederick Ungar, New
York (USA).

[26] S.B. WICKER and V.K. BHARGAVA Reed-Solomon Codes and their
Applications, 1994, IEEE Press, New York (USA).

iv

