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Introduction

The study of zeta functions has long been a central theme in number theory
and group theory, providing deep insights into the structure and properties of
various algebraic objects. Among these, the subgroup zeta function emerges as a
powerful tool for analysing the asymptotic behaviour and distribution of subgroups
within algebraic structures. The double coset zeta function extends the concept of
subgroup zeta functions by considering double cosets instead of single cosets, thus
it o�ers a framework for studying symmetries and invariant properties. The aim
of this thesis is to explore the double coset zeta function in depth, beginning with
a detailed examination of the subgroup zeta function.

We will start by introducing the Riemann zeta function, which is one of the
most famous and known functions in number theory and complex analysis. It
contains deep properties of the integers, in particular, through its Euler Product
identity. The Riemann zeta function �nds one of its applications in group theory, in
particular in the study of the subgroup zeta function. The subgroup zeta function
counts subgroups of various indices, revealing rich structural information about
the group. We will study in details two speci�c examples: the abelian group Zd,
where d is a natural number, and the discrete Heisenberg group H3, which is not
abelian. In these two examples the subgroup zeta function can be written as a
product of Riemann zeta functions.

In order to de�ne the double coset zeta function, we will �rst introduce the
concept of double cosets, denoted as HgK, where H and K are subgroups of a
group G and g is an element of G. The concept of double cosets was introduced
in group theory to generalise the idea of single cosets and to study the structure
and relationships between subgroups of a group. Double cosets arise naturally
when analysing the symmetries and invariants that emerge from the actions of
two subgroups simultaneously. Historically, their study began with Frobenius,
who saw their potential in various applications, including counting problems and
understanding group structures in greater detail. We will discuss how double cosets
are related to single cosets, with a particular emphasis on the conditions under
which they coincide - in particular, if and only if the subgroup is normal. After
having analysed in detail some properties of double cosets, we will de�ne the double
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coset zeta function and we will focus on calculating it for speci�c groups, including
the dihedral group D2n+1 of order 2n+1, the semidihedral group, and the quaternion
group of the same order. We will derive a recursive formula for the dihedral group
of order a power of 2. Indeed, we will establish a connection between the double
coset zeta functions of groups of successive orders for the family D2n+1 . Then
we will study the double coset zeta function of the semidihedral and quaternion
groups and we will se that it depends on the double coset zeta function of D2n+1 .

Recalling that the pro-2-dihedral group is de�ned to be the inverse limit of
the the family D2n+1 , with n ∈ N, we derive the double coset zeta function for it.
Then, we extend the analysis to the dihedral group of order 2pn for an odd prime p
and its pro�nite completion, which is the pro-p-dihedral group.



Chapter 1

Dirichlet series and Riemann zeta

function

To fully understand the results that will be presented in this thesis, it is essential
to �rst introduce some fundamental concepts.

In this chapter, we will focus on Dirichlet series, which are among the most im-
portant tools in analytic number theory. In particular, we will study the Riemann
Zeta function and examine some of its key properties. This groundwork will help
to provide the necessary context for the discussions that follows.

1.1 Dirichlet series

Whenever a counting problem yields a sequence of non-negative integers {an}n∈N,
we can gain insight by incorporating this sequence into a generating function. One
of the most well-known generating functions is the Dirichlet series:

De�nition 1.1. Given a sequence of non-negative integers {an}n∈N, we de�ne the
Dirichlet series as

∞∑
n=1

an
ns

,

where s is a complex variable.

We do not look at it only as a formal sum, we also study the largest non-empty
subset of C where it converges.

Remark 1.2. Let s be a complex variable. It can be expressed as s = σ + it,
where σ and t are real numbers. Then ns = es log(n) = e(σ+it) log(n) = nσe(it) log(n).
This shows that |ns| = nσ, since |eiθ| = 1 when θ is real.

6
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Taking a real number α, we de�ne a half-plane as the set of points of the form
s = σ + it with σ > α. We will show that for each Dirichlet series, there exists
a half-plane Re(s) > σc in which the series converges, and another half-plane
Re(s) > σa in which it converges absolutely. In the half-plane of convergence, the
series represents an analytic function of the complex variable s.

1.2 The half-plane of absolute convergence of a

Dirichlet series

First, we observe that if Re(s) = σ ≥ α, then |ns| = nσ ≥ nα. This implies
that ∣∣∣an

ns

∣∣∣ ≤ |an|
nα

.

Therefore, if a Dirichlet series converges absolutely for s = a + ib, then by com-
parison, it also converges absolutely for Re(s) > a. This observation leads to the
following theorem.

Theorem 1.3. Suppose the series
∑∞

n=1

∣∣an
ns

∣∣ neither converges for all s nor di-
verges for all s. Then there exists a real number σa, called the abscissa of absolute
convergence, such that the series

∑∞
n=1

an
ns converges absolutely when Re(s) > σa,

but does not converge absolutely when Re(s) < σa.

Proof. Let D be the set of all σ such that
∑∞

n=1

∣∣an
ns

∣∣ diverges. D is non-empty
because, by assumption, the series does not converge for all s. Moreover, D is
bounded above because the series does not diverge for all s. Hence, D has a least
upper bound, denoted by σa.

If σ < σa, then σ ∈ D (otherwise, it would be an upper bound for D smaller
than the least upper bound).

If σ > σa, then σ /∈ D (since σa is an upper bound for D).

If the series
∑∞

n=1

∣∣an
ns

∣∣ converges for all values of s, we de�ne σa = −∞. Con-
versely, if the series converges for no values of s, we de�ne σa = +∞.

An important example of Dirichlet series is the Riemann zeta function.

1.3 Riemann zeta function

In this chapter, we will delve into the Riemann zeta function, one of the most
signi�cant functions in number theory and complex analysis, due to its deep con-
nections with the distribution of prime numbers and its appearance in various
areas of mathematics, including mathematical physics.
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The Reimann zeta function is a speci�c example of the Dirichlet series, de�ned
by the in�nite sum

ζ(s) =
∞∑
n=1

1

ns
,

for Re(s) > 1.

Remark 1.4. The Riemann zeta function is absolutely and uniformly convergent
in the domain Re(s) ≥ 1 + δ for any δ > 0, which implies that it represents an
analytic function in the half-plane Re(s) > 1. In particular, for Re(s) = σ ≥
1+ δ, the series

∑∞
n=1

∣∣ 1
ns

∣∣ =∑∞
n=1

1
nσ is bounded by

∑∞
n=1

1
n1+δ , which guarantees

the convergence.

The Riemann zeta function contains deep properties of the integers, particu-
larly through its Euler product identity:

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

.

Theorem 1.5. (Euler product) Let s ∈ C. When Re(s) > 1, the Riemann zeta
function ζ(s) satis�es the Euler product identity, so:

∞∑
n=1

1

ns
=
∏
p

1

1− p−s
,

where p runs through all the prime numbers.

Proof. To prove the Euler product identity, recall that an in�nite product
∏∞

n=1 an
of complex numbers an converges if the sequence of partial products PN =

∏N
n=1 an

has a nonzero limit. This condition is equivalent to requiring that the series∑∞
n=1 log(an) converges, where "log" denotes the principal branch of the loga-

rithm. The product converges absolutely if the series
∑∞

n=1 | log(an)| converges.
In this case, any reordering of the product also converges to the same value.

Let

E(s) =
∏

p prime

1

1− p−s
,

and let us analyse its logarithm

log(E(s)) = log

( ∏
p prime

1

1− p−s

)
.
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Recall that

log(1− x) = −
∑
n≥1

xn

n
,

which yields to

log(E(s)) =
∑
p

log
1

1− p−s
=
∑
p

∑
n≥1

(p−s)n

n
=
∑
p

∑
n≥1

1

npns
.

This sum converges absolutely for Re(s) ≥ 1+ δ. Indeed, given that |pns| = pnσ ≥
p(1+δ)n, the sum of the corresponding geometric series leads to the following chain
of inequalities:∑

p

∑
n≥1

1

np(1+δ)n
≤
∑
p

∑
n≥1

(
1

p1+δ

)n

=
∑
p

1

p1+δ − 1
≤ 2

∑
p

1

p1+δ
≤
∑
n≥1

1

n1+δ
,

which converges.
The absolute convergence of the product then follows:

E(s) =
∏
p

1

1− p−s
= exp

(
log

(∑
p

∑
n≥1

1

npns

))
.

Expanding the factors gives:

1

1− p−s
=
∑
n≥0

1

pns
,

which implies that for a �xed N ∈ N and for all prime numbers p1, . . . , pr ≤ N ,
we have the equality

∏
p≤N

1

1− p−s
=

∞∑
ν1,...,νr=0

1

(pν11 . . . pνrr )s
=

′∑
n

1

ns
,

where
∑′

n denotes the sum over all natural numbers that are divisible only by
the primes p ≤ N . This sum includes the terms corresponding to all n ≤ N ,
but also those n that are products of the primes p1, . . . , pr and are larger than N .
Therefore, we can write:

∏
p≤N

1

1− p−s
=
∑
n≤N

1

ns
+

′∑
n>N

1

ns
.
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Thus, we obtain:

∣∣∣∣∣∏
p≤N

1

1− p−s
− ζ(s)

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
∑
n>N
pi∤n

1

ns

∣∣∣∣∣∣∣∣ ≤
∑
n≥N

1

n1+δ
,

where the right-hand side approaches 0 as N → ∞, since it represents the remain-
der of a convergent series. This completes the proof of Euler's identity.



Chapter 2

Subgroup growth and subgroup zeta

function

Over the past few decades, there have been substantial progresses in the the-
ory of zeta functions associated with groups and their connections to algebraic
structures. This emerging �eld has opened up new paths for exploring the deep
interrelations between algebra, number theory, and analysis. A key area of focus
involves enumerative problems related to nilpotent groups. Grunewald, Segal, and
Smith [3] initiated the study of zeta functions associated with the enumeration of
subgroups of �nite index within �nitely generated torsion-free nilpotent groups.

In this chapter, we will delve into the study of subgroup growth, a fundamental
aspect of group theory that explores how the number of subgroups with a given
index grows, as the index grows. This area has signi�cant connections with number
theory and combinatorics and aims to understand the asymptotic behaviour of the
�nite index subgroups.

2.1 Subgroup growth

Consider the following function associated with a group G:

n 7−→ an(G),

where an(G) represents the number of subgroups of G with index n. This function
is known as the subgroup growth function of G. It is well-de�ned when an(G)
is �nite for all n ∈ N. In particular, this condition holds when G is �nitely
generated. The subgroup growth function not only counts subgroups but also
measures the algebraic complexity of the group. Studying these growth rates
helps reveal signi�cant characteristics of the group, such as whether it is virtually
nilpotent.
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Proposition 2.1. Let G be a �nitely generated group. Then it has only �nitely
many subgroups of a given index n.

Proof. Let G be a �nitely generated group, say G = ⟨g1, . . . , gr⟩. Fix n ∈ N and
consider a subgroup H of G such that |G : H| = n. Since H has index n, G
acts on the left cosets of H via left multiplication. This induces a homomorphism
η : G → Sn, determined uniquely by H.

Each homomorphism from G to Sn is de�ned by the images of the generators
gi for i ∈ {1, . . . , r}, with at most n! possibilities for each gi. Therefore, the total
number of such homomorphisms is at most (n!)r, implying that the number of
subgroups of index n is bounded above by (n!)r .

It is also possible to de�ne sn(G) as the total number of subgroups of G of
index at most n, so

sn(G) =
n∑

i=1

ai(G).

We observe that if G is a �nite group, then s(G) =
∑+∞

i=1 ai(G) is the total number
of subgroups of G.

Example 2.2. As a simple example we can consider the group of integers Z. We
have that an(Z) = 1 and sn(Z) = n, for all n ∈ N, while s(Z) is not de�ned, since
Z is an in�nite group.

Let R(G) denote the intersection of all subgroups of G with �nite index and
consider the quotient group G/R(G). We observe that the number of subgroups
of any given index n in G is preserved in the quotient. In particular, this implies
that

an(G) = an(G/R(G)).

Consequently, we may assume without loss of generality that G is residually �nite,
meaning R(G) = 1 .

De�nition 2.3. A group G is said to have subgroup growth of type f if there exist
positive constants a and b such that

sn(G) ≤ f(n)a for all n,

sn(G) ≥ f(n)b for in�nitely many n;

and G has growth of strict type f if the second inequality holds for all large n.

This de�nition raises three key questions:
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1. What are the possible growth types?

2. Given a group G, what is its growth type?

3. Given a speci�c growth type, which groups exhibit it?

Let us examine some preliminary results.
Consider a group G and a subgroup H of G with index n < ∞. Then, there

are n cosets of H, which, without loss of generality, can be represented as the set
{1H, g1H, . . . , gn−1H}, on which G can act transitively by multiplication. This
action induces a homomorphism ϕ from G to the symmetric group Sn. The sta-
bilizer of the element 1H under this action is the subgroup H itself, which is the
preimage of all permutations that �x the �rst element of the set and permute the
others freely. This means that StabG(1H) = ϕ−1(Sn−1), so for each subgroup H
of index n, there are (n− 1)! distinct transitive actions of G on {1, . . . , n}. If we
denote by tn(G) the number of transitive actions, then we have

an(G) =
tn(G)

(n− 1)!
.

If G is �nitely generated, let d be the number of generators. Then the number
of transitive homomorphisms from G to Sn is determined by the image of each
generator. Consequently, we expect that an(G) ≤ n(n!)d−1 .

Let us now consider the entire set of homomorphisms from G to Sn and denote
the number of such homomorphisms by hn(G). We then obtain the following result:

Lemma 2.4. Let G be a group. Then

hn(G) =
n∑

k=1

(
n− 1

k − 1

)
tk(G)hn−k(G).

Proof. Let hn,k(G) be the number of homomorphisms from G to Sn in which the
orbit of 1 under the action of G has order k. To select this orbit, we must choose
k − 1 elements from n − 1 elements. There are tk(G) ways to act transitively on
this orbit, and we can permute the remaining n − k elements, giving us hn−k(G)
ways to do this. Therefore, we have

hn(G) =
n∑

k=1

hn,k(G) =
n∑

k=1

(
n− 1

k − 1

)
tk(G)hn−k(G).

Replacing tk(G) with ak(G)(k−1)!, we obtain, as a corollary, a recursive formula
for an(G).
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Corollary 2.5. Given a group G,

an(G) =
hn(G)

(n− 1)!
−

n−1∑
k=1

hn−k(G)ak(G)

(n− k)!
.

We now turn our attention to free groups, which will be the focus of the sub-
sequent discussion.
As we have seen from the result above, whenever we have a group G generated
by d elements, we know an(G) ≤ n(n!)d−1. We can say more for free subgroups
generated by d elements.

Theorem 2.6. [7] Let G be a free group with d ≥ 2 generators, then

an ∼ n(n!)d−1,

whereby ∼ we denote the asymptotic equivalence (i.e. f ∼ g if f
g
→ 1 as n → ∞).

The following corollary follows directly:

Corollary 2.7. Every �nitely generated free group has subgroup growth of type
nn.

Proof. Observing that nn/2 ≤ n! ≤ nn, and an(G) ∼ n(n!)d−1 for any free d-
generated group G, the result follows.

Since any d-generated group G is an image of the free group Fd, its growth is
at most as fast as that of Fd. So, the fastest possible growth type is the super-
exponential type, which is nn.
Turning our attention to exponential subgroup growth, we introduce two key in-
variants for a group G:

σ(G) = lim sup
log sn(G)

n
,

σ−(G) = lim inf
log sn(G)

n
,

where we are using the notation log x = log2 x.
If σ(G) is �nite, then sn(G) grows at most exponentially.
If σ(G) > 0, then we have exponential subgroup growth, otherwise, i.e. if

σ(G) = 0, we have subexponential subgroup growth.
Regarding the role of σ−(G), if we can prove for a group G that σ(G) = σ−(G),

and the quantity is �nite, then the group is said to exhibit a speci�c type of strict
subgroup growth.

It is important to note that for �nite groups, the sequence sn remains constant.
In the case of G = Z, we �nd that sn = n. This naturally raises the question:
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is this the slowest possible growth type for in�nite groups? The answer is indeed
"yes", though proving this result is surprisingly di�cult and relies on one of the
most signi�cant results in the �eld to date. Before delving into that, let us �rst
introduce the concept of polynomial subgroup growth.

De�nition 2.8. A group G has polynomial subgroup growth (PSG) if there is a
constant c > 0 such that sn(G) ≤ nc for all n ∈ N.

Here is one of the most famous theorem in geometric group theory:

Theorem 2.9. (Gromov's theorem) [7] A �nitely generated group has polynomial
growth if and only if is virtually nilpotent, i.e. it contains a nilpotent subgroup of
�nite index.

In this context, the term growth pertains to the growth of words obtained by
a �nite set of generators. But can this concept be extended to the growth of
subgroups? While the notion of subgroup growth is meaningful even for groups
that are not �nitely generated, focusing on �nitely generated groups allows us
to cite a signi�cant theorem. This theorem, due to A. Lubotzky, A. Mann, and
D. Segal, provides a characterization of groups with "slow" subgroup growth [5],
which we are not going to prove.

Theorem 2.10. (The PSG theorem) [7] Let G be a �nitely generated residually
�nite group. G has polynomial subgroup growth if and only if it is virtually
solvable with �nite rank, i.e. it contains a solvable subgroup with �nite index
which is �nitely generated.

An important point to notice is that the theorem does not provide a complete
classi�cation of all groups with polynomial subgroup growth.

2.2 The subgroup zeta function

When studying the subgroup structure of a �nitely generated group G, one
of the central problems is understanding how subgroups of a given �nite index
are distributed. Since we are interested in counting the number of subgroups of
�nite index in a �nitely generated group G, a possible approach is to encode this
counting sequence using a generating function. A natural choice is the ordinary
generating function de�ned by

AG(x) =
∑
n≥1

an(G)xn,

where an(G) represents the number of subgroups of index n in G.
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To encode the growth of subgroups in a �nitely generated group there is another
approach which involves the use of Dirichlet series. Instead of relying on the
ordinary generating function, one can consider the subgroup zeta function.

De�nition 2.11. The subgroup zeta function of G is de�ned to be

ζ≤G (s) =
∞∑
n=1

ann
−s =

∑
H≤fG

[G : H]−s,

where s is a complex variable.

This function provides a di�erent perspective by encoding the same counting
sequence an(G) in a manner that is particularly well-suited for analytic techniques.
The use of Dirichlet series allows for the application of tools from analytic number
theory, enabling the study of convergence properties, asymptotic behavior, and
connections with other zeta functions.

This series can be viewed as a formal power series, but if an(G) = O(nc) for
some constant c, indicating that G has polynomial subgroup growth, then the
Dirichlet series converges in a right half-plane of the complex plane. In particular,
this means that the series converges for complex numbers s where the real part of
s is su�ciently large. More precisely:

De�nition 2.12. We de�ne the abscissa of convergence α(G) to be

α(G) := inf
{
α ∈ R | ζ≤G (s) converges on the set {s ∈ C | Re(s) > α}

}
.

This de�nition means that α(G) is the smallest real number such that the
subgroup zeta function ζ≤G (s) converges for all complex numbers s with a real part
greater than α(G). In other words, it is the "boundary" where the zeta function
starts to converge when moving from left to right on the real axis of the complex
plane. Moreover, observing that [4]

α(G) = inf{α | sn(G) = O(nα)} = lim sup
log(sn(G))

log(n)
,

we can say that ζ≤G (s) converges for Re(s) > α(G) and de�nes a holomorphic
function on this half plane, while ζ≤G (s) is divergent at s = α(G). In other words,
for a PSG group G, the abscissa of convergence α(G) determines exactly the degree
of polinomial subgroup growth of G.

Let G be a �nitely generated group. If we assume G to be nilpotent, then ζ≤G (s)
has an Euler product, namely:
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Proposition 2.13. Let G be a nilpotent group, then the subgroup zeta function
of G is given by

ζ≤G (s) =
∏

p prime

ζG,p(s),

where ζG,p(s) =
∑

i≥0

api (G)

pis
.

The factors ζG,p(s) are called the local zeta functions of G, or just local factors.

Proof. The proof follows from the fact that a nilpotent group is isomorphic to the
direct product of its Sylow subgroups. Choosing a subgroup H of G, we see that it
must be isomorphic to the direct product of the intersection of H with each Sylow
subgroup of G. It implies that an(G) is a multiplicative function, which means
that, using the factorization in prime, if n =

∏k
i=1 p

ri
i ,

an(G) =
k∏

i=1

aprii (G).

Therefore, letting p be a prime, we can �nd the local factors, which are de�ned
by:

ζG,p(s) =
∑
t≥0

apt(G)

pts
.

We �nd the subgroup zeta function just multiplying all this factors together.

Example 2.14. Let G = Z. For each n ∈ N, there is only one subgroup of G of
index n, which is nZ. Therefore, in this case an = 1 for every n, and the subgroup
zeta functions turns out to be

ζ≤G (s) =
∑
n≥1

1

ns
,

which is precisely the Riemann zeta function ζ(s).

Let us consider G = Zd the direct product of in�nite d cyclic in�nite groups,
with d natural number, then we have the following:

Theorem 2.15. Let d ∈ N and G = Zd. Then

ζ≤G (s) = ζ(s)ζ(s− 1) . . . ζ(s− d+ 1).
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Proof. The idea is to use induction on d.
Let us �rst consider the case where G = Z× Z and take a subgroup H of G of

�nite index. The subgroup H is generated by two elements, meaning that there
exist x, y ∈ Z× Z such that H = ⟨x, y⟩, where x and y are of the form x = (x1, x2)
and y = (y1, y2).
Let us take N = {0}×Z, a normal subgroup of Z× Z. Without loss of generality
we can assume that either x1 or y1 is di�erent from 0. Indeed, if both x1 and
y1 were equal to zero, then both x and y would belong to N , implying that also
⟨x, y⟩ = H ⊂ N . This leads to a contradiction. Therefore it is possible to assume
without loss of generality that x1 ̸= 0. We have the following diagram:

G = Z× Z

HN = nZ× Z

H N = 0× Z

H ∩N = mZ

n

m

m

We know that HN/N ≤ G/N ≃ Z, so HN/N is isomorphic to nZ, for some
n ∈ N, and, by the Second Isomorphism Theorem for groups, it is also isomorphic
to H/H ∩N . It means that it holds

HN

N
≃ H

H ∩N
≃ nZ.

The preimages in H of the correspondent generator must be of the form x = (n, a),
with a ∈ Z. Moreover, H ∩ N is a subgroup of N , which is isomorphic to Z, so
H ∩N ≃ mZ. It means that H ∩N is generated by the element y = (0,m).

To summarize up to this point we have that whenever H is a subgroup of G
of �nite index, it is generated by two elements of the form x = (n, a), y = (0,m),
with a ∈ Z, and its index can be factorized as n ·m. In order to understand how
many subgroup of G of index n ·m there are, the goal becomes to understand how
many possibilities we have for a.

If we consider the matrix de�ned as

M =

(
n a
0 m

)
,
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where every raw corresponds to a generator of H, we �nd all set of generators for
H by multiplying M by a generic invertible 2× 2 matrix with coe�cient in Z. In
particular for any k ∈ Z (

1 k
0 1

)
∈ GL2(Z),

and by multiplying the two matrices we get:(
1 k
0 1

)
·
(
n a
0 m

)
=

(
n a+ km
0 m

)
.

Since k is arbitrarily running in Z, a can be seen as a possible reminder when
dividing by k. Therefore, we �nd a bound for a that is

0 ≤ a ≤ m− 1,

so there are m possible choices for a. Moreover, take 0 ≤ a, a′ ≤ m − 1, with
a ̸= a′. Setting x = (n, a) and x′ = (n, a′), we now show that the subgroups ⟨x, y⟩
and ⟨x′, y⟩ are di�erent. Assume by contradiction that

H = ⟨x′, y⟩ = ⟨x, y⟩.

If we take the element x′ − x = (0, a′ − a) ∈ H, then a′ − a = m · t for some t ∈ Z,
but |a′ − a| < m, so a′ = a, which is a contradiction.

Summarizing, if H is a subgroup of Z× Z of �nite index, there exist n,m ∈ Z
such that the index of H can be factorized as n ·m, where n and m are such that
the two generators of H are x = (n, a) and y = (0,m). Moreover, a can be chosen
between {0, . . . ,m− 1}.

We can deduce that the subgroup zeta function is of the form

ζ≤G (s) =
∞∑
n=1

∞∑
m=1

m(nm)−s =
∞∑
n=1

n−s

∞∑
m=1

m1−s = ζ(s)ζ(s− 1).

To better understand the general case, we will �rst examine the case d = 3.
Let G = Z× Z× Z = Z3 and take H a subgroup of G of �nite index. By a
similar argument as above we observe that there exist x1, x2, x3 ∈ Z3 such that
H = ⟨x1, x2, x3⟩, with

x1 = (n1, a1, a2), x2 = (0, n2, b1), x3 = (0, 0, n3).

Moreover the index of H can be factorized as |Z3 : H| = n1 · n2 · n3. To �nd all
the possible generators of H, we can �x a set of generators, as the one above, and
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consider a matrix M as the matrix where every raw corresponds to a generator:

M =

n1 a1 a2
0 n2 b1
0 0 n3

 .

We �nd all the sets of generators by multiplying M by all the matrices of GL3(Z).
If we look at the upper left 2×2 matrix we know that there are n2 possible choices
for a1, by what we have already seen. Looking at1 1 α

0 1 β
0 0 1

 ·

n1 a1 a2
0 n2 b1
0 0 n3

 =

n1 a1 + n2 a2 + b1 + αn3

0 n2 b1 + βn3

0 0 n3

 ,

we get a bound for both a2 and b1. The arbitrary of β gives n3 possible choices
for b1 and the arbitrary of α leads to n3 possible choices for a2.

Iterating this procedure, we can analyse the general case. The matrix associ-
ated to the generators is 

n1 a1 a2 . . . ad−1

0 n2 b1 . . . bd−2

. . . . . . . . . . . . . . .
0 . . . . . . 0 nd

 .

Using the inductive hypothesis we obtain ni possible choices for each one of the
elements which lie above the element ni in the i-th column.

It implies that the subgroup zeta function will be

ζ≤G (s) =
∞∑

n1=1

∞∑
n2=1

· · ·
∞∑

nd=1

n2n
2
3 . . . n

d−1
d (n1 . . . nd)

−s =
∞∑

n1=1

n−s
1

∞∑
n2=1

n1−s
2 · · ·

∞∑
nd=1

n
(d−1)−s
d ,

that is
ζ≤G (s) = ζ(s)ζ(s− 1) . . . ζ(s− (d− 1)).

Things begins to get more unpredictable when we work with non abelian
groups. In the following we will describe the subgroup zeta function of the discrete
Heisenberg group, that is the free class-2 nilpotent group on 3 generators:

H3 =

{1 x y
0 1 z
0 0 1

 | x, y, z ∈ Z

}
.
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Set G = H3. The Heisenberg group is generated by 3 elements:

a =

1 0 0
0 1 1
0 0 1

 , b =

1 1 0
0 1 0
0 0 1

 , c =

1 0 1
0 1 0
0 0 1

 ,

which satisfy three relations:

[a, b] = c−1, and [a, c] = [b, c] = 1.

To show that H3 = ⟨a, b, c⟩, observe that for every n ∈ Z

an =

1 0 0
0 1 n
0 0 1

 , bn =

1 n 0
0 1 0
0 0 1

 , cn =

1 0 n
0 1 0
0 0 1

 .

Taking an arbitrary element g ∈ G, it holds

g =

1 y z
0 1 x
0 0 1

 = axbycz

for some x, y, z ∈ Z. Moreover, observing that

a−1 =

1 0 0
0 1 −1
0 0 1

 , b−1 =

1 −1 0
0 1 0
0 0 1

 , c−1 =

1 0 −1
0 1 0
0 0 1

 ,

and computing the three commutators [a, b], [a, c] and [b, c] we also get the relation
described above. It follows that the presentation of H3 is

⟨a, b, c | [a, b] = c−1, and [a, c] = [b, c] = 1⟩.

We deduce that:

1. the centre Z(G) is generated by the element c : Z(G) = ⟨c⟩;

2. the centre of the group coincides with the derived subgroup of G: Z(G) =
[G,G];

3. the centre of H3 is isomorphic to Z.

Our goal is to �nd the subgroup zeta function of the Heisenberg group.

Theorem 2.16. Let G = H3 be the discrete Heisenberg group. Then

ζ≤G (s) =
ζ(s)ζ(s− 1)ζ(2s− 2)ζ(2s− 3)

ζ(3s− 3)
.
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Proof. First of all the aim is to �nd the subgroup of �nite index of G.
Let N = Z(G) and let H be a subgroup of G with �nite index. We can consider

the following diagram:

G = H3

HN

H N = ⟨c⟩ ≃ Z

H ∩N = ⟨cl1⟩

n1m1

l1

l1

Observe that G/N ≃ Z× Z, by the isomorphism sending

a → (1, 0);

b → (0, 1).

If we look at the subgroup HN/N of G/N , it is isomorphic to a subgroup of
Z× Z of �nite index. It means that there exist n1, n2,m1 ∈ Z such that the image
of HN/N is generated by x = (n1, n2) and y = (0,m1), and its index can be
factorized as n1 ·m1. Therefore it holds that HN/N ≃ ⟨ān1 b̄n2 , b̄m1⟩, which yields
HN = ⟨an1bn2 , bm1⟩N . Since H ∩N is isomorphic to a subgroup of Z, say l1Z, we
have that H ∩N = ⟨cl1⟩. Then H must be of the form

H = ⟨an1bn2cn3 , bm1cm2 , cl1⟩,

with 0 ≤ n2 ≤ m1 − 1 and 0 ≤ n3,m2 ≤ l1 − 1. Moreover, from the relation
[a, b] = c−1, recalling that c ∈ Z(G), it holds that

[an1bn2cn3 , bm1cm2 ] = [an1bn2 , bm1 ]

= [an1 , bm1 ]b
n2

= [an1 , bm2 ]

= c−n1m1 .

Therefore, wheneverH is a subgroup ofG of �nite index, there exist n1, n2, n3,m1,m2, l1 ∈
Z, such that H = ⟨an1bn2cn3 , bm1cm2 , cl1⟩ and the index of H can be factorized as
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n1 · m1 · l1. In particular we can add some more speci�c conditions, that are:
n2 ∈ {0, . . . ,m1 − 1}, n3,m2 ∈ {0, . . . l1 − 1} and l1 | n1m1. We can now describe
the subgroup zeta function:

ζ≤G (s) =
∞∑

n1=1

∞∑
m1=1

∑
l1|n1m1

m1l
2
1(n1m1l1)

−s.

Since the group is nilpotent, we can use the Euler decomposition to simplify the
subgroup zeta function. We look at the local factors. Let p be a prime, let
α, β, γ ≥ 0 be natural numbers and n1 = pα,m1 = pβ, l1 = pγ. Then

ζ≤G,p(s) =
∞∑
α=0

∞∑
β=0

α+β∑
γ=0

pβ+2γ(pα+β+γ)−s =
∞∑
α=0

pα(−s)

∞∑
β=0

pβ(1−s)

α+β∑
γ=0

pγ(2−s).

The following identity:
N∑
k=0

xk =
xN+1 − 1

x− 1
,

yields

ζ≤G,p(s) =
∞∑
α=0

pα(−s)

∞∑
β=0

pβ(1−s)p
(2−s)(α+β+1) − 1

p(2−s) − 1
.

Recall two results we are going to use:

1. ζ(s) =
∑∞

n=1
1
ns =

∏
p

1
1−p−s ;

2.
∑∞

k=0 x
k = 1

1−x
, when −1 < x < 1.

Let us analyse the local factors:
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ζ≤G,p(s) =
∞∑
α=0

p−αs

∞∑
β=0

pβ(1−s)p
(2−s)(α+β+1) − 1

p2−s − 1

=
p2−s

p2−s − 1

∞∑
α=0

p−α(2−2s)

∞∑
β=0

p−β(3−2s) − 1

p2−s − 1

∞∑
α=0

p−αs

∞∑
β=0

p−β(1−s)

=
p2−s

(p2−s − 1)(1− p2−2s)(1− p3−2s)
− 1

(p2−s − 1)(1− p−s)(1− p1−s)

=
(p2−s(1− p−s)(1− p1−s)− (1− p2−2s)(1− p3−2s)

(p2−s − 1)(1− p2−2s)(1− p3−2s)(1− p−s)(1− p1−s)

=
(p2−s − 1)(1− p3−3s)

(p2−s − 1)(1− p2−2s)(1− p3−2s)(1− p−s)(1− p1−s)

=
(1− p3−3s)

(1− p2−2s)(1− p3−2s)(1− p−s)(1− p1−s)
.

Therefore, setting ζp(s) the local factors of the Riemann zeta function, we obtain

ζ≤G,p(s) =
ζp(s)ζp(s− 1)ζp(2s− 2)ζp(2s− 3)

ζp(3s− 3)
.

Knowing that

ζ≤G (s) =
∏

p prime

ζ≤G,p(s),

and using the Euler product Theorem 1.5, we get

ζ≤H3
(s) =

ζ(s)ζ(s− 1)ζ(2s− 2)ζ(2s− 3)

ζ(3s− 3)
,

the subgroup zeta function of the Heisenberg group.



Chapter 3

Double cosets zeta function

A natural question that arises is what happens when we replace the number of
cosets with the number of double cosets.

In this chapter, we will de�ne the double coset zeta function and explore the
information that it can provide. We will begin by introducing the concept of
double coset and by investigating some of its key properties. Following this path,
we will establish a general form for the double coset zeta function. With these
foundations in place, we will then proceed to examine speci�c examples.

3.1 Double cosets

Let G be a group and let H and K be two subgroups of G.

De�nition 3.1. An (H,K)-double coset of G is a subset of G of the form

HxK = {hxk | h ∈ H, k ∈ K},

where x ∈ G.

Equivalently, HxK is the equivalence class of x under the equivalence relation
de�ned by:

x ∼ y if and only if there exist h ∈ H and k ∈ K such that hxk = y.

The set of all (H,K)-double cosets is denoted by H\G/K. When H = K, we refer
to these as H-double cosets.

A double coset can also be viewed as the orbit of an action of the group H×K
on G. More precisely, let us consider the action of H ×K on G given by the map

(H ×K)×G → G

((h, k), x) 7→ hxk−1.

25
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For every x ∈ G, the orbit of x is given by:

Ox = {hxk−1 | h ∈ H, k ∈ K}
= {hxk | h ∈ H, k ∈ K} since k 7→ k−1 is an automorphism of K

= HxK.

It follows that, under this action, every element of H\G/K corresponds exactly
to an orbit. As a consequence the following holds:

Proposition 3.2. For all x, y ∈ G, the double cosets HxK and HyK are either
equal or disjoint. Moreover, the group G can be expressed as the disjoint union of
its double cosets:

G =
⊔

HxK∈H\G/K

HxK.

Proof. This result follows directly from the fact that double cosets are orbits of the
action of H ×K on G. Since the set of the orbits of a group action is a partition
of the set on which the group acts, it immediately implies that the double cosets
HxK and HyK are either identical or disjoint for every x, y ∈ G. Therefore, the
group G can be viewed as the disjoint union of these double cosets.

Remark 3.3. There is a bijection between the sets H\G/K and K\G/H. Such
a bijection is given by

H\G/K → K\G/H

HxK 7→ Kx−1H.

Remark 3.4. If H = {1G}, then the double coset space H\G/K simpli�es to
the coset space G/K, since for all x ∈ G, the double coset HxK reduces to xK.
Similarly, if K = {1G}, then H\G/K simpli�es to the left coset space H\G.

Lemma 3.5. A double coset HxK can be viewed as a union of certain left cosets
from H\G and a union of certain right cosets from G/K. In particular:

HxK =
⋃
k∈K

Hxk =
⊔

Hxk∈H\HxK

Hxk,

and

HxK =
⋃
h∈H

hxK =
⊔

hxK∈HxK/K

hxK.
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Proof. Since H is a subgroup of G, we can express G as the disjoint union of the
right cosets of H:

G =
⊔

Hg∈H\G

Hg.

Therefore, for any x ∈ G, we have:

HxK = HxK ∩G ⊆
⋃

Hg∈HxK

Hg ⊆ HxK.

By a similar argument we obtain the second result.

The Lemma above proves how double cosets are related to both left and right
cosets within the group G.

Lemma 3.6. Let the group H act on the quotient G/K by

H ×G/K → G/K

(h, xK) 7→ hxK.

Denote by H\(G/K) the set of orbits under this action. Then, there exists a
bijection between the sets H\G/K and H\(G/K).
Similarly, there exists a bijection between the sets H\G/K and (H\ G) / K.

Proof. Consider the map

ϕ : H\G/K → H\(G/K)

HxK 7→ H(xK).

Observe that ϕ is a well de�ned. Indeed, for two distinct x, y ∈ G such that
HxK = HyK, there exist h ∈ H and k ∈ K such that y = hxk. Thus, ϕ(HyK) =
H(yK) = H(hxkK) = H(xK) = ϕ(HxK).

To prove that ϕ is a bijection, we will �rst show that it is surjective and then
that it is injective.

Surjectivity: Let x ∈ G, and consider the coset xK ∈ G/K. The orbit of
xK in H\(G/K) is H(xK). The double coset of x in H\G/K is HxK, and by
de�nition, ϕ(HxK) = H(xK), so ϕ is surjective.

Injectivity: Suppose HxK and HyK are two double cosets in H\G/K such
that H(xK) = H(yK). Hence, there exists an element h ∈ H such that xK =
hyK, so x = hyk for some k ∈ K. Therefore, x ∈ HyK, which implies that
HxK = HyK. Thus, ϕ is injective.

Since ϕ is both injective and surjective, it is a bijection.
By a similar argument we get the bijection between H\G/K and (H\ G)/K.
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Proposition 3.7. Assume that H is a normal subgroup of G. Then the double
coset space H\G/K is equal to the coset space G/HK. Similarly, if K is a normal
subgroup of G, then H\G/K is equal to HK\G.

In particular, if H is normal in G, then the double coset space H\G/H sim-
pli�es to G/H, which is the same as the left coset space H \ G.

Proof. First observe that if H is normal in G, then HK is a subgroup of G,
allowing us to consider the coset space G/HK. Let x ∈ G. The double coset of x
in H\G/K is HxK, while its coset in G/HK is xHK. As H is normal in G, we
have that Hx = xH, hence HxK = xHK.

We conclude that H\ G / K = G/HK.

The above proposition leads to the following

Corollary 3.8. Suppose that H or K is normal, then

1. For all x ∈ G, |HxK| = |HK|. In other words, every double cosets have the
same cardinality.

2. If G is a �nite group, then |H\G/K| divides |G| and |H\G/K| = |G|
|HK| .

From now on we will work only with subgroups of �nite index of a group G.

Proposition 3.9. Let G be a group and H be a subgroup of G. Then, for every
g ∈ G it holds that HgH = gH if and only if g ∈ NG(H).

Proof. If g lies in NG(H), then HgH = gg−1HgH = gH.
For the converse, assume that HgH = gH. Thus, Hg ⊆ gH and so g−1Hg ⊆

H. Since [G : Hg] = [G : H], then Hg = H, so g ∈ NG(H).

Proposition 3.10. Given a subgroup H of a group G, we have that |H\G/H| ≤
[G : H]. The equality holds if and only if H is normal in G.

Proof. It follows from the Lemma 3.5 that |H\G/H| ≤ [G : H].
We have already seen that when H is a normal subgroup of G, HgH = gH for

every g ∈ G.
For the converse, we assume that |H\G/H| = [G : H]. Since every double coset

is union of right cosets of H and the number of cosets is equal to the number of
double cosets, it must hold that HgH = gH. From the Proposition 3.9, it follows
that g ∈ NG(H) for every g ∈ G, i.e. H is a normal subgroup of G.

We are going to give an example.

Example 3.11. Consider the symmetric groupG = Sn acting on the set {1, . . . , n}
and the subgroup H = StabG(n). The subgroup H is isomorphic to Sn−1 and the
set of double cosets H\G/H consists of two distinct elements:
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1. The trivial double coset H.

2. The double coset HγH, where γ is a permutation that does not �x n.

Now consider the coset space G/H. It has order n because we can choose as
representatives of the right cosets the elements {γ1H, . . . , γnH}, where γi is the
permutation in G such that γi(n) = i.

We can now clearly observe that |H\G/H| = 2 < |G/H| = n.

Proposition 3.12. Let x ∈ G. The number of right cosets of H\G contained
in the double coset HxK is given by the index [K : K ∩ x−1Hx]. Similarly, the
number of left cosets of G/K contained in the double coset HxK is given by the
index [H : H ∩ xKx−1].

Proof. Consider the action of H on the double coset HxK de�ned by:

H ×HxK → HxK

(h, h′xk) 7→ hh′xk.

Denote the set of the orbits of HxK under this action as H\HxK. Let us consider
the transitive right action of K on H\HxK given by:

K ×H\HxK → H\HxK

(k,Hxk′) 7→ Hxkk′.

We will apply the Orbit-Stabilizer theorem to this second action. The element Hx
belongs to the set H\HxK. Consider its stabilizer under the given action:

StabK(Hx) = {k ∈ K | Hxk = Hx}.

Let k ∈ K, we have Hxk = Hx if and only if there exists h ∈ H such that xk = hx.
It holds if and only if there exists h ∈ H such that k = x−1hx. Thus if and only
if k ∈ x−1Hx. Then, we conclude that:

StabK(Hx) = K ∩ x−1Hx.

Since the action is transitive, the orbit of Hx is the entire set H\HxK. By the
Orbit-Stabilizer theorem, we obtain:

|H\HxK| = [K : StabK(Hx)] = [K : K ∩ x−1Hx].

Therefore, the number of cosets in H\G that are contained in the double coset
HxK is [K : K ∩ x−1Hx].

The analogous result for the left cosets can be proved in a similar way.
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Corollary 3.13. Let G be a �nite group and x ∈ G. The following relations hold:

� |HxK| = [H : H ∩ xKx−1] |K| = |H| [K : K ∩ x−1Hx];

� [G : H] =
∑

HxK∈H\G/K [K : K ∩ x−1Hx] and [G : K] =
∑

HxK∈H\G/K [H : H ∩ xKx−1].

Moreover we have:

� |HxK| = |H||K|
|H∩xKx−1| =

|H||K|
|K∩x−1Hx| ;

� [G : H] =
∑

HxK∈H\G/K
|K|

|K∩x−1Hx| and [G : K] =
∑

HxK∈H\G/K
|H|

|H∩xKx−1 | .

Proof. In Lemma 3.5, we established that

HxK =
⊔

Hxk∈H\HxK

Hxk.

For each k ∈ K, the size of the set Hxk is |H|. The previous proposition then tells
us that there are |K : K ∩ x−1Hx| cosets of H\G contained in the double coset
HxK. Thus

|HxK| =
∑

Hxk∈H\HxK

|Hxk|

= [K : K ∩ x−1Hx] · |H|.
By similar argument, we get

|HxK| =
∑

hxK∈HxK/K

|hxK|

= [H : H ∩ xKx−1] · |K|.

For the second assertion, recall that [G : H] represents the number of cosets in
H\G, and since G =

⋃
HxK∈H\G/K HxK, each coset in H\G is uniquely contained

in a double coset HxK. Therefore, to determine the number of cosets in H\G, it
su�ces to sum the number of cosets of H\G contained in each double coset HxK.
It follows that

[G : H] =
∑

HxK∈H\G/K

[K : K ∩ x−1Hx].

Similarly, we obtain:

[G : K] =
∑

HxK∈H\G/K

[H : H ∩ xKx−1].

In the case where G is �nite, the remaining relations follow directly from La-
grange's theorem.
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Lemma 3.14. Let x ∈ G and consider the stabilizer of x under the action of
H ×K de�ned as Γx = {(h, k) ∈ H ×K | hxk−1 = x}. Then, we can express Γx

as follows:

Γx = {(h, x−1hx) | h ∈ H} ∩ (H ×K) = {(xkx−1, k) | k ∈ K} ∩ (H × K).

Proof. The following equalities hold:

Γx = {(h, k) ∈ H ×K | hxk−1 = x}
= {(h, k) ∈ H ×K | h = xkx−1}
= {(xkx−1, k) | k ∈ K, xkx−1 ∈ H}
= {(xkx−1, k), k ∈ K} ∩ (H ×K)

= {(h, k) ∈ H ×K | xhx−1 = k}
= {(h, x−1hx), h ∈ H} ∩ (H ×K).

Proposition 3.15. The following hold:

1. For all x ∈ G, the size of the double cosetHxK is given by |HxK| = [H×K :
Γx]. In particular, if G is a �nite group, then for any x ∈ G, it holds that

|HxK| = |H||K|
|Γx| .

2. If G is a �nite group, for all (h, k) ∈ H ×K, de�ne G(h,k) = {x ∈ G | hxk =
x}. Then, it holds that |H\G/K| = 1

|H||K|
∑

(h,k)∈H×K |G(h,k)|.

Proof. The �rst assertion follows directly from the orbit-stabilizer theorem and
the second one from the Cauchy-Frobenius Lemma.

Remark 3.16. When G is a �nite group, we can see from the point 2. of the
Proposition 3.15 that the number of double cosets in H\G/K is the average num-
ber of elements in G that are �xed by the elements of H × K. However, unlike
Lagrange's Theorem for single cosets, the analogue for double cosets does not hold
in general. In particular, the cardinality of a double coset does not necessarily
divide the cardinality of G, and double cosets may vary in size, meaning they do
not all have the same cardinality.

Let us consider an example.

Example 3.17. Consider the group G = S3, the symmetric group on three ele-
ments, with subgroups H = ⟨(12)⟩ and K = ⟨(13)⟩. Let e = 1G denote the identity
element. The double coset HeK is given by:
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HeK = HK = {e, (12), (13), (132)}.

Thus, the size of the double coset |HeK| is 4, which does not divide 6, the order of
S3. This remarks that the cardinality of a double coset does not necessarily divide
the order of the whole group, in contrast to what happens with single cosets under
Lagrange's Theorem.
Let us now examine the double coset H(23)K:

H(23)K = {(23), (213)}.

Observe that H(23)K has order 2, while HeK has order 4. This shows that not
all double cosets necessarily have the same cardinality.

Thanks to the Proposition 3.7, we remark that situation changes when either
H or K is a normal subgroup of G.
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3.2 Double coset zeta function

Let G be a group. Let H be a subgroup of G of �nite index and x ∈ G. We
de�ne the weight of the H-double coset HxH to be

wt(HxH) :=
r

[G : H]
,

where r is the number of disjoint right H-cosets whose union is the whole HxH.

De�nition 3.18. The the double coset zeta function is de�ned as follows:

ζdcG (s) :=
∑

H≤fG

∑
HxH∈H/G\H

wt(HxH)s.

Remark 3.19. Evaluating the subgroup zeta function of G at s− 1 yields

ζ≤G (s− 1) =
∑

H<fG

[G : H] · [G : H]−s.

When H is a normal subgroup of G, the number of double cosets equals the
index [G : H], and the corresponding weight is [G : H]−1. This implies that, for
normal subgroups of G, the contribution to the double coset zeta function and the
contribution to the subgroup zeta function evaluated at s− 1 are the same.

The aim is to study some relevant (families of) examples of groups of both
�nite and in�nite order. Some of them are p-groups of maximal class. The �rst
group we are going to study is the Dihedral group of order a power of 2:

D2n+1 = ⟨x, a | a2n = 1, x2 = 1, ax = y−1⟩, n ≥ 2.

We will study its double coset zeta function and we will be able to give a recursive
formula which establish a connection between the double coset zeta functions of
groups of successive orders for the family D2n+1 .

From the dihedral group of order 2n+1, we will move to the pro-2-dihedral
group:

C2 ⋉ Z2,

which is de�ned to be the inverse limit of the family D2n+1 , where n ∈ N.
The result that we �nd for the pro-2-dihedral group can be generalised for the

pro-p-dihedral group, with a general prime p. We will study the dihedral group of
order 2pn with p ̸= 2,

D2pn = ⟨x, a | apn = 1, x2 = 1, ax = a−1⟩, n ≥ 1,
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and with the same kind of argument we will move to the group

C2 ⋉ Zp.

Afterwards we are going to study the Semi-Dihedral group

SD2n+1 = ⟨x, a | a2n = 1, x2 = 1, ax = a−1+2n−1⟩, n ≥ 3,

and the Quaternion group

Q2n+1 = ⟨x, a | a2n = 1, x2 = a2
n−1

, ax = a−1⟩, n ≥ 2.

For the last two groups, the point will be to use the relation between both SD2n+1

and Q2n+1 with D2n .

In order to study the double coset zeta function of a given group G, it is essen-
tial to �rst understand the subgroup lattice of the group in question. Later, one
can proceed to examine the double cosets, their weight and, �nally, analyse the
double coset zeta function.

In the following few pages we will recall some results on nilpotent groups. In
particular, we will recall what it means for a group to have maximal class and we
will show that we are working with such groups when considering the dihedral,
semidihedral and quaternion groups of order 2n+1.

Let G be a group. The lower central series of G is de�ned inductively by means
of

γ1(G) = G;

γi+1(G) = [γi(G), G].

Recall 3.20. For any group G, [γi, γj] ≤ γi+j(G).

De�nition 3.21. A group G is said to be nilpotent if γc+1(G) = 1 for some natural
number c.

The smallest such c is called the nilpotency class of G. The groups of nilpotency
class one are precisely the abelian groups. The property of being nilpotent may
also be characterized in term of another series of G: the upper central series, which
is de�ned recursively by means

Z0(G) = 1

Zi+1(G)/Zi(G) = Z(G/Zi(G)).

Observe that, for any subgroupH of G, [H,G] ≤ Zi(G) if and only ifH ≤ Zi+1(G).
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Lemma 3.22. Let G be a nilpotent group of class c. Then γc+1−i(G) ≤ Zi(G) for
all i ∈ {0, . . . , c}.

Proof. We argue by induction on i.
If i = 0, then γc+1(G) = 1 = Z0(G), so the result holds.
On the other hand,applying the inductive hypothesis,

[γc+1−i(G), G] = γc+1−(i−1)(G) ≤ Zi−1(G),

consequently γc+1−i(G) ≤ Zi(G).

Theorem 3.23. A group G is of nilpotency class c if and only if Zc(G) = G, and
Zc−1(G) ̸= G.

Proof. First of all, observe that Zc(G) = G implies that

γ2(G) = [Zc(G), G] ≤ Zc−1(G),

γ3(G) ≤ [Zc−1(G), G] ≤ Zc−2(G),

and eventually
γc+1(G) ≤ Z0(G) = 1.

Thus G is nilpotent of class at most c.
On the other hand, according to the previous lemma, if G is nilpotent of class

c, then γ1(G) is contained in Zc(G) and therefore Zc(G) = G. Now the result
follows.

Thus, the class of nilpotency of a group G is the length of both the upper and
the lower central series.

Recall 3.24. Any �nite p-group has non trivial centre.

Let G′ = [G,G].

Theorem 3.25. Let G be a �nite p-group of order pm ≥ p2. Then:

1. The nilpotency class of G is at most m− 1;

2. If G has nilpotency class c, then [G : Zc−1(G)] ≥ p2;

3. [G : G′] ≥ p2.
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Proof. Let c be the nilpotency class of G. We are proving (2). Suppose by con-
tradiction that |G : Zc−1(G)| = p. If c = 1 this means that |G| = p, contrary to
our assumption. Hence c ≥ 2 and

G/Zc−2(G)

Z(G/Zc−2(G))
=

G/Zc−2(G)

Zc−1(G)/Zc−2(G)
≃ G

Zc−1(G)
,

is a cyclic group. Consequently G/Zc−2(G) is abelian and Zc−1(G) = G, which is
a contradiction. This proves (2).

Now (3) is a consequence of Lemma 3.22, which assures that G′ ≤ Zc−1(G).
Finally, since the series

G = Zc(G) > Zc−1(G) > · · · > Z(G) > Z0(G) = 1

has c steps, it follows from (2) that pm = |G| ≥ pc+1. Hence c ≤ m−1 and (1) holds.

De�nition 3.26. Let p be a prime number and G be a p- group of order pn. G is
said to be a group of maximal class if its nilpotency class is n− 1

In particular, a 2-group of order 2n+1 is of maximal class if its nilpotency class
is n.

Remark 3.27. Let G = D2n+1 and N = ⟨a2k⟩, with k ∈ {2 . . . n}. Then N is
normal subgroup of G, and G/N ≃ D2k+1 .

Proof. To prove that N is a normal subgroup of G, it su�ces to show that ⟨a2k⟩ it
is closed under conjugation by x. The (a2

k
)x = a−2k is the inverse of the generator

of the subgroup, therefore it belongs to N . It implies that N is a normal subgroup
of G.

To prove that G/N ≃ D2k+1 , it is enough to look at the presentation, which is
given by

⟨ā, x̄ | ā2k = 1, x̄2 = 1, āx̄ = ā−1⟩,
where ā = aN and x̄ = xN .

Remark 3.28. Let n ≥ 1. The dihedral group D2n+1 is a 2-group of maximal
class.

Proof. The order of D2n+1 is 2n+1. Let us show that D2n+1 has maximal class by
induction on n.

If n = 1, the group we are looking at is D4 = C2 ×C2, which is abelian and so
nilpotent of nilpotency class 1.

Let now assume that G = D2n is a nilpotent group of maximal class. First,
we describe the centre of G. Since G is generated by a and x, it is enough to
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�nd all the elements which commute with both a and x. Let g ∈ G. There exist
k ∈ {0, . . . , 2n − 1} and m ∈ {0, 1} such that g = akxm. We want k and m such
that xg = gx and ag = ga. Using the relation ax = a−1, the �rst identity becomes
ak = a−k, which is true if and only if k = 0 or k = 2n−1. The second identity
becomes axm = xma, which is true if and only if m = 0. It follows that Z(G) =

⟨aa2
n−1

⟩, which has order 2. By the remark 3.27 the quotient D2n+1/Z(D2n+1) is
isomorphic to D2n , which, by induction, is nilpotent of maximal class. It follows
that D2n+1 is a nilpotent group of class n.

Remark 3.29. Let n ≥ 3. The semidihedral group SD2n+1 is a 2-group of maximal
class.

Proof. The order of G = SD2n+1 is 2n+1. Let us show that G is a group of maximal
class.

The centre Z(G) is the subgroup ⟨a2n−1⟩, which has order 2. Indeed, let g ∈ G,
then there exist i ∈ {0, . . . , 2n − 1}, j ∈ {0, 1} such that g = aixj. It is enough to
�nd i and j such that g commutes with the two generators a and x. It means that
the following identities must hold: aixjx = xaixj and aixja = aaixj.

The �rst identity is equivalent to aix = xai, which holds if and only if i = 0 or
i = 2n−1, because of the relation ax = a−1+2n−1

.
The second identity is equivalent to xja = axj, which leads to j = 0.
The quotient G/Z(G) is isomorphic to D2n , since they have the same presenta-

tion. Applying the Remark 3.28 D2n is a 2-group of maximal class, which implies
that also SD2n+1 has maximal class.

Remark 3.30. Let n ≥ 2. Then the Quaternion group Q2n+1 is a 2-group of
maximal class.

Proof. The order of G = Q2n+1 is 2n+1. Let us show that G is a group of maximal
class.

The centre Z(G) is the subgroup ⟨a2n−1⟩ of order 2. Indeed, let g ∈ G, then
there exist i ∈ {0, . . . , 2n − 1}, j ∈ {0, 1} such that g = aixj. Let us �nd i and
j such that g commutes with the two generators a ad x. The following identities
must hold: aixjx = xaixj and aixja = aaixj.

Using the relation ax = a−1, the �rst identity, which can be rewritten as aix =
xai, holds if and only if i = 0 or i = 2n−1.

The second identity is equivalent to xja = axj, which leads to j = 0.
The quotient G/Z(G) is isomorphic to D2n , since they have the same presen-

tation. The Remark 3.28 allows us to conclude that Q2n+1 has maximal class.
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3.3 Dihedral group of order a power of two

The �rst group we are going to analyse is the Dihedral group with order a
power of two, which has the following presentation:

D2n+1 = ⟨a, x | a2n = 1 = x2, ax = a−1⟩,

with n ≥ 2. This group consists of two generators: a, which has order 2n, and x,
which has order 2. The relation ax = a−1 indicates that conjugation by x inverts
the element a.

There are two distinct types of subgroups in D2n+1, characterized as follows:

1. Subgroups of the form ⟨a2k⟩, where k ∈ {0, . . . , n− 1}. These subgroups
are normal in D2n+1 and their index is 2k+1, as the order of a2

k
is 2n−k.

2. Subgroups of the form ⟨ad, arx⟩, where d is a divisor of 2n, and r ∈
{0, . . . , d− 1}. Generally, these subgroups are not normal in D2n+1 and their
index is d.

Let G = D2n+1 and H = ⟨a2k⟩ be a subgroup of G of the �rst form. Since H is
normal in G, it holds that HgH = gH for any g ∈ G. In this case the weight
of the H-double coset of g is given by wt(HgH) = 1

2k+1 . Moreover, for a �xed
k ∈ {0, . . . , n − 1}, there are 2k+1 double cosets with the aforementioned weight.
Therefore, the contribution of these subgroups to the double coset zeta function is

n−1∑
k=0

(2k+1)1−s.

Let H = ⟨ad, arx⟩ be a subgroup of G of the second type, where d | 2n and
r ∈ {0, . . . , d− 1}. Since d must divide 2n+1, it follows that d must be of the form
d = 2k, with k ∈ {1, . . . , n}.

For k = 1, H = ⟨a2, arx⟩, where r ∈ {0, 1}. In this situation H is a normal
subgroup of G, since it has index 2. Therefore, for any g ∈ G, the weight of the
H-double coset is given by wt(HgH) = 1

2
. Additionally, there are two subgroups

of this form (one corresponding to r = 0 and the other to r = 1), each of which
generates two double cosets. As a result, the contribution to the double coset zeta
function is

2 · 21−s.

Let us now analyse the particular case where k = n and r = 0, so the subgroup
is H = ⟨x⟩.
By the Proposition 3.9, HgH = gH if and only if g ∈ NG(H). The subgroup H is
cyclic of order two, so NG(H) = CG(H). Thus, we can just study the centralizer.
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Claim 3.31. Let G = D2n+1 the dihedral group of order 2n+1, and let x be a
generator of G of order two, then CG(x) = {1, x, a2n−1

, xa2
n−1}

Proof. Let g be an element of D2n+1 . There exist i ∈ {1, . . . , 2n} and ϵ ∈ {0, 1}
such that g = aixϵ. The element g belongs to the centralizer CD2n+1 (x) if and only
if aixϵx = xaixϵ. This equality leads to the condition ai = a−i, which holds if and
only if i = 0 or i = 2n−1. Consequently, we have CD2n+1 (x) = {1, x, a2n−1

, xa2
n−1}.

There are two double cosets of H of weight wt(HgH) = 1
2n
. They are H =

HxH and Ha2
n−1

H = Ha2
n−1

xH.
If g /∈ CD2n+1 (x), the corresponding double coset HgH has order 4, so it must

be the union of two distinct right cosets of H.
Let m be the number of H-double cosets of weight wt(HgH) = 2

2n
. Since G is

the disjoint union of these H-double cosets, m must satisfy the equation:

2n+1 = 2 + 2 + 4m,

which implies that m = 2n−1 − 1. Thus, the contribute to the double coset zeta
function given by the double coset of H = ⟨x⟩ is

2 ·
(

1

2n

)s

+
(
2n−1 − 1

)( 1

2n−1

)s

.

Let us now consider the general case where k ∈ {2, . . . , n} and r ∈ {0, . . . , 2k−
1}. Then H is the subgroup generated by ad and arx, where d = 2k. Let N = ⟨ad⟩:
it is a cyclic, normal subgroup of G and H can be expressed as H = N⟨arx⟩. If we
look at the element arx, it is an element of order 2 and aa

rx = xax = a−1. It means
that ⟨a, arx⟩ give rise to the same presentation as ⟨a, x⟩ = D2n+1 . Therefore, for
any r ∈ {0, . . . , 2k − 1} there exists an isomorphism sending

x 7−→ arx

a 7−→ a.

Let H̄ be the image of H in the quotient Ḡ = G/N . By the Remark 3.27 Ḡ
is isomorphic to D2k+1 . We can proceed just studying the H̄-double coset of Ḡ.
For the isomorphism above it is equivalent to study the ⟨x̄⟩-double coset of D2k+1 ,
that is the same as the case we already analysed. Therefore, every subgroup
H = ⟨ad, arx⟩ gives to the double coset zeta function the same contribute as the
subgroup ⟨x̄⟩ in D2k+1 . Since there are 2k possible choices for the integer r, the
contribution for the double coset zeta function is:

n∑
k=2

2k
(
2 ·
(

1

2k

)s

+
(
2k−1 − 1

)( 1

2k−1

)s)
.
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To summarize, we can list the contributions of each type of subgroup to the double
coset zeta function in a table.

Table 3.1: Table of the subgroups and contributions for the ζdcD2n+1
(s).

Subgroup H Choices Contribution to ζdcD2n+1
(s)

⟨a2k⟩ k ∈ {0, . . . , n− 1}
∑n−1

k=0(2
k+1)1−s

⟨a2k , arx⟩ k ∈ {2, . . . , n}, r ∈ {0, . . . , 2k−1}
∑n

k=2 2
k
(
2 ·
(

1
2k

)s
+ (2k−1 − 1)

(
1

2k−1

)s)
⟨a2, arx⟩ r ∈ {0, 1} 2 · 21−s

⟨a, x⟩ / 1

By summing all the contributes together we obtain the double coset zeta func-
tion of D2n+1 :

ζdcG (s) = 1 + 22−s +
n−1∑
k=0

21−s · (21−s)k +
n∑

k=2

2 · (21−s)k +
n∑

k=2

2 · (22−s)k−1 −
n∑

k=2

2 · (21−s)k−1

= 1 + 22−s + 21−s · 1− (21−s)n

1− 21−s
+ 2 · (2

1−s)2 − (21−s)n+1

1− 21−s

+ 2 · 2
2−s − (22−s)n

1− 22−s
− 2 · 2

1−s − (21−s)n

1− 21−s
.

If we set p = 2 and q = 2−s, the double coset zeta function of D2n+1 becomes
ζdcD2n+1

(s) = fn(p, q), where

fn(p, q) = 1+p2q+pq
1− (pq)n

1− pq
+p

p2q2 − (pq)n+1

1− pq
+p

p2q − (p2q)n

1− p2q
−p

pq − (pq)n

1− pq
∈ Q(p, q)

is a rational function in p and q.
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3.4 Recursive formula for the dihedral group of or-

der 2n+1

The next goal is to derive a recursive formula for the double coset zeta func-
tion of the dihedral group D2n+1 . Let N = ⟨a2n−1⟩. By considering the quotient
D2n+1/N , which is isomorphic to the dihedral group of order D2n , it is possible
to establish a recursive formula for the double coset zeta function of the dihedral
group of order a power of two.

Thanks to the correspondence between the subgroups of D2n+1 which contain
N and the subgroups of D2n , their contribution to the double coset zeta function
is the same. Therefore, we only need to determine the contribution given by the
subgroups of the form ⟨arx⟩, where r ∈ {1, . . . , 2n}, that are the proper subgroups
of D2n+1 which do not contain N . Then we will add the contribution of the identity
subgroup.

There are 2n such subgroups of the form ⟨arx⟩. We already know the con-
tribution of these subgroups to the double coset zeta function of D2n+1 , which
is:

2n
(
2 · 2−ns + (2n−1 − 1)2−s(n−1)

)
.

If we substitute p = 2 and q = 2−s, the expression becomes:

pn(pqn + (pn−1 − 1)qn−1),

which simpli�es to
pn+1qn + pn−1qn−1 − qn−1.

Moreover, the contribution of the identity subgroup is:

2(n+1)(1−s) = pn+1qn+1.

By summing everything together, we obtain:

ζdcD2n+1
(s) = ζdcD2n

(s) + pn+1qn + pn−1qn−1 − qn−1 + pn+1qn+1,

a recursive formula for the computation of the double coset zeta function of the
dihedral group of order a power of two.
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3.5 Pro-2-dihedral group

In this section we will examine the pro-2-dihedral group, which is the inverse
limit of the family D2n+1 , with n ∈ N. We can think to take

ζdcD2n+1
(s) = fn(p, q),

and let n go to in�nity. In this way we obtain the double coset zeta function of
the pro-2-dihedral group

C2 ⋉ Z2.

Under the condition of convergence of fn(p, q), which is Re(s) > 2, when n
goes to in�nity, the double coset zeta function of the pro-2-dihedral group is:

ζdcC2⋉Z2
(s) = 1 + p2q + pq

1

1− pq
+ p

p2q2

1− pq
+ p

p2q

1− p2q
− p

pq

1− pq

= 1−p2q−pq+p3q2+p2q−p4q2−p3q2+p5q3+pq−p3q2+p3q2−p5q3+p3q−p4q2−p2q+p4q2

(1−pq)(1−p2q)

=
1− p4q2 + p3q − p2q

(1− pq)(1− p2q)
.

As we have seen in the Remark 3.19, we can compare the double coset zeta function
G = C2 ⋉ Z2 with its subgroup zeta function evaluated at s− 1.

We start analysing the function ζ≤G (s − 1) of the group G = D2n+1 . Recall

that the subgroups of the form ⟨a2k⟩, with k ∈ {0, . . . , n− 1}, and ⟨a2, arx⟩, with
r ∈ {0, 1} are normal in G, and we have already analysed their contribute to the
double coset zeta function. The only subgroups that we need to examine are the
ones of the form ⟨a2k , arx⟩, where k ∈ {2, . . . , n} and r ∈ {0, . . . , 2k − 1}.

Let k ∈ {2, . . . , n} and H = ⟨a2k , arx⟩. Then [G : H] = 2k. Since the integer
r ∈ {0, . . . , 2k−1}, there are 2k subgroups of this form. Therefore, the contribution
to the subgroup zeta function evaluated at s− 1 that we obtain is

n∑
k=2

2k ·
(

1

2k

)s−1

=
n∑

k=2

(22−s)k.
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On the next table we can read the contribution that every type of subgroup
gives to the subgroup zeta function of D2n+1 .

Table 3.2: Table of the subgroups and contributions for the ζ≤D2n+1
(s).

Subgroup H Choices Contribution to ζ≤D2n+1
(s− 1)

⟨a2k⟩ k ∈ {0, . . . , n− 1}
∑n−1

k=0(2
k+1)1−s

⟨a2k , arx⟩ k ∈ {0, . . . , n− 1}, r ∈ {0, . . . , 2k−1}
∑n−1

k=0 (2
2−s)

k

⟨a, x⟩ / 1

In this case we have

ζ≤D2n+1
(s− 1) = 1 +

n−1∑
k=0

(2k+1)1−s +
n−1∑
k=0

(22−s)k

= 1 + 21−s · 1− (21−s)n

1− 21−s
+

1− (22−s)n

1− 22−s
.

By setting p = 2 and q = 2−s, we obtain ζ≤D2n+1
(s− 1) = fn(p, q), where

fn(p, q) = 1 + pq
1− (pq)n

1− pq
+

1− (p2q)n

1− p2q

and letting n go to in�nity we get the subgroup zeta function of the pro-2-dihedral
group

ζ≤C2⋉Z2
(s− 1) =

(1− pq)(1− p2q) + pq(1− p2q) + 1− pq

(1− pq)(1− p2q)

=
2− pq − p2q

(1− pq)(1− p2q)
.

We observe that the denominator is equal to the denominator of the double
coset zeta function, while the numerator di�ers. In particular, the degree of the
numerator in the subgroup zeta function is lower.
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3.6 Dihedral group of order 2pn and pro-p-dihedral

group

In this section, we aim to generalise the previous results to the pro-p-dihedral
group, where p is an odd prime (p ̸= 2). We begin by considering the dihedral
group of order 2pn, which is de�ned as follows:

D2pn = ⟨a, x | apn = 1, x2 = 1, ax = a−1⟩.

This group consists of two generators: a, which has order pn, and x, which has
order 2. The relation ax = a−1 indicates that conjugation by x inverts the element
a.

There are two distinct types of subgroups within D2pn , characterized as follows:

1. Subgroups of the form ⟨apk⟩, where k ∈ {0, . . . , n− 1}.These are normal
subgroups of D2pn . As the order of a

pk is pn−k, [D2pn : ⟨apk⟩] = 2pk.

2. Subgroups of the form ⟨ad, arx⟩, where d is a divisor of pn, and r ∈
{0, . . . , d− 1}. Generally, these subgroups are not normal in D2pn and their
index is d.

About the subgroups of the �rst type, ⟨apk⟩, since they are normal, the double
cosets are cosets. There are [D2pn : ⟨apk⟩] = 2pk cosets, each of weight [D2pn :

⟨apk⟩]−1 = 2p−k. Therefore, the contribution of these subgroups to the double
coset zeta function is

n−1∑
k=0

2pk · (2pk)−s.

Let us now examine the second type of subgroups. As a �rst step, we analyse
the subgroup H = ⟨x⟩, so the particular case in which k = 0 and r = 0.

Let G = D2pn . By the Remark 3.9 it holds that HgH = gH if and only
if g ∈ NG(H). Since H is cyclic of order two, its normalizer coincides with its
centralizer, so we can analyse CG(H).

Remark 3.32. Let G = D2pn and let x and a be two generators of G respectively
of order 2 and pn, then CG(x) = {1, x}.

Proof. Let g be an arbitrary element of D2pn . We can express g as g = xϵai, where
ϵ ∈ {0, 1} and i ∈ {0, . . . , pn − 1}. We can then rewrite the previous condition
as xxϵai = xϵaix. This condition is equivalent to requiring that xai = aix, which
means that ai = (ai)x. Given the relation ax = a−1 and considering that a has
odd order, it follows that i must be 0.
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Therefore, when g = 1 or g = x, we have HgH = gH = H, which means that
there is a double coset in D2pn with weight wt(HgH) = 1

pn
.

For g ∈ D2pn \ {1, x}, there are |D2pn |−2

4
= pn−1

2
double cosets. Since every double

coset has order 4, each of them is the union of two disjoint right cosets. Conse-
quently, their weight is wt(HgH) = 2

pn
.

Thus, the contribute that H gives to the double coset zeta function is(
1

pn

)s

+
pn − 1

2

(
2

pn

)s

.

Consider now the subgroup H = ⟨apk , arx⟩, where k ∈ {0, . . . , n − 1} and
r ∈ {0, . . . , pk − 1}.

Let N = ⟨apk⟩, which is a cyclic normal subgroup of D2pn . We can write H as
H = N⟨arx⟩. Let Ḡ = G/N , it is isomorphic to D2pk , since they have the same
presentation. Moreover, the element arx has order 2 and aa

rx = a−1. It means
that ⟨a, arx⟩ give rise to the same presentation as ⟨a, x⟩ = D2n+1 . Therefore, for
any r ∈ {0, . . . , pk − 1} there exists an isomorphism sending

x 7−→ arx

a 7−→ a.

To understand the structure of the H-double cosets, we can study the H̄-
double cosets in Ḡ. Thanks to what we said above, we know that it is the same
as studying the ⟨x̄⟩-double cosets, so we are in the case we already examinated.
Together with the fact that there are pk subgroups of this form, due to the possible
choices for the integer r, the contribute to the double coset zeta function arising
from the subgroup of the form H = ⟨apk , arx⟩, where k ∈ {0, . . . , n − 1} and
r ∈ {0, . . . , pk − 1} is

n−1∑
k=0

pk
((

1

pk

)s

+
pk − 1

2

(
2

pk

)s)
.

We can now list the contributions into a table and sum them all together.



3.6. DIHEDRAL GROUP OF ORDER 2pn AND PRO-p-DIHEDRAL GROUP46

Table 3.3: Table of the subgroups and contributions for the ζdcD2pn
(s).

Subgroup H Choices Contribution to ζdcD2pn
(s)

⟨apk⟩ k ∈ {0, . . . , n− 1}
∑n−1

k=0(2p
k)1−s

⟨apk , arx⟩ k ∈ {0, . . . , n− 1} and r ∈ {0, . . . , 2k − 1}
∑n−1

k=0 p
k
((

1
pk

)s
+ pk−1

2

(
2
pk

)s)

⟨a, x⟩ / 1

ζdcD2pn
(s) = 1 +

n−1∑
k=0

(2pk)1−s +
n−1∑
k=0

pk
((

1

pk

)s

+
pk − 1

2

(
2

pk

)s)

1 +
n−1∑
k=0

21−spk(1−s) +
n−1∑
k=0

(
pk(1−s) +

pk − 1

2
· 2s

pks

)

= 1 + 21−s

n−1∑
k=0

pk(1−s) +
n−1∑
k=0

pk(1−s) +
n−1∑
k=0

2s−1
(
pk(1−s) − pk(−s)

)
= 1 + 21−s · 1− (p1−s)

n

1− p1−s
+

1− (p1−s)
n

1− p1−s
+ 2s−11− (p1−s)

n

1− p1−s
− 2s−11− (p−s)

n

1− p−s
.

For Re(s) > 1, when n goes to in�nity we obtain:

ζdcC2⋉Zp
= 1 +

21−s

1− p1−s
+

1

1− p1−s
+

2s−1

1− p1−s
− 2s−1

1− p−s
,

the double coset zeta function of the pro-p-dihedral group.
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3.7 Semidihedral group

In this section we will examine the Semidihedral group, de�ned as

SD2n+1 = ⟨a, x | a2n = 1, x2 = 1, ax = a2
n−1−1⟩,

where n ≥ 3.
A subgroup H of SD2n+1 can take one of the following forms:

1. Subgroup of the form ⟨a2k⟩, where k ∈ {0, . . . , n − 1}. They are normal
subgroups of SD2n+1 of order 2n−k, therefore the index is 2k+1.

2. Subgroup of the form ⟨ad, arx⟩, where d is a divisor of 2n, and r ∈
{0, . . . , d−1}. The cosets ofH = ⟨ad, arx⟩ can be represented by {1H, aH, . . . , ad−1H},
so [SD2n+1 : H] = d.

Let us consider ⟨a2n−1⟩, the cyclic normal subgroup of SD2n+1 generated by a2
n−1

.

Recall 3.33. Let n ≥ 3. Then SD2n+1/⟨a2n−1⟩ ≃ D2n .

There are two types of subgroups of G = SD2n+1 : those that contain N =
⟨a2n−1⟩ and those that do not. By looking at the image in the quotient G/N , the
subgroups of SD2n+1 that contain N correspond exactly to the subgroups of the
dihedral group D2n . Thus, their contribution for the double coset zeta function
remains the same.

The double coset zeta function can be decomposed into two parts: the �rst
part corresponds to the subgroups of the �rst type, so it is the same as the double
coset zeta function of the dihedral group. The second part corresponds to the
subgroups of the second type. Therefore, we only need to study the subgroups of
SD2n+1 that do not contain the element a2

n−1
. These subgroups are the identity

subgroup and the ones of the form ⟨akx⟩, where k ∈ {1, . . . , 2n}.
Looking at the element

(akx)2 = ak · ak·2n−1−k = ak·2
n−1

,

we observe that

� when k is odd, (akx)2 = a2
n−1

, so N is contained in ⟨akx⟩;

� when k is even, (akx)2 = 1.

Therefore, we only need to study the case in which k is even. In such a case,
⟨akx⟩ ≃ ⟨x⟩, which is the cyclic group of order two. Moreover, by the relation
aa

kx = a2
n−1−1, we get that ⟨a, arx⟩ has the same presentation of ⟨a, x⟩ = SD2n+1 .

This implies that studying the ⟨arx⟩-double coset of SD2n+1 is the same as studying
the ⟨x⟩-double coset of SD2n+1 .

Let g ∈ G, and H = ⟨x⟩. The H-double coset of g is the set HgH =
{g, x, gx, xgx}, so HgH = gH if and only if g ∈ CG(x).
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Claim 3.34. Let G = SD2n+1 and let x be a generator of G of order 2. Then
CG(x) = {1, x, a2n−1

, a2
n−1

x}.

Proof. Let g ∈ SD2n+1 , there exist k ∈ {0, . . . , 2n − 1} and m ∈ {0, 1} such that
g = akxm. We want to �nd k and m such that g ∈ CG(H).

� If m = 0, then akx = xak if and only if xakx = ak, but, since xakx =
ak(−1+2n−1) and a2

n
= 1, we get k = 0 or k = 2n−1.

� If m=1, then akxx = xakx if and only if ak = ak(2
n−1−1), which implies k = 0

or k = 2n−1.

Thus, the claim is proved.

The claim above implies that, for this type of subgroup, there are 2 double
cosets that are just cosets and their weight is 2−n. The other double cosets must
be the disjoint union of two di�erent right cosets and their weight is 2

2n
. Using the

fact that G can be seen as the disjoint union of these H-double cosets, the number
of double cosets of weight 21−n is 2n−1 − 1. The contribute that they give to the
double coset zeta function is

2n−1

(
2

(
1

2n

)s

+ (2n−1 − 1)

(
1

2n−1

)s)
.

Moreover, the identity subgroup is normal with index 2n+1, so it contributes to
the zeta function with 2(n+1)(1−s).

By summing everything together, we obtain the total contribution of the sec-
ond part, which is:

2n−1

(
2

(
1

2n

)s

+ (2n−1 − 1)

(
1

2n−1

)s)
+ 2(n+1)(1−s)

= 2n · 2−ns + 2n−1 · 2−s(n−1) − 2n−1 · 2−s(n−1) + 2(n+1)(1−s)

= 2n(1−s) + 2n−1 · 22−s − 2n−1 · 21−s + 2(n+1)(1−s).

Setting now p = 2 and q = 2−s we get

pnqn + pn+1q − pnq + pn+1qn+1

= pnq(qn−1 + p− 1 + pqn).

So the double coset zeta function of the Semidihedral Group is

ζdcSD2n+1
(s) = ζdcD2n

(s) + pnq(qn−1 + p+ pqn − 1),

where p = 2 and q = 2−s.
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3.8 Quaternion group

In this section we will analyse the Quaternion group, which is de�ned to be

Q2n+1 = ⟨a, x | a2n = 1, x2 = a2
n−1

, ax = a−1⟩,

with n ≥ 2.
Let H be a subgroup of Q2n+1 . Then H can be one of the following:

1. Subgroup of the form ⟨a2k⟩, where k ∈ {0, . . . , n − 1}. They are normal
subgroup of Q2n+1 of order 2n−k. Therefore [Q2n+1 : H] = 2k+1.

2. Subgroup of the form ⟨ad, arx⟩, where d is a divisor of 2n, and r ∈
{0, . . . , d − 1}. Their cosets can be represented by {1H, aH, . . . , ad−1H},
so [Q2n+1 : H] = d.

Let us consider ⟨a2n−1⟩, the cyclic normal subgroup of Q2n+1 generated by the
element a2

n−1
.

Recall 3.35. Let n ≥ 2, then Q2n+1/⟨a2n−1⟩ ≃ D2n .

The subgroups of Q2n+1 that contain ⟨a2n−1⟩ corresponds to the subgroups of
the dihedral group of order 2n. Therefore, the respective contribute to the double
coset zeta function is also the same. We can focus on studying the subgroups that
do not contain the element a2

n−1
.

Claim 3.36. There are no nontrivial subgroups of Q2n+1 which does not contain
a2

n+1
.

Proof. It su�ces to show that a2
n−1

belongs to all the subgroups of Q2n+1 of the
form ⟨arx⟩. Given the relation x2 = a2

n−1
, we can use the relation ax = xa−1 to

deduce that
(akx)2 = akxakx = akx2a−k = a2

n−1

.

This implies that the only subgroup of Q2n+1 that does not contain the element
under consideration is the identity subgroup 1G, whose contribution is 2(n+1)(1−s),
since it is a normal subgroup of index 2n+1.

Therefore,
ζdcQ2n+1

(s) = ζdcD2n
(s) + 2(n+1)(1−s)

is the double coset zeta function of the Quaternion group.
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