

UNIVERSITÀ DEGLI STUDI DI PADOVA

FACOLTÀ DI INGEGNERIA

Corso di Laurea Magistrale in Ingegneria Gestionale

SOFTWARE PEOPLE AND SOFTWARE QUALITY:
A QUALITATIVE, EXPLORATORY RESEARCH ON HOW

WORKFORCE MANAGEMENT CAN ENHANCE
THE PRODUCT QUALITY IN SOFTWARE COMPANIES.

RISORSE UMANE E QUALITÀ DEL SOFTWARE:
UN'INDAGINE EMPIRICA.

Relatore: CH.MO PROF. ETTORE BOLISANI

Laureanda: ELENA SORTINO

ANNO ACCADEMICO 2010 – 2011

Abstract

i

Abstract

The aim of this work is to investigate how to address the management of
individuals in a software company to positively affect the quality of the
software product. The basic idea is that the better people are managed, the
better is the quality of the product and, consequently, the more the customer is
satisfied.

This paper goes across the literature to offer an overview on some main aspects
of the management of knowledge: reasons for managing knowledge, effective
strategies, adopted methods. The management of a software company is also
examined: models of software development processes are described,
methodologies for processes’ assessment and to guide improvements are
presented, approaches to people management are deepened. Particular attention
is drawn to software quality, how it can be defined and measured and its
relationships with both the development process and the user/customer
perspective (in terms of needs and satisfaction).

Within the literature very few are the explicit references to the relationship
between software quality and software people, because of the opposite attitudes
towards this concept: it’s something taken for granted or else not considered at
all. For this reason, a questionnaire has been designed to collect information on
this subject. The questionnaire has been submitted to several software
companies and the answers have been analyzed. Furthermore, interviews to
managers within the software development area have been arranged to gather
more exhaustive information .

Consequently, this work provides a description of how individual
competencies, team skills and people’s involvement in software development
are managed in some real cases. Moreover, this project shows how much
companies actually understand that effectively managing their people affects
the quality of their software products. Conclusions on how software companies
may improve their people management in order to enhance the quality of their
software are drawn.

Abstract

ii

Abstract

La tesi analizza l’effetto della gestione delle risorse umane sulla qualità del
prodotto nelle società di software. In particolare si ipotizza e si cerca di
verificare se a una più efficace gestione del capitale umano (e in particolare lo
sviluppo e l’applicazione delle conoscenze/competenze del personale)
corrisponda una migliore qualità del software, da cui una maggior
soddisfazione del cliente.

Dopo aver approfondito, nella letteratura sul knowledge management, i
presupposti e gli approcci alla gestione della conoscenza nelle organizzazioni,
vengono esaminati i tipici modelli di gestione di una società di software e di
sviluppo del prodotto software. Particolare enfasi viene posta sul problema
della qualità del software e della sua misura, anche in relazione ai bisogni del
cliente.

Constatato che in letteratura sono ancora insufficienti gli studi che pongono in
relazione la qualità del software con le competenze/conoscenze delle risorse
umane e la loro gestione, si è quindi impostata una ricerca sul campo basata su
un questionario presentato ai manager di varie imprese di software in Svezia e
Italia. A complemento di queste informazioni sono state condotte interviste
mirate ad alcuni manager dell’area sviluppo software in tali imprese.

Lo studio fornisce una descrizione di come le conoscenze/competenze
individuali e di gruppo sono gestite nello sviluppo del software in riferimento
ad alcuni casi reali e mette in evidenza l’effettivo livello di comprensione di
come ciò influenzi la qualità del prodotto. Vengono ricavate indicazioni su
come le società di software possono migliorare la gestione delle risorse umane
al fine di un miglioramento della qualità del software prodotto.

Acknowledgements

iii

Acknowledgements

My thanks go to Vladimir Tarasov and to Ettore Bolisani for supervising and
supporting this work.

I’d like also to thank those managers who have taken time to fill out the
questionnaire. Special thanks go to Magnus Werner (SAAB Training and
Simulation) and Anna Leo (Swedish Board of Agriculture) who took the time
to answer my questions during the interviews. Without their collaboration this
work would not have been possible.

I'm infinitely grateful to those people whose love and support have guided me
every step of the way:

Mum and Dad, to whom I owe everything.

Chiara, whose strength inspires me beyond words.

Daniele, Veronica, Anna, Betty, Mauro, Lucia, who mean the world to me.

Margherita, Camilla, Luca, Michele, Ketty, Oberdan, Gabriella, Andrea, Laura,
Giovanni, Orietta, Zezè, who have always been there for me as more than

family.

Francesca, Antonio, Paola, Alessandro, Marco, Alice, Chiara, Alfredo, Fabio,
Filippo, Ambra, Giorgia, Giuseppe, Jacopo, Lucio, Michele,

Alberto, Umberto, all the people from ASU / Il Sindacato degli Studenti,
Luca, Monica, the people studying, teaching and working at the DTG

Department of Engineering and Management in Vicenza,
Fam. Furlan, Fam. Vanin, Fam. Folin, Raimondo, Fam. Zancan, Rita,

Sabbadin’s relatives, Guarnieri’s relatives, Emilia, Sr. Giuseppina,
Fabio, Ornella, Anna, Stefania, Francesca,

the Italian, Swedish and international students I've met in Jönköping,
Gunnel, Abram, Gustaf, my roommate Flavia,

and all my friends that make my life so beautiful.

Acknowledgements

iv

Acknowledgements

I miei ringraziamenti vanno ai prof. Vladimir Tarasov e Ettore Bolisani per
aver supervisionato e supportato questo lavoro.

Ringrazio anche i manager che hanno speso del tempo a compilare il
questionario. Ringraziamenti speciali vanno a Magnus Werner (SAAB Training
and Simulation) e Anna Leo (Swedish Board of Agriculture) per aver risposto
alle mie domande durante le interviste. Senza la loro collaborazione questo
lavoro non sarebbe stato possibile.

Sono infinitamente grata alle persone che con il loro amore e supporto mi sono
state vicine ad ogni passo:

Mamma e Papà, a cui devo tutto.

Chiara, la cui forza mi ispira più di quanto le parole possano esprimere.

Daniele, Veronica, Anna, Betty, Mauro, Lucia, che per me sono tutto.

Margherita, Camilla, Luca, Michele, Ketty, Oberdan, Gabriella, Andrea, Laura,
Giovanni, Orietta, Zezè, che ci sono sempre stati come e più di una famiglia.

Francesca, Antonio, Paola, Alessandro, Marco, Alice, Chiara, Alfredo, Fabio,
Filippo, Ambra, Giorgia, Giuseppe, Jacopo, Lucio, Michele,

Alberto, Umberto, l’ASU e Il Sindacato degli Studenti,
Luca, Monica, le persone che studiano, insegnano e lavorano al DTG,
Fam. Furlan, Fam. Vanin, Fam. Folin, Raimondo, Fam. Zancan, Rita,

parenti Sabbandin, parenti Guarnieri, Emilia, Sr. Giuseppina,
Fabio, Ornella, Anna, Stefania, Francesca,

gli studenti italiani, svedesi e dal mondo che ho incontrato a Jönköping,
Gunnel, Abram, Gustaf, la mia compagna di stanza Flavia,

e tutti i miei amici che rendono la mia vita così meravigliosa.

Key words

v

Key words

Software company, Knowledge Management, CommonKADS, Software
development, P-CMM, Software quality.

Contents

vii

Contents

1 Introduction ... 1
1.1 BACKGROUND.. 1
1.2 PURPOSE/OBJECTIVES ... 3
1.3 LIMITATIONS.. 3
1.4 THESIS OUTLINE... 4

2 An Overview on Knowledge Management...................................5
2.1 WHAT IS KNOWLEDGE AND HOW CAN IT BE MANAGED? .. 5

2.1.1 The nowadays “raw material”: knowledge ... 5
2.1.2 Managing knowledge: Why? How? ... 6

2.2 STRATEGIES AND ORGANIZATIONAL CULTURE FOR AN EFFECTIVE KNOWLEDGE
MANAGEMENT.. 10

2.2.1 Computer-based vs people-based strategies ... 10
2.2.2 A strategy (perhaps the right one!) should be chosen… ... 10
2.2.3 … and actively supported .. 11

2.3 METHODS AND TECHNIQUES TO MANAGE KNOWLEDGE.. 14
2.3.1 Management: a set of activities.. 14
2.3.2 The knowledge-management cycle... 16
2.3.3 Creating value: the knowledge value chain ... 21

2.4 KNOWLEDGE ENGINEERING TO SUPPORT KNOWLEDGE MANAGEMENT 23
2.4.1 Knowledge engineering and knowledge systems .. 23
2.4.2 CommonKADS.. 26

3 Managing a Software Company .. 31
3.1 MANAGING PROCESSES .. 31

3.1.1 Software processes .. 31
3.1.2 ISO/IEC 15504 aka SPICE ... 33
3.1.3 Managing individuals: the PSP .. 37

3.2 MANAGING PEOPLE ... 41
3.2.1 People: the intellectual capital – a critical issue ... 41
3.2.2 The People Capability Maturity Model .. 43
3.2.3 A decentralized approach to people management: the broker model ... 54
3.2.4 The virtual incubator: a network of specialists .. 57

4 Software quality ..61
4.1 WHAT DOES IT MEAN TO MANAGE SOFTWARE QUALITY?.. 61

4.1.1 Managing software quality ... 61
4.1.2 Defining quality: software quality factors... 62
4.1.3 Measuring software quality .. 63

4.2 DIFFERENT APPROACHES TO QUALITY ... 67
4.2.1 Software standards ... 67
4.2.2 Customer satisfaction .. 71
4.2.3 User’s perception.. 72
4.2.4 Software lifecycle and software processes... 75

4.3 HOW DO SOFTWARE PEOPLE AFFECT SOFTWARE QUALITY? .. 79
4.3.1 Software team skills on software product quality ... 79
4.3.2 Software quality and the CMM.. 81

5 Research Methods ..87
5.1 RESEARCH DESIGN ... 87

Contents

viii

5.1.1 Exploratory vs conclusive research ... 87
5.1.2 Qualitative vs quantitative research.. 87
5.1.3 The best fit: qualitative exploratory research .. 88

5.2 DATA COLLECTION .. 89
5.2.1 Qualitative vs quantitative methods ... 89
5.2.2 Multiple methods ... 89
5.2.3 The best fit: an integrated approach ... 92

5.3 ANALYSIS AND RESULTS ... 93
5.3.1 Analysis of the data collected through the questionnaire .. 93
5.3.2 Analysis of the data collected through the interviews... 93

5.4 CLOSING REMARKS... 94

6 Questionnaire and interviews .. 95
6.1 THE QUESTIONNAIRE... 95

6.1.1 Structure .. 95
6.1.2 Types of questions .. 96
6.1.3 Guidelines and tools ... 97
6.1.4 Benefits and limits ... 97

6.2 THE INTERVIEWS.. 99
6.2.1 Structure .. 99
6.2.2 Guidelines and tools ... 99
6.2.3 Benefits and limits ... 99

7 Results.. 101
7.1 DATA FROM THE QUESTIONNAIRE ... 101

7.1.1 Form n°1: ... 101
7.1.2 Form n°2 .. 101
7.1.3 Form n°3 .. 102
7.1.4 Form n°4 .. 102

7.2 DATA FROM THE INTERVIEWS .. 104
7.2.1 Interview n°1 .. 104
7.2.2 Interview n°2 .. 110

8 Discussion ..115
8.1 SOFTWARE AND INTELLECTUAL CAPITAL ... 115

8.1.1 Knowledge and competences: inputs and tools for the production of software 115
8.2 KNOWLEDGE MANAGEMENT ... 116

8.2.1 Knowledge sharing.. 116
8.2.2 Knowledge management and enhancement .. 117

8.3 PEOPLE AND PROCESSES MANAGEMENT... 119
8.3.1 Software development process .. 119
8.3.2 Software workforce ... 120

8.4 QUALITY MANAGEMENT .. 122
8.4.1 Define quality ... 122
8.4.2 Measure quality .. 122

8.5 PEOPLE AND QUALITY.. 124
8.5.1 More attention should be given over people and quality management .. 124
8.5.2 Lack of a strategic vision in both people and quality management... 124
8.5.3 People and quality are believed to be related, but the relationship is not directly managed 125
8.5.4 Establishing a path for a direct management of the people-quality relationship 125

9 Conclusions ..129
9.1 SUMMARY OF THE RESULTS... 129
9.2 LIMITATIONS.. 129
9.3 FURTHER RESEARCH... 129

Contents

ix

10 References ...131

11 Appendix ...137
11.1 COVER LETTER... 138
11.2 QUESTIONS .. 139

11.2.1 PART 1: How do you manage knowledge? .. 139
11.2.2 PART 2: How do you manage software development and software people? 141
11.2.3 PART 3: How do you manage software quality?... 142
11.2.4 People management and software quality .. 143
11.2.5 PART 4: General information.. 144

11.3 SCREENSHOTS .. 145
11.4 AGILE SOFTWARE DEVELOPMENT .. 152

11.4.1 What does “Agile” mean? .. 152
11.4.2 Agile Modeling... 154
11.4.3 RUP.. 156
11.4.4 Scrum... 157
11.4.5 XP .. 160

List of Figures

xi

List of Figures

FIG. 1.1 ASPECTS TO BE CONSIDERED WHILE MANAGING A
SOFTWARE COMPANY ... 2

FIG. 2.1 KNOWLEDGE MANAGEMENT LEVEL AND KNOWLEDGE
OBJECT LEVEL [47].. 14

FIG. 2.2 COMPONENTS OF THE OBJECT LEVEL [47] 15

FIG. 2.3 THE KNOWLEDGE-MANAGEMENT CYCLE [66] 16

FIG. 2.4 KNOWLEDGE VALUE CHAIN [46]... 21

FIG. 2.5 A STRUCTURED APPROACH TO SOFTWARE DEVELOPMENT
[45] ... 24

FIG. 2.6 EXAMPLES OF KNOWLEDGE-MANAGEMENT SYSTEMS
ACCORDING TO STRUCTURE AND LOCUS OF KNOWLEDGE [20]... 25

FIG. 2.7 KNOWLEDGE ROLES ACCORDING TO THE COMMONKADS
METHODOLOGY [45].. 29

FIG. 2.8 COMMONKADS MODELS FOR AN OVERALL VIEW OF THE
ORGANIZATIONAL ENVIRONMENT [45] .. 30

FIG. 3.1 EXAMPLES OF EFFECTIVE PRACTICES IN RELATION TO
THE CMM [28] ... 38

FIG. 3.2 PSP'S MATURITY FRAMEWORK [28] ... 39

FIG. 3.3 MASLOW'S HIERARCHY OF NEEDS.. 42

List of Figures

xii

FIG. 3.4 P-CMM LEVELS OF MATURITY [73] ... 48

FIG. 3.5 HIERARCHY OF COMPETENCY [12] .. 50

FIG. 4.1 RELATIONSHIPS BETWEEN INTERNAL AND EXTERNAL
ATTRIBUTES [58] ... 64

FIG. 4.2 ISO 9001 CORE PROCESSES [56] .. 68

FIG. 4.3 THE CONTEXT OF USE AND QUALITY IN USE MEASURES [4] 74

FIG. 4.4 QUALITY IN TERMS OF PERFORMANCES WITHIN THE
SOFTWARE LIFECYCLE [4]... 77

FIG. 4.5 THE RELATIONSHIP BETWEEN QUALITY IN USE AND
INTERNA AND EXTERNAL MEASURES AND ATTRIBUTES [4] 78

FIG. 4.6 ISO 9000 QUALITY PLAN [4] .. 78

FIG. 5.1 RESEARCH PROCESS ... 94

FIG. 11.1 MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT [68] ...152

FIG. 11.2 PRINCIPLES BEHIND THE AGILE MANIFESTO [68]................... 153

FIG. 11.3 THE BEST PRACTICES OF AGILE MODELING [69]...................... 155

FIG. 11.4 SCRUM DEVELOPMENT PROCESS POSTER (USED AT SAAB
TRAINING & SIMULATION)...159

FIG. 11.5 PHOTO OF A SCRUM ROOM (PICTURE TAKEN AT SAAB
TRAINING AND SIMULATION)...160

List of Tables

xiii

List of Tables

TAB. 2.1 DESCRIPTION LEVELS FOR KNOWLEDGE ASSETS [66] 17

TAB. 2.2 METHODS TO IDENTIFY KNOWLEDGE ASSETS [66].................... 18

TAB. 2.3 METHODS TO LINK KNOWLEDGE ASSETS TO BUSINESS
PROCESSES [66] .. 18

TAB. 2.4 GUIDELINES FOR A KNOWLEDGE DESCRIPTION FRAME [66]19

TAB. 3.1 KPA TO ADDRESS FOR EACH P-CMM THEME AND
MATURITY LEVEL [86]... 53

TAB. 3.2 CENTRALIZED VS DECENTRALIZED APPROACH TO
KNOWLEDGE MANAGEMENT [24]... 54

TAB. 3.3 KNOWLEDGES, FOCUSES AND RESOURCES A BROKER HAS
TO FACE [24] ... 57

TAB. 3.4 KEY STEPS OF THE VIRTUAL INCUBATOR METHODOLOGY
[35] ... 59

TAB. 3.5 MAIN CHARACTERISTICS OF THE VIRTUAL INCUBATOR [35]59

TAB. 4.1 SOFTWARE QUALITY ATTRIBUTES [55]... 63

TAB. 4.2 EXAMPLES OF QUESTIONS FOR THE MEASUREMENT OF
SOFTWARE QUALITY FACTORS [81]... 66

TAB. 4.3 PRODUCT AND PROCESS STANDARDS [56]...................................... 67

List of Tables

xiv

TAB. 4.4 ISO/IEC 9126 QUALITY CHARACTERISTICS,
SUBCHARACTERISTICS AND THER DEFINITIONS................................ 71

TAB. 4.5 SOFTWARE RELIABILITY CAN BE IMPROVED AT EACH
STAGE OF SOFTWARE DEVELOPMENT .. 76

TAB. 4.6 EXAMPLE OF MEASURES FOR TEAM'S SKILL AND
EXPERIENCE [63] ... 80

TAB. 4.7 EXAMPLE OF METRICS USED TO EVALUATE QUALITY IN
TERMS OF SUITABILITY [63]... 80

TAB. 4.8 RELATIONSHIP BETWEEN TEAMS SKILL LEVELS AND
SOFTWARE QUALITY METRICS [63] ... 81

TAB. 4.9 CORRELATION COEFFICIENTS FOR SKILLS AND METRICS
[63] ... 81

TAB. 4.10 MAJOR CHARACTERISTICS OF EACH CMM LEVEL [25]........... 82

TAB. 4.11 AREAS OF FOCUS TO IMPROVE SOFTWARE PROCESSES FOR
EACH CMM LEVEL [25] ... 82

TAB. 4.12 CHARACTERISTICS RELATED TO SUCCESSFUL AND
UNSUCCESSFUL SPI EFFORTS... 85

TAB. 7.1 AGILE PRINCIPLES AND THEIR IMPLEMENTATION AT THE
SWEDISH BOARD OF AGRICULTURE .. 112

List of Abbreviations

xv

List of Abbreviations

CEO: Chief Executive Officer

HR: Human Resources

IEC: International Electrotechnical Commission

ISO: International Organization for Standardization

IT: Information Technology

KM: Knowledge Management

KPA: Key Performance Indicators

P-CMM: People Capability Maturity Model

PSP: Personal Software Process

RUP: Rational Unified Process

SEI: Software Engineering Institute

SPICE: Software process Improvement and Capability Evaluation

SQA: Software Quality Assurance

SW-CMM: Software Capability Maturity Model

TQM: Total Quality Management

Introduction

1

1 Introduction
In today’s economy the easiest way to increase profits seems to be cost
reduction – especially for what concerns people management. This leads to
temporary benefits that are destined to fade away, leaving companies with
nothing more than people without any sense of belonging, whose competencies
are felt to be constantly underestimated.

A different approach to business growth, based on people, can be undertaken:
the basic idea is that the better people are managed, the better is the quality of
the product, the more the customer is satisfied and the sales are likely to
increase.

This chapter sets the purpose and objectives of the study and describes the issue
that the paper aims to deepen. A short background of the project is given and
limitations of the project are pointed out. Finally an outline of the report
provides an overview of the remaining chapters.

1.1 Background

Managing a software company means to manage its people, processes and
products. Even if in reality each of these aspects may be managed by a different
organizational function, they shouldn’t be considered detached. Fig. 1.1
highlights these connections, as software developers inherently belong to
processes that lead to the production of software.

Knowledge management is the branch of management which deals with
individual competencies and information exchanges. It provides practices in
order to identify, collect, represent and distribute knowledge, both on
individual and organizational level. As nowadays knowledge is the most
important resource for organizations, a competetive advantage comes from
knowledge management.

In order to manage a software company, its processes must be identified,
assessed and continuously improved, since effective processes positively affect
the quality of the product. Processes in a software company have a distinctive
characteristic: people play a basic role for product realization. So, the way
software developers take part in the processes needs to be assessed and
improved as well.

Managing a product such as software means managing its quality. Quality can
be approached from several different perspectives.

Introduction

2

Chapter 2, 3 and 4 provide the theoretical background to this project. The
following themes are approached: the meaning of knowledge and of its
management; strategies, methods and techniques to promote an effective
knowledge management; software processes, software people, their
management and assessment; software quality, its definition and measurement.

Fig. 1.1 Aspects to be considered while managing a software company

Introduction

3

1.2 Purpose/Objectives

The purpose of this work is to investigate whether there is a relationship
between software people and software quality (see Fig. 1.1), so that a better
management of the people can improve the quality of the product.

Within the literature very few are the explicit references to the relationship
between software quality and software people. Therefore, a confirmation from
the reality of software companies is the objective to be pursued.

In order to achieve this goal, the following research questions should be
answered:

 How do software companies manage individual competencies?

 How do software companies manage quality?

 How much software companies actually understand that effectively
managing competencies can improve the quality of their products?

 How do software companies manage the relationship people – quality?

1.3 Limitations

This study points out that a particular relationship, the one between software
people and software quality, it’s worth being investigated. The project doesn’t
aim to be exhaustive: on the opposite, it strives for being a starting point.

The project is qualitative rather than quantitative, both because of the lack of
time and resources and because of the novelty of this perspective of study.

Results and conclusions cannot be generalized, since the study concerns just
few companies, a very little part of reality. Once again, the objective is to
underline the importance of further investigation rather than drawing global
conclusions.

However, this study can still provide some concrete hints, as it depicts pieces of
reality that can be immediate source of inspiration.

Introduction

4

1.4 Thesis outline

The thesis is divided into seven main chapters.

The literature review is the theoretical background of the project and takes
Chapter 2, 3 and 4. Each chapter elaborates on one of the three main themes
identified as the main activities for the management of a software company:
knowledge management (Chapter 2), processes and people management
(Chapter 3), and software quality management (Chapter 4).

Chapter 5 describes the research strategy underlying this project and the choice
made: the theoretical approach, the data collection, the analysis of the results
and the way conclusions are drawn.

In Chapter 6 and 7 the results of the investigation, made through questionnaire
and interviews, are presented and discussed.

An Overview on Knowledge Management

5

2 An Overview on Knowledge
Management

2.1 What is knowledge and how can it be managed?

2.1.1 The nowadays “raw material”: knowledge

A brief history

Despite knowledge management is nothing new for mankind, it’s only since
1990s that it has become a conscious practice within companies. As Hansen,
Nohria and Tierney [22] point out, the shifting of the focus from natural
resources to intellectual assets and the rise of networked computers have made
possible for managers to investigate what knowledge underlies their businesses
and how that knowledge is codified, stored, shared and used.

Knowledge is the most important resource for organizations, the nowadays
principal “raw material”. As Schreiber et al. [42] recall, writers on management
estimate that intellectual capital constitutes for 75% to 80% of the total balance
sheet of companies. Thus, managing knowledge is a crucial activity in
organizations.

Defining knowledge

What is knowledge? To answer to this question we can resort to the rigorous
although ordinary definitions of data, information and knowledge. Knowledge
is the whole of data and information that people use to carry out tasks and
create new information. By data we mean the uninterpreted signals that
constantly reach our senses; information is data with a meaning.

However, Schreiber et al. [43] suggest that a rigorous answer to what
knowledge is doesn’t really matter because everyday we can easily recognize
which are the people that embody knowledge and what knowledge is used
within certain actions.

An observation should be made: knowledge depends on context. That’s why
data, information and knowledge are defined depending on the situation: for
example, in knowledge engineering knowledge is considered task- and domain-
specific.

Furthermore, knowledge can be detected at different levels: individual, group
or organizational level [20].

An Overview on Knowledge Management

6

Tacit vs explicit knowledge

Knowledge can be tacit or explicit. Tacit knowledge, also referred to as
knowing, is the deeply rooted know-how that emerges from action in a
particular context. Explicit knowledge on the other hand is the so-called know-
what that can be extracted from the knowledge owner and shared with other
individuals.

How knowledge is created is described in “The Knowledge-Creating
Company”, a book of Nonaka and Takeuchi [46]. Four modes of knowledge
production are identified:

 Socialization: from tacit to tacit knowledge, through showing something
rather than speaking

 Externalization: from tacit to explicit knowledge, through writing practices
and procedures

 Combination: from explicit to explicit knowledge, through the integration of
pieces of knowledge

 Internalization: from explicit to tacit knowledge, through learning from
repeating the same task many times.

According to these authors, all the four types of knowledge production take
place within the organizational knowledge creation. Knowledge management
should support these processes.

2.1.2 Managing knowledge: Why? How?

What drives the knowledge-management efforts?

Knowledge management comprises a wide range of practices to identify,
collect, represent and distribute knowledge, both on individual and
organizational level.

The efforts required, typically focused on organizational objectives such as
improved performance, competitive advantage, innovation and sharing of
lessons learned, are driven by some motivations [76]:

 making available more knowledge within products and services
development

 reducing lead times

An Overview on Knowledge Management

7

 facilitating organizational learning

 leveraging expertise across the organization

 increasing network connectivity between internal and external individuals

 solving problems

 managing intellectual capital and assets in the workforce.

Starved of knowledge

Although the progress in the field of information technology goes on and the
size of information that people can collect is bigger and the process becomes
faster day after day, it looks like “we are drowning in a sea of information, and
starved of knowledge”, as the futurist John Naisbitt said [30].

As Junnarkar [30] points out, what is still missing is the ability to make sense
out of all this information. Improvement can go by two ways: enhancing the
individual sense-making ability or leveraging the collective intellect of the
people within the organization.

Therefore, knowledge management can be seen as the task of managing the
way people connect with information (value is created, an advancement of
understanding takes place) and with other people (i.e. how they relate to each
other).

Junnarkar [30] underlines how it’s natural for people to try to collect as much
information as they can before trying to make sense out of it as long as looking
for information is simpler than analyzing it. However, making sense out of the
available information is much quicker than accumulating and analyzing every
single existing piece of information: that’s why knowledgeable people, the ones
who can make sense out of not-necessarily-complete information, are required.

Therefore a competitive advantage comes from the matching between
incomplete but timely information and people who can make sense out of it.
Nevertheless, people tend to move towards a completeness of information
instead of clarity of understanding; IT systems push them in this way too.

Connecting people isn’t enough to leverage their collective intellect: they need
to actually relate to each other. Naturally people tend to relate to each other
thanks to the nature of their work, their work location and, very often, the
values they share. Junnarkar [30] highlights that if there is a relation between
people, a knowledge community can arise. So, the first enabler for learning and
sharing is the human network, not the IT network.

An Overview on Knowledge Management

8

Reporting from Wiig, Junnarkar [30] defines the process of knowledge
management as the process of integrating information (collecting, codifying
and organizing), making sense out of it and ensuring its continuity. The steps
that should be undertaken include integrating information from both internal
and external sources, enabling people-to-people and people-to-information
connections and exploiting every way of making connections.

Junnarkar’s methodology for knowledge management

Junnarkar [30] has developed a methodology for knowledge management. The
aim of his methodology is to elaborate on the multitude of dimensions that
define knowledge management, such as organizational strategy, information,
use of IT, people and both individual and collective sense making,
organizational culture, learning and sharing amongst individuals, measurements
and so on.

The methodology relies on the following:

 Learning map: a visual description of the company’s business model
(markets, customers, competitions faced, distribution outlets, etc.) that aims
to help people make sense of the business model and of some extent of the
strategy .

 Values map: a description of the core values of the corporate culture, but
also of teams values profiles, so that team members are aligned on the same
values and knowledge communities can arise.

 Information map: a two dimensions matrix, location of the information
(internal or external) – information’s nature (quantitative/structured or
qualitative/unstructured), that shows the different types and sources of
information the company deals with.

 Knowledge map: analysis of how individuals learn and create knowledge
and of how teams create insight. To explain the dynamics of individual
knowledge creation and the teams’ interactions over knowledge Junnarkar
refers to Nonaka and Takeuchi’s framework described before.

 Measurements: the balance scorecard proposed by Kaplan and Norton is
used to track progress of knowledge management initiatives.

 IT map: a picture of how IT is used to enable the knowledge-management
processes must be prepared after the first four maps have been completed.

An Overview on Knowledge Management

9

Human roles within knowledge communities

As previously mentioned, knowledge communities rely on human networks
rather than on IT. Humans can play different roles:

 steward/shepherd, who ensures that connections within the team takes place

 project/team leader, who manages the team’s efforts

 cross-pollinator, who moves between teams and transfers knowledge

 knowledge team, which indexes and catalogues information needed by
various teams and is in charge of the knowledge catalogue (a database of
sources of information)

 topic experts, who have specific competences in various areas, are the ones
to whom people turn to for having their questions answered and are the
sense makers within the organization.

As Junnarkar [30] concludes in his article “the true leverage for any
organization lies in the collective intellect of its people”. Even if the role of IT
is increasingly important, people’s ability to make connections cannot be
replaced. That’s why knowledge management should foster the correct
interaction between people, information and IT.

An Overview on Knowledge Management

10

2.2 Strategies and organizational culture for an
effective knowledge management

2.2.1 Computer-based vs people-based strategies

Rely on computers or on people?

Examining consultant firms, Hansen, Nohria and Tierney [22] have found that
there isn’t a unique approach to managing knowledge. In some companies the
strategy centers on computers and knowledge is codified and stored in
databases – it’s the so-called codification strategy – while in others the strategy
relies on people and knowledge is shared through direct person-to-person
contacts – and goes by the name of personalization strategy.

Hansen, Nohria and Tierney [22] have analyzed computer companies and
health care providers as well: they have found the same two strategies at work,
leading to the conclusion that “the choice between codification and
personalization is the central one facing virtually all companies in the area of
knowledge management”.

Codification vs personalization strategy

Knowledge management strategies can be classified according to two main
classes: codification strategies and personalization strategies.

A codification strategy uses a people-to-documents approach. It’s based on the
assumption that knowledge can be extracted and codified from the person who
developed it, so that any other person can search for it without having to
contact the original owner.

By contrast, a personalization strategy focuses on dialogue. It relies on the
knowledge sharing through interpersonal communication: knowledge is
transferred through a connection between individuals (brainstorming sessions,
one-on-one conversations, telephone, e-mail, job rotation), so that a network of
people is created.

2.2.2 A strategy (perhaps the right one!) should be chosen…

“Do not straddle”

In all the companies Hansen, Nohria and Tierney [22] have examined, a
distinct knowledge management strategy was chosen: even if both the

An Overview on Knowledge Management

11

approaches are used, they are not used to an equal degree.

Hansen, Nohria and Tierney [22] give an explicit advice, “do not straddle”: to
effectively use knowledge one strategy should be predominantly pursued and
the other one should be a support.

They assess at 80% the knowledge that should follow one strategy and at 20%
the other.

How to choose the right strategy

Hansen, Nohria and Tierney [22] address some questions to managers in order
to help them in recognizing the right strategy:

 “Do you offer standardized or customized products?”

 “Do you have a mature or innovative product?”

 “Do your people rely on explicit or tacit knowledge to solve problems?”

A personalization strategy should be considered when a customized product is
offered; innovation is also best supported. A person-to-person approach also
works best for people using tacit knowledge.

On the other hand, a codification approach best suits standardized, mature
products and, of course, the management of explicit knowledge.

2.2.3 … and actively supported

The IT support depends on the strategy

The IT support required depends on the knowledge-management strategy too.
For the codification model something like a library, containing documents and
allowing searches, is needed. The personalization model rather needs a system
to allow people to find other people.

The organizational culture should encourage knowledge sharing

Knowledge sharing should be encouraged: if codification is the chosen strategy
a system such as an electronic repository should be available and incentives
should be provided for people to write down what they know, while within a

An Overview on Knowledge Management

12

personalization strategy people should be rewarded for directly sharing their
knowledge with others.

Hansen, Nohria and Tierney [22] also point out that knowledge management
should not be isolated: coordination between HR, IT and competitive strategy
management is essential. This coordination requires the leadership of the
general manager (i.e. CEO).

In fact, actively choosing a knowledge management strategy can led to benefits
for both the company and its customers, but without a strong leadership no
strategy can be chosen nor implemented, either any resistance can be
overcome.

The environment: barriers to overcome

As already mentioned before, no approach to knowledge transfer would ever
work without a proper organizational environment. Barriers have to be
overcome and enablers for the transfer must be provided.

Technology as an enabler is pretty easy to provide: many software solutions are
available. Despite its helpful role, technology is nevertheless the ultimately
solution: as O’Dell and Grayson [36] point out, the whole information about a
process is too complex to be electronically collected. Moreover, access to
information is not the main barrier to change.

They list some of the lesson learned about what should be the realistic
expectations about networking:

 The really important and useful information for improvement is too
complex to put on-line. Technology should not aim to replace the existing
sharing process or try to provide the “right answer”, but should instead
enhance and support the process.

 There has to be a framework for classifying information, so that different
business units can talk to each other using a “common language”.

 Entering information into the system must be part of someone’s job.

 Culture and behaviours are the key drivers and inhibitors of internal sharing.
Technical issues aren’t the problem, people and how they use the system
are.

Rewarding and support

An important aspect in order to promote a culture of sharing is rewarding. The

An Overview on Knowledge Management

13

main point is that rewarding should not be something artificial: the practice of
sharing will spread only if it is helpful for people to do their work better. That’s
why formal financial rewards are not so used to motivate sharing behaviours:
recognizing and celebrating behaviours characterized by expertise sharing
should be the way.

The managers/leaders should be convinced of the importance of sharing, so that
they can have a supportive role. Examples of support tactics are suggested by
Ken Derr of Chevron [36]: tell success stories, remove barriers such as NIH
syndrome, reward positive behaviours, show commitment.

An Overview on Knowledge Management

14

2.3 Methods and techniques to manage knowledge

2.3.1 Management: a set of activities

Management means carrying out a set of activities

As the name hints, knowledge management is the management of the
knowledge as a resource.

As Wielinga et al. [65] state, the knowledge management activities can be seen
as “knowledge-intensive problem solving tasks”. Knowledge, indeed, is not
only the object managed, but also a tool required: some knowledge is needed to
describe, develop and maintain knowledge.

Wiig et al. [66] but also Schreiber et al. [47] depict two main aspects of
knowledge management: knowledge management level and knowledge object
level.

Fig. 2.1 Knowledge management level and Knowledge object level [47]

The knowledge management level

By management (level) we mean that a set of activities take place in order to
achieve some kind of goals. These goals consist of both general goals of
managing a resource, as knowledge is, and particular goals strictly related to
the distinctive characteristics of this particular one.

An Overview on Knowledge Management

15

General goals involve taking care of knowledge for it to be delivered on time at
the right place, in the right shape, having the proper quality and being obtained
at the lowest possible costs.

Distinctive characteristics of knowledge to which managers should take care
are listed: knowledge is

 intangible, difficult to measure

 volatile and strictly dependent from the vessel (i.e. agent with will in whom
knowledge is embodied)

 not consumed in a process, may increase through use, can be used by
different processes at the same time

 cannot be bought on the market and has long lead times

 has a wide impact on the organization.

The knowledge object level

The object level, on the other hand, is made up by three main components:
agents, business processes and knowledge assets. Knowledge management
actions operate on these.

Fig. 2.2 Components of the object level [47]

An Overview on Knowledge Management

16

2.3.2 The knowledge-management cycle

The management level mentioned before takes place within the so-called
knowledge management cycle. It is made up of four activities: review,
conceptualize, reflect, act. These activities may involve one or a combination
of generic operations: developing, distributing, combining and consolidating
knowledge.

Fig. 2.3 The knowledge-management cycle [66]

The knowledge manager (i.e. everyone that happens to manage knowledge) can
draw from methods and techniques depicted hereinafter within the description
of the phases of the knowledge management cycle.

Review

This activity involves checking out the current situation. It consists of two sub-
activities: monitoring and evaluating performance.

Monitoring performance includes all those procedures for monitoring
improvement plans and external environment. A SWOT analysis will help.

Evaluate performance means that a comparison between original objectives and

An Overview on Knowledge Management

17

current situation should be done. The question that should be answered is about
where the organization is going from a strategic perspective, both considering
the fundamental organizational strategies and the knowledge management
strategies.

This first phase of review, described in Wiig et al. [66]’s article, is missing in
the description of the knowledge management cycle given from Schreiber et al.
[47], but it’s reported here because it may be helpful: a better understanding of
the current situation should facilitate the undertaking of the following steps.

Conceptualize

This activity aims to answer to which processes use knowledge, which
knowledge assets are involved, where and when knowledge is used and which
organizational roles provide it.

To answer to these questions, a knowledge inventory has to be done. A
convenient way to identify, collect and organize knowledge assets is suggested
by Wiig [66]: he proposes a table, “Description Levels for Knowledge Assets”,
where knowledge levels are ordered from general to specific. The knowledge
inventory should focus on the levels in the middle, knowledge section and
knowledge segment.

Tab. 2.1 Description levels for knowledge assets [66]

Wiig [66] also proposes more tables as methods to identify the knowledge
assets and to link them to business processes.

An Overview on Knowledge Management

18

Tab. 2.2 Methods to identify knowledge assets [66]

Tab. 2.3 Methods to link knowledge assets to business processes [66]

A knowledge description frame can then be implemented: a knowledge object
level can be filled.

An Overview on Knowledge Management

19

Tab. 2.4 Guidelines for a knowledge description frame [66]

Within the conceptualization phase, an analysis of strong and weak point has to
be done too. Methods such as bottleneck analysis and SWOT analysis can be
used.

Some guidelines for this phase are suggested by Schreiber et al. [48]:

 Find a proper scope for the conceptualization. Good starting points are
initial bottlenecks, new business opportunities, human resource problems.

 Choose the proper level of detail (the middle levels of Wiig’s table, as
hinted before).

 Be aware of hidden knowledge, especially “informal” knowledge that
everybody takes for granted.

 Never rely on a single source when trying to link knowledge to agents. A
network analysis should be done.

 Beauty is in the eye of the beholder: different viewpoints should be
alternated.

 Some quantification is better than no quantification at all.

Wielinga et al. [65] propose another way of dealing with knowledge
inventories: using libraries of ontologies. Ontologies can play a role in
knowledge management at different levels:

 Object level: support the accessibility of knowledge through representations
and indexing of information

 Domain level: modelling of business process to support the management

An Overview on Knowledge Management

20

 Content level: as an agreement over terminology.

Reflect

The main goal of this activity is to produce improvement plans to be executed
within the Act phase. So the aim of this phase is to point out what
improvements should be made and how to actually make them.

It’s important to define and select the correct improvements: solving the wrong
problem and selecting the wrong solution won’t help. This task is anything but
easy. Wiig et al. [66] suggest that a good approach may be thinking in terms of
programs rather than in terms of action. Programs should concern effectiveness
improvement, knowledge building and strategic action. The SWOT analysis
can be used as a guide. Once defined, the improvements should be prioritized.
The suggested approach is MAUT, Multi-Attribute Utility Theory: this method
evaluates the selected improvements through a set of attributes that are
important for the decision maker.

Later on, operational plans based on the chosen improvements should be made.
Schedules, budget, deliverables, people involved and quality affect the
planning. Also, responsibilities should be considered and risks should be
assessed.

In this phase knowledge management starts to diverge from knowledge
engineering, as it emerges from Schreiber et al. [48]’s guidelines:

 Take a maximum distance from methodologies such as CommonKADS, to
prevent solutions from being dependent on them.

 Avoid the trapdoors of “solving the wrong problem” and “selecting the
wrong solution” (as explained before).

 There are no silver bullets: organizations and knowledge are too complex
for just one single measure to be the one.

 Abide by Murphy’s law: be very aware of risks.

 Sleep on it: review the process.

Act

This activity concerns the running of the improvement plans. It’s actually
beyond the scope of knowledge management: it belongs more to the
jurisdiction of HR, IT and Organization Development.

An Overview on Knowledge Management

21

By the way, even for this phase two main guidelines are suggested from
Schreiber et al. [48]:

 Go for measurable objectives.

 Things do not run themselves: assign clear responsibilities, give clear briefs
and carry out frequent control on progress.

2.3.3 Creating value: the knowledge value chain

A knowledge value chain can be detected looking at the activities in knowledge
management:

Fig. 2.4 Knowledge value chain [46]

The internal and external existing knowledge is identified. It is planned what
knowledge will be needed in the future: this knowledge is acquired, developed
and distributed were needed. The use of knowledge is fostered, its quality is
controlled and maintained. Knowledge is disposed when no longer needed.

The activities shown in the picture form a coherent whole which, by analogy
with the famous Porter’s value chain, is called knowledge value chain.

Therefore, as long as the value chain is identified, knowledge management can
be defined as “a framework and tool set for improving the organization’s
knowledge infrastructure, aimed at getting the right knowledge to the right
people in the right form at the right time” [46].

To create value for the final customer business processes have to take place:
knowledge is the enabler for processes to be successfully carried out.

That’s how a strategy for knowledge management is formulated: it considers
the value-creation goals, it analyzes how these goals are reached by the
business processes and in the end elaborates on which knowledge is embodied
within these processes. To do this, many managerial actions can be undertaken,
a wide variety of methods is available.

Some useful lessons should be retained:

 Knowledge is an organizational asset but it resides in individuals.

An Overview on Knowledge Management

22

 Knowledge is what is actually done, is a potential for action.

 The knowledge management strategy should be directed from outside-in.

 Knowledge sharing relies on communication between individuals and
knowledge management should facilitate this through increasing people’s
connectivity.

An Overview on Knowledge Management

23

2.4 Knowledge engineering to support knowledge
management

2.4.1 Knowledge engineering and knowledge systems

Knowledge engineering and its benefits

A wide range of methods and techniques goes by the name of knowledge
engineering. These methods aim to be a tool for the acquisition, modelling,
representation and use of knowledge [65].

Benefits are related to the whole discipline of knowledge engineering.
Knowledge engineering provides methods for better understanding the
structure and the processes used by knowledge workers. It spots opportunities
and bottlenecks, giving managers some useful tools for a better integration of
IT in support of knowledge work and for a more effective corporate knowledge
management.

Knowledge systems

Knowledge engineering is the discipline that produces knowledge systems to
help human problem-solving.

The benefits of knowledge systems are described within the empirical study of
Martin et al. [44], where two questions are addressed:

 What are benefits expected from the use of knowledge systems?

 Are expected benefits from an investment in knowledge systems actually
realized?

These questions were answered through the collection of survey data from
business people, that is people who directly benefit from the use of knowledge
systems.

The top three benefits detected are:

 faster decision making

 increased productivity

 increased quality of decision making.

An Overview on Knowledge Management

24

These benefits, as the authors of the survey point out, occur in varying degrees.
What is worth to notice is that knowledge systems actually improve the
organizational effectiveness.

A structured approach to software development: the pyramid

A structured approach to analysis, design and management is necessary for
knowledge systems.

Every software development approach consists of a number of elements,
commonly represented as a pyramid. The building blocks, starting from the
bottom of the pyramid, are: worldview, theory, methods, tools, use.

Fig. 2.5 A structured approach to software development [45]

The lowest step, worldview, is a set of principles that constitute the slogans of
each approach. These slogans are then translated into theoretical concepts,
methods for using the methodology and tools for applying them and, in the end,
case studies that collect experiences from the use of the methodology, as the
pyramid depicts. Feedback winds around each step.

Nature and locus of knowledge: attributes to define knowledge-management
systems

Hahn and Subramani [20] have conducted a series of semi-structured
interviews with knowledge managers in order to provide a framework of the
different approaches to knowledge-management systems. The two attributes
that define the kind of system in use are the nature and the locus of knowledge.

The locus of the knowledge is where the knowledge resides: it can be an
artefact (e.g. a document) or an individual. The nature of the knowledge
describes the level of a priori structure imposed by the knowledge-management
system (i.e. structured or unstructured).

An Overview on Knowledge Management

25

The following picture shows some example of knowledge-management
systems with different locus and nature of knowledge.

Fig. 2.6 Examples of knowledge-management systems according to structure and
locus of knowledge [20]

Cell 1 is about those systems for managing the organizational knowledge that is
or can be codified. Cell 2 concerns knowledge that resides in individuals, but
managed through categorizing schemes. Cell 3 comprises systems where
knowledge is captured in artifacts, but there is no categorization. Cell 4 is about
those systems which allow the users to look for others that can help them.

Knowledge-management systems: balance, maintenance, development

Some important considerations about knowledge-management systems:

 Size can have a positive or negative network effect. If the knowledge
sources are artefacts, the greater their number is, the higher the chances to
find a document of interest are. If the knowledge sources are individuals
increasing size may lead to overload.

 The diversity of content is not a problem when the knowledge sources are
highly structured, but it could be when they are not (e.g. leading to an
incongruent vocabulary)

Therefore, the common theme underlying these systems is to provide a
technical solution to avoid information overload and yet support and facilitate
the location of useful content through allowing a proper growth of the system.

An Overview on Knowledge Management

26

A critical problem is motivating users to contribute: motivation is influenced by
the efforts and time required to use the system, especially for what concerns the
structuring of the contribution. Linked to this there is the risk that all the work
ends up as a responsibility of a few group of experts, which in turn will be
overloaded because of the increased burden. Solutions may be taking turns in
using the system or, at the opposite, creating a new role such as the knowledge
librarian within the organization.

Hahn and Subramani [20] take a look into the long-term effects of knowledge-
management systems. They highlight how the use of knowledge-management
systems can lead to both positive and negative outcomes, as the organization
may gain in efficiency through reuse of knowledge but may also become rigid
and loose the capacity to learn and innovate as long as it relies on existing
solutions.

Hahn and Subramani [20] also elaborate on the difficulty of developing these
systems: it’s hard to know a priori what information will be requested, who will
be the user and who will be the supplier and when and how the information will
be used. So it’s difficult to define a typical user and the system has to be
flexible: that’s why an evolutionary approach to system development should be
followed.

The most important thing to remember is that “a tool is only successful if the
users of the tools succeed with the tool” [20]: motivating users and helping
them to accept the system becomes critical.

2.4.2 CommonKADS

What is CommonKADS?

CommonKADS, as described in the related website [68], is the leading
methodology to support structured knowledge engineering. It is the European
de facto standard for knowledge analysis and knowledge-intensive system
development, and it has been adopted by many major companies in Europe, as
well as in the US and Japan.

The CommonKADS methodology helps knowledge managers in spotting
opportunities and bottlenecks within the management of knowledge in
organizations, that is how organizations develop, distribute and apply their
knowledge resources, and enables to perform a detailed analysis of knowledge-
intensive tasks and processes. Through this methodology, knowledge systems
development is supported; in particular, CommonKADS suits the object-
oriented development and uses notations compatible with UML. Therefore
CommonKADS is useful both for knowledge managers and software engineers.

An Overview on Knowledge Management

27

People interested in knowledge management often find that there is a lack of
support techniques for practical day-to-day knowledge management:
CommonKADS is a powerful tool which helps the knowledge manager in
defining a corporate knowledge-management strategy through knowledge
analysis and knowledge system development.

The core of CommonKADS is formed by its knowledge analysis framework:
knowledge-intensive tasks can be analyzed at different grain-size levels thanks
to the support of "templates", predefined reusable knowledge models of proven
soundness. The results of knowledge analysis are documented in the
"knowledge model", a specification of the information and knowledge
structures involved in a knowledge-intensive task.

Results of knowledge analysis can be used as specifications for the
development of a knowledge system. CommonKADS is useful especially
within the early stages of system development, since it provides a clear route to
implementation. It also provides tools and techniques for feedback,
prototyping, etc.

The CommonKADS methodology: knowledge engineering or knowledge
management?

Based on Newell’s concept of knowledge level, the level of knowledge,
implementation-independent, that provides a conceptual description of problem
solving behaviour and of those knowledge structures that sustain that
behaviour, a number of knowledge modelling methodologies have been
developed: one of these is CommonKADS [65].

Describing a process model for the management level and an object model for
the object level so that knowledge management becomes effective is something
very similar to what CommonKADS does for knowledge engineering.
Furthermore, the components affected by the knowledge management actions
are very similar to what is called context of a knowledge system in
CommonKADS models. That’s why this methodology is analyzed in the
present work.

Even if there is a seamless link between knowledge management and
knowledge engineering, they are different because they belong to different
organizational roles. Knowledge systems should be considered as tools for
knowledge management, but building them is something that should be
delegated to knowledge engineering. However, the CommonKADS
methodology numbers among its merits the possibility of being shared between
the knowledge manager (i.e. the person in charge for knowledge management)
and the project manager (in charge of knowledge engineering).

An Overview on Knowledge Management

28

Main principles of the CommonKADS methodology

The CommonKADS methodology relies on several principles, based on the
lessons learned about knowledge system development in the past. Schreiber et
al. [45] list the fundamentals:

 Knowledge engineering is no longer a process of extracting knowledge from
an expert’s head to transfer it: today it’s approached as a modelling activity.
Modelling means that a focus on few aspects of knowledge, the useful ones,
is carried out. The CommonKADS model is a good tool to structure this
activity.

 According to Newell’s knowledge level principle [45], knowledge should be
modelled at a conceptual, implementation independent, level. Programming
details should be left for later. In the CommonKADS view this is called
structure-preserving design.

 Knowledge has a stable internal structure and it can be analyzed through the
identification of knowledge types and roles: knowledge is depicted as a
well-structured functional whole with different roles for each part in human
problem solving. The main roles are:

 knowledge provider/specialist, owner of knowledge, expert in the
application domain

 knowledge engineer/analyst, in charge of system-analysis work

 knowledge-system developer, responsible for design and
implementation

 knowledge user, who directly or indirectly uses the knowledge
system

 project manager, in charge of running the knowledge system
development project (he is likely to benefit from a structured
approach as CommonKADS)

 knowledge manager, not directly involved in the projects,
formulates a knowledge strategy at the business level.

An Overview on Knowledge Management

29

Fig. 2.7 Knowledge roles according to the CommonKADS methodology [45]

 A knowledge project must be managed learning from experience in a
controlled “spiral” way. A waterfall approach is too rigid, while
prototyping, even if very popular, lacks of control. CommonKADS offers a
structured way of learning, more flexible than the waterfall model and more
controlled than rapid prototyping.

The CommonKADS model suite

Schreiber et al. [45] present an overview of the CommonKADS model suite,
which is the core of the CommonKADS knowledge-engineering methodology.

The suite spreads over three levels:

 Context – In this level should be explained why the knowledge system is
chosen and which impacts it has on the organization.

 Concept – Here the nature and structure of the knowledge involved and of
the corresponding communication are analyzed.

 Artefact – The main focus here is on how the knowledge is implemented in
the computer system and how the software architecture looks like.

An Overview on Knowledge Management

30

CommonKADS provides a set of models that help developing an overall view
of the organizational environment, to report the critical success factors for the
knowledge system, to describe the problem-solving functions and data that
belong to the system itself and to deliver the technical specifications for its
implementation.

Fig. 2.8 CommonKADS models for an overall view of the organizational environment
[45]

As shown in the picture, models are:

 the organizational model – for the analysis of the major features of the
organization

 the tasks model – to identify the relevant subparts of each business process

 the agent model – to describe the executors of the tasks

 the knowledge model – to explicate in detail the types and structures of the
knowledge used in performing a task

 the communication model – to highlight the communicative transactions
between the agents involved

 the design model – to give the technical systems specifications.

The deliverables produced by a CommonKADS knowledge project are model
documents, project management information and a knowledge system software.

Managing a Software Company

31

3 Managing a Software Company

3.1 Managing processes

3.1.1 Software processes

Defining a software process and its activities

A software process is a set of activities that leads to the production of a
software product. It relies on people making decisions and judgements and that
is why there is no ideal process and many organisations have developed their
own approach to software development.

Even if there are many software processes, some fundamental activities are
common to all software processes: software specification, software design and
implementation, software validation, software evolution [49]. These activities
are differently organized depending on the different development process.

Software specification (also known as requirements engineering) is the process
of understanding and defining what the system should do and what are the
constraints to its development. A requirements document, that is the
specification for the system, is produced; it is made of four intertwined phases:
feasibility study, requirements elicitation and analysis, requirements
specification and requirements validation.

Software design and implementation is the process of converting a system
specification into an executable system; it involves processes of software
design and programming, but may also involve refinement of the software
specification. Design activities are: architectural design, abstract specification,
interface design, component design, data structure design, algorithm design.
The output of each activity is a specification for the next stage.

Software validation (also called V&V, verification and validation) is the
process of checking whether a system matches its specification and the
customer’s expectations. It involves inspections and reviews at each stage of
the software process, even if testing is the most expensive stage. The testing
process should be iterative and continuous feedback to the earlier stages should
be provided; testing stages concern the components (units), the system and the
acceptance (alpha testing).

Software evolution (or maintenance) is about the flexibility of software
systems: changes can be made to software at any time, but the cost of
maintenance is often several times the initial development cost. However, the

Managing a Software Company

32

distinction between development and maintenance is vanishing in favour of the
so-called software engineering ad evolutionary processes.

Models of software processes

A software process model is an abstract representation of a software process
that explains the chosen approach to software development.

Models are [49]:

 The waterfall model (or software life cycle), where fundamental activities
(requirement analysis and definition, system and software design,
implementation and unit testing, integration and system testing, operation
and maintenance) are represented as separate process phases. Each phase
leads to an approved document and allows the beginning of the next phase,
even if in practice the stages may overlap and feed information to each
other. Iterations are costly and involve significant rework and that’s why
parts of the development often are frozen. This model should be used when
the requirements are well understood and unlikely to change radically
during system development.

 Evolutionary development, where the fundamental activities are interleaved
and an initial system is rapidly developed and then refined. There are two
types of evolutionary development: exploratory development, where the
system evolves following the customer hints, or throwaway prototyping,
where the objective is to develop a better requirements definition. The
evolutionary model is more effective than the waterfall model since the
specification can be developed incrementally, but the process is not visible
and systems are often poorly structured.

 Component-based software engineering, based on the existence of reusable
components and some integrating framework for these components. After
the initial requirements specification stage the following stages take place:
component analysis, requirements modification, system design with reuse,
development and integration and finally system validation. This model
reduces the amount of software to be developed and so reduces costs and
risks and may lead to a faster delivery. However, requirements compromises
are inevitable.

In practice, these models are often combined.

Process iteration

Since change is inevitable in the software process, two models have been

Managing a Software Company

33

explicitly designed to support process iteration [49]:

 Incremental delivery.

Advantages: customers can gain value from the system before the whole
system is delivered, they can use the early increments as prototypes, there is
a lower risk of overall project failure and the most important system
services, developed first, receive the most testing.

Problems: increments should be relatively small and each one should deliver
some system functionality, not well defined requirements lead to a difficulty
in identifying common facilities.

 Spiral development.

The phases are: objective setting, risk assessment and reduction,
development and validation, planning. The recognition of risk is explicit.

The essence of iterative processes is that the specification is developed in
conjunction with the software: there is no complete system specification
until the final increment is specified.

3.1.2 ISO/IEC 15504 aka SPICE

History

ISO/IEC 15504 [76], also known as SPICE (Software Process Improvement
and Capability Determination), is a framework for the assessment of processes
developed by the conjoint effort of ISO, International Organization for
Standardization, and IEC, International Electrotechnical Commission.

It is an international standard derived from process lifecycle standard ISO
12207 and maturity models such as CMM and aims to be a reference model for
the assessment of organizational capabilities for delivering products (software,
systems, IT services).

The acronym SPICE initially stood for "Software Process Improvement and
Capability Evaluation", but because of French concerns over the meaning of
"evaluation", it has been redefined as "Software Process Improvement and
Capability Determination".

The first versions of the SPICE standard focused exclusively on software
development processes, but later it was expanded to cover all the processes
related to a software business. In particular, six business areas are covered:
organizational, management, engineering, acquisition supply, support,

Managing a Software Company

34

operations.

Reference model

ISO/IEC 15504 contains a reference model in which a process dimension and a
capability dimension are defined.

The process dimension describes each process as it belongs to one of the five
process categories:

 customer-supplier

 engineering

 supporting

 management

 organization.

The capability level of a process is rated on the following scale:

5 Optimizing process

4 Predictable process

3 Established process

2 Managed process

1 Performed process

0 Incomplete process.

The capability of a process is measured using process attributes; the
international standard defines nine process attributes:

1.1 Process Performance

2.1 Performance Management

2.2 Work Product Management

3.1 Process Definition

3.2 Process Deployment

4.1 Process Measurement

Managing a Software Company

35

4.2 Process Control

5.1 Process Innovation

5.2 Process Optimization.

Each process attribute consists of one or more generic practices, which are
further elaborated into practice indicators to aid assessment performance. Each
process attribute is assessed on a four-point (N-P-L-F) rating scale:

Not achieved (0 - 15%)

Partially achieved (>15% - 50%)

Largely achieved (>50%- 85%)

Fully achieved (>85% - 100%).

The rating is based upon evidence collected against the practice indicators,
which demonstrate fulfillment of the process attribute.

Assessment process

ISO/IEC 15504 provides a guide for performing an assessment, including the
assessment process, the model for the assessment and the tools used during the
assessment. The general steps of the assessment are the following:

1. Initiate an assessment (assessment sponsor).

2. Select assessor and assessment team.

3. Plan the assessment, including processes and organizational unit to be
assessed (lead assessor and assessment team).

4. Pre-assessment briefing.

5. Data collection (through interviews with people who perform the process
and through collecting documents, quality records and statistical process
data).

6. Data validation.

7. Process rating (through the assessor judgment, against process’s base
practices and the capability dimension’s generic practices).

8. Reporting the assessment result to the sponsor.

Managing a Software Company

36

For an actual assessment, the process assessment model (PAM) is used. It is an
elaboration of the process reference model provided by the process lifecycle
standards.

Tools for the assessment can be paper-based manually used, which incorporate
the assessment model indicators and the base and generic practice indicators. A
limited number of computer-based tools is also available.

For the assessment to succeed, the assessor must be qualified and competent.
He need to possess a suitable level of the relevant skills and experience such as

 personal qualities (e.g. communication skills)

 relevant education, training and experience

 specific skills for particular categories (e.g. management skills for the
management category)

 ISO/IEC 15504 related training and experience in process capability
assessments, which comprises a 5 day training course, at least one
assessment successfully performed under supervision and one as a lead
assessor.

Uses and success of ISO/IEC 15504

ISO/IEC 15504 can be used for both process improvement and supplier’s
process capability determination.

For what concerns process improvement, ISO/IEC 15504 helps to better
understand the initial baseline level (process capability level) and to assess the
situation after an improvement. It provides guidance on defining objectives,
planning and executing improvements through an eight-step improvement
programme.

ISO/IEC 15504 is also used to evaluate the capability of potential suppliers to
deliver, which is important for organization considering outsourcing. It
provides a framework for assessing proposed suppliers (that can be assessed by
the organization itself or by an independent assessor) against a target capability
which is based on the organization’s needs. This target capability is described
by a set of target process profiles, particularly important in contexts where the
organization is required to accept the cheapest qualifying vendor. Target
capability is useful for suppliers as well: it enables them to identify gaps
between their current capability and the level required by their (wanted)
customer.

Managing a Software Company

37

Even if successful, ISO/IEC 15504 has not been as successful as the CMMI.
Reasons are the following: it is not available as free download but must be
purchased (CMM and CMMI are available as free downloads from the SEI
website), the CMMI is actively sponsored and was created first, the CMMI
retains the benefits of the CMM and incorporates many of the ideas of ISO/IEC
15504 too.

3.1.3 Managing individuals: the PSP

The Personal Software Process

The Software Engineering Institute has developed the so-called Personal
Software Process (PSP), a process to guide improvement in small organizations
and project teams based on the idea that personal process discipline can lead to
individual effectiveness, which would likely improve teams and projects’
performance.

The PSP course aims to help engineers in defining and measuring their process
through ten software development exercises that show how effective their
methods are and how their performance can be improved. Self study is also
possible, but a PSP course seems to be more effective.

Under development at the SEI since 1989, the PSP has been taught within
several universities and companies and corporations such as Siemens and
Helwett Packard have participated to the study.

Disciplined processes lead to effective methods

As already mentioned, PSP strategy is to motivate engineers to find (and adopt)
effective methods through a disciplined, gradual and defined process. This is
important in software development because software groups usually do not
provide sound engineering methods, professionals’ methods are often private
and often software people are not trained for planning and evaluating the
methods they use. It’s also important that each engineer looks for methods for
himself, so that he becomes sure of their effectiveness and decides to
consistently use them.

Defining, measuring and tracking their own work leads software engineers to a
better understanding of their performance, which enables them to recognize
best practices and motivates them to look for further improvement. As the
members of a team improve, then, the team itself will improve.

Managing a Software Company

38

The PSP’s maturity framework

Humphrey [28] provides examples of effective practices at an individual level
in relation to the capability maturity model (CMM):

Fig. 3.1 Examples of effective practices in relation to the CMM [28]

The PSP has a maturity framework much like that of the CMM:

 PSP0 (+ PSP0.1): Baseline Personal Process. This initial step is about
measurements on the current process used to write software: time, defects,
size. Defect and coding standards are also analyzed. The process
improvement proposal, i.e. the structured way to record problems,
experiences and improvement suggestions, is described too.

 PSP1 (+ PSP1.1): Personal Planning. This step adds size and resource
estimation, a test report, schedule planning and status tracking. It aims to
teach to engineers about the relationship between programs’ size and time to
develop them, how to make accessible commitments, how to plan work and
how to determine their status.

 PSP2 (+ PSP2.1): Personal Quality Management. The objective of this step
is to improve the engineers’ ability to produce high-quality programs
through using defect data to reduce compile and test defects. Engineers have
to learn to deal objectively with their mistakes, understand how many
defects they inject and why and with what consequences. Design and code
reviews are analyzed.

Managing a Software Company

39

 PSP3: Cyclic Personal Process. Large programs (i.e. programs of up to
several thousand lines of code, KLOC) are usually realized through the
integration of smaller PSP2-sized programs: to effectively integrate them, a
cyclic development process is followed. So, this step’s objective is to
introduce the engineers to the principles of process scaling.

As the size of the project increases, PSP3 can be no longer enough and a team
project may fit better. PSP, however, does not define team processes.

Fig. 3.2 PSP's maturity framework [28]

The PSP’s principles

The main PSP principles are the following:

 An efficient work relies upon a defined and structured process. Creative and
routine parts of the software process should be treated differently: routine
tasks involving defined procedures, forms and historical data should be
structured and made more accurate and efficient.

 A defined process must fit the individual skills and preferences of the
professional who uses it. The value of using a process is more clear when
the process is specific.

 A professional is comfortable with a defined processes only if he is involved
in their definition. Being part of the processes’ definition is what makes
engineers better understanding the effectiveness of the methods used and the
importance of improvements and adjustments.

Managing a Software Company

40

 Processes should evolve together with professional’s skills and abilities. One
of the main characteristics of the software industry as well as of the
software products is the rapid rate of changing and evolution. Software
engineers’ skills and abilities need to be developed in order to face changes
and the processes should evolve hand in hand with them to remain useful.

 A rapid and explicit feedback is the enabler for continuous process
improvement. Feedback provides reinforcement to what is being taught.
Both long-term and short-term feedback need to be provided.

As Humphrey [28] recaps, PSP as a structured, disciplined and measured
software process is a successful tool as it provides engineers with the guidance
and feedback required to improve their personal performance.

Managing a Software Company

41

3.2 Managing people

3.2.1 People: the intellectual capital – a critical issue

Critical factors in managing people

The people working in a software organisation are its greatest assets: that’s
why this ”intellectual capital” should be respected, given a sense of
responsibility and rewarded properly. Poor management of people in an
organization is one of the most significant contributors to project failure.

Sommerville [50] identifies four critical factors in the people management:

 Consistency: people shouldn’t feel that their contribution to the organisation
is undervalued.

 Respect for the differences between different people’s skills.

 Inclusion: people should feel listened and that their proposals are taken into
account.

 Honesty: managers should tell the truth when answering questions like
“What is going well?”, “What is going bad?”, “What is my level of
technical knowledge?”.

The choice of people

Often project managers don’t have a free choice over the team members,
because of budget constrains, because of people’s availability (i.e. people may
be able to work only for part of the time on a certain project because they have
to work on something else too) and also because some skills are in short
supply.

The decision on who to appoint to a project usually is made using three types of
information [51]:

 about the candidates, their background and experience, from their résumé or
CV,

 information gained by interviewing candidates

 recommendations from people who have worked with them.

Managing a Software Company

42

Motivating people

Motivation means organising the work and the work environment so that
people are stimulated to work as effectively as possible. There are many
theories about what motivates people.

Maslow [32] suggests that people are motivated by satisfying their needs,
which are arranged in a series of level: physiological needs, safety needs, social
needs, esteem needs and self-realization needs. People working in software
development are not hungry or thirsty and generally do not feel threatened.
Therefore, satisfying social, esteem and self-realisation needs is what matters
from a management point of view.

Fig. 3.3 Maslow's hierarchy of needs

To satisfy social needs, time and spaces to meet co-workers should be given to
people. To satisfy esteem needs, people should be shown to be valued by the
organisation. To satisfy self-realisation needs, people should be given
responsibility for their work, be assigned demanding but not impossible tasks
and be provided with a training programme to develop their skills.

The main problem with Maslow’s model of motivation is that it takes an
exclusively personal viewpoint on motivation: it does not properly consider
motivational the fact that people feel themselves to be part of an organisation, a
professional group and a culture.

Bass and Dunteman [3], instead, classify professionals into three types:

 task-oriented people, motivated by the work they do, who prefer to work
alone

Managing a Software Company

43

 self-oriented people, motivated by personal success and recognition, who
prefer to work alone

 interaction-oriented people, motivated by the presence and actions of
coworkers, who prefer to work as part of a group.

Group working

Project teams for software development usually have a size that ranges from
two to several hundred of people. Large teams are usually split into a number
of groups, each one responsible for part of the overall system and which should
have no more than 8 – 10 members.

Putting together a group that works effectively is a critical management task
[52]. The group should have the right balance of technical skills, experience
and personalities, but should also have a team spirit, so that the people involved
are motivated by the success of the group as well as by their own personal
goals.

Group working is influenced by:

 group composition

 group cohesiveness

 group communications

 group organisation

 working environments.

3.2.2 The People Capability Maturity Model

The P-CMM is a framework for assessing the way organizations manage their
staff [53].

The Software Engineering Institute in USA is engaged in a long-term
programme of software process improvement. Part of this programme is the
CMM for software processes, but also the PCMM has been proposed. PCMM
can be used as a framework for improving the way in which an organisation
manages its human assets.

PCMM is a five-level model, where the levels are: initial, repeatable, defined,
managed, optimizing. The strategic objectives of the PCMM are:

Managing a Software Company

44

 to improve the capability of software organisations by increasing the
capability of their workforce,

 to ensure that software development capability is an attribute of the
organisation rather than of a few individuals,

 to align the motivation of individuals with that of the organisation,

 to retain valuable human assets within the organisation.

So, PCMM is a practical tool for improving the management of people in an
organisation because it provides a framework for motivating, recognising,
standardising and improving good practice.

History of the People CMM

In the early 1980s Watts Humprey noticed that the quality of a software
product was tied to the quality of the process that produced it. In order to
improve the development processes, Humprey wanted to install a Shewart-
Deming improvement cycle into a software organization. What he realized was
that a Plan-Do-Check-Act cycle required to be installed in stages, so that the
impediments to continuous improvement could be removed. Humphrey’s
unique insight was that an environment supporting continuous improvement
could be created only if implementation problems were eliminated in a specific
order. This idea led him and his colleagues at IBM to the development of the
concept for a process maturity framework [11].

The staged structure that underlies the maturity framework was first elaborated
by Philip Crosby [9]. His original formulation was that any new practice would
be adopted through five stages. These stages represented the organization
becoming aware of the new practice, learning more about it, trying it in a pilot
implementation, deploying it across the organization and achieving mastery in
its use.

Humphrey noticed that in the long-term the adoption of practices or
technologies was not succeeding because of some problems deeply ingrained in
the organizations’ culture. So, he realized that he had to formulate an approach
that addressed the organization, not just its individual processes. He observed
that improved software development practices did not survive unless the
organization behaves in a way to support them. Consequently, he designed the
process maturity framework.

Through software process assessments, workshops and extensive review, the
Software Engineering Institute (SEI) evolved Humphrey’s process maturity
framework into the Capability Maturity Model for Software (SW-CMM). Later
on, through the collaboration with representatives from industry, government,

Managing a Software Company

45

military and academic organizations, the SEI developed an evolutionary model
for developing and optimizing employee training and competence in
organizations, the so-called People Capability Maturity Model (P-CMM).

Why a CMM for people?

“As other sources of competitive success have become less important, what
remains as a crucial differentiating factor is the organization, its employees and
how it works” [37]: this quotation is intended to highlight that competent and
well-trained employees are the main source of strategic advantage for a
company.

However, even if most companies recognize the advantage embodied within
talented employees, Curtis et al. [11] point out that those companies often lack
a coherent approach to achieve their talent goals and to take in a system of
practices.

Practices are really needed, as organizations struggle to deal with recruiting,
training and retaining workforce because of labour scarcity, rapidly changing
business environment and new working conditions (e.g. life-long employment
is no longer the norm).

These needs are exacerbated within the software-development industry. The
investment required in knowledgeable people is inherently high because of the
constant progress in technologies and programming languages, but also –
mainly – because of the growing demand for software opposed to a talent
shortage.

As Curtis et al. [11] say, by the mid-1980s the software industry realized that
its primary problem was a lack of discipline, both in project management and
in software development practices. Since the beginning of then 1990s, the SW-
CMM has guided many software organizations in improving their management
and development processes. However, software organizations quickly
understood that improvements couldn’t come along without significant changes
in the way they managed people, but these changes were not fully accounted
for in the SW-CMM. That’s where the People CMM came out: the People
CMM was designed to increase the capability of the workforce, just as the SW-
CMM increased the capability of the organization’s software development
processes.

The lack of a coherent approach to manage the issues related to recruiting,
training and retaining employees gets along with the idea of this management
as “an operational matter ‘to be left to the Human Resources function’” [11].
An integrated human capital management perspective should be taken instead.

Workforce practices are usually considered integral to a total quality

Managing a Software Company

46

management (TQM) program and are included as criteria in quality models
such as the Malcolm Baldrige National Quality Award or the European
Foundation for Quality Management [11].

Along with the coherent approach and the integrated human capital
management perspective, management commitment and a piecemeal approach
to adoption are required so that the well-known workforce practices can be
properly implemented and can actually produce the already demonstrated
benefits.

The People CMM is designed to allow software organizations to integrate
workforce improvement with software process improvement programs based
on the SW-CMM.

Benefits of a P-CMM

The People CMM is a framework for organizations to focus on the continuous
improvement of the management of their workforces. It’s based on the best
practices within the fields of human resources, knowledge management and
organizational development.

In particular, the People CMM “helps organizations

 characterize the maturity of their workforce practices,

 establish a program of continuous workforce development,

 set priorities for improvement actions (through the staged framework),

 integrate workforce development with process improvement, and

 establish a culture of excellence” [73].

Thus, the People CMM provides organizations with guidance on how to gain
control of their processes for managing and developing their workforce through
assessing their current maturity and providing a focused set of practices. Those
practices are chosen because they have been proved having significant impact
on individual, team, and organizational performance.

What is P-CMM?

The People Capability Maturity Model (P-CMM) is a set of practices that
constitute a model for organizations to manage their human capital. It consists
of five maturity levels (also called evolutionary stages) through which an

Managing a Software Company

47

organization’s workforce practices, processes and the organization’s culture
evolve.

It’s worth to notice that although many process standards can transform an
organization’s culture, few include a roadmap for implementation: that’s why
organizations often fail to implement the standard effectively. The People
Capability Maturity Model, instead, provides a roadmap for continuously
improving the capability of an organization’s workforce.

The improvement path described by P-CMM is evolutionary and brings the
organization’s workforce practices from ad hoc, inconsistently performed to a
mature whole that continuously elevates the workforce capability.

The P-CMM philosophy can be summarized in ten principles [75]:

1. In mature organizations, workforce capability is directly related to business
performance.

2. Workforce capability is a competitive issue and a source of strategic
advantage.

3. Workforce capability must be defined in relation to the organization’s
strategic business objectives.

4. Knowledge-intense work shifts the focus from job elements to workforce
competencies.

5. Capability can be measured and improved at multiple levels, including
individuals, workgroups, workforce competencies, and the organization.

6. An organization should invest in improving the capability of those
workforce competencies that are critical to its core competency as a
business.

7. Operational management is responsible for the capability of the workforce.

8. The improvement of workforce capability can be pursued as a process
composed from proven practices and procedures.

9. The organization is responsible for providing improvement opportunities,
while individuals are responsible for taking advantage of them.

10. Since technologies and organizational forms evolve rapidly, organizations
must continually evolve their workforce practices and develop new
workforce competencies.

The People CMM, as all the CMMs, is based on five levels of maturity; a
maturity level is a set of related practices for some process areas that improve
the organization’s overall performance. An organization achieves a new level

Managing a Software Company

48

of maturity when a system of practices has been implemented and new results
are achieved. The practices at each level of maturity prepare the organization to
adopt practices at the next level.

Levels of maturity

The People CMM, which applies the principles of the maturity framework to
the domain of workforce practices, consists of five maturity levels that lay
successive foundations for continuously improving talent, developing effective
teams and successfully managing the human assets of the organization.

Each maturity level represents a different level of organizational capability to
manage and develop the workforce: it’s the level of knowledge, skills and
process abilities available for performing an organization’s business activities.
It aims to produce a transformation in the organization’s culture through
providing effective practices to attract, develop, organize, motivate and retain
the workforce.

Except for Level 1, each maturity level is characterized by a set of practices
that belong to several key process areas of workforce management [73].

Fig. 3.4 P-CMM levels of maturity [73]

First - The Initial level

At this level, the organization has no consistent way of performing its work:
processes are ad hoc, results depend on the skills of exceptional individuals and
on excessive overtime.

Managing a Software Company

49

Only repeated practices can be improved: the impediments to repeatability
(such as a committed delivery date, uncontrolled requirement changes and so
on) must be removed in order to allow the repetition of successful software
development practices [11].

Organizations at this level also have difficulty retaining talented individuals.
The management of human assets depends on the skills of the managers, who
often do not share a common vision and whose responsibilities are rarely
clarified (so recruiting and identifying training needs, for example, are
displaced to HR or other staff groups). So, when the organization fails in
managing and developing its workforce, career-oriented people start under-
performing, the loyalty declines and individuals carry on their skills’
development in order to pursue career opportunities elsewhere [12].

To solve this problem, managers have to take responsibility for the capability
and development of their subordinates.

Second - The Managed level

At this level, the workforce practices implemented focus on activities at the
unit level, such as staffing, coordinating commitments, providing resources,
managing performance, developing skills and making compensation decisions.
In fact, without a basic management control of daily work no organization-
wide practice can be successfully deployed. People should be enabled to repeat
successful practices: to enable this repeatability, mangers must get control of
commitments and baselines. Discipline has to be established [11].

Focusing at the unit level first also establishes a foundation in managing
performance that can be used for practices at higher levels.

At this level of maturity, managers are vigilant for problems that hinder
performance in their units, such as work overload, environmental distractions,
unclear performance objectives or feedback, lack of relevant knowledge or
skills, poor communication and low morale [12].

They accept personal responsibility so that workforce practices are
implemented effectively in their units. Their focus on managing individual
performance and coordinating individual contributions leads to effective unit
performances.

The organization which reaches this level of maturity is characterized by the
capability of units to meet commitments, capability achieved by ensuring that
people have the skills needed to perform their assigned work and that
performance is regularly discussed to identify actions that can improve it [12].

Managing a Software Company

50

Voluntary turnover starts to reduce, because people begin to see a more rational
work environment emerging in their unit and their motivation to stay is
enhanced [12].

 The key process areas at Level 2 focus on instilling basic discipline into
workforce activities. They are: Work Environment, Communications, Staffing,
Performance Management, Training, Compensation.

Third - The Defined level

At this level, the organization identifies its best practices and integrates them
into a common process, an organization-wide infrastructure. These practices
are also documented and their measures are defined and collected into a
repository. Best practices at this level allow to develop those competencies that
are critical enablers of business strategy [11].

The concept of workforce competencies implemented in the People CMM
differs from the concept of core competency popularized by Prahalad and
Hamel [39]. Core competency refers to an organization’s combination of
technology and production skills that create its products and services and
provide its competitive advantage in the marketplace. In P-CMM workforce
competencies reside one level of abstraction below an organization’s core
competency: they represents an integration of the knowledge, skills and process
abilities required to perform some of the business activities that contribute to an
organization’s core competency [12].

Fig. 3.5 Hierarchy of competency [12]

Thus, the organization-wide infrastructure is an element of the strategic
business plan, which identifies the actions that have to be taken for developing
the level of talent needed, and must evolve as business conditions and
technologies change.

Competency-based processes form a basis for defining workgroup roles and
operating processes: workgroups can apply these standard competency-based
processes rather than relying only on the interpersonal coordination skills
developed at maturity level 2.

Managing a Software Company

51

 The key process areas at Level 3 address issues surrounding the
identification of the organization's primary competencies and aligning its
people management activities with them. They are: Knowledge and Skills
Analysis, Workforce Planning, Competency Development, Career
Development, Competency-Based Practices, Participatory Culture.

Fourth - The Predictable level

Data describes the organization’s performance: through these data, the
processes can be managed quantitatively and the performance becomes much
more predictable [11].

There are at least three ways in which the framework of workforce
competencies enables the organization to more fully use the capabilities of its
workforce [12]:

 When competent people perform their assignments using proven
competency-based processes, management trusts the results they produce
and this trust enables the organization to preserve the results of performing
competency-based processes and develop them as organizational assets.
Then learning spreads rapidly and productivity rises.

 This trust also gives managers the confidence they need to empower
workgroups, to transfer responsibility and authority. The conditions required
for empowerment (competent people, effective processes, a participatory
environment) are established. Management senses less risk in empowering
workgroups and is willing to delegate increasingly greater levels of
authority for managing day-to-day operations and for performing some of
their own workforce practices. Managers at this level are able to turn their
attention to more strategic issues.

 The organization is able to integrate different competency-based processes
into a multidisciplinary process that better integrates the work of several
workforce competencies. Such multidisciplinary processes have proven to
accelerate business results.

The performance of competency-based processes is measured: these measures
are used to establish process performance baselines and to assess the need for
corrective action. The creation and use of these baselines and associated
measures is similar to the methods that underlie Six Sigma programs: they can
be used for planning, for targeting improvements and for predicting the
organization’s capacity for work.

The quantitative management capabilities implemented at this level provide
management with better input for strategic decisions, while encouraging
delegation of operational details to people close to the processes [12].

Managing a Software Company

52

 The key process areas at Level 4 focus on quantitatively managing
organizational growth in people management capabilities and in establishing
competency-based teams. They are: Mentoring, Team Building, Team-Based
Practices, Organizational Competency Management, Organizational,
Performance Alignment.

Fifth - The Optimizing level

The organization uses its profound, quantitative knowledge to make continuous
improvements in its processes: benefits and defects are pointed out and change
management becomes an ordinary business process to be performed in an
orderly way on a regular basis [11].

The organization must be vigilant to ensure that performance at all levels
remains aligned with organizational objectives: the process performance data
collected across the organization is evaluated to detect instances of
misalignment. Corrective actions are taken when necessary.

Everyone strives to improve his own capability and contributes to
improvements in the performance of the workgroup, the unit and the
organization [12].

 The key process areas at Level 5 cover the issues that address continuous
improvement of methods for developing competency, at both the organizational
and the individual level. They are: Personal Competency Development,
Coaching, Continuous Workforce Innovation

Themes

Four themes characterize the P-CMM [86]:

 Developing capabilities, which means that training needs are identified, core
competencies are developed and individuals establish their own professional
development.

 Building teams and culture, meaning that basic communication skills are
established and a certain culture based on team building and improvement
of team capabilities is developed.

 Motivating and managing performance, which means that basic performance
management is established and compensations practices are implemented.

 Shaping the workforce, that is establishing basic staffing practices,
developing plans for workforce development, set and track objectives for

Managing a Software Company

53

competencies in the workforce and look for sources of innovation.

Key process areas (KPA) refer to the particular tasks and activities which must
be completed in order for an organization to gain maturity and progress
towards optimizing their training initiatives. The following matrix identifies the
appropriate KPA necessary to address each of the four themes of the P-CMM,
and allow the organization to mature [86].

Maturity
Levels

THEME 1:

Developing
capabilities

THEME 2:

Building teams
and culture

THEME 3:

Motivating and
managing
performance

THEME 4:

Shaping the
workforce

5: Optimizing
coaching personal

competency development
continuous workforce innovation

4: Managed mentoring team building

organizational
performance

alignment

team-based
practices

organizational
competency
management

3: Defined

competency
development

knowledge and
skills analysis

participatory
culture

competency-
based practices

career
development

workforce
planning

2: Repeatable
training

communication
communication

compensation

performance
management

work
environment

staffing

1: Initial

Tab. 3.1 KPA to address for each P-CMM theme and maturity level [86]

Implementation

The implementation of the People Capability Maturity Model (P-CMM)
requires support and approval from the different areas of an organization. It
has to be interpreted and customized; no level can be skipped.

To interpret and implement the model in a organization, the following criteria,
related to each Key Process Area, may help [86]:

Managing a Software Company

54

 goals

 commitments to perform

 abilities to perform

 activities performed

 measurement and analysis

 verification of implementation.

3.2.3 A decentralized approach to people management: the
broker model

Centralized vs decentralized approaches

From the beginning, the management of human resources has been considered
from a top-down perspective. However, as Hellström et al. [24] underline, other
factors rather than personality traits and hierarchy are important to the
management of people: multiple role-taking, reflexivity, knowledge brokerage
and the affecting of initiative, for example. They suggest that decentralized
theories of the management of knowledge may be as good as the top-down
ones.

Sarvary [41] describes through a table the main characteristics of a centralized
versus decentralized approach to knowledge management:

Tab. 3.2 Centralized vs decentralized approach to knowledge management [24]

A decentralized approach to knowledge and communication is discussed by
Hedlund [23], as he judges preferable a combination of human resources and a
lateral, lower/middle communication in the company. He also points out that
this approach affects leadership and organizational strategy in a company, as
the manager is no longer a resource allocator but a catalyst and the strategy

Managing a Software Company

55

shifts from a semi-independent diversification to a knowledge-based
competition.

This approach leads to the conception of the firm as a distributed knowledge
system [61], i.e. the knowledge cannot be collected in only one mind, and to
the so-called cellular organization [33] where the responsibilities about the
organization of the work are disseminated through workers and workers own
what they create.

Prusak and Coehn [40] assume that the knowledge within an organization is
driven by the same forces that rule the markets for tangible goods. They
identify several actors belonging to this particular market of knowledge inside
the company: buyers, sellers, brokers; also there is a pricing system (informal
or pre-capitalist) and trust is needed as well as a sense of reciprocity and repute
.

So, for a decentralized approach to work, a certain kind of knowledge market
should be created and knowledge exchanges should be recognized and
promoted.

A case study: Knowledge brokerage at EST

Hellström et al. [24] propose a case study, “Knowledge brokerage at EST” that
describes a decentralized approach to the management of knowledge work (i.e.
how the skilled mental labour leads to commercial products).

EST is a Ericsson company that develops software applications for telephones.
One of its goals has been to climb the ISO 9000 and the Capability Maturity
Model, considered as an assurance of quality of the software program code.
This has led EST to look for a way to coordinate and leverage the company’s
competence and knowledge through projects and units: the chosen way was to
implement a database called Experience Factory.

The Experience Factory was a tool-centered database for collecting, storing,
analyzing and reusing collective experience of software engineers in order to
make cost estimations and fault predictions. However, the Experience Factory
presented the same problems of already existing databases.

A corridor study and workers interviews brought the team to believe that in the
factory approach two important elements of the knowledge exchange process
were missing:

 the context of the exchange, which needed to be personal and physical

 the situational nature of the exchange itself, as the exchange is a
consequence of spontaneous demands addressed within meetings that lead

Managing a Software Company

56

to informal ideas.

These elements hinted that knowledge seemed to be exchanged more
effectively when two parties where engaged in an activity that required
knowledge to solve some kind of problem. The exchange occurred in two
primary ways: as flashes and as learning situations.

As the Experience Factory approach was being implemented, some issues
arised:

 The users judged the database as too technology-based, administratively-
demanding and time consuming.

 The standardization and formalization of the approach was perceived to be
an end in itself and the measurements relied on parameters that seemed
distant from the core activity.

 The context for evaluating data and information was hard to tell or write.

 The information was found to have a very short life span in software
engineering.

 Data on workers’ competences became quickly obsolete.

 Knowledge without a recipient was harder to be shared.

 The bonus system didn’t encourage cooperation.

To solve these problems, a less formalized approach was suggested, as
spontaneous and informal face-to-face meetings were recognized as the most
important field for exchange: the Experience Engine was created. This “social
engine” aims to recycle the collective experience of the company.

To develop this semi-formalized broker model, an empirical study was carried
on. It emerged that a reinforcement was required, so that the process for
knowledge exchange would effectively take place: the figure of a knowledge
broker was introduced as a catalyst for connecting those in need for knowledge
and those who owned it. This role was supposed to be independent: the broker
is simply a connector for people to exchange knowledge.

The introduction of the broker had an impact on the number of exchanges
between experts and workers and brought a reduction of lead times in projects.
It was planned to establish an Intranet site to increase transparency and reduce
search costs.

As Hellström et al. [24] say, the successful evolution of a broker model rather
than a management system of command control mirrors the prevalence of
market over hierarchy. This constitutes a challenge in managing knowledge

Managing a Software Company

57

work, because an equilibrium between these two organizational rationalities
should be found.

The role of the broker is delicate and that’s why it should be “slightly
unofficial” but very visible at the same time. It’s important to define its scope,
but also what kind of knowledge is being brokered, what processes and
capabilities the broker may enable and what are the key resources required.

The broker model is not without restriction and constrains. As described before,
there is a trade-off between the efficiency of the internal knowledge market and
the organizational hierarchy.

Hellström et al. [24] conclude that the broker has to face different knowledges,
focuses and resources, summarized in the following table:

Tab. 3.3 Knowledges, focuses and resources a broker has to face [24]

There are three main aspects in the broker model. First, people who need a
specific piece of knowledge, “knowledge what”, should be connected to its
owner, a key resource called expert, in order to lead to a better understanding
of what is lacking.

Second, knowledge may concern how to do something, so the aim of the broker
would be to create the ability to perform certain tasks though a key resource, a
competent coworker.

Third, “knowledge why” may be exchanged too: the focus is on the culture and
market and the key resources are managers.

These three types of knowledge broking focuses, when executed, can lead the
decentralized knowledge management model to succeed.

3.2.4 The virtual incubator: a network of specialists

The software industry and its evolution

The software industry lies at the heart of the new knowledge-based economy
[35] because it provides tools and infrastructures for all the other industries.
This industry, despite the presence of some big players, is made up of small
companies and entrepreneurs.

Managing a Software Company

58

About ten years ago, Nowak and Grantham [35] predicted that this industry
was expected to evolve from the object-oriented programming paradigm to the
component-based software development paradigm where only generic
components would be created and purchased, so that business or domain
experts would modify them and create specific applications. The effect of this
specialization of work and of a greater focus on the areas of expertise would
lead to “dramatic increases in the quality, maintainability and flexibility of
software while reducing its cost, development time and complexity”.

Globalization was also expected to wrap around the software industry. Thanks
to the Internet growth, all producers would find an easy access to mass markets.
On the other hand, global scales of economy and brands would be possible to
be created by large companies. As Nowak and Grantham [35] underlined, the
globalization of the world economy would also lead the members of the
fragmented software industry to form strategic partnerships to fight the
constant demand for technological innovation and for shorter product
development cycles in order to remain competitive.

Requirements for software start-ups

In 1997 the California Trade and Commerce Agency sponsored a collection of
interviews with software industry executives, professional organizations and
regional industry councils in order to study the main requirements of software
start-ups. This study pointed out three critical needs: the access to low cost
infrastructure resources, the access to adequate management skills and
knowledge and the access to business networking resources for marketing.
What appeared to be lacking was knowledge about business planning,
competitive assessment, marketing, sales, financial planning and analysis,
human resources.

The critical human resources for a start-up to be successful were not provided
by either the private or the public sector. Nowak and Grantham [35] believed
that a cooperation between universities, privates and the public sector was
needed, so they proposed a new model to facilitate start-ups to succeed and
business network to form.

The virtual incubator

Basically the new model needs to provide a structure, the so-called virtual
incubator, to easily access information, experience and resources: the focus has
to be on wealth creation and the tool is a virtual “network of innovation” which
collects excellence in the technical and managerial fields. Key steps of the
model’s methodology and main characteristics of the virtual incubator are
shown in the tables.

Managing a Software Company

59

Tab. 3.4 Key steps of the virtual incubator methodology [35]

Tab. 3.5 Main characteristics of the virtual incubator [35]

As a conclusion, Nowak and Grantham [35] believed that in the future
successful models would include “small-scale networks of interlocked
specialists coming together on a temporary basis to approach a focused market
or software project”, underlining once again the importance of the human
element.

Software Quality

61

4 Software quality

4.1 What does it mean to manage software quality?

4.1.1 Managing software quality

Quality assurance

Software quality management is about defining the software development
processes to be used and the standard to be applied, but also is about checking
that the planned processes have been followed, the project outputs are
conformant with the standards.

While in the manufacturing industry the terms “quality assurance” and “quality
control” mean the definition of processes and standards that should lead to
high-quality products and their application, in the software industry “quality
assurance” means the verification and validation and the processes of checking
that quality procedures have been correctly applied and “quality control” is not
so used [54].

Thus, software quality assurance (SQA) is the monitoring of the software
engineering processes such as requirements definition, software design, coding,
source code control, code reviews, change management, configuration
management, testing, release management and product integration. SQA aims
to ensure the quality of these processes though checking their conformance to a
standard, such as ISO 9000, or model, as CMM.

Quality management: the team

The team in charge of quality management should be independent, not tied to
any other group (such as development groups): it’s the only way to ensure that
the goals of quality are not sacrificed because of budget or schedule problems.
However, in small companies this hardly happens.

Quality plan

According to Humphrey [27] a quality plan should be made. It should include:
product introduction (description of the product, the market and the quality
expectations), product plans (release dates, responsibilities, distribution plans),
process descriptions, quality goals, risks and risk management [54]. However,
there is much more to quality management than what’s included in the plan:

Software Quality

62

standards and processes are important, but a “quality culture” should be set up
too.

4.1.2 Defining quality: software quality factors

Quality is subjective

As hinted before, software quality is not exactly the same of quality in
manufacturing, because specifications are never complete and unambiguous,
requirements come from different stakeholders and they may not include
everything and also certain quality characteristics are difficult, where not
impossible, to measure [55].

It’s worth notice that these attributes cannot be all optimized at the same time:
the quality plan should define the most important attributes for the software
which is being developed.

Thus, the quality of a software product is often subjective, as it is determined
not only by the customer’s functional requirements, but also by several
desirable non-functional factors.

Software quality factors

The main non-functional factors that impact on software quality are the
following [81]:

 Understandability of all the design and user documentation.

 Completeness of the code: all the constituent parts should be present and all
the required input data available.

 Conciseness: since the memory capacity is limited, lines of code should be
kept to a minimum through avoiding redundant information or processing.

 Portability on different computer configurations, either different hardware
and operating systems.

 Consistency in notation, symbology and terminology.

 Maintainability: updates should be facilitated through a good documentation,
resources should be spared.

 Testability: evaluation of performance should be easy to make.

Software Quality

63

 Usability: user interface should be friendly.

 Reliability, as described previously, of the product to perform correctly over
a period of time.

 Efficiency in terms of use of resources such as memory, space and processor
utilization, network bandwidth, time.

 Security of data against unauthorized access or interferences.

A similar suggestion comes from Bohem et al., as they list 15 important
software quality attributes that overlap the previous ones [5]:

Tab. 4.1 Software quality attributes [55]

4.1.3 Measuring software quality

Measuring the software quality attributes is difficult

Measures can be approached differently. Qualitative and quantitative measures
may be needed. However, as Kaner [72] and Hoffman [71] point out, it’s
difficult to measure what we truly want to measure well.

As already said before, it’s difficult to make direct measurements of many of
the software quality attributes, because many of them are affected by subjective
factors. So, some internal characteristics of the software have to be accurately
measured and it has to be assumed that there is an understood, validated and
modelled relationship between them and the attributes that are needed to be
assessed. Examples are given in the following picture [58].

Software Quality

64

Fig. 4.1 Relationships between internal and external attributes [58]

Measurements and metrics

Software measurement involves linking a numeric value or a profile to an
attribute of a software component, system or process. The quality of the
software and the effectiveness of the related processes can be evaluated through
comparing these values to each other and to the chosen standards. Possible
improvements are also highlighted.

Software metrics are the characteristics of a software system, system
documentation or development process that can be objectively measured. They
may be control metrics, which support the process management, or predictor
metrics, which help to predict some characteristics of the software.

These metrics influence the management decision making, even if they won’t
necessarily convince the decision makers.

Number of faults

A common metric used is the number of faults encountered in the software: the
more this number is little, the higher the quality is supposed to be. Still, this
number should be put in the right context, meaning that aspects like size and
complexity of the software, severity of the discovered faults and the incidence
of users affected by a certain fault should be considered.

Also, another difficulty comes from software being a human creation: software
programmers and testers may be tempted to trick the measurements.

Software Quality

65

Measurable attributes

The software quality factors as previously described cannot be measured
because of their vague definitions. So, measurable attributes related to the
software quality factors must be identified in order to quantify the non-
functional requirements.

Examples of relevant questions to be asked for each software quality factor are
reported [81]:

Software quality factor Relevant questions for measurement

Understandability Are variable names descriptive of the physical or functional
property represented? Do uniquely recognizable functions
contain adequate comments so that their purpose is clear? Are
deviations from forward logical flow adequately commented?
Are all elements of an array functionally related?

Completeness Are all necessary components available? Does any process fail
for lack of resources or programming? Are all potential
pathways through the code accounted for, including proper error
handling?

Conciseness Is all code reachable? Is any code redundant? How many
statements within loops could be placed outside the loop, thus
reducing computation time? Are branch decisions too complex?

Portability Does the program depend upon system or library routines
unique to a particular installation? Have machine-dependent
statements been flagged and commented? Has dependency on
internal bit representation of alphanumeric or special characters
been avoided? How much effort would be required to transfer
the program from one hardware/software system or environment
to another?

Consistency Is one variable name used to represent different logical or
physical entities in the program? Does the program contain only
one representation for any given physical or mathematical
constant? Are functionally similar arithmetic expressions
similarly constructed? Is a consistent scheme used for
indentation, nomenclature, the color palette, fonts and other
visual elements?

Maintainability Has some memory capacity been reserved for future expansion?
Is the design cohesive—i.e., does each module have distinct,
recognizable functionality? Does the software allow for a
change in data structures (object-oriented designs are more
likely to allow for this)? If the code is procedure-based (rather
than object-oriented), is a change likely to require restructuring
the main program, or just a module?

Testability Are complex structures employed in the code? Does the detailed
design contain clear pseudo-code? Is the pseudo-code at a higher

Software Quality

66

level of abstraction than the code? If tasking is used in
concurrent designs, are schemes available for providing
adequate test cases?

Usability Is a GUI used? Is there adequate on-line help? Is a user manual
provided? Are meaningful error messages provided? Is the user
interface intuitive (self-explanatory/self-documenting)? Is it
easy to perform simple operations? Is it feasible to perform
complex operations? Does the software give sensible error
messages? Do widgets behave as expected? Is the software well
documented? Is the user interface responsive or too slow? Also,
the availability of (free or paid) support may factor into the
usability of the software.

Reliability Are loop indexes range-tested? Is input data checked for range
errors? Is divide-by-zero avoided? Is exception handling
provided? It is the probability that the software performs its
intended functions correctly in a specified period of time under
stated operation conditions, but there could also be a problem
with the requirement document...

Efficiency Have functions been optimized for speed? Have repeatedly used
blocks of code been formed into subroutines? Has the program
been checked for memory leaks or overflow errors?

Security Does the software protect itself and its data against unauthorized
access and use? Does it allow its operator to enforce security
policies? Are security mechanisms appropriate, adequate and
correctly implemented? Can the software withstand attacks that
can be anticipated in its intended environment?

Tab. 4.2 Examples of questions for the measurement of software quality factors [81]

All the collected data should always be maintained, because it’s an
organizational resource that allows significant comparisons, but, most
important, identify those relationships between internal characteristics and
quality attributes.

Basili and Weiss [2] propose a data collection methodology that consists of six
steps. Feedback and iteration may occur. The six steps are:

1. Establish the goal of the data collection

2. Develop a list of questions of interest

3. Establish data categories

4. Design and test data collection forms

5. Collect and validate data

6. Analyze data.

Software Quality

67

4.2 Different approaches to quality
Even though the term quality seems self-explanatory, quality can be
approached in several different ways: according to standard definitions, user’s
perception, customer satisfaction, software lifecycle, etc.

4.2.1 Software standards

Product and process standards

The importance of software standards in the software quality management
relies on three reasons: standards capture knowledge and best practices, provide
a framework for defining quality and assist continuity within the organization.

There are two main types of standard: product and process standards. An
example from Sommerville [56] is:

Tab. 4.3 Product and process standards [56]

The quality assurance team should collect these standards, which can derive
from national and international standards, in a handbook. To encourage the use
of standards, managers should ensure that software engineers are involved in
the selection of product standards, that the standards are updated and reflect the
last technologies and that software tools to support standards are provided [56].

Reviews and inspections

The activities of review and inspect aim to check the quality of the software
product, so the software and its documentation are examined to find any error,
omission or misalignment to standards. The purpose, of course, is to improve
the software quality.

The review is made up of three steps [57]: the preparatory activities, such as
review planning and preparation, the review meeting itself and the post-review

Software Quality

68

activities that involve fixing software bugs, rewriting documents, make
adjustments in order to respect the standards.

The inspections are “peer reviews” where the team members look for bugs in
the software developed. Test cases are an effective way to inspect. Also a
checklist of the most common errors should be used.

However, reviews and inspections can take place effectively only whether there
is a supportive culture that doesn’t blame the individual when errors are
discovered.

ISO 9001 – processes and quality

The ISO 9000 standards define quality as the conformity to requirements
specification. ISO 9001 is a set of standards that can be used by organizations
that design, develop and maintain products such as software. It identifies some
general quality principles, describes quality processes in general and lists the
organizational standards and procedures to define. To be ISO 9001 conformant,
an organization has to document the relationships between its processes and the
core processes identified during the 2000 revision, reported in the following
picture [57].

Fig. 4.2 ISO 9001 core processes [56]

The ISO 9001 standard pushes the organization to document its processes
through a quality manual. This kind of handbook is used to develop those
quality plans that support the quality management.

Software Quality

69

ISO 9126 – product quality

ISO/IEC 9126 is an international standard for the evaluation of software which
focuses on the so-called product quality, the characteristic of the product
determined by the presence of some measurable product attributes [16].

The standard is divided into four parts [79] which addresses, respectively, the
following subjects:

 quality model

 external metrics, which are measurable within the running of the software

 internal metrics (also called static measures), which do not depend on
software execution

 quality in use metrics, which are available when the product is used in real
conditions.

Ideally, the internal quality determines the external quality and external quality
determines quality in use.

To evaluate software, characteristics that are relevant for quality need to be
selected; they depend on the context, the type of user (end user or a person
maintaining or porting the software, for example), etc.

The ISO/IEC 9126 software quality model identifies six main quality
characteristics: functionality, reliability, usability, efficiency, maintainability
and portability. These characteristics are broken down into sub-characteristics
and each sub-characteristic is further divided into attributes. Attributes are not
defined in the standard, as they vary between different software products. The
following table collects the six characteristics, several sub-characteristics and
their definitions [4][85][79].

Suitability Appropriateness (to
specification) of the
functions of the software.

Accuracy
Correctness of the
functions.

Functionality Functionality is
essential: without it,
none of the other
characteristics can be
accomplished.
It tells whether a set of
functions and their
specified properties,
which satisfy stated or
implied needs, exist.

Interoperability

Ability of a software
component to interact
with other components or
systems.

Software Quality

70

Compliance
Conformity to certain
industry or government
laws and guidelines.

Security
Regulation of the
authorizations to access
the software.

Maturity
Frequency of failure of
the software.

Fault tolerance

Ability of software to
withstand (and recover)
from component or
environmental failure.

Reliability It defines the capability
of the system to work
and maintain a certain
level of performance
under defined
conditions for a defined
period of time.

Recoverability

Ability to bring back a
failed system to full
operation, including data
and network connections.

Understandability

Determines the ease of
which the systems
functions can be
understood by the user

Learnability
Learning effort for
different users, i.e.
novice, expert, casual etc.

Usability It refers to the ease of
use for a given function.

Operability

Ability of the software to
be easily operated by a
given user in a given
environment.

Time behavior
Response times for a
given transaction rate.

Efficiency This characteristic is
concerned with the
resources used when
providing the required
functionality and level
of performance.

Resource behavior
Resources used, i.e.
memory, CPU, disk and
network usage.

Analyzability
Ability to identify the
root causing a failure
within the software.

Changeability
Amount of effort to
change a system.

Stability Sensitivity to change.

Maintainability It’s the ability to
identify and fix a fault
within a software
component or to make
specified changes. It is
also referred as
supportability.

Testability
Effort needed to verify
(test) a system change.

Software Quality

71

Adaptability

Ability of the system to
change to new
specifications or
operating environments.

Installability
Effort required to install
the software.

Conformance /
Co-existence

Conformity to a different
operating system,
application server, etc.

Portability This characteristic refers
to how well the software
can stand changes in its
environment or its
requirements.

Replaceability

How easy is it to
exchange a given
software component
within a specified
environment.

Tab. 4.4 ISO/IEC 9126 quality characteristics, subcharacteristics and ther definitions

4.2.2 Customer satisfaction

Software specification vs customer satisfaction

According to Denning [13], the currently employed methodologies for software
quality are based on the idea that quality is strongly related to software
specification and can be achieved through a four stages process:

1. Clearly define the requirements.

2. Construct a formal specification based on the requirements.

3. Derive programs from the specification.

4. Demonstrate that the implement programs meet the specification.

Guidelines are readability, modularity, modifiability, style, adequacy of
comments and good tests.

However, software quality can be analyzed also from the point of view of
customer’s satisfaction: as Denning [13] points out, “by making concerns of
customer satisfactions central among the criteria for judging software, new
actions will appear for making reliable and dependable software […]. The
greater the level of satisfaction, the more likely the customer is to say the
software is good quality and is dependable”.

Software Quality

72

Levels of satisfaction

As a consequence of this approach, the software design never ends until the
customer declares his satisfaction with the software delivered. Denning
distinguishes three levels of customer satisfaction [13]:

 All basic promises are fulfilled.

 No negative consequences are produced, what the customer actually wants
(and not only what he has asked for) is delivered.

 The customer is delighted, what is produced is beyond his expectations.

Denning [13] observes that there might be a difference between the language of
the software designer and the language of the customer, so specifications may
not reflect exactly what happens in business processes; specifications should be
used to clarify the interactions between subsystems and not between systems
and users.

He also lists several negative consequences that can arise: collective
phenomena (i.e. when a large number of programs interact), computer
hardware failures, mistakes by the users, unforeseen situations that arise,
changing of users’ expectations. It’s a duty of a good software designer to
prevent the system from undergoing these problems through including useful
functions even if not explicitly required and continuing to work with the
customer even after the software installation.

About delight, Denning [13] points out that it’s ephemeral when based only on
the software: a relationship between customer and performer is what actually
allows delight to arise. Program correctness is essential, but quality and
dependability of the software are deeply related to customer satisfaction and
this requires the software developer to be available and to understand his
customer.

4.2.3 User’s perception

Perceived quality and quality in use

Quality is strongly related to the perception of the user: Garvin [16] defines the
user perceived quality as the combination of product attributes that provide
satisfaction to a specific user. Of course it’s a subjective judgment, but
products have quality only with relation to their intended purpose [4].

Both Garvin and Bevan emphasize quality being related to particular needs in a
particular situation: that’s how quality in use is defined. As the quality of a

Software Quality

73

product is strictly linked to its purpose, quality in use can be defined as “the
effectiveness, efficiency and satisfaction with which specified users can
achieve specified goals in specified environments”[4]. It’s worth notice that,
according to this definition of quality, the requirements are no longer specified
in terms of attributes but as performances.

User centred design

Since the user’s perspective is so important, Bevan [4] suggests a way to
achieve quality through considering this perspective: he refers to the ISO 13407
standard. ISO 13407 provides guidance on achieving quality in use through
user centred design activities, i.e. activities aim to enhance effectiveness and
efficiency in working conditions.

Within each stage of the lifecycle of a project, four activities need to be
executed:

1. The context of use has to be understood and specified in terms of
characteristics of the intended users, tasks the users are to perform and
environment in which the users are to use the product.

2. The user and the organizational requirements have to be specified: explicit
statements about usability of the human-computer interface and of the
quality in use have to be provided.

3. Design solutions have to be produced, considering the state of the art and
the experience and knowledge of the participants.

4. Design has to be evaluated against requirements, so that feedback is
provided, user and organizational objectives are assessed to have been
achieved or not and the long-term use of the product can be monitored.

The context of use

Quality in use is measured in order to ensure that the software achieves its
goals and meets needs in a certain context. The context of use, which might
already exist or can be an intended context, is made up of users, tasks,
equipment (hardware, software and materials) and the social and physical
environment. Measures of quality in use for the intended context are:

 Effectiveness: user’s goals are related to the accuracy and completeness with
which they can be achieved

 Efficiency: the level of effectiveness achieved is related to the consume of

Software Quality

74

resources (such as time, effort, materials, money).

 Satisfaction: the comfort and acceptability of the use.

Fig. 4.3 The context of use and quality in use measures [4]

The MUSiC methods: a tool to assess the context of use

Valuable tools to measure effectiveness and efficiency of the system in use are
provided by the MUSiC methods. MUSiC stands for Measuring the Usability
of Systems in Context. These methods evaluate the extent to which specific
task goals are achieved and the time required for this as well as the time spent
unproductively because of some problems and diagnostic data about these
problems.

Effectiveness is measured as a percentage of the product of the quantity of the
task the user completes and the quality of the goals the user achieves.

Efficiency is measured as the ratio of effectiveness to the expenditure of
resources (e.g. time required to execute a task).

Satisfaction can also be measured. Bevan [4] says that satisfaction is composed
of comfort, the overall emotional response to the use of the system, and

Software Quality

75

acceptability, the overall attitude of the user towards the system.

Satisfaction can be measured by attitude rating scales as SUMI (Software
Usability Measurement Inventory, is a 50-item standardized questionnaire from
the MUSiC project), but can also be assessed indirectly through analyzing
positive and negative comments during use, absenteeism, health problem
reports, etc.

4.2.4 Software lifecycle and software processes

The quality of the process affects the quality of the product

An assumption in software quality management, derived from manufacturing,
is that the quality of software (the product) is directly related to the quality of
the software development (the processes). However, the relationship between
product quality and process quality is more complex than in manufacturing: as
Sommerville [55] says, the influence of individual skills and experience here is
significant.

Quality of design and quality of conformance

Software quality concerns two main aspects:

 Quality of design, that concerns implementation, i.e. how well the software
is designed; standards guide the developer in software engineering.

For what concerns the quality of design, the source code quality is affected
by readability, ease of maintenance, testing, debugging, modification and
portability, low complexity, low resource consumption (memory, CPU),
number of compilation warnings, robust input validation and error handling.

 Quality of conformance, that means how well the software conforms to the
design, how valid the requirements are in creating a worthwhile product;
requirements (even the implicit ones) are the foundations for quality to be
measured.

The quality of the software product, intended as conformance to
requirements and specification, is commonly related to reliability. Other
characteristics that affect the software product quality are scalability,
correctness, absence of bugs, fault-tolerance, extensibility, maintainability
and documentation [79].

Software reliability is defined as "the probability of failure-free operation of a

Software Quality

76

computer program in a specified environment for a specified time" [34]. The
more critical the application of the software to economic and production
processes, the more important is to assess the software's reliability.

Software reliability is objective and can be estimated through measured criteria
called software metrics. The main problem in measuring it, tough, is the
difficulty of determining exactly in advance how the software is intended to
operate: most modern software perform a work which a human could never
perform and that may be difficult to understand. Moreover, software lack of
qualities such as adaptability, general-purpose knowledge, a sense of
conceptual and functional context and common sense, so the expected outcome
and the actual outcome may differ because no software can provide those
qualities [81].

Software reliability can be improved at different stages of a program's
development: requirements, design, programming, build and deployment,
testing and runtime evaluation.

Requirements Defining a program’s desired behavior (i.e. identifying all the
requirements) in advance is attractive but impossible. A formalized
approach to the process of defining requirements may be helpful.

Design Design aims to specify how the program should do what is meant to do.
Usually the problem is split in sub-problems, typically concerning
architecture, overall program concept and structure, coding. Constraints
and a program template are provided. Design should be independent of the
chosen implementation language.

Programming The chosen language should enable a better understanding of the
program’s overall structure and functionality and lead to a reduction in the
number of errors.

Software build
and deployment

The software build is the translation operated by a compiler from source
code to a form that can be executed by a computer: it’s a critical phase for
software quality because if the generated files are incorrect the software
will fail.

The software deployment is the transfer of the software to the runtime area
(i.e. the application server) and it’s also critical because it involves the
definition of some technical parameters, which need to be correctly set.

Testing When done correctly, testing can increase the overall quality of
conformance. Tests are: unit testing, functional testing, regression testing,
performance testing, failover testing, usability testing.

Runtime Performance and interoperability with other code or particular hardware
configurations are evaluated.

Tab. 4.5 Software reliability can be improved at each stage of software development

Software Quality

77

Software lifecycle: performances and attributes

Since requirements are linked to performances, quality can be analyzed from
the point of view of the software lifecycle, i.e. where performances can be
detected [4].

Fig. 4.4 Quality in terms of performances within the software lifecycle [4]

The picture shows the true connection between internal software attributes and
quality in use: quality in use is the main goal, software product quality – that is
described by software attributes – is the way of achieving it.

The users’ needs are translated into a set of requirements for the behavior of the
software when in use: to meet these requirements, some software attributes
must be present.

The internal quality, i.e. whether the internal requirements have been met, can
be checked through internal metrics. On the other hand, the external quality can
be assessed only for a complete, working system, so the expected environment
and conditions of use have to be emulated. The assessment of external quality
can be used in order to provide a feedback, supporting a continual improvement
process.

Software Quality

78

The relationship between internal and external measures and attributes and the
quality in use is described in the following picture [4]:

Fig. 4.5 The relationship between quality in use and interna and external measures and
attributes [4]

As Bevan [4] points out, it’s important that internal software quality attributes
are directly related to external quality requirements, so that the quality of the
software product can be assessed against the quality needs for the software in
use.

Quality can be measured during the development process: this may be part of a
quality plan. The picture describes the quality plan according to ISO 9000 [4].

Fig. 4.6 ISO 9000 Quality plan [4]

Software Quality

79

4.3 How do software people affect software quality?

4.3.1 Software team skills on software product quality

Quality of people is a driver for product quality

As Vinod et al. [63] say, one of the first actions a software development project
manager should undertake for his project to be successful is to have skilled and
experienced team members.

Even if the relationship between team skills and software quality may be
intuitive, there are very few software engineering models based on it. In fact,
the primary focus of most software quality models is on processes.

It’s certainly true that the quality of the software product depends on the quality
of its development process, but skills and experiences of the software
development team members should be considered as well a driving factor in
software product quality. Authors like Bach [1] go further, insisting that the
quality of people is not just a driver, but that quality is primary driven by that;
however, there is little empirical evidence of that.

Vinod et al. [63] try to quantify the relationship between team skills and
software quality through a measuring the collective skill of the team and the
quality of the software product: the degree of correlation is analyzed and
inferences are made.

Evaluating collective skill

The measurement of the team’s collective skills is based on the assumption that
a greater skilled team will produce higher quality products. The skills analyzed
belong to two main areas [63]:

 product development skills: languages, programming, hardware experience

 business development skills: project management skills, motivation,
leadership, communication, coordination.

The evaluation of the collective skill of the team is based on the individual
team members’ skills assessments; the chosen approach for the individual
assessment is NASA’s CMS, competency management system, a measurement
framework to quantify knowledge, skills and abilities of the workforce.

The CMS’s assessment relies on a 4-tier ordinal scale which presents for each
tier a set of criteria that the employee must meet in order to be assessed at that

Software Quality

80

tier. Once the individual assessment is done, the whole team’s skill and
experience can be measured and related to life cycle phases.

The measures chosen to represent a team’s skill and experience in Vinod et al.
[63]’s research are presented in the table:

Tab. 4.6 Example of measures for team's skill and experience [63]

Level 1 and 2 depict marginally skilled developers, level 3 and 4 the highly
skilled ones.

Deepening suitability – an example

In Vinod et al. [63]’s study, the software product quality is described referring
to ISO/IEC 9126, the international standard for software quality. Six
characteristics of the delivered software are covered within the standard:
functionality, efficiency, reliability, usability, maintainability and portability.
Vinod et al. [63] focus on suitability, a sub-characteristic of functionality that
describes “the adequacy of the software product in terms of both its coverage of
user needs and its implementation correctness”. The metrics used to evaluate
the quality in terms of suitability are presented in the table.

Tab. 4.7 Example of metrics used to evaluate quality in terms of suitability [63]

Skills and quality measures are recorded from 36 actual software development
projects where the time frame is 3-4 months, the team size ranges from 1 to 4
developers and the development life cycle follows the waterfall model. Results
are analyzed and a correlation coefficient is calculated.

The relationship between the development teams skill levels and the software
product quality metrics is described by the following table. Incr is the
annotation for a direct relationship, Decr for an inverse relationship.

Software Quality

81

Tab. 4.8 Relationship between teams skill levels and software quality metrics [63]

More specifically, the relationship between each development skill (both
product and business skills) and each metric is described through correlation
coefficients in the following table:

Tab. 4.9 Correlation coefficients for skills and metrics [63]

Vinod et al. [63]’s study, therefore, provides empirical evidence of the effect of
development team skill on the quality of the software product. However, future
research is required to validate these results on a wider range of projects, for
different team sizes and complexity.

4.3.2 Software quality and the CMM

The impact of CMM on software engineering

The Capability Maturity Model intends to be a set of effective-proven practices
for incremental improvements.

The CMM for Software (SW-CMM) aims to help software organizations
progress along an evolutionary path from ad hoc to mature and disciplined
software processes.

The following tables show for each CMM level the major characteristics of
processes at that level and the key process areas that indicate the areas an
organization should focus on to improve its software processes [25].

Software Quality

82

Tab. 4.10 Major characteristics of each CMM level [25]

Tab. 4.11 Areas of focus to improve software processes for each CMM level [25]

To study the impact of CMM on software engineering, Herbsleb and his
colleagues [25] referred to the data collected by the SEI, Software Engineering
Institute, through the Software Process Assessment (SPA) method. These data
include the maturity level of the organization, the identified process strengths

Software Quality

83

and weaknesses, the organizational scope of the assessment and the date the
SPA was conducted.

In Herbsleb [25]’s study, data regarding organizations that have undergone
multiple SPAs were used to answer to the following questions:

 How long does it take for an organization to move up a maturity level?

 The elapsed time between assessments in those cases where organizations
moved up in level on a subsequent assessment was considered.

 What are the process challenges that distinguish those who move from the
initial to the repeatable level and those who remain at the initial level?

The weakness findings were categorized according to the key process areas
they served and the weaknesses were compared between those organizations
that improved their maturity levels and those that did not.

Improvements

Herbsleb et al. [25] report that several case studies they analyzed show how the
CMM-based software process improvement (SPI) leads to significant
organizational performance to get much better. The parameters that prove this
point are an increased productivity, a reduction of rework and improvements in
cycle time.

However, the case studies are prone to some limitations: they may be just
“lucky stories”, improvements in performance may merely be a coincidence
and not a consequence of the CMM-based SPI implementation or may be the
result of the organization trading off other performances. Herbsleb et al. [25]
undertake a survey to sort things out.

Furthermore, Herbsleb et al. [25] note that “all the reports on the benefits of
process maturity come from comparisons among organizations at the initial,
repeatable and defined level or from observations of organizations over time as
they move through these three stages”. There is relatively little experience
about the higher maturity levels.

Herbsleb et al. [25] also underline the considerable amount of time and effort
required for improvements to be put into place and the necessity for
organizations to undergo a major shift in culture and attitudes.

Criticisms to CMM

Several criticisms have been raised to CMM: it is claimed to be

Software Quality

84

counterproductive, incomplete, flawed and detrimental; it is said to lead
organizations to become rigid and bureaucratic and to cause them to neglect
important non-CMM issues.

In their survey Herbsleb and his colleagues [25] asked about whether any of
these problems had actually occurred: from 84 to 96% of the respondents
disagreed that they had experienced the problem.

Another criticism concerns organizations becoming risk-adverse for fear of
losing their maturity rating. However, if risky project are no longer typically
pursued, the organization is more free to add high-risk projects to its portfolio.
Besides, data from the survey reports that people from higher maturity
organizations see their manager as more – and not less – willing to take risks.

Three main questions

Herbsleb and his colleagues [25] identify three questions of practical concern:

1. Process maturity: how long does it take, how much does it cost and which
benefits does it bring?

Herbsleb et al. [25] estimated the median time between assessment, where
organizations have moved up on a subsequent level, to be about two years.

They also discovered that the cost and time for a CMM-based SPI program
often exceeded the expectations: event if it has significant business benefits,
CMM-based SPI is not cheap nor quick.

2. What are the factors that influence the CMM-based SPI success or failure?

Herbsleb and his colleagues [25] confront organizations as they are assessed
at level 1 and at the following assessment they are found having
successfully achieved level 2 or still remain at level 1. The largest
differences between those organizations who have moved up and those who
don’t are in the areas of planning and tracking software projects, suggesting
that these areas are either the most neglected or are the most difficult types
of practices to put in place (or both).

What unsuccessful organizations respond to describe their status is that the
SPI “had been overcome by events and crises”; they also agree on having
suffered time and resources limitations. They also claim to need more
guidance about how to improve what needs to be improved.

Herbsleb et al. [25] list those characteristics that are related to successful
and unsuccessful SPI efforts:

Software Quality

85

Highly successful efforts Less successful efforts

Senior management actively monitors
SPI progress

Clearly stated and understood SPI
goals and responsibilities

Adequate time and resources
dedicated to process improvement

Software engineering process group
(SEPG) staffed by highly respected
people

Technical staff is involved in
improvement

Planning and tracking projects

High levels of “organizational
politics”

Turf guarding

Cynicism from previous unsuccessful
improvement experiences

Belief that SPI “gets in the way of real
work”

Need more guidance on how to
improve, not just what to improve.

Tab. 4.12 Characteristics related to successful and unsuccessful SPI efforts

In addition to the successful characteristics listed before, Herbsleb et al. [25]
collect several lessons learned:

 The SPI effort requires visible support and commitment from senior
management. Middle management and grassroots support and
involvement is also extremely important.

 Obtaining observable results is important to keep the effort visible and to
motivate and sustain interest.

 The process improvement effort must be planned, managed and given
sufficient dedicated resources.

 The SPI effort must serve business interests and must be coordinated
with other parts of the business in order to have foundation for the
required cultural change.

3. Can the CMM be understood and applied to every software organization?

The data collected by Herbsleb and his colleagues [25] point out that there
is no systematic difference in success rate due to organizational size.
However they suggest that for small organizations and commercial
companies CMM may be more difficult to apply.

Research Methods

87

5 Research Methods

5.1 Research design

5.1.1 Exploratory vs conclusive research

Research can be divided into two main categories: exploratory and conclusive,
the latter being divided into descriptive and causal [64]. These types of research
differ on their purpose: exploratory research aims to find information in order
to better define a problem, descriptive research, as the name suggest, focuses
on giving a better picture of an already-known problem, while causal research
test hypotheses so that cause-effect relationships can be determined.

Ghauri et al. [17] relate research design, the overall plan for connecting the
conceptual research problems to the pertinent empirical research [84], to the
problem structure. For a structured problem a conclusive research is
convenient. However, an exploratory research is the best choice when it comes
to a not-so-clearly understood or structured problem, as it is “in the preliminary
stages of a research project when the levels of uncertainty and of general
ignorance of the subject in question are at their highest” [84]: exploratory
research, in fact, is characterized by a very high level of flexibility, which
“arises from a desire to learn from the experience of the investigation and from
the need to avoid being blinkered by any preconceived notions” [64].

5.1.2 Qualitative vs quantitative research

Another relevant aspect when it comes to research design is whether the
research should be qualitative or quantitative. A quantitative research involves
some kind of measurement and the volume of the collected data should allow
statistical analysis, while a qualitative research aims to identify and understand
underlying motivations, attitudes and opinions, and doesn’t require a high
number of respondents.

The choice does not have to exclude one or the other, but what is to be
investigated and how should drive the decision: “how many” and “what”
indicate that a more quantitative approach should be chosen, while if “why”
and “how” are involved in the aim of the research, the research itself should be
essentially qualitative [84].

Research Methods

88

5.1.3 The best fit: qualitative exploratory research

The literature provides very little information on the way software companies
perceive the relationship between the way they manage their people and the
quality of their products.

As “the appropriate research design needs to be effective in producing the
required answers within the constraints placed on the researcher” [84], for this
project a qualitative, exploratory research appears to be the best fit.

Research Methods

89

5.2 Data collection

5.2.1 Qualitative vs quantitative methods

Quantitative methods

Quantitative methods for collecting data are surveys, questionnaires,
experiments: they are used to collect quantitative information such as opinions,
facts, attitudes, and they are usually structured and standardized. Structure
reduces bias, while standardization increases generalizability, reliability, and
validity.

Vidich and Shapiro [62] observe that "without the survey data, the observer
could only make reasonable guesses about his area of ignorance in the effort to
reduce bias."

However, often “the survey approach provides only a ‘snapshot’ of the
situation at a certain point in time, yielding little information on the underlying
meaning of the data. Moreover, some variables of interest to a researcher may
not be measurable by this method” [15].

Qualitative methods

Qualitative methods are interviews, focus groups, ethnography: they are used to
collect qualitative information such as thoughts, interpretations, meaning, and
they are usually less structured and standardized than the quantitative ones.

Yin [67] suggests that case studies are appropriate if the objective of the
research is to explore a previously un-researched subject.

However, as Gable [15] objects, “the conclusions drawn may be specific to the
particular organizations studied and may not be generalizable”.

5.2.2 Multiple methods

An integration is possible

Integrating qualitative and quantitative research methods is possible [15] [31]
[29]. Examples come from several very different fields: Gable [15] provides an
example of how it’s possible to integrate case study and survey research
methods in information systems, Hines [26] explains how cross-cultural
research can benefit from the combination of survey research and qualitative

Research Methods

90

techniques derived from cognitive science, Plano Clark [38] describes the
growing acceptance of mixed methods research in social and health sciences’
researches in the U.S., Borkan [6] enthusiastically pulls for their use in primary
care, and so on.

How these methods are integrated: Bryman’s study

Bryman [8] provides a very precise analysis of how quantitative and qualitative
research are actually integrated, as his work is based on the analysis of 232
published journal articles (belonging to five different fields: sociology, social
psychology, human, social and cultural geography, management and
organizational behaviour, and media and cultural studies) where these methods
of research are combined.

Several typologies of mixed methods are available, according to several
aspects:

 Quantitative and qualitative data may be collected simultaneously or
sequentially.

 Quantitative and qualitative data may have different priority.

 Why a mixed method is chosen, what function it aims to support.

 At what stage of the research process the multi-strategy research takes
place: problem statement, data collection, data analysis, discussion.

 Which sources of data are available.

In his study, Bryman [8] considers articles where the multi-strategy research
takes place within data collection and analysis and the employed research
methods are essentially survey and qualitative interview.

The major finding is that one combination of research methods predominates in
the data set: data are collected by either structured interview or questionnaire
on the quantitative side along with either a semi-structured or unstructured
interview on the qualitative side.

Benefits of integrated research

Kaplan and Duchon [31] say that “through the use of multiple methods the
robustness of results can be increased, as findings can be validated through
different kinds and sources of data”.

Research Methods

91

In Bryman [8]’s study particular attention within the analysis is given to the
rationales proffered for combining quantitative and qualitative research. At the
beginning Bryman refers to Greene et al. [19], as they proposed five
justifications for combined research:

 Triangulation: convergence of results.

 Complementarity: enhancement and clarification of the results from one
method with the results from another.

 Development: use of the results from one method to help develop the other

 Initiation: discovery of contradictions or new perspectives

 Expansion: extension of the range of enquiry by using different methods.

Afterwards, Byman [8] provides a more detailed scheme that gives a better
understanding of the reasons that drive the choice of integration in real cases:

 Triangulation.

 Offset: weaknesses are compensated, strengths are enhanced.

 Completeness: a deeper investigation of the area of enquiry is possible.

 Process: quantitative research gives numbers, qualitative research gives the
meaning.

 Different research questions can be answered.

 Explanation: one is used to help explain findings generated by the other.

 Unexpected results of one may be better understood by employing the other.

 Instrument development: qualitative research is employed to develop
questionnaire and scale items.

 Sampling: one approach is used to facilitate the sampling of respondents or
cases.

 Credibility: the integrity of findings is enhanced.

 Context: qualitative research provides contextual understanding of
generalizable findings of a survey.

 Illustration: qualitative data illustrate quantitative findings.

 Utility.

Research Methods

92

 Confirm and discover: qualitative data can be used to generate hypotheses
and quantitative data can be used to test them.

 Diversity of views.

 Enhancement of findings.

5.2.3 The best fit: an integrated approach

Data for this project are collected through an integrated approach, where
questionnaire and interview are the chosen tools. Benefits of this approach are:

 Complementarity of the methods, as weaknesses are compensated, strengths
are enhanced and meaning is given to numbers

 Completeness of the investigation, as different perspective can be
undertaken and different research questions can be answered.

Even though a typically quantitative method such as the survey is used, still the
research remains qualitative: the purpose is to collect information to create
pictures of what companies actually do, not to draw statistics out of these data.

Research Methods

93

5.3 Analysis and results

5.3.1 Analysis of the data collected through the questionnaire

Since the amount of data collected through the questionnaire is not large
enough to draw up generalizable statistics (with meaningful graphics, trends,
etc.), results are reported as dossiers: for each company a form, a file, is
presented.

All the data collected are reported in Chapter 7.

5.3.2 Analysis of the data collected through the interviews

The interviews are recorded and the main points are noted down during the
meetings.

Afterwards the interviews are entirely transcribed in order to have a detailed
description of what was discussed. As the form of the interviews is more like a
conversation rather than a strictly “Question + Answer” form, it has been
chosen not to include the transcriptions in the thesis.

Instead, the data collected are reviewed according to the logic underlying the
questionnaire (i.e. the three main themes of knowledge management, people
and process management and quality management) and are presented in
Chapter 7.

Research Methods

94

5.4 Closing remarks
This chapter has presented the research strategy underlying this work, which
can be formalized as depicted in the following figure:

Fig. 5.1 Research process

Questionnaire and Interviews

95

6 Questionnaire and interviews

6.1 The questionnaire

6.1.1 Structure

Cover letter

The cover letter is attached to the questionnaire and aims to motivate the
respondent and tells why the person was chosen, the purpose of the study, why
the person should complete the survey, why the study is important, how long it
will take to complete the survey, when the survey should be returned, how the
respondent can see the results.

It can be found in Appendix 11.1.

The questionnaire is divided into 4 parts. Part 1, 2 and 3 mirror those main
themes that have been appointed in Fig. 1.1 and aim to describe how the
software company is managed and to investigate the subject of this study. Part
4 collects some general information about the respondent.

“PART 1: How do you manage knowledge?”

In this part the respondent is asked about the importance of knowledge for
his company, how knowledge is managed and shared, how knowledge
sharing is encouraged and rewarded.

“PART 2: How do you manage software development and software people?”

In this part the respondent is asked about the management, assessment and
improvement of the software development process and of the software
workforce.

“PART 3: How do you manage software quality?”

Here the respondent is asked about the management, assessment and
improvement of the software quality.

In this part a very important section called “People management and
software quality” collects several questions that look into the main theme of
this study: the relationship between software quality and software people.
The respondent is asked about the tools used to evaluate this relationship
and the results of this kind of evaluation; strategic decisions over people

Questionnaire and Interviews

96

management that are relevant to software quality; and future workforce
improvements and how they are supposed to enhance the quality of the
product.

“PART 4: General information”.

In this part the respondent’s characteristics are collected: kind of company
he works for, size, location, name of the company (optional) and contacts
for further information (optional).

The questionnaire can be found in Appendix 11.2 (questions) and 11.3
(screenshots).

6.1.2 Types of questions

Closed questions

The questions, with the exception of those belonging to “People management
and software quality”, are closed questions with provided answers. However,
since many questions have an “Others…” option within the answers, there are
some “open” questions that are meant to give the respondent some space in
order to better explain himself.

Closed questions aim to collect data for a better understanding of how software
companies actually manage knowledge, processes, people and products: these
questions are meant to confirm whether the well-known theories and
methodologies supplied by decades of literature are actually implemented.

“People management and software quality” questions

Within the section “People management and software quality” questions are
open. What is asked is very concrete and examples are requested, so that the
respondent focuses on which actual things reflect his attitude towards the
subject.

Opinions are not asked, since the danger is to obtain information on what
everybody thinks it’s right to do and nobody actually does: the use of certain
tools and the capability of giving examples of certain kinds of decision are
supposed to prove what goes on in reality.

Questionnaire and Interviews

97

6.1.3 Guidelines and tools

The cover letter has been written according to Thomas [60] and Bourque and
Fielder [7]’s guidelines and suggestions.

The questionnaire has been designed following Stone [59] and Thomas [60]’s
guidelines; also Fink [14] and Gillham [18]’s work were very useful.

The questionnaire has been created online as a Form in Google Docs, a web-
based office suite with storage service offered by Google. This tool has been
chosen because it’s free, doesn’t require the download of any software and it’s
very easy to use. Moreover, the questionnaire can be filled in online, as the
respondent is given a link to the webpage, so even the respondent doesn’t need
anything more than a browser.

6.1.4 Benefits and limits

The designed questionnaire entails two main benefits:

 Companies located all around the world can be asked to fill in the form
without the need for a meeting: lots of data can be easy collected in a short
amount of time.

 As questions are mostly closed, the respondent doesn’t waste time in writing
and is required to put an effort only in the “People management and
software quality” section, which is the most important.

Some inherent limits of the questionnaire are the following:

 Whether a closed question is not clear, there is no immediate chance for the
respondent to ask for an explanation, so he may just choose a random
answer and move on. Luckily, since the questionnaire is not supposed to
provide statistical data, this limit is not particularly relevant.

 Whether an open question is not clear, there is no chance for an immediate
dialogue, so the respondent may write something that has nothing to do with
the question or just skip it. Also, some answers may be worth being
deepened, but without a further contact it’s impossible to do. This is a major
limit of this choice.

 Companies may be unwilling to answer to an online survey without
knowing who made it and what will be done with their answers. To make up
for this, a letter explaining the purpose and the context of the study
introduces the questionnaire.

Questionnaire and Interviews

98

 “Essentially, the researcher should have a very good idea of the answer
before starting a survey. Thus, traditional survey research usually serves as
a methodology of verification rather than discovery” [15]. In this case the
survey is used as a tool for discovery, since the research is exploratory.

Questionnaire and Interviews

99

6.2 The interviews

6.2.1 Structure

Each interview should take about an hour.

The intent is to collect information about what happens in a real situation,
therefore the interview should aim to allow the interviewer to form a picture of
how the interviewed company works.

Moreover, the interview should cover the three main topics addressed in the
questionnaire: knowledge management, people and processes management and
quality management. The interview should aim to position the company in
respect to each of these topics, defining what’s the overall culture and what’s
the actual situation.

The questionnaire should be used as a point of reference, in order to cover all
the main aspects that are relevant to form a coherent picture.

6.2.2 Guidelines and tools

The interviews have been conducted according to Canavor and Meirowitz [9]
and Gubrium and Holstein [20]’s guidelines and suggestions.

The interviews have been recorded and transcribed later on. During the
interviews the main points have been noted down in order to keep track of the
topics already discussed and of those that needed further elaboration.

Photos about the Scrum room and the white board used by the companies have
also been taken (see Appendix 11.4.4).

6.2.3 Benefits and limits

An interview presents the following benefits:

 A face-to-face meeting can prove that the interviewer can be trusted.

 Questions and answers can be accurately explained.

 Unexpected aspects can emerge.

Questionnaire and Interviews

100

An interview has a major limit:

 It takes time, as people tend to wander while talking.

In this particular case, the different mother tongue and culture (Italian vs
Swedish) may also add some difficulties, so particular attention should be
given over to ensuring a full understanding of questions and answers.

Results

101

7 Results

7.1 Data from the questionnaire

7.1.1 Form n°1:

It’s the IT department of a service company whose size is small (less than 50
people) in Italy.

The intellectual capital of the company is estimated to be responsible for more
than 80% of the total added value of the products.

Knowledge sharing is explicitly encouraged, even though there is no explicit
strategy for that: people are free to share knowledge as they prefer. No
particular tool is used: common tools such as telephone, e-mail and meetings
are used as the need of knowledge sharing arises.

There is no explicit methodology neither for knowledge management nor for
process management. No methodology is applied for managing, assessing and
improving the workforce either.

There is no systematic approach to software quality and quality is not believed
to depend on how people are managed.

7.1.2 Form n°2

The type of company is not specified, but it’s a medium-size company
(between 50 and 250 people) in Italy.

The intellectual capital of the company is estimated to be responsible for a total
added value of the products that ranges from 65% to 80%.

Knowledge sharing is not considered a managerial issue and there is no explicit
strategy for that: people are free to share knowledge as they prefer. No
particular tool is used, but common tools such as telephone, e-mail and
meetings are used in a standardized way, according to the particular need..

There is no explicit methodology neither for knowledge management nor for
process management. No methodology is applied for managing, assessing and
improving the workforce either.

Results

102

There is no systematic approach to software quality. However, quality is
believed to be affected by the way people are managed.

7.1.3 Form n°3

It’s a medium-size software house (between 50 and 250 people) in a country
that is not Italy nor Sweden.

The intellectual capital of the company is estimated to be responsible for a total
added value of the products that ranges from 50% to 65%.

Knowledge sharing is explicitly encouraged, even though there is no explicit
strategy for that: people are free to share knowledge as they prefer. There is a
dedicated IT system for knowledge sharing that is made up of several tools:
knowledge tree, Microsoft SharePoint and internal wikis. However, no explicit
methodology is used for knowledge management.

The software development process is managed, assessed and improved
according to CMMI (Capability Maturity Model Integration) methodology,
while the management, assessment and improvement of the software workforce
doesn’t rely on any methodology.

Quality is approached according to customer satisfaction. Quality is believed to
depend on the way people are managed and strategic decisions have been made
over people management to affect the quality of the product: the example given
is about dedicated focus / investment in QA (quality assurance) teams.
Moreover, in order to improve the level of skills and competencies of the
company’s software people, internal training are planned.

7.1.4 Form n°4

It’s a small European software house (less than 50 people).

The intellectual capital of the company is estimated to be responsible for more
than 80% of the total added value of the products.

A people-to-document approach is used for knowledge management:
knowledge is extracted and codified from the person who developed it, so that
any other person can search for it without having to contact the original owner.
No specific tools are used, but people use common tools (such as telephone, e-
mail, meetings) in a standardized way, depending on the particular need.

Results

103

Knowledge sharing is explicitly encouraged, but not rewarded. Also, there is no
explicit methodology applied for managing knowledge.

No methodology is applied neither for the management of the software
development process nor for the management of the workforce.

Quality is approached according to customer satisfaction, as customer requests
are listened to and are systematically taken into account when developing the
software. Quality is believed to depend on the way people are managed.

Results

104

7.2 Data from the interviews

7.2.1 Interview n°1

The manager interviewed was Magnus Werner, Acting Director for Windows
Software at SAAB Training and Simulation.

Software development process: agile development with Scrum

It’s SAAB philosophy to create independent, self-managing teams that are fed
by the managerial level with tasks, the “what to do”, and are left free to do the
planning and come up with solutions to the “what”: the “how to do it” is a
team’s responsibility to define.

The idea beneath the management of the software development process is that
software developers want to start coding as soon as possible. In consideration
of this, SAAB has chosen not to follow the traditional waterfall model (i.e.
requirements specification and analysis, software design, integration, testing,
installation, maintenance), but to refer to Agile development instead. The main
advantage of Agile methodologies is that the gap between the specified
requirements (what should be produced) and the final product (what is actually
produced) is considerably reduced, as iterations are undertaken and customers
and stakeholders are much more involved.

SAAB applies Scrum, an iterative, incremental process with roles and
practices. It’s really simple and its description can fit in a poster, that is
“…pretty much how much a developer can take”.

There are three main roles:

 the Product Owner, who is responsible for the long-term perspective and is
the interface with the customer, as he has the knowledge on customer needs
and features required.

 the Scrum Master, the team leader and project manager, who acts as a coach
and facilitator for the team, and whose role depends on the maturity of the
team itself (i.e. for how long the team has worked with the Scrum
framework).

 the Scum Team, the group of developers that will produce the software. The
maturity of the team can be assessed looking at the number of points
committed and the number of actually completed (if there is a big difference
it means that the team has overestimated or underestimated its capability),
even though the context of the stories (the features to implement) should be
considered: if new functionalities are to be developed or if new technologies

Results

105

are used it’s possible that even a mature team cannot be able to complete all
the stories it has committed to do.

All the requirements, bugs or issues that have been found as well as new ideas
are coded into “stories” that made up the so-called Product Backlog: a
collection of cards where these stories are described. The Product Owner
prioritizes the stories in the Product Backlog – two stories cannot have the
same priority, there is always something more important and something less.

An iteration, called Sprint, lasts three weeks. At the beginning of each Sprint, a
Sprint Planning Meeting takes place: during this meeting, attended by the
Product Owner, the team and customer representatives and other stakeholders,
the work to be done is defined through the Product Backlog. The team gets to
estimate the difficulty of implementing each story in the Product Backlog: this
esteem is a measure of the capability of the team. The quantity of stories to be
done within a Sprint is a negotiation between the Product Owner and the Scrum
Team. Also a document about the time and resources required, called Sprint
Backlog, is written.

SAAB keeps statistics about the maturity of the teams, the number of stories to
whom the teams have committed, etc. Statistics are drawn up not only within
the software development department, but all over the company. At the
moment these statistics are obtained through the use of Microsoft Excel and are
showed through diagrams and graphics that can be seen in the corridors near
the managers’ offices. However, SAAB is planning to introduce a new system,
a Microsoft product: Team Foundation Server, an application for lifecycle
management (ALM). It is supposed to help in the process of collecting data and
in the chain management, it “…tries to please everyone” (e.g. developers by
providing what they need, like way to check out source code, or planning when
to introduce new functionalities and features or to fix bugs and solve issues;
managers by providing tools for doing several types of analysis). This will
absolutely not substitute the white board that nowadays supports the Product
Backlog cards and planning (that can be seen in Fig. 11.5, Appendix 11.4.4): the
board and the pieces of paper with the stories and the coloured post-it, could be
put into the tool, but this would take lots of time. Moreover, if there isn’t a big
monitor where everything can be displayed (as it is now with the board) then
the visualization disappears, and the immediate access to the information on
how everything is going – that now can be achieved just by taking a walk to the
Scrum room – is not there anymore.

Why is visualization so important? Because “…when you have everything just
in front of you, you’re always finishing on time”. SAAB wants to promote
visualization and this is one of the reasons they work with Scrum, show
diagrams on the walls of the management level and much more.

Everyday, at the same time and place (in the morning, within the Scrum room),
a meeting called Daily Sprint takes place. Three questions are asked to the

Results

106

team: “What did you do yesterday?”, “What will you do today?” and “What’s
in you way” (i.e. “Did you have any problem?”). The team updates the Sprint
Backlog and the Burn Down Chart, which is the Scrum Master’s “baby” – as
it says whether the Team is on time or not. The Product Owner also attends
each Daily Scrum: he may not speak, but the team may have questions about
the stories or may think that it won’t be able to meet the commitment and asks
to remove a story or two (it’s a call on the Product Owner to decide which
stories to remove).

At the end of each Sprint, a Sprint Review Meeting and a Sprint Retrospective
are held: during these meetings what has been done is presented and how the
Sprint that is just finished has gone is discussed: high points, low points,
improvements to make the next Sprint even better – thus, for each Sprint there
is a list of things to try to improve. For example, each story has a counting
number, that is the time to spend working on it, so the Scrum Master has to
learn to correctly assess these hours. Another example is the decision whether
to increase the level of testing during each sprint. Improvements are focused on
the process.

More about Scrum can be found in Appendix 11.4.4.

Knowledge management and sharing

“I don’t believe in systems, you’ve got to know people. As a manager you have
to know the strengths and weaknesses, you need to have a good picture of what
they know and – even more important – their personality and what they like to
do”.

At SAAB there is no dedicated IT system for knowledge sharing, as the
philosophy is to create the right mix of people for a team and putting them
together in a big room. The purpose it to promote communication in a simple
and spontaneous way, so if someone needs help he can just shout out “Does
anyone know how to fix this?” and hopefully someone within the team does. If
not, it’s up to the individual to search for help though the network of people
that is naturally constituted within the company. The company expects its
employees to be as autonomous as possible: given a problem, try to figure out
on your own, ask the room, the team, search the Internet, etc. – if you get really
stuck, then go to the next level, ask a manager for help.

The network is enhanced through making people work together in projects and
often cover other roles than their own: if you are a developer you are expected
to be able to help the person who’s testing or write a document if you are
asked, for example. “It’s really important that people understand how they fit

Results

107

in the big picture – and to make them really aware of that the best way is to
force them to do other people’s work”.

Moreover, it’s important to have people with competences. At SAAB the level
of education is quite high: lots of engineers and PhDs are employed. Also,
people are encouraged to take courses to expand and deepen their area of
expertise (the company is available to pay for courses, books and
certifications), even though it’s up to the individual to decide which courses he
wants to attend. When a new system is introduced, courses are held within the
company too.

Twice a year, in autumn and in spring, a “utvecklingssamtal” is held with each
employee: it’s a meeting where the individual’s future knowledge
enhancements are discussed. The employee is asked about what he would like
to do and a plan is drawn up (e.g. he should take this course, he should read
that book). Most people tend to focus on enhancing their knowledge rather than
their interpersonal skills, but skills on how to work together are taken into
account – for example recently a half-a-day seminar on how to give feedback in
order to improve team work has been held.

Knowledge sharing is explicitly encouraged also through the philosophy that
what matters is the team’s work, not the individual one. Everyone’s priority, as
a team member, is to contribute as much as possible to make the team
successful.

This organizational culture, this particular mind set, together with the shared
office, is what prevents the people from being lazy: it’s really hard not to work,
because the person next to you will notice.

Software quality

The main indicator of quality is the number of bugs reported by the customer
each month. In order to reduce this number, problems and errors must be
discovered and solved before the software is delivered to the customer.

The Daily Scrum is what helps in constant monitoring, approaching problems
and assigning the task of solving them.

Regression testing, that is to make sure that the new code hasn’t damaged the
old one, is something on which SAAB has invested a lot. In fact, as a system
grows it’s really important to keep an eye on the interactions between the old
and the new functionalities. That’s one of the reasons that led SAAB to the
decision to use Team Foundation Server, as the Microsoft tool provides a way
to make a faster regression testing (the alternative is to hire more people just to
have them “sit and press a button” to check that everything still works).

Results

108

At SAAB there is no standard approach when it comes to quality management.
It’s something on which it may be worth reasoning, but it hasn’t been planned
yet. However, it’s worth notice that the high customer involvement due to the
use of Scrum (i.e. the presence of the Product Owner to every daily meeting to
remind the customer requirements and needs) has led to a very customer-
oriented approach to the whole software development process, quality included.

When it comes to quality, the way tests are performed is essential: “What we
have seen is that we have had several cases where we tested systems in the
house and it seems to work quite ok and then, once it has been delivered to the
customer and it’s in production-mode, issues surface because it’s used in a
slightly different way from how it has been tested in the house” (e.g. inputs are
given in a different order). So, customers sometimes report problems that the
team may even not be able to reproduce, least of all to forestall. Since testing a
system with data from a real situation is so relevant in order to deliver a better
product (because errors have been found and solved in the house and the
number of bugs found by the customer is therefore reduced), the team is always
looking for a tool to record and report data from the production-mode, the
customer’s “environment”.

People management and software quality

“The most important thing for good quality software is to have good quality
employees. You really need to have competent people working for you, because
if you don’t you’ll be in big troubles […] And you need to have people that
actually are happy to go to work, keep people happy and pleased so that they
enjoy their work. If they have fun at work they usually produce good stuff”.

To have quality people and a quality environment, which are believed to be
decisive for software quality, several strategic decisions have been made:

 Hiring competent people with a high level of education: people and their
knowledge play a basic role in the realization of such particular product as
software.

 Adopting Scrum, which is iterative and incremental: it allows developers to
start coding very early in the process, that is what they want the most.

 Pursuing a culture of knowledge sharing, encouraging autonomous
problem-solving, locating all the team members in one room: it
acknowledges each person’s competences and provides motivation.

 Making people aware that what matters is the team work and having them
capable of covering other roles than their own: a reduction of the lead time

Results

109

(i.e. time required to deliver the product) can be considered an improvement
in quality.

 Sustaining, promoting and enhancing the development of a network of
people through making people work together in projects and having the time
to meet and discuss: it allows knowledge sharing in a simple and “popular
way” (as people rather talk to each other than look into a database).

There is no explicit methodology to manage the relationship between people
and software quality: it’s simply assumed that better people and a better
environment lead to a better quality and decisions for achieving the formers are
made.

However, once a year a survey about employee satisfaction and “happiness” is
undertaken by the employees. Whether a decrease in the level of overall well-
being in a certain department is noticed, it’s further investigated – even though
often there is a natural explanation such as an organizational change.

Additionally, the level of well-being is constantly monitored by the managers.
There is no dedicated tool for this: “…the big part is a feeling […]I think it’s
equally important for managers to use tools such as a survey and the chit-chat
or just walking around and observing”.

The basic idea is that a manager should speak with his people, get to know
them, work actively with them, so that he knows their capabilities, personalities
and feelings about what they are doing. Since most people are reluctant to
changes, but on different levels, part of the manager’s job is to be able to
handle that too.

“It’s much about finding the right place for each person, putting people in a
comfortable context where they can perform well”.

Results

110

7.2.2 Interview n°2

The manager interviewed was Anna Leo, product manager at the IT
Department of the Swedish Board of Agriculture (Jordbruksverket).

Software development process: agile development

Methodologies used in the management of the software development process
are Agile, Scrum, and RUP: the development process is built upon RUP and
relies on Agile principles, and the skeleton process provided by Scrum is also
used. These many principles and procedures may appear to be too many, but
they are not used all together, even though a pilot process is about to
experiment their combined use.

Right now, they are used according to what has to be done, in order to have
something to hold on to, something to follow, that gives indications on what
should be done to achieve greater efficiency. These methodologies have proved
to be helpful in order to reduce the time required to solve problems – which
leads to an increase in quality (where quality is intended as the lead time
required to develop the product).

The main principles of Agile development are applied: Individual and
interactions, Working Software, Customer collaboration, and Responding to
change. This leads to the fact that the three main characteristics of Agile
development – timeboxed iterations, teamwork, and customer involvement –
can be tracked as well. The following table presents the Principles of the Agile
Manifesto in details as well as their implementation at the Swedish Board of
Agriculture:

Principles of the Agile
Manifesto How these principles are implemented

Our highest priority is to satisfy
the customer through early and
continuous delivery of valuable
software.

The choice of using Scrum assures customer satisfaction
as what the customer wants is reminded every day to the
Scrum Team by the Product Owner. Moreover, organizing
the development according to the Scrum skeleton process
allows to have software delivered at the end of each
Sprint, that is two weeks.

Also, one of the six RUP’s best practices is “Manage
requirements”, that is keep in mind what the customer
wants.

Moreover, Agile Modeling addresses “Prioritized
Requirements”: requirements are implemented by the
agile team in priority order to provide the greatest return

Results

111

on investment (ROI) possible.

Welcome changing in
requirements, even late in
development. Agile processes
harness change for the
customer’s competitive
advantage.

Scrum makes really easy to embrace changing in
requirements, both because requirements are not fully
defined in advance and because at the beginning of each
Sprint what appears to be important to the customer is
reviewed (so what’s new can be introduced within two
weeks).

Also RUP addresses the fact that requirements are not
needed to be all defined in advance, as one of RUP’s best
practices says “Develop iteratively, with risk as the
primary iteration driver”.

Deliver working software
frequently, from a couple of
weeks to a couple of months,
within a preference to the
shorter timescale.

The use of two-weeks Sprints leads to the delivery of
working software frequently.

Business people and developers
must work together daily
through the project.

A Daily Scrum is held every day and attended by both
developers (i.e. Scrum Team) and the Product Owner, who
represents the customer and other stakeholders.

Agile Modeling enhances “Active Stakeholder
Participation”: the stakeholders should provide
information and make decisions in a timely manner and be
actively involved in the development process.

Build project around motivated
individuals. Give them the
environment and support they
need, and trust them to get the
job done.

In order to have people working according to Agile,
Scrum and RUP two things are important: to have people
developing the methods so that they fit better the situation,
and to have people who teach to others how the methods
work (both when a new method is at first introduced and
within the projects).

The most efficient and effective
method of conveying
information to and within a
development team is face-to-
face conversation.

Daily Scrum is held to discuss what has been done, what
has to be done, and the problems emerged. Working in
open offices is what enables information sharing during
the rest of the day.

Working software is the
primary measure of progress.

Tests are done very often, so what is considered “Done” is
working for sure.

What is done is represented through the Scrum’s Burn
Down Chart, so it’s constantly monitored.

Agile processes promote
sustainable development. The
sponsors, developers, and users
should be able to maintain a
constant pace indefinitely.

Scrum’s Sprints (plus the Daily meeting) assure that a
constant pace is maintained.

Results

112

Continuous attention to
technical excellence and good
design enhances agility.

One of RUP’s practices tells to “Employ a component-
based architecture”, that is to break down complex
projects into smaller parts to favour code reuse. Another
practices says: “Continuously verify quality through
tests”.

Simplicity – the art of
maximizing the amount of
work not done – is essential.

Agile Modeling summarizes this concept as “JBGE – Just
Barely Good Enough”: a model or document should be
sufficient for the situation at hand and no more.

Also Scrum assures that what is done is what the customer
values.

The best architectures,
requirements, and designs
emerge from self-organizing
teams.

Scrum, RUP and Agile Modeling provide a set of
practices and principles: the team is free to move within
them in the best way to achieve a good quality product.

At regular intervals the team
reflects on how to become more
effective, then tunes and adjusts
its behaviour accordingly.

Scrum’s Sprint Retrospective is exactly about that, as what
was good and what was bad within the Sprint is asked, in
order for the team to be more effective in the next Sprint.

RUP says: “Control changes”, which means keep an eye
on what affects the team’s efficiency (team structure,
location, platform choices, …).

Tab. 7.1 Agile principles and their implementation at the Swedish Board of
Agriculture

More about Agile methodologies (Agile Modeling, Scrum, RUP, …) can be
found in Appendix 11.4.4.

Knowledge management and sharing

When a new project is about to begin, a project leader is selected: he or she
looks into what should be done and defines what kinds of people are needed to
do the job. The managers responsible for the workforce are asked by the project
leader about people to cover the roles and it’s their responsibility to find the
right people for those roles, even though the project leader may suggest some
names.

People to cover the roles within the project are found within the company or
outside: the company employs about 65 people and 40 – 50 consultants are
available too. Note: customers are also involved in the project; customers can
be internal or external (in which case they may send a representative).

Results

113

The main capabilities and knowledge and the role of each person are recorded
in an Excel document that is filled in by the managers responsible for the
workforce according to the information gained through the initial interview and
updated during the way.

While the project is being carried on capabilities and knowledge that cannot be
found within the team may be required: in this case the project leader asks for
managers of the upper level to take care of this. The managers responsible for
the workforce can look for what is needed both in the house of out in the city.
Thus, there is hierarchical structure: when there is a problem, it progresses to
the upper level.

However, most of the time problems can be solved within the team – during the
Daily Sprint help is required, there is an unvoiced assessment of each team
member’s capabilities, and the team decides who should help.

Most of the employees at the Swedish Board of Agriculture have a software
development degree. The employees can upgrade their knowledge and
capabilities through taking courses, attending meetings, taking certifications,
etc. Usually when they find something interesting they ask their manager
whether they can do it or not and it’s the manager’s call on that. As there is
always much going on in terms of methodologies and tools, people attend
courses quite often. Also courses about how to work together are taken. All
these courses are mostly short ones.

It should not go unnoticed that people may work at more than one project at the
time: even though this may lead to a lack of focus, it’s still accountable as a
mean for knowledge to spread.

Software quality

A philosophy underlies the management of software quality: doing the right
thing, that is “… decide what is the most important thing to do and do it first”.
What is important is what matters to the customer.

Quality is evaluated in terms of number of errors and it is checked the whole
time through tests: for each project there is a test leader, a person who tells the
product leader how much has been tested and how many errors were
encountered.

Quality is also seen as customer satisfaction: in order to assess it, customers
(intended as final users) test the product the whole time too – “…the customers
are IN the project”. Meetings with the customers are both scheduled and held
when an error is found.

Results

114

The interaction within the customer and the software is tested too, through what
is called usability testing, in order to achieve a better understanding of what the
system is used for (i.e. what the customer actually wants).

People management and software quality

Even though it’s believed that there is a relationship between software people
and software quality, there isn’t a specific tool, statistics or methodology to
assess it – managers prefer talking and having face-to-face contacts with their
people.

“The quality of the product depends on whether the people that develop are
feeling good. I think it’s very important to talk with the people that are in the
project and ask directly to them what’s good and what’s not”.

Apart from everyday contacts, there is a scheduled moment for people to share
their feelings about their jobs and about the project: the Scrum’s Sprint
Retrospective. During this meeting the team is asked about what went well
(“What should we keep doing?”), what went bad (“What should we stop
doing?”), and what can be done better (“What should we start doing?”).
Therefore, strategic decisions are made according to the answers to these three
really simple questions.

Discussion

115

8 Discussion

8.1 Software and intellectual capital

8.1.1 Knowledge and competences: inputs and tools for the
production of software

People in software companies estimate the intellectual capital to be responsible
for a percentage of the total added value of the products that ranges from 50%
up to more than 80%, which reflects what is said by Schreiber et al. (75% to
80% of the total balance sheet) [68], meaning that they recognize the leading
role of human competences in the process of software development.

Knowledge and competences are required both as inputs and as tools for the
realization of the software product: in fact, knowledge and competences are cut
in on the development process as well as in the management of people,
processes and quality.

Discussion

116

8.2 Knowledge management
Knowledge management, that is the management of the knowledge that is used
as an input for the realization of the product, involves two main activities:
knowledge sharing and knowledge management (i.e. the management of
knowledge as a resource) and enhancement.

8.2.1 Knowledge sharing

Person-to-person approach: a network of people that should be mapped and
more effectively supported

Knowledge sharing is approached in several different ways, but mostly it relies
on the natural formation of a network of people within the company that
communicate through common tools such as telephone, e-mail and formal and
informal meetings. Even though they are not rewarded for that, people are
nudged to share – moreover, as the interview with SAAB’s manager Magnus
Werner revealed, the company expects its employee to share.

It may surprise that software companies still rely on the old-fashion person-to-
person approach, but when dealing with a customized product (that is the case
of software for the interviewed companies), the choice of a personalization
strategy is the more appropriate one. The use of common tools for
communication instead of relying on more innovative and technological
devices falls within the explicit advice of Hansen, Nohria and Tierney [22]:
“Do not straddle”, follow one strategy at 80% and the other at 20%, do not try
to have both the personalization approach and the codification approach
implemented. In fact, as the IT support required should reflect the chosen
strategy, for a personalization strategy a system that allows people to find each
other is what should be provided.

A common choice to foster knowledge sharing is to have people from the same
development team to work within the same room, usually an open office. Also,
as hinted before, an organizational culture that recognizes and celebrates
experience sharing is what allows the sharing to be concrete. Methodologies
such as Scrum that involve daily meetings provide further points of contact for
people to establish relationships.

However, even though the chosen strategy is to have knowledge shared through
person-to-person contacts with the support of common tools, it appears that
these contacts could be more effective. Managers are prone to say that people
know each other, as they work together, so “who knows what” is of common
understanding. Still, even though technology should not aim to replace the
existing sharing processes, the sharing could be more effective if there was a

Discussion

117

system to classify “who knows what” (e.g. some kind of Yellow Pages) and if
that system was available to everyone. An Excel file, as it is at the Swedish
Board of Agriculture, could be a beginning – but it should be accessible to all
the employees, as now it’s not, and it should be updated on a regular basis. The
drafting of a knowledge map as well as the identification of the human roles
within the so-called knowledge community, as suggested by Junnarkar’s
methodology [30], could be further steps.

Codification strategy is chosen for standardized products and knowledge
engineering should be considered

On the other end, when it comes to standardized products, a codification
strategy is more likely to be chosen. For a computer-based approach something
like a library, containing documents and allowing searches, is needed for
knowledge sharing.

This would mean both providing an up-to-date mean for collecting and sharing
information and experiences and providing people with incentives for sharing,
as the “social reason” goes missing (people-to-people strategy involves sharing
as an activity for being part of a network, while people-to-computer strategy
needs to reward people for putting information within the system).

In this case there would be no need for a map of “who knows what”, as
everyone “knows” (or, at least, can found information about) everything.
However, a close look to what is called knowledge engineering should be
taken, as it provides a wide range of methods and techniques for the
acquisition, modelling, representation and use of knowledge.

8.2.2 Knowledge management and enhancement

Knowledge management is not explicitly mentioned: a strategic perspective is
missing

It’s worth reminding that knowledge as a resource has several distinctive
characteristics: it’s intangible, difficult to measure, embodied in an agent, not
consumed in the process and on the opposite may increase through use, cannot
be bought on the market, and has a wide impact on the organization.

Knowledge management is not explicitly enlisted as a managerial issue in
software companies, as concepts such as the knowledge-management cycle and
the knowledge value chain are not mentioned by the interviewed and surveyed
managers.

Discussion

118

Nonetheless, some of the basics underlying these concepts can be spotted in the
way software companies operate within the area of knowledge sharing: for
example, having people working together in teams and having them able to
cover several other roles rather than their own (as it happens as SAAB) leads to
the awareness on “who knows what” as well as to knowledge spread.
Moreover, the “Reflect” concept that belongs to the knowledge-management
cycle can be partially spotted in those companies where the organizational
culture suggests and supports the individual choices over attending courses,
studying, obtaining certifications, etc., and even more where an actual plan
concerning the individual’s growth in terms of competences and skills is done
and reviewed (at least) every year.

Still, a main limit can be pointed out: knowledge management and
competences growth are handled only on the individual level and there is no
organizational strategy for monitoring the current situation (such as having a
record at the managerial level on “who knows what”, “who needs what”) nor
for planning and implementing actions (which knowledge should be built over
time and how).

A strategic perspective over knowledge management appears to be missing.
Given the great importance of knowledge, as it is the main input when it comes
to the production of software, software companies should more carefully
consider putting to use an explicit approach to the management of this resource.
The knowledge-management cycle can provide general directions in this sense;
advices and concrete guidelines and tools are Wiig’s tables [66], Wielinga et
al.’s onthologies [65], as well as the whole Junnarkar’s methodology [30].

Moreover, as for manufacturing products Porter’s value chain is very
frequently mentioned, for such products as software – that rely consistently on
the intellectual capital – it’s worth considering the knowledge value chain [46].
Identifying the knowledge value chain allows to formulate more easily a
strategy for the management, assessment, and improvement of knowledge.

Discussion

119

8.3 People and processes management

8.3.1 Software development process

Methodologies are used, but not systematically assessed, nor are assessed the
single individual practices

Activities such as software specification, design, implementation, validation
and evolution are organized differently according to the several different
models: waterfall model, evolutionary development, component-based software
engineering. In reality, these models are often combined, giving rise to a wide
range of methodologies.

Nowadays software companies tend to be oriented towards those
methodologies that take into greater account the need of being ready for
change, mainly for what concerns customer requirements. In particular, great
success has been achieved by Agile methodologies such as Scrum, RUP, XP,
etc., as those methodologies are characterized by iterations, continuous
improvement and high customer involvement in the process, as well as the
possibility for developers to start coding much sooner (which is all they ask
for). Above all, these methodologies are used because they provide something
to hold on to, they give indications on what should be done to achieve greater
efficiency.

However, the assessment on whether the implementation of these
methodologies brings actual benefits is not scientifically done. For example
there may be daily meetings and meetings held at the end of each iteration (as it
is with Scrum) where “what is good”, “what is bad” and “what else should be
done” is discussed, but the use of Scrum itself is not evaluated at a managerial
level.

What appears to be missing is the actual managerial assessment on whether the
chosen practices and the implemented methodologies are bringing benefits and
on how processes are improving. The only exception detected is a medium-size
software house that applies CMMI (Capability Maturity Model Integration).

Frameworks such as CMMI or SPICE should be used because they provide
guidance on defining objectives, planning and executing improvements.
Therefore, they help managers to achieve a better understanding of which
choices in terms of process management lead to a greater efficiency – and this
understanding is very concrete, as it is based on the observation and monitoring
of their own reality.

The single practices carried out by the workforce when it comes to software
development should be analyzed too, as personal process discipline can lead to
individual effectiveness (and consequently to improvements in the performance

Discussion

120

of the team the individual belongs to). Software developers should be
motivated to find and adopt effective methods, but very often this is a task that
is left to the individual’s own considerations, as sound methods are not
provided.

Instead, software people should be trained for planning and evaluating the
methods they use. It may appear a task for managers, but having it carried out
by developers has a valuable benefit: it leads to a better understanding of one’s
own performance and motivates the search for further improvements and new
best practices. SEI’s Personal Software Process (PSP) is an example of a
structured, disciplined and measured process that provides guidance in
analyzing and assessing the developer’s practices and deciding of further
improvements.

8.3.2 Software workforce

People management is not a task for HR only

The people working in a software organisation are its greatest assets: a poor
management of people is one of the most significant causes of project failure.
People should be chosen carefully, motivated and rewarded. Software
development is very often carried on by teams, so the way a team is made up is
a critical task too. That’s why the way people work and how they work together
should be analyzed.

This work doesn’t aim to provide sociological advices, but it is far beyond the
pure HR’s interest to investigate organizational attitudes, social networks, and
team interactions (e.g. stages of group development, roles and status, leader and
followers, etc.): it is also in the interests of managers to have a better, deeper
and more scientific understanding of the people they manage.

Workforce maturity should be assessed: a methodology should be used

This work focuses on the assessment of the workforce maturity, that is how
disciplined the development of knowledge, skills and motivation of the
workforce is.

A beginning is what is done with Scrum: the statistics about the number of
stories to whom a team has committed tell the manager something about the
maturity of the team, how “good” the team is (how efficient, how well-
organized, etc.). However, those companies that have been surveyed and
interviewed don’t report to have an explicit methodology for dealing with

Discussion

121

maturity assessment. It’s a judgement left to managers, based on their
impressions.

The lack of a methodology for maturity assessment is something dangerous,
because it means that there is no tracking of how teams evolve in time, if they
make progresses or if they get worse. In fact, the problem is the absence of a
strategic, long-term perspective: a manager may know how a certain team is
performing, may have an idea of the relevant performance improvements in the
past, but he may as well not be able to see the trend, the slightly worsening that
take place day after day, and definitely has no planning over where he wants
the team to be from here to the next year (or two, or five years…).

P-CMM is a framework for assessing and improving the way the organization
manages its human assets: this is particularly necessary when it comes to the
software-development industry, as it is characterized by talent shortage and
constant change in technologies and programming languages and therefore
requires that software companies not only recruit, train and retain their
workforce, but also keep continuously improving the workforce’s capabilities.
P-CMM is suggested here as it is reckoned to be the most comprehensive
framework for recognizing, standardizing and improving the use of good
practices for increasing the workforce capability and expanding this capability
beyond individuals to the whole organization. P-CMM has the great strength of
being made up of practices that have been proved to be effective and, above all,
thanks to its structure (the five levels) it provides a path, an actual roadmap for
organizations to plan and carry out their growth in terms of workforce maturity
over time.

Discussion

122

8.4 Quality management

8.4.1 Define quality

Quality for the interviewed software companies means mainly two things:
number of errors detected and customer (user) satisfaction. There is no explicit
strategy: it’s just assumed that the software has to work and it has to do what
the customer wants it to do.

Constant monitoring through Scrum meetings, regression testing, usability
testing and customer involvement in the process are the tools that aim to assure
that quality is achieved.

A lack of a strategic vision is once more detected. Software companies seem to
be focused on the “right now”, they appear to have the goal of making the
software work and the customer happy, but they don’t have a strategic vision
over how they achieve this goal.

8.4.2 Measure quality

Quality is hard to define and it’s even more hard to measure. However, much
more than simply listening to the customer, trying to make a good software and
testing it for errors can be done: a wider collection of factors that are relevant
for quality (e.g. understandability, completeness, reliability, portability, etc.)
should be considered, and data should be collected and analyzed to have a
better-defined picture of the level of quality achieved.

Moreover, an explicit approach to quality should be defined. What is important
to who and why should be of common understanding in order to focus the
developers’ efforts. Also, guidelines on how to achieve the desired quality
should be provided.

Standards such ISO 9000 define quality as the conformity to requirements
specification and provide guidance on how to develop quality plans to support
quality management as well as general quality principles and specific
procedures to define; the international standard ISO/IEC 9126 described quality
as a set of characteristics of the product (functionality, reliability, usability,
etc.) and breaks them into measurable product attributes.

Approaching quality with the focus on customer satisfaction can be done as
well, as authors like Denning [13] depict what customer satisfaction actually is
and give directions about the stages to be undertaken to achieve it.

Discussion

123

Garvin [16] and Bevan [4] consider quality from the user perspective:
effectiveness, efficiency and satisfaction are mentioned, and user centered
design is suggested. In order to evaluate quality from this perspective, the
MUSiC methods can be used.

The quality of the product is also believed to be affected by the quality of the
process, therefore managers can choose to undertake the point of view of the
development process and consider concepts such as quality of design and
quality of conformance and assess software characteristics such as reliability
according to the different stages of the process.

Discussion

124

8.5 People and quality

8.5.1 More attention should be given over people and quality
management

A structured approach to processes management is well-established, as
nowadays managers are used to think in terms of processes and operations.

Rising attention is due to people. Swedish companies in particular are
committed to providing a good environment for people to work in, as they
recognize that those employees that “feel good” perform better. Daily meetings
to discuss ideas and problems, half-yearly “utvecklingssamtal” to analyze and
plan the worker’s competences growth, and yearly surveys on whether the
employees are happy about their job are, at the moment, the tools that
companies use to assess workforce satisfaction.

Quality is being discussed too, as software companies are always striving to
deliver a better product, with less errors and that entirely meets customer
requirements.

However, two main things can be noticed:

1. Both people and quality management lack of a strategic vision.

2. People and quality are still treated as not related, despite the intuitive
connection.

8.5.2 Lack of a strategic vision in both people and quality
management

People management doesn’t involve a plan for the whole organization’s
growth. Plans concern only what the employee wants to do and a very few is
said about what the company wants its employees to become over time, which
competences companies wish to acquire and which level of maturity teams are
expected to achieve.

Quality management lacks of both a clear approach to quality (what quality is
and how to measure it in a structured, consistent way) and of a long-term
strategy (what quality companies achieve now, where they want to go from
here to one, two or five years).

Discussion

125

8.5.3 People and quality are believed to be related, but the
relationship is not directly managed

The relationship between individual competences and team skills and software
quality is believed to exist, but the primary focus of managerial efforts is still
on processes. It’s taken for granted that they way the workforce is handled can
lead to better products, but the influence of people over quality is not directly
managed.

Beside everyday informal monitoring by the manager, the relationship between
people and quality is indirectly assessed and managed through collective
meetings scheduled according to the development plan (e.g. Sprint
Retrospective) and one-to-one meetings that take place when needed (e.g. when
an employee is spotted underperforming).

The value of this indirect management through indirect monitoring is not to be
underestimated: the sooner problems, difficulties or “unhappiness” are
detected, the higher is the chance that quality is improved, as faults and re-work
are reduced, competences are exploited more effectively, and motivation is
enhanced.

8.5.4 Establishing a path for a direct management of the people-
quality relationship

In order to have this relationship directly and explicitly managed, it’s important
to establish a path for this management to be done.

Very little has been said in the literature about this, therefore the following
directions are prone to further substantial improvements. Still they aim to
provide a practical guide for managers to approach in a structured and
systematic way a concept (i.e. the relationship between people and quality) that
has been taken for granted until now.

Step 1: Purpose definition

The purpose of a direct management can be gathered from quoting once again
the interviewed managers:

“The most important thing for good quality software is to have good quality
employees” (Magnus Werner, SAAB Training and Simulation).

“The quality of the product depends on whether the people that develop are
feeling good” (Anna Leo, Swedish Board of Agriculture).

Discussion

126

Therefore, managerial actions undertaken should aim to:

1. enhance the quality of the company’s employees, which means the level
of their competences and team skills

2. build a productive environment, where people are put in favourable
conditions to do their job at the best.

Direct management means this kind of decisions should be made according to
an explicitly defined strategy that points out the exact level of quality to be
achieved.

Step 2: Organizational audit

The current situation should be depicted:

 Knowledge, competences and team skills. Which approach to knowledge
management has been chose? Which strategy has been selected for
managing and sharing knowledge? Which kind of IT support has been
provided? What kind of competences are available within the company?
Where do these competences can be retrieved (i.e. which people embody
which competences)?

 Processes and environment. Which methodologies for process management
are implemented? Which benefits and which issues do they bring to
software people? Which practices do developers refer to? Why have these
practices been chosen? What’s the level of maturity of the company’s
teams? Are the developers satisfied (“happy”)? Are they motivated?

 Quality. How is quality defined? How is it measured? What’s the current
level of quality? Which expectations does the customer have?

Step 3: SWOT analysis

Strengths, weaknesses, opportunities and threats should be drawn from the
organizational audit: What does the company do well? What can be done
better? What has not been done but should be? What is done and should not be?

In particular: Is there a clear approach to knowledge management? Is the way
knowledge is shared appropriate? Is the IT support good enough? Are the
competences available effectively exploited? Does the company need other
competences? Do the methodologies and practices implemented for software
development bring substantial benefits?

Discussion

127

Answering to these questions may help managers to find out what can be
improved.

Step 4: Objectives and issues

As the company may not have enough resources (or may not want) to improve
everything, choices should be made.

Questions to be asked: Which knowledge and competences does the company
want to acquire? Which level of maturity does the company want teams to
achieve? Which level of workforce “happiness” does the company aim to
meet? Which level of product quality does the company strives for providing?

Step 5: Strategy definition and implementation

In order to manage the relationship between people and quality, the whole
organizational framework must be clear – that’s why the previous steps should
not be skipped.

As pointed out in the beginning of this section, software companies’ people and
quality management appear to lack of a strategic vision and the relationship
between people and quality is not directly managed. In this step these problems
are to be solved.

An organizational-growth plan is to be done: it should say where the company
wants to go from now to one / two / five years (in terms of competences owned,
maturity of the teams, efficiency of the methodologies applied for software
development, quality of the product and customer satisfaction), and – most
important – how it wants to do that (which choices are made) and when the
improvements are supposed to be carried out.

Planning and carrying out the plan is not enough: every choice made should be
carefully assessed in order to find out whether it has brought benefits in terms
of quality or not.

Helpful tools for monitoring and evaluating what is done are mentioned within
the previous sections (8.2 Knowledge management, 8.3 People and processes
management, 8.4 Quality management) and more about these tools can be
retrieved within Chapter 2, Chapter 3, and Chapter 4. This follow-up is
essential for ensuring that quality is improved: poor managerial choices should
be recognized as soon as possible.

Conclusions

129

9 Conclusions

9.1 Summary of the results

The present work aims to focus the attention of both managers and researchers
on the theme of people and quality management. As previously discussed, two
main problems have been detected: the lack of a strategic vision in both people
and quality management, and the absence of a direct management of the
relationship between people and quality. It’s believed that software companies
can solve these problems through adopting a structured approach to the whole
company’s management.

In order to support a systematic approach, a simple and practical guide has
been provided at the end of Chapter 8. The guide is very concise, but each step
relies on a set of concepts that have been elaborated in this thesis. In particular
steps 1 – 4 refer to typical managerial activities, aim to provide managers with
a well-defined picture of the current situation (focusing on what in the final
analysis has an effect over quality) and help to better understand what’s the
overall goal; the fifth step is concerned with actually solving the two problems
pointed out before through using the tools described in this thesis to define a
plan for the whole organization’s growth, carry it out, and carefully monitor
and evaluate it in order to improve quality.

9.2 Limitations

The number of interviewed and surveyed companies was limited: even though
statistics may not be that interesting, a wider collection of data and information
could be very helpful for a better understanding of the reality of software
companies.

The directions provided in section 8.5.4 can be markedly elaborated and
deepened. Through a greater number of interviews, more can be suggested
about best practices, useful methodologies, and assessment processes.

9.3 Further research

This work has pointed out that there is much more to explore and study. It
would be very interesting to do quantitative researches spread over time to
investigate on the field:

Conclusions

130

 How competences and team skills quantitatively influence the outcome of
the development process (in order to validate the results of Vinod et al.
[63]). This would encourage the evaluation of skills and competences and
lead to a better understanding on their effect over quality.

 How choices in people and processes management can lead to concrete
changes in terms of quality (e.g. Would the introduction of an index of
“who knows what” available to everyone reduce the amount of time
required to complete the product? Does the choice of having people
working together in an open office improve the level of maturity of the team
and does the improved maturity lead to a reduction of the number of
errors?).

References

131

10 References

[1] Bach J., 1995, Enough about process: what we need are heroes, IEEE
Software, 12 (2), pg.96-98.

[2] Basili V. R., Weiss D. M., 1984, A Methodology for Collecting Valid
Software Engineering Data, IEEE Transactions on Software
Engineering, SE-10 (6), pg.728-738.

[3] Bass B. M., Dunteman G., 1963, Behaviour in groups as a function of
self interaction and task orientation, Journal of Abnormal and Social
Psychology, 66, pg.419-428.

[4] Bevan N., 1997, Quality in use: incorporating human factors into the
software engineering lifecycle, 3rd International Software Engineering
Standards Symposium.

[5] Boehm B. et al., 1978, Characteristics of Software Quality, Elsevier
North-Holland Publishing Company.

[6] Borkan J.M., 2004, Mixed Methods Studies: A Foundation for Primary
Care Research, Annals of Family Medicine, 2, pg.4-6.

[7] Bourque L. B., Fielder E. P., 2003, How to Conduct Self-Administered
and Mail Surveys 2nd edition, SAGE Publications.

[8] Byrman A., 2006, Integrating quantitative and qualitative research:
how is it done?, SAGE Publications, 6 (1), pg.97-113.

[9] Canavor N., Meirowitz C., 2010, How to Interview Effectively, FT Press
Delivery Elements.

[10] Crosby P. B., 1979, Quality Is Free: The Art of Making Quality Certain,
McGraw-Hill.

[11] Curtis B., Hefley B., Miller S., 2009, People Capability Maturity Model
(P-CMM) Version 2.0, Second Edition, Carnegie Mellon, pg.1-16.

[12] Ivi, pg.17-28.

[13] Denning P. J., 1992, What is Software Quality?, A Commentary from
Communications of ACM.

[14] Fink A., 2003, The Survey Handbook 2nd edition, SAGE Publications.

[15] Gable, G. G., 1994, Integrating case study and survey research
methods: an example in information systems, European Journal of
Information Systems, 3 (2), pg.112-126.

References

132

[16] Garvin D. A., 1984, What does “product quality” really mean?, Sloane
Management Review.

[17] Ghauri P., Gronhaug K., Kristianslund I., 1995, Research Methods in
Business Studies: A Practical Guide, Prentice Hall, Hemel Hempstead.

[18] Gillham B., 2008, Small-Scale Social Survey Methods, Continuum
International Publishing Group.

[19] Greene J.C., Caracelli V.J., Graham, W.F., 1989, Toward a Conceptual
Framework for Mixed-method Evaluation Designs, Educational
Evaluation and Policy Analysis, 11 (3), pg.255-274.

[20] Gubrium J. F., Holstein J.A., 2002, Handbook of Interview Research.
Context and Method, SAGE Publications.

[21] Hahn J., Subramani M.R., 2000, A framework of knowledge
management systems: issues and challenges for theory and practice,
ICIS '00 Proceedings of the twenty first international conference on
Information systems.

[22] Hansen M., Nohria N., Tierney T., 1999, What’s your strategy for
managing knowledge?, Harvard Business Review.

[23] Hedlund G., 1994, A model of knowledge management and the N-form
corporation, Strategic Management Journal, 15, pg.73-90.

[24] Hellström T., Malmquist U., Mikaelsson J., 2001, Decentralizing
knowledge. Managing knowledge work in a software engineering firm,
Journal of High Technology Management Research, 12, pg.25-38.

[25] Herbsleb J., Zubrow D., Goldenson D., Hayes W., Paulk M., 1997,
Software Quality and the Capability Maturity Model, Communications
of the ACM, 40 (6).

[26] Hines A. M., 1993, Linking Qualitative and Quantitative Methods in
Cross-Cultural Survey Research: Techniques from Cognitive Science,
American Journal of Community Psychology, 2L, 6.

[27] Humphrey W. S., 1989, Managing the Software Process, Addison-
Wesley Professional.

[28] Humphrey W. S., 1995, Introducing the personal software process,
Annals of Software Engineering 1, pg.311-325.

[29] Jick T. D., 1979, Mixing Qualitative and Quantitative Methods:
Triangulation in Action, Administrative Science Quarterly, 24 (4),
pg.602-611.

References

133

[30] Junnarkar B., 1997, Leveraging Collective Intellect by Building
Organizational Capabilities, Expert Systems with Applications, 13,
pg.29-40.

[31] Kaplan B., Duchon D., 1988, Combining Qualitative and Quantitative
Methods in Information Systems Research: A Case Study, MIS
Quarterly, 12 (4), pg.571-586.

[32] Maslow A. A., 1954, Motivation and Personality, Harper and Row.

[33] Miles G., Miles R. E., Perrone V., Edvinsson L., 1998, Some conceptual
and research barriers to the utilization of knowledge, California
Management Review, 40 (3), pg.281-288.

[34] Musa J.D., Iannino A., Okumoto K., 1987, Engineering and Managing
Software with Reliability Measures, McGraw-Hill.

[35] Nowak M. J., Grantham C. E., 2000, The virtual incubator: managing
human capital in the software industry, Research Policy, 29, pg.125-
134.

[36] O’Dell C., Grayson C.J., 1998, If Only We Knew What We Know:
identification and transfer of internal best practices, California
Management Review.

[37] Pfeffer J., 1994, Competitive Advantage through People, Harvard
Business School Press.

[38] Plano Clark V. L., 2010, The Adoption and Practice of Mixed Methods:
U.S. Trends in Federally Funded Health-Related Research, Qualitative
Inquiry, 16, pg.428-440.

[39] Prahalad C. K., Hamel G., 1990, The Core Competence of the
Corporation, Harvard Business Review 68, 3, pg.79-91.

[40] Prusak L., Cohen D., 1998, Knowledge buyers, sellers and brokers: the
political economy of knowledge in Neef D., Siesfeld A. G, Cefola J.,
1998, The Economic Impact of Knowledge, Butterworth Heinemann,
pg.137-159.

[41] Sarvary M., 1999, Knowledge management and competition in the
consulting industry, California Management Review, 41 (2), pg.95-107.

[42] Schreiber G., Akkermans H., Anjewierden A., De Hoog R., Shadbolt N.,
Van de Velde W., Wielinga B., 2000, Knowledge Engineering and
Management: The CommonKADS Methodology, MIT Press, pg.2.

[43] Ivi, pg.4.

References

134

[44] Ivi, pg.6.

[45] Ivi, pg.13-22.

[46] Ivi, pg.70-71.

[47] Ivi, pg.75-79.

[48] Ivi, pg.79-82.

[49] Sommerville I., 2007, Software Engineering 8th Edition, Pearson
Education, pg.74-81.

[50] Ivi, pg.591-592.

[51] Ivi, pg.593-595.

[52] Ivi, pg.599-606.

[53] Ivi, pg.607-609.

[54] Sommerville I., 2010, Software Engineering 9th Edition, Pearson
Education, pg.652-654.

[55] Ivi, pg.655-657.

[56] Ivi, pg.657-662.

[57] Ivi, pg.663-667.

[58] Ivi, pg.668-677.

[59] Stone D. H., 1993, How to do it. Design a questionnaire, British
Medical Journal, 307, pg.1264-1265.

[60] Thomas S. J., 1999, Designing Surveys That Work! A Step-by-Step
Guide, Corwin Press, Inc.

[61] Tsoukas H., 1996, The firm as a distributed knowledge system: a
constructionist approach, Strategic Management Journal, 17, pg.11-25.

[62] Vidich A. J., Shapiro G., 1955, A Comparison of Participant-
Observation and Survey Data, American Sociological Review, 20,
pg.28-33.

[63] Vinod V., Dhanalakshmi J., Sahadev S., 2009, Software Team Skills on
Software Product Quality, Asian Journal of Information Technology, 8
(1), pg.8-13.

[64] Webb J., 1992, Understanding and Designing Marketing Research, The
Dryden Press.

References

135

[65] Wielinga B., Sandberg J., Schreiber G., 1997, Methods and Techniques
for Knowledge Management: What Has Knowledge Engineering to
Offer?, Expert Systems with Applications, 13, pg.73-84.

[66] Wiig K.M., De Hoog R., Van der Spek R., 1997, Supporting Knowledge
Management: A Selection of Methods and Techniques, Expert Systems
with Applications, 13, pg.15-27.

[67] Yin R. K., 1984, Case Study Research: Design and Methods, SAGE
Publications.

[68] Agile Manifesto, http://agilemanifesto.org/ (2011-05-26)

[69] Agile Modeling, http://www.agilemodeling.com/ (2011-05-26)

[70] Engineering and Managing Knowledge, CommonKADS
http://www.commonkads.uva.nl/ (2011-04-08)

[71] Hoffman D., The Darker Side of Metrics,
http://www.softwarequalitymethods.com/Papers/DarkMets%20Paper.pd
f (2011-04-10)

[72] Kaner C., Software Engineering Metrics: What Do They Measure and
How Do We Know?, http://www.kaner.com/pdfs/metrics2004.pdf
(2011-04-10)

[73] Scrum, http://www.scrum.org/ (2011-05-26)

[74] Software Engineering Institute, People CMM,
http://www.sei.cmu.edu/cmmi/tools/peoplecmm/ (2011-04-10)

[75] Value Based Management, People CMM,
http://www.valuebasedmanagement.net/methods_people_capability_mat
urity_model.html (2011-04-10)

[76] Wikipedia, Agile software development,
http://en.wikipedia.org/wiki/Agile_software_development (2011-05-26)

[77] Wikipedia, Extreme Programming,
http://en.wikipedia.org/wiki/Extreme_Programming (2011-05-26)

[78] Wikipedia, ISO/IEC 15504,
http://en.wikipedia.org/wiki/ISO/IEC_15504 (2011-04-10)

[79] Wikipedia, ISO/IEC 9126, http://en.wikipedia.org/wiki/ISO/IEC_9126
(2011-04-10)

http://agilemanifesto.org/
http://www.agilemodeling.com/
http://www.commonkads.uva.nl/
http://www.softwarequalitymethods.com/Papers/DarkMets%20Paper.pd
http://www.kaner.com/pdfs/metrics2004.pdf
http://www.scrum.org/
http://www.sei.cmu.edu/cmmi/tools/peoplecmm/
http://www.valuebasedmanagement.net/methods_people_capability_mat
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/ISO/IEC_15504
http://en.wikipedia.org/wiki/ISO/IEC_9126

References

136

[80] Wikipedia, Knowledge management,
http://en.wikipedia.org/wiki/Knowledge_ management (2011-04-08)

[81] Wikipedia, RUP,
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process (2011-05-
26)

[82] Wikipedia, Scrum, http://en.wikipedia.org/wiki/Scrum_(development)
(2011-05-26)

[83] Wikipedia, Software quality,
http://en.wikipedia.org/wiki/Software_quality (2011-04-10)

[84] Shaukat A., Research Methodology,
http://www.journal.au.edu/abac_journal/jan98/article5.html (2011-04-
10)

[85] SQA, ISO 9126 Software Quality Characteristics,
http://www.sqa.net/iso9126.html (2011-04-10)

[86] Zrymiak D., People – Capability Maturity Model,
http://www.msi.ms/MSJ/People-Capability_Maturity_Model.htm (2011-
04-10)

http://en.wikipedia.org/wiki/Knowledge_
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://en.wikipedia.org/wiki/Scrum_
http://en.wikipedia.org/wiki/Software_quality
http://www.journal.au.edu/abac_journal/jan98/article5.html
http://www.sqa.net/iso9126.html
http://www.msi.ms/MSJ/People-Capability_Maturity_Model.htm

Appendix

137

11 Appendix

Appendix 11.1 presents the cover letter attached to the questionnaire.

Appendix 11.2 presents the questions asked in the survey.

Appendix 11.3 collects screenshots of how the questionnaire looks like to the
respondent.

Appendix 11.4 presents an overview on Agile software development and on
some of the practices the interviewed managers have referred to.

Appendix

138

11.1 Cover letter

Dear Sir / Madam,

My name is Elena and I’m an Italian student. I have a bachelor degree in
Engineering and Management from the University of Padua and by the end of
2011 I’ll take my master degree.

I’m currently an exchange student at Jönköping University (Sweden) and I’m
working on my master project, which investigates how the management of
individuals in a software company can be addressed to positively affect the
quality of the software product. The basic idea is that the better people are
managed, the better is the quality of the product and, consequently, the more
the customer is satisfied.

The purpose of the attached questionnaire, which is part of my project, is to
collect information on the management of software people and of software
quality in your company.

Your participation in this study is expected to lead to a better understanding of
how individual competencies and software quality are managed in some real
cases and how much companies reckon that effectively managing people affects
the quality of their software products.

Compiling the questionnaire will take approximately 20 minutes. It would be
greatly appreciated if you could complete the questionnaire by May 7th. All
data collected in this questionnaire will be treated confidentially. The results of
this study will be presented in my graduation thesis, which will be available
online (I’ll provide you a link as soon as the thesis is published).

I am very thankful for your willingness to fill in the form. If you have any
question, please contact soel10cd@student.hj.se.

Yours faithfully,

Elena Sortino

Elena Sortino
School of Engineering
Jönköping University

Jönköping, Sweden
Tel: +460765941593

E-mail: soel10cd@student.hj.se

mailto:soel10cd@student.hj.se
mailto:soel10cd@student.hj.se

Appendix

139

11.2 Questions

11.2.1 PART 1: How do you manage knowledge?

1. In which percentage would you estimate the intellectual capital of your
company to be responsible for the total added value of your products?

< 50%

50% – 65%

65% – 80%

> 80%

2. Is there an explicit predominant strategy for knowledge management in your
company?

No, there isn’t any strategy. People are free to share knowledge as they prefer.

Yes, a people-to-document approach is used. Knowledge is extracted and
codified from the person who developed it, so that any other person can search
for it without having to contact the original owner.

Yes, a network of people is defined. Knowledge is shared through interpersonal
communications and is transferred through a connection between individuals
(brainstorming sessions, one-on-one conversation, telephone, e-mail, job
rotation, etc.).

3. Is there any kind of dedicated IT support for knowledge sharing in your
company?

No, there is no particular tool. People use common tools (telephone, e-mail,
meetings, etc.) as the need of knowledge sharing arises.

No, there is no particular tool, but people use common tools (telephone, e-mail,
meetings, etc.) in a standardized way, depending on the particular need.

Yes, there is a dedicated IT system for knowledge sharing (online library /
electronic repository / database / forum / …). [go to 3.1]

Appendix

140

3.1. Whether in your company there is a dedicated IT system for knowledge
sharing, please describe it with few words.

4. Is knowledge sharing explicitly encouraged and rewarded in your company?

No, knowledge sharing is not a managerial issue.

Yes, knowledge sharing is explicitly encouraged and rewarded. [go to 4.1]

Knowledge sharing is explicitly encouraged, but not rewarded. [go to 4.1]

4.1. Whether in your company knowledge sharing is explicitly encouraged and
– eventually – rewarded, please give at least an example of how this happens.

5. Is there any explicit methodology you apply for managing knowledge?

No, we don’t apply any methodology.

Yes, we refer to the knowledge-management cycle (Review-Conceptualize-
Reflect-Act).

Yes, we apply the CommonKADS methodology (defining a knowledge analysis
framework based on organization, task, agent, knowledge, communication and
design models).

Yes, we apply … [see 5.1]

5.1. Whether the methodology in use for managing knowledge is not present in
the suggested answers, please describe it here with few words.

Appendix

141

11.2.2 PART 2: How do you manage software development and
software people?

6. Is there any explicit methodology you apply for managing, assessing and
improving the software development process?

No, we don’t apply any methodology.

Yes, we refer to the SPICE (Software Process Improvement and Capability
Determination) framework.

Yes, we apply the CMMI (Capability Maturity Model Integration) methodology.

Yes, we apply … [see 6.1]

6.1. Whether the methodology in use for managing the software development
process is not present in the suggested answers, please describe it here with few
words.

7. Is there any explicit methodology you apply for managing, assessing and
improving the software workforce?

No, we don’t apply any methodology.

Yes, workforce takes the PSP (Personal Software Process) course.

Yes, we apply the P-CMM (People - Capability Maturity Model) methodology.

Yes, we apply … [see 7.1]

7.1. Whether the methodology in use for managing the software workforce is
not present in the suggested answers, please describe it here with few words.

8. Whether a methodology for improving the workforce capabilities has been
applied, which results has it brought? Please, describe them here.

Appendix

142

11.2.3 PART 3: How do you manage software quality?

9. Is there any explicit approach to the management, assessment and
improvement of the software quality?

No, we don’t have a systematic approach to software quality.

Yes, we approach quality according to standard definitions. [go to 9.1]

Yes, we approach quality according to the user’s perception. [go to 9.2]

Yes, we approach quality according to customer satisfaction. [go to 9.3]

Yes, we approach quality according to the software lifecycle. [go to 9.4]

Yes, we approach quality according to … [see 9.5]

9.1. Please describe with few words the standard you refer to.

9.2. Please, describe your approach to quality from the perspective of the
user’s perception.

9.3. Please, describe your approach to quality from the perspective of customer
satisfaction.

9.4. Please, describe your approach to quality from the perspective of the
software lifecycle.

9.5. Whether the approach in use is not present in the suggested answers, please
describe it here.

10. Do you believe that the quality of your software depends on how you
manage the people who develop it?

No, I don’t. [skip to PART 4]

Yes, I believe that the way we manage our people affects the quality of the
product.

Appendix

143

11.2.4 People management and software quality

11. Please, describe the tools (surveys, interviews, observation, statistics, …)
you use – or you’re planning to use – to evaluate the relationship between the
way software people are managed and product quality.

11.1. Which results have emerged from your evaluation?

12. Please, give at least an example of a strategic decision over people
management that has affected the quality of your product. [More than one
example will be appreciated].

13. Please, describe what have you planned for the future in order to improve
the level of your software people’ skills and competencies (seminars, courses,
training, coaching, hire more qualified people…).

13.1 How do you think these improvements will enhance the quality of your
product (software quality attributes, standard conformity, customer satisfaction
rate, sales, lead times, …)?

Appendix

144

11.2.5 PART 4: General information

The respondent works in…

Software house

IT department of a service company

IT department of a manufacturing company

IT department of a no-profit organization

IT department of a public agency

HR department of a service company

HR department of a manufacturing company

HR department of a no-profit organization

HR department of a public agency

The size of the company / department is…

micro (< 10 people)

small (< 50 people)

medium sized (< 250 people)

large (> 250 people)

The company is located in…

Sweden

Italy

Other country

OPTIONAL: Name of the company, Contacts for further information (name of
the respondent, e-mail, telephone…).

Appendix

145

11.3 Screenshots

Appendix

146

Appendix

147

Appendix

148

Appendix

149

Appendix

150

Appendix

151

Appendix

152

11.4 Agile software development

11.4.1 What does “Agile” mean?

Manifesto for Agile Software Development

Agile software development is a collection of methodologies for an iterative
and incremental software development carried out by self-organizing, cross-
functional teams [76].

The Agile approach has been defined through the “Manifesto for Agile
Software Development” [68] in February 2001. It begins as follows:

Fig. 11.1 Manifesto for Agile Software Development [68]

The meaning is that self-organization, motivation and cooperation are
important (i.e. “Individual and interactions”), working software is more useful
and welcome than presenting papers (i.e. “Working software”), requirements
cannot be stated entirely at the beginning of the software development and
therefore continuous involvement of customer and stakeholders is required (i.e.
“Customer collaboration”), and the focus is on quick responses to change and
continuous development (i.e. “Responding to change”).

This Manifesto is based on twelve principles:

Appendix

153

Fig. 11.2 Principles behind the Agile Manifesto [68]

Agile methods

Agile development methods have in common three main characteristics:

 timeboxed iterations from one to four weeks of full software development
cycle (planning, requirement analysis, design, coding, testing and
demonstration) to deliver working software

Appendix

154

 teamwork, where the team composition is usually cross-functional and self-
organizing, and face-to-face communication (often in a single open office)

 customer involvement, as stakeholders and customer representatives work
closely with the development team.

Well-known agile methods are: Agile Modeling, RUP (Rational Unified
Process) and its simpler version AUP (Agile Unified Process), Scrum, XP
(Extreme Programming). They differ in their focus: some focus on the practices
(XP, Agile Modeling), others focus on managing the software projects (Scrum),
others focus on the development life cycle (RUP) [76].

11.4.2 Agile Modeling

A practice-based methodology

Agile Modeling is a supplement to other agile methodologies such as XP, AUP
and Scrum. It’s a practice-based methodology, a collection of values, principles
and practices for modeling software development processes and documentation
of software-based systems [69].

Best practices

Agile Modeling’s best practices, summarized in Errore. L'origine riferimento
non è stata trovata., are [69]:

 Active Stakeholder Participation means that the stakeholders should provide
information and make decisions in a timely manner and be actively involved
in the development process.

 Architecture Envisioning means that at the beginning of an agile project
some kind of high-level architectural modeling should be done to identify a
viable technical strategy.

 Document Continuously means writing deliverable documentation
throughout the lifecycle.

 Document Late means writing the documentation as late as possible to
avoiding speculative ideas.

 Executable Specifications means that requirements should be written in the
form of executable "customer tests".

Appendix

155

 Iteration Modeling means that at the beginning of each iteration a bit of
modeling should be done.

 Just Barely Good Enough (JBGE) means that a model or document should
be sufficient for the situation at hand and no more.

 Look Ahead Modeling means that time should be spent on exploring
complex requirements.

 Model Storming means that details should be explored on a just-in-time
basis during an iteration.

 Multiple Models means that each type of model has it's strengths and
weaknesses, so the right model needs to be applied to each situation.

 Prioritized Requirements means that requirements are implemented by the
agile team in priority order to provide the greatest return on investment
(ROI) possible.

 Requirements Envisioning means that the scope of the project and the initial
prioritized stack of requirements need to be identified at the beginning of
the project.

 Single Source Information means that information should be captured only
in one place.

 Test-Driven Design (TDD) is a just-in-time approach that at the
requirements or design level a test should be written and then code should
be provided to fulfil that test.

Fig. 11.3 The Best Practices of Agile Modeling [69]

Appendix

156

11.4.3 RUP

An iterative software development process framework

The Rational Unified Process is an iterative software development process
framework created in 2003 by a division of IBM; it’s not a single process, but a
framework that can be tailored by organizations and project teams to their own
needs [81].

Even though according to the most common classifications RUP is not an Agile
methodology, it has been chosen to report it here as one of them because the
interviewed managers appeared to consider it as, in some way, agile (i.e. it’s an
iterative framework that can be tailored and implies high customer involvement
during the whole development process, unlike, for example, the traditional
waterfall model).

Best practices and the RUP concept

Six best practices have been derived from several software companies’
experience with RUP [81]:

 Develop iteratively, with risk as the primary iteration driver (no need to
know all requirements in advance)

 Manage requirements (keep in mind what the user wants)

 Employ a component-based architecture (break down complex projects into
smaller parts to favour code reuse - for example through the use of OOP,
Object-Oriented programming)

 Model software visually, use diagrams to represent components, users and
interactions (a useful tool is UML, Unified Modeling Language)

 Continuously verify quality through tests

 Control changes (of team, location, platform, …).

RUP is based on three building blocks: Roles (that define “who”, a set of skills,
competencies and responsibilities), Work Products (“what”, a result from a
task, including documents and models) and Tasks (“how”, a unit of work
assigned to a Role that provides a meaningful result). Tasks may belong to
several disciplines: Business Modeling, Requirements, Analysis and Design,
Implementation, Test, Deployment, Configuration and Change Management,
Project Management or Environment [81].

Appendix

157

RUP splits a project life cycle into four phases: Inception (scope the system to
define business costs and budget), Elaboration (analysis of the problem domain
and initial shaping of the project architecture), Construction (coding:
components and features of the system are developed) and Transition (“transit”
the system from development into production, ready for the end user, and
check quality) [81].

11.4.4 Scrum

An iterative framework for project management

Scrum is an iterative, incremental framework for project management, a
skeleton process that contains a set of roles and practices [82]. It aims to create
self-organizing teams based on co-location of team members, verbal
communication and discipline in the project.

One of its key principles is that customers can change their minds about what
they want and need, so the problem cannot be fully understood and defined in
advance: that’s why it’s important to have a team that is able to quickly
respond to changes and emerging customer requirements.

The process relies on three pillars: Transparency (as much as possible),
Inspection (as frequently as possible), and Adaptation (as quickly as possible).

What is reported in the following pages and more detailed information can be
found in the Scrum guide, which can be downloaded for free at Scrum.org [73].

Scrum concept: roles, meetings and artifacts

Within the Scrum process there are three main roles:

 Product Owner, who represents the customer and other stakeholders

 Scrum Master, the project manager

 Scrum Team, the cross-functional group that does the analysis, design,
implementation and test of the product.

Four types of meeting take place:

 Daily Scrum, which is held every day at the same time and place, is
timeboxed (15 min), and involves the core roles listed above. During the
meeting each team member is asked: “What did you do yesterday?”, “What
will you do today?”, “What’s on your way?” (i.e. “Which problems do you

Appendix

158

have?” – the Scrum Master is the one who should facilitate the resolution of
these problems).

 Sprint Planning Meeting, which is held at the beginning of each Sprint (the
7-30 days iteration), involves the Product Owner and the Team, and will
take no more than 8 hours. In this meeting the work to be done is selected
and the Sprint Backlog (that is about the time and resources needed to do
that work) is prepared.

 Sprint Review Meeting, which is held at the end of each Sprint and lasts not
more than 4 hours. It reviews what has been done and what hasn’t, and
presents the completed work (“demo”) to the stakeholders.

 Sprint Retrospective, which is held at the end of each Sprint, has a 3 hours
time limit and is attended by the Team Members. They reflect on the past
Sprint and they are asked “What should we keep doing?”, “What should we
stop doing?” and “What should we start doing?”.

Three different artifacts are produced:

 Product Backlog, a list of descriptions of possible features sorted by
importance.

 Sprint Backlog, a list of the work the team should do during the Sprint,
where the features are broken down into tasks. A Task Board may
accompany the Spring Backlog, describing the state of each task (“to do”,
“in progress”, “done”).

 Burn Down Chart, a publicly displayed chart that shows the daily Sprint
progress.

All these elements as well as the logic of the Scrum process are depicted in the
Scrum Development Process poster (Fig. 11.4).

Fig. 11.5 is a photo of how a Scrum room may look like. The picture has been
taken at SAAB Training and Simulation in Huskvarna, Sweden.

Appendix

159

Fig. 11.4 Scrum Development Process poster (used at SAAB Training & Simulation)

Appendix

160

Fig. 11.5 Photo of a Scrum room (picture taken at SAAB Training and Simulation)

11.4.5 XP

A timeboxed software development methodology

Extreme programming, known as XP, is a timeboxed software development
methodology to improve software quality and responsiveness to changing
customer requirements. It involves programming in pairs, doing extensive code
review and unit testing, adding features when actually needed, and frequent
communication with the customer.

The goal is to organize people to produce higher quality software more
productively and to reduce the cost of changes in requirements by having
multiple short development cycles [77].

XP concept

Four basic activities are performed within the software development process:
Coding (without code there is no working product), Testing (Unit tests, to
check that each feature works as intended, and Acceptance tests, to check that

Appendix

161

requirements are met - the more tests, the better), Listening (customer needs
must be well understood) and Designing (the logic of the system needs to be
explained) [77]. For each of these activities, best practices are provided.

Five values underlie the XP concept: Communication, Simplicity (do not do
more than what is actually needed), Feedback (from the system, the customer
and the team), Courage (review the system so that future changes can be
implemented easily, remove obsolete or useless code, be persistent in solving
problems) and Respect (strive for quality, seek for the best design, do not delay
the work of others or make tests fail) [77]. Moreover, change should be
embraced.

