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Thesis Summary

The aim of this thesis work is to test the feasibility of a first-level trigger based on GPU for
the Cherenkov Telescope Array (CTA) project.
The CTA Consortium is building a new observatory for very high-energy (VHE) gamma rays.
Supported by a wide international collaboration, its project consists into the realization of
two arrays of the latest generation of Imaging Atmospheric Cherenkov telescopes (IACTs),
one located in the northern hemisphere (Canary Islands), with an emphasis on the study of
extragalactic objects, and one in southern hemisphere (Chile) dedicated to the galactic sources.
Beside a wealth of high-energy astrophysics results, CTA will have a large discovery potential in
key areas of astronomy and fundamental physics research. These include the study of the origin
of cosmic rays and their role in the Universe, the investigation of the nature and varieties of
black hole particle accelerators and the search for signals from dark matter and physics beyond
the Standard Model. If signatures of dark matter will appear in direct-detection experiments,
gamma-ray observation may provide complementary information to identify its property and
mass. CTA has ambitious science goals, for which it is necessary to achieve full-sky coverage, to
improve sensitivity by about an order of magnitude in a wide range of energy, from a few GeV
to above 100 TeV with enhanced angular and energy resolutions over the existing VHE gamma
ray observatories with the same detection technique, such as H.E.S.S, MAGIC and VERITAS.
To better understand the importance and the requirements of a trigger for CTA, we need to
highlight the main features of the IACTs detection technique. When a primary cosmic ray in-
teracts with atmosphere, it produces a cascade of ultra-relativistic charged particles which emit
Cherenkov light at a characteristic angle. The first interaction with nuclei of the atmosphere
takes place at about 10− 20 km above sea level and thus the Cherenkov light footprint on the
ground is of the order of 105 m2. This light may be collected by large segmented mirrors which
focus it onto an array of photomultiplier tubes. The tubes are coupled to fast electronics which
amplify and digitise the pattern or image of the shower and transmit a signal to the trigger
system. In the GeV-TeV region, the background from charged particles is about three orders of
magnitude larger than VHE gamma rays signal. Hadronic showers, however, have a different
topology, being larger and more subject to fluctuations than electromagnetic showers, therefore
it is possible to discriminate with good accuracy hadronic versus e.m. showers. VHE gamma
ray events are quite rare, obviously depending upon the source intensity and the sensitivity
of the instruments. To give an idea of the typical sensitivities of the existing observatories,
sources as luminous as less than 1% of Crab (the standard candle in gamma-ray astronomy)
can be detected at a 5σ significance in 50 hours of observation.
To improve resolution, sensitivity and background rejection, the CTA project aims at building
tens of telescopes able to working together and pointing to the sky in the same direction,
allowing the possibility to perform stereoscopic observations or working in subarray. This is one
of the most remarkable differences with the others existing observatories: the great number of
telescopes. But the deployment of about 50−100 telescopes per site will produce a huge amount
of data. The processing of CTA data will be a computational challenge, as all measurements
made with CTA should undergo a rapid data analysis, including event selection and calibration
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ii THESIS SUMMARY

of instrumental and environmental effects. It will be necessary to reduce a volume of typically
10− 20 TB of raw data per night to a few MB of high-level data. In order to observe transient
phenomena like Gamma-Ray Bursts (GRBs) and gamma ray flares, the filtering of events have
to be rapid and efficient to allow a Real-Time Analysis (RTA).
The first-level trigger must be able to recognize from the whole telescopes array which signals
belong to the same physical event by being stereoscopically detected. Knowing the positions of
the telescopes and their pointing direction, it is possible to write an algorithm to compute the
relative delays and compare them with the signals of each telescope. If the time correlation is
acceptable, two or more signals from different telescopes are tagged as originating from the same
physical event. The first-level trigger will be able to reject background events or events without
the required resolution. In particular, if each signal from telescopes will contain the hadroness
(the likelihood that the particle cascade originated from a hadronic shower) the trigger will be
able to filter out hadronic events.
Summing up, the main goals of this thesis are: the study in depth about VHE gamma ray
astronomy and the CTA project, the development of a first-level trigger for the CTA, testing
its efficiency through a toy-MC simulations of several different setup and with MC simulations
provided by the ASTRI collaboration and finally to deploy the algorithm on a GPU system in
order to obtain the required performance.



Chapter 1

Introduction to Very High Energy
Astrophysics

For several centuries, the study of the night sky and astronomical phenomena was conducted
through observation of light from celestial bodies.
The human eye allows, in fact, sufficient resolution and sensitivity to be able to observe a few
hundreds of light sources in the darkness of the sky.
This capability was improved by the invention of telescopes, optical devices able to collect light
from distant sources increasing their apparent brightness and angular size.
Galileo Galilei was the first man who turned a telescope to the sky and opened the era of
modern observational astronomy. The use of the telescope was a great step forward in the
history of astronomy, since for the first time it was possible to "see the unseen".

Figure 1.1: a) The original Galileo telescopes, b) LST for the CTA-North project

Improving human senses through devices and tools, is a key element of the scientific progress
because extends the idea of observation and opens horizons of research in every scientific field.
The development of these tools, generally called detectors, go hand in hand with scientific
discovery.

1



2 CHAPTER 1. INTRODUCTION TO VERY HIGH ENERGY ASTROPHYSICS

1.1 Cosmic Rays discovery

In 1785, Charles Augustin de Coulomb described, in his reports on electricity and magnetism,
an experiment with a torsion balance, which showed that the device would spontaneously
discharge due to the action of the air rather than defective insulation.

Similar observations were conducted by William Crookes, who observed in 1879 that the rate
of spontaneous discharge decreased when the pressure of the air inside the electroscope was
reduced. The discharge was then likely due to the ionization of the air. But what was the cause
of ionization?

The explanation of this phenomenon came at the begining of 20th century and paved the way
for the discovery of cosmic rays.

In 1909 Theodor Wulf, built a new type of electrometer more sensitive and more transportable
than the gold leaf electroscopes. Wulf started measuring changes in radioactivity with respect
to height to understand the origin of the radiation.

The hypothesis was simple: if the radioactivity was coming from the Earth, it should decrease
with height. He took his electroscope to the top of the Eiffel Tower but he found a too small
decrease to confirm his hypothesis.

The answer of the origin of atmospheric radiation came from two scientists, the Austrian
Victor Hess and the italian Domenico Pacini, which developed two brilliant lines of research
independently.

Figure 1.2: (Left) Pacini making a measurement in 1910. (Right) Hess during the balloon flight in 1912.

In 1911, Pacini took measurements with a Wulf-type electroscope in several settings. He ob-
served a 30% reduction of radioactivity comparing ionization levels on a ship 300 m offshore
from Livorno coast to measurements on land. This result suggested that a significant portion
of the penetrating radiation must be independent from emissions of the upper layers of the
Earth’s surface. Pacini also measured the levels of radiation in the deep sea of the Genova gulf
and then into Bracciano Lake. He noted that there was a 20% reduction of radioactivity 3
meters underwater compared to on the surface, concluding that ionizing radiation must come
from the atmosphere.
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In the same period Hess made a series of ascents aboard atmospheric balloon to take measure-
ments of radiation at different heights. On 7April 1912, Hess made an ascent of 5300 meters
during a near-total sun eclipse. He observed that ionization did not decrease during the eclipse,
so the source of radiation could not be the Sun. But the most interesting fact was that radiation
increased with height, and this was the final proof of the extraterrestrial origin of the observed
radiation.

Figure 1.3: Increase in ionization with height measured by Hess and Kolhörster.

The results by Hess were later confirmed by Kolhörster in 1913 and 1914 for greater heights.
Kolhörster took balloon measurements up to a height of 9300 m and observed that the intensity
of the radiation was relatively constant, with no day-night or weather-dependent variations. The
word Cosmic–Rays (CRs), coined by the American physicist Millikan in 1925, includes all the
particles of extraterrestrial origin that constantly hit the Earth.
The idea of CRs, despite the experimental evidence, was not immediately accepted and the
Nobel prize was assigned to Hess only in 1936. Since then the CRs has been intensely explored,
giving rise to new scientific fields (elementary particle physics and astroparticle physics), new
technologies ( detectors and accelerators) and a new interaction mechanisms in astrophysics.

1.2 The Nature of Cosmic Rays

The Cosmic radiation was generally believed to be γ radiation because of its penetrating power.
In 1928, the Geiger-Müller counter tube was introduced in measurement operations, and con-
firmation that cosmic radiation is indeed electrically charged came readily. A key experiment
on the nature of cosmic rays was the measurement of the intensity variation with geomagnetic
latitude.
In 1933, three independent experiments by Alvarez and Compton, Johnson, and Rossi, discov-
ered that close to the equator there were more cosmic rays coming from West than from East.
This effect, due to the interaction with the geomagnetic field, showed that cosmic rays are
mostly positively charged and thus most probably protons, as it was possible to demonstrate
some years later thanks to more powerful spectrometers.
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It was already clear at that time that the particles observed with balloons were not the primary
CRs but secondary particles initiated by the interaction of energetic CRs with the atmospheric
nuclei. The study of the composition of these secondary particles cascade leading to the dis-
covery of many previously unknown particles (e+, µ±, π±, K±, ...).
When a primary CR interacts with atmosphere, it produces a cascade of ultra-relativistic
charged particles, these cascades were called particle shower. There are two basic types of
showers. Electromagnetic showers are produced by a particle that interacts primarily or ex-
clusively via the electromagnetic force, usually photons or electrons and Hadronic showers
produced by hadrons (i.e. protons, nucleons and other particles made of quarks). We study in
depth Electromagnetic and Hadronic shower in chapter 4.

Figure 1.4:(Left) Sketch of primary and secondary CRs concepts. (Right) Differential energy spectra for
primary cosmic ray nuclei.

Except for neutrinos, which are weakly interacting particles, primary CRs are made up for
99.9% of charged particles, mainly protons (∼ 89%), α–particles (∼ 10%), ionized nuclei of
heavier elements (∼ 10%), electrons/positrons (∼ 1%), and only for a tiny fraction of photons
of energy greater than 1 MeV.
The spectrum of the observed CRs covers 13 orders of energy magnitude, ranging from a few
MeV to 1021 eV ( below 100 GeV , the solar wind would cause their absorption ) and to 32 orders
of magnitude in the flux, from 1 particle/(cm2s) at ∼ 100 MeV to less than 0.01 particles/(km2

century) for the highest observed energies.
Where the energy spectrum is unaffected by the Earth’s magnetic field, the differential flux of
CRs follows a power-law:

I(E) ∝ E−α (1.2.1)

with at least two variations of spectral index α. The regions where there are changes in the
slope are called:

• knee → E ∼ 1015.5 eV, from α ' 2.7 to α ' 3.

• ankle → E ∼ 1018 eV, from α ' 3 to α ' 2.6.
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Figure 1.5: All particles CRs spectrum, taken from http://www.physics.utah.edu/∼whanlon/spectrum.html.

The knee is probably caused by a change in the composition of the primary particles. Instead
the ankle is most probably caused by an interplay between CRs of galactic and extragalactic
origin. CRs with energies above 1020 eV can interact with the Cosmic Microwave Background
(CMB) radiation. This leads to a cutoff in the CR–spectrum, also known as the GZK–cutoff
(Greisen, Zatsepind, Kuzmin).
It is generally believed that CRs below 1015 eV have a galactic origin and have been confined
inside our galaxy for at least 107 yr. This is the reason why these particles have been completely
isotropized before they arrive to the Earth. Particles above 1017 eV are believed to be mostly
of extragalactic origin, since the galactic magnetic field is not able to trap them in our galaxy.
CRs up to about 1018 eV are isotropic, while the explanation of the anisotropy at higher energies
is still under debate.
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1.3 Why photons ?

Even if charged particles are dominant in the composition of the cosmic rays, they are of little
use in all those studies of astronomy and astrophysics because of the difficulty to associate the
detected particles with the position of their sources in the sky. This difficulty is due to the
presence in the Universe, on various scales, of magnetic fields that curve the trajectories of
charged particles.
Only the neutral CRs retain the information about the incoming direction and allow the con-
nection between the observed events and the emitter sources.
Among the neutral known particles: photons and neutrinos can be used to astrophysical ob-
servations, because neutrons decay too quickly, just ∼ 15 minutes to be used in these studies.
The neutrinos are potentially very interesting in VHE astrophysics but their small cross section
represents an experimental limit today.
So photons are then the privileged vectors of information because, being electrically neutral,
they travel across the Universe along straight lines, that can be traced back to the source of
emission.

Figure 1.6: Images of the Crab Nebula at different wavelengths. Radio band (NRAO/ Very large Array) shows
where free electrons are interacting with a magnetic field, infrared band (Spitzer) shows cloud of energetic
electrons trapped within the star’s magnetic field, optical band (HST) shows where hydrogen is in the nebula,
ultraviolet band (Swift) shows cooler electrons, X-ray (Chandra) band shows where very hot electrons are and
finally γ-ray band ( Fermi LAT) shows the pulsar’s emissions in very high energy.

Moreover, photon production involve the vast majority of celestial objects and provide us in-
formations about in several different energy ranges.
Multiwavelength studies allow to appreciate the same object acquiring many informations about
position, structure, dynamics and composition and to understand better the physical phenom-
ena which involve nuclear reactions, magnetohydrodynamics, radiative processes, etc.
In this thesis, in particular, we focus on the most energetic photons, which consist of high
energy (from 100 GeV to 100 TeV) gamma rays. Gamma-ray photons differs fundamentally
from those detected at lower energies, in the sense that they carry non-thermal information
from the Universe. In fact this kind of radiation cannot be generated by thermal processes from
hot celestial objects. So gamma rays track back to those mechanisms where a large amounts of
energy is concentrated onto single quantum emissions. This indeed is the environment where
cosmic rays are produced.
Since the flux and energy spectrum of gamma rays reflects the flux and spectrum of the high
energy particles then studying the gamma component of cosmic radiation it is possible to
obtain information about the charged component, about its origins, production and acceleration
mechanisms. Moreover the study of gamma rays provides a window on the discovery of the
nature and constituents of dark matter.
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Figure 1.7 :The electromagnetic spectrum and its atmospheric windows for observation. For each wavelength
the blue line marks the altitude at which 50% of the incident cosmic radiation is absorbed. A sketch of an
extended air shower (EAS) and a Cherenkov telescope are shown in the lower left corner.

The energy bands can conventionally be divided (although definitions are not standard and
depend by the thresholds of the instruments) in:

• Medium Energy region (ME): energies below 30 MeV. Compton scattering is the
main interaction process used for the detection. In this energy band cosmic γ–rays of this
energy domain are completely absorbed in the atmosphere, therefore satellite telescopes
are the principal detectors.

• High Energy region (HE): energies between 30 MeV and 100 GeV. Pair production is
the main process on the basis of the detection of those photons. The produced leptonic
pairs can be detected with satellites but also by atmospheric balloons.

• Very High Energy region (VHE): energies range between 100GeV and 100 TeV.
When entering the Earth’s atmosphere these photons are enough energetic to produce
electromagnetic showers, which can be well detected by ground-based telescopes through
secondary flashes of Cherenkov light.

• Ultra High Energy (UHE): energies above 100 TeV. This is a rather unknown energy
region. The experiments are placed on the ground and directly reveal the particles pro-
duced in the so-called extensive air showers (EAS). Until now, a good discrimination of
the nature of the primary CR producing the shower is still difficult to achieve.
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Chapter 2

VHE Gamma Ray Physics

To advance in our understanding of astrophysical phenomena, we need to discuss fundamental
interaction processes able to produce or absorb high energy γ-rays.
Any interpretation of astrophysical data requires adequate knowledge of the principal radiation
processes to be able to distinguish which processes are dominant and try to understand why.
Therefore the physics of radiation and absorption mechanism is one of the central subject of
astronomy.
Generally, in astronomy, each wavelength band is characterized by one or two basic radiation
mechanism. However, this is not the case of γ-ray astronomy. Indeed we have to consider a
large number of competing processes which makes the theoretical studies very interesting, but
also challenging.
Indeed very often the same experimental observation data can be equally explained by more
than one radiation mechanism. In these cases to obtain unambiguous identification of γ-ray
production mechanism in celestial objects not only the analysis of experimental data about
spectral, temporal and spatial properties of radiation is required, but also a clear understanding
of features of the radiation processes and their relationship to each other, especially in the
context of multiwavelength studies.
The most relevant non-thermal γ-ray production processes, which are expected to take place
in celestial objects are: Synchrotron radiation, Inverse Compton scattering, Bremsstrahlung
radiation and Neutral Pion decay.
In particular the hadronic process of Neutral Pion decay and Inverse Compton scattering are
the most important mechanisms in the production of VHE γ-rays.
In this chapter, without claim for completeness, we discuss and summarize briefly the main
radiation processes which are relevant in γ-ray astronomy with an emphasis on the mechanism
that operate effectively in the HE and VHE regimes.
Nevertheless we tried to write a self-consistent presentation that allows the reader to appreciate
the main results, understanding how they were obtained. In the appendices, missing parts and
other topics useful for understanding are contained.
We follow several references, but in particular we want to cite the authors: F.Mandl and
G.Shaw [38] for the QED treatments, J.D. Jackson [27] and L.D.Landau and E.M.Lifshitz [34]
for the Electrodynamics topics. Moreover we consider the treatments of G.B. Rybicki and A.P.
Lightman [47] and M.S.Longair [48] and G.R. Blumenthal and R.J. Gould [12] for radiative
processes and F.A Aharonian [6] for pion decay and general conclusions.
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2.1 Synchrotron Radiation

When a charged particle moves in the presence of a magnetic field B, it experiences a force
perpendicular to the field, called Lorentz force. Subjected to a radial acceleration, this particle
continuously emits electromagnetic radiation (see A.2).
If the particle is non-relativistic, the radiation is named Cyclotron emission and the frequency
of emission is roughly the particle gyration frequency. Instead when the particle is relativistic,
the radiation is named synchrotron emission and the resulting spectrum is more complicated,
because the frequency of emission extends over many higher order harmonics of the gyration
frequency.[47]
Due to the large presence of magnetic fields near the celestial objects, synchrotron emission is
one of the main radiation processes in astrophysics.

2.1.1 Total Emitted Power

The motion of a charged particle is subjected to by the general Lorentz equation of motion:

F =
d

dt
(γmv) = q

(
E + v ×B) γ =

1√
1− β2

(2.1.1)

where β = v/c. For sake of simplicity we assume conservation of energy and thus v · E = 0,
this imply that |v| = cost and so |γ| = cost.
We can separate the components of the velocity vector: parallel and perpendicular to the
magnetic field B:

dv//
dt

= 0
dv⊥
dt

=
q

γm
v⊥ ×B (2.1.2)

Thus v// = cost with |v| = cost imply also v⊥ =
cost. This is a uniform circular motion in the
plane orthogonal to B with the a ⊥ v in this
plane.
The combination of this circular motion ⊥ to B
and the uniform motion // to B results in helical
motion (see figure). The magnitude of the accel-
eration is :

a⊥ =
qB

γm
v⊥ = Ωcv⊥ (2.1.3)

where Ωc is the gyration frequency (or cyclotron frequency). We can substitute this result into
the expression of the total power emitted by a relativistic particle with acceleration perpendic-
ular to velocity (A.3.9).

P =
q2

6πε0c3
γ4(a2

⊥) =
q2

6πε0c3
γ4

(
qB

γm

)2

(2.1.4)

Simplifying and substituting v// = |v| sinα where α is the pitch angle between v and B, we
have:

P =
1

6πε0c

q4

m2
γ2β2B2 sin2 α (2.1.5)

Note the dependence of the massm: synchrotron emission is much more important for electrons
than for protons sincem2

e/m
2
p ≈ 3 · 10−7.
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To obtain the total emitted power for an isotropic distribution of velocities, it is necessary to
averaged over all pitch angles for a given speed β:

〈β2
⊥〉 =

β2

4π

∫
sin2αdΩ =

β2

2

∫ +1

−1

(1− cos2 α)d cosα =
2

3
β2 (2.1.6)

Hence the total power emitted by an electron, average over all pitch angle is:

P =
2

3

1

6πε0c

q4

m2
γ2β2B2 (2.1.7)

To compare this quantity with other emitted powers, (as we see in the next section 2.2) it is
useful to express this formula in terms of the Thomson cross-section:

σT =
8π

3
r2
e =

1

6πε2
0c

4

q4

m2
' 0.665 · 10−28m2 (2.1.8)

where re is the classical electron radius, obtain by equating the electrostatic potential energy
with the rest mass energy. Therefore the Total emitted power, which represents also the total
energy loss is:

PSynch =
2

3

c

µ0

σTγ
2β2B2 =

4

3
σT cγ

2β2UB (2.1.9)

where UB = B2/2µ0 is the magnetic energy density.

2.1.2 Synchrotron Spectrum

The spectrum of the emitted photons can be calculated by considering the classical Liénard-
Wiechert potentials and the radiation field (see A.2) in our case of a charge moving in a magnetic
field. The radiation field due to a radial acceleration is:

Erad(r, t) =
q

4πε0

[
n̂×

(
(n̂− β)× β̇

)
c(1− n̂ · β)3R

]
(2.1.10)

The Pointing vector gives the power emitted per unit of area A:

S =
1

µ0

E ×B =
1

µ0c
|Erad(t)|2 =

dW

dtdA
(2.1.11)

Thus the energy emitted per unit of area is:

dW

dA
= cε0

∫ +∞

−∞
|Erad(t)|2dt (2.1.12)

now we introduce the Fourier transform of the radiation field :

Erad(t) =
1√
2π

∫ +∞

−∞
Erad(ω) exp (−iωt)dω

Erad(ω) =
1√
2π

∫ +∞

−∞
Erad(t) exp (iωt)dt

(2.1.13)

where Erad(t) = |Erad(t)|. Using the Parseval’s theorem we know that:∫ +∞

−∞
|Erad(t)|2dt =

∫ +∞

−∞
|Erad(ω)|2dω (2.1.14)
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Since |Erad(ω)|2 is real and Erad(ω) is symmetric, we have
∫ +∞
−∞ |E

2
rad(ω)|2dω = 2

∫∞
0
|E2

rad(ω)|2dω
and so the energy emitted per unit of area is:

dW

dA
= 2cε0

∫ ∞
0

|Erad(ω)|2dω (2.1.15)

This implies that the energy emitted per unit frequency and unit of solid angle is:

dW

dωdΩ
= 2cε0R

2|Erad(ω)|2 (2.1.16)

where we have substituted dA = R2dΩ. Inverting the Fourier transform we obtain:

dW

dωdΩ
= 2cε0R

2|Erad(ω)|2 =
cε0

π

∣∣∣∣∫ +∞

−∞
RErad(t)e

iωtdt

∣∣∣∣2 (2.1.17)

To simplify the notation, is useful evaluate the quantity RErad(ω):

RErad(ω) =
1√
2π

q

4πε0c

∫ +∞

−∞

[
n̂×

(
(n̂− β)× β̇

)
(1− n̂ · β)3

]
eiωtdt (2.1.18)

To solve this integral we make a change of variable, using the definition of retarded time
t′ = t−R(t′)/c with R = |r − r0|:

dt =

(
∂t

∂t′

)
dt′ = (1− n̂ · β)dt′ (2.1.19)

and express eiωt in terms of t′ only: eiωt = exp
(
iω(t′ +R/c)

)
.

We assume the radiation is being observed far enough away from the source, i.e. that r(t) �
r0(t′), so that R ' r. Then we expand r to first order in r0, which gives R(t′) ' |r| − n̂ · r0.
Thus we obtain:

RErad(ω) ' 1√
2π

q

4πε0c

∫ +∞

−∞

[
n̂×

(
(n̂− β)× β̇

)
(1− n̂ · β)2

]
exp

(
iω(t′ − n̂ · r0(t′)/c)

)
dt′ (2.1.20)

Then we use the identity :

n̂×
(
(n̂− β)× β̇

)
(1− n̂ · β)2

=
d

dt′

(
n̂×

(
n̂× β

)
(1− n̂ · β)

)
(2.1.21)

and integrate by parts. Replacing these terms into (2.1.17) we obtain the expression for the
energy emitted per unit of frequency per solid angle:

dW

dωdΩ
=

q2ω2

16π3ε0c

∣∣∣∣∫ +∞

−∞

(
n̂× (n̂× β)

)
exp

(
iω(t′ − n̂ · r0(t′)/c)

)
dt′
∣∣∣∣2 (2.1.22)

This is now in a form that can be integrated. To simplify the integration, we need first to
simplify the triple cross product. To do this we have to consider the geometrical meaning of
the triple cross product.
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Consider a charged particle moving along an or-
bital trajectory with radius of curvature a.
The coordinate system is set up so that the charge
is moving in the xy-plane and passes through the
origin at the retarded time t′ = 0 with an instan-
taneous velocity in the x-direction.
The versor ê⊥ is direct along the y axis
and ê// = n̂× ê⊥.
Thus, ê// and ê⊥ define a plane perpendicular to
an observers line of sight defined by the direction
n̂. This is the plane of propagation, defined by
the triple cross product n̂×(n̂×β) in the integral.
The magnetic field B must also be in the plane containing n̂ and β , so ê// and ê⊥ define
directions parallel and perpendicular to the projection of the magnetic field on the propagation
plane.
At any arbitrary retarded time t’, for |β| ' 1, we have:

n̂× (n̂× β) = ê//cos

(
vt′

a

)
sinϑ− ê⊥ sin

(
vt′

a

)
(2.1.23)

The exponential term in the integral (2.1.22) is simplified using a small angle expansion:

t′ − n̂ · r0(t′)

c
= t′ − a

c
cosϑ sin

(
vt′

a

)
' 1

2γ2

[
(1 + γ2ϑ2)t′ +

c2γ2t′3

3a2

]
(2.1.24)

where 1− v/c ' 1/2γ2 and v ' c, ultra-relativistic regime. Now we calculate the spectrum in
the two polarization states:

dW

dωdΩ
=

dW//

dωdΩ
+
dW⊥
dωdΩ

(2.1.25)

defined as:
dW//

dωdΩ
=

q2ω2ϑ2

16π3ε0c

∣∣∣∣∫ exp

[
iω

2γ2

(
ϑ2
γt
′ +

c2γ2t′3

3a2

)]
dt′
∣∣∣∣2

dW⊥
dωdΩ

=
q2ω2

16π3ε0c

∣∣∣∣∫ ct′

a
exp

[
iω

2γ2

(
ϑ2
γt
′ +

c2γ2t′3

3a2

)]
dt′
∣∣∣∣2

(2.1.26)

where ϑ2
γ = 1 + γ2ϑ2, now we make another change of variables:

y ≡ γ
ct′

aϑγ
η ≡

ωaϑ3
γ

3cγ3
(2.1.27)

dW//

dωdΩ
=

q2ω2ϑ2

16π3ε0c

(
aθγ
γc

)2∣∣∣∣∫ exp

[
3

2
iη

(
y +

1

3
y3

)]
dy

∣∣∣∣2
dW⊥
dωdΩ

=
q2ω2ϑ2

16π3ε0c

(
aθ2

γ

γ2c

)2∣∣∣∣∫ y exp

[
3

2
iη

(
y +

1

3
y3

)]
dy

∣∣∣∣2
(2.1.28)

These integrals can be expressed in terms of the modified Bessel function of 1/3-rd and 2/3-rd
order:

dW//

dωdΩ
=

q2ω2ϑ2

16π3ε0c

(
aθγ
γc

)2

K2
1/3(η)

dW⊥
dωdΩ

=
q2ω2ϑ2

16π3ε0c

(
aθ2

γ

γ2c

)2

K2
2/3(η) (2.1.29)
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We next integrate over the solid angle to give the energy per frequency per orbit, emitted by the
charge in the plane of propagation. Along one orbit, the emission is almost completely confined
within an angle 1/γ around a cone of half-angle α (the pitch angle). So we use dΩ ' 2πsinαdϑ.
Thus,

dW//

dωdΩ
' q2ω2a2 sinα

6π2ε0c3γ2

∫
ϑ2
γϑ

2K2
1/3(η)

dW⊥
dωdΩ

=
q2ω2a2 sinα

6π2ε0c3γ4

∫
ϑ4
γK

2
2/3(η)

(2.1.30)

These integrals were first solved by Westfold [51] and the results are:

dW//

dωdΩ
'
√

3q2γ sinα

8π2ε0c
[F (x)−G(x)]

dW⊥
dωdΩ

=

√
3q2γ sinα

8π2ε0c
[F (x) +G(x)]

(2.1.31)

where
F (x) ≡ x

∫ ∞
x

K5/3(ζ)dζ G(x) ≡ xK5/3(x) (2.1.32)

and x = ω/ωc, where ωc = 3
2
qB
m
γ2 sinα is the critical frequency, above this frequency the

spectrum results significantly suppressed.

Figure 2.1: The functions F (x) and G(x) that appear in the synchrotron power spectrum are plotted in linear
and logarithmic scales. .

To obtain from these equations the power per unit of frequency, we divide by the orbital period
T = 2πγm

qB
, and this gives:

P// (ω) =

√
3q3B sinα

16π2ε0mc
[F (x)−G(x)]

P⊥(ω) =

√
3q3B sinα

16π2ε0mc
[F (x) +G(x)]

(2.1.33)

These are the components of the power per unit of frequency emits by a single charge cor-
responding to polarisation modes // and ⊥ to B. The total synchrotron power per unit of
frequency is then:

P (ω) = P// (ω) + P⊥(ω) =

√
3q3B sinα

8π2ε0mc
F (x) (2.1.34)

The main implications of the synchroton spectrum are that the emission is broadband
(∆ω/ω ∼ 1), the spectrum is a power-law at small x and the emission peak is near x ' 0.3.
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2.2 Compton Scattering

Compton scattering occurs when a photon is scattered by an electron (or positron).
In this process γ+ e− → γ+ e− we have an electron and a photon in the initial and final state.
We discuss Compton scattering in the general case, but we are more interested in high energies
processes. For low photon energies, it reduce to the classical case of Thomson scattering. For
relativistic electrons, low energy photons can be efficiently upscattered to high energy photons.
This process is called Inverse Compton scattering and it is probably the main mechanism of
VHE γ-rays production.

2.2.1 Relativistic Kinematics in Compton Scattering

Consider a photon of energy Eγ scattering on an electron of energy E. In the observer ’s
reference frame they can be represented by the four-momenta k = (Eγ,kc) and p = (E,pc).
Now for the sake of simplicity we assume that they collide head on along the z-axis, and that
the photon is moving forward. Later we will face with a more general setup.
To study this process is useful switch to the reference frame where the electron is at the rest.
This is the Rest Frame of the system and all quantities are denoted by 0 as subscript.

k0 =
(
Eγ,0, 0, 0, |k0|c

)
k′0 =

(
E ′γ,0, |k′0|c sin θ0, 0, |k′0|c cos θ0

)
p0 =

(
mec

2, 0, 0, 0
)

p′0 =
(
E ′0,−|p0|c sinφ0, 0,−|p0|c cosφ0

) (2.2.1)

Figure 2.2: Compton Scattering in the Rest Frame.

The conservation of four-momenta is written as k0 + p0 = k′0 + p′0, or, in components:
• Energy conservation Eγ,0 +mec

2 = E ′γ,0 + E ′0
• Tri-momenta conservation |p′0|2 = |k0|2 + |k′0|2 − 2|k0||k′0| cos θ0

Equating conservation laws we obtain:

(Eγ,0 − E′γ,0 +mec
2)2 −m2

ec
4 = E2

γ,0 + E′ 2γ,0 − 2Eγ,0E
′
γ,0 cos θ0 (2.2.2)

the energy of scattered photon E ′γ,0 in the rest frame is :

E ′γ,0 =
mec

2Eγ,0
mec2 + Eγ,0(1− cos θ0)

→ E ′γ,0 =
Eγ,0

1 + x(1− cos θ0)
x =

Eγ,0
mec2

(2.2.3)

We can note that in the rest frame E ′γ,0 ≤ Eγ,0 but we have to boost this result in the observer
’s reference frame. We are able to distinguish two different regimes: Thomson limit x� 1 and
extreme Klein-Nishina limit x� 1.
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To describe the photon scattered in the observer ’s reference frame we have to apply the boost
matrix Bz along z-axis to k′0 and k0 four-vectors, where β =

pc

E
and γ =

1√
1− β2

=
E

mec2
.

k′ = Bz(−β)k′0 =


E ′γ

|k′|c sin θ
0

|k′|c cos θ

 =


γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ




E ′γ,0
|k′0|c sin θ0

0
|k′0|c cos θ0

 (2.2.4)

From the first component of the four-vector k′0 we obtain the relativistic Doppler shift formula
for the scattered photon:

E ′γ = γE ′γ,0(1− β cos θ0) (2.2.5)

With the same boost applied to the four-vector of the incoming photon k = Bz(−β)k0 we obtain
the respective energy relation Eγ = γ(1− β)Eγ,0. To simplify our steps is more comfortable to
multiply both member of the last equation for γ(1 +β) and get Eγ,0 = γ(1 +β)Eγ = Eγ

E + pc

mec2
.

Substituing we obtain:

E ′γ =
γ2mec

2Eγ(1 + β)(1− β cos θ0)

mec2 + γEγ(1 + β)(1− cos θ0)
=

EEγ(E + pc)(1− β cos θ0)

m2
ec

4 + Eγ(E + pc)(1− cos θ0)
(2.2.6)

Let us discuss the two regimes, function of x parameter:

• Thomson limit x� 1

In this condition we have that E ′γ ' Eγ,0
and so we obtain:

E ′γ ' γ2Eγ(1 + β)(1− β cos θ0) (2.2.7)

If β → 1 we have E ′γ,min ≈ E ′γ for θ0 = 0
and E ′γ,max ≈ 4γ2Eγ for θ0 = π.
In this case a low energy photon have a light
interaction with relativistic electron.

• Extreme Klein-Nishina limit x� 1

In this case is useful to rescale the energy in
units of mec

2, so we write Ẽγ = Eγ/mec
2.

E ′γ = E
γẼγ(1 + β)(1− β cos θ0)

1 + γẼγ(1 + β)(1− cos θ0)
(2.2.8)

with β → 1 we obtain:

E ′γ = E
b

1 + b
b = 4γẼγ (2.2.9)

In the high energy limit b� 1 therefore
E ′γ → E. This means that the relativistic
electron has an hard interaction with the
photon and it transfers all its kinetic energy
to the photon.
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The emission angle in the two reference frames could be related dividing the second component
of k′ for the fourth obtaining the following relation:

tan θ =
sin θ0

γ(cos θ0 − β)
(2.2.10)

If β ≈ 0 we find again the rest frame description of the process, instead in the ultra-relativistic
limit β → 1 the photon is scattered backward with tan θ ≈ −γ−1 cot θ0/2.
Now we consider a more general situation. We assume that electron is moving backward along
the z-axis and that the scattering process takes place in the same xy-plane for the sake of
semplicity.
The initial and final states of the photon and the electron could be represented by the following
four-momenta:

k =
(
Eγ,kc) k′ =

(
E ′γ,k

′c)
p =

(
E,pc) p′ =

(
E ′,p′c

) (2.2.11)

Figure 2.3: Compton Scattering in the observer ’s reference frame.

Where:
ϑ the angle between the direction of the incoming electron and the incoming photon,
ϕ the angle between the direction of the incoming electron and the scattered photon,
θ the angle between the direction of the incoming photon and the scattered photon.
The four-momentum conservation p+ k = p′ + k′ implies that:

(pk) = (p′k′) = (p+ k − k′)k′ = (pk′) + (kk′) (2.2.12)

expliciting the four-vectors we have:

EEγ − pkc2 = E ′γ − pk′c2 + EγE
′
γ(1− cos θ) (2.2.13)

and substituting we obtain

Eγ(1− β cosϑ) = E′γ(1− β cosϕ) +
EγE

′
γ

E
(1− cos θ) (2.2.14)

the energy of scattered photon E ′γ in the observer ’s reference frame, where β =
|p|c
E

, is then

E ′γ = Eγ
1− β cosϑ

1− β cosϕ+ Eγ
E

(1− cos θ)
(2.2.15)

If β ≈ 0 we find again the result obtained in the rest reference frame. In the Extreme Klein-
Nishina limit we have ϑ ≈ θ ≈ π and ϕ ≈ 0, hence in the ultra relativistic limit β → 1 we
obtain again E ′γ → E.
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2.2.2 Compton Scattering in Quantum Electrodynamics

We are interested in high-energy processes so we have to consider quantum effects. Now we
derive the differential cross section for unpolarized Compton scattering describing the lower
order interaction in perturbative Quantum Electrodynamics. In this section we use natural
units where c = } = 1 and the Feynman slash notation.
In the initial state we have an electron with momentum p = (E,p) in the spin state u = us(p),
and a photon with momentum k = (ω,k) and polarization vector ε = εr(k). In the final state
we have the corresponding quantities p′ = (E ′,p′) u′ = u′s′(p

′) and k′ = (ω′,k′) ε = ε′r ′(k
′).

This process is described by two independent Feynman diagrams showed in Figure 2.4.

Figure 2.4: Feynman Diagrams for γ + e− → γ + e− .

With Feynman rules for QED we can obtain the Feynman amplitudes from diagrams:

(a) Ma = ū′ε′∗µ (iqγµ)
i(/p+ /k +m)

(p+ k)2 −m2
(iqγν)ενu

(b) Mb = ū′ε∗µ(iqγµ)
i(/p− /k′ +m)

(p− k′)2 −m2
(iqγν)ε′νu

(2.2.16)

To obtain unpolarized Feynman amplitude we have to average over initial polarization and sum
over the final polarization.

|M|2 =
1

4

∑
r,s

∑
r ′,s′

|M|2 =
1

4

∑
r,s

∑
r ′,s′

M∗M (2.2.17)

We are interested in calculating the differential cross section for the process and we know that
it is proportional to the squared Feynman amplitude:

dσ

dΩ
∝ |Ma +Mb|2 = |Ma|2 + |Mb|2 +M∗

aMb +MaM∗
b (2.2.18)

so we start to calculate the first term using relations (2.2.16) and (2.2.17);

|Ma|2 =
1

4

q4

((p+ k)2 −m2)2

∑
r,s

∑
r ′,s′

ū′ε′∗µ γ
µ(/p+ /k +m)γνενuū

′ε∗σγ
σ(/p+ /k +m)γρε′ρu

(2.2.19)
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where the spin summation for the electron states can be performed using relations 1

2∑
s=1

u(p)ū(p) = /p+m
2∑

s′=1

u(p′)ū(p′) = /p
′ +m (2.2.20)

and the summation for the photon polarization can be perfomed using the relations for real
photons:

2∑
r=1

ε∗σεν = −ησν
2∑

r ′=1

ε′∗µ ε
′
ρ = −ηµρ (2.2.21)

Expliciting spinorial indexes we can note that these summations can be written as a trace of
γ-matrices products.

|Ma|2 =
1

4

q4

((p+ k)2 −m2)2
Tr

[
γµ(/p

′ +m)γµ(/p+ /k +m)γν(/p+m)γν(/p+ /k +m)

]
(2.2.22)

It is useful to introduce the Lorentz invariant Mandelstam variables s, t, u, according to four-
momentum conservation. From these, we obtain useful conditions to calculate the traces.

s = (p+ k)2 = (p′ + k′)2 = 2pk +m2 = 2p′k′ +m2 pk = p′k′

t = (p− p′)2 = (k − k′)2 = −2pp′ + 2m2 = −2k′k′ kk′ = pp′ −m2

u = (p− k′)2 = (p′ − k)2 = −2pk′ +m2 = −2p′k +m2 pk′ = p′k

s+ t+ u = 2m2 pp = p′p′ = m2 kk = k′k′ = 0

(2.2.23)

The calculation of the trace is just a mechanical procedure and is given in Appendix B.
The result is:

|Ma|2 =
2q4

(s−m2)2

[
4m4 − (s−m2)(u−m2) + 2m2(s−m2)

]
(2.2.24)

Note that the effect of the substitution k → −k′ and s
 u allows to obtain:

|Mb|2 =
2q4

(u−m2)2

[
4m4 − (u−m2)(s−m2) + 2m2(u−m2)

]
(2.2.25)

The interference terms can be obtained in the same way calculating the traces. The evaluation
can be semplified if we realize thatMa

∗Mb =MaMb
∗.

Ma
∗Mb +MaMb

∗ =
4q4

(s−m2)(u−m2)

[
4m4 +m2(s−m2) +m2(u−m2)

]
(2.2.26)

Finally we obtain the Feynman amplitude for Compton scattering:

|Ma +Mb|2 = 2q4

[
4m4

(
1

s−m2
+

1

u−m2

)2

+4m2

(
1

s−m2
+

1

u−m2

)
−
(
u−m2

s−m2
+
s−m2

u−m2

)]
(2.2.27)

1N.B. There is another common normalization
2∑
s=1

u(p)ū(p) = /p+m

2m used in several books.
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2.2.3 The Klein-Nishina formula

The Feynman amplitude |Ma +Mb|2 is an invariant quantity and it could be used to evaluate
differential cross section in any reference frame.
In this section we calculate the differential cross section in the rest frame, using Mandelstam
variables and the results obtained in 2.2.1.

s = (p+ k)2 = m2 + 2mω u = (p− k′)2 = m2 − 2mω′

ω′ =
ω

1 + ω
m

(1− cos θ)
→

(
1

ω
− 1

ω′

)
=

(cos θ − 1)

m

(2.2.28)

So the Feynman amplitude in the rest frame is:

|Ma +Mb|2RF = 2q4

[
4m4

(
cos θ − 1

2m2

)2

+ 4m2

(
cos θ − 1

2m2

)
+
ω′

ω
+
ω

ω′

]

= 2q4

[
ω′

ω
+
ω

ω′
− sin2 θ

] (2.2.29)

The differential cross section in the rest frame is called Klein-Nishina formula and could be
written using the equation obtained in B.2.1 where E = ω and the dimensionless fine structure
constant is α = q2

4π
. (

dσKN
dΩ′

)
RF

=
α2

2m2

(
ω′

ω

)2[
ω′

ω
+
ω

ω′
− sin2 θ

]
(2.2.30)

• In the low-energy limit ω � m, we have ω′ ≈ ω and the differential cross section reduces to:(
dσ

dΩ′

)
RF

=
α2

2m2

[
1 + cos2 θ

]
(2.2.31)

The total cross section could be easily evaluated integrating in d cos θ:

σ =

∫
dσ

dΩ′
= 2π

α2

2m2

∫ 1

−1

d cos θ(1 + cos2 θ) =
8π

3

α2

m2
σT =

8π

3
r2
e ' 0.665 · 10−28m2

(2.2.32)
where σT is the Thomson cross section classically derivable from interaction between an electron
and classical electromagnetic field, where re = α

m
is the classical electron radius.

• In the high-energy limit ω � m. We work in CoM frame, more comfortable in this case.
The Mandelstam variables are: s ≈ 4ω2 and u ≈ 2ω2(1 + cos θ).
With the condition m ≈ 0:

|Ma +Mb|2 ' 2q4

[
u

s
+
s

u

]
= 2q4

[
1 + cos θ +

1

1 + cos θ

]
(2.2.33)

So that the differential cross section in the CoM results:(
dσ

dΩ′

)
CoM

=
α2

2s

[
1 + cos θ +

1

1 + cos θ

]
(2.2.34)
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In the international system of units Eγ,0 = }ω0 = hν0 and re =
1

4πε0

q2

mec2
, we define an

auxiliary variable x = Eγ,0/mec
2 and rewrite the Klein Nishina differential cross section:(

dσKN
dΩ′

)
RF

=
r2
e

2

(
1

1 + x(1− cos θ)

)2[
1 + cos2 θ +

x2(1− cos θ)2

1 + x(1− cos θ)

]
(2.2.35)

The total cross section can be found integrating in the solid angle Ω′.

σKN = 2πr2
e

[
1 + x

x3

(
2x(1 + x)

1 + 2x
− ln(1 + 2x)

)
+

ln (1 + 2x)

2x
− 1 + 3x

(1 + 2x)2

]
(2.2.36)

• Thomson limit x� 1

σ ' σT

[
1− 2x+

26x2

5
+ · · ·

]
• Extreme K-N limit x� 1

σ ' 3

8

σT
x

[
ln (2x) +

1

2

]
where: σT ' 0.665 b

(2.2.37)

Figure 2.5: Klein Nishina Cross Section.

The angular distribution of the differential cross section showed in Fig.2.5 give us relevant
information about the Inverse Compton scattering for several values of x.

Figure 2.6: Angular distribution in linear and logarithmic scale for different values of x.

Note that at high photon energies we find preferentially forward scattering.
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2.2.4 Energy loss rate and Spectrum for single scattering

We want to obtain an expression of the average electron energy loss rate due to inverse Compton
scattering into photons with distribution n(Eγ).
In the general case the total loss rate per electron could be computed from:

dE

dt
=

∫
(E ′γ − Eγ)

(
dNγ

dtdE ′γ

)
dE ′γ =

dE ′γ
dt
− dEγ

dt
(2.2.38)

where
dNγ

dtdE ′γ
is the Compton Spectrum of scattered photons for a single relativistic electron and

it can be written in the most general way as:

dNγ

dtdE ′γ
= n(E ′γ, Eγ)c

(
dσKN
dΩdE ′γ

)
dΩdE ′γdEγ (2.2.39)

The electron energy loss rate and scattering rate are invariant quantities and usually were
calculated in the rest frame. Now for the sake of simplicity we calculate the electron energy
loss in the Thomson limit and then we quote the general results from several authors.

• Thomson limit
In this regime we can simply calculate the electron energy loss assuming an isotropic distribution
of photons. In the rest frame the scattering rate is:

dNγ

dt
= σT c

∫
n(Eγ,0)dEγ,0 (2.2.40)

where n(Eγ,0) is the numerical density of photons at some given energy Eγ,0. Considering the
invariant quantities and knowing that also n(Eγ,0)dEγ,0/Eγ,0 is invariant, we obtain:

dEγ
dt

= σT c

∫
Eγn(Eγ)dEγ

dE ′γ
dt

=
dE ′γ,0
dt

= σT c

∫
E ′γ,0n(Eγ,0)dEγ,0 = σT c

∫
E ′ 2
γ,0

n(Eγ,0)

Eγ,0
dEγ,0

(2.2.41)

in the Thomson limit E ′γ,0 ' Eγ,0 therefore we obtain:

dE ′γ
dt

= σT c

∫
E2

γ,0
n(Eγ)

Eγ
dEγ (2.2.42)

substituing with Eγ,0 = γEγ(1−β cosϑ) where ϑ is the angle between the electron velocity and
the incoming photon

dE ′γ
dt

= σT cγ
2

∫
(1− β cosϑ)2Eγn(Eγ)dEγ (2.2.43)

For an isotropic distribution of photons, we have 〈(1− β cosϑ)2〉iso = 1 +
1

3
β2 giving:

dE ′γ
dt

= σT cγ
2

(
1 +

1

3
β2

)
Uγ (2.2.44)

where Uγ =
∫
Eγn(Eγ)dEγ is the initial photon energy density.
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The net power converted into increased radiation from Inverse Compton scattering PIC is this
quantity minus the rate of the initial photon energy distribution and corresponds to the electron
energy loss rate. Remembering that γ2 − 1 = γ2β2 we finally obtain

dE

dt
=
dE ′γ
dt
− dEγ

dt
= PIC =

4

3
σT cγ

2β2Uγ (2.2.45)

This expression is identical to the synchroton energy loss, once the radiation energy density Uγ
is replaced by the magnetic energy density UB.

PIC
PSync

=
Uγ
UB

(2.2.46)

The reasons of this remarkable similarity is that synchroton radiation can be viewed as Compton
scattering of the virtual photons of the static magnetic field. This similarity can be observed
also in the spectrum as we will see in the SSC model.
• General case and Klein-Nishina regime
The Spectrum of photons scattered by a high-energy electron in the general case can be ana-
lytically calculated from (2.2.39) using the differential Klein Nishina cross section ad the result
is the following (Jones, Blumenthal and Gould):

dNγ

dtdE ′γ
=

3

4

σT c

γ2

∫
n(Eγ)

Eγ

(
2q ln q + (1 + 2q)(1− q) +

1

2

(4γEγq)
2

(1 + 4γEγq)
(1− q)

)
dEγ (2.2.47)

where for sake of semplicity we define q =
E ′γ

4γ2Eγ(1− z)
=

z

b(1− z)
and z =

E ′γ
E

.

The energy-loss rate of an electron with energy E, due to Inverse Compton scattering in isotropic
field of photons Eγ is given by the equation (2.2.38) where using (2.2.47) we obtain:

dE

dt
=

3

4
σT c

∫
n(Eγ)

Eγ

[(
6 +

b

2
+

6

b

)
ln (1 + b)− ln2 (1 + b)+

−2Li

(
1

1+b

)
− (11/12)b3+8b2+13b+6

(1+b)2

]
dEγ

(2.2.48)

where Li(x) =
∫ 1

x
(1− y)−1 ln (y)dy.

In the Thomson and Klein-Nisihina regimes (2.2.48) reduce to the well known expressions:

dE

dt
=

4

3
σT cγ

2

∫
Eγn(Eγ)dEγ at b� 1

dE

dt
=

3

8
σT c

∫
n(Eγ)

Eγ

(
ln b− 11

6

)
dEγ at b� 1

(2.2.49)

The different form of those energy loss rates has implications on the shape of electron spectrum,
and consequently in the γ-rays spectrum.
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If we consider the spectrum of scattered photons due to a power-law distribution of relativistic
electrons ne(Ee) ∝ E−pe we obtain:

dNγ

dEγ
∝ E−(p+1)/2

γ → Thomson regime

dNγ

dEγ
∝ E−(p+1)

γ logEγ → KN regime

(2.2.50)

The same spectral index 2 describes the shape of synchrotron radiation, which is:

dNγ

dEγ
∝ E−(p+1)/2

γ → Synchrotron radiation (2.2.51)

A more detailed calculations about spectral indices can be found i.e. [12] and in [39].

2.3 Synchrotron Self-Compton (SSC)

The simplest leptonic model observed in astrophysical environment and able to provide VHE γ-
rays spectrum is called Synchrotron Self-Compton (SSC) mechanism. The synchroton spectrum
is due to the interaction of relativistic electrons with magnetic fields, while the IC spectrum
comes from the interaction of relativistic electrons with radiation fields, such as synchrotron,
thermal infrared, or CMB radiation.

Figure 2.7: Crab Nebula Spectral Energy Distribution and SSC model.

The SSC signature is characterized by a superposition of a synchrotron spectrum, from radio
to soft γ-rays, and an IC spectrum, from soft γ-rays to VHE γ-rays. Compton upscattering of
synchrotron photons by the electrons themselves preserves the spectral index in the Thomson
regime.

2It is important not to confuse the spectrum with the spectral energy distribution Eγ
dNγ

dEγ
∝ νFν .
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2.4 Bremsstrahlung

When a high energy electron encounters the Coulomb field of another charge, it emits bremsstrahlung
radiation. The word “bremsstrahlung” means braking radiation because the electron rapidly
decelerates when the other charge is a massive charged particle or a nucleus.
The derivation can be done classically using the
dipole approximation for non-relativistic particles
(see i.e. Rybicki & Lightman, 2008 [47]), but
we are more interested in relativistic non-thermal
bremsstrahlung.
Thus we have to consider a quantum description
of this interactions using Weizsaker-Williams
approach (see Blumenthal & Gould [12]) whereby
the bremsstrahlung process is treated as Compton
scattering of the virtual photons of the Coulomb
field of the scattering charge.
We only need to consider electron-nucleus
bremsstrahlung because it is the main effect, less
radiation is emitted for collisions between parti-
cles of the same kind. (e.g. electron-electron).

Figure 2.8: Sketch of the bremsstrahlung
radiation (semi-classical view).

In electron-nucleus bremsstrahlung, the electrons are the primary emitters because, compared
for example with protons, their acceleration is mp/me times greater.

2.4.1 Weizsaker-Williams approach

The basic idea of Weizsaker-Williams approach is that the bremsstrahlung can be considered
as Compton scattering, by the incoming electron of the virtual photons of the Coulomb field of
a massive charged particle. This approach allows to simplify the calculation of the cross section
and the bremsstrahlung spectrum.
A more complete discussion based on quantum
electrodynamics was provided by Bethe Heitler
in 1934. [11]
The main relation giving the bremsstrahlung
cross section is:

dσB = dNdσC (2.4.1)

where dσC is the differential Compton cross
section and dN is the differential number of in-
cident virtual photons in the electron’s rest frame.

Figure 2.9: Simplified Feynman diagrams for
bremsstrahlung.

In order to calculate this quantity dN we consider the transverse component of the electric field
in |Et(r, t)| in the extreme relativistic limit β ≈ 1, as we see in (A.2.3).

|Et(r, t)| =
1

4πε0

qγb

(b2 + γ2c2t2)3/2
(2.4.2)

where b = R sin θ is the impact parameter. If dN is the differential number of these incident
photons and dA is the element of area we obtain as (2.1.15) that:

S =
1

µ0c
|Et(t)|2 =

dW

dtdA
=

}ωdN
dtdA

(2.4.3)
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Using the Fourier transform of the transverse field as (2.1.2) we obtain that

E(ω) =
1√
2π

∫
E(t)eiωtdt =

q√
2π4πε0cb

∫ +∞

−∞

exp (iωbx/γc)

(1 + x2)3/2
dx (2.4.4)

where we had the change variable x = γct/b. The integral solution is the modified Bessel
function at first order 2|ωb/γc|K1(ωb/γc) that for ω � γc/b is approaches 2. Thus for a given
ω: we have that:

Et(ω)→ q√
2π2πε0cb

b� bmax =
γc

ω
(2.4.5)

if the charge is incident at random impact parameters, we can take dA = 2πbdb. Then using
(2.1.15) and (2.4.3) we have:

}ωdN
dA

= 2cε0|Et(ω)|2dω (2.4.6)

From this relation, rememebering that α = e2/(4πε0}c) we obtain:

dN =
2z2α

π

(
db

b

)(
dω

ω

)
(2.4.7)

In order to obtain the differential cross section extreme relativistic limit, we have to consider
some kinematic and transformation relations. To be careful about the notation we will indicate
the energy with the symbol E. It is convenient to express photon energies in the following
units:

Observer’s reference frame → Ẽγ = Eγ/γmc
2 (units of γmc2)

Electron rest frame → Ẽγ,0 = Eγ,0/mc
2 (units of mc2)

(2.4.8)

Thus we have with same meaning of Compton’s kinematic:

Ẽ ′γ,0 =
Ẽγ,0

1 + Ẽγ,0(1− cos θ0)

Ẽγ = Ẽ ′γ = Ẽγ,0(1− cos θ0) β ≈ 1

(2.4.9)

From wich we obtain:

Ẽγ,0 =

(
Ẽγ

1− Ẽγ

)
1

(1− cos θ0)
=

Ẽ ′γ,0

1− Ẽγ
(2.4.10)

For fixed Ẽγ, the minimum photon energy before scattering in electron rest system is:

Ẽ min
γ,0 =

Ẽγ

2(1− Ẽγ)
(2.4.11)

The maximum energy is gotten from ωmax ∼ γc/bmin ∼ γmc2/} thus Ẽ max
γ,0 ∼ γ � Ẽ min

γ,0 .
Now with the help of the kinematic relations the Klein Nishina formula (2.2.30) can be written
as function of Ẽγ,0 and Ẽγ, with the differential solid angle transformed in terms of dẼγ.

dΩ′0 = 2πd(1− cos θ0) =
2π

Ẽγ,0

[
dẼγ

(1− Ẽγ)2

]
(2.4.12)

where dΩ′0 is calculated in the rest frame of the electron.



2.4. BREMSSTRAHLUNG 27

Hence the differential Klein Nishina cross section becomes:

dσKN = πr2
0

1

Ẽγ,0

[
1− Ẽγ +

1

1− Ẽγ
− 2

Ẽγ,0

Ẽγ

1− Ẽγ
+

1

Ẽγ,02

(
Ẽγ

1− Ẽγ

)2]
dẼγ (2.4.13)

Replacing this expression in the main formula (2.4.1), an integration over Ẽγ and b can be
performed.

dσBr = dNdσKN = 4αz2r2
0

[
4

3
(1− Ẽγ) + Ẽ2

γ

](
dẼγ
Eγ

)∫ (
db

b

)
(2.4.14)

Now we have that bmin ∼ }
mc

while

bmax ∼
}
mc

γ

Ẽ min
γ,0

=
2(γ/mc)(1− Ẽγ)

Ẽγ
(2.4.15)

We have finally obtained the bremsstrahlung differential cross section in extreme relativistic
regime:

dσBr = 4αz2r2
0

[
4

3
(1− Ẽγ) + Ẽ2

γ

](
dẼγ

Ẽγ

)
ln

(
2γ(1− Ẽγ)

Ẽγ

)
(2.4.16)

which is essentially the same as the exact expression, in the extreme relativistic limit, obtained
through a more rigorous quantum discussion (see [28]).

dσBr = 4αz2r2
0

dω

ω

[
E2
i + E2

f −
2

3
EiEf

](
ln

2EiEf
mc2}ω

− 1

2

)
(2.4.17)

2.4.2 Energy loss rate and Spectrum

For an electron moving through a number density nt of the same type of charged particle, the
bremsstrahlung spectrum is:

dNγ

dtdE ′γ
= cnt

(
dσBr
dE ′γ

)
(2.4.18)

To calculate the total energy loss we have to integrate the bremsstrahlung spectrum:

dE

dt
=

∫ (
dNγ

dtdE ′γ

)
E ′γdE

′
γ (2.4.19)

the only explicit simple expression can be found in the strong shielding and weak shielding
limit. The weak shielding or completely ionized case the energy loss is:

dE

dt
= 4αz2r2

0cntEe

[
ln

(
2Ee
mc2

)
−1

3

]
(2.4.20)

while for a strong shielding:

dE

dt
= 4αz2r2

0cntEe

[
ln

(
183

Z1/3

)
− 1

18

]
(2.4.21)

Thus the total energy emission rate is roughly proportional to Ee, this fact does not mean that
the electron energy decreases exponentially with time, but in each bremmstrahlung interactions
the electron loses a large fraction of its energy.
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2.5 Neutral Pion decay

When relativistic protons or others nuclei interact with the interstellar medium (ISM) or with
gaseous environments, they give rise to inelastic collisions. One of the most common interactions
occurs between protons, which produce mesons and others hadrons through strong interactions.
In the GeV to TeV energy region, the total inelastic cross section σpp can be approximated by:

σpp(Ep) ≈ 30[0.95 + 0.06 ln (Ekin/1GeV)] mb (2.5.1)

where Ep is the energy of the relativistic proton and Ekin = Ep −mpc
2 is the kinetic energy.[6]

We are interested in the inelastic collisions which produce the meson π0. Indeed the neutral
pion decay provides the main way to convert the kinetic energy of protons into VHE γ-rays.

Among the reactions which have the form:

p+ p→ π0 +X (2.5.2)

In this kind of processes pions have the larger
cross section. One of the most common is:

p+ p→ p+ p+ π+ + π− + π0 (2.5.3)

The Pion π is the lightest pseudoscalar meson
(mπ± = 140 MeV, mπ0 = 135 MeV).
In this particular reaction the three kinds of
pions are produced in equal amounts, thus one
third of the produced pions are neutral. Figure 2.10: A common reaction channel of pp

inelastic scattering.
Charged pions decay weakly into muons which eventually decay into electron-positron pairs
and neutrinos. These secondary pairs may also contribute to the emitted spectrum through
bremsstrahlung, synchrotron or IC emission.
The main energy conversion process is due to the neutral pion, who receive cinetical energy
from the inelastic collision and then decays electromagnetically in two γ-rays.

π0 → γ + γ (BR 98.8%)
π0 → e+ + e− + γ (BR 1.2%)

(2.5.4)

The minimum kinetic energy Eth necessary for a proton to produce a π0 is:

Eth =
2mpi0c

2(1 +mpi0)

4mp

' 280MeV (2.5.5)

The energy of the photons emitted by a π0 at rest is peaked at Eγ,0 = mπ0c2/2 ' 67.5 MeV, in
the laboratory frame. The energy depends on the emission angle θγ and on the initial energy
of the meson. Its value is:

Eγ = γπ0(1 + βπ0 cos θγ)Eγ,0 (2.5.6)

The final energies of the emitted photons can thus reach the VHE regime. The γ–rays produced
by pions are the so-called γ–rays of hadronic origin. They are distinguishable from those of
electromagnetic origin because of their spectra, lack of correlation with X-rays, and presence of
molecular clouds. They occur together with a flux of neutrinos coming from the charged pion
decays, whose spectrum is similar to that of γ–rays from π0 decay.
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The neutral pion decay rate is described through Quantum Chromodynamics (QCD) and in
particular it is a remarkable example of a chiral currents anomaly. A detailed study of the
interaction and the evaluation of the decay rate is discussed by Peskin & Schroeder, 1995 [41].
The decay rate results in:

Γ(π0 → γ + γ)theo =
α2

2π

m3
π0

f 2
π

= 7.75 eV

Γ(π0 → γ + γ)meas = (7.86± 0.54) eV

(2.5.7)

which corresponds to a life time of τπ0 = 8.6 · 10−17 s in the particle rest frame, very short
compared to the charged pion decay τπ± = 2.6 · 10−8 s.
The spectral features of γ–rays emitted by neutral pions decay produced by pp interactions
have been studied by many authors (i.e Mori, 1997; Kelner,Aharonian & Bugayov, 2006 [30]).
For a given proton energy distribution density np(Ep), the resulting gamma ray emissivity is
given by:

qγ(Eγ) =
Nγ

dtdV dEγ
= 2

∫ ∞
Emin

qπ0(Eπ0)√
E2
π0 −m2

π0c4
dEπ0 (2.5.8)

where Emin = Eγ+m2c4/4Eγ. The emissivity of secondary pions qπ0 from pp inelastic scattering
can be calculated with high accuracy using accelerators measurements.

qπ0(Eπ0) = cnH

∫
δ(Eπ0 − κπ0Ekin)σppnp(Ep)dEp

=
cnH
κπ0

σpp
(
mpc

2 +
Eπ0

κπ0

)
np
(
mpc

2 +
Eπ0

κπ0

) (2.5.9)

where nH is the density of the target nuclei and in the broad region from GeV to TeV energies
κπ0 ≈ 0.17 (see Gaisser, 1990).

Figure 2.11: (Left) Total cross section of proton-proton inelastic scattering (σinel in red), the measurements
were provided by several experiments. (Right) Proton and gamma-ray spectra determined for Supernova
Remnants IC-443 and W44. Example of fitting with hadronic models.[2]
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2.6 Pair production and gamma ray absorption

The discussion about Compton scattering of section 2.2 can be easily generalized to describe
the process γ + γ → e−+e+ in which the photons collision have pair production as result.

Figure 2.12: Feynman Diagrams for γ + γ → e−+e+ .

Comparing Feyman diagrams which describe this process at the same order of the Compton’s
diagrams, we can see that the only differences consist in the replacements:

k → k1, k′ → −k2, p→ −p−, p′ → p+ (2.6.1)

Following from this substitution we have that the Compton Feynman amplitude |Ma +Mb|2
written in terms of Mandelstam variables could be used in this case also, to obtain the cross
section of the process. Where k1 = (ω1,k1), k2 = (ω2,k2),p+ = (Ee+ ,k+) e p− = (Ee− ,k−)
represent the four-momenta of photons and particles in the initial and final state and the
Mandelstam variables are:

s = (k1−p−)2 = (p+−k2)2, t = (p+ +p−)2 = (k1 +k2)2, u = (p−−k2)2 = (k1−p+)2 (2.6.2)

Hence the differential cross section is calculated by eq. (2.2.27).

dσ

ds
=

1

16π

2q4

t2

[
4m4

(
1

s−m2
+

1

u−m2

)2

+4m2

(
1

s−m2
+

1

u−m2

)
−
(
u−m2

s−m2
+
s−m2

u−m2

)]
(2.6.3)

Thus the total cross section for the Pair production calculated in the CoM frame is:

σγγ =
πr2

e

2
(1− β2)

[
2β(β2 − 2) + (3− β4) ln

(
1 + β

1− β

)]
(2.6.4)

where β = v/c is the velocity of electron (positron) in the center of mass reference frame.
In the high energy limit β → 1 we have:

σγγ →
3σT
16

(1− β2)

[
2β(1− 2) + (3− 1) ln

(
(1 + β)(1 + β)

(1− β)(1 + β)

)]
(2.6.5)

σγγ '
3

8

σT
γ

[
ln(4γ2)− 1] (2.6.6)
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Figure 2.13: (Left) Pair Production Cross Section. (Right) Absorption energy threshold. A γ-ray of energy ω1

can interact with all photons above threshold.

It is useful to express σγγ in terms of photons energies and collision angle θ. Thus:

t/2 = ω1ω2(1− cos θ) = 2E2
e Ee = γmc2 = mc2(1− β2)−1/2 (2.6.7)

where Ee is the total energy of electron (positron) in CoM frame, so:

β =

√
1− 2m2c4

ω1ω2(1− cos θ)
(2.6.8)

From which we obtain the condition ω1ω2(1 − cos θ) > 2m2c4 ≈ 0.522 MeV . Therefore if we
fixed there is a threshold value of
The cross section σγγ have a maximum:

σγγ ' σT/4 at tmax ' 4m2c2 ≈ 1.04MeV (2.6.9)

Thus if we consider an isotropic radiation 〈cos θ〉 = 0 we can write that t = 2ω1ω2.
This means for example that TeV photons interact most efficiently with infrared photons (range
1.24meV − 1.7eV ):

ω1ω2 ≈ 1MeV → ω2 ≈ 1

(
1 TeV

ω1

)
eV (2.6.10)

Therefore ω1 can interact with all photons above threshold (see Figure 2.13 b), but cross-section
decreases. When γ-rays travel along cosmological distance can interact with cosmic matter and
low energy photon fields.
If we can neglect the interaction between VHE γ-rays and intergalactic or interstellar medium
(due to the low matter densities) we have to consider the absorption due to the low energy
photons belonging to the extragalactic background light (EBL).
The EBL is the second largest background, in terms of contained energy, after CMB.
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There are several different models about the EBL, but it is common accepted that the energy
density spectrum is characterized by two main peaks (see Figure 2.14).
The first peak at ∼ 1µm is known as the stellar term, associated with the light emitted by
stars, the second one at ∼ 100µm comes from the re-processing of starlight by dust and for this
reason is called dust term.

Figure 2.13: Schematic spectral
energy distributions of the most
relevant backgrounds in the Uni-
verse. In the boxes is writ-
ten the approximate brightness
in nWm−2sr−1. From right
to left: The Cosmic Microwave
Background (CMB),the Cosmic
Infrared Background (CIB), and
he Cosmic Optical Background
(COB). Image taken from [19].

VHE γ-rays have high cross section for pair production with EBL, therefore the Universe is not
completely transparent to VHE γ-rays, at least above ∼ 100 GeV.
This means that far distant source cannot be observe. Hence we can define a Gamma-Ray
Horizon beyond which we cannot detect far VHE sources.
The γ ray observed flux Fobs, for a given energy E and redshift z, can be written as an exponential
cutoff:

Fobs(E, z) = Fint(E)e−τ(E,z) (2.6.11)

where Fint and τ are respectively the intrinsic flux of the source and the optical depth, function
of the energy and the redshift z.

Figure 2.14: A model of the op-
tical depth τ as a function of en-
ergy for different redshift z. The
horizontal line a τ = 1 represent
the Gamma-Ray Horizon as cal-
culated from this model, i.e the
distance at which the Universe
becomes opaque to VHE γ-rays.



Chapter 3

VHE Gamma Ray Astronomy

In this section a brief description of the main classes of known VHE γ-ray sources will be given.
These astrophysical emitters are naturally divided in galactic and extragalactic sources.

3.1 Galactic Sources

Due to their vicinity, Galactic objects are of basic interest in γ-ray Astronomy. They can be
observed as extended objects in a wide range of wavelengths, and this is a unique opportunity
to understand and study the morphology of the emission region. Another of their features is
that their γ-ray emission does not suffer absorption due to cosmological background light, but
the main absorption is due to the local distribution of matter and gas around the source.

3.1.1 Supernova Remnants (SNRs)

Supernova Remnants are the structures resulting from the explosion of Supernova. When a
massive star (≈ 5 − 10 M�) collapses, it gives rise to a gigantic explosion, which blows out a
huge amount of material expanding into the interstellar medium, costituing a shock wave.
It is generally thought that SNRs are probably the main acceleration sites for CRs below the
knee (∼ 3 PeV). However, while particle acceleration to high energies has now clearly been
demonstrated with the current generation of instruments, it is still not proven that supernovae
accelerate most of the CRs. The crucial question is the origin of the emission that is ob-
served. Leptonic origin and Hadronic origin are debated. To discriminate, we must compare
the predictions of acceleration models with observations.

33
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Figure 3.1 : (Left) The combined HESS image of the supernova remnant RXJ 1713.7-3946 (Shell type) from
data taken in 2004 and 2005. Advanced Satellite for Cosmology and Astrophysics (ASCA) contours are drawn
as black lines (1-3 keV) for comparison. (Right) The SED of RX J1713.7-3946 at γ-ray energies. Three curves
are shown in comparison to the dark gray HESS data (Aharonian et al. 2007e) and EGRET upper limit.[26]

In order to accelerate CRs, strong magnetic fields, 102 − 103 times higher than the interstellar
medium ones, are required. Such high values of the magnetic fields would lead to exclude a
leptonic origin for the observed γ-ray emission, because the expected synchrotron radiation
from relativistic electrons would be much greater than the measured X-ray emission.
Theory suggests that such an amplification of the magnetic field might be induced by the
CRs themselves, and high resolution X-ray observations of SNR seem to support this scenario.
Thus, an accurate determination of the intensity of the magnetic field is of crucial importance
to discriminate the origin of the observed γ-ray emission.

3.1.2 Pulsars and Pulsar Wind Nebulae (PWNe)

A Supernova explosion may create a Pulsar, a neutron star with masses of the order of a solar
mass and and a few tens of kilometers in radius, which represents the most dense state of stable
matter known in the Universe, apart from the Black Holes.
The main feature of the Pulsar is to have the magnetic axis misaligned with respect to the
rotation axis. The very short rotational period (down to the order of milliseconds) and the
extremely intense magnetic fields (typically in the range 108 − 1012G) cause a very powerful
electromagnetic emission, as due to the rotation of a magnetic dipole. The spin-down energy
loss is given by:

dE

dt
∼ 3 · 1033B2

12T
−4
mserg s−1 (3.1.1)

where B12 is the surface magnetic field in units of 1012G and Tms is the period in milliseconds.
The SNRs that are powered by the rotational energy of a pulsar is called Pulsar Wind Nebula
(PWN) and tend to have a dE/dt around and above 1035 erg s−1.
The rotating field creates a voltage drop of order 1017B12/Tms V, which accelerates particles
forming outflowing jets. VHE γ-ray emission is expected in the Polar Cap region of the Pul-
sar, due to synchroton processes and in the Outer Gap regions of the magnetosphere by IC
scattering.
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Figure 3.2 : (Left) The Chandra X-ray image of Crab Nebula. (Right) A Sketch of the Polar Cap and the
Outer Gap models for the VHE emission of pulsars. Image taken from[40]

The strong magnetic field of a young pulsar has the effect of suppressing the γ-ray emission,
which is produced from high-energy electrons via the inverse Compton mechanism. Para-
doxically, a less powerful pulsar with a weaker magnetic field would result in a higher γ-ray
production efficiency.[17]
The best known and studied example of PWN is the Crab Nebula. The first VHE γ-ray source
to be detected (Weekes et al. 1989), located at a distance of 2 kpc, results of the remnant of a
supernova explosion that occurred in the year 1054. It is generally regarded as the “standard
candle” for high energy astrophysics.
As is well known, the Crab Nebula is a very effective accelerator but not an effective IC γ-ray
emitter. Indeed, we see γ-rays from Crab because its large spin-down power (∼ 1038 erg s−1),
although the γ-ray luminosity is much less than spin-down power of its pulsar.

Figure 3.3 : (Left) Gamma rays from the Crab Nebula in the H.E.S.S. 3-telescope data . (Right) The SED of
the Crab Nebula and Pulsar, with focus on VHE γ-ray regime. Adapted from Hinton (2009).[26]

PWNe are the most abundant class among the sources discovered in the HESS survey of the
Galactic plane. Nevertheless there are many questions unresolved such as the understanding
of the particle acceleration mechanisms, the intensities time evolution of multi-wavelenght syn-
chroton and Inverse Compton (or hadronic) radiation and the magnetohydrodynamic flow in
PWNe.

3.1.3 Binary Systems and Microquasar

A Binary Systems (BS) consists of a compact object, such as a neutron star or black hole,
orbiting a massive star. The study of BS at VHE is very important because these systems
allow us to test models and obtain feedback of important physical processes.
If the matter of the companion star is stripped off forms an accretion disk around the compact
object, much a like a miniature AGN and the system is called Microquasar.
Microquasars have many observational and morphological properties similar to AGNs (i.e a
strong emission over a wide energy range, a rapid flux variability, and the existence of jets
of relativistic plasma along the rotational axis of the black hole [46]) and obviously many
differences.
The main difference is the presence of a companion star that interacts with the compact object,
causing precession of the jets and hence a periodic variability of the nonthermal emission.
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Figure
3.4 : (Left ) Orbits of γ − ray Binary System LS-5039. The star size is to scale.

(Right) The SED of the Binary System LS-5039 for two broad orbital phase intervals:
INFC 0.45 < φ ≤ 0.9 (red circles); SUPC φ ≤ 0.45 and φ > 0.9 (blue triangles). [5]

For example, γ-ray binaries such as LS I +61 303 and LS 5039 are found to be periodic at GeV
and TeV energies, although the emission at the two energies is anti-correlated. A cut-off in the
spectrum is observed at a few GeV, which was completely unexpected.[17]
The typical microquasar spectrum is dominated by the emission from the jets. The IC emission
peak can reach GeV–TeV energies. Many questions about the γ-ray emission from such systems
are still open.

3.1.4 Galactic Centre (GC)

The Galactic Centre region is clearly one of the main targets of γ-ray astrophysics. The GC
hosts the nearest super-massive black hole, called Sagittarius A∗ (Sgr.A∗).

Figure 3.5 : (Left ) VHE γ-ray images of the GC region. Top: γ-ray map, bottom: the same map after
subtraction of the two dominant point sources, showing an extended band of γ-ray emission.[4]
(Right) VHE γ-ray spectra of the diffuse emission and HESS J1745-290.
The red lines show the numerical computations assuming that γ-ray result from the decay of neutral pions
produced by proton-proton interactions. The fluxes of the diffuse emission spectrum and models are
multiplied by 10.[15]
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The interpretation of the emission mechanisms is difficult since the region is populated by
several potential sources and the current angular resolution doesn’t allow to disentangle the
exact position of the VHE γ-ray emissions.
Observations of the Galactic Centre are particularly interesting because among the great va-
riety of γ-ray emitters there could be γ-ray sources due to hypothetical Dark-Matter particles
annihilation or decay.

3.2 Extragalactic Sources

The Universe is not transparent to VHE γ-rays. For this reason, we cannot observe γ-rays in
the VHE domain from objects at high redshifts: roughly greater than z ≈ 1 for energies above
100 GeV. This fact is due to γ-rays interaction with EBL causing pair production.

3.2.1 Active Galactic Nuclei (AGNs)

The electromagnetic radiation emitted from usual galaxies is almost entirely produced by stellar
evolution processes, but in approximately 1% of cases the galaxy core is so bright that it can
outshine completely the host galaxy.
This effect is due to the presence of a supermassive black-hole (SMBH) surrounded by an
accretion disk of about 106−1010 solar masses with an extension of often 1 pc only in diameter.
This enormous amount of material in orbital motion around the SMBH releases a large amount
of gravitational energy as thermal and non-thermal radiation. For these reasons the nucleus of
these galaxies is called active, and so this objects are called Active Galactic Nuclei.
AGNs have been grouped into different subclasses according to their morphology, the mass of
SMBH, their evolutionary status, their accretion speed, and the orientation of the galaxy (and
the emitting regions) with respect to the line of sight. Nevertheless it is believed that the many
different kinds of AGNs belong to the same class of objects seen from different angles (Unified
Model).

Figure 3.6 :(Left) Image of the radio galaxy Centaurus A, also known as NGC 5128 from ESO optical
telescope at the La Silla Observatory in Chile. (Right) A schematic figure for radio-loud AGN (not to scale).
Note the accretion disk surrounding the SMBH and the strong emission of particles and highly collimated
radiation (jet). The type AGN observed depends on the angle of view, as suggested by the Unified Model.
Image credit: NASA.
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It is convenient to divide AGN into two classes, conventionally called radio-quiet and radio-
loud. An AGN is considered radio-loud if the ratio R between the radio flux at 5GHz and the
optical flux (B band) is greater than 10 (Kellermann et al. 1989).

R =
F5GHz

FB
if R > 10→ radio-loud (3.2.1)

Since VHE emissions have been found only in radio loud AGNs, we will focus our description
on these objects. According to the Unified Model, we can divide the radio loud AGNs into the
following categories:
Radio Galaxies: are AGNs whose jets lie at a large angle(>30 deg) with respect to the line
of sight. The central hole is obscured by the large torus and the light coming from an inner
disk and the BLR 1. The intense radio emission is synchrotron radiation from the jets and the
lobes.
Quasars: they are the intermediate case. A quasar (quasi-stellar source) is a galaxy which
shows a very luminous, unresolved nucleus. The emission from the central object is directly
seen, together with the NLR 2 and BLR, which cause typical emission lines in the spectrum.
The spectrum is dominated by a non-thermal radio-optical emission, that is recognized as
synchrotron emission due to ultra relativistic charged particles in the jet.
Blazars: When the jet is direct along the observer line of sight, the spectral features change
completely and we have a blazar. Jets in blazars are the favored site of GeV–TeV γ-ray emmis-
sion. The production process of VHE γ-rays is still under debate: both leptonic and hadronic
models seem to be able to well describe the observational data. Depending on the characteristic
of the emission, blazars are divided into two classes[18]:

• BL Lacertae objects (BL Lacs): they have no strong broad lines in their optical spectrum.
BL Lacs are moreover classified according to the energies of the peaks of their SED: they
are called accordingly low-energy peaked BL Lacs (LBLs), intermediate-energy peaked
BL Lacs (IBL) and high-energy peaked BL Lacs (HBL).

• Flat Spectrum Radio Quasars (FSRQ): they show broad emission lines in their optical
spectrum. Typically FSRQs have a synchrotron peak at lower energies than LBLs.

Figure 3.7 :(Left) The blazar Markarian 421, observed with WFPC2 of HST in 1999.
(Right) SED of Mrk-421 with all the observations taken during a multifrequency campaign in 2009. [1]

1Broad Line Region (BLR): A region where dense molecular clouds are responsible of the broad emission lines
that could be detected in the optical range.(Fig.??)

2Narrow Line Region (NLR): A region where molecular clouds less dense than BRL cause tight emission lines
that could be detected in particular in the optical range.(Fig.??)
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3.2.2 Gamma-Ray Bursts (GRBs)

Gamma-Ray Bursts are the most energetic phenomena observed in the Universe. Their consists
in powerful flashes whose luminosity peak is equivalent to the light emitted by millions of
galaxies (typically 1051−1054erg s−1). Due to this high brightness they can be detected at high
redshifts and so they are messengers from the galaxies formation history.
The highest measured GRB redshift is z = 8.2, the mean redshift is z ∼ 2.2 but some GRBs
have been observed down to z = 0.0085.[3] This fact means that in most cases the VHE γ-rays
are absorbed by the EBL and only HE γ-rays can be detected. This phenomena was studied
by BATSE (Burst And Transient Source Experiment) , aboard the CGRO (Compton Gamma
Ray Observatory) satellite, which observed about 2700 events (see Figure C.5) discovering that
GRBs occur isotropically on the sky and probably were originated by violent explosions in
distant galaxies mainly outside the Local Group.
It is widely accepted that GRBs come from asymmetric supernova or hypernova explosions.
There are many models describing the phenomenon of GRBs, but none of them is fully satis-
factory.
One of the most favoured model is the
Fireball Model, in which the emission
is separated into two components: the
prompt outburst phase (strong gamma-
ray and X-ray emission) due to inter-
nal shocks in the relativistic blast-wave,
followed by the afterglow (strong X-ray,
optical and radio emission) which arises
from the cooling fireball and its interac-
tion with the surrounding medium.[42] Figure 3.8: Schematic image of the Fireball Model
Recent observations by the Swift and Fermi missions have revealed an even more complex be-
havior than previously observed, featuring significant spectral and temporal evolution. Thanks
to their accuracy in determining GRBs directions, it could be established the position of the
extragalactic sources that probably gave rise to the observed γ-ray burst.

Figure 3.8 :(Left) An example of a long GRB. The figure show nine successive instants of a GRB event.
(Right) Plot of the same event, counts vs time. Image credit: NASA.

Currently no GRB has been detected at energies > 100 GeV but new data from Fermi suggest
that a good fraction of the brightest GRBs could be detected by CTA in just a few minutes by
quickly re-pointing part of the array. [17]
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3.3 Dark Matter (DM)

Nowadays there are several experimental evidences for the presence of a large non-baryonic
component of the matter density of the Universe (so-called Dark Matter) at all observed astro-
physical scales, such as galaxies, galaxy clusters, and cosmic background radiation. [10]
It is believed that the Dark Matter constitutes about 27% of the energy budget of the Universe.
Although DM has not been directly observed, its presence is known through gravitational
effects: such as the motions of visible matter, gravitational lensing and its effects in the CMB.

Figure 3.10 : A direct empirical proof of the existence of Dark Matter. (a) Color image in the visible range
from the Magellan telescope of the 1E0657- 558 cluster. (b) Chandra X-ray image (500 ks) of the same cluster.
The green contours in the pictures correspond to weak lensing maps marking the gravitational potential.
The white contours show the errors on the positions of the peaks of the mass distribution deduced by the
weak lensing analysis and correspond to 68.3%, 95.5%, and 99.8% confidence levels. The blue crosses in the
left picture locate the mass peaks of the measured baryonic plasma clouds, which are shown in bright colors in
the right picture. The white line on the right bottom indicates 200 kpc size scale. [14]

We do not know the DM nature and if it could finally be detected via primary or secondary
radiation associated with its annihilation or decay, but there are several models that predict
such signatures and so it is worth to adapt our telescopes and detectors to these scenarios.
In the research and study of DM, gamma-ray band is a very privileged one for several reasons:

• The γ-rays are neutral and be traceable to the origin point, so we can survey sky where
DM is expected to be particularly concentrated.

• The γ-ray spectrum emerging from DM interactions (either annihilations or decays) is
universal. All DM targets are expected to show exactly the same gamma-ray spectrum.
The observation of multiple spectra from different targets would therefore constitute an
excellent result.

• The γ-ray spectra from DM annihilations or decay typically show several characteristic
features, naturally depending on the specific DMmodel, but in general classifiable in sharp
cutoff, bumps, or even line emissions. This makes the DM spectra hardly confusable with
typical astrophysical spectra.

• The recent experimental results of the LHC experiments: the quite large Higgs boson
mass and the non-evidence for New Physics beyond the Standard Model (until now) are
possibly hinting to DM particle being more massive than expected, about the TeV. This
region is where ground-based telescopes have highest sensitivity.
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One of the best theoretical candidates is the Weakly interacting massive particles (WIMPs)
model, which foresees a particle at the GeV–TeV scale. If DM is coupled to the SM with some
interactions, in the final products of annihilations or decays one can find either hadrons, leptons
and gauge bosons, which can produce gamma-rays. Generally, the DM annihilation and decay
flux in gamma rays are expressed as:

dΦann
γ

dEγ
(Eγ, φ, θ) =

1

4π

〈σannv〉
2m2

χ

∑
f

dNγ,f

dEγ
Bf

∫
∆Ω(φ,θ)

dΩ

∫
l.o.s

ρ2(l, φ, θ,Ω)dl
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dEγ
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m2
χ
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dEγ
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∫
∆Ω(φ,θ)

dΩ

∫
l.o.s

ρ(l, φ, θ,Ω)dl

(3.3.1)

where mχ is the mass of the WIMP, 〈σannv〉 is the annihilation rate averaged over the DM
velocity distribution and Γχ the decay rate. Bf is the branching ratio into the final state f
and its yield per reaction dNγ,f/dEγ. The integral terms are called Astrophysical factors or
J-factors, where (φ, θ) are the angle with respect to the Galactic centre, Ω is the solid angle
and l is the line of sight (l.o.s). ρ is the DM density.
Many observations were conducted from current ground-based IACT instruments in the last
decades in order to discover DM signatures (see [20]). The Galactic Centre is one of the
most promising regions to look for DM annihilation radiation due to its predicted very high
DM density. VHE γ-ray emission has been detected, but the identification of DM in the
GC is complicated by the presence of many conventional candidates sources and the diffuse
gamma-ray background. The improvement of the angular and energy resolution, together
with its enhanced sensitivity planned for CTA will be crucial for disentangling the different
contributions to the GC radiation. Others important targets for DM searches are Dwarf Satellite
Galaxies (DSGs), which exhibit large mass-to-light ratios, and make DM searches with low
astrophysical backgrounds possible. Also Galaxy Cluster and Globular Cluster were observed
for their relevance in both cosmological and astrophysical studies, and because it is supposed
that DM could be the dominant component of the cluster mass budget, accounting for up to
80% of its mass. [10]

Figure 3.11 : (Left) Differential spectra (multiplied by x2) of gamma-rays from several neutralino annihilation
products. (Right) Comparison of several exclusion lines for the Fermi-LAT observation of 10 combined DSGs
for bb̄ and τ+τ− channels, H.E.S.S. observation of the galactic center halo for the NFW for the bb̄ channel,
MAGIC-stereo observations of the Segue 1 DSG for the bb̄ and τ+τ− channels and for the estimation for 100 h
observation at the galactic center halo with CTA. For more details see ref. [20].
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Chapter 4

Atmospheric shower and IACT technique

In the first chapter we discuss the main features of atmospheric showers due to primary cosmic
ray interaction with Earth’s Atmosphere and then we explain how these effect can be very
useful to detect VHE γ-ray.

Figure 4.1: Schematic drawing of atmospheric shower due to VHE cosmic ray on Cherenkov Telescope Array.
Note the atmospheric shower due to primary γ-ray, the Cherenkov light cone due to ultra-relativistic charged
particles which form the shower and the light pool stereoscopically detected by Cherenkov Telescope Array.

We have seen that photons are the main information messengers about astrophysical objects.
They cover long distance keeping energy, space and temporal information from the source. Once
arrived on the Earth, they may interact with atmosphere according to their range of energy.
Indeed, as we can observe from Figure 1.7, Earth’s atmosphere is transparent exclusively in the
optical range and in high frequency radio bands.
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Therefore we cannot detect directly HE or VHE photons with ground-based instruments, for
these reason to study X-ray and γ-ray astronomy, instruments are placed on satellite i.e. Chan-
dra for X-ray and Fermi LAT for γ-ray. But the size of satellite instruments is small, their
effective area is about the order of m2 too small to obtain a good statistic and energy resolu-
tion to study VHE γ-rays.
Thought γ-rays absorption not allows direct measurements, their own interaction allows a sec-
ondary detection. In fact, more generally, when a primary cosmic ray interacts with atmosphere,
it produce a cascade of ultra-relativistic charged particles.
These particle cascades are called Atmospheric showers which are essentially of two kinds:
Hadronic showers and Electromagnetic showers (better explained in the next sections).

Figure 4.2: Schematic representation of two atmospheric showers initiated by a photon (left) or by a generic
cosmic ray (right).

The first experimental evidence for the phenomenon of the atmospheric particle showers is
dated back to 1938 and achieved by Auger.
The French scientist who performing experiments at high altitudes with the aid of Geiger
counters and observed temporally coincident signals, which could be attributed to bunches of
particles belonging to Atmospheric showers.
Atmospheric showers emit Cherenkov radiation at a characteristic angle. Since the first in-
teraction with nuclei of the atmosphere takes place at about 10 − 20 km above sea level the
Cherenkov light footprint on the ground is of the order of 105 m2.
The Cherenkov light can be detected with a particular types of instruments called Imaging
Atmospheric Cherenkov Telescope (IACT). This detection method is called IACT technique
and provide a way to detect very high energy gamma-ray photons in the 50 GeV - 50 TeV
range.
The main idea of this technique is essentially that atmosphere act as a sort of natural calorime-
ter and so thanks to Cherenkov radiation, allows VHE γ-ray detection with ground-based
instruments.
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Figure 4.3: Monte Carlo simulations of Atmospheric showers obtained with the MC simulator CORSIKA
(COsmic Ray SImulations for KAscade). a) Electromagnetic shower from primary γ-ray of energy 1 TeV. b)
Hadronic shower from primary protons of energy 100 GeV. https://www.ikp.kit.edu/corsika/

4.1 Hadronic showers

The vast majority of primary CRs are composed of protons and α particles. The strong in-
teraction of these particles with the nuclei in atmosphere generates mainly pions (∼ 90%),
kaons(∼ 10%), and light baryons (p, p̄, n). These secondary particles, together with the pri-
mary CR, form the Hadronic shower core.
During the initial development of the shower, strong interactions are dominant and hadronic
particles are producted while in the final stage, shower ionization and decays become dominant.
Hadronic showers are more penetrating and extended than Electromagnetic ones.
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The atmospheric showers induced by hadrons are composed mainly of three components:

• Hadronic component: the core of the hadronic shower constituted by high energy nucleons
and mesons which decay into muons and neutrinos through this main channels:

π± → µ± + νµ(ν̄µ) BR(∼ 99.98%)
K± → µ± + νµ(ν̄µ) BR(∼ 63.55%)
K± → π± + π0 BR(∼ 20.66%)

(4.1.1)

• Muonic component: the mesons decays products. Their energy loss is essentially ioniza-
tion, although they can also decay in electrons.

µ± → e± + νe(ν̄e) BR(∼ 100%) (4.1.2)

Due to their large lifetime (2.2 · 10−6s), muons can travel along a relevant portion of the
sky and rarely decay before reaching the ground.

• Electromagnetic component: the consequence of neutral pion decay.

π0 → γγ BR(∼ 98.82%) (4.1.3)

About one third of the produced pion are neutral and so about one third of the energy
in hadronic interactions is transfered to electromagnetic component.

4.2 Electromagnetic showers

The Electromagnetic (EM) showers are produced by VHE γ-rays or cosmic electrons or positrons.
Two main processes are involved to the shower development:

• Bremsstrahlung, which caused the production of new photons (more details in sect. 2.4).

• Pair production, which caused the creation of a pair e+ e− ( more details in sect. 2.5).

The two processes are very similar: the radiation length of an e± for the Bremsstrahlung
is Xe

0 = 37g/cm2 in air, and the mean free path of the photon before pair creation which
interaction length is Xγ

0 = 7/9Xe
0 .

Since the cross section of VHE γ-rays with air is weakly energy dependent, this first interaction
occurs for different primary γ-ray energies typically at a height of about 20 km above sea level.

In 1934, Heitler proposed a relatively simple model to describe in first approximation the
development of an electromagnetic shower [11].
Assuming that the primary energy is equally split into secondary products, each e± produce
a photons through Bremsstrahlung and and each photons cause pair production. Another
assumption is that the radiation length and the interaction length are equal Xγ

0 ' Xe
0 ' X0

(see Figure 4.4).

According to this simple model, after n radiation length X0 the amount of particles is N(n) =
2n, equally distributed between electrons, positrons and photons, whereas the mean energy per
particle is E(n) = E0/2n, where E0 is the primary γ-ray energy.
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Figure 4.4: The Heitler model for an electromagnetic shower. Every segment corresponds to the mean free
path of secondary particles.

The number of radiation length nmax at which the maximum of the shower is reached when
products have a critical energy Ec and the total number of produced particles at the depth
Rmax = nmax ·X0 are thus:

Ec =
E0

2nmax
→ nmax =

ln (E0/Ec)

ln 2

Rmax = 2nmax ·X0

(4.2.1)

The number of particles with energy greater than E is:

N(> E) =

∫ n

(E)0Ndn =

∫ n

(E)02ndn =
E0/E

ln2
(4.2.2)

where n(E) is the depth, in radiation length units, at which the mean energy of the particles is
E. From this relation it is possible to infer the the differential energy spectrum of the particles
decreases as:

dN

dE
∝ 1

E2
(4.2.3)

More complicated analytic models were developed by Rossi and Greisen in 1940s.
The result obtained by Heitler model are confirmed by detailed studied based on Monte Carlo
(MC) simulations. Today with development of computational tools analytic models are less
relevant than MC simulations.
For example, CORSIKA (COsmic Ray SImulations for KAscade ) is a useful program for
detailed simulation of extensive air showers (EAS) initiated by high energy cosmic ray particles
or γ-rays.
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4.3 Cherenkov Radiation

When a charged particle moves through a dielectric medium at a speed greater than the local
phase velocity of light in that medium, it emits a characteristic electromagnetic radiation.
This radiation was observed for the first time by soviet scientist P.A. Cherenkov in 1934 and
theoretically interpreted and calculated by I.M. Frank and I.E. Tamm in 1937.
We underline that this radiation is different from Bremsstrahlung radiation wich is almost al-
ways emitted by the moving charged particle itself when it collides with atoms. The Cherenkov
effect, instead, involves radiation emitted by the medium under the action of the field of the
particle moving in it. The distinction between the two kinds of radiation appears with partic-
ulary clarity when the particle has a very large mass: the Bremsstrahlung disappears, but the
Cherenkov radiation is unaffected.
The explanation of this phenomenon is based on Maxwell’s equations in a dielectric medium,
which provide macroscopic dynamic description of the electromagnetic field.
Since a particle in uniform rectilinear motion does not give rise to any radiation field, at the
microscopic level the Cerenkov radiation must therefore be originated from polarization charges.

Figure 4.5: Schematic representation of the Cherenkov radiation. (a) Symmetric polarizatione produce by a
particle moving with speed v < c/n. (b) The net polarization due to a charge moving at v > c/n creates a
wave of radiation. (c) Geometrica description of the Cherenkov emission.

In fact, what happens at the microscopic level is that the charged particle during its passage
deforms the molecules of the medium doing their purchase an electric dipole moment, which
disappears immediately after the charged particle passage. The charges of the dipole moments
are so subjected to instantaneous acceleration, and thus become impulsive sources of elementary
electromagnetic waves, which manifest as Cherenkov radiation.
The wave number and frequency of an electromagnetic wave propagated in a trasparent medium
are related by k = nω/c, where n =

√
εr is the refractive index, which is real and εr is the

relative permittivity. In a trasparent medium the phase velocity of electromagnetic waves is
cm :=

c

n
=

c
√
εr

and for n > 1 results cm < c.

Now we consider a particle of charged ze moving at speed ~v = ~βc. It gives rise to a charge
distribution ρ(~r, t) = zeδ3(~r − ~vt) and a current density j(~r, t) = ze~vδ3(~r − ~vt).
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We suppose the medium isotropic and non-magnetic, ~B = µ0
~H and which it is represented by

a generic operator ε̂ such that ~D = ε̂ ~E. To greatly simplify the discussion, assume that ε̂ is
linear (and therefore continuous).

Linearity is typically satisfied with good approximation at optical frequencies in the most com-
mon transparent mediums, excluding at most restricted resonance bands. The salient features
of Cherenkov radiation, however, is also preserved by relaxing the hypothesis of linearity, but
the mathematical treatment becomes very complex, not being permitted commutation of ε̂ with
differential operators.

We impose the following physical (mathematical) conditions at dielectric medium:

• The properties of the medium remains unchanged during the entire observation period.
(→ ε̂ commute with ∂/∂t).

• The medium is homogeneous (→ ε̂ commute with ∇).

• The medium is isotropic (→ ε̂ commute with div:= ∇· and with rot:= ∇×).

From homogeneous Maxwell’s equations we introduce scalar and vector potentials, with usual
definitions:

∇ · ~B = 0 → ~B = ∇× ~A

∇× ~E = −∂
~B

∂t
→ ~E = −∂

~A

∂t
−∇φ

(4.3.1)

with the additional Lorentz gauge condition.

∇ · ~A+ µ0ε̂
∂φ

∂t
= 0 (4.3.2)

From homogeneous Maxwell’s equations and current and density definitions we obtain:

∇ · ~D = ρ →
(
ε̂∇ · ~E

)
(~r) = zeδ3(~r − ~vt)

∇× ~H = ~j +
∂ ~D

∂t
→

(
∇× ~B − µ0ε̂

∂ ~E

∂t

)
(~r) = µ0ze~vδ

3(~r − ~vt)
(4.3.3)

Then substituing (4.3.1) in (4.3.3) with condition (4.3.2), we obtain the following equations for
the potentials:

ε̂

(
�
�
�
�
�

−∂∇ ·
~A

∂t
−∇2φ+ µ0ε̂

∂2φ

∂t2
−

�
�

�
��

µ0ε̂
∂2φ

∂t2

)
(~r) = zeδ3(~r − ~vt)

→ ε̂

(
∇2 − µ0ε̂

∂2

∂t2

)
φ(~r) = −zeδ3(~r − ~vt)

������∇(∇× ~A) −∇2 ~A+ µ0ε̂
∂2 ~A

∂t2
+

�
�
�

��
µ0ε̂

∂2φ

∂t2
= µ0ze~vδ

3(~r − ~vt)

→
(
∇2 − µ0ε̂

∂2

∂t2

)
~A(~r) = −µ0ze~vδ

3(~r − ~vt)

(4.3.4)
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We can observe that scalar and vector potentials expressions can be grouped as a single four
vector relation.

Now we expand ~A and φ as Fourier space integrals in the wave vector domain. Where we
have f(~r) =

∫
d3k ei

~k·~rf(~k), the operator ∇ begin i~k and ∂/∂t can be soluted thanks to the
terms δ3(~r− ~vt) =

∫
d3k ei

~k·~re−i
~k·~vt, imposing ω := ~k · ~v we obtain that ∂/∂t begin iω, because

i~k · ~r = i~k · ~vt = iωt.

So in the wave vector domain we have:

1

(2π)3

∫
d3kε̂

(
∇2 − µ0ε̂

∂2

∂t2

)[
ei
~k·~rφ(~k)

]
=
−ze
(2π)3

∫
d3k ei

~k·~re−iωt

∫
d3kε̂

(
−∇2ei

~k·~r + µ0ε̂
∂2eiωt

∂t2

)
φ(~k) = ze

∫
d3k ei

~k·~re−iωt

∫
d3kε(ω)

(
k2 − µ0ε(ω)ω2

)
φ(~k) = ze

∫
d3k ei

~k·~re−iωt

→ φ(~k) =
ze

ε(ω)

e−iωt

k2 − µ0ε(ω)ω2

(4.3.5)

and similarly for the vector potential ~A:

1

(2π)3

∫
d3k

(
∇2 − µ0ε̂

∂2

∂t2

)[
ei
~k·~r ~A(~k)

]
=
−µ0ze~v

(2π)3

∫
d3k ei

~k·~re−iωt

∫
d3k

(
−∇2ei

~k·~r + µ0ε̂
∂2eiωt

∂t2

)
~A(~k) = µ0ze~v

∫
d3k ei

~k·~re−iωt

∫
d3k

(
k2 − µ0ε(ω)ω2

)
~A(~k) = µ0ze~v

∫
d3k ei

~k·~re−iωt

→ ~A(~k) = µ0ze~v
e−iωt

k2 − µ0ε(ω)ω2

(4.3.6)

And now a few considerations:

1. ε̂→ ε(ω) this is a consequence of the assumptions made about the nature of the dielectric.
In addition the local causality conditions require that ε(ω) is analytic in all complex semi-
plane = > 0. Since we are considering a dieletric medium we can expand the condition
in = ≥ 0. At this point, since ε(ω) is regular, we can replace µ0ε(ω) = 1/c2

m, where cm is
the electromagnetic wave velocity.

2. We can note that ~A is parallel to ~v. Therefore B = ∇× ~A is parallel to ~k × ~v. Fixed the
direction of ~B along the axis of ~k and ~v plane, the Poynting vector tells us that ~B and ~E
are polarized as in (FIG).

3. ω = ~k ·~v is for now only a mathematical equality: to consider ω as the angular frequency
of the electromagnetic wave has to occur |ω| = kcm. If this is true, Bessel’s inequality
(the projection of a vector is less than or equal to the norm of vector) tells us that
kcm = ω = ~k · ~v ≤ kv → v ≥ cm, so the Cherenkov emission can only occur if v ≥ cm.
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In this case, we are able to calculate the emission angle between the radiation emitted
along ~k and the charged particle moving along ~v. From kcm = ω = ~k · ~v = kv cos θc we
obtain:

cos θc =
cm
v

=
1

βn
(4.3.7)

The emission angle can be explained by the Huygens contruction about the superposition
of spherical electromagnetic waves generated by passing of the charged particle (see Figure
4.6).

Figure 4.6: Simple sketch of the Cherenkov effect. (Left) When a cherged particle moves slower than the speed
of light in the medium, the electromagnetic waves, initiated along its trajectory, are not superimposed.
(Right) When its speed exceeds the local speed of light, a surface of costructive interference appears.

Hence we still have to prove only that |ω| = kcm. We can show this by calculating the expression
of the force ~F (~r) = ze ~E(~r) acting on the particle.

~F (~r) =
ze

(2π)3

∫
d3k

(
−∂

~A(~k)

∂t
−∇φ(~k)

)
ei
~k·~r

=
−z2e2µ0

8π3

∫
d3k

k2 − µ0ε(ω)ω2

(
~v ei

~k·~r ∂e
−iωt

∂t
+

e−iωt ∇ei~k·~r

µ0ε(ω)

) (4.3.8)

Simplifying and substituing in (4.3.8) the following relations µ0ε0 = 1/c2, µ0ε(ω) = 1/c2
m and

the fine structure constant is α =
e2

4πε0c}
we have:

=
iz2

2π2

(
e2

4πε0c}

)
}
c

∫
d3k

k2 − µ0ε(ω)ω2

(
ω~v −

~k

µ0ε(ω)

)
�

��ei
~k·~r

���e−iωt

~F (~r) =
iz2α}
2π2c

∫
d3k

k2 − ω2

cm

(
ω~v − c2

m
~k

) (4.3.9)

The component orthogonal to ~v is odd. Hence the force is parallel to ~v : F (~r) =
~F ·~v
v
.
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Since there is a cylindrical symmetry we consider k// =
~k·~v
v

= ω
v
and k⊥ and we substitute

d3k = 2πk⊥dk⊥dk// = 2πk⊥dk⊥dω/v and therefore:

F (~r) =
~F · ~v
v

=
iz2α}
2π�2c

∫∫
2�πk⊥dk⊥

k2 − ω2

cm

dω

v

(
ω~v · ~v
v
− c2

m
~k · ~v
v

)

=
iz2α}
2πc

∫
dω

∫
ω
dξ

ξ

(
1− c2

m

v2

) (4.3.10)

where ξ = k2 − ω2

cm
and dξ = 2k⊥dk⊥.

The second integral
∫
ω dξ

ξ
is a Cauchy’s integral, easily computable in complex analysis. The

function ε(ω) has no singularity and no zero in half-plane = > 0 and so the required poles can
only be the zeros of the expression ξ = k2 − ω2/c2

m. It imply that → |ω| = kcm. Using the
Residue theorem we obtain:

∮
γ

f(z)dz = 2πi
∑
k

Res(fγ, ck)

where Res(f, c) = limz→c(z − c)f(z)∮
γ

ω
dξ

ξ
= 2πiω

Figure 4.7: Contour γ for the calculation of the
Cauchy’s integral.

Hence the expression of the force results:

F (~r) =
−z2α}
c

∫
dω ω

(
1− c2

m

v2

)
(4.3.11)

The differential expression of the force in in a frequency interval dω results:

dF

dω
=
−z2α

c
(}ω)

(
1− c2

m

v2

)
(4.3.12)

The energy loss by the moving particles is just the work done by the force F exerted on the
particle by the field wich it produces. Therefore knowing that F = −dW

dx
we can write the

Frank-Tamm formula:
d2W

dxdω
=
z2α

c
(}ω)

(
1− c2

m

v2

)
(4.3.13)

which gives the intensity of the radiation emitted on a given frequency.
Remembering that the Cherenkov radiation is composed by photons of energy }ω, we can
determine the number of photons produced per unit path lenght of a particle with charge ze
and per unit in a frequency interval dω:

d2N

dxdω
=
z2α

c

(
1− c2

m

v2

)
=
z2α

c
sin2 θc (4.3.14)

while the total number of photons per unit path-lenght is given by:

dN

dx
=
z2α

c

∫ (
1− c2

m

v2

)
dω (4.3.15)
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4.3.1 Propagation of Cherenkov radiation through the Atmosphere

In this section we discuss Cherenkov photons propagation. The Cherekov cone is described by
the angle θc = acos(1/βn), at the sea level, the refractive index of air is n ≈ 1.00029, this imply
that θmax ' 1.3◦.
The minimum speed to have Cherenkov radiation is:

Eth =
mec

2√
1− β2

min

=
mec

2√
1− 1/n2

(4.3.16)

Since the refractive index changed with height we hve to consider the following relation:

n = 1 + ηh = 1 + η0e
−h/h0 ≈ 1 + 2.9 · 10−4e−h/h0 (4.3.17)

where h0 ≈ 7.1 km, thus if ηh � 1 the energy threshold is:

Eth '
mec

2

√
2ηh

(4.3.18)

Therefore we find i.e. for electrons at height of 10 km an energy threshold of Eth ∼ 42MeV .
that is less than critical energy Ec ≈ 83 MeV , so once an EM showers dies out most of the
electrons still emit Cherenkov light.

Figure 4.8: In this figures we want emphasize the lateral Cherenkov photons distribution. a) Sketch of the
Cherenkov cone. b) Plot of photon lateral density in function of core distance. c) Photon density due to a
VHE electron.

For EM showers, the number of electrons with energy greater than Eth as a function of the
number Ne of electrons present in the shower maximum is given by

N(E > Eth) ≈ Ne

1 + Eth/30
(4.3.19)

with energies expressed in MeV. Therefore, about half of the electrons at the shower maxi-
mum has energy greater than the minimum one necessary for emitting Cherenkov light. The
maximum angle θmax for particles with β ' 1 can be obtained from the expression

cos θmax '
1

1 + η0e−h/h0
' 1− η0e

−h/h0 (4.3.20)
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and has an averaged over altitude value of about 1.2◦. By knowing θmax, the distance from the
emitted Cherenkov photons to the axis of the emitting charged particle at a given height hobs
can be derived:

Rc = (h− hobs) · tanθmax (4.3.21)
The Cherenkov radiation of an Atmospheric shower consists of the cumulative Cherenkov light
emitted by the charged shower particles. The light from the shower tail is emitted with larger
angles, but its distance to the shower axis can be smaller just because of its lower height (see
Figure 4.8.a).
From Frank-Tamm formula we obtain that the number of emitted Cherenkov photons per unit
path-lenght and wavelenght for a particle with charge q = ze is:

d2N

dxdλ
=

2πz2α

λ2

(
1− 1

β2n2(λ)

)
(4.3.22)

The 1/λ2 dependency of the spectrum indicates that most of the Cherenkov photons are emitted
at short wavelengths, in the ultraviolet range, and that it decreases along the visible region.
However, due to the interactions of the Cherenkov photons with the air molecules in their
path through the atmosphere, the spectrum observed at ground level is quite different from the
emitted one (see Fig. 4.9), and it peaks at around 330 nm.

Figure 4.9: Spectra of Cherenkov light by vertical γ–ray showers of different primary energies at 10 km height
(solid lines) and the corresponding spectra at 2200 m a.s.l. (dashed curves), affected by absorption, Rayleigh
and Mie scattering, as discussed in the text.

Cherenkov photons suffer the following attenuation processes in the atmosphere:

• Rayleigh scattering, in which light wave is diffused by particles smaller than the same
wavelenght(∼ 100 nm). The absorption coefficient is ∝ λ−4, thus photons with lower
wavelenght are more diffused.

• Mie scattering, is strictly connected with the previous phenomenon, but in this case the
distributing points may have upon any dimension (dust, drops of water,ect)

• ozone absorption, in which the reaction O3 + γ → O2 +O absorbes photons with
λ < 290 nm



Chapter 5

The Cherenkov Telescope Array

The CTA Consortium is building a new observatory for very high-energy (VHE) gamma rays.
Supported by a wide international collaboration, its project consists into the realization of
two arrays of the latest generation of Imaging Atmospheric Cherenkov telescopes (IACTs),
one located in the northern hemisphere (Canary Islands), with an emphasis on the study of
extragalactic objects, and one in southern hemisphere (Chile) dedicated to the galactic sources.
Beside a wealth of high-energy astrophysics results, CTA will have a large discovery potential
in key areas of astronomy and fundamental physics research.

Figure 5.1: Artistic drawing of a CTA site. G.Pérez

These include the study of the origin of cosmic rays and their role in the Universe, the investi-
gation of the nature and varieties of black hole particle accelerators and the search for signals
from dark matter and physics beyond the Standard Model.
The CTA project has ambitious science goals, for which it is necessary to achieve full-sky cov-
erage, to improve sensitivity by about an order of magnitude in a wide range of energy, from
a few GeV to above 100 TeV with enhanced angular and energy resolutions over the existing
VHE gamma ray observatories with the same detection technique, such as H.E.S.S, MAGIC
and VERITAS.

55
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5.1 CTA concept

The current generation of ground-based γ-ray instruments have produced a large amount of re-
sults, giving rise to a new branch of astronomy, through the discovery, imaging and spectroscopy
of VHE γ-ray sources. But many of these results have raised new questions and require more
and better data for a deeper understanding of the observed phenomena.

Fig 5.2: Map and properties of the main current air-Cherenkov instruments. Adapted from [16]. Significances
relate to a point-like source detectable at the 5σ significance level in a 50 h observation.

The current telescope arrays consist of 2–5 Cherenkov telescopes.
They reach sensitivities of about 1% of the Crab flux at energies in the 0.1− 1 TeV range. Sen-
sitivity degrades towards lower energies, due to insufficient background rejection, and towards
higher energies, due to the limited number of gamma rays.
A typical angular resolution is 0.1◦ or slightly better for a single gamma ray, but sufficiently
intense point sources can be located with a precision of 10− 20 arc seconds.
All these instruments are almost exclusively used by the groups who built them, with only
limited access for external observers and, initially, with no provision for open data access.
However, a different approach is essential for CTA, due to the expected large increase in the
number of detectable objects and the required collaboration with scientists working in other
wavelength ranges.
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Figure 5.3: (left) Kifune plot showing the number of sources detected over time for various waveband.[35]
(Right) VHE γ-ray sources detected from 2004 (14 sources) to 2016 (177 sources). Images from TeVCat.

The number of the VHE gamma-ray sources has grown over the past decade from about twenty
to over 170 sources. This is the result of a better sensitivity and accuracy of the instruments.
Due to the low flux of VHE photons the telescopes need a large detection area and long data
taking time, to reach the required sensitivity.
Current instruments has conducted successfull survey, in particular H.E.S.S of the Milky Way,
but to cover the full visible sky with the same sensitivity of H.E.S.S would be needed at least
ten years, and is therefore unrealistic. Hence in the 20 GeV- 100 TeV region, how to do better?

Tab. 5.4: The CTA consortium states members and the two location of the northern site (Las Palmas, Canary
Islands) and southern site (Paranal Chile).
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5.2 CTA technologies

The CTA solution is give rise a large international collaborations to build a gamma ray obser-
vatory in two sites with high performance. This can be possible thanks to solutions to optimize
the instrumentation for three adjacent energy ranges (without strong overlap).

• The low-energy range ≤ 100 GeV: To detect showers down to a few tens of GeV, the
Cherenkov light needs to be sampled efficiently, with the fraction of area covered by light
collectors being of the order of 10%.

Since event rates are high and systematic uncertainties of the background limit the achiev-
able sensitivity, the area of this part of the array can be relatively small, of the order of
a few 104 m2.

The CTA design assumes a small number of closely placed large-size telescopes (LSTs),
with a mirror diameter of about 23 m, to collect as many Cherenkov photons as possible
from the low energy showers. These tele scopes require the short repointing time quoted
to allow quick follow-ups of GRB alerts.

Figure 5.5: A solution with different size of telescopes, focused of a specific energy range. Large-Size
Telescopes (LST) for the lower energy range from fews GeV to 100 GeV. Medium-Size Telescopes
(MST) for the core energy range from 100 GeV to 10 TeV. Small-Size Telescopes (SST) for the higher
energy range above 10 TeV.

• The core energy range 0.1–10 TeV: Shower detection and reconstruction in this
energy range are well understood from current instruments. The appropriate step for
improved performance is an array of mid-sized telescopes (MSTs) with mirrors of about
12 m diameter and a spacing of about 100 m.

Improved sensitivity compared to existing instruments will be obtained both by the in-
creased area covered by the array and by the higher quality of shower reconstruction,
since individual showers will typically be stereoscopically imaged by a larger number of
telescopes than in current few-telescope arrays.

For the first time, array sizes will become much larger than the Cherenkov light pool of a
shower, ensuring that images will be uniformly sampled across the light pool and that a
number of images are recorded close to the optimum distance from the shower axis (about
70–150 m), where the light intensity is large and intensity fluctuations are small.

Also, the shower axis is viewed under a sufficiently large angle for efficient reconstruction
of its direction. At H.E.S.S. or VERITAS, for example, events which are seen and trig-
gered by all four telescopes provide significantly improved resolution and strongly reduced
backgrounds, but they represent only a relatively small fraction of events.
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For CTA almost all events will be recorded at high quality. A further advantage of CTA
is that an extended telescope grid operated with a two-telescope trigger condition will
have a lower threshold than a small array, since there are always telescopes sufficiently
close to the shower core.

Tab. 5.6: The ASTRI SST-2M is proposed to be placed at the CTA southern site.
The Image show also the differential sensitivity (in units of the energy-dependent flux of the Crab
nebula) for array E (50 h, 5r, 5% background, 10 events, α = 0.2, i.e. intervals of the decimal exponent
of 0.2 meaning 5 logarithmic bins per energy decade).[16]

• The high-energy range >10 TeV: Here, the main limitation is the number of detected
gamma-ray showers. Consequently, to achieve large improvement the array needs to cover
an area of several square kilometers.

At high energies the light yield of a shower is large, so that showers can be detected
well beyond the 150 m radius of a typical Cherenkov light pool. Two options can be
considered: either a large number of small telescopes with mirror areas of a few m2 and
spacing matched to the size of the light pool (100-200 m), or a smaller number of larger
telescopes with 10 -20 m2 area which can see showers out to core distances of > 500 m,
and can hence be either deployed with a spacing of several 100 m, or in widely separated
sub-clusters consisting of a few telescopes. Both implementations are called Small Size
Telescopes (SSTs).

While it is not immediately obvious which option offers the best cost/performance ratio at
high energies, the sub-cluster concept with larger telescopes has the advantage of providing
additional high-quality shower images towards lower energies, for impact positions near
the sub-cluster.
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5.3 CTA performance

The aim of CTA is to make significant progress over the existing experiments in every fields.
They include in particular:

• Sensitivity: CTA will be about an order of magnitude more sensitive than any existing
instrument in its energy range. As a consequence it will, for the first time, allow detection
and in-depth study of large samples of known source types, it will explore a wide range
of classes of suspected gamma-ray emitters and be sensitive to possible new phenomena
that lie beyond the sensitivity of current instruments.

In its core energy range, from about 100 GeV to several TeV , CTA will have milli-Crab
(mCrab) sensitivity, i.e. a factor of 103 below the flux of the strongest steady source of
VHE gamma rays (the Crab nebula), and a factor of 104 below the highest fluxes mea-
sured so far in bursts from transient sources.

Figure 5.7: Integral sensitivity for CTA from MC simulations, together with the sensitivities in
comparable conditions (50 h for IACTs, 1 year for Fermi-LAT and HAWC) for some gamma-ray
observatories.[16]

• Energy range: Large coverage of the electromagnetic spectrum is crucial for under-
standing the physical processes occurring in VHE sources. With a single facility, CTA
is aiming to cover four orders of magnitude in energy, from a few tens of GeV to a few
hundred TeV, again a factor of 10 more than any existing instrument.

Together with the much improved precision and lower statistical errors, this will enable
astrophysicists to distinguish between key hypotheses such as the leptonic or hadronic
origin of gamma rays from SNR. Moreover, the energy range and the improved resolution
are important for the detection of line emission from dark matter clusters.
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Figure 5.8: Performance goals for the CTA observatories. The sensitivity is given for 5 bins per decade.
For the sensitivity and collection area at high energies, separate values for southern (S) and northern
(N) arrays are given. [16]

• Angular resolution: Current instruments are able to resolve extended sources, but
they cannot probe the fine structures vis- ible in other wavebands. In SNRs, for example,
the measure- ment of the width of the gamma-ray emitting shell would provide sensitive
constraints on the acceleration mechanism.

By selecting a subset of gamma-ray induced cascades detected simultaneously by many
of its telescopes, CTA can reach angu- lar resolutions of better than 2 arc minutes for
energies above 1 TeV, a factor of 5 better than the typical values for current instruments.

Figure 5.9: Angular resolution for CTA, compared with some existing and future VHE gamma-ray
observatories. The solid line provides the angular resolution of CTA obtained from events with ten or
more images, the dashed line shows the angular resolution for events with only two images.[16]

• Temporal resolution: With its large detection area, CTA can resolve flaring and time-
variable emission on sub-minute time scales, which is currently out of reach. In gamma-ray
emission from active galaxies, variability time scales probe the size of the emitting region.
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Chapter 6

Simulation data using a Toy Monte Carlo

In the previous chapter we described the CTA project, its technical characteristics and goals.
A key aspect that distinguishes these new observatories compared to the existing ones is the
large number of telescopes.
The increase of the detection surface and the number of telescopes definitely implies a consid-
erable improvement in terms of sensitivity and angular resolution but at the same time gives
rise to a great computational challenge: the processing of the data.
In order to study the filtering of the events, we implemented a very flexible Toy-MC simulator
able to reproduce the timing-detection of Cherenkov’s light on a telescopes array with settled
layout.

Figure 6.1: Image of a simulated event from Toy-MC simulator on a 33 telescopes array layout.

In this chapter we describe the main assumptions of this model, the use of the random generators
and in particular the timing-process of simulated events. In the later chapters we compare our
results with new Official MC simulation provided by ASTRI to ease the comparison we focused
our study on the same telescopes array layouts.
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6.1 Random generator algorithms

In order to implement a solid MC simulator we have to choose the best random number gener-
ators which satisfy our needs. A very good choice for our purpose is ran3 generator described
in Numerical Recipes (NR).[44]
The ran3 generator is a Lagged Fibonacci generator based on subtractive method:

Xi = (Xi−55 −Xi−24) mod m (6.1.1)

where in the NR implementation m = 109 is used. The period length of this specific generators
is known to be 255 − 1 ≈ 3.60 · 1016. Its main characteristic is a very good speed with good
period length. Through this generators we obtain random numbers with uniform distribution
in range 0 to 1.0 for floating-point numbers.

In order to insert a statistical uncertainty we implemented also a Box-Muller algorithm to
obtain random numbers normal distributed.
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6.2 Toy-MC general assumptions

The main assumptions of our Toy-MC simulator are essentially about space and time.
We consider all telescopes as equals, with the same technical characteristics (height, Field of
View, etc.). All of them have the same pointing direction expressed by a pair of coordinates:
altitude and azimuth (Alt, Azi)|Tel. Thus the array has one direction and one Field of View
(FoV) in which the events are simulated with isotropic distribution.

Figure 6.2: Image of 150 simulated events into Field of View of telescope array (not to scale).

The FoV is considered unique for the whole array, it is a portion of a sphere centered in the
pointing direction of the array and with angular aperture of about ∼ 10◦, in our simulations
we set FoV at the ASTRI telescopes value (±5.5◦).
The primary cosmic rays distribution at ground level is considered uniform in a surface more
large than the array area to allow the detections of border events.
Every cosmic rays simulated gives rise to an atmospheric shower which produces a Cherenkov
light pool. The Cherenkov light pool on the ground has the shape of an ellipse centered in the
point where the ground plane intercepts the cosmic ray direction. Position and dimension of
the ellipse depend on the average radius 〈R〉 and the direction of the event (Alt, Azi)|Evt.
In our MC model we established that a telescope detects an event if the following conditions
are satisfied: the primary CRs direction is inside the FoV of array and the position (x,y) of the
telescope is inside the ellipse of the Cherenkov light pool, we will better explain this point in
the section about relative timing assumption.
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6.3 Array layouts and Delays Matrix

The layout of the array is easily settable with any geometry, but as we have already mentioned
we focused our study in particular on the setup of ASTRI, to compare our result with Official
ASTRI MC simulation.
Throughout generality, given an array layout and a pointing direction (Alt, Azi)|Tel we are able
to compute geometrically the relative delays due to a plane wavefront coming from the pointing
direction between each telescope belonging to the array.

Figure 6.3: (Left) Image of ASTRI-CTA 9 layout. (Right) Relative geometrical delay due to a plane wavefront.

Assuming the speed of light in air being cn = c/n, we can describe mathematically the array
layout as a Delays Matrix DT where an element Dij is the theoretical delay ∆tij between the
telescope Ti and telescope Tj.

DT =


0 ∆t01 ∆t02 · · · ∆t0n

∆t10 0 ∆t12 · · · ∆t1n

∆t20 ∆t21 0 · · · ...
...

...
... . . . ...

∆tn0 ∆tn1 · · · · · · 0

 ∆tij = −∆tji (6.3.1)

To calculate ∆tij is useful to first consider ∆ti0 and then obtain ∆tij = ∆ti0 − ∆tj0. For a
generic array (in this case an ASTRI-CTA 9 layout), if we have ϑ = Alt and ϕ = Azi and dij
the distance between telescope we have:

di0 =
√

(xi − x0)2 + (yi − y0)2 i = 1, 2, 3, 4, 5, 6, 7, 8

d̃i0 = −di0 cos (αi − ϕ) αi =
π

4
(i− 1)

∆ti0 =
d̃i0
cn

cos(ϑ) cn = c/n

(6.3.2)

Thus DT (dij, ϑ, ϕ) contains all the information about the CTA layout. At first sight you could
move the correct objection that all the information is contained, for example, in the first row
of the Delays Matrix. This is true but this redundancy is useful for computational reasons and
above all for the meaning of another matrix that we define in the next chapter.
To understand how the relative delays change in function of (Alt,Azi)|Tel, we can observe Figure
6.4, it is instructive to understand the filtering algorithm performance.
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Figure 6.4: Delays plots of CTA_9_200. In these plots, we can observe how change the relative delay Dij

changes between telescopes in function of Alt= [30 : 90] and Azi= {0, 5, 10, 15, 30, 45}. The telescopes belong
to a squared array of 9 Tel. with distance d10 = 200m.
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When the Cherenkov light intercepts a telescope we record a timing information. In the real data
acquisition this timing information represent an absolute time in GPS format (date, seconds
and nanoseconds). When the photoelectrons detected by a camera exceed a threshold value a
timing information is recorded.
In our MC simulations we try to obtain a time sequence of events the most similar as possible to
real experimental data, to do this we consider two aspect about timing of events: the relative
timing of the same event recorded by different telescopes and the absolute timing elapsed
between different events.

6.4 Relative timing assumptions

We assume, as first approximation, the Cherenkov light due to atmospheric showers to be a
plane wavefront directed along (Alt, Azi)|Evt inside a Cherenkov cone. In order to assign a time
value to each telescope which intercepts the light wavefront, we consider the set of telescope
inside the ellipse. Whose semi minor axis is set at a constant value called 〈R〉 average radius.

Figure 6.6: (Left) Event simulation on 9 telescope array. (Right) The same event in xy-plane and relative
timing assignment.

The semi major axis is function of 〈R〉 and altitude and the direction of the ellipse depends by
azimuth of the event. The center of the ellipse is set at relative time tEvt = 0 of the event and
for each telescope inside ellipse we compute the relative time geometrically in the way explained
in the previous section, but with two differences: 1) in this case we use (Alt, Azi)|Evt instead of
(Alt, Azi)|Tel, 2) we sum a random terms τ normal distributed (mean 0, sigma 5 ns) to consider
second order effects (i.e. curvature) or fluctuations/noise.

∆t̃ij = ∆tij|Evt + τ τ := N(0, 5) ns (6.4.1)

Therefore we can describe mathematically every event as a Delays Matrix DEV T where an
element Dij is the simulated delay ∆t̃ij between the telescopes.

DEV T =


0 ∆t̃01 ∆t̃02 · · · ∆t̃0m

∆t̃10 0 ∆t̃12 · · · ∆t̃1m

∆t̃20 ∆t̃21 0 · · · ...
...

...
... . . . ...

∆t̃m0 ∆t̃m1 · · · · · · 0

 ∆t̃ij = −∆t̃ji m ≤ n (6.4.2)
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We want to emphasize two relevant observations:
• DEV T is always well defined, especially in a real experiment, where Dij will be the time

differences of the trigger time between telescopes.

• DEV T contains the whole timing information of the event without redundancy, because it
contains also informations about event directions, second order effects and fluctuations.

From the comparison of DT and DEV T we have found a way to fast discriminate which telescopes
are triggering the same event. We will describe accurately this procedure in the next chapter.

6.5 Absolute timing assumptions
The absolute timing of events is a crucial point of our simulations and this thesis. We know
from existing IACT experiments that hadronic events are about three magnitude order more
frequent than γ-ray events.
Thus we have to consider an average Rate λ ∼ 1kHz detected from a single telescope.
We assume that the IACT detections of cosmic rays can be treated as a independent Poisson-
random events. This assumption can be expressed starting from Poisson distribution formula:

P (k; ∆t) =
(λ∆t)ke−λ∆t

k!
(6.5.1)

P (k; ∆t) is the probability of detecting k events in ∆t. If we consider the probability to have
zero events in ∆t we obtain:

P (0; ∆t) = e−λ∆t (6.5.2)
We know that P ∈ [0 : 1] so if we consider a uniform distributed random variable u ∈ [0 : 1]
we obtain a distribution for ∆t:

∆t = − log(u)

λ
(6.5.3)

Therefore we obtain a Poisson distribution of the events if the waiting time elapsed between
two events is exponentially distributed. In order to obtain this timing distribution of the events
we implemented the following algorithm.

Figure 6.6: (Left) Test of exponential distribution of waiting time elapsed between two successive events; with
Rate λ = 1kHz and about 3.0 · 104 events. (Right) The same events into different range of time
∆t = {5, 10, 20, 30} that are Poisson distributed.
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6.6 Toy-MC Output data

In this section we show and describe an example of Toy-MC simulator output. Fixed the
telescope array layout and a list of parameters: (Alt,Azi)|Tel, FoV, Rate, D/〈R〉 and the time
of simulation, we obtain the following output:

In this little portion of output file (which normally contains thousands of triggered events)
are shown for example 12 events, each of them is triggered by at least one telescope and so
we obtain 25 entries. Each entry corresponds to a telescope, whose identification number is
printed in TEL_ID column and the absolute time of detection is expressed in SEC and NSEC
columns.
Therefore if we consider the event number 7 in the example, we can observe that it was detected
from 4 telescopes {1,6,8,9} in this chronological order, specified by absolute timing information
(sec, nsec).
For the filtering procedure only the columns ENTRY, TEL_ID, SEC and NSEC are “visible”
the others columns are used for the comparison after the filtering process to evaluate the filtering
performance. In particular the column RUN_ID which contains the multiplicity of triggered
telescope is used for this purpose.



Chapter 7

Filtering Events

All measurements made with CTA should undergo a rapid data analysis, in particular the
filtering of events has to be rapid and efficient to allow a real-time analysis and make the
observation of transient phenomena possible.
As we have already mentioned, the vast majority of events detected (about three order of
magnitude) are background events due to hadronic showers and only a little fraction are due to
electromagnetic showers originated by a VHE γ-rays. Therefore it will be necessary to reduce
a huge volume of raw data (typically 10 − 20 TB per night) to a few MB of high-level data,
with great accuracy to maximize the efficiency of γ-ray detection.
In this chapter we explain the importance of filtering events, which critical issues can be found
and finally we describe a way to discriminate events, which allowed us to implement a first-level
trigger.

7.1 Near events and Overlapping events

The first-level trigger must be able to recognize from the whole telescope array which signals
belong to the same physical event stereoscopically detected. But, is it always possible ?
When we assigned the absolute time to the events, we assumed Poisson distribution, therefore
we know that there might be some events very near in time and even overlapping.
Hence if we fix t0 as absolute time of an event we are able to estimate the probability to have
another event in a range of time ∆t:

P (1,∆t) = (λT∆t) e−λT∆t (7.1.1)

where λT is the rate of the whole telescope array.
In general for any array of N telescope we can say that:

λ < λT < Nλ → λT = CAλ (7.1.2)

where λ is the single telescope rate and CA is a factor which considers the geometrical distri-
bution of the telescopes that we consider as:

CA =
Aeff
Aevt

(7.1.3)

where Aevt is the elliptic area of the Cherenkov light pool, function of 〈R〉 and Aeff is the
effective detection area of the array. CA may represent a measure of the “compactness” of the
array.
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The effective area of the array Aeff is not simple to calculate analytically, therefore we can use
an easy geometrical MC to evaluate CA considering the overlapping of the detection area of
each telescope (see Figure 7.1).

Figure 7.1: (Left) The effective area estimated with MC. (Right) The CA factor in function of number of
telescopes N and D/〈R〉.

Now we are able to define a time relationship between two events: a) Far Events if ∆t > ∆tc,
b) Near Events if ∆t ' ∆tc and c) Overlapping Events if ∆t < ∆tc.

Where ∆tc is a critical time value not well defined and so we arbitrarily fixed it to be:

∆tc = DMax
ij + ∆tth (7.1.4)

where DMax
ij is the maximum time range of the event and ∆tth is the time that cn takes to

arrive at more distant nearest-neighbor telescopes. We explain better the meaning of ∆tth in
the next section.
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Now we have all the elements to give an estimation of the event number hard to discriminate,
hence the Near events and the Overlapping events.

Nhd = NNear +NOverlap = 2P (1,∆tc)

P (1,∆tc) = (λT∆tc) e
−λT∆tc

(7.1.5)

Below we can see the plot of Nhd in function of Alt, for the different layouts studied in this
thesis.

Figure 7.2: Plot of the hard to discriminate event number expressed in %, in function of ALT, for several
layout and different values of D/〈R〉.

If we consider our assumptions as acceptable, from this estimations some relevant data emerge:
there is a remarkable fraction of the events (1÷ 4 %) which is hard to discriminate through a
rapid analysis. It depends essentially from the rate λ and CA, therefore increase with the size
of the array. Moreover this fraction of events is difficult to recognize and it may compromise
some of the measurements, reducing the efficiency or slowing down the analysis.
Therefore the goal of this thesis is to develop a fast filter able to discriminate not only Far
Events but also Near and Overlapping events, where it is possible.
To do this we implement two algorithms: The first one is FCTA-R a raw filter able to separate
the events in time-blocks, to isolate groups of events without dividing any events between
blocks. The second one is FCTA-N, a Network filter algorithm combined with the first one and
able to discriminate a very good fraction of events thanks to compatibility between DT and
DEV T .
In the next sections we describe this two algorithms and the ideas on which they rely on.
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7.2 Minimum Large Threshold (MLT)

The vast majority of the events (∼ 90%) are well temporally isolated and it is quite simple
to understand that they are different events. But as we have seen in the previous section,
sometimes we are not able to understand if a group of entries which usually identifies an event
is a single event, two near events, two overlapping events or three, etc.
Hence we need a criteria which “cut” our absolute time-line, in which are contained the events
in intervals of time ( we call them time-boxes), each of them containing at least one ore more
events but with the strong condition that no event is divided into different time-box. This
criteria exists and never wrongs (in theory), if we adjust correctly ∆tth.
In the previous section to define near and overlapping events we consider the elapsed time
between two events, because the time separations is physically correlated to the rate of events.
But that is not a good choice if we want separate the events, a better choice is find a good
threshold between the entries.
Indeed if we compare each i-th entries with (i+1)-th, we can find that there is a strong difference
in their ∆ti,i+1 distribution respect to the events. (compare with Figure 6.6.a )

Figure 7.3: (Left) Distribution of Entries elapsed times ∆ti,i+1.(Right) The same plot in log-scale, it is
possible discriminate some entries which reveal us a Near Events relationship. But there is a time-zone where
we cannot distinguish the relationship between events.

Thus the algorithm consists in a simple condition and it is enough to have a raw filter whose
name is FCTA-R.

If this condition is satisfied the algorithm separates the entries, otherwise it keeps them together
in a time box. If the threshold is large enough this algorithm never separates a single event,
but at the same times we want minimize ∆tth to speed up the second step of the filter.
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A good compromise is to choose as threshold ∆tth the time spent from the light to cover the
distance from the hit telescope to its farthest first neighbor.

∆tth ≈
dMax
<ij>

cn
(7.2.1)

In example in a square layout of side d , like ASTRI, the dMax
<ij> is d

√
2.

We want anticipate that the speed of the next algorithm depends on the size of the time-box,
which have to contain less events as possible. The time-box may contain: a) single events, b)
two near events, c)three or more event.

Another good point of this algorithm is that: separating correctly the events, a huge flow of
data may be divided and processed from different processor units at the same time, so we are
thinking about a parallel computing solution as GPU.
We remember that the validity of this method is based on two assumptions: the list of entries
must be chronologically ordered and the threshold must be much greater than fluctuations
∆tth � τevt . Both assumptions are experimentally acceptable.

7.3 Compatibility Matrix
The previous algorithm FCTA-R separates correctly all Far events and a good quantity of Near
events, but its purity, as we discuss in the next chapter, remains in the order of 1 ÷ 3%. Is
there a way to recognize and distinguish two overlapping events ?
A useful tool to observe the time-box and to split overlapping events is the Delay Diagram.
The Delay Diagram is simply a plot in which along the x-axis are set the expected delays, for
example with respect to telescope T0 and along y-axis the detected time of each entry. If both
axis are chronologically ordered and x-axis is adjusted with an offset, the diagram shows the
correlation between data and expected values. In the figure below we show a real example of
simulated time-box plotted in Delay Diagram.

Figure 7.4: (Left) A time-box with two overlapping events. (Right) The same events in a Delay Diagram. It is
possible to observe how the diagram splits the overlapping events.
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This method is interesting because it reveals us if there is overlapping. Moreover if the same
telescope was detected more than one time gives us a good estimations of the ∆tevt. This
method has two limits: is too sensitive with respect to the fluctuations and it expresses the
time-delay correlation in one dimension only (in example with respect to T0).
To overcome this limits we define a new matrix using the delays matrices DT and DEV T de-
fined in the previous chapter. To estimate the fluctuations we identify two components that
contribute to the uncertainty: a term σFoV due to the Field of View and a term σstat due to
secondary order effects and random fluctuations.
We define a Compatibility Matrix using all these quantities as:

Λ =
|DEV T −DT |√
σ2
FoV + σ2

stat

(7.3.1)

This matrix is well defined and very rich of information. It can be generalized in more dimen-
sions using entries as indices (i, j) and so its size may be N ×N where N is the entries number
which belong to an event or more generally, a time-box.
To obtain a “true” Compatibility matrix Λ it is very important correctly estimate the statistical
fluctuations. The FoV term σFoV can be estimated using a uniform distribution inside a box
(a, b)ij, which is another matrix (a, b)ij = Dij(Alt± FoV,Azi± FoV ) :

Figure 7.5: (Left) The Field of View interval in which we assume uniform distribution. (Right) Fluctuations of
secondary order effects. Taken from ASTRI data about point-like source, (no FoV effects).

Hence the formula used to evaluate the FoV uncertainty is:

σ2
FoV =

(b− a)2
ij

12
(7.3.2)

and for the σstat we expect a value of σstat ≈ 20 ns but we found through simulations that
σstat ≈ 40 ns is a better value, and for each filtering process we used this value. Parameters
∆tth and σstat can in fact, be optimized in a calibration phase, to obtain the best result.
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7.4 Network Filter Algorithm

The Λ-matrix contains the whole information about the process, except the absolute timing
information which is only a constant value. The elements λij are not independent but correlated
among themselves. The fluctuations can compromise a single element of the matrix but the
others elements can reveal how the entries are bounded with others entries.
Therefore the basic idea is to use the collective information contained into the compatibility
Λ-matrix to distinguish near events or overlapping events.

7.4.1 Network theory

The Network theory is the study of graphs as representation of relations between discrete
objects. A network can be defined as a graph in which nodes and/or edges have attributes.
In our case each entry (a telescope which detected an event and produced a timestamp) can be
considered as a node and λij is the edge which connects the i-th entry with j-th entry. Hence
a Λ-matrix can be thought as network, a complete network with each node connected to each
other.

Λ =


0 λ01 λ02 · · · λ0N

λ10 0 λ12 · · · λ1N

λ20 λ21 0 · · · ...
...

...
... . . . ...

λN0 λN1 · · · · · · 0

 −→

The Λ-matrix is symmetric and can be considered as a weights-matrix, which describe the
compatibility among nodes. The whole information is contained in the upper triangular matrix,
but for graphical and computational reasons we prefer keep the previous definition.
This structure is not only a descriptive way to represent the relationship between our events,
but can suggests an operative way to distinguish the events.
The originality of this approach consists in fact in having identified a map from experimental
data to networks.
The use of networks allows to visualize the emerging of sub-data structures, clusters in the
networks, which represent different physical events.
Indeed already the Λ-matrix shows a structure like a block diagonal matrix which represent the
events, but fluctuations can make impossible or misleading the events recognition.
The advantage of a network with respect to the block diagonal matrix, is that we can evolve
the network, by adjusting the dynamic and so priming the clustering process.
Following this idea we developed a filter based on the network clustering to recognize the
physical events detected from Cherenkov Telescope Array and we call this filter FCTA-N. In
the next section we describe our clustering algorithm and show how to obtain this fragmentation
effect which allows us to separate our events.
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7.4.2 Clustering Algorithm

It is well known that it is not possible to represent geometrically in n < N dimension a generic
weights matrix N ×N mapping weight as lenght, but we can think of the Λ-matrix as a matrix
of coefficients of interaction potential or in this case coefficients of a velocity fields.
We can set a threshold λth = 3 thus for λij > λth the nodes are repelled and if λij < λth the
nodes are attracted.

Λ =


0 λ01 λ02 · · · λ0N

λ10 0 λ12 · · · λ1N

λ20 λ21 0 · · · ...
...

...
... . . . ...

λN0 λN1 · · · · · · 0

 −→

The speed is proportional to |λij −λth|, with a maximum value threshold λij ≤ 5, which means
high incompatibility. Thus the speed spectrum is −3 ≤ |λij − λth| ≤ 2 and we assigned speed
value +3 only if Teli = Telj. If we evolve the system we may obtain a clustering effect due to
the displacement of the nodes. Finally we report the clustering algorithm.

Figure 7.5: The Network Filter Algorithm written in C++. It is the core of our filter FCTA-N.
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The clustering algorithm has a complexity is O(N3) where N is the dimension of the time-
boxes. Thus if FCTA-R is optimized, we have that 4 ≤ N . 2NTel, indeed we set the condition
that FCTA-N runs only if N > 4, otherwise is possible to evaluate in an unique way the if
entries are correlated using Λ-matrix.
To better understand how the algorithm works it is possible to graphically show the clustering
process in different steps in a real example. Thus we consider a Λ-matrix extracted by MC-data
with size N = 10 containing overlapping events.

1) 2)

3) 4)
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5) 6)

7) 8)

9) 10)

Figure 7.6: Images of a clustering process obtained with FCTA-N. Starting from compatibility Λ-matrix we
obtain the first graph, then evolving the system through our filter algorithm we obtain a clustering effect.
From undefined time-box containing ten entries we obtain clearly the separation of two overlapping events:
Evt1 := {1, 3, 4} and Evt2 := {2, 5, 6, 7, 8, 9, 10}.



Chapter 8

Data Analysis and Filter Perfomance

In this chapter we report the analysis done both on our Toy-MC data and on data provided
by ASTRI collaboration. The analysis consists essentially to test our Filter for Cherenkov
Telescope Array (FCTA) in different situations. In fact, we considered several different layouts
in function of pair coordinates (Alt, Azi), with different parameter D/〈R〉 whit the change of
the number of telescopes NTel and single telescope rate λ.
The result of these tests showed a good agreement with ASTRI-MC simulations, therefore
allowing a deeper knowledge of the problem that we set out to solve.

Figure 8.1: Artistic concept (not to scale) of the ASTRI mini-array. [49]
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8.1 ASTRI-MC Simulations

In the framework of the international Cherenkov Telescope Array (CTA) gamma-ray obser-
vatory, a mini-array of nine small-sized, dual-mirror (SST-2M) telescopes developed by the
ASTRI Collaboration has been proposed to be installed at the future CTA southern site.
To perform the mini-array and analysis tools, the collaboration made several MC simulations
using CORSIKA as standard package to simulate showers development in the atmosphere and
sim_telarray[9] a tools which allows to simulated also the telescope array.

Figure 8.2: The ASTRI-MC layout and an example of γ-ray event nevt := 26603. Note the ASTRI-MC layout
and two kinds of telescopes with their TEL_ID, the blue ones LST and black ones SST. The red cross is the
centre of light pool. Blue circles denote approximately the dimension of the light pool.

The data levels (DL) of the ASTRI SST-2M prototype and mini-array have been defined in
compliance with the CTA data model , and they are: raw data (DL0); telescope-wise recon-
structed data (DL1); array-wise reconstructed data (DL2); reduced data (DL3); science data
(DL4); observatory data (DL5).[36]
The MC simulation used are DL2 where our filter allows to reconstruct all the events, the next
step is data reduction based on gammaness analysis. The original raw format is simtel while
the format adopted by ASTRI Collaboration is mainly FITS 1 data format, using the CFITSIO
and CFITS libraries for reading, processing, and writing FITS data.
To handle raw data and extract the timing information about MC events, we developed a code
using pyhessio2 library, the CTA Python wrapper for event format that is used in output of
sim_telarray.
This is an advantage because we will could access at the newest CTA simulations CTA_Prod3
with the same code.
1Flexible Image Transport System (FITS) http://fits.gsfc.nasa.gov/
2https://github.com/cta-observatory/pyhessio
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The ASTRI collaboration provided us:

• 20 runs (the official runs coded as: 1001-1020) containing raw MC data of EM showers
initiated by VHE γ-rays.

• 100 runs (the official runs coded as: 10000-10099) containing raw MC data of hadronic
showers initiated by VHE protons.

Each γ-ray run has some thousands of triggered events, while each proton run has some hun-
dreds of triggered events. All these data were processed to have the statistics required. The
most important parameter that has been extracted from these data is teltrg_time.
The teltrg_time is defined as the relative time in nanoseconds elapsed from the first event
detection by a telescope and the others detections by remaining telescopes, after subtractions
of nominal delay due to pointing directions of array. Using our formulation previously defined
in chapters 6 and 7, we can write:

Teltrg_time = |DEV T −DT | (8.1.1)

where in this case DEV T is not obtained only with geometrical with simply assumptions as our
Toy-MC, but contains a physical meaning due to particle interactions simulated by CORSIKA.
Each run of ASTRI-MC data is simulated in a unique configuration: (Alt, Azi)|Tel=(70, 0).
This is a little limit, because we cannot tested our Filter with official MC data on others
(Alt, Azi)|Tel configurations.
In the figure below we show in example a γ-ray event of ASTRI-MC simulations
nevt := 26603, which belongs at run_1001. This event has a primary cosmic energy of ∼ 16TeV
and (MCxcore, MCycore)=(−65, 104) with primary γ-ray direction (Alt, Azi)|Evt=(70, 0).

Figure 8.3: This plot shows the different components of relative delay in a γ-ray event nevt := 26603.
The (Alt, Azi)|Evt dependence red line, and the curvature effect due to shower development in atmosphere.
The curvature effect can be observed through teltrg_time. Note that curvature effect can be neglect with
respect to (Alt, Azi)|Evt component.
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In the plot above (Figure 8.3) we can see the different components of relative delay in a γ-ray
event nevt := 26603, which is a good representative example of all γ-ray data.
The γ-ray data are simulated as coming by a point-like source, thus we have that
(Alt, Azi)|Tel=(Alt, Azi)|Evt, thus we haven’t effects due to FoV uncertainty.
The curvature effect can be observed through teltrg_time in function of core distance. We can
note that curvature effect can be neglected with respect to (Alt, Azi)|Evt component.
Therefore it is probably the main reason to explain the very good agreement among Toy-MC
data and ASTRI-MC data.

8.2 Purity and Efficiency

In algorithm analysis, besides the complexity, there are two features which describes the algo-
rithm performance: purity and efficiency. The definition of purity:

p =
Nrec −Ndisc

Ntot −Ndisc

were Nrec are the number of events “strictly correctly reconstructed” by the filter, Ndisc the
number of events discarded and Ntot the number of total events detected.
We are assuming that an event is “strictly correctly reconstructed” if all the entries which belong
to the event are grouped in the correctly way. If an entry which not belongs to the events or in
the opposite case if a valid entry is discarded, it represent to us an incorrectly reconstruction.
Indeed the definition of efficiency is:

ε =
Nrec −Ndisc

Ntot

Knowing very well the purity it is possible estimate correctly the uncertain of a measurements,
and knowing very well the efficiency it is possible to obtain precision measurements without
systematic errors.
Purity and efficiency, in this thesis, are evaluated with MC simulation, but in a real experiment,
they will evaluated again with real data. This procedure is possible and required, and can be
performed analyzing in depth a great data sample, knowing, as well as possible, the identity of
events and then running again the filter on data sample. In this way purity and efficiency can
be confirmed, previous values obtained with MC events.
Given a CTA layout, the main goal is maximize purity and efficiency. In general there are
many factors that have to be considered, for example we have to maximize the effective area
minimizing the number of telescopes.
A relevant parameter for this studies about the filtering of the events is the ratio D/〈R〉.
Indeed we observed a dependence of the algorithm performance due to the scalability between
D and 〈R〉 which have geometrical reasons.
In the next sections we report the purity and the efficiency of our main filtering algorithms
FCTA-R and FCTA-N.
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8.3 CTA_9

In this section we considered four different layouts of the ASTRI mini-array with nine tele-
scopes with the change of distance D on the array. We studied each layout in function of
pair coordinates (Alt, Azi) for Toy-MC data, ASTRI-MC data have a fixed configuration (Alt,
Azi)=(70,0).

Figure 8.4: From the same ASTRI-MC data, we considered different sub-array, to show dependence of
algorithm performance changing D.

In the Layouts: CTA_9_200, CTA_9_250, CTA_9_300, and CTA_9_350 we have chosen to
maintain fixed the parameter D/〈R〉 = 1. These choice leads different values in the efficiency
between ASTRI-MC data and Toy-MC data, but it is essentially a scale effect.
Indeed in Toy-MC simulator 〈R〉 is a free parameter and if we tune it we obtain the same
efficiency of ASTRI-MC data.
There are two others factors that we have to consider: 1) In our Toy-MC 〈R〉 is fixed without
fluctuations, instead in ASTRI-MC data ∆R 6= 0. 2) In our Toy-MC we detect also single
events, instead ASTRI-MC data containing only events triggered by at least two telescopes.
This second factors is not a problem if D < 350m because we can have the approximately true
number of single events, triggered by the external telescopes
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8.3.1 CTA_9_200

Figure 8.5: Purity and Efficiency of FCTA-R and FCTA-N. Others parameters are D/〈R〉 = 1 and λ = 1 kHz.
The deslocation of the telescopes is shown in Figure 8.4.a.
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Figure 8.6: Purity and Efficiency of FCTA-R and FCTA-N with changing of the single telescope rate λ. The
dislocation of the telescopes is shown in Figure 8.4.a. Others parameters are (Alt,Azi)=(70,0) and D/〈R〉 = 1.
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8.3.2 CTA_9_250

Figure 8.7: Purity and Efficiency of FCTA-R and FCTA-N. Others parameters are D/〈R〉 = 1 and λ = 1 kHz.
The dislocation of the telescopes is shown in Figure 8.4.b.
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8.3.3 CTA_9_300

Figure 8.8: Purity and Efficiency of FCTA-R and FCTA-N. Others parameters are D/〈R〉 = 1 and λ = 1 kHz.
The dislocation of the telescopes is shown in Figure 8.4.c.
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8.3.4 CTA_9_350

Figure 8.9: Purity and Efficiency of FCTA-R and FCTA-N. Others parameters are D/〈R〉 = 1 and λ = 1 kHz.
The dislocation of the telescopes is shown in Figure 8.4.d.
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8.3.5 CTA_9 Comparison

Figure 8.10: Purity and Efficiency of FCTA-R and FCTA-N. Others parameters are D/〈R〉 = 1 and
λ = 1 kHz. Comparison between the all telescopes dislocated as shown in Figure 8.4.
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Figure 8.11: Purity and Efficiency of FCTA-R and FCTA-N. Others parameters are (Alt,Azi)=(70,0) and
λ = 1 kHz. Dependence between D/〈R〉. Scaling effect.
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8.4 CTA_N

In this section we considered four different layouts of the ASTRI mini-array with cumulative
telescopes: NTel = 17, NTel = 25, NTel = 33. We studied each layout in function of pair
coordinates (Alt, Azi) for Toy-MC data, ASTRI-MC data have a fixed configuration (Alt,
Azi)=(70,0).

In the Layouts: CTA_17, CTA_25, CTA_33, we have chosen to keep fixed the parameter
〈R〉 = 200. We note that the increasing of the number of telescope NTel, increase the perfor-
mance of FCTA-N.
Indeed in Figure 8.16 we can see that purity remain more and less at the constant value of
p ∼ 99.8%, instead the FCTA-R much worse. It is a very good point in favor of Network filter
algorithm FCTA-N.
Because more telescopes were triggered, more information is available, so a collective method
to discriminate the events becomes a winning solution.
In Figure 8.16 we can note also that efficiency at CTA_33 of ASTRI-MC data is too high, it
is as we have already mentioned that ASTRI-MC data containing only events triggered by at
least two telescopes.
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8.4.1 CTA_17

Figure 8.13: Purity and Efficiency of FCTA-R and FCTA-N. Others parameters are 〈R〉 = 200 and λ = 1 kHz.
The dislocation of the telescopes is shown in Figure 8.12.e.
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8.4.2 CTA_25

Figure 8.14: Purity and Efficiency of FCTA-R and FCTA-N. Others parameters are 〈R〉 = 200 and λ = 1 kHz.
The dislocation of the telescopes is shown in Figure 8.12.f.
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8.4.3 CTA_33

Figure 8.15: Purity and Efficiency of FCTA-R and FCTA-N. Others parameters are 〈R〉 = 200 and λ = 1 kHz.
The dislocation of the telescopes is shown in Figure 8.12.g.
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8.4.4 CTA_N Comparison

Figure 8.16: Purity and Efficiency of FCTA-R and FCTA-N. Others parameters are 〈R〉 = 200 and λ = 1 kHz.
Comparison between the all telescopes dislocated as shown in Figure 8.12.
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8.5 Concluding remarks and future work

The main goals of this thesis work are:

1. the in-depth study of VHE gamma ray astronomy and the CTA project,

2. the development of a first-level trigger for the CTA,

3. testing its efficiency through a Toy-MC simulations of several different setup and with
MC simulations provided by the ASTRI collaboration,

4. finally to deploy the algorithm on a GPU system in order to obtain the required perfor-
mance.

Hence in chapters 1-5 we offer, without claim for completeness, a full and self-consistent pre-
sentation of many aspects and topics of VHE gamma ray astronomy, which allows the reader
to appreciate the main results, understanding how they were obtained. It is the result of hard
work and passion to the subject.
The most relevant work is the development of a first-level trigger to fast filtering the events for
the CTA. It was a challenge, many attempts were made until to find some simply but efficient
ideas. After an in-depth study of the discrimination events problem, which allowed to develop
a filter working with two original algorithms called FCTA-R and FCTA-N.
The first one, FCTA-R, is simple but not trivial, it never wrongs. It consists essentially in a
criteria to “cut” the absolute time-line, in intervals of time ( we call them time-boxes), each of
them containing at least one ore more events but with the strong condition that no event is
divided into different time-box.
The second one, FCTA-N, is a original Network Filter Algorithm, which transforms a compati-
bility matrix, well defined through the delays matrices in a graph and than evolves the systems
obtaining a clustering effect. The cluster corresponds at the simulated physical events. All this
procedure is innovative and probably never used before in CTA data analysis.
Finally we tested our filter onto Official ASTRI-MC data. Obtaining a very good performance
with a purity of about ∼ 99.8% and the highest efficiency obtainable with the same purity.
The implementation of the algorithm on a GPU system, made possible by the FCTA-R condi-
tion, is the next step and, I hope, my future work.
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Appendix A

Classical Electrodynamics

Classical Electrodynamics is a branch of Physics that studies the interactions between charges
and electromagnetic fields, whenever the length scales and field strengths are large enough to
neglect quantum mechanical effects.
The description of the electromagnetic phenomena is based on the Maxwell’s equations and the
Lorentz Force. The Maxwell’s equations in S.I. units are:

∇ ·D = ρf ∇ ·B = 0

∇×E = −∂B
∂t

∇×H = jf +
∂D

∂t

(A.0.1)

In vacuum D = ε0E and H = B/µ0 where µ0ε0 = 1/c2. In general, into a dielectric medium
the auxiliary fields are: D = ε0E + P and H = B/µ0 −M where P is the polarization field
and M the magnetization field defined by:

ρb = −∇ · P jb = ∇×M +
∂P

∂t
(A.0.2)

where footer f means free and b means bound:

q = qf + qb =

∫
V

(ρf + ρb)dV j = jf + jb =

∫
V

(jf + jb)dV (A.0.3)

Implicit in the Maxwell’s equations is the continuity equation for charge density ρ and current
density æ. Also essential for consideration of charge particle motion is the Lorentz Force:

F = q
(
E + v ×B

)
(A.0.4)

The energy density of the electromagnetic field and the energy flux (Pointing vector) are:

u =
1

2

(
E ·D +B ·H

)
S = E ×H (A.0.5)

Maxwell’s equations could be also written in covariant form, consistent with Special Relativity.

εµνρσ∂νFρσ = 0 ∂µF
µν = jν (A.0.6)

where F µν is the electromagnetic tensor and jµ = (ρ, j) is the four-current.
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A.1 Liénard-Wiechert potentials

Consider a particle of charged q = ze moving along the trajectory rq(τ) at speed v = βc.
Suppose we wish to measure the radiation field at point P at time t, located at r(t).

The radiation measured at P , at time t, was emit-
ted by the particle when it was at point S ′, at an
earlier time t′, where S ′P = R(t′) = r(t)− rq(t′).
This is because an electromagnetic wave has a
finite travel time ∆t = |R(t′)|/c before arriving
at point P . Thus, the radiation field at P needs
to be specified in terms of the time emission t′,
called retarded time:

t′ = t− |r − r
′|

c
= t− |R(t′)|

c
(A.1.1)

To evaluated the radiation field at P at time t is
useful introduce the scalar and vector potentials
φ(r, t) and A(r, t).

From homogeneous Maxwell’s equations, we obtain the following usual definitions:

∇ ·B = 0 → B = ∇×A ∇×E = −∂B
∂t

→ E = −∂A
∂t
−∇φ (A.1.2)

where we used the property of B to be a solenoidal vector field and that E − ∂A/∂t is an
irrotational vector. Electromagnetic potentials are not uniquely defined, it is possible prove
that following transformations leave E and B unchanged.

A ′ = A+∇χ φ′ = φ− ∂χ

∂t
(A.1.3)

The choice of any scalar field χ determines the gauge, but no physical result depends upon the
choice. Replacing these results into the others two Maxwell’s equations we obtain:

∇ ·E =
ρ

ε0

→ ∇2φ+
∂(∇ ·A)

∂t
= − ρ

ε0

∇×B = µ0j + µ0ε0
∂E

∂t
→ ∇2A− µ0ε0

∂2A

∂t2
−∇

(
∇ ·A+ µ0ε0

∂φ

∂t

)
= −µ0j

(A.1.4)

where in the second equations we used a vector identity 1, with the appropriate gauge choice

∇ ·A = −µ0ε0
∂φ

∂t
, called Lorentz gauge condition, we obtain the same differential equation for

each potential.

∇2φ− µ0ε0
∂2φ

∂t2
= − ρ

ε0

∇2A− µ0ε0
∂2A

∂t2
= −µ0j (A.1.5)

To find a solution we consider the associated homogeneous differential equation, replacing
µ0ε0 = 1/c2.

∇2φ− 1

c2

∂2φ

∂t2
= 0 (A.1.6)

1∇× (∇×A) = ∇(∇ ·A)−∇2A
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It is clear that in this case φ has a central symmetry (φ is a function only of R). Therefore if
we write the Laplace operator in spherical coordinates (A.1.6) reduces to:

1

R2

∂

∂R

(
R2 ∂φ

∂R

)
− 1

c2

∂2φ

∂t2
= 0 −→ ∂2ϕ

∂R2
− 1

c2

∂2ϕ

∂t2
= 0 (A.1.7)

where we made the substitution φ = ϕ(R, t)/R, with R = |r − rq|. Then we find for ϕ the
equation of plane waves, whose the general solution has the form:

ϕ = ϕ1

(
t− R

c

)
+ϕ2

(
t+

R

c

)
(A.1.8)

Since we only want a particular solution of the equation, with physical meaning, we take ϕ2 = 0.
Then everywhere except at the origin, φ has the form:

φ =
ϕ
(
t− R

c

)
R

(A.1.9)

The function ϕ in this moment is arbitrary, we now choose it so that we obtain the correct
value at the origin. It is easy to see that if R → 0, the potential increase to infinity, and
therefore in the limit of R→ 0 we can neglect the time derivative term respect ∇2φ. Therefore
remembering the solution of the Poisson equation we obtain that the retarded potentials are:

φ(r, t) =
1

4πε0

∫
ρ(r ′, t′)

|r − r ′|
d3r ′ A(r, t) =

µ0

4π

∫
j(r ′, t′)

|r − r ′|
d3r ′ (A.1.10)

For a moving point charge along rq(τ) formally we define: the charge distribution ρ(r ′, t′) =
q δ3(r ′−rq(t′)) δ(t′− t+ |R(t′)|/c) and current j(r ′, t′) = qv δ3(r ′−rq(t′)) δ(t′− t+ |R(t′)|/c).
Thus we have:

φ(r, t) =
1

4πε0

∫∫
q δ(t′ − t+ |R(t′)|/c)

|r − r ′|
δ3(r ′ − rq(t′)) d3r ′dt′

A(r, t) =
µ0

4π

∫∫
qv δ(t′ − t+ |R(t′)|/c)

|r − r ′|
δ3(r ′ − rq(t′)) d3r ′dt′

(A.1.11)

To evaluate this integral, therefore, we need the identity: δ(f(t′)) =
∑
j

δ(t′ − tj)
|f ′(tj)|

so we have:

δ(t′ − t+ |R(t′)|/c) =
δ(t′ − t+ |R(t′)|/c)
∂
∂t′

(t′ − t+ |R(t′)|/c)
=
δ(t′ − t+ |R(t′)|/c)
1 + 1

c
R(t′)
|R(t′)|(−vq(t′))

= (A.1.12)

Replacing (A.1.12) into (A.1.11) and simpliyfing the notation with n̂ = R(t′)/|R(t′)| and
β = vq/c = ṙq/c we obtain :

φ(r, t) =
1

4πε0

(
q

(1− n̂ · β)R

)

A(r, t) =
µ0c

4π

(
qβ

(1− n̂ · β)R

) (A.1.13)

These are the famous Liénard-Wiechert potentials for a moving point charge.
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A.2 The Radiation Field

The differentiation of Liénard-Wiechert potentials through the definitions (A.1.2) provides the
electromagnetic fields generated by a point charge moving along rq(τ). The calculation is not
trivial ( see Jackson [27] for details):

E(r, t) =
1

4πε0

[
q(n̂− β)

γ2(1− n̂ · β)3R2
+
q n̂×

(
(n̂− β)× β̇

)
c(1− n̂ · β)3R

]

B(r, t) =
1

c

[
n̂×E(r, t)

] (A.2.1)

The first term of the electric field, ∝ R−2, is the velocity field and represent the generalization
of the Coulomb law for moving point charge (indeed for β � 1 it becomes exactly the Coulomb
law). The second term ∝ R−1 is called acceleration field and is always perpendicular to n̂.
Hence the radiation field of a moving charge is defined by:

Erad(r, t) =
q

4πε0c

[
n̂×

(
(n̂− β)× β̇

)
(1− n̂ · β)3R

]

Brad(r, t) =
1

c

[
n̂×Erad(r, t)

] (A.2.2)

In the special cases in which the particle moves with uniform motion, the second term in
(A.2.1) is absent. The first term have to be the same of what we can obtain with a Lorentz
transformaion of the static Coulomb field.

Observing the Fig.?? we can note that:

P ′Q = βR cos θ = β · n̂R

so we have :

OQ = (1− β · n̂)R and b = R sin θ

where b is the impact parameter. Hence:

[(1−β ·n̂)R]2 = b2 +v2t2−β2b2 =
1

γ2
(b2 +γ2v2t2)

Thus the transverse component of the field, cal-
culated from (A.2.1) results:

|Et(r, t)| =
1

4πε0

qγb

(b2 + γ2v2t2)3/2
(A.2.3)

Figure 2.3: Present and retarded positions of
a charge in uniform motion.

The other components of E and B come out similarly. This result is the starting point of
Weizsaker-Williams approach used to describe bremsstrahlung radiation.
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A.3 Larmor’s Formula and its relativistic generalization

To calculated the Total emitted power by a moving charge along rq(τ), we consider before the
non-relativistic case. If β � 1, the radiation fields simplified are:

Erad(r, t) =
q

4πε0Rc

[
n̂× (n̂× β)

]

Brad(r, t) =
1

c

[
n̂×Erad(r, t)

] (A.3.1)

Note that Erad remains in the plane containing n̂ and β̇ and Brad is orthogonal to this plane.
If we define the angle between n̂ and β as θ, we have:

|Erad| = c|Brad| =
q

4πε0

v̇

Rc2
sin θ (A.3.2)

The Pointing vector is directed as n̂ and its magnitude is:

S =
1

µ0

E ×B =
1

µ0c
|E2

rad| =
1

16π2ε0c3

q2v̇2

R2
sin2 θ (A.3.3)

Since S is the flux of the emitted power (S = dW/(dtdΣ)), we can write dΣ = R2dΩ, where dΩ
is the solid angle. Thus the emitted power per solid angle is:

dW

dtdΩ
=

1

16π2ε0c3
q2v̇2 sin2 θ (A.3.4)

Note the characteristic dipole pattern ∝ sin2 θ. The maximum emitted power is perpendicular
to the acceleration and indeed there is no emission along the acceleration direction.
The total emitted power is obtained integrating in the whole solid angle.

P =
dW

dt
=

1

16π2ε0c3
q2v̇2

�������������∫ 2π

0

∫ π

0

sin2 θ sin θdθdφ

8
3
π

(A.3.5)

The result is the Larmor’s formula: the total emitted power by an accelerating charge (non-
relativistic):

P =
q2v̇2

6πε0c3
(A.3.6)

The relativistic generalization of the Larmor’s formula is obtained knowing that the power
P have to be Lorentz invariant. Therefore we relate P with the first derivative of the four-
momenta, knowing that aµ = dvµ/dτ is the four-acceleration and vµ = γ(c,v) the four-velocity:

P =
q2

6πε0m2c3

(
dpµ

dτ

dpµ
dτ

)
=

q2

6πε0c3
(aµaµ) (A.3.7)

Where 1
m2 (dp

µ

dτ

dpµ
dτ

) = (aµaµ) = −a0a0 + |a|2. Note that in all reference frames the four-velocity
and four-acceleration are orthogonal: aµvµ = (dvµ/dτ)vµ = 1

2
d(���vµvν

−c2)/dτ = 0.
But since exists a reference frame K ′ where the particle is at the rest vµ = (c,0) this imply
that a′0 = 0. Hence we can write that: aµaµ = a′µa′µ| = |a′|2. Therefore we can write:

P =
q2

6πε0c3
|a′|2 (A.3.8)
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Expliciting the acceleration’s components parallel a// and perpendicular a⊥ to the particle’s
velocity and considering the transformation properties of these components: a′// = γ3a// and
a′⊥ = γ3a⊥, we obtain:

P =
q2

6πε0c3
(a′

2
// + a′

2
⊥) =

q2

6πε0c3
γ4(γ2a2

// + a2
⊥) (A.3.9)

Clearly, the emitted power P increase drastically in the relativistic regime. This expression can
be written in a compact form as:

P =
q2

6πε0c3
γ6(a2 − |β × a|2) (A.3.10)

A.4 The Radiation Spectrum

For astrophysical studies, we want to specify the Radiation Spectrum of an accelerating charge.
This specifies how the power is distributed over frequency. First we introduce the Fourier
transform of the particle’s acceleration :

v̇(t) =
1√
2π

∫ +∞

−∞
v̇(ω) exp (−iωt)dω

v̇(ω) =
1√
2π

∫ +∞

−∞
v̇(t) exp (iωt)dt

(A.4.1)

Then we use Parseval’s theorem, which relates these as follows:∫ +∞

−∞
|v̇(ω)|2dω =

∫ +∞

−∞
|v̇(t)|2dt (A.4.2)

Another useful relation is: ∫ +∞

0

|v̇(ω)|2dω =

∫ 0

−∞
|v̇(ω)|2dω (A.4.3)

which is valid if v̇(ω) is real. Applying these relations to the Larmor’s formula (A.3.6) or its
relativistic generalization(A.3.10) we have the integral relation:∫ +∞

−∞
Pdt =

∫ +∞

−∞

q2

6πε0c3
|v̇(t)|2dt =

q2

3πε0c3

∫ +∞

0

|v̇(ω)|2dω (A.4.4)

Since the total emitted energy is also equal to
∫∞

0
(dW/dω)dω, then the energy emitted on a

given frequency is:
dW

dω
=

q2

3πε0c3
|v̇(ω)|2 (A.4.5)

This is the Radiation Spectrum of an accelerating charge particle.
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Quantum Electrodynamics

Quantum Electrodynamics (QED) is a quantum field theory of interacting fermionic matter and
photons. As a field theory, it can receive a description both in Lagrangian and Hamiltonian
formalism.

LQED = ψ̄(i/∂ −m)ψ − 1

4
F ρσFρσ − qψ̄ /Aψ (B.0.1)

where:

• LD = ψ̄(i/∂ −m)ψ is the fermionic free Lagrangian

• LEM = −1

4
F ρσFρσ is the electromagnetic Lagrangian, where F ρσ = ∂ρAσ − ∂σAρ

• LI = −qψ̄ /Aψ is the interaction term of Lagrangian.

The hamiltonian density associated to LQED is defined to be:

HQED =
∑

α

∂LQED

∂∂0φα
∂0φα − LQED (B.0.2)

But the only useful component for our purpose to study the interactions is:

HI =

�
�
�
�˙̄ψ

∂LI
∂ ˙̄ψ

+

�
�
�
�∂LI

∂ψ̇
ψ̇ +

�
�

�
��∂LI

∂Ȧµ
Ȧµ − LI → HI = −LI (B.0.3)

B.1 The S-Matrix

The S-matrix operator relates the initial state and final state of a physical system undergoing a
scattering process. Is implicit in this discussion that we switched to an interaction picture (I.P)
description of our quantized system where states and operators follow different time evolution:

• The operators evolve with the Interaction hamiltonian HI

• The states evolve with free hamiltonian

|i〉 : initial states → |ψ(t = −∞)〉 = |ψin〉
|f〉 : final states → |ψ(t =∞)〉 = |ψfin〉

(B.1.1)

The transition from |i〉 to |f〉 is:

〈ψfin|S |ψin〉 = Sfi | 〈ψfin|S |ψin〉 |2 = |Sfi|2∑
f |Sfi|2 = 〈ψin|S+ |ψfin〉 〈ψfin|S |ψin〉 = 〈ψin|S+S |ψin〉 = 1

(B.1.2)
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B.2 The Cross Section

Consider a beam of particles of type 1 and mass m1 colliding with a target made of particles
of type 2 and mass m2. The target is at rest in the Lab frame.
Let n(0)

1 and n(0)
2 the number density of beam and of the target and v(0)

1 the speed of the type
1 particles in the beam.

Figure 1.4: Cross section geometry, showing incident beam, target and outgoing beam into solid angle dΩ.

The Rate of scattering Rs is defined by the number of scattering events Ns per unit of time T
and volume V . It is proportional to the target and beam density and the speed v(0)

1 by σ.

Rs =
Ns

V T
= σ(n

(0)
1 v

(0)
1 )n

(0)
2 (B.2.1)

where σ is the cross section of the process.
The cross section has dimension of area [σ] = L2 and a specific unit of area called barn
1 b = 100 fm2 . The quantity dσ/dΩ is called differential cross section, and give us rele-
vant information about angular distribution of the scattering products. The cross section σ can
be found by integrating dσ/dΩ over all angle.

σ =

∫
dσ

dΩ
=

∫ π

0

dθ sin θ

∫ 2π

0

dφ
dσ

dΩ
(B.2.2)

We want now made a connection between cross section σ and the S-matrix element Sfi at given
order of perturbation.

Sfi = 〈f |S |i〉 = (2π)4δ4(PIN − PFIN)Mfi i 6= f (B.2.3)

If the states are canonically normalized 〈i| |i〉 = 1
∑

f 〈f | |f〉 = 1 we can give a probabilistic
interpretation of Sfi as transition amplitude from the unitarity of S-matrix.∑

f

|Sfi|2 =
∑
f

〈i|S+ |f〉 〈f |S |i〉 = 〈i|S+S |i〉 = 1 (B.2.4)

But when we calculate Feynman amplitudeM from Feynman diagrams using Feynman rules
in momentum space we are using covariant normalization.

〈1(p)| |1(p)〉 = (2π)32Epδ
3(0)→ (2Ep)V (B.2.5)

So the canonically normalized1 state is given by |1(p)〉CN =

(
1

2EpV

) 1
2

|1(p)〉.

1N.B.There is another common normalization used for leptons states |1(p)〉′CN =
√

2ml |1(p)〉.
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The quantity S CN
fi can now be correctly interpreted with a “probabilistic” meaning.

S CN
fi = 〈f |S |i〉CN =

ni∏
i=1

(
1

2EiV

) 1
2

nf∏
f=1

(
1

2EfV

) 1
2

Sfi (B.2.6)

= (2π)4δ4(PIN − PFIN)

ni∏
i=1

(
1

2EiV

) 1
2

nf∏
f=1

(
1

2EfV

) 1
2

Mfi (B.2.7)

whereMfi is the Feynman amplitude that we can calculate from Feynman diagrams.
To obtain a meaningful result we have to require to consider final states with p ∈ (pf , pf + dpf )
so the number of states is:

d3n =

nf∏
f=1

(
V d3pf
(2π)3

)
p ∈ (pf , pf + dpf ) (B.2.8)

We have all elements to define the transition probability between |i〉 to |f〉 with p ∈ (pf , pf+dpf )
in two relevant processes:

dWfi = |S CN
fi |2

nf∏
f=1

(
V d3pf
(2π)3

)
(B.2.9)

• Decay process 1→ nf :

dW1→nf = (2π)4δ4(PIN − PFIN)(V T )
1

2E1V

nf∏
f=1

(
d3pf

(2π)32Ef

)
|Mfi|2 (B.2.10)

• Scattering process 1 + 2→ nf :

dW1+2→nf = (2π)4δ4(PIN − PFIN)(V T )

(
1

2E1V

)(
1

2E2V

) nf∏
f=1

(
d3pf

(2π)32Ef

)
|Mfi|2 (B.2.11)

where we used this passage
(
(2π)4δ4(PIN − PFIN)

)2
= (2π)4δ4(PIN − PFIN)������

(2π)4δ4(0) (V T ).
With this definition of transition probability we can made a connection between cross sec-
tion σ previously defined with experimental observables and Feynman amplitude |Mfi|2 which
rappresent the interaction of perturbative theory.
In the Lab frame previously described we can write:

dσ =
dWfi

V T

1

(n
(0)
1 v

(0)
1 )n

(0)
2

=
(2π)4δ4(PIN − PFIN)

4m2E
(0)
1 v

(0)
1

nf∏
f=1

(
d3pf

(2π)32Ef

)
|Mfi|2Lab (B.2.12)

when we used the fact that our states are normalized in such a way to have one particle per
unit of volume and so n(0)

1 = n
(0)
2 = 1/V .

Most of the object in this formula are invariant under a proper Lorentz transformation.
Let’s define the flux factor as:

I =

[
(p1p2)2 − (m2

1m
2
2)

] 1
2

(B.2.13)

this is an invariant quantity. That in the Lab frame is ILab = m2|p1|Lab = m2E
(0)
1 v

(0)
1 .

Thus dσ can be written in a Lorentz invariant way as:

dσ =
|Mfi|2

4I
dφ(n) dφ(n) = (2π)4δ4(PIN − PFIN)

nf∏
f=1

(
d3pf

(2π)32Ef

)
(B.2.14)

where dφ(n) is the Lorentz invariant phase space of nf body.
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B.2.1 Cross Section in Scattering process 1 + 2→ 1′ + 2′

Let’s start being general and assuming all particles different and in generic reference frame.

p1 = (E1,p1) p1′ = (E1′ ,p1′)
p2 = (E2,p2) p2′ = (E2′ ,p2′)

(B.2.15)

The differential of cross section can be written as:

dσ =
|Mfi|2

4I
(2π)4δ4(p1 + p2 − p1′ − p2′)

d3p1′

(2π)32E1′

d3p2′

(2π)32E2′
(B.2.16)

In this formula there are six integration variable and four deltas. So we can integrate in order to
write dσ in terms of the only two independent variables. The others variables can be eliminated:
• by integrating the phase space over d3p2′ with condition p2′ = p1 + p2 − p1′ .

dφ′(2) =

∫
dφ(2) =

1

(4π)2E1′E2′
δ(E1 + E2 − E1′ − E2′)d

3p1′ (B.2.17)

• by integrating the phase space over d|p1′|, knowing that d3p1′ = |p1′ |2d|p1′|dΩ1′ .

dφ′′(2) =

∫
dφ′(2) =

dΩ1′

(4π)2E1′E2′

∫
d|p1′|δ(E1 + E2 − E1′ − E2′)|p1′ |2 (B.2.18)

using this general relation :∫
f(x, y)δ[g(x, y)]dx =

∫
f(x, y)δ[g(x, y)]

(
∂x

∂g

)
y

dg =

[
f(x, y)

∂x/∂g

]
g=0

(B.2.19)

we obtain the differential cross section for scattering process 1 + 2 → 1′ + 2′ in a generic
reference frame.

dσ

dΩ1′
=
|Mfi|2

64π2I

|p1′ |2

E1′E2′

[
∂E1′ + ∂E2′

∂|p1′|

]−1

(B.2.20)

To go further we have to choose the reference frame.

CoM

s = (p1 + p2)2 = (p1′ + p2′)
2

p1′ + p2′ = (E1′ + E1′ ,p1′ + p2′) = (
√
s, 0)

ICM = |p1|
√
s

∂E1′ + ∂E2′

∂|p1′ |
= |p1′ |

E1′ + E2′

E1′E2′
= |p1′ |

√
s

E1′E2′

|p1′ | =
1

2
√
s

[
s2 + (m2

1′ −m2
2′)

2 − 2s(m2
1′ +m2

2′)
]1/2
(B.2.21) Scattering 1 + 2→ 1′ + 2′ in CoM frame.

With these quantities evaluated in the center of mass reference frame we obtain the master
equation for 1 + 2→ 1′ + 2′ in CoM frame:(

dσ

dΩ1′

)
CoM

=
1

64π2

|p1′|
|p1|
|Mfi|2

s
(B.2.22)
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In many cases this formula can be simplified:
• m1 = m1′ and m2 = m2′

In this case |p1′ | = |p1|, (E1′ = E1)the cross section in the reference frame is:(
dσ

dΩ1′

)
CoM

=
1

64π2

|Mfi|2

s
(B.2.23)

• m1 = m2 = 0 and m1′ = m2′ = M

In this case |p1| = E1 =
√
s

2
and |p1′ | =

√
s

2

(
1− 4M2

s

)1/2 the cross section in the reference frame
is: (

dσ

dΩ1′

)
CoM

=
1

64π2

(
1− 4M2

s

) 1
2 |Mfi|2

s
(B.2.24)

RF − Lab

|p2| = 0

IRF = |p1|m2

|p2′ |2 = |p1|2 + |p1′ |2 − 2|p1′ ||p1′ | cos θ

∂E1′ + ∂E2′

∂|p1′ |
=

∂E1′

∂|p1′ |
+

∂E1′

∂|p2′ |2
∂|p2′ |2

∂|p1′ |
=

|p1|
E1′

+
|p1′ | − |p1| cos θ

E2′
=
|p1′ |(E1 +m2)− E1′ |p1| cos θ

E1′E2′

(B.2.25)
Scattering 1 + 2→ 1′ + 2′ in rest frame.

With these quantities evaluated in the rest reference frame we obtain the master equation for
1 + 2→ 1′ + 2′ in the RF frame:(

dσ

dΩ1′

)
RF

=
1

64π2

1

|p1|m2

|p1′|2

|p1′|(E1 +m2)− E1′ |p1| cos θ
|Mfi|2 (B.2.26)

This formula can be simplified when:
• m1 = m1′ = 0 and m2 = m2′ = M

In this case |p1| = E1 and |p1′| = E1′ . Using t variable and conservation of energy we obtain a
relation for E1′ .

E1′ =
ME1

M + E1(1− cos θ)
(B.2.27)

t = (p1 − p1′)2 = −2E1E1′(1− cos θ)

t = (p2 − p2′)2 = 2M2 − 2ME2′

E2′ = E1 +M − E1′

(B.2.28)

In these conditions the cross section results:(
dσ

dΩ1′

)
RF

=
1

64π2

(
E1′

E1

)2 |Mfi|2

M2
(B.2.29)
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B.3 Calculations of γ-matrix Traces

In this section we calculate the γ-matrix trace of the Compton Scattering unpolarized Feynman
Amplitude (2.2.22).

T = Tr

[
γµ(/p

′ +m)γµ(/p+ /k +m)γν(/p+m)γν(/p+ /k +m)

]
(B.3.1)

The trace T have to be evaluated using γ-matrix properties and Clifford algebra.
Using γµγµ = 4 and γµγργµ = −2γρ we obtain:

T = Tr

[
(4m− 2/p

′)(/p+ /k +m)(4m− 2/p)(/p+ /k +m)

]
= T1 + T2 + T3 + T4 (B.3.2)

with

T1 = 16m2Tr
[
(/p+ /k +m)(/p+ /k +m)

]
= 16m2(4(p+ k)2 + 4m2) = 64m2(s+m2)

T3 = −8m2Tr
[
/p′(/p+ /k +m)/(/p+ /k +m)

]
= −64m2p′(p+ k) = −32m2(s+m2)

T4 = −8m2Tr
[
(/p+ /k +m)/p(/p+ /k +m)

]
= −64m2p(p+ k) = −32m2(s+m2)

(B.3.3)

where we used the following relations obtained from Mandelstam variables (2.2.23):

p′(p+ k) = p′(p′ + k′) = m2 + p′k′ = m2 + (s−m2)/2 = (s+m2)/2
p(p+ k) = m2 + pk = m2 + (s−m2)/2 = (s+m2)/2

(B.3.4)

Additioning all terms we note that T1 + T3 + T4 = 0 so the result depends only by trace T2.
The evaluation of T2 is less immediately.

T2 = 4Tr
[
/p
′(/p+ /k +m)/p(/p+ /k +m)

]
= 4
{
Tr
[
p′(/p+ /k)/p(/p+ /k)

]
+Tr

[
/p/p
′]m2

}
= (B.3.5)

Now we use the relation Tr[/a/b/c/d] = 4[(ab)(cd)− (ac)(bd) + (ad)(bc)] for several times:

Tr[/p′/p/p/p] = 4[(p′p)(pp)������−(p′p)(pp)������
+(p′p)(pp)]

Tr[/p′/p/p/k] = 4[�����(p′p)(pk)������−(p′p)(pk) + (p′k)(pp)]
Tr[/p′/k/p/p] = 4[(p′k)(pp)������−(p′p)(kp)������+(p′p)(kp)]
Tr[/p′/k/p/k] = 4[(p′k)(pk)������−(p′p)(kk) + (p′k)(kp)]

(B.3.6)

summing all traces we finally obtain:

T2 = 16
{

2(p′p)m2 + 2(p′k)m2 + 2(p′k)(pk)
}

= 32
{

(p′(p+ k)m2 + (p′k)(pk)
}

T2 = 8
{

4m4 − (s−m2)(u−m2) + 2m2(s−m2)
} (B.3.7)
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