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I want to grow.

I want to be better.

You grow.

We all grow.

We’re made to grow.

You either evolve or you disappear.

Tupac Shakur





Ringraziamenti

Il raggiungimento di questo traguardo è merito del sostegno e dell’appoggio
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tiche, perchè questo percorso non mi ha donato solamente dei compagni con
cui studiare e disperarsi per un esame, ma dei veri e propri amici che ri-
marranno tali anche quando non condivideremo più le stesse aule e gli stessi
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Introduction

What does measurement mean?

“Accurate and minute measurement seems to the non-scientific imagination,

a less lofty and dignified work than looking for something new. But nearly all

the grandest discoveries of science have been but the rewards of accurate mea-

surement and patient long-continued labour in the minute sifting of numerical

results”. This quote by Baron William Thomson Kelvin (1824–1907) clearly

summarizes how important measurement is for the scientific world, and thus

for the continuous improvement of knowledge-based research. Nonetheless,

even everyday experiences are influenced and affected by quantification: we

weight the pasta before cooking it, we assess the good or bad performance

of a firm via numerical indexes, we constantly monitor wristwatches and cal-

endars for appointments and deadlines. We live in a world of measurements

(Hand [21], 2005).

The classical definition of measurement, which is standard throughout

the physical sciences, is the determination or estimation of the ratio between

a magnitude of a continuous quantity and a unit magnitude of the same

kind (Emerson [17], 2008). With quantity we refer to whichever attribute is

possible to measure, at least in principle. For example, the statement“The

Eiffel tower is 324 metres tall” expresses the height of the tower as the ratio

of the unit (the metre in this case) to the height of the tower itself. The real

number “324” is a real number in the strict mathematical sense of this term.

1



2 INTRODUCTION

Mathematically expressed, a scientific measurement is:

Q = r · [Q] (1)

where Q is the magnitude of the quantity, r is a real number and [Q] is a unit

magnitude of the same kind. Literature subdivides measurement in two mu-

tual categories: representational measurement and pragmatic measurement.

The former relates to existing attributes of the objects, e.g. length, weight,

blood concentration. On the contrary in the latter an attribute is defined

by its measuring procedure, as there is no real existence of the attribute

beyond its measurement. Examples of this type are pain score, intelligence,

customer loyalty. These quantities are difficult to assess objectively and thus

their statistical analysis results difficult and in some cases uncertain. An

entire branch of statistics, the latent variables theory, deals with non directly

observable variables which are inferred through a mathematical model from

other variables that are directly measured (Loehlin [29], 1998).

In the following subsections two different measurement approaches will be

presented. In particular, the information theory highlights a close connection

between the concept of measurement and the concept of estimation; this

relationship will then consequently lead to the introduction of the main topic

of the present dissertation: the measurement error theory.

A step further: additive conjoint measurement

Many less intuitive and more complex definitions for measurement have been

formulated, in order to clarify a concept that might not be so straightforward

as it is thought at the first sight. In the representational theory, measurement

is defined as the correlation of numbers with entities that are not numbers

(Nagel [31], 1930). This concept does not express measurement as mere as-

signment of a value to the related entity, since it is based on correspondences

or similarities between the structure of number systems and the structure of

qualitative systems; this elaborate definition is referred as additive conjoint

measurement.
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A more statistical approach to measurement: informa-

tion theory

Although the entire scientific world works and develops itself through the

measurement of quantities, there is a specific field of human knowledge that

would not exist if the necessity of measuring and processing information were

not essential: Statistics. According to information theory, measurement is:

“A set of observations that reduce uncertainty where the result is expressed

as a quantity”(Hubbard [23], 2007). This definition implies that all data are

inexact and random in nature. Therefore, the only purpose that someone

can achieve in measuring a quantity is to try to diminish the uncertainty

around the real sought value, though he will never be able to reach it. In

practical terms, an initial guess for the real value of a quantity is made, and

then, using various methods and instruments, the uncertainty in the value

is systematically reduced until the size of uncertainty for the found value

is small enough for it to be considered a fair “estimate” of the real target.

Since all measurement is uncertain by definition, in information theory there

is no clear distinction between the word “estimate” and “measurement”.

Actually, instead of assigning one value to each measurement, a range of

values is considered. Every statistician would now undoubtedly appreciate

the parallelism between point estimate and measurement, and between range

of values and confidence intervals pictured by this approach.

We live in a world of mismeasurement

Paraphrasing the quote by Hand “we live in a world of measurements”, it

would be more correct to say that we live in a world of mismeasurement.

As already highlighted in the previous Section, information theory states

that every measurement is uncertain, and thus possibly wrong, by definition.

Therefore, sampling a population in order to obtain an unbiased, consistent

and efficient estimator for a parameter of interest is nothing but collecting

biased information in which the bias enlarges as the sample size increases,

since every statistical unit in the sample contains a certain level of uncer-
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tainty that augments in augmenting the sample size. This is clearly a far too

pessimistic statement that goes against a fundamental statistical principle:

the bigger the sample size the better the information acquired, in terms of

inference on the parameters. Nonetheless it does contain a foundation of

truth: if what we want to measure is not what we actually measure or it is

not measured correctly then the inferential results will be wrong and they

will lead to highly biased conclusions. Mathematically, this happens when

X is the true variable that we want to measure but another variable X∗ is

measured instead. X∗ is often called a proxy or surrogate variable, since it

is to some extent similar to X but not equal to X. This is called a measure-

ment error or a errors-in-variables issue. Measurement error theory will be

discussed in detail in the first chapter of the present work (see §1.1).

Measurement error is a problem that afflicts every scientific framework

(Carroll et al [9], 2012), nonetheless there are scientific fields in which using

proxies instead of the true variables of interest is a habit, because obtaining

the real measurement is either too expensive or actually impossible. This

usually depends on the “size” of the research field considered. Epidemiology,

biostatistics and genetics deal with microscopic sizes, which possess intrinsic

variability and are affected by the inaccuracy of laboratory instruments and

analyses. Moreover the retrieval costs of exact measures are usually high,

thus cheaper solutions are normally utilized (Kipnis et al [27], 2003).

Likewise, the same problems arise when macroscopic sizes are considered.

Kelly Brandon, one of the greatest experts in measurement error linked to

astronomy and author of the paper “Measurement Errors Models in Astron-

omy” from which the idea for this thesis was born, states: “Measurement

error is ubiquitous in astronomy”(Kelly [26], 2011). Astronomical data re-

gard collecting passive observations of space objects, where, exploiting the

functional relationship between wavelength, sky location and observational

time permits the astronomers to directly measure the flux of an object. Nev-

ertheless, the number of photons detected from an astronomical object is not

deterministic, but it follows a Poisson process (Timmermann and Nowak [36],

1999), whereby the intrinsic nature of astronomical data makes measurement

error unavoidable.
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Aim of this thesis

The present work is about functional methods for measurement error correc-

tion in Astronomy. In his paper Kelly points out that astronomical data

presents measurement errors that are large, skewed and exhibit multiple

modes. The first part of this work attempts to understand how the func-

tional methods described in Section 1.4 cope with measurement error stem-

ming from different probability distribution.

Kelly continues arguing that the unceasing technological improvement

permits to have data sets with millions of rows available on a daily basis.

As an example, the Sloan Digital Sky Surveys (SDSS) telescope, a major

multi-filter imaging and spectroscopic redshift survey located in New Mexico

(US), has produced about 200 GB of data every night since 2000 (Fiegelson

and Babu [18], 2012). This volume of data enormously enhances the amount

of knowledge we may obtain from its analysis, but adequate computational

power must be provided. Furthermore, methods for data mining of massive

data sets do not include measurement error correction techniques. The sec-

ond aim of the present work is to understand whether the measurement error

impact on inferential results is influenced by the sample size considered.

The thesis is organised as follows. In Chapter 1 we provide an overview

of the measurement error theory and of the functional methods for dealing

with measurement error, with particular emphasis on linear regression mod-

els. In Chapter 2 we describe a simulation study, with which we analyse

the behaviour of the functional methods for correction in coping with three

different measurement error models. In Chapter 3 we provide a regression

analysis for a real astronomical dataset, in which the covariate is affected by

non-linear measurement error with heteroscedastic variance. In performing

the aforementioned analysis, we develop and exploit a modified version of the

BCES method; thus, in Chapter 4 we report a simulation study that proves

the effectiveness of our newly-developed BCES technique in coping with the

specific non-linear measurement error model encountered in Chapter 3.

In the appendices, we give some notions about the skew normal distribu-

tion (Appendix A) and some methodological details of the modifications we
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have made at the BCES approach in order to apply it to a non-linear mea-

surement error situation (Appendix B). Finally, the R code for the functional

methods implementation, for the simulation study described in Chapter 2 and

4, and for the data analysis presented in Chapter 3 is reported in Appendix

C.



Chapter 1
Measurement Error Theory

1.1 Introduction

Measurement error is the deviation of the outcome of a measurement from

the true value (Fuller [19], 1987). This issue is commonly referred to in

Statistics as measurement error or errors-in-variables problems. There are

many sources which can induce error in the measurement and data collection:

• low accuracy and precision of the instrument used in the analysis.

• researcher’s oversight.

• use of surrogate variables (e.g. average exposure to pollution in a region

where the study participant lives instead of individual exposure).

• definition itself of the problem investigated (e.g. long term average of

daily salt intake).

Measurement error is a problem that affects, at various levels and extents, all

scientific research. Therefore, due to this pervasive presence of measurement

error, an enormous amount of literature has been developed which tries to

better understand the problem and to find suitable solutions error-prone

variables. In the following sections the main results regarding models, effects

and methods for correction will be presented.

7
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1.2 Models and effects

Consider a general regression model of a response Y on a predictor X with a

set of parameters θ:

Y = f(X; θ) + ε (1.1)

The function f(X; θ) describes how the mean of Y depends on X as a function

of the parameters θ. ε represents the error term of the regression model.

Nevertheless, in a situation of measurement error in the regressor, X is not

directly observed: a biased value X∗ is collected. X is called the true variable

whilst the biased version X∗ is the observed variable. Therefore, the model

that is estimated by the researcher is:

Y = f(X∗; θ) + ε (1.2)

Measurement error in covariates has four different effects:

• It causes biased estimates for the parameters θ, generally attenuating

the regression slope in classical linear regression and biasing it toward

zero. Therefore, trends between the response and the covariate will

appear reduced.

• It leads to a loss of power, causing underestimation in the relationship

among the variables of interest. When the covariate is crucially con-

taminated by measurement error, tests of significance might state that

there is no relationship between the response and the covariate, even if

this is not true.

• It smears out the features of the data, producing unclear graphical

model analysis

• It biases the estimate of the residual variance of the model σ2 upwards.

Thus, the variance in the response about the regression will appear

larger than it really is.
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The first two items are called the double whammy of measurement error.

(Carroll et al. [9], 2012). In order to deal with errors-in-variables problems

literature offers a wide set of alternative models.

1.2.1 Functional vs structural

As we have already stated above in a regression context with presence of

measurement error the regressors X are not directly observable. The first

decision that has to be taken is whether the regressors X are considered fixed

or random.

In functional modeling the Xs are considered as a set of fixed, unknown

constants. It is possible to consider the regressors as a set of random variables

either, in this case no, or only minimal, assumptions are performed about

the distribution of the X (Carroll et al. [9], 2012). This type of modeling

leads to methods of estimation and inference which are robust, because no

assumptions about the distribution of the unobserved Xs are made. Even

though the estimators are consistent Functional modeling is convenient if

the analyst is not interested in the estimation of X. Since there are as many

unknown regressors Xi as many observations i available in the sample, it

would not be possible to obtain an estimation for the Xs. Thus, in most of

the cases X∗ are treated as fixed constant and the analysis will be conditioned

on their values, as a standard practice in regression.

When a probability function, either parametric or non-parametric, is

placed on the distribution of the random Xs we are in presence of a struc-

tural model. X is considered as a latent random variable and assumptions

about the distribution of the Xs have to be made. Inevitably the resulting

estimates and inferences performed will be influenced by the parametric or

non-parametric model chosen; the analysis carried out in this way therefore

will not be robust. On the other hand, likelihood based confidence inter-

vals provided by structural approaches have proved to show better coverage

properties with respect to asymptotic theory underlying functional models

(Guolo [20], 2005).

Nowadays, the structural and the functional modeling approaches have
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moved closer to each other. The idea is to choose a flexible parametric model

in order to increase the quality in terms of model robustness, keeping still the

advantages of a parametric analysis. For further clarification, see Mallick,

Hoffman & Carroll (Mallick et al [30], 2002) and Tsiatis & Ma (Tsiatis and

Ma [38], 2004).

1.2.2 Classical vs Berkson

So far the functional form that links the true variable X and the observed

variable X∗ has not been discussed yet. The difference between the classical

model and the Berkson model is about the nature of the relationship between

the true variable and the observed variable.

In the classical model the conditional distribution of X∗ given (Z,X) is

modeled. The measured variable X∗ is regressed on the unobserved X and

observed predictors Z, where Z are covariates measured without error. Thus,

the mathematical relationship for this type of model is:

X∗ = f(X,Z; γ) + U, E(U |X,Z) = 0. (1.3)

The error structure of U may be either homoscedastic or heteroscedastic (see

§1.2.3). When the functional form of f is linear, that is the truth is measured

with additive error, the model obtained is called classical measurement error

(see §1.3.1.1).

When the unobserved variable X is regressed on the measured variable X∗

and observed predictors Z the model obtained is called Berkson model. The

Berkson model focuses on the distribution of X given (X∗,Z). The mathemat-

ical relationship for this type of model, unlike the classical model described

above, is:

X = f(X∗, Z;ψ) + U, E(U |X∗, Z) = 0 (1.4)

The simplest additive model following the Berkson relationship is described

in Section 1.3.1.2.

Determining whether real data follow a classical or a Berkson specifi-

cation is simple in practice. If an error-prone covariate (i.e. a regressor
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measured with error) is ineluctably measured uniquely to an individual, and

specifically if the measurements can be replicated, then the preference should

be classical. Examples of this situations are blood pressure measurements

and daily fat intake. When we are interested in mean exposure of a region X∗

instead of individual exposure X, that is, all people in a small group are given

the same value of the error-prone covariate, then the Berkson model is more

suitable. Dust exposure in a working place and given dose in a controlled

experiment are examples of this type of situation.

Another important difference between the two models refers to the error

component U . In the classical model the error U is independent of X, or at

least E(U |X) = 0, while in the Berkson model U is independent of X∗, or

at least E(U |X∗) = 0. Therefore for the classical model V ar(X∗) > V ar(X)

whilst V ar(X) > V ar(X∗) for the Berkson model.

There is an interesting relationship that permits to switch the from clas-

sical model to the Berkson model using Bayes theorem:

fX|X∗(x|x∗) =
fX∗|X(x∗|x)fX(x)∫
fX∗|X(x∗|x)fX(x) dx

(1.5)

where fX is the density of X, fX∗|X is the density of X∗ given X and fX|X∗ is

the density of X given X∗. This formula is useful in Regression-Calibration

(see §1.4.2) where a model for X given X∗ is needed, but only a model for

X∗ given X is available.

1.2.3 Homoscedastic vs heteroscedastic

Whether we consider the classical model (1.3) or the Berkson model (1.4),

we must decide the structure of the error component U . As it has already

been stated, U is a random variable with mean zero. The question here is to

decide whether U is an homoscedastic random variable or an heteroscedastic

one. In the former case the variance structure of U is:

V ar(Ui) = σ2. ∀i = 1 . . . N,
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which implies that variance of the measurement error is the same for every

observation i. This type of structure is useful when the measurement error

is given by an imprecision of the instrument used for the data collection.

When the structure of the measurement error is more complex and the

errors-in-variables are not only caused by the inaccuracy of the instrument,

it is sometimes preferable to allow the variance of the error component to

vary across the observations:

V ar(Ui) = σ2
i .

Heteroscedasticity is useful in handling measurement errors in areas where

data have to be collected and consequently codified by a computer, such as

Biostatistics and Astronomy, since many sources of error are involved (Kelly

[26], 2011).

1.2.4 Differential vs nondifferential error

Section 1.2.2 analysed the different possible types of relations between the

true variable X and the observed variable X∗. Nevertheless, nothing has

been said about the relationship between X, X∗ and the response variable

Y nor between X, X∗ and the predictors without error Z. Nondifferential

error occurs when X∗ does not incorporate information about Y other than

is available in X and Z. Technically speaking, measurement error is nondif-

ferential if the distribution of Y given (X,Z,X∗) depends only on (X,Z).

As a result, X∗ is conditionally independent of the response given the true

covariates and it is said to be a surrogate. On the other hand, if X∗ does

contain information about Y other than is available in X and Z the model

is called differential and X∗ cannot be considered any longer a surrogate of

X.

Generally, when true and observed covariates occur at a fixed point in

space and time and the response is measured at a later time the analysis can

reasonably be considered as having nondifferential measurement error. For

example blood pressure on a special day is irrelevant for coronary heart dis-

ease if long-term average is known. Notwithstanding, there are situations in
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which this is not the case. In case-control or choice-based sampling studies,

for example, firstly the response is obtained and subsequently the covariates

are measured. This ordering of measurement often origins differential mea-

surement error. Furthermore, if X∗ is not simply a mismeasured version of

X, but it acts as a type of proxy for X, then differential measurement error

should be used in the analysis. For a real exposure-disease situation in which

this occurs, see Satten & Kupper (Satten and Kupper [33], 1993).

It is also worth highlighting that whether X∗ is a surrogate depends on

the remaining variables Zs present in the model and on the types of the

considered response. In order to better understand this phenomenon an

algebraic example, taken from Carroll et al. (2012) is presented. Suppose

to have a model in which Z has two components, Z = (Z1, Z2) and X,

Z1, ε1, ε2, U1, U2 are mutually independent normal random variables with zero

means. Define

Z2 = X + ε1 + U1

Y = β1 + βz1Z1 + βz2Z2 + βxX + ε2

X∗ = X + ε1 + U2.

Due to joint normality it is easy to show that

E(Y |Z1, Z2, X,X
∗) = E(Y |Z1, Z2, X, ).

Thus X∗ is a surrogate in the model containing both Z1 and Z2. Nonetheless,

E(Y |Z1, X) = β1 + βz1Z1 + (βz2 + βx)X,

E(Y |Z1, X,X
∗) = E(Y |Z1, X) + βz2E(ε1|Z1, X,X

∗).

The last expectation is not equal to zero because X∗ depends on ε1. Thus,

X∗ would be a surrogate in the model that contains only Z1 if and only if

βz1 were equal to zero. In this example, since the measurement error X∗−X
is correlated with the covariate Z2, the presence or the absence of Z2 in the

model determines whether or not X∗ is a surrogate.

The advantage of nondifferential measurement error is that the parame-
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ters of the response models given the true covariates can generally be esti-

mated, even though the true covariates are not observable. Conversely, with

differential measurement error this is not the case: apart from a few special

situations, the true covariate must be observed on some study subjects. This

is the reason why nondifferential measurement errors are definitely more used

in dealing with errors-in-variables than the differential ones.

1.3 Linear regression

In the previous section we provided a description of the models present in

literature related to measurement error theory. This section will focus on the

class of linear regression models. Firstly measurement error theory in simple

linear models will be presented and consequently it will be generalized to

multiple linear regression.

The effects of measurement error in linear regression are influenced by

multiple factors: the level of error in the measurement; whether or not the

predictor measured with error is univariate or multivariate and the regression

model itself, being simple or multiple. These characteristics could lead to

different inaccurate results in the analysis:

• biasing the slope estimate in the direction of zero. This bias is referred

to in literature as attenuation or attenuation to the null (Fuller [19],

1987).

• observed data present relationships that do not occur in the error-free

data.

• the direction of the relation, i.e., the sign of the estimated parameter,

is reversed as compared to the case with no measurement error. This

phenomenon leads to a complete misunderstanding of the relations be-

tween the variables in the model.

The effects of measurement error, and how they can be corrected, depend on

the measurement error models chosen from the ones presented in the previous
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Section. The most widely used models will be presented and analysed in the

subsections below.

1.3.1 Simple linear regression

1.3.1.1 Classical nondifferential homoscedastic measurement er-

ror

Suppose to have a simple linear regression model Y = β0 +β1X + ε in which

the covariate X is measured with error. This means that the model estimated

will actually be Y = β0 +β1X
∗+ε. When the measurement error component

has the following characteristics:

X∗i = Xi + Ui

E(Ui) = 0 V ar(Ui) = σ2
U (1.6)

the obtained model is called classical error model. It is the simplest additive

model, notwithstanding it is the most widely used in practise. Being a linear

model, it is possible to estimate the parameters β0 and β1 with the ordinary

least squares (OLS) method. Indicating plim(·) the probability limit of a

quantity, for the slope we obtain:

β̂1 =
SY X∗

S2
X∗

plim(β̂1) =
σY X∗

σ2
X∗

=
σY X

σ2
X + σ2

U

= β1
σ2
X

σ2
X + σ2

U

, (1.7)

while for the intercept we get:

β̂0 = Ȳ − β1X̄∗

plim(β̂0) = µY + β1
σ2
X

σ2
X + σ2

U

µX = β0 + β1(1− σ2
X

σ2
X + σ2

U

)µX , (1.8)
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and for the residual variance V ar(Y |X∗):

MSE = SY − β̂0 − β̂1X
∗

plim(MSE) = σ2
ε +

β2
1σ

2
Uσ

2
X

σ2
X + σ2

U

= σ2
ε + λβ2

1σ
2
U . (1.9)

In literature this is called naive LS-estimation because it does not take into

Figure 1.1: Effect of additive measurement error on linear regression. The
green line and dots are for the true X data, while the blue line and dots
are for the observed, error-prone X∗ data. The slope to the true X data is
steeper, and the variability about the line smaller.

account the presence of measurement error. It is visible from the formulas

that the estimators obtained above are not consistent, because they do not

converge to the real values β0 and β1. The quantity

λ =
σ2
X

σ2
X + σ2

U

< 1 (1.10)

is called the reliability ratio and, being smaller than 1, it causes an atten-

uation to zero of the estimate. The graph in Figure 1.1 shows an example

of additive measurement error model. The green line and dots represent the
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true X data, while the blue line and dots represent the observed, error-prone

X∗ data. The slope to the true X data is steeper and the variability about

the line is smaller. The variance of the naive estimator is smaller than the

variance of the true-data estimator asymptotically if and only if

β2
1σ

2
X

σ2
X + σ2

U

<
σ2
ε

σ2
X

which could occur when β2
1 is small or either σ2

ε or σ2
U is large.

1.3.1.2 Berkson Error

A Berkson error structure for the measurement error component is defined

as follow:

Xi = X∗i + Ui, Ui ⊥ (X∗i , Yi), E(Ui) = 0 (1.11)

Therefore, it is straightforward to show that E(Xi|X∗i ) = X∗i which leads to

Figure 1.2: Effect of Berkson error on linear regression. The green line and
dots are for the true X data, while the blue line and dots are for the observed,
error-prone X∗ data. Theory shows that the fit of Y to X is unbiased for
the regression of Y to X. The two fits are similar.

E(Yi|X∗i ) = β0 +β1X
∗. As a consequence, the naive estimator that regresses
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Yi on X∗i is unbiased for β0 and β1.

This result is shown in Figure 1.2, in which it is possible to observe that

the fit of Yi to X∗i (green line and points) is unbiased for the regression of Yi

on Xi (blue line and points), and the two fits are, in fact, similar.

In conclusion, linear models with Berkson error do not need a method

for correction to be implemented in order to rectify the bias caused by mea-

surement error.

1.3.1.3 Differential measurement error

In presence of differential measurement error the observed variable X∗ con-

tains more additional information about Y than is available only in X. This

is the most troublesome type of error because bias correction bias requires the

largest amount of additional information (Carroll et al. [9], 2012). The esti-

mators for respectively the slope, the intercept and the residual variance in

presence of differential measurement error in a simple linear model converge

to the following quantities:

plim(β̂1) = β1

(σXX∗

σ2
X∗

)
+
σεX∗

σ2
X∗

(1.12)

plim(β̂0) = β0 + β1µX −
β1σXX∗ + σεX∗

σ2
X∗

µX∗ (1.13)

plim(MSE) = σ2
ε + β2

1σ
2
X −

(σXX∗ + σεX∗)2

σ2
X∗

(1.14)

It is worth noticing that, in order to estimate β1 from the regression of Y

on X∗, knowledge of or estimability of both the covariances σXX∗ and σεX∗

is necessary.

1.3.1.4 Nondifferential measurement error

When X∗ does not add additional information to the regression of Y on the

real predictor X, then X∗ is called a surrogate. In presence of nondifferential

measurement error in a simple linear model OLS estimation leads to the
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following results:

plim(β̂1) = β1

(σXX∗

σ2
X∗

)
(1.15)

plim(β̂0) = β0 + β1µX −
β1σXX∗

σ2
X∗

µX∗ (1.16)

plim(MSE) = σ2
ε + β2

1σ
2
X (1.17)

As it is evident from Equation (1.15), only σXX∗ has to be either known

or estimated in order to recover β1 from the regression of Y on X∗. Since a

surrogate is always less informative than X, the residual variance V ar(Y |X∗)
in the regression of Y on X∗ is always greater than the residual variance σ2

of the regression of Y on X.

1.3.1.5 Berkson/classical mixture measurement error

In Sections 1.3.1.1 and 1.3.1.2 both classical and Berkson errors have been

discussed. Nevertheless, another situation in which both error components

are present at the same time could be possible. Particularly, it is assumed

that

X = L+ Ub, (1.18)

X∗ = L+ Uc. (1.19)

This particular structure leads to a classical error model when Ub = 0, and

to a Berkson error model when Uc = 0.

The mixture situation presents the problems of both classical and Berkson

errors. The limits of convergence for this model are:

plim(β̂1) = β1
σ2
L

σ2
L + σ2

Uc

(1.20)

plim(β̂0) = β0 + β1µX(1− σ2
L

σ2
L + σ2

Uc

) (1.21)

plim(MSE) = σ2
ε + β2

1σ
2
X (1.22)

where σ2
Uc

and σ2
L denote the Berkson error variance and the variance of the

mixture component L respectively. It is worth noting that there is bias in
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the regression parameters when σ2
Uc
> 0, as in the classical model, because

as it has already been stated in Subsection 1.3.1.2, the Berkson component

does not introduce bias in parameter estimation.

1.3.1.6 Measurement error in the response variable

So far only measurement errors in covariates have been analysed. However,

it may happen that the response variable Y is the variable measured with

error: Y ∗i = Yi + Ui. The model obtained will then be

Y ∗ = β0 + β1X + ε+ U, (1.23)

where ε + U is the new, larger, error term. Assuming the independence

between U and X and and between U and ε, the measurement error in

response does not cause bias in the estimation of the parameters, i.e., the OLS

estimators are still consistent. Measurement error in the response only causes

an increase in variability of the error term. It is therefore straightforward

dealing with it as long as the error components are independent, which is

almost always the case.

1.3.2 Multiple linear regression

1.3.2.1 Single covariate measured with error

In multiple linear regression the bias caused by measurement error is more

tricky and difficult to treat, even for the classical error model. Suppose to

have a multiple regression model:

Y = β0 + β1X + βTZ + ε (1.24)

in which X is scalar and Z and β are column vectors. The measurement

error structure is

Xi = X∗i + Ui Ui⊥ (Xi, Zi) Ui⊥ εi (1.25)
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The converge in probability of the estimator obtained from the naive esti-

mation of the parameter β1 is:

plim(β̂1) = β1

σ2
X|Z

σ2
X∗|Z

= β1

σ2
X|Z

σ2
X|Z + σ2

U

= β1λ1, (1.26)

where σ2
X∗|Z and σ2

X|Z are the residual variances of the regression of X∗ on

Z and of X on Z, respectively. Note that, in general, λ1 is smaller than the

simple linear regression attenuation λ given by expression (1.10). λ1 = λ

if and only if X and Z are uncorrelated This leads to an enhancement of

the attenuation to the null in the multiple regression case. Moreover, the

measurement error in X causes inconsistent estimation also for the parame-

ters of the covariates measured without error, unless Z is independent of X.

Carroll, Gallo and Gleser showed that (Carroll et al. [8] 1985)

plim(β̂) = β + β1(1− λ1)Γ (1.27)

where ΓT is the coefficient of Z in the regression E(X|Z) = Γ0 + ΓTZ.

As a significant example, in the particular case of analysis of covariance,

Figure 1.3: Effect of measurement error in an unbalanced analysis of covari-
ance (taken from Carroll et al. 2012)
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that is when Z is a categorical variable, measurement error in X can com-

pletely twist the results of the analysis. With respect to a two-group analysis

of covariance, where Z is a treatment assignment variable, Carroll proved

that the naive analysis can lead to observe a treatment effect when it actu-

ally does not exist or to note a positive effect when it is negative and vice

versa (Carroll [6], 1989). Figure 1.3 highlights the previous statement. The

left panel shows the (Y,X) fitted function, since the solid and the dotted

line are close to each other there is no sign of treatment effect, even though

the distribution of X in the two groups are very different, as can be seen

at the bottom of the panel. The right panel shows the (Y,X∗) fitted func-

tion, in which there is measurement error in the continuous covariate. The

error-in-variables attenuates the mean in each group, suggesting that there is

a treatment effect, though if this is not true.

1.3.2.2 Multiple covariates measured with error

The model which defines the situation of multiple covariates measured with

error is the following:

Y = β0 + βT1 X + βT2 Z, (1.28)

where X may consist of multiple predictors. The generalization from equa-

tion in (1.26) with X scalar is straightforward; using matrix calculation the

naive ordinary least squares method leads to

plim

(
β̂1

β̂2

)
=

(
ΣXX + ΣUU ΣXZ

ΣZX ΣZZ

)−1(
ΣX ΣXZ

ΣZX ΣZ

)(
β1

β2

)
(1.29)

in which ΣAB defines the covariance matrix between random variables A

and B. As it has already been underlined in the previous case with one

error-prone variable, also in the case with multiple covariates measured with

error the presence of errors-in-variables can bias the entire inference also with

respect to the parameters of the error-free variables Z.
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1.4 Methods for correction

1.4.1 Introduction

In the previous sections we discussed and analysed the main effects and

models used in measurement error theory, with particular focus on linear

regression. Furthermore, we presented the inference problems according to

parameters estimation in having to do with error-prone variables. Methods

and procedures which try to solve these problems will be introduced now.

As already presented in Section 1.2.1, two main categories of methods for

correction can be identified: functional methods and structural methods. In

the former approach little information on X is required, but a large number of

parameters have to be estimated; on the contrary the latter method requires

a less amount of parameters to be estimated, but both information on and

validation of the exposure distribution is needed. The choice between a

functional or a structural model usually depends on the assumptions made

and on the form of the regression model (Guolo [20], 2005). The present

work will focus on functional methods for correction, for an exhaustive and

clear description of structural methods for correction see for example Carroll

el al. (2012).

Generally, in order to avoid lack of identifiability of the parameters, ad-

ditional information on the real variable X is needed. This additional infor-

mation can either be internal in the form of subsets of the main data, also

called primary dataset, or external in the form of independent studies. The

additional data can be subdivided in three different types:

• validation data, in which the gold standard measurement is available,

that is, a direct observation of X. Validation studies are very useful

because they furnish a direct estimate of some error characteristics, as

moments of the distribution. Nevertheless, exact measures of X might

be really expensive and hard to obtain, therefore validation data are

generally available only for a subset of the primary data.

• replication data, in which the same statistical unit is subjected to more

replicated observations of X∗.
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• instrumental data, in which another variable Z is observed in addition

to X∗

In collecting additional information, an important aspect that has to be

taken into account and monitored during the study design definition, is the

trade-off between cost and information. Spiegelman (1994) presents a set of

various principles and criteria useful for creating cost-efficient study designs

in presence of mismeasured covariates (Spiegelman [34], 1994).

In the following chapter a set of functional methods, useful for obtaining

consistent estimators also in presence of measurement error will be presented.

1.4.2 BCES method

In linear models the ordinary least squares estimates of the intercept, slope

and residual variance are obtained from the sample moments of the data.

Nevertheless, as shown in Section 1.3.1.1, in presence of measurement error

in the covariate, the sample moments are biased estimates of the moments

of the true distribution. Therefore, a straightforward method of handling

measurement error in linear regression is to estimate the moments of the

true value of the data and then to exploit these for estimating the regression

parameters. The idea behind the bivariate correlated errors and intrinsic

scatter (BCES) method is to use the real moments of the variables in order

to correct for the bias in the parameters estimates due to measurement error.

Firstly introduced by Akritas & Bershady (Akritas & Bershady [1], 1996), the

BCES method is a direct generalization of the OLS estimator. It is generally

applicable when both the covariate and the response present measurement

error and even when the magnitude of the latter depends on the measurement

(i.e., the measurement error has heteroscedastic variance).

For the sake of illustration, consider a simple linear regression model Y =

β0 +β1X+ ε with additive measurement error in the covariate X∗i = Xi+Ui.

The variance of Ui can either be homoscedastic or heteroscedastic and it is

assumed known, which is a fairly common assumption in all astronomical

data sets. As shown in equation (1.29), naive LS-estimation produces an

inconsistent estimator for β1. The BCES estimator replaces the population
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moments with moment estimators from the observed data, that is

β̂BCES1 =

∑n
i=1(Yi − Ȳ )(X∗i − X̄∗)∑n

i=1(X∗i − X̄∗)2 −
∑n

i=1 U
2
i

(1.30)

β̂BCES0 = Ȳ − β̂BCES1 X̄∗ (1.31)

As it is clearly visible from equation (1.30), the BCES estimator “debiases”

the sample variance of X∗ by subtracting the scatter due to the measurement

error U . In order to calculate the variance of the BCES estimators, the

following quantities need to be defined:

ξ1 =
(X∗ − E(X∗))(Y − β1X

∗ − β0) + β1U
2

V ar(X∗)− E(U2)
(1.32)

ξ2 = Y − β1X
∗ − E(X∗)ξ1 (1.33)

Their estimates ξ̂1 and ξ̂2 are obtained by substituting the unknown quanti-

ties with the sample ones, and β̂BCES1 , β̂BCES0 in place of β1, β0. The variance

of β̂BCES1 and β̂BCES0 are then estimated by:

σ̂2
β1

=
1

n2

n∑
i=1

(ξ̂1i − ¯̂
ξ1)2 (1.34)

σ̂2
β0

=
1

n2

n∑
i=1

(ξ̂2i − ¯̂
ξ2)2 (1.35)

where
¯̂
ξ1 and

¯̂
ξ2 denote the arithmetic mean of ξ̂1 and ξ̂2. The example just

described is a little bit less complex than the one used by Akritas & Bershady

in their paper, in which measurement error afflicts both the covariate and

the response. Since in both simulation experiments of Chapter 2 and in

the real data problem analyzed in Chapter 3 only the covariate presents

measurement error, a simplified version of the BCES estimator is applied.

Thus, the regression reported was chosen in order to describe the theoretical

situation encountered in the last part of the thesis.

Akritas & Bershady proved that the BCES estimator is asymptotically

unbiased and its finite sample distribution is asymptotically normal (Akritas
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& Bershady [1], 1996). The main advantage of the BCES estimator is that it

does not make any assumptions about the distribution of the random vari-

ables present in the model. Therefore we can refer to the BCES estimator

as a robust estimator. Nevertheless it loses precision when further informa-

tion about the distribution of the measurement error or on the covariates

is available, as it does not make any assumptions on the distribution of the

variables. Furthermore, this estimator tends to be highly variable when the

sample size is small and the measurement error is large. In conclusion, de-

spite the robustness and its good behaviour in simple cases (see §2.2), when

the sample size is small and the measurement errors produces a significant

increase in the data variability, more stable estimators should be used.

1.4.3 Regression-Calibration

In the previous subsection the BCES method has been treated and its ability

to adjust for the effects of errors-in-variables has been described. However,

this method is feasible only with linear models or, more generally, with mod-

els whose parameters estimation has a close form. Regression calibration, ini-

tially suggested by Rosner, Willett and Spiegelman (Rosner et al [32], 1989)

and successively modified by Carroll and Stefanski (Carroll & Stefanski [10],

1990), is simple and potentially applicable to any regression model, provided

a sufficiently accurate approximation of the true values of the parameters.

The basic idea of Regression calibration is to replace the true variable X by

the regression of X on (Z,X∗), where Z and X∗ represent respectively the

error-free covariates and the error-prone observed variable. The fitted val-

ues obtained are consequently used to perform a standard analysis with the

original model. This procedure can be described as an algorithm with three

main steps:

1. Estimate the regression of X on (Z,X∗) with mX(Z,X∗, γ) which de-

pends on the parameters γ. The estimations γ̂ can be found using

validation data or replications (Carroll et al. [9], 2012).

2. Replace the unobservable X by its estimate mX(Z,X∗, γ̂) in the main

model and run a standard analysis to obtain the parameter estimates.
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3. Adjust the estimate of the variance to account for the estimation of γ

by using the bootstrap, jackknife or sandwich method.

Suppose that the model that has to be estimated is:

E(Y |Z,X) = mY (Z,X, π) (1.36)

in which the mean of Y is regressed by (X,Z) for some unknown parameters

π. Replacing the unobservable value X by its estimate mX(Z,X∗, γ̂) creates

a modified model for the observed data, that will become:

E(Y |Z,X) ≈ mY {Z,mX(Z,X∗, γ), π}. (1.37)

The regression calibration model obtained in (1.37) is an approximate work-

ing model for the observed data, which can be used for correcting for mea-

surement error presence in regression models.

An example of how this procedure works in a simple case is presented.

Consider the simple linear regression model Y = β0 + β1X + ε, where the

covariate X is affected by measurement error. The first RC algorithm step is

to provide a “debiased” version of the error-prone variable X∗. Let assume

that a subset of the sample, in which all the X, X∗ and Y variables were

measured, is available. This is an internal validation data situation, in which

the exact measure for X (gold standard) is observed for a small part of the

considered sample. This situation is fairly common in medical statistics and

biostatistics, where the measure of the true variable X could be feasible, but

being the data collection task either too expensive or time-consuming, it is

performed only for few cases amongst the entire dataset. It is less common in

astronomy, where usually the considered variables present an intrinsic scatter

and the corresponding true values cannot be directly observed. Using the

internal validation data, the subsequent regression is created:

X = γ0 + γ1X
∗ + ν, (1.38)

where the estimates γ̂0 and γ̂1 are obtained using OLS. Next, in Step 2, for

every X∗ present in the dataset a “debiased” value X̂ is calculated using the
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expression (1.38):

X̂ = γ̂0 + γ̂1X
∗. (1.39)

The second part of Step 2 involves using the fitted values obtained from

Equation (1.39) as a covariate for the original model, that becomes:

Y = π0 + π1X̂ + ε. (1.40)

Again, the parameters are estimated using OLS. The estimated values π̂0 and

π̂1 are the regression calibration estimates β̂RC0 β̂RC1 for the initial model. As

previously stated, in Step 3 the standard errors for these estimates must be

corrected in order to account for the fact that X is estimated in the previous

step. Generally, a non-parametric bootstrap or jackknife is used (see §1.4.3.1

and §1.4.3.2)

As though the regression calibration model is a straightforward technique

widely applied in empirical studies, it also has some drawbacks which have to

be taken into consideration. X is not observed, therefore replacing its value

by the estimate mX(Z,X∗, γ̂) cannot be done in an ordinary way. That is,

additional data must somehow be provided in order to make the first step

of the RC algorithm feasible. Literature offers many available procedures

for this, see Carroll et al for a collection of possible solutions (Carroll et al.

[9], 2012). The measurement errors have to be nondifferential with small

variance and the model relating X to X∗ has to be nearly homoschedastic

and linear. If these assumptions are not satisfied, RC can be inefficient in

reducing bias, especially in non linear models.

The following sections briefly present how to compute the standard errors

for the RC estimates, via the bootstrap and the jackknife methods.

1.4.3.1 The bootstrap method for variance estimation

Bootstrap methods use a non-parametric approach to construct estimates

based on a bootstrap sample of the data. Bootstrapping means to create

additional data sets by re-sampling with replacement the original data B

times (Efron [15], 1979). For every re-sampled data set, the estimate of
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interest is calculated, then, taking the average above all the B simulated data

sets leads to the bootstrap parameter estimate. In particular, in a regression

calibration context we are interested in estimating the RC standard errors

of the parameters. To do that, the data used in (1.40) are bootstrapped and

B RC estimates are computed. Let denote γ̂b the bth RC estimate, with

b = 1 . . . B. The bootstrap RC variance estimator is

ˆV ar(γ̂) =
1

B − 1

B∑
b=1

(γ̂b − γ̂)2, (1.41)

where γ̂ = B−1
∑B

b=1 γ̂b. In general, bootstrap methods are robust, since no

distributional assumption is made, and are easy to implement in whichever

statistical software. Nonetheless, they are computationally intensive, since

the estimation algorithm is performed B times, one for each re-sampled

dataset. Bootstrap methods are useful when the theoretical distribution of a

statistic of interest is complex or unknown, as in the RC method, where the

standard error must account for estimation of X̄ estimation.

1.4.3.2 The jackknife method for variance estimation

Likewise the bootstrap technique, the jackknife is a non-parametric method

for computing estimates. It initially consists in the construction of the so-

called jackknife samples. Let assume to have a dataset with N observations.

In the ith jackknife sample, i = 1 . . . N , every observation but the ith is

included. This leads to obtain N jackknife samples, each with N − 1 obser-

vations. Define γ̂−i as the RC estimator of γ computed from the ith jackknife

data set. The jackknife variance estimator is

ˆV ar(γ̂) =
N − 1

N

N∑
i=1

(γ̂−i − γ̂.)2, (1.42)

where γ̂. = N−1
∑N

i=1 γ̂−i. The jackknife method is easy to implement and it

is conservative, meaning that the real value of V ar(γ̂) is likely to be smaller

than the variance jackknife estimation (Efron and Stein [16], 1981). For these
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reasons, the jackknife method is used to compute the RC standard errors in

the simulation experiment of Chapter 2. The R code for the jackknife method

can be found in Appendix C.1

1.4.4 Simulation-Extrapolation (SIMEX)

The simulation extrapolation (SIMEX) method is a simulation-based func-

tional method that shares many properties with the regression calibration

technique described above: it is easily applicable and widely used for its

efficiency, even though the computational burden is larger. It makes no as-

sumption on the distribution of the variables and it is specifically suitable

to problem with additive measurement error and to any problems in which

the measurement error structure can be generated on a computer via Monte

Carlo methods (Carroll et al. [9], 2012).

First proposed by Cook & Stefanski (Cook and Stefanski [12], 1994) the

basic idea behind the SIMEX technique is that the effect of measurement

error can be determined and thus corrected via simulation. The method

concerns in computing many naive-estimates by adding additional measure-

ment error to the data: this generates a trend of measurement error-induced

bias from which the case of no measurement error is extrapolated back. The

SIMEX procedure for obtaining the bias-corrected estimates is developed in

two different steps. Firstly, of the so called SIMulation step, measurement

error is added increasingly to the original X∗ values by simulation and the

regression parameters obtained from this error-incrementing process are es-

timated. Secondly, of the EXtrapolation step, the relationship between the

parameter estimates and the variances of the measurement error is modeled,

in order to extrapolate the estimates back to the case of no measurement

error.

1.4.4.1 Homoscedastic errors with Known variance

An example of an application of the SIMEX to the classical measurement er-

ror structure of Equation (1.6) will clarify the just described method. During

simulation step M-1 additional data sets of increasingly larger measurement
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error (1 + λm)σ2
u, where 0 = λ1 < λ2 < · · · < λM , are simulated. In the

SIMEX method an initial assumption is to consider σ2
u known or easily es-

timable, since it is needed for the generation of the simulated-error. For any

λm ≥ 0, define

X∗b (λm) = X∗ +
√
λmUb, b = 1, . . . , B, (1.43)

where {Ub}Bb=1 are the B mutually independent and identically distributed

computer-generated pseudo errors.

Figure 1.4: Example of the effect of the measurement error of size (1+λm)σ2
u

on parameter estimate. The x-axis is λ, and the y-axis is the estimated
coefficient. The SIMEX estimate is an extrapolation to λ = −1. The naive
estimate occurs at λ = 0.

It is worth noticing that

var(X∗b |Xi) = (1 + λm)σ2
u = (1 + λm)var(X∗i |Xi), (1.44)

which equals 0 when λm = −1: this is the key property of the pseudo data

simulation. Consider a generic regression parameter θ that has to be esti-
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mated. For every data set the naive estimate θ̂b(λm) of θ is calculated and

the average value of the B naive estimates is obtained

θ̂(λm) =

∑B
b=1 θ̂b(λm)

B
. (1.45)

In the extrapolation step {θ̂(λm), λm}Mm=1 is modeled as a function of λm for

λm ≥ 0 in order to extrapolate the fitted models back to λ = −1, that is,

when the measurement error in the parameters is equal to 0.

A functional form for the extrapolant function has to be chosen. Generally

literature suggests to use either a quadratic or a linear pattern (Carroll,

Ruppert and Stefanski [7], 1995).

The SIMEX algorithm in case of a simple linear regression model is illus-

trated in Figure 1.4. The red points represents the estimates {β̂1(λm), λm}Mm=1

whilst the red X shows the SIMEX estimate of the parameter obtained from

a quadratic extrapolant function (blue line). The red dot in correspondence

of λ = 0 represents the naive estimator, that is when no computer-generated

error is added to the data.

1.4.4.2 Heteroscedastic errors with Known variance

The SIMEX method is useful for correcting for measurement error even when

the measurement error structure presents heteroscedastic variance, with al-

most no complication in the procedure. Suppose that X∗i = Xi + Ui, where

Ui is a normal random variable with variance σ2
u,i, and it is independent of

Xi and Yi. This heteroscedastic error structure provides a change in the

simulated error generation, that will become:

X∗b,i(λm) = X∗i +
√
λmUb,i, i = 1, . . . , n, b = 1, . . . , B, (1.46)

where the pseudo errors {Ub,i}ni=1 are still mutually independent and inde-

pendent of all the observed data. Nonetheless, in this situation the pseudo

errors distribution varies amongst the observations: for every statistical unit

Ub,i follows a normal distribution with mean 0 and variance σ2
u,i, that is, it is
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different for each i. Note that the conditional measurement error variance

var(X∗b,i|Xi) = (1 + λm)σ2
u,i = (1 + λm)var(X∗i |Xi) (1.47)

equals 0 when λ = −1, as in equation (1.44). Consequently the extrapolation

step is done in exactly the same way as in the case of homoscedastic error.

A tricky part in the SIMEX procedure is to provide a reasonable estima-

tion for the standard errors of the coefficients. This can be done either via

the bootstrap or the sandwich method. The implementation of the former

is straightforward, though it requires considerable computing time in order

to be carried out. Primarily for this drawback, the sandwich method is used

to obtain SIMEX standard errors. In the following section the procedure

for computing the SIMEX sandwich variance estimator in presence of ho-

moscedastic measurement error is described. For the case of heteroscedastic

error, see Devanarayan [14] (1996).

1.4.4.3 Simulation-extrapolation variance estimation

The SIMEX sandwich variance estimator procedure was firstly implemented

by Stefanski and Cook in 1995 (Stefanski and Cook [35], 1995). As already

pointed out for the SIMEX estimates, this variance estimation method is

applicable only when the measurement error variance σ2
u is known.

Let us introduce a function T which denotes the estimator of the pa-

rameter θ under study. T{(Yi, X∗i )n1} represents the naive estimator for the

parameter θ. Consider a generic naive SIMEX estimate:

θ̂b(λ) = T{(Yi, X∗i +
√
λUb,i)

n
1}

and define

θ̂(λ) = E{θ̂b(λ)|(Yi, X∗i )n1}. (1.48)

The expectation in Equation (1.48) depends only on the distribution of

{Ub,i)n1}, since we condition on the observed data. θ̂(λ) is obtained by consid-

ering the limit B →∞ of the average {θ̂1(λ)+ · · ·+ θ̂B(λ)}/B. An associated
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variance estimator is also introduced with the following notation:

Tvar{(Yi, X∗i )n1} = ˆvar(θ̂true) = ˆvar[T{(Yi, X∗i )n1}],

where θ̂true represents the “estimator” computed from the “true” data (Yi, Xi)
n
1 .

Let us use τ 2 to denote the parameter var(θ̂true), τ
2
true to denote the true

variance estimator Tvar{(Yi, Xi)
n
1} and τ 2

naive to denote the naive variance

estimator Tvar{(Yi, X∗i )n1}. Stefanski and Cook proved that

E{θ̂simex|(Yi, Xi)
n
1} ≈ θ̂true. (1.49)

The approximation is due to both a large-sample approximation and the

chosen extrapolant function (Stefanski and Cook [35], 1995). From equation

(1.49) it follows that

var(θ̂simex) ≈ var(θ̂true) + var(θ̂simex − θ̂true) (1.50)

in which the variance of θ̂simex is decomposed into two different components:

the former due to sampling variability var(θ̂true) = τ 2 and the latter due to

measurement error variability var(θ̂simex− θ̂true). The former component can

be estimated using the SIMEX variance estimate τ̂ 2(λ). τ̂ 2(λ) is calculated

computing

τ̂ 2
b (λ) = Tvar[{Yi, X∗b,i(λ)}n1 ]

for each b, b = 1, . . . , B and then taking the mean. In order to obtain the

second variance component, let us define the two quantities:

∆b(λ) = θ̂b(λ)− θ̂(λ), b = 1, . . . , B, (1.51)

s2
∆(λ) = (B − 1)−1

B∑
b=1

∆b(λ)∆T
b (λ). (1.52)

The formula in (1.52) is the sample variance matrix of {θ̂b(λ)}Bb=1 and it
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represents an unbiased estimator for the conditional variance

var{θ̂b(λ)− θ̂(λ)|(Yi, X∗i )n1}

for all B > 1.

Having estimated both the sampling variability variance τ̂ 2(λ) and the

measurement error variance s2
∆(λ), the procedure terminates regressing the

components of the difference τ̂ 2(λ)−s2
∆(λ) on the λ values and extrapolating

back to λ = −1; the fitted value obtained provides an estimate of var(θ̂simex).

It is worth highlighting that the entire technique is approximate, meaning

that it is valid only when the measurement error variance is small and the

sample size is large (Carroll et al [9], 2012). Furthermore, it is not guaranteed

that the variance so obtained is a positive number, since the extrapolation

step does not put constraints on the parameter space.





Chapter 2
Simulation Study

2.1 Introduction

The present chapter describes a simulation study performed in a simple linear

regression context with different types of measurement error. In particular,

the aim of the simulations is to understand how the functional methods

for correction described in the previous chapter cope with the mismeasured

covariate and whether they can achieve a significantly improvement when

making inference on the parameters. The real model used for the simulations

is the following:

y = β0 + β1x+ ε (2.1)

where β0 = 7, β1 = 2 and ε ∼ N(0, 1). x is randomly generated by a nor-

mal distribution with 0 mean and variance equal to 4. Nevertheless the true

covariate x is not directly known: a mismeasured value w = x + u is ob-

served, where u represents the measurement error component. A classical

error model structure (see §1.2.2) was therefore selected for the simulation.

This is a reasonable choice since this hypothesis is often made when dealing

with measurement error in an empirical framework (Carroll et al [9], 2012).

Moreover, it has already been proved that correcting for Berkson measure-

ment error is straightforward in the linear regression context (see §1.3.1.2).

For the simulation study three measurement error models were consid-

ered:

37



38 CHAPTER 2. SIMULATION STUDY

1. a normal distribution with 0 mean and variance equal to 4: u ∼ N(0, 4)

2. a skew-normal distribution with 0 mean, variance equal to 4 and shape

parameter α equal to 5: u ∼ SN(0, 4, 5). For a brief presentation of

what a skew normal is and how it is generated, see Appendix A

3. a mixture of two normal distributions with variance equal to 1 and

mean respectively equal to −2 and +4: fU = 0.5φ(u+ 2) + 0.5φ(u−4).

R = 1000 simulations were performed for each measurement error struc-

ture with three different sample sizes: n = 100, n = 1.000 and n = 10.000.

The subsequent sections compare the results obtained using the different

methods for correction described in Section 1.4. For each method two sum-

mary tables were created. The first presents some major summary statistics

for the estimators of β0 and β1. Mean, median and standard deviation of

the estimates were computed using the standard formulas θ̄ = R−1
∑R

r=1 θr,

Me(θ) = (θ(R/2) + θ(R/2+1))/2 and sd(θ) =
√
R−1

∑R
r=1(θr − θ̄)2 respectively.

The interquartile range was obtained subtracting the first quartile Q1 =

(θ(R/4) +θ(R/4+1))/2 from the third quartile Q3 = (θ(3R/4) +θ(3R/4+1))/2 of the

empirical distribution of the estimators. Bias was calculated using the for-

mula b = R−1
∑R

r=1(θ̂r−θ), in which θ represents the real value of the param-

eter, that is 7 for β0 and 2 for β1, as previously stated. The mean square error

(MSE) was also computed, using the formula MSE =
√
R−1

∑R
r=1(θ̂r − θ)2.

The second table illustrates the main inferential results extracted from the

simulation. For each simulation the real coverage Real(1 − α) of two-tailed

nominal (1−α) = 0.95 confidence intervals was calculated. Real R(1-α) and

Real L(1- α) were computed in the same way, but refer to one-sided confidence

intervals instead. Lastly, the mean interval length of nominal (1− α) = 0.95

confidence intervals was calculated. The real coverage of two-tailed and one-

tailed confidence intervals with nominal confidence level (1−α) equal to 0.90

and 0.99 are also provided for the RC, BCES and SIMEX methods.

The experiment was set up in order to better understand how differently

the estimators behave in distinctive contexts of sample size and measure-

ment error structure. In particular, we wanted to simulate a situation which
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is likely to encounter in coping with astronomical datasets that present mea-

surement error in the variables. Our principal aim is to measure the effec-

tiveness and efficiency of the different functional methods and whether they

can be influenced by the sample size.

The simulations were performed using the R programming language (R

Development Core Team [39], 2005), Version 3.0.2. The code used to imple-

ment the simulations can be found in Appendix C.5.
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2.2 Normal measurement error

The first measurement error model considered is the normal distribution.

Figure 2.1: Measurement error u ∼ N(0, 4).

The graph represents the theoretical proba-

bility distribution of the normal measurement

error u.

It represents the simplest

type of measurement error and

will be used as a benchmark for

the other two, more complex,

structures. We decided to set

the considered variance for the

measurement error distribution

to a rather high value in this ex-

periment. This is because the

uncertainties in astronomical

quantities are “large, skewed, or

exhibit multiple modes”(Kelly

[26], 2011). The simulation

wants to reflect the real difficul-

ties in working with these mis-

measured quantities. In partic-

ular, in this first experiment the

“large” aspect is put forward.

Figure 2.1 shows the empirical

density of a sample of size n = 100 from the measurement error distribution.

In each subsection the descriptive and inferential results obtained with the

different methods for correction are presented while comparisons among the

methods are made at the end of the section. Figure 2.2 graphically displays

the measurement error effect in the relationship between y and the covariate,

for the three sample sizes considered.

2.2.1 True model

The theoretical model in which the true x is used as a covariate is here sum-

marized. The true model simulation was performed in order to understand

how the OLS estimators would work if the true covariates were known. The-
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(a) x vs y, n = 100 (b) w vs y, n = 100

(c) x vs y, n = 1.000 (d) w vs y, n = 1.000

(e) x vs y, n = 10.000 (f) w vs y, n = 10.000

Figure 2.2: Effect of normal measurement error u ∼ N(0, 4) in regression
for three different sample sizes. The linear relationship between y and x is
masked when a normal measurement error is added to the covariate x. The
mismeasured points in the graphs on the right present more variability and
smaller correlation.
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ory states that under Gauss-Markov hypothesis, the OLS is the best — with

the smallest value of MSE — linear unbiased estimator among the unbiased

ones. Both the descriptive and inferential results in Table 2.1 and Table

2.2 highlight the truth of this statement. There is no significant difference

between the various sample sizes analysed: all three present good results in

terms of descriptive and inferential statistics pointing out how, in the ab-

sence of measurement error, a sample size of n = 100 is enough to yield high

accuracy.

n = 100 n = 1.000 n = 10.000

β̂TRUE β0 β1 β0 β1 β0 β1

Mean 6.9927 1.9918 7.0006 2.0006 7.0016 2.0004
Median 6.9844 1.9882 6.9992 1.9988 7.0016 2.0005

Bias 0.0073 0.0082 -0.0006 -0.0006 -0.0016 -0.0004
St Dev 0.1030 0.0528 0.0310 0.0161 0.0092 0.0050

MSE 0.1033 0.0534 0.0310 0.0161 0.0093 0.0050
IQR 0.1478 0.0676 0.0441 0.0242 0.0117 0.0070

Table 2.1: Summary measures for the true model, the theoretical model
obtained if the true x were observable.

n = 100 n = 1.000 n = 10.000

β̂TRUE β0 β1 β0 β1 β0 β1

Real 0.94 0.94 0.96 0.94 0.96 0.94
Real R 0.94 0.93 0.96 0.96 0.98 0.96
Real L 0.95 0.95 0.96 0.94 0.94 0.94

Average Length 0.40 0.20 0.12 0.06 0.04 0.02

Table 2.2: Inferential results for the true model with 1 − α = .95. The real
coverages values are similar to the nominal ones, for both one-tailed and
two-tailed confidence intervals.

2.2.2 Naive model

The naive analysis does not consider the presence of measurement error in

the data: a simple regression model is fitted using the error-prone variable
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w without any type of measurement error correction. As it is clearly visi-

ble from the summary Tables 2.3 and 2.4, the naive approach experiences a

considerable bias of the estimator of β1, which constantly underestimates the

real value. An attenuation-to-the-null effect is undoubtedly present in this

model. Increasing the sample size does not enhance the performance of the

estimators because, as proved in Section 1.3.1.1, the naive estimator is in-

consistent when the covariate is measured with error. Therefore, a correction

technique is needed to improve the naive analysis.

n = 100 n = 1.000 n = 10.000

β̂NAIV E β0 β1 β0 β1 β0 β1

Mean 7.0019 1.0001 7.0060 0.9960 7.0014 1.0007
Median 7.0006 1.0008 7.0004 0.9973 7.0018 1.0002

Bias -0.0019 0.9999 -0.0060 1.0040 -0.0014 0.9993
St. Dev 0.2959 0.1086 0.0960 0.0332 0.0292 0.0103

MSE 0.2959 1.0058 0.0962 1.0045 0.0292 0.9994
IQR 0.4091 0.1600 0.1258 0.0427 0.0387 0.0145

Table 2.3: Summary measures for the naive model in presence of normal mea-
surement error. The analysis is performed without considering the presence
of the measurement error.

n = 100 n = 1.000 n = 10.000

β̂NAIV E β0 β1 β0 β1 β0 β1

Real 0.96 0.00 0.95 0.00 0.95 0.00
Real R 0.96 0.00 0.95 0.00 0.94 0.00
Real L 0.96 1.00 0.94 1.00 0.95 1.00

Average Length 1.19 0.42 0.37 0.13 0.12 0.04

Table 2.4: Inferential results for the naive method with 1 − α = 0.95 in
presence of normal measurement error.

2.2.3 Regression-Calibration

The regression calibration technique (RC) is the first attempt used to try

to improve over the naive model. As already described in Section 1.4.3, in
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order to perform a RC analysis additional data must be provided. In this

n = 100 n = 1.000 n = 10.000

β̂RC β0 β1 β0 β1 β0 β1

Mean 7.0863 2.2581 6.9973 2.0296 6.9982 2.0045
Median 7.0535 1.9820 6.9774 2.0216 7.0014 2.0029

Bias -0.0863 -0.2581 0.0027 -0.0296 0.0018 -0.0045
St. Dev 1.0583 1.3321 0.2717 0.1738 0.0792 0.0572

MSE 1.0618 1.3569 0.2717 0.1763 0.0792 0.0574
IQR 1.1816 0.9301 0.3731 0.2100 0.1004 0.0820

Table 2.5: Summary measures for the RC model in presence of normal mea-
surement error. The estimators improve their accuracy in increasing the
sample size.

simulation experiment an internal validation dataset was used. In particular,

from the original simulated dataset, a 10% of it was randomly extracted and

used as a gold standard for performing the regression of x on w. To compute

the standard errors of the RC estimates a jackknife approach (see §1.4.3.2)

was used for this experiment. The predicted values from this regression were

consequently treated as a new covariates in the original model. The analysis

of the results of the simulation makes evident how Regression Calibration

significantly improves the naive approach. β̂RC1 is much closer to the real

value 2 than the naive one. The RC estimators seem to slightly improve their

accuracy in increasing the sample size, as it is underlined by the decreasing

values of the bias in Table 2.5. Nonetheless, the improvement obtained by

the RC approach is negligible considering the different orders of magnitude

of the three sample sizes.

The RC estimates are not really acceptable taking into account the infer-

ential results of Table 2.6. Actually, the real confidence level is far lower than

the nominal 0.95 value, both for two-sided and one-sided confidence inter-

vals. The two-sided confidence interval for β1 does not include the true value

2 in almost half of the simulations. The same problem arises also considering

lower and higher confidence levels. Nonetheless, as already stated at the be-

ginning of this section, the measurement error considered in this simulation
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is large and therefore we are not expecting a well performed adjustment.

Moreover, the validation data used in our regression calibration algorithm

are only 10% of the total amount. Thus, we can consider the improvement

made by the RC approach fairly acceptable compared to the naive estimate.

β̂RC n = 100 n = 1.000 n = 10.000

β0 β1 β0 β1 β0 β1

(1− α)=0.90

Real 0.47 0.41 0.45 0.54 0.49 0.41
Real R 0.73 0.64 0.69 0.76 0.68 0.68
Real L 0.65 0.67 0.68 0.67 0.69 0.65

Average Length 1.06 0.82 0.31 0.23 0.10 0.07

(1− α)=0.95

Real 0.54 0.46 0.50 0.62 0.54 0.53
Real R 0.78 0.68 0.73 0.81 0.73 0.71
Real L 0.69 0.73 0.71 0.73 0.76 0.69

Average Length 1.27 0.98 0.37 0.27 0.12 0.08

(1− α)=0.99

Real 0.59 0.58 0.64 0.72 0.70 0.66
Real R 0.81 0.74 0.80 0.86 0.82 0.82
Real L 0.74 0.80 0.79 0.83 0.81 0.80

Average Length 1.68 1.30 0.49 0.35 0.15 0.11

Table 2.6: Inferential results for the RC method in presence of normal mea-
surement error with three different coverage levels. The real coverage levels
are smaller than the nominal ones.

2.2.4 BCES

The Akritas & Bershady version of the bivariate correlated errors and intrin-

sic scatter (BCES) method (see §1.4.2) was originally developed for dealing

with a linear regression that presents measurement error in both the response

and the independent variable. Here a simplified version is used, since the

response y is supposed to be an error-free variable. The correction obtained

with the BCES method is the best among all the functional methods consid-



46 CHAPTER 2. SIMULATION STUDY

n = 100 n = 1.000 n = 10.000

β̂BCES β0 β1 β0 β1 β0 β1

Mean 7.0107 2.0584 7.0044 1.9970 6.9983 2.0011
Median 7.0262 2.0283 6.9951 1.9922 6.9948 1.9990

Bias -0.0107 -0.0584 -0.0044 0.0030 0.0017 -0.0011
St. Dev 0.4229 0.2434 0.1357 0.0658 0.0416 0.0219

MSE 0.4230 0.2503 0.1358 0.0659 0.0416 0.0219
IQR 0.5216 0.2929 0.1802 0.0808 0.0504 0.0264

Table 2.7: Summary measures for the BCES model in presence of normal
measurement error. β̂BCES0 and β̂BCES1 are on average almost equal to the
real intercept and slope values chosen for the simulation.

β̂BCES n = 100 n = 1.000 n = 10.000

β0 β1 β0 β1 β0 β1

(1− α)=0.90

Real 0.91 0.99 0.89 0.99 0.92 0.99
Real R 0.90 0.98 0.90 0.97 0.93 0.98
Real L 0.91 1.00 0.91 0.99 0.91 0.97

Average Length 1.43 1.25 0.43 0.37 0.14 0.12

(1− α)=0.95

Real 0.96 0.99 0.94 1.00 0.95 0.99
Real R 0.95 0.99 0.96 0.99 0.95 0.99
Real L 0.95 1.00 0.93 1.00 0.96 0.99

Average Length 1.71 1.49 0.51 0.44 0.16 0.14

(1− α)=0.99

Real 1.00 1.00 0.99 1.00 0.98 1.00
Real R 0.99 1.00 0.99 1.00 0.98 1.00
Real L 0.99 1.00 0.98 1.00 0.99 1.00

Average Length 2.26 1.98 0.68 0.58 0.21 0.18

Table 2.8: Inferential results for the BCES method in presence of normal
measurement error with three different coverage levels.

ered in the normal measurement error model. The summary Table 2.7 points

out how this method succeeds in nullifying the attenuation-to-the-null effect
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due to the presence of the error component u. Even with a sample size of 100

the BCES method performs extremely well: the β̂BCES1 estimate is almost

equal to the true value of β1 = 2. Considering the inferential results in Table

2.8 it is worth noting that the real coverage level is even higher than the

nominal one, for both one-sided and two-sided confidence intervals. This is

mainly due to the precision of the point estimates and to the high values of
ˆV ar(β̂BCES1 ) and ˆV ar(β̂BCES0 ), see Section 2.2.6 for further details.

2.2.5 SIMEX

The simulation extrapolation approach is the most computationally inten-

sive method for correction amongst the ones analysed so far. As already

presented in Section 1.4.4, the SIMEX method increasingly adds artificial

measurement error of the same structure presumed for the real one which af-

fects the data. Therefore, in this experiment the computer-generated pseudo

errors {ub}Bb=1 have normal distribution with 0 mean and variance equal to 4,

like the measurement error u. In empirical applications, choosing the correct

distribution for the computer-generated errors is a delicate part in the simex

algorithm. Generally, different distributions are used and then the one which

is considered the best by the analysts is selected (Carroll et al [9], 2012). In

Table 2.9 it is possible to notice that the SIMEX approach improves over

the naive estimator, though it does not succeed in entirely nullifying the

attenuation-to-the-null effect since the bias of β̂SIMEX
1 is still equal to 0.5

for all three sample sizes considered. The inferential results in Table 2.10

present an even worse scenario: almost 90% of the confidence intervals for β1

do not contain the real value 2 when n = 100, and the percentage drops to 0

when we consider bigger sample sizes. This is because the variability of the

estimators decrease in augmenting the sample size, but the point estimate

β̂SIMEX
1 does not get closer to the real value 2. With this simulation we prove

that the SIMEX technique does not improve its effectiveness in increasing

the size of the sample.
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n = 100 n = 1.000 n = 10.000

β̂SIMEX β0 β1 β0 β1 β0 β1

Mean 7.0061 1.4978 7.0052 1.4850 6.9999 1.4944
Median 7.0214 1.4993 7.0009 1.4899 6.9981 1.4946

Bias -0.0061 0.5022 -0.0052 0.5150 0.0001 0.5056
St. Dev 0.3328 0.1825 0.1108 0.0539 0.0329 0.0163

MSE 0.3329 0.5343 0.1109 0.5178 0.0329 0.5059
IQR 0.4168 0.2368 0.1491 0.0767 0.0427 0.0233

Table 2.9: Summary measures for the SIMEX model in presence of normal
measurement error. The value of β̂SIMEX

1 is closer to the real β1 = 2 than
β̂NAIV E1 , although the bias is still considerable.

β̂SIMEX n = 100 n = 1.000 n = 10.000

β0 β1 β0 β1 β0 β1

(1− α)=0.90

Real 0.84 0.10 0.83 0.00 0.87 0.00
Real R 0.89 0.04 0.86 0.00 0.91 0.00
Real L 0.84 1.00 0.85 1.00 0.88 1.00

Average Length 0.95 0.47 0.30 0.15 0.10 0.05

(1− α)=0.95

Real 0.90 0.12 0.91 0.00 0.91 0.00
Real R 0.93 0.10 0.92 0.00 0.94 0.00
Real L 0.92 1.00 0.92 1.00 0.93 1.00

Average Length 1.14 0.56 0.36 0.17 0.11 0.06

(1− α)=0.99

Real 0.98 0.26 0.96 0.00 0.96 0.00
Real R 0.96 0.19 0.98 0.00 0.97 0.00
Real L 0.99 1.00 0.96 1.00 0.98 1.00

Average Length 1.51 0.74 0.47 0.23 0.15 0.07

Table 2.10: Inferential results for the SIMEX method in presence of normal
measurement error with three different coverage levels. Weak real coverage
level for β1.

2.2.6 Methods comparison

The experiment analysed so far could be seen as a “textbook case”, being a

simple linear regression model with classical measurement error structure.
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Nevertheless the results obtained are helpful and constructive for under-

standing the behaviour of the estimates even in more complex situations.

As previously stated, the estimator which performs best is the BCES estima-

tor by Akritas & Bershady, which works well when the measurement error

structure is simple and symmetric. Moreover, belonging to the family of

method-of-moments estimators, the BCES approach can be used only when

the regression is linear; it is infeasible when the functional form is non-linear

or cannot be linearised. The regression calibration method is simple, compu-

β̂0 ŝd(β̂0) β̂1 ŝd(β̂1)

n = 100

TRUE 6.9927 0.0997 1.9918 0.0509
NAIVE 7.0006 0.3001 1.0008 0.1062

RC 7.0863 0.3134 2.2581 0.2126
BCES 7.0107 0.4182 2.0584 0.3393

SIMEX 7.0061 0.2879 1.4978 0.1401

n = 1.000

TRUE 7.0006 0.0317 2.0006 0.0158
NAIVE 7.0060 0.0950 0.9960 0.0334

RC 6.9973 0.0954 2.0296 0.0676
BCES 7.0044 0.1304 1.9970 0.1096

SIMEX 7.0052 0.0911 1.4850 0.0442

n = 10.000

TRUE 7.0016 0.0100 2.0004 0.0050
NAIVE 7.0014 0.0301 1.0007 0.0106

RC 6.9982 0.0301 2.0045 0.0212
BCES 6.9983 0.0413 2.0011 0.0352

SIMEX 6.9999 0.0289 1.4944 0.0141

Table 2.11: Average values of the intercept, the slope and their standard
errors for the normal measurement error model with three different sample
sizes. β̂0, ŝd(β̂0), β̂1 and ŝd(β̂1) are calculated for each method for correction.
The BCES method performs the best correction on average.

tationally not demanding and effective for almost every type of measurement

error and functional regression form. The drawback is that additional valida-
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tion data must be available. Unlikely in Medicine and Genomics, obtaining

validation data in Astronomy is never easy and most of the times impossible,

being the astronomical quantities often derived from transformations of non-

directly observed variables in which measurement error is already present

(Kelly [26], 2011). The SIMEX approach is the most general and widely

applicable functional method. It does not require additional data but it is

computationally intensive. Moreover, the results obtained, even in the sim-

plest case, do not entirely correct the attenuation-to-the-null effect caused

by the u component. Of major interest is to compare how the estimators

behave for different sample sizes. Table 2.11 reports the average values of

the estimates and their standard deviations for β0 and β1, obtained with the

true model, the naive model and the functional measurement error methods

for correction, for the three considered sample sizes. As it can be seen from

Table 2.11, there is basically no difference amongst the three experiments

in terms of point estimate, whilst the standard errors obviously decrease in

increasing the sample size. This proofs that when data are affected by clas-

sical measurement error the sample size does not affect the point estimate

of the parameters. In Figure 2.3 the functional methods for correction are

plotted together with the true and the naive models for the three different

sample sizes. The BCES and the RC work well in all cases, whilst the SIMEX

method is still affected by a slight attenuation-to-the-null effect. The latter

fact reveals how the SIMEX method is not minimally affected by the sample

size considered. As it is clearly visible from the graphs, when sample size in-

creases more information is available for the analysis, nevertheless increasing

the sample size means adding biased information due to measurement error:

the addition of mismeasured observations does not compensate the lack of

true measurements.
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2.3 Skew-Normal measurement error

Figure 2.4: Measurement error u ∼
SN(0, 4, 5). The graph represents the theo-

retical probability distribution of the skew-

normal measurement error u.

A skew-normal measurement er-

ror model was adopted for the

second simulation. The pe-

culiarity of the aforementioned

model is the fact that the error

added to the true covariate X

is asymmetric, creating an un-

predictable behaviour in the ob-

served variable X∗. Namely, if

the true variable is not affected

by asymmetry, the measurement

error will create either a positive

or a negative skewness, depend-

ing on the nature of the skewness

present in u. If the true vari-

able X already presents skew-

ness, the measurement error can

either intensify it or hide it. For

a unimodal distribution, nega-

tive skewness indicates that the tail on the left side of the probability density

function is longer than the right side, conversely positive skewness indicates

that the tail on the right side is longer than the left side. In order to simulate

a measurement error that presents skewness, random values were generated

from a skew-normal distribution, using the “sn” package developed for the R

programming language (Azzalini [3], 2014). In particular, the u vector was

generated from a skew-normal distribution with 0 mean, variance equal to 4

and shape parameter α equal to 5 (see Appendix A). As it is possible to see

in Figure 2.4, the distribution of the measurement error u presents positive

skewness. Since the true variable x was generated by a normal distribution,

which is symmetric, the mismeasured variable x∗ is skewed to the right. The

effect of a skew measurement error in the covariate is shown in Figure 2.5. As
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it is graphically clearly visible, the positive skewness of u leads to increased

values of the observed variable x∗ with respect to the true variable x.

The present section is organized as the previous one: first each method

for corrections is presented and analysed, and then, at the end, comparisons

are made.

2.3.1 Naive model

The naive analysis does not count for the presence of measurement error

and it estimates the parameters β0 and β1 as if x∗ were the true variable.

As it can be expected, the presence of measurement error completely biases

inference on the parameters. Nevertheless, the behaviour in case of skew-

normal measurement error is different compared to the one in Section 2.2.2.

As it is highlighted in Table 2.12, in this case both the estimates of the

intercept, β̂0, and of the slope, β̂1, exhibit significant bias. The attenuation-

to-the-null effect seems to be slighter, however it is still significant. The

inferential results in Table 2.13 reflect what already stated for the descriptive

results. Likewise the case of normal measurement error, increasing the sample

size in the skew-normal measurement error model does not help to enhance

the quality of the naive approach.

n = 100 n = 1.000 n = 10.000

β̂NAIV E β0 β1 β0 β1 β0 β1

Mean 4.7333 1.4552 4.7454 1.4378 4.7463 1.4416
Median 4.7394 1.4639 4.7411 1.4347 4.7477 1.4414

Bias 2.2667 0.5448 2.2546 0.5622 2.2537 0.5584
St. Dev 0.2483 0.1012 0.0756 0.0335 0.0228 0.0111

MSE 2.2802 0.5541 2.2558 0.5632 2.2538 0.5585
IQR 0.3587 0.1322 0.1082 0.0409 0.0303 0.0148

Table 2.12: Summary measures for the naive model in presence of skew-
normal measurement error. Neither the intercept nor the slope are estimated
correctly.
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(a) x vs y, n = 100 (b) w vs y, n = 100

(c) x vs y, n = 1.000 (d) w vs y, n = 1.000

(e) x vs y, n = 10.000 (f) w vs y, n = 10.000

Figure 2.5: Effect of skew-normal measurement error u ∼ SN(0, 4, 5) in
regression for three different sample sizes. The mismeasured value w presents
an higher value than the true variable x, due to the presence of the skewed-
to-the-right measurement error. The linear relationship between y and w is
spread to the right hand-side of the graphs, hiding the real pattern of the
model.
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n = 100 n = 1.000 n = 10.000

β̂NAIV E β0 β1 β0 β1 β0 β1

Real 0.00 0.00 0.00 0.00 0.00 0.00
Real R 0.00 0.00 0.00 0.00 0.00 0.00
Real L 1.00 1.00 1.00 1.00 1.00 1.00

Average Length 1.11 0.39 0.35 0.12 0.11 0.04

Table 2.13: Inferential results for the naive method with 1 − α = 0.95 in
presence of skew-normal measurement error. The real coverage levels are
equal to 0, meaning that in none of the simulation the true values β0 = 7
and β1 = 2 are contained in the confidence intervals.

2.3.2 Regression-Calibration

In case of skew-normal measurement error, regression calibration is the tech-

nique which performs the best amongst the functional methods considered.

Contrarily to the naive approach, the RC method provides estimates which

are close to their real values. As it is shown in Table 2.14, it seems that

the sample size does not influence the inference on parameters also in this

case. Even with a sample of size n = 100 the regression calibration method

leads to an almost perfect estimation, with the estimated values β̂0 and β̂1

nearly equal to the real β0 = 7 and β1 = 2. The reason why the RC method

performs so well is probably due to both the RC technique itself and the

nature of the measurement error considered: the availability of 10% of the

gold standard x is sufficient to perceive and thus to correct the asymmetry

present in the measurement error model. The inferential results in Table 2.15

shows that the real coverage level is lower than the nominal one, for the three

nominal coverage levels considered. Notwithstanding, the RC estimators can

be considered an effective solution to cope with skew-normal measurement

error; it is nevertheless worth highlighting again that some validation data

must be provided in order to perform the aforementioned algorithm.
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n = 100 n = 1.000 n = 10.000

β̂RC β0 β1 β0 β1 β0 β1

Mean 7.0071 2.2250 6.9762 1.9931 7.0014 1.9996
Median 6.9746 1.9785 6.9565 1.9928 6.9993 1.9987

Bias -0.0071 -0.2250 0.0238 0.0069 -0.0014 0.0004
St. Dev 0.8495 1.6372 0.1898 0.1361 0.0628 0.0379

MSE 0.8495 1.6526 0.1913 0.1363 0.0629 0.0379
IQR 0.9625 0.5773 0.2483 0.1891 0.0980 0.0492

Table 2.14: Summary measures for the RC model in presence of skew-normal
measurement error. β̂RC0 and β̂RC1 are on average really close to the real
intercept and slope values chosen for the simulation.

β̂RC n = 100 n = 1.000 n = 10.000

β0 β1 β0 β1 β0 β1

(1− α)=0.90

Real 0.40 0.42 0.49 0.42 0.41 0.49
Real R 0.63 0.64 0.64 0.64 0.67 0.69
Real L 0.70 0.66 0.77 0.69 0.67 0.70

Average Length 0.81 0.54 0.24 0.15 0.08 0.05

(1− α)=0.95

Real 0.47 0.47 0.56 0.48 0.47 0.57
Real R 0.67 0.71 0.69 0.69 0.71 0.73
Real L 0.73 0.70 0.80 0.74 0.70 0.76

Average Length 0.97 0.65 0.29 0.18 0.09 0.06

(1− α)=0.99

Real 0.61 0.62 0.70 0.63 0.65 0.69
Real R 0.74 0.80 0.78 0.74 0.81 0.80
Real L 0.80 0.77 0.86 0.82 0.77 0.83

Average Length 1.28 0.86 0.38 0.24 0.12 0.07

Table 2.15: Inferential results for the RC method in presence of skew-normal
measurement error with three different coverage levels. Although the real
coverage levels are smaller than the nominal ones the real coverage levels
provided by the RC estimator are the best amongst the functional methods
considered for the skew-normal measurement error simulation.
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2.3.3 BCES

With a skew-normal measurement error model the BCES method of mo-

ments does not perform as well as it does in Section 2.2.4. Table 2.16 shows

that the BCES approach fails to correctly estimate the intercept of the linear

model. Even though β̂BCES1 still provides an effective estimate for β1, the

same cannot be said about the BCES estimator of β0. Notably β̂BCES0 un-

derestimates the true value of the intercept and, once again, increasing the

sample size does not bring any significant improvement to the performance

of the estimator. The drawback of the BCES approach is that it cannot

account for the asymmetric nature of the measurement error. In computing

β̂BCES0 = ȳ − β̂BCES1 x̄∗, the sample average of the observed variable x̄∗ is

higher than the true sample average x̄ due to the positive skewness of u,

which implies that β̂BCES0 always miscalculates the value of β0. Table 2.17

strengthens what we have already said commenting the descriptive results:

the slope estimator behaves well in terms of real coverage, while the intercept

estimator does not.

n = 100 n = 1.000 n = 10.000

β̂BCES β0 β1 β0 β1 β0 β1

Mean 3.8121 2.0449 3.8649 2.0019 3.8731 2.0002
Median 3.8555 2.0157 3.8532 2.0006 3.8701 1.9998

Bias 3.1879 -0.0449 3.1351 -0.0019 3.1269 -0.0002
St. Dev 0.3687 0.1536 0.1087 0.0422 0.0323 0.0130

MSE 3.2092 0.1600 3.1370 0.0423 3.1271 0.0130
IQR 0.5339 0.1760 0.1624 0.0595 0.0415 0.0173

Table 2.16: Summary measures for the BCES model in presence of skew-
normal measurement error. Contrarily to what happens with a normal mea-
surement error, with an asymmetric distribution βBCES0 highly underesti-
mates the true intercept β0 = 7.
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β̂BCES n = 100 n = 1.000 n = 10.000

β0 β1 β0 β1 β0 β1

(1− α)=0.90

Real 0.00 0.96 0.00 0.97 0.00 0.96
Real R 0.00 0.98 0.00 0.97 0.00 0.96
Real L 1.00 0.92 1.00 0.95 1.00 0.97

Average Length 1.11 0.63 0.34 0.20 0.11 0.06

(1− α)=0.95

Real 0.00 0.98 0.00 0.99 0.00 0.99
Real R 0.00 0.99 0.00 0.99 0.00 0.97
Real L 1.00 0.97 1.00 0.98 1.00 0.99

Average Length 1.33 0.75 0.41 0.23 0.13 0.07

(1− α)=0.99

Real 0.00 1.00 0.00 1.00 0.00 1.00
Real R 0.00 1.00 0.00 0.99 0.00 1.00
Real L 1.00 1.00 1.00 1.00 1.00 1.00

Average Length 1.76 1.00 0.54 0.31 0.17 0.10

Table 2.17: Inferential results for the BCES method in presence of normal
measurement error with three different coverage levels. The true value of
the intercept β0 is never contained in the confidence intervals, no matter the
coverage level considered.

2.3.4 SIMEX

As already reported in Section 2.2.5, the key factor for an effective appli-

cation of the SIMEX method is to correctly choose the distribution of the

computer-generated pseudo errors {ub}Bb=1. In an empirical framework many

distributions for the artificial errors are taken into account and then the most

realistic and effective is chosen. In a simulated framework one possible ap-

proach is to use the same distribution from which the measurement error was

generated, that is a skew-normal distribution in our case. Nevertheless the

attempt of using a skew-normal distribution for generating the pseudo er-

rors {ub}Bb=1 led to an incongruence in the estimation of the parameters: the

obtained variance estimator of β̂SIMEX
0 was a negative number! As already
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Figure 2.6: ˆV ar(β̂0) extrapolation step with cubic extrapolant function. A
cubic component is needed to correctly fit the artificial variances generated
in the simulation step.

pointed out in Section 1.4.4.3, this is not caused by an error in the simex

algorithm, but the procedure simply does not assure that the number ob-

tained will be non-negative. In order to avoid the aforementioned brawback

a cubic extrapolant function was utilized for the variance component extrap-

olation. As it is clearly visible in Figure 2.6, a cubic function satisfactorily

n = 100 n = 1.000 n = 10.000

β̂SIMEX β0 β1 β0 β1 β0 β1

Mean 7.3110 1.8799 7.2778 1.8629 7.2871 1.8664
Median 7.3230 1.8854 7.2726 1.8622 7.2839 1.8656

Bias -0.3110 0.1201 -0.2778 0.1371 -0.2871 0.1336
St. Dev 0.2879 0.1488 0.0921 0.0483 0.0268 0.0158

MSE 0.4238 0.1912 0.2926 0.1454 0.2884 0.1346
IQR 0.4285 0.1788 0.1260 0.0672 0.0395 0.0186

Table 2.18: Summary measures for the SIMEX model in presence of skew-
normal measurement error. The SIMEX method on average performs a good
correction for both the intercept and the slope of the model.
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interpolates the variances obtained in the simulation step and furthermore it

avoids the nonpositivity problem which arose using a quadratic extrapolant

function.

β̂SIMEX n = 100 n = 1.000 n = 10.000

β0 β1 β0 β1 β0 β1

(1− α)=0.90

Real 0.49 0.64 0.04 0.07 0.00 0.00
Real R 0.99 0.55 1.00 0.04 1.00 0.00
Real L 0.42 0.95 0.01 1.00 0.00 1.00

Average Length 0.62 0.36 0.20 0.11 0.06 0.04

(1− α)=0.95

Real 0.57 0.72 0.04 0.07 0.00 0.00
Real R 0.99 0.66 1.00 0.07 1.00 0.00
Real L 0.50 0.98 0.04 1.00 0.00 1.00

Average Length 0.74 0.42 0.24 0.13 0.08 0.04

(1− α)=0.99

Real 0.66 0.82 0.11 0.13 0.00 0.00
Real R 1.00 0.80 1.00 0.10 1.00 0.00
Real L 0.64 0.99 0.07 1.00 0.00 1.00

Average Length 0.98 0.56 0.32 0.18 0.10 0.06

Table 2.19: Inferential results for the SIMEX method in presence of skew-
normal measurement error with three different coverage levels. The real
coverage levels are smaller than the nominal ones.

The estimates obtained using the SIMEX method for coping with a skew-

normal measurement error model are quite satisfactory. Table 2.18 highlights

how the SIMEX approach provides estimations that are sufficiently close to

the real values of β0 and β1. Even though β̂SIMEX
0 slightly overestimates the

real intercept and β̂SIMEX
1 slightly underestimates the real slope, all in all

the SIMEX approach works better with a skew-normal measurement error

distribution than with a gaussian one, as seen in Section 2.2.5. The real

coverage levels in Table 2.19 do not reflect the nominal ones. Apparently

even if the point estimates are quite satisfactory the SIMEX procedure for
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estimating the standard errors of β̂SIMEX
0 and β̂SIMEX

1 underestimates their

variability, which leads to short confidence intervals and, as a consequence,

to real coverage values that are smaller than the nominal ones. A new result

achieved with the present simulation is the discovery of the underestimation

of the SIMEX estimators variability when the measurement error model is

asymmetric.

2.3.5 Methods comparison

The results obtained for the simulated experiment of a skew-normal mea-

surement error in linear regression are fairly interesting and in some ways

unexpected. Contrarily to the outcomes reported in Section 2.2, the asym-

metric nature of the error u involves a misestimation in both the intercept

and the slope of the regression model. As a result, the naive model in Sec-

tion 2.3.1 presents an attenuation for both the parameters. Moreover, the

BCES method, which performs an optimal measurement error correction in

the gaussian case, does not succeed in correctly estimating the intercept of

the model when the measurement error is asymmetric. On the other hand,

both the regression calibration and the SIMEX approach achieve the target

of satisfactorily correcting for the skew-normal measurement error, in terms

of point estimate. However, when we consider the inference provided by the

aforementioned methods, none of them presents confidence intervals which

reflect the nominal coverage level expected.

It is worth highlighting that both methods present limitations that must

be taken into account in performing empirical measurement error correction.

As already pointed out many times, RC approach needs further information

in order to be feasible, although an internal validation data of only a 10%

of the total amount was already sufficient to recognize and thus to account

for the asymmetric measurement error behaviour. On the other hand, the

SIMEX approach requires to previously know the measurement error vari-

ance and distribution in order to perform an effective correction. During

the simulation process many distributions have been utilized for generating

the artificial errors U , and some of them provided completely biased re-
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sults. This is to emphasize once again how the performance of the SIMEX

method is deeply affected by the chosen distribution for the generation of

the pseudo-errors U . In simulated experiments providing and recognizing

the most suitable distribution is fairly simple, it is not in coping with real

data sets in which the measurement error nature is not known. As a conse-

quence, many SIMEX algorithm applications could be required in order to

find the most appropriate solution. Table 2.20 reports the estimators sample

β̂0 ŝd(β̂0) β̂1 ŝd(β̂1)

n = 100

TRUE 7.0015 0.0997 2.0002 0.0498
NAIVE 4.7333 0.2793 1.4552 0.0983

RC 7.0071 0.2376 2.2250 0.1420
BCES 3.8121 0.3236 2.0449 0.1755

SIMEX 7.3110 0.1883 1.8799 0.1055

n = 1.000

TRUE 7.0001 0.0315 1.9999 0.0158
NAIVE 4.7454 0.0887 1.4378 0.0315

RC 6.9762 0.0741 1.9931 0.0459
BCES 3.8649 0.1035 2.0019 0.0594

SIMEX 7.2778 0.0620 1.8629 0.0340

n = 10.000

TRUE 7.0001 0.0100 1.9999 0.0050
NAIVE 4.7463 0.0281 1.4416 0.0099

RC 7.0014 0.0234 1.9996 0.0146
BCES 3.8731 0.0327 2.0002 0.0187

SIMEX 7.2871 0.0192 1.8664 0.0107

Table 2.20: Average values of the intercept, the slope and their standard
errors for the skew-normal measurement error model with three different
sample sizes. The RC method performs the best correction on average.

average and the estimators standard deviation for each functional method

used in the simulation, with the three different sample sizes considered. As

it has already been seen in Section 2.2.6 for the normal measurement error

distribution, increasing the sample size does not produce significant improve-
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ment in coping with skew-normal measurement error either. The standard

errors of the estimators naturally decrease when the observations number

raises, nonetheless the point estimates remain basically the same; meaning

that an increase in biased information acquisition does not directly produce

a better inference on the parameters. In Figure 2.7 the different behaviour

of the estimators is graphically presented, for each sample size. The graphs

clearly highlight how the asymmetric nature of the measurement error atten-

uates the inference on the parameters. The RC model has an optimal fit to

the real data, whilst both the simex and the BCES regression lines do not

perfectly pass through the points mass. This behaviour is due to the positive

skewness of the measurement error distribution, which causes the observed

value x∗ to be always larger than the correspondent true value x.
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2.4 Normal mixture measurement error

The last simulation performed considers a normal mixture distribution for

the measurement error model. A mixture distribution is the probability

distribution of a random variable that is derived from a collection of other

random variables. In our simulation two normal distributions, one with mean

equal to −2 and the other with mean equal to 4, are added with weights equal

to 0.5. Mathematically, this leads to the following expression:

fU = 0.5φ(u+ 2) + 0.5φ(u− 4) (2.2)

in which the density function of the measurement error u is given by the

stochastic mixture of the two previously defined normal distributions.

Figure 2.8: Measurement error fU =

0.5φ(u + 2) + 0.5φ(u − 4). The theoretical

probability distribution chosen for this simu-

lation is a mixture of normals with two differ-

ent modes.

An expression like the one in

(2.2) is called mixture den-

sity. The two normals that are

combined to form the mixture

density are called the mixture

components, and the probabili-

ties (or weights) associated with

each component are called the

mixture weights. The case con-

sidered is an equal-weighted mix-

ture density, since the weights

are both equal to 0.5. As it is

clearly visible in Figure 2.8, the

obtained distribution is bimodal.

As a consequence, the bias in-

troduced by the presence of the

measurement error can stochas-

tically lead to either a highly-

positive mismeasured value or a

highly-negative mismeasured one. The Graphs in Figure 2.9 clarify the con-
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cept: the values observed for x∗ follow two different linear patterns, neither

of them is the original, error-free one.

The aim of the present simulation is to understand if, in presence of such

a complex measurement error structure, the methods considered can perform

an attempt of correction and statistically improve the inference on param-

eters. Even though a mixture density could seem an atypical measurement

error structure, astronomical literature offers many examples in which mix-

ture of normals are used to model measurement error densities (Kelly [25],

2007). The focus of the present work is on functional methods for correc-

tion, that are those methods in which no initial distributional hypotheses

for the components are made (see §1.2.1). Therefore, the aim is to test the

robustness of these approaches in coping with different measurement error

structures, without taking into account the probability density of the latter

one.

Likewise the previous sections, firstly the results for every model are pre-

sented and commented, and then comparisons are made.

2.4.1 Naive model

Neglecting the presence of the normal mixture measurement error leads to a

naive model whose behaviour is the worst amongst the three measurement

error structures considered. The bimodal distribution of u creates an under-

estimation of both the slope and the intercept of the model. In particular,

β̂1 presents an high attenuation-to-the-null effect: its average value is about

0.56 for the three sample sizes considered. Table 2.21 presents a model that

is completely unsatisfactory, with high bias and mean squared error for the

slope β̂1. Table 2.22 shows a real coverage level equal to 0% for β1, further-

more, the estimators are totally unaffected by the sample size considered.

The present situation points out that using a naive regression when the mea-

surement error distribution is complex would lead to a completely wrong

inference on parameters. Therefore a method for correction must be used in

order to enhance the performance of the naive model.
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(a) x vs y, n = 100 (b) w vs y, n = 100

(c) x vs y, n = 1.000 (d) w vs y, n = 1.000

(e) x vs y, n = 10.000 (f) w vs y, n = 10.000

Figure 2.9: Effect of normal mixture measurement error fU = 0.5φ(u+ 2) +
0.5φ(u− 4) in regression for three different sample sizes. The original linear
relationship between y and x is split in two different patterns due to the
bimodal measurement error distribution.
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n = 100 n = 1.000 n = 10.000

β̂NAIV E β0 β1 β0 β1 β0 β1

Mean 6.4072 0.5690 6.4251 0.5711 6.4295 0.5714
Median 6.4100 0.5722 6.4184 0.5714 6.4287 0.5713

Bias 0.5928 1.4310 0.5749 1.4289 0.5705 1.4286
St. Dev 0.3715 0.0774 0.1121 0.0247 0.0356 0.0076

MSE 0.6996 1.4331 0.5857 1.4291 0.5716 1.4287
IQR 0.5265 0.1041 0.1502 0.0350 0.0466 0.0101

Table 2.21: Summary measures for the naive model in presence of normal
mixture measurement error. The slope presents an high attenuation-to-the-
null effect.

n = 100 n = 1.000 n = 10.000

β̂NAIV E β0 β1 β0 β1 β0 β1

Real 0.63 0.00 0.00 0.00 0.00 0.00
Real R 0.52 0.00 0.00 0.00 0.00 0.00
Real L 1.00 1.00 1.00 1.00 1.00 1.00

Average Length 1.45 0.38 0.45 0.12 0.14 0.04

Table 2.22: Inferential results for the naive method with 1 − α = 0.95 in
presence of normal mixture measurement error. The real coverage levels for
β0 = 7 are lower than the nominal ones, whilst β1 = 2 is contained in none
of the R = 1000 simulated confidence intervals.

2.4.2 Regression-Calibration

The regression calibration is the only functional method which succeeded in

effective correcting for the presence of the mixture of normals measurement

error model. Likewise the skew-normal case presented in Section 2.3, the RC

is the only approach that permits an improvement and thus an almost correct

inference on parameters. Table 2.23 reports the sample mean and median

of the estimators which are sufficiently close to the real value of β0 and β1.

The RC technique applied to a normal mixture measurement error is the

only case encountered in this simulation in which the sample size does have

a significant effect in the performance of the estimator. In particular, Table

2.23 shows that the point estimate for β1 is much closer to its real value and
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presents much less variability when n = 1.000 and n = 10.000 than when

n = 100. Trying to understand the reason of this problem we discovered

n = 100 n = 1.000 n = 10.000

β̂RC β0 β1 β0 β1 β0 β1

Mean 7.0597 1.4205 6.9872 2.0550 7.0024 2.0100
Median 7.0301 2.0728 7.0151 2.0237 7.0012 2.0093

Bias -0.0597 0.5795 0.0128 -0.0550 -0.0024 -0.0100
St. Dev 9.9691 14.0834 0.3587 0.2740 0.0989 0.0811

MSE 9.9693 14.0953 0.3589 0.2794 0.0989 0.0818
IQR 1.8797 1.4347 0.4894 0.2834 0.1321 0.1087

Table 2.23: Summary measures for the RC model in presence of normal
mixture measurement error. β̂RC0 and β̂RC1 are slightly biased on average and
they present high variability amongst the simulations.

that the RC effectiveness depends on the “quality” of the additional data

available for the analysis: when the additional information originates from a

subset that is affected mainly by one of the two measurement error mixture

component, the algorithm fails in performing an effectively correction. Since

the mixture weights are both equal to 0.5 the aforementioned drawback is

more likely to happen when the sample size is small, as a consequence the

available gold standard could be strongly affected by only one measurement

error mixture component and lead to biased results. However, this problem

seldom happens when we consider bigger sample sizes.

As it has already happened several times, even though the descriptive

results are fairly satisfactory, the real coverage level of confidence intervals

for the true values of β0 and β1 are smaller than the nominal ones. Inferential

results are summarized in Table 2.24, for three different coverage levels: 0.9,

0.95 and 0.99 respectively.

The assumption of having available a certain amount of the gold standard

x is the main drawback of the regression calibration approach. However, it

seems that the RC method is the only efficient solution amongst the func-

tional methods when the measurement error model does not have a simple

structure. Having additional information available permits to approximately
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deduct the distribution of the measurement error, and therefore to better

correct for it. As already stated in Section 1.4.1, additional information is

needed for parameters identification in certain models (i.e., RC) but also

for providing a better measurement error correction when its distribution is

complex.

β̂RC n = 100 n = 1.000 n = 10.000

β0 β1 β0 β1 β0 β1

(1− α)=0.90

Real 0.34 0.43 0.43 0.51 0.45 0.44
Real R 0.64 0.68 0.66 0.74 0.70 0.72
Real L 0.61 0.65 0.67 0.67 0.67 0.64

Average Length 1.95 2.07 0.37 0.29 0.12 0.09

(1− α)=0.95

Real 0.42 0.47 0.46 0.56 0.52 0.49
Real R 0.69 0.72 0.69 0.78 0.73 0.76
Real L 0.66 0.71 0.74 0.72 0.72 0.69

Average Length 2.33 2.48 0.44 0.35 0.14 0.11

(1− α)=0.99

Real 0.56 0.55 0.58 0.68 0.66 0.60
Real R 0.77 0.77 0.72 0.83 0.82 0.81
Real L 0.74 0.75 0.81 0.81 0.79 0.74

Average Length 3.09 3.28 0.58 0.46 0.18 0.14

Table 2.24: Inferential results for the RC method in presence of normal
mixture measurement error with three different coverage levels. The real
coverage levels are smaller than the nominal ones.
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2.4.3 BCES

Likewise the skew-normal measurement error case in Section 2.3.3, the BCES

estimator performs a good correction for the slope, but it fails in effectively

estimating the intercept of the normal mixture measurement error model.

As it is shown in Table 2.25, the BCES approach constantly underestimates

the true value of the intercept, on the other hand it sufficiently correctly

estimates the value of the slope β1. The inferential results in Table 2.26

confirms what previously stated regarding the descriptive results: the real

coverage levels for β1 are comparable with the nominal ones, whilst the real

coverage levels for β0 are significantly lower than the real ones considered.

The results are not affected by the sample size considered in the analysis.

All in all, the correction performed by the BCES approach can be consid-

ered fairly satisfactory. Neither additional data nor initial assumptions were

required in order to perform the BCES algorithm. Thus the BCES method

of moments can become useful in coping with an empirical linear regression

with measurement error when no additional information is available. A real

case of its application will be presented in Chapter 3.

n = 100 n = 1.000 n = 10.000

β̂BCES β0 β1 β0 β1 β0 β1

Mean 4.8001 2.1689 4.9792 2.0142 4.9964 2.0014
Median 4.9197 2.0136 4.9824 2.0007 4.9977 2.0003

Bias 2.1999 -0.1689 2.0208 -0.0142 2.0036 -0.0014
St. Dev 0.9596 0.6122 0.2266 0.1142 0.0721 0.0331

MSE 2.4001 0.6351 2.0335 0.1151 2.0049 0.0331
IQR 0.9912 0.4874 0.2961 0.1492 0.1003 0.0434

Table 2.25: Summary measures for the BCES model in presence of normal
mixture measurement error. The slope is slightly overestimated on average,
whilst the intercept is conspicuously underestimated by the BCES procedure.
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β̂BCES n = 100 n = 1.000 n = 10.000

β0 β1 β0 β1 β0 β1

(1− α)=0.90

Real 0.13 0.96 0.00 0.97 0.00 0.97
Real R 0.07 0.93 0.00 0.94 0.00 0.95
Real L 1.00 1.00 1.00 0.98 1.00 0.96

Average Length 3.48 2.32 0.83 0.48 0.26 0.15

(1− α)=0.95

Real 0.26 0.98 0.00 0.99 0.00 0.99
Real R 0.13 0.96 0.00 0.98 0.00 0.98
Real L 1.00 1.00 1.00 1.00 1.00 0.99

Average Length 4.16 2.77 0.99 0.58 0.31 0.18

(1− α)=0.99

Real 0.64 0.99 0.00 1.00 0.00 1.00
Real R 0.48 0.99 0.00 0.99 0.00 1.00
Real L 1.00 1.00 1.00 1.00 1.00 1.00

Average Length 5.51 3.66 1.30 0.76 0.40 0.23

Table 2.26: Inferential results for the BCES method in presence of normal
mixture measurement error with three different coverage levels. The real
confidence level for the intercept β0 is lower than the nominal one.

2.4.4 SIMEX

Contrarily to what happened to the previously considered measurement er-

ror model structures, in the mixture of normal measurement error case the

SIMEX application was not straightforward and many attempts have been

done in order to find a solution that satisfactorily corrects for the error

present in the covariate. Being the normal mixture a sophisticated measure-

ment error distribution, some issues arose in choosing the distribution and

the variance value of the artificially generated pseudo errors {ub}Bb=1 during

the simulation step. The first attempt was to consider {ub}Bb=1 as generated

by a mixture of normals distribution, namely the same used for generating

the measurement error u. This solution led to a SIMEX algorithm that pro-

vided the same parameter estimations of the naive model presented in Section
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2.4.1. Since the artificially generated bimodal errors did not implement an

adequate correction, a normal distribution was chosen for {ub}Bb=1. The main

drawback was that x∗ presented high variability due to the nature of the

measurement error distribution. Therefore, after many attempts, we have

discovered that the best correction was obtained by setting the additional

error variance σ2
u equal to 82. This value is certainly high, nevertheless it is

needed in order to sufficiently take into account for the high variability of the

measurement error distribution. However, as it is shown in Table 2.27, the

correction performed by the SIMEX algorithm is far away of being perfect: it

constantly underestimates the true value of both the intercept and the slope

of the regression model. The bias and the MSE values are always consider-

able, no matter the sample size considered. The inferential results in Table

2.28 denote an inference on parameters in which the real coverage levels are

far lower than the nominal ones. For example, with a nominal coverage level

of 95% and n = 100, only in the 9% of the simulations the true value of β1

belongs to the computed confidence interval.

Without any additional information required, the SIMEX approach still

performs a significant improvement of the inference on parameters, if com-

pared to the naive model. However, in order to perform a suitable estimation,

the measurement error variance or at least information regarding measure-

ment error variability has to be known, which is not always the case in dealing

with real data applications.

n = 100 n = 1.000 n = 10.000

β̂SIMEX β0 β1 β0 β1 β0 β1

Mean 5.5858 1.4327 5.5240 1.4576 5.5409 1.4522
Median 5.5846 1.4274 5.5341 1.4611 5.5472 1.4516

Bias 1.4142 0.5673 1.4760 0.5424 1.4591 0.5478
St. Dev 0.5057 0.1776 0.1560 0.0630 0.0500 0.0189

MSE 1.5019 0.5945 1.4843 0.5460 1.4600 0.5481
IQR 0.6749 0.2439 0.2230 0.0924 0.0708 0.0270

Table 2.27: Summary measures for the SIMEX model in presence of normal
mixture measurement error. Both the slope and the intercept are on average
underestimated by the SIMEX method.
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β̂SIMEX n = 100 n = 1.000 n = 10.000

β0 β1 β0 β1 β0 β1

(1− α)=0.90

Real 0.04 0.04 0.00 0.00 0.00 0.00
Real R 0.01 0.02 0.00 0.00 0.00 0.00
Real L 1.00 1.00 1.00 1.00 1.00 1.00

Average Length 1.06 0.54 0.32 0.17 0.10 0.05

(1− α)=0.95

Real 0.07 0.09 0.00 0.00 0.00 0.00
Real R 0.04 0.04 0.00 0.00 0.00 0.00
Real L 1.00 1.00 1.00 1.00 1.00 1.00

Average Length 1.26 0.64 0.38 0.20 0.12 0.06

(1− α)=0.99

Real 0.13 0.23 0.00 0.00 0.00 0.00
Real R 0.10 0.14 0.00 0.00 0.00 0.00
Real L 1.00 1.00 1.00 1.00 1.00 1.00

Average Length 1.67 0.85 0.50 0.26 0.16 0.08

Table 2.28: Inferential results for the SIMEX method in presence of normal
mixture measurement error with three different coverage levels. The real
coverage levels are greatly smaller than the nominal ones.

2.4.5 Methods comparison

As it could have been expected, the normal mixture is the measurement error

distribution for which correcting for the presence of the mismeasured variable

x∗ creates major issues. None of the analysed functional methods provides a

correction which is both efficient and stable at the same time. However, due

to the sophisticated measurement error distribution, a perfect correction was

not expected.

The Regression Calibration performs the best correction on average, nev-

ertheless as we have already pointed out the estimators in the simulation

present high variability, caused by the difference in quality of the gold stan-

dard considered for each algorithm (see §2.4.2). Moreover, it has not to be
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β̂0 ŝd(β̂0) β̂1 ŝd(β̂1)

n = 100

TRUE 6.9926 0.1000 1.9992 0.0506
NAIVE 6.4621 0.3710 0.5635 0.0968

RC 7.0597 0.3822 1.4205 0.2951
BCES 4.7869 0.8258 2.2066 0.5079

SIMEX 5.5858 0.3229 1.4327 0.1633

n = 1.000

TRUE 7.0006 0.0315 2.0013 0.0158
NAIVE 6.4152 0.1156 0.5742 0.0297

RC 6.9872 0.1127 2.0550 0.0876
BCES 4.9749 0.2486 2.0027 0.1410

SIMEX 5.5240 0.0976 1.4576 0.0502

n = 10.000

TRUE 7.0000 0.0100 2.0006 0.0050
NAIVE 6.4259 0.0365 0.5716 0.0094

RC 7.0024 0.0353 2.0100 0.0277
BCES 4.9871 0.0786 2.0030 0.0454

SIMEX 5.5409 0.0310 1.4522 0.0159

Table 2.29: Average values of the intercept, the slope and their standard
errors for the normal mixture measurement error model with three different
sample sizes. The RC method performs the best correction on average.

forgotten that the RC approach is feasible only when additional data are

available, which is not always the case in real data application.

The BCES method performs a fairly good correction for the slope β1,

anyway it always underestimates the value of β0. Amongst the functional

methods analysed, the BCES leads on average to the worst estimation for the

intercept β0. Nonetheless, the slope estimator β̂RC1 is almost equal in value to

the OLS estimator β̂1 that would be obtained if the covariate were measured

without error. Furthermore, no additional information is required for its

usage, meaning that if the regression is linear and we are primarily interested

in correctly estimating the parameter related to the variable measured with

error the BCES estimator is a good alternative, also in presence of not banal
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measurement error distribution.

The SIMEX method performs a significant correction for both β0 and β1,

even though none of the SIMEX estimators reach on average the parameters

true values. Likewise the BCES estimator, also the SIMEX algorithm does

not need additional data to be actuated, nevertheless a coherent measurement

error variance needs to be specified in order to obtain a effective correction.

The SIMEX approach is computationally intensive but it can be applied for

correcting for measurement error presence in almost every type of regression,

both linear and non-linear.

Table 2.29 summarizes the average mean and standard error obtained

for each estimator in the simulation with normal mixture measurement er-

ror, with the three different sample size considered. As previously stated in

Section 2.4.2, increasing the sample size produces a significant improvement

only in the RC technique, whilst the other models are minimally effected.

In Figure 2.10 the different approaches are graphically presented, for each

sample size considered. The graphs highlight the correction performed by

each estimator, it is clearly visible how every method succeeds in improving

the general fit of the naive analysis.
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2.5 Conclusions

In the present chapter a simple linear regression simulation study was per-

formed in order to understand whether and how the RC, BCES and SIMEX

methods effectively cope with different measurement error structures, and

how the inference on parameters is influenced by the sample size. As pre-

viously defined, functional methods for dealing with measurement error are

those methods in which no or few assumptions are made regarding the prob-

ability distribution of the involved quantities.

The aim of having simulated different types of measurement error was to

clarify whether the correction performed by the aforementioned methods is

robust, namely if the correction goodness remains the same in varying the

measurement error distribution. In particular, we have chosen to simulate

those measurement error structures that more likely are encountered in cop-

ing with astronomical data affected by uncertainties (Kelly [26], 2011). The

simulation results highlight how the RC and the BCES are robust in general,

even though the latter one presents some bias in estimating the intercept β0

when the measurement error structure is more complex. On the other hand

we discovered that the SIMEX approach does not present robustness, since

its efficiency is highly influenced by the chosen distribution for the artificially

simulated pseudo error {ub}Bb=1.

The aim of having considered different sample sizes was to understand

whether the number of observations influences the inference on parameters in

coping with measurement error. Of primarily interest was to find out whether

the naive analysis improves in increasing the sample size, which means to un-

derstand whether a measurement error correction is needed when the sample

size is extremely large. We have realized that the naive approach is not min-

imally affected by the size in the sample, this means that a measurement

error correction is always needed when one or more covariates are affected

by mis-measurement.

Having proved the necessity of methods for correction, the second aim

was to understand whether the functional methods are influenced by the

sample size. Once again, we assessed that the considered functional meth-
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ods are only marginally influenced by the size in the sample, only the RC

technique applied to the normal mixture measurement error turned out to

be consistently influenced by it. The aforementioned results highlight the

necessity of implementing measurement error algorithms that work also for

massive astronomical datasets, since the measurement error presence cannot

be omitted if we want to obtain correct estimates.

In the following chapter the functional methods applied in the simulation

study will be used for coping with a linear regression study from a real astro-

nomical dataset in which the covariate presents heteroscedastic measurement

error.





Chapter 3
Hubble Data

3.1 Introduction

This chapter presents the analysis of a real astronomical data set in which

one of the two variables considered is measured with error. The aim of the

analysis is to apply the functional methods presented in Section 1.4 to a

real measurement error regression problem. The dataset comes from the

Surface Brightness Fluctuation (SBF) Survey of Galaxy Distances (Tonry et

al [37], 2001). The SBF survey collects accurate measures of the distances

from the nearby galaxies to the Earth: the aim of the data collection is

to improve the knowledge of the local velocity field. The analysed dataset

contains 280 observations of galaxies scattered throughout the sky; the data

are available in digital form from http://www.ifa.hawaii.edu/ jt/SBF. Table

3.7 shows a preview of the entire dataset, presenting the variables of interest

for 6 different galaxies.

The equation considered for the analysis is the famous relationship be-

tween the recessional velocity of a galaxy and its distance from the observer,

known as Hubble’s law:

v = H0D. (3.1)

Hubble’s law is a formula of observational cosmology stating that the ve-

locities at which galaxies in the universe recede from each other is directly

proportional to the distances between them (Hubble [24], 1953). Hubble’s

81
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law is one of the pillars of the expanding space paradigm, since it mathemat-

ically represents the continuous expansion of the Universe. The motion of

astronomical objects due only to this expansion is known as the Hubble flow.

Even though attributed to Edwin Hubble, the law was first derived from the

general relativity equations by Georges Lemâıtre, who proposed the theory

of the expansion of the Universe and suggested an estimated value of the rate

of expansion, the so-called Hubble constant H0 (Lemâıtre [28], 1927). Many

attempts of estimating the Hubble constant have been undertaken since 1927,

the most recent estimation, dated June 6th 2014, provided a value for H0

equal to 6, 9× 10−5 ± 0, 7× 10−6 km/s/pc (Bennett et al [4], 2014).

The velocity and the distance that appear in Hubble’s law cannot be

directly measured; they can only be derived from some directly observable

quantities. Galaxy brightness provides information about the distance be-

tween the galaxy and the observer whilst the redshift provides a relation with

the radiation spectrum of the galaxy. In Physics, redshift occurs when light

or other electromagnetic radiation from an object is increased in wavelength,

or shifted to the red end of the spectrum. The linear relationship between

redshift and distance and the theoretical linear relation between recessional

velocity and redshift leads to the straightforward mathematical formula in

(3.1). For an extensive discussion on how these quantities are related, see

Harrison (Harrison [22], 1993).

The remainder of the chapter is organized as follow. In Section 3.2 the

statistical model used for the data analysis will be presented. Section 3.3 de-

scribes the naive analysis approach and underlines its limitations. Sections

3.4 and 3.5 present two functional methods for correcting for the measure-

ment error present in the covariate. In the last Section comparisons between

the methods are made and further research directions are presented.
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3.2 The Hubble data model

The SBF survey provides the recessional velocity for each galaxy derived

from its redshift together with its CMB 1 reference frame. The unit of mea-

surement for vCMB is km/s. The negative values of the recessional velocity

for some galaxies is due to the fact that those galaxies were moving closer to

the Earth when the data were collected. Galaxies which are getting closer to

each other are defined to have a blueshift, which is a decrease in wavelength

of electromagnetic waves, the opposite effect of the redshift.

On the other hand, the SBF survey does not provide a directly measure

of the distance D, which has to be derived from the distance modulus µ =

(m−M).

The distance modulus is a way of expressing distances used in Astronomy.

It is calculated as the difference between the apparent magnitude m and the

absolute magnitude M . The apparent magnitude of a celestial body is a

measure of its brightness as seen from the Earth, adjusted to the value it

would have without the presence of the atmosphere. On the other hand,

the absolute magnitude is the measure of the intrinsic brightness celestial

object. It is defined as the hypothetical apparent magnitude of an object

at a standard luminosity distance of exactly 10.0 parsecs from the observer,

assuming no astronomical extinction of starlight.

A mathematical formula relates the distance modulus µ to the distance

D of a celestial body from the observer:

log10D = 1 +
(m−M)

5
. (3.2)

An expression for computing the distance D given the distance modulus

(m−M) is obtained by inverting the relationship in Equation (3.2):

D = 10
(m−M)

5
+1. (3.3)

Thus, the statistical model applied to the data is a simple linear regression

1cosmic microwave background, which is the thermal radiation left over from the “Big
Bang”.
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model:

vCMB = β0 + β1D + ε (3.4)

where the parameter β1 represents the Hubble constant H0. Of primary

interest is the correct estimation of β1, in order to obtain an empirical confir-

mation of the theoretical value provided for H0. Nonetheless, as previously

stated, the involved quantities are not directly measured, therefore a mea-

surement error structure is intrinsically present in the model. Hence, a way

to correct for the measurement error presence must be provided in order to

improve the naive estimation, which will likely be biased.

In the SBF sample additional information regarding the measured quan-

tities is collected and can be exploited for enhancing the quality of the infer-

ence on the parameters. For the distance modulus (m −M), all sources of

error are summarized in a variable u, for which the standard deviation σu,i,

i = 1 . . . 280, is provided for each galaxy. Due to the presence of measurement

error, the observed covariate available for the analysis will then be:

D∗ = 10
(m−M)+u

5
+1 (3.5)

where D∗ is a mismeasured quantity of the true unknown variable D. As

it can be seen in Equation (3.5), the measurement error structure is non-

linear for the considered model, since the error component appears in the

exponential part of the formula. Furthermore, the measurement error u

possesses an heteroscedastic variance, since the standard deviation σi varies

for each observation.

No additional information for the radial velocity vCMB is provided by the

SBF survey, therefore the response variable in the model is assumed to be

correctly measured.

In the end, the linear regression model that will be analysed is the fol-

lowing:

vCMB = β0 + β110
(m−M)+u

5
+1 + ε (3.6)

where the covariate presents a non-linear measurement error structure with

heteroscedastic variance.
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In the following sections we first perform the naive analysis and subse-

quently apply the BCES and the SIMEX methods in order to correct for the

measurement error component.

3.3 Naive model

3.3.1 Preliminary analysis

In performing the naive analysis the additional information regarding the

heteroscedastic nature of the measurement error u is not needed, since the

covariate D∗ is considered measured without errors. Initially a descriptive

analysis of the involved quantities is performed and subsequently a linear

model is fitted to the data. In Table 3.1 the main descriptive results for the

response variable, namely the radial velocity vCMB, and for the covariate,

namely the distance D, are reported. The covariate D shows an high vari-

ability, mainly due to the presence of some galaxies which are really far away,

as it can be seen from the boxplot in Figure 3.1.

vCMB D

Minimum -590.00 636795.52
Maximum 4939.00 52966344.39

1st Quartile 1153.50 15848931.92
3rd Quartile 2064.75 26791683.25

Mean 1607.44 21658062.15
St Dev 819.26 8917130.39
Median 1499.50 20989398.84

MAD 626.3985 8197213
Skewness 0.66 0.40
Kurtosis 1.82 0.55

Table 3.1: Descriptive statistics for the vCMB and D variables

In Figure 3.2 the boxplot and the histogram of the response variable are

also reported, the graphs show a slightly positive skewness, meaning that

some galaxies present extreme values in terms of recessional velocity. The

dots at the very bottom of the boxplot represent some galaxies that were hav-
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Figure 3.1: Boxplot and histogram of D

Figure 3.2: Boxplot and histogram of vCMB
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ing a blueshift when the data were collected; in other words their recessional

velocity was negative because instead of receding they were approaching the

Earth. Nonetheless, as it is underlined by the graph, only few galaxies of the

total amount present this unexpected behaviour.

The scatter plot of radial velocity versus distance is reported in Figure 3.3:

a linear pattern is clearly visible. In order to calculate the size of the linear

relationship between vCMB and D, the correlation coefficient is calculated:

ρ =
Cov(vCMB, D)√
V ar(D)V ar(vCMB)

= 0.802. (3.7)

The ρ value highlights a strong linear relationship between the variables.

A test for evaluating the Pearson’s product moment correlation coefficient

provides a p-value smaller than 0.001, proving the significance of the index in

Equation (3.7) for whichever value of α. It is therefore reasonable to proceed

in fitting a simple linear model to the data.



88 CHAPTER 3. HUBBLE DATA

3.3.2 Naive analysis

A simple linear model is fitted to the data, leading to the results summarized

in Table 3.2.

Estimate Std. Error t value Pr(>t)

(Intercept) 10.9872 77.0186 0.14 0.8867
D 7.371e-05 3.289e-06 22.41 <0.001

Residual standard error: 489.9
R2: 0.6437

F-statistic: 502.2

Table 3.2: Summary output for the naive linear regression model. The anal-
ysis is performed without considering the presence of the measurement error
of the variable D.

As it is visible from the table, the estimator for β1 is significantly dif-

ferent from 0, with a p-value smaller than 0.01. Contrarily, the intercept is

significantly equal to 0, as it was expected since the theoretical relationship

v = H0D in Hubble’s law does not present an intercept. The coefficient of

determination R2 is equal to 0.6437, meaning that the fitted model explains

almost 65% of the total variability amount present in the data.

Of primary interest is to to understand whether the estimate of the Hub-

ble’s constant provided by our naive analysis (i.e. β̂NAIV E1 ) is statistically

equal to the most recent estimate theorized by Bennett et al (2014). In order

to perform the aforementioned test, a new linear model is fitted to the data

using the offset2 function:

vCMB = β0 +H0D + β1D + ε (3.8)

where H0 is the value of the Hubble’s constant provided by Bennett. The

summary results for the model in Equation (3.8) are presented in Table

3.3. The slope β̂1 of the model in Equation (3.8) is no more statistically

significant, meaning that the information provided by the H0D component

2An offset is a term to be added to a linear predictor with known coefficient 1 rather
than an estimated coefficient.
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Estimate Std. Error t value Pr(>t)

(Intercept) 10.9872 77.0186 0.14 0.8867
D 4.712e-06 3.289e-06 1.43 0.1531

Residual standard error: 489.9
R2: 0.6437

F-statistic: 502.2

Table 3.3: Summary output for the naive linear regression model with offset.
Neither the intercept nor the slope are statistically different from 0.

is already sufficient to explain part of the data variability, and then there is

no need to insert an extra parameter β1 in the model. The conclusion is that

the H0 value provided by Bennett and the estimate obtained with our model

are statistically equal, when we do not take into account the measurement

error present in the covariate D.

The analysis of the residuals from the fitted model is reported in Figure

3.4. The first graph represents the scatter plot of the residuals versus the

fitted values: the residuals seem to have a good behaviour, with mean suffi-

ciently equal to 0 and homogeneous variability. Three outliers are present in

the dataset, as it is clearly visible in all 4 graphs, however this is not a serious

issue since none of them is an influential point, being their leverage values less

than 0.5, as it is reported in the forth graph. The graph in the bottom left rep-

resents a plot of approximate Cook statistics against leverage/(1-leverage).

The SBF dataset presents some galaxies which are leverage points, meaning

observations that have an extreme or outlying value in the independent vari-

able D, as we have already pointed out in Section 3.3.1. The Q-Q plot in the

top right graph does not present an ideal situation: realistically the residuals

are not normally distributed.

If no information regarding the involved variables and their measurement

error were available, the naive analysis developed so far could have been con-

sidered fairly acceptable. Nonetheless, it has been proved in Section 1.3.1.1

that when one of the covariates of a linear regression model is measured

with error, the OLS estimator is inconsistent and provides biased inference

on the parameters. Therefore, the obtained results must be corrected in
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Figure 3.4: Residual plots for the naive model.

order to take into account the presence of a non-linear measurement error

with heteroscedastic variance in the covariate D. In the following sections

two functional techniques, namely BCES and SIMEX, will be applied to the

original model.

3.4 BCES

As already presented in Section 1.4.2, the BCES approach is a widely applied

technique belonging to the method of moments family; its effectiveness in

coping with measurement error in linear regression has been proved in the

simulation study presented in Chapter 3.
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The SBF survey dataset presents an error structure which is slightly dif-

ferent compared to the classical measurement error x∗i = xi+ui considered in

the simulation study. In particular, the measurement error u is heteroscedas-

tic and non linear, as we underlined in Section 3.2. Therefore, some modi-

fications in the BCES algorithm are necessary in order to take into account

the more complex structure of the considered model. Mathematically, the

mis-measured covariate D∗i is represented by the following equation:

D∗i = f(µi + ui) (3.9)

where f(·) is the function in Equation (3.5) and µi is the distance modulus

(mi−Mi). Considering the relationship in (3.9) it is not possible to provide a

BCES estimation, since we cannot separate the variability due to the intrinsic

scatter from the one due to measurement error and then subsequently correct

for the latter one. Therefore, a good approximation is needed in order to

separate the two variability sources. Using a Taylor series expansion, it is

straightforward to prove that

f(µi + ui)
.
= f(µi) + f ′(µi)ui, (3.10)

where the second addend f ′(µi)ui represents the new measurement error com-

ponent, u′i = f ′(µi)ui. Using the linear approximation obtained through the

Taylor series expansion in Equation (3.10), we developed a new BCES proce-

dure for de-biasing the OLS estimator from the measurement error presence,

which means to calculate the BCES estimates when the measurement er-

ror is non-linear. The expression for β̂BCES1 and β̂BCES0 are provided by the

following formulas:

β̂BCES1 =

∑280
i=1(D∗i − D̄∗)(vCMB,i − v̄CMB)∑280

i=1(D∗i − D̄∗)2 −
∑280

i=1 f
′(µ∗i )

2
∑280

i=1(ui)2
(3.11)

β̂BCES0 = v̄CMB − β̂BCES1 D̄∗. (3.12)

Appendix B reports the technical procedure for obtaining the expression in

Equation (3.11). Furthermore, we perform a simulation study in order to
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empirically prove the effectiveness in this particular case of our modification

of the BCES technique. The results of the simulation study are reported in

Chapter 4.

The summary of the BCES model is reported in Table 3.4. Contrarily to

Estimate Std. Error z value Pr(>z)

(Intercept) -1.941657e+02 9.628306e+01 -2.016614 0.04373584
D 8.318404e-05 4.591391e-06 18.117392 <0.001

Table 3.4: Summary output for the non-linear BCES model with het-
eroscedastic measurement error.

the naive model, β̂BCES0 is significantly different from 0 at a 0.05 significance

level, although its equality to 0 being accepted with α = 0.01. β̂BCES1 is

highly significant, its equality to 0 would be rejected for whichever value of

α. Hubble’s constant (i.e. β1) possesses a higher value when it is estimated

with the BCES method than with the naive approach. This is likely due

to the attenuation-to-the-null effect: the measurement error present in the

covariate attenuates the slope estimate in linear models.

A test was performed in order to understand whether the estimate of H0

provided by the BCES method (i.e. β̂BCES1 ) is equal to the most recent value

of Hubble’s constant provided by Bennett. The p-value obtained for the

described test is equal to 0.002, meaning that the null hypothesis of equality

of the two values is rejected for whichever value of α. The BCES method

provides a value for Hubble’s constant which is statistically different from

the very last estimate of it available in literature. This result is different

compared to the one obtained considering the naive estimation for β1 (see

§3.3.2)

It is worth underlying that the entire procedure just described is approx-

imate, meaning that the obtained BCES estimator will roughly possess the

same properties of the one illustrated in Akritas & Bershady (1996).

Another last remark is about the independence assumption between µi

and its measurement error ui. For each galaxy the SBF survey provides only

the measurement error standard deviation σu,i, with which it is not possible

to compute the covariance between µi and ui. Thus, the two quantities have
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been considered uncorrelated, although there is no theoretical guarantee that

supports this assumption.

3.5 SIMEX

As underlined several times, the Simulation-Extrapolation technique is an

highly flexible functional method that can be applied in contexts with differ-

ent measurement error structures, with no or few modifications in the original

algorithm. Contrarily to what it has been done in Section 3.4 with the BCES

estimator, fitting a SIMEX model to the SBF dataset requires neither initial

assumptions nor approximations in the original framework.

In the simulation step, additional heteroscedastic measurement errors are

generated and added directly to the galaxy distance modulus, using the for-

mula

wb,i(λ) = 10(µi+
√
λUb,i)/5+1, i = 1, . . . , 280 b = 1, . . . , 1000. (3.13)

The pseudo errors {Ub,i}280
i=1 are mutually independent normal random vari-

ables with mean 0 and standard deviation equal to σu,i, provided by the SBF

survey as an index of all sources of error for the distance modulus (mi−Mi).

The remeasurement procedure in Equation (3.13) belongs to the SIMEX

algorithms with heteroscedastic errors and known error variances; the ex-

trapolation step for obtaining the SIMEX estimations of β0 and β1 is done

in exactly the same way as described in Section 1.4.4. The summary results

for the SIMEX model are shown in Table 3.5. Likewise the BCES model

Estimate Std. Error z value Pr(>z)

(Intercept) -2.264771e+02 4.553398e+01 -4.973806 <0.001
D 8.542502e-05 2.299960e-06 18.693828 <0.001

Table 3.5: Summary output for the non-linear BCES model with het-
eroscedastic measurement error.

presented in the previous section, also the SIMEX algorithm reports an in-

tercept which is significantly different from 0, contrarily to what is stated
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by Hubble’s law. With the SIMEX approach the obtained p-value for β0 is

even lower than 0.01, leading to reject the null hypothesis for any nominal

level of α. The incongruence of non-equality to 0 of the intercept is not a

serious issue in terms of Hubble’s law: the value of β̂SIMEX
0 is really small

and it does not minimally affect the relation between the radial velocity and

the distance. Furthermore, our primary interest is to provide an estimation

of Hubble’s constant (i.e. β1) in which the measurement error present in the

data is correctly modeled.

Figure 3.5: Simex method correction for Hubble’s costant. The estimate pro-
vided by the SIMEX algorithm is statistically bigger than the one provided
by the naive analysis.

The slope estimate is highly significant, β̂SIMEX
1 presents an even higher

value than the β1 estimation provided by the BCES method. A cubic extrap-

olant function has been fitted to the artificially remeasured values in order

to provide the SIMEX estimator for H0.
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The astronomical interpretation is that Hubble’s constant is underesti-

mated by the naive model since the latter one does not take into account the

attenuation-to-the-null-effect due to the measurement error component. Fig-

ure 3.5 reports the correction performed by the SIMEX method to Hubble’s

constant estimation.

Likewise what we have done for the BCES estimate of Hubble’s constant,

a test was performed for testing the equality between β̂SIMEX
1 and the most

recent value of H0 found in literature. The obtained p-value for this test is

equal to 7.8× 10−10: the statistical equality between the involved quantities

is rejected for whichever value of α. The conclusion is that the value of H0

provided by the SIMEX method is statistically smaller than the value of H0

provided by Bennett.

Astronomical possible reasons and implications regard this result are dis-

cussed in the following section.

3.6 Comparison and discussion

In the present chapter a real astronomical dataset was analysed. In partic-

ular, from each galaxy present in the SBF survey the recessional velocity

and the distance modulus were used as variables in a simple linear regres-

sion model that represents the empirical formulation of well-known Hubble’s

law v = H0D. The particularity of the aforementioned model is that the

covariate, namely the distance D, is affected by measurement error; for each

observation its standard deviation is provided. As proved in Section 1.3.1.1

a mis-measured covariate in a linear regression model leads to a wrong in-

ference for the parameters and particularly an underestimation of the real

slope value β1. Therefore, two of the three functional methods described in

Chapter 1 were utilized in order to correct for the presence of measurement

error. It was not possible to provide a Regression Calibration estimation

since no additional information was available.

Figure 3.6 graphically reports the final result of the functional methods

application. The SIMEX and the BCES lines are almost overlapping, mean-

ing that the estimation provided by the two techniques is rather similar. On
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Figure 3.6: Measurement error correction for the Hubble data model, SBF
survey. The SIMEX and the BCES line present a similar pattern, the naive
model instead presents a smaller value for the slope.

the other hand, the slope estimate provided by the naive model leads to a line

that is less inclined compared to the two ones which consider measurement

error.

Table 3.6 reports confidence intervals for Hubble’s constant (i.e., β1) for

the three considered methods with different coverage levels. Likewise the

point estimate β̂BCES1 and β̂SIMEX
1 , also the confidence intervals provided by

the two approaches are fairly similar. Nevertheless, since the BCES possesses

higher standard deviation, the associated intervals are larger if compared to

the SIMEX one. As it was expected, the values within the naive confidence

intervals are significantly smaller than the ones inside the confidence intervals

in which the measurement error has been corrected.

We performed two tests in order to prove the statistical equality between
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NAIVE Lower Limit Upper limit

(1− α) = 0.90 6.82834e-05 7.913996e-05
(1− α) = 0.95 6.723685e-05 8.018651e-05
(1− α) = 0.99 6.518081e-05 8.224255e-05

BCES Lower Limit Upper limit

(1− α) = 0.90 7.566074e-05 9.025995e-05
(1− α) = 0.95 7.426233e-05 9.165837e-05
(1− α) = 0.99 7.152921e-05 9.439148e-05

SIMEX Lower Limit Upper limit

(1− α) = 0.90 8.097646e-05 9.115925e-05
(1− α) = 0.95 8.000108e-05 9.213463e-05
(1− α) = 0.99 7.809477e-05 9.404094e-05

Table 3.6: Confidence intervals for Hubble’s constant H0, considering the
naive, the BCES and the SIMEX analysis.

β̂BCES1 and β̂SIMEX
1 . Firstly we test H0 : β1 = β̂SIMEX

1 using the estimates

provided by the BCES model. Consequently, we test H0 : β1 = β̂BCES1

considering the estimates provided by the SIMEX model. In both cases the

null hypothesis is accepted for whichever value of α, these results lead to the

conclusion of β̂BCES1 being statistically equal to β̂SIMEX
1 .

The performed data analysis has also an astronomical interpretation re-

garding the estimation of Hubble’s constant value over the years. From a sta-

tistical point of view it would be more correct to refer to Hubble’s constant as

the Hubble’s parameter, since it measures the expansion rate of the Universe

that changes with time. If the Universe is decelerating, Hubble’s constant is

decreasing. If Hubble’s constant is increasing, the Universe is accelerating.

As already underlined in the introduction, the very last estimate of Hubble’s

parameter was done in 2014, whilst the SBF Survey was conducted in 2001.

Comparing the estimates obtained by our analysis (H0 = 8.296×10−5±8.7×
10−6 with the BCES and H0 = 8.542× 10−5 ± 6.1× 10−6 with the SIMEX)

with the estimation provided by Bennett et al (H0 = 6, 9×10−5±0, 7×10−6)

it is possible to note a diminution in the value of Hubble’s constant. There-

fore, the rational conclusion would be that the Universe is decelerating, but
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there is an intermediate regime in which the Universe is accelerating and

Hubble’s constant is decreasing; that is what the astronomers suppose is

happening right now (Carroll et all [11], 1992). Since Hubble’s law relates

recessional velocity of a galaxy to its distance from the Earth, if increasing

rate of the distance is higher than the decreasing rate of Hubble’s constant

then the recessional velocity can still augment.

In conclusion, it is worth highlighting how the obtained results may lead

to further research related to this area. Since its first measurement attempt

in 1927, Hubble’s constant estimation seems to show a decreasing trend.

Is this behaviour going to last? What would the consequences be if the

Universe started to decelerate? There are still many unresolved issues related

to this field. Fortunately the continuous technological improvement permits

to have available increasingly large and complex amount of data, allowing

the observational astronomers to constantly monitor the celestial bodies that

surround us. Furthermore, the analysis performed in this chapter underlines

the compelling necessity of considering the presence of possibly mismeasured

variables.

The knowledge of advanced statistical methods for coping with massive

datasets will therefore come more and more a skill that will have potential

application in Astronomy and Astrophysics.
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Chapter 4
BCES Method Simulation Study

4.1 Introduction

In the previous chapter we analysed a real astronomical dataset in which

one variable is measured with error. Specifically, the covariate in the linear

regression model of Equation 3.6 presents a non-linear measurement error

with heteroscedastic variance. We applied two functional methods in order

to correct for it, namely BCES and SIMEX. In particular, we developed

and implemented a new version of the BCES method, since the original

technique is applicable only to classical measurement error. More precisely,

to separate the variability due to the intrinsic scatter from the one due to

the measurement error we linearised the function in Equation 3.5 through

a first order Taylor series expansion. The technical details we employed

for obtaining our modified version of the BCES estimator are described in

Appendix B.

In the present chapter we consider the same model structure we encoun-

tered in analysing the data from the SBF-survey and we assess via simulation

the effectiveness of our BCES method in estimating Hubble’s constant. Con-

sidering R = 10.000 replications, we focus on the estimation of β1 comparing

the results obtained by the true and the naive model with the estimations

provided by our non-linear BCES method.
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4.2 The simulated model

Since we want to assess the effectiveness of our BCES method in correctly

estimating Hubble’s constant, the theoretical model used for the simulation

is the one considered in the previous chapter:

y = β0 + β110
x+u
5

+1 + ε (4.1)

where β0 = 0, β1 = 2 and ε ∼ N(0, 1010). x is randomly generated by a nor-

mal distribution with mean equal to 30 and variance equal to 1.69. Both ε and

x are coherently generated in order to maintain the same order of magnitude

of the quantities involved in the Hubble data model. The measurement error

u follows a normal distribution with 0 mean and heteroscedastic variance σi,

which was generated by a chi-squared distribution with mean equal to 0.5.

The sample size selected for the simulation is n = 300. The real value of

the slope β1 = 2 in the simulation does not reflect the order of magnitude of

Hubble’s constant; this is chosen on purpose in order to test the correctness

of our method in estimating the slope of an arbitrary model whose structure

is equal to the one in Equation (4.1).

Likewise Chapter 2, two summary tables are reported: the first table

shows the descriptive results for each method whilst the second illustrates

the main inferential results extracted from the simulation.

4.3 Simulation results

Of primary interest in the previous chapter was the correct estimation of

Hubble’s constant (i.e. β1) from a model in which the covariate was measured

with error. In this section we report the results of the simulation study

where we use our modification of the BCES technique for estimating β1.

The effectiveness of our method is assessed comparing the estimates of β1

with the ones obtained from the true and the naive model. The true model

is obtained calculating an OLS estimator using the true variable f(x) as a

covariate, whilst the naive model performs an OLS estimation considering
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the mismeasured variable f(x+ u).

β̂1 TRUE NAIVE BCES

Mean 2.00 1.23 1.70
Median 2.00 1.23 1.79

Bias <0.01 0.77 0.30
St. Dev <0.01 0.33 0.49

MSE <0.01 0.84 0.57
IQR <0.01 0.41 0.61

Table 4.1: Summary measures of β1 for the true, the naive and the BCES
model. Our modifications of the BCES method succeeds in improving on the
naive analysis.

Table 4.1 reports the summary measures obtained for β1 fitting the true,

the naive and our modified BCES model to the simulated data. Using the

true model as a benchmark, the results point out that our modified version

of the BCES technique succeeds in improving on the naive analysis. Both

the mean and the median are closer to the real value β1 = 2 than the naive

model, meaning that the attenuation-to-the-null effect is partially corrected,

even though it has not completely disappeared. Nonetheless a drawback of

the BCES technique highlighted by the simulations is its variability: both

the standard deviation and the interquartile range of β̂BCES1 are considerably

high.

Another aspect of interest is the approximation to the finite-sample dis-

tribution of our β̂BCES1 estimator. In order to assess the validity of the

central limit theorem in approximating the unknown distribution of β̂BCES1

by a normal one, three graphs obtained from the simulation study are re-

ported in Figure 4.1: the normal Q-Q plot, the histogram and the boxplot

of β̂BCES1 . In particular, the normal Q-Q plot in graph (a) highlights that

the unknown β̂BCES1 distribution can be quite acceptably approximated by

a normal one, even though two problems are clearly visible: the empirical

distribution seems to be slightly asymmetric and, most of all, it is translated
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to the left due to the attenuation-to-the-null effect caused by the measure-

ment error. For the left-half of the distribution, the sample quantiles are

always smaller than the theoretical ones. The same issue is visible also in

the histogram of the standardized β̂BCES1 values in graph (b). The boxplot in

graph (c) underlines the presence of extreme values, — out of the boundaries

of Q1 and Q3 — mainly in the left tail. All in all, a normal approximation

can be considered sufficient in order to provide the required quantiles for cal-

culating inference results, such as confidence intervals and statistical tests.

β̂1 TRUE NAIVE BCES

1− α = 0.90

Real 0.90 0.00 0.91
Real R 0.90 0.00 0.92
Real L 0.90 1.00 0.95

Average Length 0.02 0.17 2.21

1− α = 0.95

Real 0.95 0.00 0.92
Real R 0.95 0.00 0.94
Real L 0.95 1.00 0.96

Average Length 0.03 0.20 2.71

1− α = 0.99

Real 0.99 0.00 0.96
Real R 0.99 0.00 0.96
Real L 0.99 1.00 0.99

Average Length 0.04 0.26 3.57

Table 4.2: Inferential results for β1 for the true, the naive and the BCES
model with three different coverage levels. The real coverage levels of our
BCES technique reflects the nominal ones, nevertheless the average length
of the confidence intervals is large.

The inferential results of β1 for the true, the naive and the BCES model

are reported in Table 4.2. Contrarily to the naive model, in which none of

the simulated confidence intervals contains the real value β1 = 2, our BCES

method provides real coverage levels that reflect the nominal ones. The
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results in terms of inference on the parameter are fairly satisfactory for all

three coverage levels considered. Nonetheless, as already underlined by the

summary measures in Table 4.1 a problem that afflicts our BCES technique

is the variability: the average length of the confidence intervals is large.

4.4 Conclusions

In the present chapter a simulation study was performed with the aim of

empirically assessing the applicability of our modified version of the BCES

method to a model that presents non-linear measurement error. In particular,

our aim was to investigate the effectiveness of our approach in coping with the

regression model encountered in the previous chapter while trying to estimate

Hubble’s constant. Therefore, the model chosen for the simulation is exactly

the same we dealt with while analysing the dataset from the SBF-survey.

The results of the simulation underline the effective improvement made by

our technique on the naive analysis. The non-linear BCES method weakens

the attenuation-to-the-null effect and provides estimates that are closer to

the real value of the slope β1. We also confirmed the suitability of using a

normal model for approximating the unknown distribution of β̂BCES1 .

Nonetheless, there remain some issues that require further investigation.

The provided estimates present high variability, which lowers the precision of

the point estimates and leads to confidence intervals whose average length is

large. Furthermore, we investigated the validity of our modified method only

in the specific case we were interested in. Further research is therefore needed

in order either to prove its general applicability or to provide a widely-suitable

modification of the original BCES version.



Discussion and final remarks

The thesis focuses on functional methods for correction of measurement error

in Astronomy. In particular, we evaluated the applicability and the behaviour

of these correction techniques when different measurement error structures

and sample sizes are present.

Firstly, we implemented three functional methods for correction, namely

BCES, RC and SIMEX, in the R programming language. Then, a simulation

study was performed for a simple linear regression model, considering three

different distributions for the measurement error: normal, skew-normal and

normal mixture. We chose these particular structures in order to address

the outstanding issues underlined by Brandon C. Kelly in his paper “Mea-

surement Error Models in Astronomy” (2011). Specifically, he argues that

the uncertainties in astronomical quantities are “large, skewed, or exhibit

multiple modes”; our simulation analysis was driven by this statement.

Each simulation was repeated considering three different sample sizes.

The results highlight that the correction techniques generally succeed in im-

proving on the naive analysis. However, the functional methods we examined

behave differently when assuming different measurement error models. The

BCES method works extremely well when the measurement error model is

simple and symmetric, nonetheless it provides misleading inferences when the

measurement error distribution is more complex. The RC technique leads to

satisfactory outcomes on average, although the simulation results are charac-

terized by high variability and additional data must be provided. The SIMEX
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method always succeeded in adequately correcting for the attenuation-to-the-

null effect; the computational burden is however large and the probability

distribution for the artificially added errors must be correctly specified for its

implementation. An interesting result is that none of the functional methods

is greatly affected by the sample size considered. We noticed a very slight

improvement in the correction techniques when the sample size increases,

and almost no improvement in the naive model. Therefore, when a vari-

able is measured with error, it is advisable to perform a measurement error

correction, no matter the sample size involved.

Secondly, we analysed a real astronomical dataset in which the covariate

is measured with error. The measurement error presents a non-linear struc-

ture and heteroscedastic variance; thus, we developed a new procedure for

obtaining the BCES estimation of the parameters for this particular case. In

particular, analysing the data collected in 2001 by the SBF-survey, we pro-

vided an estimate of Hubble’s constant H0 and we compared it with the last

estimation available in literature, dated 2014. Our analysis proved that the

two values are statistically different, which seems to indicate that Hubble’s

constant has decreased during the past decade. This result needs further

investigation, one possible research direction is to monitor the trend of Hub-

ble’s constant whilst considering a measurement error model also for the

radial velocity.

Thirdly, we empirically proved the effectiveness of our modified version of

the BCES approach through a simulation study. The results underlined the

actual validity of our method in coping with Hubble’s data model. Neverthe-

less the simulation study was specifically tailored for our necessity, therefore

we cannot assure its validity in treating a general case.

Finally, our study referred to situations in which only functional meth-

ods for correction have been applied. Additional research may consider the

application of structural methods for correction in both the simulation study

and in the analysis of the data provided by the SBF-survey. Alternatively,

further investigation may regard the application of the analysed functional

methods to a model in which more than one covariate is measured with er-

ror; more complex error structures should then be taken into account, as e.g.
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correlated errors.

With the present work a statistical issue, i.e., the correct measurement

of a quantity, has been presented and applied to a specific scientific field.

The lesson learned is the compelling necessity of providing realistic statisti-

cal models in which the measurement error structure is correctly modeled.

When the involved quantities cannot be directly measured, like in Astron-

omy, accounting for the measurement error present in the variables means

providing correct inference and therefore real astronomical knowledge. A

field in which mankind still has much to discover.





Appendix A
Skew-Normal Distribution

A.1 Introduction

In probability theory and statistics, the skew normal distribution is a con-

tinuous probability distribution that generalizes the normal distribution to

allow for skewness. Being a manipulation of the most famous and widely

used statistical distribution, it is not clear when its analytical form appeared

for the first time. A paper by Birnbaum dated 1950 presents a mathematical

formula which is equal to the modern SN (Skew-Normal) definition (Birn-

baum [5], 1950). Nevertheless the first idea of extending the normal class of

distributions in a constructive formulation via a population selection mech-

anism can be found in “Sulla rappresentazione analitica delle curve abnor-

mali” (De Helguero [13], 1908). This appendix provides a brief introduction

of the formulation and usage of the Skew-Normal distribution. For a detailed

report regarding this topic see“The Skew-normal Distribution and Related

Multivariate Families” (Azzalini [2], 2005)
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A.2 Analytical construction

Consider a continuous random variable X having probability density function

of the following form

f(x) = 2φ(x)Φ(αx), (A.1)

where φ(x) denotes the standard Normal (Gaussian) density function and

Φ(αx) its distribution function evaluated at point αx. The component α

is called the shape parameter because it regulates the shape of the density

function. As it is defined, the density f(x) enjoys various interesting formal

properties:

• f(x) is equal to the Gaussian density function when the shape param-

eter α = 0

• augmenting the absolute value of the shape parameter α the skewness

of the distribution increases

• when α → ∞, the density converges to the commonly named half-

normal (or folded normal) density function

• the sign of α indicates the skew direction of the distribution: left-skew

when α > 0 and right-skew when α < 0 (see Figure A.1).

In order to obtain a representation of the Skew-Normal distribution loca-

tion parameter ξ and scale parameter ω have to be added to the defined above

random variable X. Therefore a linear transformation of X is considered:

Y = ξ + ωX (A.2)

Y is defined as a random variable Skew-Normally distributed with location

parameter ξ, scale parameter ω and shape parameter α. The probability

distribution function of Y is given by

fY (y|ξ, ω2, α) =
2√

ω2 + α2
φ(

y − ξ√
ω2 + α2

)Φ(
α

ω

y − ξ√
ω2 + α2

) (A.3)
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A concise notation for this distribution is the following:

Y ∼ SN(ξ, ω2, α) (A.4)

It is worth noticing that when α = 0, a normal distribution N ∼ (ξ, ω2)

is obtained. The following part presents some characteristic values of the

random variable Y . Firstly, define the subsequent quantities:

δ = α/
√

1 + α2

E(X) =
√

2πδ

V ar(X) = 1− 2δ2/π

Having defined these quantities it is possible to retrieve the expected value,

variance, skewness and kurtosis of a generic Skew-Normal random variable

Y in the following form:

E(Y ) = ξ + ω
√

2/πδ (A.5)

V ar(Y ) = ω2(1− 2δ2/π) (A.6)

γ1 =
4− π

2

E(X)3

V ar(X)3/2
(A.7)

γ2 = (2π − 3)
E(X)4

V ar(X)2
(A.8)

The distribution presented so far is used to fit data which are “normal-like”

shaped but show a lack of symmetry. The Skew-Normal distribution family

is a generalization of the Normal distribution family: it possesses the same

relationship with the χ2 distribution, that is, being X a generic SN(0, 1, α),

X2 ∼ χ2
1,

no matter the value of the shape parameter α. A multivariate generalization

of the Skew-Normal distribution also exists, see Azzalini [2] 2005 for further

details.
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(a) SN density with ξ = 0, ω = 1, α = 5

(b) SN density with ξ = 0, ω = 1, α = −5

Figure A.1: Skew-Normal distributions with two different values of the pa-
rameter α



Appendix B
Technical details for the BCES method

In this appendix we present the newly developed methodological results

achieved in the application of the BCES algorithm to a non-linear transfor-

mation of the covariate measured with error. The initial situation is a simple

linear regression model with non-linear measurement error in the covariate,

as encountered in SBF-survey of Chapter 3:

yi = β0 + β1f(x∗i ) + εi = β0 + β1f(xi + ui) + εi, (B.1)

in which the f(·) function is assumed known and non-linear. Being a method

of moments estimator, the BCES approach is based on the fact that the

parameters of Equation (B.1) are related to the moments of the bivariate

distribution of (Y, f(X)) through:

β1 =
COV (Y, f(X))

V (f(X))
(B.2)

β0 = E(Y )− β1E(f(X)). (B.3)

Nonetheless, we do not observe realizations from the random variable f(X);

instead we observe realizations from the proxy random variable f(X∗). The

BCES methods replaces the expected moments of Equations (B.2) and (B.3)

with moments estimators obtained from the observed data (y, f(x∗)). Assum-

ing the independence between the measurement error U and the covariate
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X, three approximated results are necessary in order to construct the BCES

estimator for a non-linear measurement error in the covariate:

1. E(f(X))
.
= E(f(X∗))

2. V (f(X))
.
= V (f(X∗))− E(f ′(X∗)2)E(U2)

3. COV (Y, f(X∗))
.
= COV (Y, f(X)).

Proof of relation 1:

E(f(X∗)) = E(f(X + U))
.
= E(f(X) + f ′(X)U))

= E(E(f(X) + f ′(X)U |X))

= E(f(X)) + f ′(X)E(U |X))

= E(f(X)).

Proof of relation 2:

E(f(X∗)2)
.
= E(E(f(X + U)2|X))

= E(E(f(X)2 + f ′(X)2U2 + 2f(X)′f(X)U |X))

= E(f 2(X)) + E(f ′2(X)E(U2|X))

= E(f 2(X)) + E(f ′2(X))E(U2)

from which it follows that E(f 2(X)) = E(f(X∗)2) − E(f ′2(X))E(U2) and

therefore, being V (Z) = E(Z2)− E(Z)2 for any random variable Z, we ob-

tain the proof of relation 2.

Proof of relation 3:

COV (Y, f(X∗)) = E(Y f(X + U))− E(Y )E(f(X + U))
.
= E(Y (f(X) + f ′(X)U))− E(Y )E(f(X) + f ′(X)U)

= E(Y (f(X))− E(Y )E(f(X))

= COV (Y, f(X)).
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As we underlined at the beginning of Section 3.4, the obtained results hold

approximately, since we have to perform a linear approximation in order

to separate the variability due to the intrinsic scatter from the one due to

measurement error. Furthermore, The correctness of using a linear approxi-

mation for the f(X) function in the specific case of Hubble’s data is validated

through the simulation study performed in Chapter 4.

Using the just proved equations we can express the regression parameters

β0 and β1 in terms of the expected moments of the observed data:

β1 =
COV (Y, f(X∗))

V (f(X∗))− E(f ′(X∗)2)E(U2)
(B.4)

β0 = E(Y )− β1E(f(X∗)). (B.5)

Thus, considering the sample moments of the observed data, we suggest the

following extension for the BCES estimator in case of non-linear measurement

error:

β̂BCES1 =

∑n
i=1(f(x∗i )− f(x∗))(yi − y)∑n

i=1(f(xi)∗ − f(x)∗)2 −
∑n

i=1 f
′(x∗i )

2
∑n

i=1(ui)2
(B.6)

β̂BCES0 = y − β̂BCES1 f(X∗). (B.7)

Likewise the original BCES approach, the variances of the estimators in

Equations (B.6) and (B.7) are calculated by first defining the quantities

ξ1 =
(f(X∗)− E(f(X∗)))(Y − β1f(X∗)− β0) + β1f

′(X)2U2

V (f(X)∗)− E(f ′(X)2)E(U2)
(B.8)

ξ2 = Y − β1f(X)∗ − E(f(X)∗)ξ1 (B.9)

and then computing

σ̂2
β1

=
1

n2

n∑
i=1

(ξ̂1i − ¯̂
ξ1)2 (B.10)

σ̂2
β0

=
1

n2

n∑
i=1

(ξ̂2i − ¯̂
ξ2)2. (B.11)
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¯̂
ξ1 and

¯̂
ξ2 denote the arithmetic average of ξ̂1 and ξ̂2 obtained by replacing

the unknown moments of Equations (B.8) and (B.9) by the sample moments

obtained from the data.

As our new method was proposed and validated only with respect to the

specific model analysed in Chapter 3. More applications considering different

types of non-linear functions f(X) must be inspected in order to assess its

general applicability and effectiveness.



Appendix C
R Codes

C.1 Regression-Calibration

n=100

x <- rnorm(n,0,2)

u <- rnorm(n,0,2)

w <- x+u

y <-x +rnorm(n,0,1)

data<-data.frame(y,x,w)

true.model <- lm(y~x,data=data) # True model

naive.model <- lm(y~w, x=TRUE, data=data) # Naive model

plot(x,y)

plot(w,y)

# Estimate x.star via internal validation data

val.data<-data[sample(nrow(data), 0.1*nrow(data)),]

val.model<-lm(x~w,data=val.data)

x.star<-val.model$coefficient[1]+val.model$coefficient[2]*data$w

reg.calibration<-lm(y~x.star,x=TRUE)

plot(x,y)

abline(true.model,col="darkblue")

abline(reg.calibration,col ="red")

abline(naive.model,col = "green")

legend(min(x),max(y),legend=c("True Model","Regression Calibration","Naive Model")

, col = c("darkblue","red","green"),lty=1)

# Adjust the resulting standard erros to account for the estimation of x.star,

# using bootstrap method

library(boot)

formula<-y~x.star

boot.reg.cal <- function(formula, databoot, indices){

data <- databoot[indices,] # select obs. in bootstrap sample

fit<-lm(formula,x=TRUE, data=data)
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coefficients(fit) # return coefficient vector

}

sd.boot <- boot(data=data, statistic=boot.reg.cal, R=2000, formula=y~x.star )

sd.boot

plot(sd.boot)

# Adjust the resulting standard erros to account for the estimation of x.star,

# using jackknife method

library(bootstrap)

DF<-data.frame(y,x.star)

model.lm <- formula(y ~ x.star)

theta <- function(x, xdata, coefficient){

coef(lm(model.lm, data=xdata[x,]))[coefficient]

}

jackknife.apply <- function(x, xdata, coefs){

sapply(coefs, function(coefficient)

jackknife(x, theta, xdata=xdata, coefficient=coefficient), simplify=F)

}

results <- jackknife.apply(1:length(x.star), DF, c("(Intercept)", "x.star"))

results

C.2 BCES

## Notation:

## x1 true covariate

## y1 measured covariate

## x2 true response

## y2 measured response

## variance of e1 and e2 and their covariance are assumed known

n=100

x1 <- rnorm(n,0,2)

x2 <- 7+ 2*x1+rnorm(n,0,1)

e1<-rnorm(n,0,2)

e2<-rnorm(n,0,2)

V<-matrix(c(var(e1)*(length(e1)-1)/length(e1),cov(e1,e2),

cov(e2,e1),var(e2)*(length(e2)-1)/length(e2)),2,2)

true.model <- lm(x2~x1) # True model

y1 <- x1+e1

y2 <- x2+e2

plot(y1,y2)

naive.model <- lm(y2~y1, x=TRUE) # Naive model

# BCES estimator

beta1BCES=(cov(y1,y2)-V[1,2])/(var(y1)*(length(y1)-1)/length(y1)-V[1,1])

beta0BCES=mean(y2)-beta1BCES*mean(y1)

zeta1=((y1-mean(y1))*(y2-beta1BCES*y1-beta0BCES)+beta1BCES*V[1,1]-V[1,2])/

(var(y1)*(length(y1)-1)/length(y1)-V[1,1])

zeta2=y2-beta1BCES*y1-mean(y1)*zeta1
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# Beta1BCES variance estimation

varbeta1BCES=(var(zeta1)*(length(zeta1)-1)/length(zeta1))/n

# Beta0BCES variance estimation

varbeta0BCES=(var(zeta2)*(length(zeta2)-1)/length(zeta2))/n

varbeta1BCES

varbeta0BCES

BCES_fitted <- function(x) beta1BCES*x + beta0BCES

plot(x1,x2,main="Measurement Error correction")

abline(true.model, col="darkblue", lwd=2)

abline(naive.model, col="red", lwd=2)

curve(BCES_fitted, col="green", lwd=2, add=T)

legend("topleft",legend=c("True Model","Naive model","BCES Model") ,

col = c("darkblue","red","green"),lty=1)

C.3 SIMEX

n=100

x <- rnorm(n,0,2)

u <- rnorm(n,0,2)

w <- x+u

y <-x +rnorm(n,0,1)

data_for_simulation<-data.frame(y,x,w)

true.model <- lm(y~x,data=data_for_simulation) # True model

naive.model <- lm(y~w, x=TRUE, data=data_for_simulation) #Naive model

sigma2u<-2

#Simulation step

B <- 100

sigma2u<-4 # Known measurement error variance

U=matrix(rnorm(B*length(w),0,sqrt(sigma2u)),B,length(w))

add.function<-function(lambda){

w_bi=matrix(NA,B,length(w))

for( k in 1:B ){

for( i in 1:length(w)){

w_bi[k,i]=w[i]+sqrt(lambda)*U[k,i]

}

}

w_bi

}

w_bi0.5<-add.function(0.5) #lambda=0.5

w_bi1<-add.function(1) #lambda=1

w_bi1.5<-add.function(1.5) #lambda=1.5

w_bi2<-add.function(2) #lambda=2

# Estimate the coefficients (theta) for each lambda

est.theta.fun<-function(w.add){

theta.k=matrix(NA,B,2)

var.k <- matrix(NA, ncol=4, nrow=B)
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for( k in 1:B ){

sim.model.k<-lm(y~w.add[k,],x=TRUE)

theta.k[k,] <- c(coef(sim.model.k))

var.k[k,1:2] <- vcov(sim.model.k)[1,]

var.k[k,3:4] <- vcov(sim.model.k)[2,]

}

# Average of the B values of theta.K

this.theta<- colMeans(theta.k)

# SIMEX variance estimation, see appendix B.4.1 Carroll et al

thetahat<-matrix(c(rep(this.theta[1],B),rep(this.theta[2],B)), B,2)

deltab=theta.k-thetahat

# ss function is used to calculate s^2_delta, see equation B.18 Carroll el al

ss<-function(m){

res<-matrix(NA,ncol(m),ncol(m))

res<-crossprod(t(m[1,]))

for(i in 2:nrow(m)){

res<-res+m[i,]%*%t(m[i,])

}

return(res/(nrow(m)-1))

}

s2delta<-ss(deltab)

# Variance component due to sampling variability

tau2hat <- matrix(colMeans(var.k), ncol=2)

# tau2hat-s2delta variance component due to measurement error variability

return(list(this.theta, tau2hat-s2delta))

}

sim.resultsw_bi0.5<-est.theta.fun(w_bi0.5) #lambda=0.5

sim.resultsw_bi1<-est.theta.fun(w_bi1) #lambda=1

sim.resultsw_bi1.5<-est.theta.fun(w_bi1.5) #lambda=1.5

sim.resultsw_bi2<-est.theta.fun(w_bi2) #lambda=2

# Vector that contains the simulated beta0 obtained in the previous step

beta0.sim<-c(naive.model$coefficient[1], sim.resultsw_bi0.5[[1]][1],

sim.resultsw_bi1[[1]][1], sim.resultsw_bi1.5[[1]][1],

sim.resultsw_bi2[[1]][1])

# Vector that contains the simulated beta1 obtained in the previous step

beta1.sim<-c(naive.model$coefficient[2], sim.resultsw_bi0.5[[1]][2],

sim.resultsw_bi1[[1]][2], sim.resultsw_bi1.5[[1]][2],

sim.resultsw_bi2[[1]][2])

var_beta0.sim<-c(vcov(naive.model)[1,1],sim.resultsw_bi0.5[[2]][1,1],

sim.resultsw_bi1[[2]][1,1], sim.resultsw_bi1.5[[2]][1,1],

sim.resultsw_bi2[[2]][1,1])

var_beta1.sim<-c(vcov(naive.model)[2,2],sim.resultsw_bi0.5[[2]][2,2],

sim.resultsw_bi1[[2]][2,2], sim.resultsw_bi1.5[[2]][2,2],

sim.resultsw_bi2[[2]][2,2])

#Extrapolation Step with quadratic extrapolant function

lambda <- c(0.0, 0.5, 1.0, 1.5, 2.0)

#SIMEX beta0,beta1

extr.fun.beta0<-lm(beta0.sim~lambda+I(lambda^2))

extr.fun.beta1<-lm(beta1.sim~lambda+I(lambda^2))
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beta0.simex<-predict(extr.fun.beta0, newdata = data.frame(lambda = -1))

beta1.simex<-predict(extr.fun.beta1, newdata = data.frame(lambda = -1))

#SIMEX var(beta0), var(beta1)

extr.fun.var_beta0<-lm(var_beta0.sim~lambda+I(lambda^2))

extr.fun.var_beta1<-lm(var_beta1.sim~lambda+I(lambda^2))

var.beta0.simex<-predict(extr.fun.var_beta0, newdata = data.frame(lambda = -1))

var.beta1.simex<-predict(extr.fun.var_beta1, newdata = data.frame(lambda = -1))

#Simex plot for beta1

simex_function<- function(x) extr.fun.beta1$coefficient[3]*x^2 +

extr.fun.beta1$coefficient[2]*x + extr.fun.beta1$coefficient[1]

plot(lambda,beta1.sim,xlim=range(-2:3),ylim=range(0,1),main="SIMEX method")

curve(simex_function, col="darkblue", lwd=2, add=T )

points(-1,beta1.simex,pch=4)

#True, naive and SIMEX model’s plot

simex_fitted <- function(s) beta1.simex*s + beta0.simex

plot(x,y)

abline(true.model,col="darkblue")

abline(naive.model,col = "red")

curve(simex_fitted, col="green", lwd=2, add=T)

legend("topleft",legend=c("True Model","Naive model","SIMEX Model") ,

col = c("darkblue","red","green"),lty=1)

C.4 Heteroscedastic SIMEX

n=100

x <- rnorm(n,0,2)

u <- c(rep(NA,n))

sigma2ui<-rchisq(100,1)

for (i in 1:n){

u[i]=rnorm(1,0,sqrt(sigma2ui[i]))

}

w <- x+u

y <-x +rnorm(n,0,1)

data_for_simulation<-data.frame(y,x,w)

true.model <- lm(y~x,data=data_for_simulation) # True model

naive.model <- lm(y~w, x=TRUE, data=data_for_simulation) # Naive model

# Simulation step

B <- 100

# sigma2ui Known heteroscedastic measurement error variance

U<-matrix(NA,B,length(w))

for(i in 1:n){

U[,i]=rnorm(B,0,sqrt(sigma2ui[i]))

}

add.function<-function(lambda){

w_bi=matrix(NA,B,length(w))

for( k in 1:B ){

for( i in 1:length(w)){

w_bi[k,i]=w[i]+sqrt(lambda)*U[k,i]
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}

}

w_bi

}

w_bi0.5<-add.function(0.5) #lambda=0.5

w_bi1<-add.function(1) #lambda=1

w_bi1.5<-add.function(1.5) #lambda=1.5

w_bi2<-add.function(2) #lambda=2

# Estimate the coefficients (theta) for each lambda

est.theta.fun<-function(w.add){

theta.k=matrix(NA,B,2)

var.k <- matrix(NA, ncol=4, nrow=B)

for( k in 1:B ){

sim.model.k<-lm(y~w.add[k,],x=TRUE)

theta.k[k,] <- c(coef(sim.model.k))

var.k[k,1:2] <- vcov(sim.model.k)[1,]

var.k[k,3:4] <- vcov(sim.model.k)[2,]

}

# Average of the B values of theta.K

this.theta<- colMeans(theta.k)

# SIMEX variance estimation, see appendix B.4.1 Carroll et al

thetahat<-matrix(c(rep(this.theta[1],B),rep(this.theta[2],B)), B,2)

deltab=theta.k-thetahat

# ss function is used to calculate s^2_delta, see equation B.18 Carroll el al

ss<-function(m){

res<-matrix(NA,ncol(m),ncol(m))

res<-crossprod(t(m[1,]))

for(i in 2:nrow(m)){

res<-res+m[i,]%*%t(m[i,])

}

return(res/(nrow(m)-1))

}

s2delta<-ss(deltab)

# Variance component due to sampling variability

tau2hat <- matrix(colMeans(var.k), ncol=2)

# tau2hat-s2delta variance component due to measurement error variability

return(list(this.theta, tau2hat-s2delta))

}

sim.resultsw_bi0.5<-est.theta.fun(w_bi0.5) #lambda=0.5

sim.resultsw_bi1<-est.theta.fun(w_bi1) #lambda=1

sim.resultsw_bi1.5<-est.theta.fun(w_bi1.5) #lambda=1.5

sim.resultsw_bi2<-est.theta.fun(w_bi2) #lambda=2

# Vector that contains the simulated beta0 obtained in the previous step

beta0.sim<-c(naive.model$coefficient[1], sim.resultsw_bi0.5[[1]][1],

sim.resultsw_bi1[[1]][1], sim.resultsw_bi1.5[[1]][1],

sim.resultsw_bi2[[1]][1])

# Vector that contains the simulated beta1 obtained in the previous step

beta1.sim<-c(naive.model$coefficient[2], sim.resultsw_bi0.5[[1]][2],
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sim.resultsw_bi1[[1]][2], sim.resultsw_bi1.5[[1]][2],

sim.resultsw_bi2[[1]][2])

var_beta0.sim<-c(vcov(naive.model)[1,1],sim.resultsw_bi0.5[[2]][1,1],

sim.resultsw_bi1[[2]][1,1], sim.resultsw_bi1.5[[2]][1,1],

sim.resultsw_bi2[[2]][1,1])

var_beta1.sim<-c(vcov(naive.model)[2,2],sim.resultsw_bi0.5[[2]][2,2],

sim.resultsw_bi1[[2]][2,2], sim.resultsw_bi1.5[[2]][2,2],

sim.resultsw_bi2[[2]][2,2])

#Extrapolation Step with quadratic extrapolant function

lambda <- c(0.0, 0.5, 1.0, 1.5, 2.0)

#SIMEX beta0,beta1

extr.fun.beta0<-lm(beta0.sim~lambda+I(lambda^2))

extr.fun.beta1<-lm(beta1.sim~lambda+I(lambda^2))

beta0.simex<-predict(extr.fun.beta0, newdata = data.frame(lambda = -1))

beta1.simex<-predict(extr.fun.beta1, newdata = data.frame(lambda = -1))

#SIMEX var(beta0), var(beta1)

extr.fun.var_beta0<-lm(var_beta0.sim~lambda+I(lambda^2))

extr.fun.var_beta1<-lm(var_beta1.sim~lambda+I(lambda^2))

var.beta0.simex<-predict(extr.fun.var_beta0, newdata = data.frame(lambda = -1))

var.beta1.simex<-predict(extr.fun.var_beta1, newdata = data.frame(lambda = -1))

#Simex plot for beta1

simex_function<- function(x) extr.fun.beta1$coefficient[3]*x^2 +

extr.fun.beta1$coefficient[2]*x + extr.fun.beta1$coefficient[1]

plot(lambda,beta1.sim,xlim=range(-2:3),ylim=range(0,1),main="SIMEX method")

curve(simex_function, col="darkblue", lwd=2, add=T )

points(-1,beta1.simex,pch=4)

#True, naive and SIMEX model’s plot

simex_fitted <- function(s) beta1.simex*s + beta0.simex

plot(x,y)

abline(true.model,col="darkblue")

abline(naive.model,col = "red")

curve(simex_fitted, col="green", lwd=2, add=T)

legend("topleft",legend=c("True Model","Naive model","SIMEX Model") ,

col = c("darkblue","red","green"),lty=1)

C.5 Measurement error simulation

C.5.1 Models generation

################ NORMAL MEASUREMENT ERROR u~norm(0,2^2)

n=100 #n=1000, n=10000 three different sample sizes

simfun<- function(n=100,a=7,b=2) { #n=1000, n=10000

x <- rnorm(n,0,2)

e<-rnorm(n,0,1)

y <- a + b*x + e

u <- rnorm(n,0,2)
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w <- x+u

d=data.frame(x,y,w,u)

# Validation data needed for RC model

val.data<-d[sample(nrow(d), 0.1*nrow(d)), ]

val.model<-lm(x~w,data=val.data)

x.star<-val.model$coefficient[1]+

val.model$coefficient[2]*d$w

d<-cbind(d,x.star)

}

################ SKEW-NORMAL MEASUREMENT ERROR u~skew-norm(0,2^2,5)

n=100 #n=1000, n=10000 three different sample sizes

simfun<- function(n=100,a=7,b=2) { #n=1000, n=10000

library(stats4)

library(sn)

x <- rnorm(n,0,2)

e<-rnorm(n,0,1)

y <- a + b*x + e

u <- rsn(n,0,2,5)

w <- x+u

d=data.frame(x,y,w,u)

val.data<-d[sample(nrow(d), 0.1*nrow(d)), ]

val.model<-lm(x~w,data=val.data)

x.star<-val.model$coefficient[1]+val.model$coefficient[2]*d$w

d<-cbind(d,x.star)

}

################ NORMAL MIXTURE MEASUREMENT ERROR U=0.5*phi(u+2)+0.5*phi(u-4)

n=100 #n=1000, n=10000 three different sample sizes

simfun<- function(n=100,a=7,b=2) { #n=1000, n=10000

x <- rnorm(n,0,2)

e<-rnorm(n,0,1)

y <- a + b*x + e

unif =runif(n)

u = rep(0,n)

for(i in 1:n){

if(unif[i]<.5){

u[i] = rnorm(1,-2,1)

}else {

u[i] = rnorm(1,4,1)

}

}

w <- x+u

d=data.frame(x,y,w,u)

val.data<-d[sample(nrow(d), 0.1*nrow(d)), ] # It is needed for RC model

val.model<-lm(x~w,data=val.data)

x.star<-val.model$coefficient[1]+val.model$coefficient[2]*d$w

d<-cbind(d,x.star)

}
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C.5.2 Results collection

library(xtable)

library(bootstrap)

library(plyr)

error_correction_fun <- function(d) {

true=coef(lm(y~x,data=d)) # True parameters estimation

true_sd=c(sqrt(vcov(lm(y~x,data=d))[1,1]),

sqrt(vcov(lm(y~x,data=d))[2,2]))

naive=coef(lm(y~w,data=d)) # Naive parameters estimation

naive_sd=c(sqrt(vcov(lm(y~w,data=d))[1,1]),

sqrt(vcov(lm(y~w,data=d))[2,2]))

reg.cal=coef(lm(y~x.star,data=d)) # RC parameters estimation

model.lm <- formula(y ~ x.star, data=d)

theta <- function(x, xdata, coefficient){

coef(lm(model.lm, data=xdata[x,]))[coefficient]

}

jackknife.apply <- function(x, xdata, coefs){

sapply(coefs,

function(coefficient) jackknife(x, theta, xdata=xdata,

coefficient=coefficient),

simplify=F)

}

results <- jackknife.apply(1:length(d$x.star), d, c("(Intercept)", "x.star"))

re.cal_sd=c(results$’(Intercept)’$jack.se,results$’x.star’$jack.se)

# BCES parameters estimation

V<-matrix(c(var(d$u)*(length(d$u)-1)/length(d$u),0,0,0),2,2)

beta1BCES=(cov(d$w,d$y)-V[1,2])/(var(d$w)*(length(d$w)-1)/length(d$w)-V[1,1])

beta0BCES=mean(d$y)-beta1BCES*mean(d$w)

BCES=cbind(beta0BCES,beta1BCES)

zeta1=((d$w-mean(d$w))*(d$y-beta1BCES*d$w-beta0BCES)+beta1BCES*V[1,1]-V[1,2])/

(var(d$w)*(length(d$w)-1)/length(d$w)-V[1,1])

zeta2=d$y-beta1BCES*d$w-mean(d$w)*zeta1

varbeta1BCES=(var(zeta1)*(length(zeta1)-1)/length(zeta1))/length(d$y)

varbeta0BCES=(var(zeta2)*(length(zeta2)-1)/length(zeta2))/length(d$y)

BCES_sd=c(sqrt(varbeta0BCES),sqrt(varbeta1BCES))

B=1000 # SIMEX parameters estimation

sigma2u=2^2

U=matrix(rnorm(B*length(d$w),0,sqrt(sigma2u)),B,length(d$w))

add.function<-function(lambda){

w_bi=matrix(NA,B,length(d$w))

for( k in 1:B ){

for( i in 1:length(d$w)){

w_bi[k,i]=d$w[i]+sqrt(lambda)*U[k,i]

}

}

w_bi

}

w_bi0<-add.function(0) #lambda=0
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w_bi0.5<-add.function(0.5) #lambda=0.5

w_bi1<-add.function(1) #lambda=1

w_bi1.5<-add.function(1.5) #lambda=1.5

w_bi2<-add.function(2) #lambda=2

est.theta.fun<-function(w.add){

theta.k=matrix(NA,B,2)

var.k <- matrix(NA, ncol=4, nrow=B)

for( k in 1:B ){

sim.model.k<-lm(d$y~w.add[k,],x=TRUE)

theta.k[k,] <- c(coef(sim.model.k))

var.k[k,1:2] <- vcov(sim.model.k)[1,]

var.k[k,3:4] <- vcov(sim.model.k)[2,]

}

this.theta<- colMeans(theta.k)

thetahat<-matrix(c(rep(this.theta[1],B),rep(this.theta[2],B)), B,2)

deltab=theta.k-thetahat

ss<-function(m){

res<-matrix(NA,ncol(m),ncol(m))

res<-crossprod(t(m[1,]))

for(i in 2:nrow(m)){

res<-res+m[i,]%*%t(m[i,])

}

return(res/(nrow(m)-1))

}

s2delta<-ss(deltab)

tau2hat <- matrix( colMeans(var.k), ncol=2)

return(list(this.theta, tau2hat-s2delta))

}

sim.resultsw_bi0<-est.theta.fun(w_bi0) #lambda=0

sim.resultsw_bi0.5<-est.theta.fun(w_bi0.5) #lambda=0.5

sim.resultsw_bi1<-est.theta.fun(w_bi1) #lambda=1

sim.resultsw_bi1.5<-est.theta.fun(w_bi1.5) #lambda=1.5

sim.resultsw_bi2<-est.theta.fun(w_bi2) #lambda=2

beta0.sim<-c(sim.resultsw_bi0[[1]][1], sim.resultsw_bi0.5[[1]][1],

sim.resultsw_bi1[[1]][1],sim.resultsw_bi1.5[[1]][1],

sim.resultsw_bi2[[1]][1])

beta1.sim<-c(sim.resultsw_bi0[[1]][2], sim.resultsw_bi0.5[[1]][2],

sim.resultsw_bi1[[1]][2],sim.resultsw_bi1.5[[1]][2],

sim.resultsw_bi2[[1]][2])

var_beta0.sim<-c(sim.resultsw_bi0[[2]][1,1],sim.resultsw_bi0.5[[2]][1,1],

sim.resultsw_bi1[[2]][1,1],sim.resultsw_bi1.5[[2]][1,1],

sim.resultsw_bi2[[2]][1,1])

var_beta1.sim<-c(sim.resultsw_bi0[[2]][2,2],sim.resultsw_bi0.5[[2]][2,2],

sim.resultsw_bi1[[2]][2,2],sim.resultsw_bi1.5[[2]][2,2],

sim.resultsw_bi2[[2]][2,2])

lambda <- c(0.0, 0.5, 1.0, 1.5, 2.0)

extr.fun.beta0<-lm(beta0.sim~lambda+I(lambda^2))

extr.fun.beta1<-lm(beta1.sim~lambda+I(lambda^2))

beta0.simex<-predict(extr.fun.beta0, newdata = data.frame(lambda = -1))
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beta1.simex<-predict(extr.fun.beta1, newdata = data.frame(lambda = -1))

extr.fun.var_beta0<-lm(var_beta0.sim~lambda+I(lambda^2))

extr.fun.var_beta1<-lm(var_beta1.sim~lambda+I(lambda^2))

var.beta0.simex<-predict(extr.fun.var_beta0, newdata = data.frame(lambda = -1))

var.beta1.simex<-predict(extr.fun.var_beta1, newdata = data.frame(lambda = -1))

simex=cbind(beta0.simex,beta1.simex)

simex_sd=c(sqrt(var.beta0.simex),sqrt(var.beta1.simex))

return(list(true,naive,reg.cal,BCES,simex,true_sd,

naive_sd,re.cal_sd,BCES_sd,simex_sd))

}

a=7 # True Intercept

b=2 # True slope

nsim=1000

# Replication of the simulated framework

sim_results<-raply(nsim,error_correction_fun (simfun()))

#Results organization

summary.measures=function(i){

res=matrix(NA,nsim,2)

for(k in 1:nsim){

res[k,]=c(sim_results[,i][[k]][1],sim_results[,i][[k]][2])

}

list(Mean=colMeans(res),Median=c(median(res[,1]),median(res[,2])),

Standard_Deviation=c(sd(res[,1]),sd(res[,2])),

bias=c(a-mean(res[,1]),b-mean(res[,2])),

Interquartile_Range=c(IQR(res[,1]),IQR(res[,2])),

MSE=c(mean(res[,1]-a)^2,mean(res[,2]-b)^2))

}

true_summary.measures<- summary.measures(1)

naive_summary.measures<-summary.measures(2)

re.cal_summary.measures<-summary.measures(3)

BCES_summary.measures<-summary.measures(4)

simex_summary.measures<-summary.measures(5)

true_sd_summary.measures<- summary.measures(6)

naive_sd_summary.measures<-summary.measures(7)

re.cal_sd_summary.measures<-summary.measures(8)

BCES_sd_summary.measures<-summary.measures(9)

simex_sd_summary.measures<-summary.measures(10)

# Table 1 creation for each estimator

#ct1<-c("Mean","Median","St.Deviation","Bias","Int.Range","MSE")

ct1_true_beta0=c(true_summary.measures$Mean[1],

true_summary.measures$Median[1],

true_summary.measures$Standard_Deviation[1],

true_summary.measures$bias[1],

true_summary.measures$Interquartile_Range[1],

true_summary.measures$MSE[1])

ct1_true_beta1=c(true_summary.measures$Mean[2],

true_summary.measures$Median[2],

true_summary.measures$Standard_Deviation[2],

true_summary.measures$bias[2],

true_summary.measures$Interquartile_Range[2],
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true_summary.measures$MSE[2])

ct1_naive_beta0=c(naive_summary.measures$Mean[1],

naive_summary.measures$Median[1],

naive_summary.measures$Standard_Deviation[1],

naive_summary.measures$bias[1],

naive_summary.measures$Interquartile_Range[1],

naive_summary.measures$MSE[1])

ct1_naive_beta1=c(naive_summary.measures$Mean[2],

naive_summary.measures$Median[2],

naive_summary.measures$Standard_Deviation[2],

naive_summary.measures$bias[2],

naive_summary.measures$Interquartile_Range[2],

naive_summary.measures$MSE[2])

ct1_re.cal_beta0=c(re.cal_summary.measures$Mean[1],

re.cal_summary.measures$Median[1],

re.cal_summary.measures$Standard_Deviation[1],

re.cal_summary.measures$bias[1],

re.cal_summary.measures$Interquartile_Range[1],

re.cal_summary.measures$MSE[1])

ct1_re.cal_beta1=c(re.cal_summary.measures$Mean[2],

re.cal_summary.measures$Median[2],

re.cal_summary.measures$Standard_Deviation[2],

re.cal_summary.measures$bias[2],

re.cal_summary.measures$Interquartile_Range[2],

re.cal_summary.measures$MSE[2])

ct1_BCES_beta0=c(BCES_summary.measures$Mean[1],

BCES_summary.measures$Median[1],

BCES_summary.measures$Standard_Deviation[1],

BCES_summary.measures$bias[1],

BCES_summary.measures$Interquartile_Range[1],

BCES_summary.measures$MSE[1])

ct1_BCES_beta1=c(BCES_summary.measures$Mean[2],

BCES_summary.measures$Median[2],

BCES_summary.measures$Standard_Deviation[2],

BCES_summary.measures$bias[2],

BCES_summary.measures$Interquartile_Range[2],

BCES_summary.measures$MSE[2])

ct1_simex_beta0=c(simex_summary.measures$Mean[1],

simex_summary.measures$Median[1],

simex_summary.measures$Standard_Deviation[1],

simex_summary.measures$bias[1],

simex_summary.measures$Interquartile_Range[1],

simex_summary.measures$MSE[1])

ct1_simex_beta1=c(simex_summary.measures$Mean[2],

simex_summary.measures$Median[2],

simex_summary.measures$Standard_Deviation[2],

simex_summary.measures$bias[2],

simex_summary.measures$Interquartile_Range[2],

simex_summary.measures$MSE[2])

true_t1<-cbind(ct1_true_beta0,ct1_true_beta1)
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naive_t1<-cbind(ct1_naive_beta0,ct1_naive_beta1)

re.cal_t1<-cbind(ct1_re.cal_beta0,ct1_re.cal_beta1)

BCES_t1<-cbind(ct1_BCES_beta0,ct1_BCES_beta1)

simex_t1<-cbind(ct1_simex_beta0,ct1_simex_beta1)

xtable(true_t1,floating=FALSE,digits=c(rep(4,3)))

xtable(naive_t1,floating=FALSE,digits=c(rep(4,3)))

xtable(re.cal_t1,floating=FALSE,digits=c(rep(4,3)))

xtable(BCES_t1,floating=FALSE,digits=c(rep(4,3)))

xtable(simex_t1,floating=FALSE,digits=c(rep(4,3)))

#Inference results

summary.inf=function(i,beta,true_beta){

upper.limit=rep(NA,nsim)

lower.limit=rep(NA,nsim)

Conf_Interval=matrix(NA,nsim,2)

real.alpha=rep(NA,nsim)

dx.alpha=rep(NA,nsim)

sx.alpha=rep(NA,nsim)

wald.test=rep(NA,nsim)

p_value=rep(NA,nsim)

for(k in 1:nsim){

upper.limit[k]=sim_results[,i][[k]][beta]+

qt(0.975,n)*sim_results[,(i+5)][[k]][beta]

lower.limit[k]=sim_results[,i][[k]][beta]-

qt(0.975,n)*sim_results[,(i+5)][[k]][beta]

Conf_Interval[k,]=c(lower.limit[k],upper.limit[k])

real.alpha[k]=true_beta>Conf_Interval[k,1] && true_beta<Conf_Interval[k,2]

dx.alpha[k]=true_beta<sim_results[,i][[k]][beta]+

qt(0.95,n)*sim_results[,(i+5)][[k]][beta]

sx.alpha[k]=true_beta>sim_results[,i][[k]][beta]-

qt(0.95,n)*sim_results[,(i+5)][[k]][beta]

wald.test[k]=(sim_results[,i][[k]][beta]-

true_beta)/sim_results[,(i+5)][[k]][beta]

p_value[k]=2*min(pt(wald.test[k],n),1-pt(wald.test[k],n))

}

list(Mean_Conf_Interval=colMeans(Conf_Interval),

H0_accepted=sum(real.alpha=="TRUE"),

H0_rejected=sum(real.alpha=="FALSE"),

Real_alpha=1-(sum(real.alpha=="TRUE")/

length(real.alpha)),

Dx_alpha=1-(sum(dx.alpha=="TRUE")/length(real.alpha)),

Sx_alpha=1-(sum(sx.alpha=="TRUE")/length(real.alpha)),

Mean_Interval_length=mean(Conf_Interval[,2]-

Conf_Interval[,1]),

mean_Wald.test=mean(wald.test),mean_p_value=mean(p_value))

}

#Inference results organization

summary.inf_true.beta0=summary.inf(1,1,a)

summary.inf_true.beta1=summary.inf(1,2,b)

summary.inf_naive.beta0=summary.inf(2,1,a)

summary.inf_naive.beta1=summary.inf(2,2,b)
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summary.inf_re.cal.beta0=summary.inf(3,1,a)

summary.inf_re.cal.beta1=summary.inf(3,2,b)

summary.inf_BCES.beta0=summary.inf(4,1,a)

summary.inf_BCES.beta1=summary.inf(4,2,b)

summary.inf_simex.beta0=summary.inf(5,1,a)

summary.inf_simex.beta1=summary.inf(5,2,b)

# Table 2 creation for each estimator

#ct3<-c("Real_alpha","Real_Dx_alpha","Real_Sx_alpha","H0_accepted","H0_rejected")

ct3_true_beta0=c(summary.inf_true.beta0$Real_alpha,

summary.inf_true.beta0$Dx_alpha,

summary.inf_true.beta0$Sx_alpha,

summary.inf_true.beta0$Mean_Conf_Interval)

ct3_true_beta1=c(summary.inf_true.beta1$Real_alpha,

summary.inf_true.beta1$Dx_alpha,

summary.inf_true.beta1$Sx_alpha,

summary.inf_true.beta1$Mean_Conf_Interval)

ct3_naive_beta0=c(summary.inf_naive.beta0$Real_alpha,

summary.inf_naive.beta0$Dx_alpha,

summary.inf_naive.beta0$Sx_alpha,

summary.inf_naive.beta0$Mean_Conf_Interval)

ct3_naive_beta1=c(summary.inf_naive.beta1$Real_alpha,

summary.inf_naive.beta1$Dx_alpha,

summary.inf_naive.beta1$Sx_alpha,

summary.inf_naive.beta1$Mean_Conf_Interval)

ct3_re.cal_beta0=c(summary.inf_re.cal.beta0$Real_alpha,

summary.inf_re.cal.beta0$Dx_alpha,

summary.inf_re.cal.beta0$Sx_alpha,

summary.inf_re.cal.beta0$Mean_Conf_Interval)

ct3_re.cal_beta1=c(summary.inf_re.cal.beta1$Real_alpha,

summary.inf_re.cal.beta1$Dx_alpha,

summary.inf_re.cal.beta1$Sx_alpha,

summary.inf_re.cal.beta1$Mean_Conf_Interval)

ct3_BCES_beta0=c(summary.inf_BCES.beta0$Real_alpha,

summary.inf_BCES.beta0$Dx_alpha,

summary.inf_BCES.beta0$Sx_alpha,

summary.inf_BCES.beta0$Mean_Conf_Interval)

ct3_BCES_beta1=c(summary.inf_BCES.beta1$Real_alpha,

summary.inf_BCES.beta1$Dx_alpha,

summary.inf_BCES.beta1$Sx_alpha,

summary.inf_BCES.beta1$Mean_Conf_Interval)

ct3_simex_beta0=c(summary.inf_simex.beta0$Real_alpha,

summary.inf_simex.beta0$Dx_alpha,

summary.inf_simex.beta0$Sx_alpha,

summary.inf_simex.beta0$Mean_Conf_Interval)

ct3_simex_beta1=c(summary.inf_simex.beta1$Real_alpha,

summary.inf_simex.beta1$Dx_alpha,

summary.inf_simex.beta1$Sx_alpha,

summary.inf_simex.beta1$Mean_Conf_Interval)

true_t3<-cbind(ct3_true_beta0,ct3_true_beta1)

naive_t3<-cbind(ct3_naive_beta0,ct3_naive_beta1)
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re.cal_t3<-cbind(ct3_re.cal_beta0,ct3_re.cal_beta1)

BCES_t3<-cbind(ct3_BCES_beta0,ct3_BCES_beta1)

simex_t3<-cbind(ct3_simex_beta0,ct3_simex_beta1)

xtable(true_t3,floating=FALSE,digits=c(rep(2,3)))

xtable(naive_t3,floating=FALSE,digits=c(rep(2,3)))

xtable(re.cal_t3,floating=FALSE,digits=c(rep(2,3)))

xtable(BCES_t3,floating=FALSE,digits=c(rep(2,3)))

xtable(simex_t3,floating=FALSE,digits=c(rep(2,3)))

# Table 4 creation for each estimator

#Error_Model<-c("TRUE","NAIVE","RC","BCES","SIMEX")

beta0<-c(true_summary.measures[[2]][1],

naive_summary.measures[[2]][1],

re.cal_summary.measures[[2]][1],

BCES_summary.measures[[2]][1],

simex_summary.measures[[2]][1])

beta1<-c(true_summary.measures[[2]][2],

naive_summary.measures[[2]][2],

re.cal_summary.measures[[2]][2],

BCES_summary.measures[[2]][2],

simex_summary.measures[[2]][2])

sd_beta0<-c(true_sd_summary.measures[[2]][1],

naive_sd_summary.measures[[2]][1],

re.cal_sd_summary.measures[[2]][1],

BCES_sd_summary.measures[[2]][1],

simex_sd_summary.measures[[2]][1])

sd_beta1<-c(true_sd_summary.measures[[2]][2],

naive_sd_summary.measures[[2]][2],

re.cal_sd_summary.measures[[2]][2],

BCES_sd_summary.measures[[2]][2],

simex_sd_summary.measures[[2]][2])

t4<-cbind(beta0,sd_beta0,beta1,sd_beta1)

xtable(t4,floating=FALSE,digits=c(rep(4,5)))

xtable(t4,floating=FALSE,digits=c(rep(4,5)))

C.6 Hubble data analysis

## Hubble Data "The SBF Survey of Galaxy Distances"

hubbleData<-read.table(file.choose(),col.names=c("Galaxy","RA","Dec",

"vCMB","morphT","Grp","AB","V-I","V-I_1",

"V-I_2","mI","mI1","mI2","DM","DMerr",

"r","r1","r2","Q","PD","NI"))

## Hubble Law: vCMB=H0*D

## vCMB=beta0 + beta1*D

library(fBasics)

library (boot)

library(xtable)

H0=6.9*10^(-5) # Most recent H0 estimation (Bennett, 2014)

# Explorative data analysis
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HData<-hubbleData[,c("vCMB","DM","DMerr")]

xtable(head(HData),floating=FALSE,digits=c(rep(4,4)))

attach(HData)

basicStats(vCMB)

D<-10^(DM/5+1)

basicStats(D)

Derr<-10^(DMerr/5+1)

par(mfrow=c(1,2))

boxplot(D, main="Boxplot of D")

hist(D)

par(mfrow=c(1,2))

boxplot(vCMB, main="Boxplot of vCMB")

hist(vCMB)

cor(vCMB,D)

cor.test(vCMB,D)

plot(D,vCMB,main="SBF survey - Radial velocity vs Distance")

naive.model=lm(vCMB~D,data=HData)

summary(naive.model)

xtable(summary(naive.model))

naive.model.offset=lm(vCMB~D+offset(H0*D),data=HData)

summary(naive.model.offset)

xtable(summary(naive.model.offset))

confint(naive.model,2,.90)

confint(naive.model,2,.95)

confint(naive.model,2,.99)

plot(naive.model)

naive.model.glm=glm(vCMB~D,data=HData)

glm.diag.plots(naive.model.glm)

## Simex correction for measurement errors

B <- 1000

sigma2ui<-DMerr^2 #known heteroscedastic measurement error variance

U<-matrix(NA,B,length(D))

for(i in 1:length(D)){

U[,i]=rnorm(B,0,sqrt(sigma2ui[i]))

}

add.function<-function(lambda){

w_bi=matrix(NA,B,length(D))

for( k in 1:B ){

for( i in 1:length(D)){

w_bi[k,i]=10^((DM[i]+sqrt(lambda)*U[k,i])/5+1)

}

}

w_bi

}

w_bi0.5<-add.function(0.5) #lambda=0.5

w_bi1<-add.function(1) #lambda=1

w_bi1.5<-add.function(1.5) #lambda=1.5

w_bi2<-add.function(2) #lambda=2
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#Estimate the coefficients (theta) for each lambda

est.theta.fun<-function(w.add){

theta.k=matrix(NA,B,2)

var.k <- matrix(NA, ncol=4, nrow=B)

for( k in 1:B ){

sim.model.k<-lm(vCMB~w.add[k,],x=TRUE)

theta.k[k,] <- c(coef(sim.model.k))

var.k[k,1:2] <- vcov(sim.model.k)[1,]

var.k[k,3:4] <- vcov(sim.model.k)[2,]

}

# average of the B values of theta.K

this.theta<- colMeans(theta.k)

thetahat<- matrix(c(rep(this.theta[1],B),rep(this.theta[2],B)), B,2)

deltab=theta.k-thetahat

ss<-function(m){

res<-matrix(NA,ncol(m),ncol(m))

res<-crossprod(t(m[1,]))

for(i in 2:nrow(m)){

res<-res+m[i,]%*%t(m[i,])

}

return(res/(nrow(m)-1))

}

s2delta<-ss(deltab)

tau2hat <- matrix(colMeans(var.k), ncol=2)

return(list(this.theta, tau2hat-s2delta))

}

sim.resultsw_bi0.5<-est.theta.fun(w_bi0.5) #lambda=0.5

sim.resultsw_bi1<-est.theta.fun(w_bi1) #lambda=1

sim.resultsw_bi1.5<-est.theta.fun(w_bi1.5) #lambda=1.5

sim.resultsw_bi2<-est.theta.fun(w_bi2) #lambda=2

beta0.sim<-c(naive.model$coefficient[1], sim.resultsw_bi0.5[[1]][1],

sim.resultsw_bi1[[1]][1], sim.resultsw_bi1.5[[1]][1],

sim.resultsw_bi2[[1]][1])

beta1.sim<-c(naive.model$coefficient[2], sim.resultsw_bi0.5[[1]][2],

sim.resultsw_bi1[[1]][2], sim.resultsw_bi1.5[[1]][2],

sim.resultsw_bi2[[1]][2])

var_beta0.sim<-c(vcov(naive.model)[1,1],sim.resultsw_bi0.5[[2]][1,1],

sim.resultsw_bi1[[2]][1,1], sim.resultsw_bi1.5[[2]][1,1],

sim.resultsw_bi2[[2]][1,1])

var_beta1.sim<-c(vcov(naive.model)[2,2],sim.resultsw_bi0.5[[2]][2,2],

sim.resultsw_bi1[[2]][2,2], sim.resultsw_bi1.5[[2]][2,2],

sim.resultsw_bi2[[2]][2,2])

#Extrapolation Step

lambda <- c(0.0, 0.5, 1.0, 1.5, 2.0)

#SIMEX beta0,beta1

extr.fun.beta0<-lm(beta0.sim~lambda+I(lambda^2)+I(lambda^3))

extr.fun.beta1<-lm(beta1.sim~lambda+I(lambda^2)+I(lambda^3))

summary(extr.fun.beta0)



136 APPENDIX C. R CODES

summary(extr.fun.beta1)

beta0.simex<-predict(extr.fun.beta0, newdata = data.frame(lambda = -1))

beta1.simex<-predict(extr.fun.beta1, newdata = data.frame(lambda = -1))

beta0.simex

beta1.simex

#SIMEX var(beta0), var(beta1)

extr.fun.var_beta0<-lm(var_beta0.sim~lambda+I(lambda^2)+I(lambda^3))

extr.fun.var_beta1<-lm(var_beta1.sim~lambda+I(lambda^2)+I(lambda^3))

summary(extr.fun.var_beta0)

summary(extr.fun.var_beta1)

var.beta0.simex<-predict(extr.fun.var_beta0, newdata = data.frame(lambda = -1))

var.beta1.simex<-predict(extr.fun.var_beta1, newdata = data.frame(lambda = -1))

var.beta0.simex

var.beta1.simex

#Simex plot for beta1

simex_function<- function(x) extr.fun.beta1$coefficient[3]*x^2

+extr.fun.beta1$coefficient[2]*x + extr.fun.beta1$coefficient[1]

plot(lambda,beta1.sim,main="SIMEX method correction for Hubble’s costant",

xlim=range(-1.5:3),ylim=range(4*10^(-5),10*10^(-5)), ylab="H_0",pch=16,col="red")

curve(simex_function, col="darkblue", lwd=2, add=T )

points(-1,beta1.simex,pch=4,col="red")

# Collection of SIMEX results

SIMEX_HD=c(beta0.simex, beta1.simex)

SIMEX_HD_sd=c(sqrt(var.beta0.simex),sqrt(var.beta1.simex))

zvalueSIMEX=SIMEX_HD/SIMEX_HD_sd

pvalueSIMEXbeta0=2*min(pnorm(zvalueSIMEX[1]),1-pnorm(zvalueSIMEX[1]))

pvalueSIMEXbeta1=2*min(pnorm(zvalueSIMEX[2]),1-pnorm(zvalueSIMEX[2]))

beta1SIMEX_inf_0.9=beta1.simex-qnorm(.95)*sqrt(var.beta1.simex)

beta1SIMEX_sup_0.9=beta1.simex+qnorm(.95)*sqrt(var.beta1.simex)

c(beta1SIMEX_inf_0.9,beta1SIMEX_sup_0.9)

beta1SIMEX_inf_0.95=beta1.simex-qnorm(.975)*sqrt(var.beta1.simex)

beta1SIMEX_sup_0.95=beta1.simex+qnorm(.975)*sqrt(var.beta1.simex)

c(beta1SIMEX_inf_0.95,beta1SIMEX_sup_0.95)

beta1SIMEX_inf_0.99=beta1.simex-qnorm(.995)*sqrt(var.beta1.simex)

beta1SIMEX_sup_0.99=beta1.simex+qnorm(.995)*sqrt(var.beta1.simex)

c(beta1SIMEX_inf_0.99,beta1SIMEX_sup_0.99)

#H_0: beta1=H0

z_SIMEX.H0=(beta1.simex-H0)/(sqrt(var.beta1.simex))

z_SIMEX.H0

p_SIMEX.H0=2*min(pnorm(z_SIMEX.H0),1-pnorm(z_SIMEX.H0))

p_SIMEX.H0

#H_0: beta1=naive.model$coef[2]

z_SIMEX.naive=(beta1.simex-naive.model$coef[2])/(sqrt(var.beta1.simex))

z_SIMEX.naive

p_SIMEX.naive=2*min(pnorm(z_SIMEX.naive),1-pnorm(z_SIMEX.naive))

p_SIMEX.naive
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## BCES estimator

dDM=(log(10)*10^(DM/5+1))/5

varfx=mean(D^2)-mean(dDM^2)*mean(DMerr^2)-mean(D)^2

V_i=(dDM^2)*(DMerr^2)

beta1BCES=cov(vCMB,D)/varfx # non-linear BCES estimation for beta_1

beta0BCES=mean(vCMB)-beta1BCES*mean(D) # non-linear BCES estimation for beta_0

zeta1=((D-mean(D))*(vCMB-beta1BCES*D-beta0BCES)+beta1BCES*V_i)/

((var(D)*(length(D)-1)/length(D))-mean(V_i))

zeta2=vCMB-beta1BCES*D-mean(D)*zeta1

# Beta1BCES variance estimation

varbeta1BCES=(var(zeta1)*(length(zeta1)-1)/length(zeta1))/length(D)

# Beta0BCES variance estimation

varbeta0BCES=(var(zeta2)*(length(zeta2)-1)/length(zeta2))/length(D)

# Collection of BCES results

BCES_HD=c(beta0BCES, beta1BCES)

BCES_HD_sd=c(sqrt(varbeta0BCES),sqrt(varbeta1BCES))

zvalueBCES=BCES_HD/BCES_HD_sd

pvalueBCESbeta0=2*min(pnorm(zvalueBCES[1]),1-pnorm(zvalueBCES[1]))

pvalueBCESbeta1=2*min(pnorm(zvalueBCES[2]),1-pnorm(zvalueBCES[2]))

beta1BCES_inf_0.9=beta1BCES-qnorm(.95)*sqrt(varbeta1BCES)

beta1BCES_sup_0.9=beta1BCES+qnorm(.95)*sqrt(varbeta1BCES)

c(beta1BCES_inf_0.9,beta1BCES_sup_0.9)

beta1BCES_inf_0.95=beta1BCES-qnorm(.975)*sqrt(varbeta1BCES)

beta1BCES_sup_0.95=beta1BCES+qnorm(.975)*sqrt(varbeta1BCES)

c(beta1BCES_inf_0.95,beta1BCES_sup_0.95)

beta1BCES_inf_0.99=beta1BCES-qnorm(.995)*sqrt(varbeta1BCES)

beta1BCES_sup_0.99=beta1BCES+qnorm(.995)*sqrt(varbeta1BCES)

c(beta1BCES_inf_0.99,beta1BCES_sup_0.99)

BCES_fitted <- function(x) beta1BCES*x + beta0BCES

#H_0: beta1=H0

z_BCES.H0=(beta1BCES-H0)/(sqrt(varbeta1BCES))

z_BCES.H0

p_BCES.H0=2*min(pnorm(z_BCES.H0),1-pnorm(z_BCES.H0))

p_BCES.H0

#H_0: beta1=naive.model$coef[2]

z_BCES.naive=(beta1BCES-naive.model$coef[2])/(sqrt(varbeta1BCES))

z_BCES.naive

p_BCES.naive=2*min(pnorm(z_BCES.naive),1-pnorm(z_BCES.naive))

p_BCES.naive

## SIMEX vs BCES

#H_0= beta1=beta1BCES

z_SIMEX.bces=(beta1.simex-beta1BCES)/(sqrt(var.beta1.simex))

z_SIMEX.bces
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p_SIMEX.bces=2*min(pnorm(z_SIMEX.bces),1-pnorm(z_SIMEX.bces))

p_SIMEX.bces

#H_0= beta1=beta1SIMEX

z_BCES.simex=(beta1BCES-beta1.simex)/(sqrt(varbeta1BCES))

z_BCES.simex

p_BCES.simex=2*min(pnorm(z_BCES.simex),1-pnorm(z_BCES.simex))

p_BCES.simex

## Naive, BCES and SIMEX model’s plot

simex_fitted <- function(s) beta1.simex*s +beta0.simex

plot(D,vCMB, main="Measurement error correction for the Hubble Data model")

abline(naive.model,col = "red")

curve(simex_fitted, col="green", lwd=2, add=T)

curve(BCES_fitted, col="purple", lwd=2, add=T)

legend("topleft",legend=c("Naive model","SIMEX Model","BCES Model") ,

col = c("red","green","purple"),lty=1)

list(coef(naive.model), c(beta0.simex,beta1.simex), c(beta0BCES, beta1BCES))

C.7 Non-linear BCES simulation

## y=beta0 + beta1*10^(x/5+1)+epsilon

library(xtable)

n=300 #sample size

b=2

a=0

simfun<- function(n=300,a=0,b=2) {

x=rnorm(n, 30, 1.3)

fx=10^(x/5+1)

e<-rnorm(n,0,1)

y <- a + b*fx + e

u <- c(rep(NA,n))

sigma2ui<-rchisq(n,0.5)

for (i in 1:n){

u[i]=rnorm(1,0,sqrt(sigma2ui[i]))

}

w <- x+u

fw=10^(w/5+1)

d=data.frame(x,y,w,u,fw,fx)

}

error_correction_fun <- function(d) {

true=coef(lm(y~fx,data=d)) # True parameters estimation

true_sd=c(sqrt(vcov(lm(y~fx,data=d))[1,1]),sqrt(vcov(lm(y~fx,data=d))[2,2]))

naive=coef(lm(y~fw,data=d)) # Naive parameters estimation

naive_sd=c(sqrt(vcov(lm(y~fw,data=d))[1,1]),sqrt(vcov(lm(y~fw,data=d))[2,2]))

dfx=(log(10)/5*10^(d$x/5+1))

dfw=(log(10)/5*10^(d$w/5+1))

V_i=(dfw^2)*(d$u^2)

varfx=mean(d$fw^2)-mean(d$fw)^2-mean(dfw^2)*mean(d$u^2)
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beta1BCES=cov(d$y,d$fw)/varfx

beta0BCES=mean(d$y)-beta1BCES*mean(d$fw)

zeta1=((d$fw-mean(d$fw))*(d$y-beta1BCES*d$fw-beta0BCES)+beta1BCES*V_i)/

((var(d$fw)*(length(d$fw)-1)/length(d$fw))-mean(V_i))

zeta2=d$y-beta1BCES*d$fw-mean(d$fw)*zeta1

# Beta1BCES variance estimation

varbeta1BCES=(var(zeta1)*(length(zeta1)-1)/length(zeta1))/length(d$fw)

# Beta0BCES variance estimation

varbeta0BCES=(var(zeta2)*(length(zeta2)-1)/length(zeta2))/length(d$fw)

BCES=cbind(beta0BCES,beta1BCES)

BCES_sd=c(sqrt(varbeta0BCES),sqrt(varbeta1BCES))

return(list(true,naive,BCES,true_sd,naive_sd,BCES_sd))

}

library(plyr)

nsim=1000

sim_results<-raply(nsim,error_correction_fun (simfun()))

beta1BCESal_1=rep(NA,nsim)

for(k in 1:nsim){

beta1BCESal_1[k]=c(sim_results[,3][[k]][2])

}

beta1BCESal_1

boxplot(beta1BCESal_1,main="Boxplot of Beta1 BCES")

qqnorm(beta1BCESal_1)

qqline(beta1BCESal_1)

stan.beta1BCESal_1=(beta1BCESal_1-mean(beta1BCESal_1))/sd(beta1BCESal_1)

stan.h=hist(stan.beta1BCESal_1,breaks=30,col="grey",

xlab="Standrardized Beta1 BCES",

main="Histogram of Standardized Beta1 BCES")

xfit<-seq(min(stan.beta1BCESal_1),max(stan.beta1BCESal_1),length=40)

yfit<-dnorm(xfit)

yfit <- yfit*diff(h$mids[1:2])*length(beta1BCESal_1)

lines(xfit, yfit, col="red", lwd=2)

summary.measures=function(i){

res=matrix(NA,nsim,2)

for(k in 1:nsim){

res[k,]=c(sim_results[,i][[k]][1],sim_results[,i][[k]][2])

}

list(Mean=colMeans(res),Median=c(median(res[,1]),median(res[,2])),

Standard_Deviation=c(sd(res[,1]),sd(res[,2])),

bias=c(a-mean(res[,1]),b-mean(res[,2])),

Interquartile_Range=c(IQR(res[,1]),IQR(res[,2])),

MSE=c(mean(res[,1]-a)^2,mean(res[,2]-b)^2))

}

true_summary.measures<- summary.measures(1)

naive_summary.measures<-summary.measures(2)

BCES_summary.measures<-summary.measures(3)

true_sd_summary.measures<- summary.measures(4)

naive_sd_summary.measures<-summary.measures(5)

BCES_sd_summary.measures<-summary.measures(6)

# Table 1 creation for each estimator
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#ct1<-c("Mean","Median","St.Deviation","Bias","Int.Range","MSE")

ct1_true_beta1=c(true_summary.measures$Mean[2],

true_summary.measures$Median[2],

true_summary.measures$Standard_Deviation[2],

true_summary.measures$bias[2],

true_summary.measures$Interquartile_Range[2],

true_summary.measures$MSE[2])

ct1_naive_beta1=c(naive_summary.measures$Mean[2],

naive_summary.measures$Median[2],

naive_summary.measures$Standard_Deviation[2],

naive_summary.measures$bias[2],

naive_summary.measures$Interquartile_Range[2],

naive_summary.measures$MSE[2])

ct1_BCES_beta1=c(BCES_summary.measures$Mean[2],

BCES_summary.measures$Median[2],

BCES_summary.measures$Standard_Deviation[2],

BCES_summary.measures$bias[2],

BCES_summary.measures$Interquartile_Range[2],

BCES_summary.measures$MSE[2])

## Inference results 1-alpha=.90 #1-alpha=.95 1-alpha=.99

summary.inf=function(i,beta,true_beta){

upper.limit=rep(NA,nsim)

lower.limit=rep(NA,nsim)

Conf_Interval=matrix(NA,nsim,2)

real.alpha=rep(NA,nsim)

dx.alpha=rep(NA,nsim)

sx.alpha=rep(NA,nsim)

wald.test=rep(NA,nsim)

p_value=rep(NA,nsim)

for(k in 1:nsim){

upper.limit[k]=sim_results[,i][[k]][beta]+

qnorm(0.975,n)*sim_results[,(i+5)][[k]][beta]

lower.limit[k]=sim_results[,i][[k]][beta]-

qnorm(0.975,n)*sim_results[,(i+5)][[k]][beta]

Conf_Interval[k,]=c(lower.limit[k],upper.limit[k])

real.alpha[k]=true_beta>Conf_Interval[k,1] && true_beta<Conf_Interval[k,2]

dx.alpha[k]=true_beta<sim_results[,i][[k]][beta]+

qnorm(0.95,n)*sim_results[,(i+5)][[k]][beta]

sx.alpha[k]=true_beta>sim_results[,i][[k]][beta]-

qnorm(0.95,n)*sim_results[,(i+5)][[k]][beta]

wald.test[k]=(sim_results[,i][[k]][beta]-

true_beta)/sim_results[,(i+5)][[k]][beta]

p_value[k]=2*min(pt(wald.test[k],n),1-pt(wald.test[k],n))

}

list(Mean_Conf_Interval=colMeans(Conf_Interval),

H0_accepted=sum(real.alpha=="TRUE"),

H0_rejected=sum(real.alpha=="FALSE"),

Real_alpha=1-(sum(real.alpha=="TRUE")/

length(real.alpha)),

Dx_alpha=1-(sum(dx.alpha=="TRUE")/length(real.alpha)),
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Sx_alpha=1-(sum(sx.alpha=="TRUE")/length(real.alpha)),

Mean_Interval_length=mean(Conf_Interval[,2]-

Conf_Interval[,1]),

mean_Wald.test=mean(wald.test),mean_p_value=mean(p_value))

}

#Inference results organization

summary.inf_true.beta1=summary.inf(1,2,b)

summary.inf_naive.beta1=summary.inf(2,2,b)

summary.inf_BCES.beta1=summary.inf(3,2,b)

ct3_true_beta1=c(summary.inf_true.beta1$Real_alpha,

summary.inf_true.beta1$Dx_alpha,

summary.inf_true.beta1$Sx_alpha,

summary.inf_true.beta1$Mean_Conf_Interval)

ct3_naive_beta1=c(summary.inf_naive.beta1$Real_alpha,

summary.inf_naive.beta1$Dx_alpha,

summary.inf_naive.beta1$Sx_alpha,

summary.inf_naive.beta1$Mean_Conf_Interval)

ct3_BCES_beta1=c(summary.inf_BCES.beta1$Real_alpha,

summary.inf_BCES.beta1$Dx_alpha,

summary.inf_BCES.beta1$Sx_alpha,

summary.inf_BCES.beta1$Mean_Conf_Interval)

##TABLE 1

true_t1<-ct1_true_beta1_100

naive_t1<-ct1_naive_beta1_100

BCES_t1<-ct1_BCES_beta1_100

xtable(true_t1,floating=FALSE,digits=c(rep(4,2)))

xtable(naive_t1,floating=FALSE,digits=c(rep(4,2)))

xtable(BCES_t1,floating=FALSE,digits=c(rep(4,2)))

## TABLE 2

#1-alpha=.95 #1-alpha=.90 #1-alpha=.99

true_t3<-ct3_true_beta1_100

naive_t3<-ct3_naive_beta1_100

BCES_t3<-ct3_BCES_beta1_100

xtable(true_t3,floating=FALSE,digits=c(rep(2,2)))

xtable(naive_t3,floating=FALSE,digits=c(rep(2,2)))

xtable(BCES_t3,floating=FALSE,digits=c(rep(2,2)))
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