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Abstract

Anomaly detection, which is the identification of rare items, has always been
an important applicative field, but with the increase in the availability of data
and computing power, it is experiencing a boost in its demands and promises.
From batch anomaly detection, often referred to as outlier detection, to an
onlineanalysis of real-timestreameddata series, theproblemsandchallenges
this branch of data science has to solve are countless. Important and central
in this works is to find a method to analyze video signals from CCTV cameras
in search of dangers to public safety, which then become the anomaly in this
context.

A framework that tries to account for many of the challenges typical of
anomaly detection is therefore devised, and an implementation, able to run
in realtime on mid-range edge consumer hardware (such as normal desktop
PC) is provided, based on an interplay between Convolutional Neural Net-
works and Hidden Markov Models. The framework and its implementation
also incorporate considerations typical of action recognition in videos. The
system thus obtained is tested first against the theoretical results found about
the interaction between the two machine learning models, and at a second
stage, on the task of identifying car crashes on real videos. Some problems
related to the availability of data and further work needed on the action
recognition task limit the results for the second point, but the overall system
shows good promises to be expanded in the future.
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Sommario

Quello dell’anomaly detection, ovvero dell’identificazione di elementi rari,
è sempre stato un importante campo di ricerca oltre che applicativo, ma
con l’incremento di disponibilità di dati e potenza computazionale, sta
sperimentando un incremento nelle richieste e promesse a cui è tenuto.
Dall’anomaly detection in batch, cioè offline, spesso chiamata anche outlier
detection, all’analisi online di flussi di dati in tempo reale, i problemi e le
sfide che questo ramo della data science deve affrontare sono innumerevoli.
Importante e centrale per questo lavoro è trovare un metodo per analizzare
segnali video da telecamere a circuito chiuso, alla ricerca di potenziali
problemi per la sicurezza pubblica, considerati come le anomalie in questo
contesto.

Una soluzione che cerca di tenere conto di molte delle sfide tipiche
dell’anomaly detection è prima ideata, poi implementata, in modo da essere
in grado di venir eseguita in tempo reale su hardware di media gamma
comunemente disponibile (come quello che si trova in normali desktop
PC). La soluzione è basata su Reti Neurali e Modelli di Markov Nascosti. La
soluzione trovata incorpora anche alcune tipiche considerazioni in ambito di
riconoscimento di azioni nei video. Il sistema così ottenuto è testato prima
contro i risultati teorici trovati, poi anche nel compito di trovare incidenti
stradali in video reali. Tuttavia, problemi con i dati disponibili e la necessità
di maggior lavoro sul riconoscimento di azioni hanno fatto sì che i risultati
in questo secondo caso siano limitati, anche se il sistema mostra buone basi
per continuare futuri sviluppi.
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1
Introduction

ANOMALY DETECTION is among the main applications of machine learn-
ing. Its main concern is detecting data points that do not fit well with

the rest, and maybe also the reason why that is the case. The applications
are countless and mainly related either to noise removal and data cleanup in
some instances, or securitymatters in others, like fault detection, fraud detec-
tion, predictive maintenance, social security.

The major problem though lies in the definition itself: the concept of “not
fittingwell” is never clearly definedby its ownnature. For a generic data point,
this condition, for instance, is affected heavily by seasonal trends, which a ro-

Figure 1.1: An example of a signal with anomalous samples.
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CHAPTER 1. INTRODUCTION

bust detection system must account for, or by the context. Imagine a sudden
spike in taxi rides: it may not be considered an anomaly of the signal in the
context of a thunderstorm going on at the same time unless it is clearly differ-
ent fromother spikes that happenedduring thunderstorms. Other challenges
an anomaly detector must face are: (i) minimizing false positives, to avoid
desensitization of the human controller; this is most important especially be-
cause such systems are most often used as an aid to controllers rather than a
standalone solution; (ii) generalization, that is the ability to scale to multiple
types of signals, provided in large quantity at the same time as well; (iii) ro-
bustness, to avoid starting misinterpreting anomalies as common behavior,
especially when continuous feedback is involved.

1.1 Common methods
There are several established methods to perform anomaly detection. The
most simple one is certainly to put static thresholds on the samples (upper
and lower bounds as necessary). As soon as a sample exceeds such values, it
is flagged as anomalous. This, albeit straightforward and actually closely ad-
herent with the definition of anomaly, doesn’t perform well in most cases, in
particular when the signal starts to become complex, both in terms of behav-
ior, by including seasonality and contextual changes, and growing in dimen-
sions, but also in its content (a one dimensional static signal out of a ther-
mostat compared to a three-dimensional one, related to time, like a video for
example).

1.1.1 Static methods
Many anomaly detection systems do not need to analyze time series, but
rather work on static distributions [4]. Common in such cases is to revert to
unsupervised clustering techniques, often based on learning a distribution to
determine the best clustering arrangement. In this instance, it is more com-
mon to refer to the anomalous sample as an outlier, and many applications
in this matter are related to fraud detection, networks performance analysis,

2



CHAPTER 1. INTRODUCTION

Figure 1.2: An example of a static outlier detection. The bigger the circle, the more the sample is
believed to be anomalous.

intrusion detection and such. Other techniques may try instead to model
either both abnormality and normality at the same time, or normality only,
to later find anomalous samples through some kind of comparison metric
between a predicted normal sample and the given, real, sample.

Also, statistical approaches are common. They involve modeling the data
by someproper distribution, to later apply thresholds on the likelihoodof new
samples, or their significance level (quantiles), to understand whether or not
to flag them.

A little bit more involved are graph-based methods, applicable when sam-
ples present a relational structure among each other, a condition not always
true. These techniques revolve around algorithms that are able to find com-
munities of, or rank, nodes,withperhapsoneof themost famousbeingPageR-
ank [5], that scores nodes based on random walks, and was behind Google’s
first search engine.

Lastly, deep learning methods based on artificial neural networks are also
useful in this instance. In particular [6] uses a very recent and powerful ar-
chitecture that goes under the name of Generative Adversarial Networks to
make an algorithm learn the normal data’s distribution very precisely, and a

3



CHAPTER 1. INTRODUCTION

mapping from a uniform distribution to this one, to then discover the anoma-
lies by reconstruction error: a sample from the uniform distribution is used
to generate a normal synthetic sample from the data distribution; later this is
compared to the actual real sample to see how much different they are.

1.1.2 Dynamic methods

Figure 1.3: System implemented by [1].

Much more difficult is to find anomalies in time series. Aside from adopt-
ing statistical thresholds, learned by fitting some distribution to the signal’s
samples, or by adopting dynamically changing versions of them, one can try
to first translate the signal in something simpler to manage, by some kind of
method. In this new representation, it may be the case that thresholds do ac-
tually start to perform better. For instance [1] states that anomalies detection
in mono-variate signals is similar to visual saliency. Hence, they employ a
Spectral Residual technique [7] coupled to simple convolutional neural net-
works to enhance anomalies, in order to later use dynamic thresholds on the
output. This results in the system of Figure 1.3. On a side note, such a system
is also implemented to scale to millions of time series per minute.

But what if seasonality and trends are to be kept in consideration? These
phenomena either make the signal have periodic behavior or they impose a
continuous decreasing or augmenting of its value, or maybe both behaviors
combined. Common solutions in this case typically try to decompose the sig-
nal into its building components to recover seasonality and trend tofinally ob-
tain a residual. Such techniques often involve the use of Fourier Transforms
and smoothing filters or a method that goes under the name of STL [8]. All
these components can then be analyzed in search of anomalies.

4



CHAPTER 1. INTRODUCTION

In any case, deep learningmethods, oftenbasedon recurrent architectures1

are largely employed too when time series are involved. For instance [9] com-
bines LSTMs (a type of recurrent network) with dynamically set thresholds on
their output to detect anomalies in telemetry data.

1.2 Action recognition in videos
Relevant to this work are also common techniques to perform action recog-
nition in videos. Albeit many attempts to solve this problem through expert
computer vision algorithms coupled with handcrafted features have been
made, recent breakthroughs in this field are due to deep learning methods.
An example of the former method can be [10], where dense trajectory are
extracted from the video, using optical flow and tracking algorithms; later,
Histograms of Oriented Gradients (HOG) [11] and other Histograms of
Optical Flows (HOF) [12] are applied in regions near tracked trajectories to
form a comprehensive descriptor for the action; this is repeated at different
scales (i.e. in very simplified terms, zoom levels on the video) to capture
different levels of details; lastly, descriptors are grouped in Bag Of Words [13]
ensembles during training, to perform the final detection at evaluation time.

Opposite to expert algorithms, are more automatic2 deep leaning methods.
These models showcase a plethora of architectures, ranging from two-stream
networks, where there are separate paths for spatial and temporal informa-
tion up until an information-fusion step before the final output. Therefore
alongside the raw input images or even some handcrafted features, such as
HOG, these networks are usually fed with Optical Flow information, in an ef-
fort to guide how they interpret the time information. This is the case for ex-
ample of the second version of [14], a two-stream I3D neural network.

Other approaches instead are more data-driven, meaning the networks
have to figure out all the necessary descriptive features entirely by them-
selves, starting from raw images. Temporal information is usually extracted
by means of specialized architectures, like three-dimensional convolutions,

1Some details are given out in the next chapter.
2Since they learn problem-representative features/descriptors by themselves.
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CHAPTER 1. INTRODUCTION

for instance as in [14, 15], or recurrent layers.

1.3 Motivations of the proposed system

Figure 1.4: Data Reply IT

This work has been developed as a research project within Data Reply IT, a
company belonging to the Reply Holding, focused on big data management
and analytics. One of the specializations within Data Reply is on physical se-
curity leveraging realtime data analytics. Thus, the company’s desire is to see
if a lightweight distributed alerting system on CCTV video streams is feasible.
The overall system draft Data Reply conceived has many parts, often cloud-
based, especially when it comes to training machine learning models. How-
ever, the part that has to detect a dangerous situation must run on local ma-
chines, which therefore have not unlimited computational power, as a scal-
able managed cloud solution would have. This is however needed to keep
detection as close to realtime as possible, since a centralized solution would
run intobandwidthproblemswhen receiving toomany video streamsat once,
not to mention the prohibitive costs that a cloud solution able to digest such
huge amount of informationwould require. Only the signal that something is
goingwrong, therefore,must be sent to the central component from the local-
ized machine, this way. The central controller can then decide what further
actions to take.

6



CHAPTER 1. INTRODUCTION

1.3.1 Requisites for the system
Because of the imposed conditions, the aim of this work is then to perform
a kind of anomaly detection, coupled with action recognition, relevant to the
public safety: itmust analyze video sources from still CCTV cameras in search
for dangerous situations, which go beyond normal behavior contextually to
the situation. Itmust also be able to classify them, or at least theirmain occur-
rences, while keeping realtime performances on edge devices (middle range
consumer-grade PCs), and a reasonably low false alarm rate.

As it shall be seen, an architecture is proposed to solve the stated problem,
however, due to difficulties with the datasets, a conclusive proof-of-concept
is not reached.

7





2
Background Theory

N EURAL NETWORKS are nowadays a commonway to extract knowledge au-
tomatically1 from some input data. But albeit powerful and extremely

versatile, they are known also to boast high requirements, both in terms of
hardware performance, and in the size of data they require, in order to learn
meaningful patterns out of them. Combining them with other models may
be of benefit, either because the overall system performance improves alto-
gether, while keeping the underlying data the same, or because it may be
possible to simplify the cost of the system (in terms of hardware especially,
but maybe also in the defining parameters of each model) sacrificing some
performance whilst keeping the committed error constrained. This work in
particular aims at studying what happens when a neural network has to work
alongside a Hidden Markov Model, in the particular context of anomaly de-
tection and classification in time series as shall be seen in later chapters.

This chapter, instead, discusses some needed theoretical background. It
will start with a brief introduction onhowneural networks are structured, and
how theywork, shortly focusing thenon common techniques to perform time
series analysis with them. It will then proceed with introducing the Hidden
Markov Model. Finally, it will introduce some result later needed to explain

1In the sense that a training process enables the network to figure out the relevant knowledge
by itself.
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CHAPTER 2. BACKGROUND THEORY

the interplay between these two models, which is the foundation upon this
work moves on. Lastly, this interplay happens on a ”common ground”, which
is a probability distribution. The chapter, therefore, ends presenting one suit-
able distribution, which exhibits some useful properties regarding the proba-
bility of error.

2.1 Neural Networks

Figure 2.1: Tipical structure of a neuron (right), and a LeakyReLU activation function (left).

The first works on neural networks (for short NN) date back to the early 40s
when researchers were attempting at proposing a theoretical model for the
human brain. Although far from capturing the complexity of our brain, the
resulting neuron model, when repeated and combined a sufficient number
of times, turned out to be pretty useful to approximate almost any function.

The basics of a neuron are as follows: it receives several inputs, in Figure 2.1
marked as xn plus an optional constant of value 1, called bias. Each input is
then weighted by the respective parameter wn or b for the bias, and then they
are summed together. It is also worth noting that when a network made of
these neurons is being trained, only the weights wn and b are updated by the
learning algorithm. So far the operation is a linear combination of the inputs,
hence to introduce nonlinearity to the output, the result of the summation
goes through a nonlinear activation function f : R → R. The nonlinearity
increases the representative capacity of the neural network.

10



CHAPTER 2. BACKGROUND THEORY

There are many possible activation functions to choose from, each with
pros and cons, especially when it comes to training very deep networks, due
to a problem known as vanishing gradient. A very common function is the
Rectified Linear Activation Unit (ReLU), defined as

f (x) = max(0, x) (2.1)

because of its simplicity and overall good performance in practical applica-
tions, even when it comes to very deep networks. The problem though is that
if a neuron receives negativeweights, the ReLUoutputs a zero. In the gradient
backpropagationphase of the training (which is themost common training al-
gorithm for anNN), then, the gradient itself is killed by such zero value, hence
the update of the networks’s weights may become less efficient. To overcome
this problema simple alternative is the LeakyReLU function, which is defined
as:

f (x) =


x if x > 0,

ax otherwise.
(2.2)

where a > 0 is small. Finally, such function avoids problems of vanishing
gradients because it doesn’t saturate to some limiting values, as is the case for
other activations of sigmoidal shape.

Neurons are hardly effective alone. The power of these kinds of models
comes from combining neurons together into layers. The more neurons in
a layer, the more expressive the resulting neural network becomes. But also
the type of connections is relevant in this sense.

The macro-categories current neural networks models fall into are:

• Deep versus shallow: theoretically for an NN is sufficient to have an in-
put layer and an output layer. Such a network can already represent a
verywide range of functions (actually all boolean functions g : {±1}m →
{±1}; refer to [16]), and if it has at least onehidden layer inbetween, then
the expressive power of suchmodels increases to approximating almost
every function. Butnowadays the vastmajority ofNNmodels areofdeep
type, that is, they have n ≫ 1 hidden layers. This has been proven to
vastly increase performances, since each layer crafts a set of features of
increasing specificity with respect to the previous, hence downstream

11



CHAPTER 2. BACKGROUND THEORY

layers have a sort of restricted set of hypothesis to work upon.

• Fully connected versus convolutional architecture: NN can have a
neuron of some layer k + 1 be connected to each of the neurons of
the layer k . This is the fully connected case. Such models are very
expressive, but also require a lot of training data to tune the huge num-
ber of weights thus present, as well as capable hardware to perform
the training iterations. Some benefits may come to restrict each layer
to share a set of common weights within it, and by having a neuron
at layer k + 1 be connected only to some selected neurons al layer k .
Such connections practically realize a convolution, hence the name of
convolutional neural networks (CNN). These models show a speedup
in computational performances, while at the same time requiring fewer
data to be trained, and are particularly well suited for image/video
analysis. The drawback to being aware of is that being the convolution
a symmetric operation, so does the CNN consider its input to be as
well. Lastly, care has to be taken, because such networks are not
invariant even to affine transformation (rotation, scaling, skewing) but
translation, not to mention more complex ones (mirroring, perspective
deformations, ...).

• Feedforward versus Recurrent: the most common NN architectures
are all feedforward, that is, neurons at layer k can only connect to neu-
rons at layer k + 1. But recently Recurrent Neural Networks (RNN) have
gained momentum, since they can learn patterns also in the time di-
mension, and they are able to exhibit memory as well. In such architec-
tures, a neuron receives as input its ownoutput (at a previous time step),
alongside the output of neurons in the previous layers (as is in a nor-
mal feedforward NN). The most promising results are obtained by the
so-called gated architectures, with particular regards to the Long Short
Term Memory (LSTM) one [17]. Gates are specialized neurons with usu-
ally sigmoid or hyperbolic tangent activations, that control the amount
ofmemory that can influence the output of themodule, or that can con-
trol how much of the input of the module can influence its memory
states. One of the reasons of the success of such gated modules is that
the recurrency makes the learning process unstable, whereas gates al-
low to stabilize it, other thangiving greater control on thememory states
themselves.

12
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As mentioned earlier, in order to train an NN, whichever architecture it has,
its weights must be updated. By far, the most common training method is to
optimize theNN iteratively by gradient descentwith respect to a loss function
defined on the output. This method takes the name of back-propagation be-
cause of theway the gradient is passed alongbackward through the layers, but
the details of it are omitted, being them not relevant for this work. Common
losses are the Mean Absolute Error or the Mean Squared Error for regression
tasks, whilst multi-class cross-entropy is useful in classification, but there are
many more. There are also other techniques to train a NN, such as genetic
algorithms, but they are out of the scope of this work as well.

2.1.1 Time analysis with Neural Networks
There are twomainmethods to exploit temporal informationwhenusingneu-
ral networks:

1. 3D CONVOLUTIONS. This method generalizes the convolutional net-
works to act on portions of volumes of the input rather than just
portions of planes (or even segments for 1D convolutions). All consid-
erations about convolutions are valid also in this case: 3D CNNs are
exceptionally good at extracting features that are invariant to transla-
tions in the spatio-temporal dimension, but they’re not invariant to
scaling or rotations, or in general affine transformations. This is not
a limitation though, if training is performed by keeping this in mind.
The biggest downside may be on the fact that time memory in these
networks is only as big as the time axis of the 3D filter, which is usually
small.

2. RECURRENT NETWORKS. These networks exhibit memory properties as
already explained, which can also be controlled in the gated version.
The advantage is thatmemory states can carry theoretically infinite time
information, although there are several technical limitations that pre-
vent this from being strictly true.

Because of their architecture, 3D convolutional networks aremore suited at
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identifying patterns that are locally commonboth in time and in space, hence
they are well suited for action recognition and classification, for instance, be-
cause it is most likely that an action will feature common behaviors with an-
other instance of itself but notwith the spatial backgroundor the time context
of its execution.

An RNN instead, when subject to new inputs, can leverage potentially all
the past history before such input, hence the time context may become rele-
vant as well. It has to be said that the gated RNNs have the ability to forget all
irrelevant long term information thanks to specialized “forget” gates, hence
if necessary they can behave “similarly” to a 3D CNN. That established, it is
still true that RNNs are verywell suited at time series regression or forecasting,
because of their infinite memory.

Each method has pros and cons, and perhaps a mix and match of the two
may bring greater performances than just either one alone. Also, the choice
of input informationmost often thannot has a great impact aswell. Of course
though, such considerations are highly application dependent, hence no fur-
ther general analysis will be carried on them throughout this work. Rather,
this work chooses a 3D convolutional approach for mainly two considera-
tions:

1. Its end target is a subfield of action recognition.

2. Hardware limitations. RNN are less efficient, requiring more resources.

2.2 The Hidden Markov Model
Markov Chains tells us something about the probabilities of se-
quences of random values, called states, each of which can take
values from some set. Hidden Markov Models are based on aug-
menting Markov Chains.

as pointed out in [2, section A.1]. The augmentation comes from the fact
that rather than observing directly the state sequence, only symbols emitted
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Figure 2.2: A two state Hidden Markov Model

by each state with some probabilities can be observed, whilst the states re-
main hidden, hence the nameof themodel. They are defined by the following
parameters:

S = {s1, ..., sN } a set of N states
T a transition matrix of size N × N , with each

entry τi j representing the transition proba-
bility from state i to state j , and such that∑N

j=1 τi j = 1
Z = {z1, ..., zT } a sequence of T observations
ξi (zt ) emission probability of observation zt from

state si

π1, ..., πN initial states probability distribution

Table 2.1: Hidden Markov Model parameters. Adapted from [2, section A.1]

Indeed Hidden Markov Models (HMM) are rather simplistic tools to
describe sequences, since they make two strong simplifying assumptions [2]:

1. MARKOV ASSUMPTION: the probability of a particular state only depends
on the previous state, and nothing else. Formally

P (si |s0, ..., si−1) = P (si |si−1) (2.3)
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2. OUTPUT INDEPENDENCE: the probability of an observation zi only de-
pends on the state that produced it, and not any other state or observa-
tion. Formally

P (zi |s1, ..., si , ..., sT , z1, ..., zi , ..., zT ) = P (zi |si ) (2.4)

Similarly to [18], with such assumptions, and defining E = {ξk (zt )}Nk=1, one
can write the probability of an observation sequence as

P (z1, ..., zT |s1, ..., sT ,E ) =
T∏

i=1
ξsi (zi ) (2.5)

whereas the probability of a state sequence is

P (s1, ..., sT |T, π1, ..., πN ) = πs0

T∏
i=2
τsi−1,si (2.6)

from which follows that the joint probability of observations and state se-
quences is

P (z1, ..., zT , s1, ..., sT |π,T,E ) = πs0

T∏
i=2
τsi−1,si ξsi (zi ) (2.7)

The overall stochastic process that can be inferred from the observations is
obtainedbymarginalization of (2.7) over all possible state sequences s, hence:

P (z1, ..., zT |π,T,E ) =
∑

s∈{sk }Tk=1

P (z1, ..., zT , s|π,T,E )

=
∑

s∈{sk }Tk=1

πs0

T∏
i=2
τsi−1,si ξsi (zi )

(2.8)

Now that themodel formulation is clear, there are a few common problems
that one would want to solve when using an HMM:

• Learningamodel’s parameters fromobservations. TheHMM’s param-
eters to be learned are its transition matrix, the emission probabilities
and the starting probabilities for the states. The number of states N in-
steadmust be given. Once a sequence of observations ismade available,
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this objective can be easily attained by means of the Baum-Welch algo-
rithm, an adaptation of the Estimation Maximization paradigm for the
HMM. The details of the algorithm are omitted, but it is a type of itera-
tive gradient-based hill-climbing method, hence it suffers from typical
problems of such techniques, such as getting stuck in non-optimal local
maxima.

• Finding the likelihood of an observation sequence. For an HMM with
known parameters, it is possible to use the forward phase of the Baum-
Welch algorithm to estimate the probability of an observation sequence
under the HMM.

• Decoding the most likely state sequence. For an HMM with known
parameters, it is possible to estimate the best (hidden) state sequence
given an observation sequence. The problem to keep at bay, in this case,
is an exponential blow-up of possible sequences that must be checked:
for an N -state HMM and an input observation sequence of length T ,
there are N T possibilities to be evaluated. Luckily, dynamic program-
ming can be used in practice to reduce the computational burden. A
very common choice in such sense is the Viterbi algorithm for sequence
decoding.

2.2.1 Tying parameters together
As the number of states in an HMM increase, alike described in [19], the num-
ber of parameters that must be found during training increases quadratically
in the number of states, because of the HMM’s transition matrix. This may
lead to a lack of data to support such a high number of unknowns. This prob-
lem can be solved by splitting the single HMM into multiple ones, and by ty-
ing together some of the parameters of the smaller models. Whilst the choice
of parameters to tie can be any, usually one would want to link together the
emission probabilities of some state into two ormoreHMMs. This is very use-
ful when different models use a state to represent the same event, while other
states in them are dedicated to representing other, more peculiar happenings.
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For instance, in speech recognition HMMs have been used for a while (up
until RNNs proved themselves more performing). Usually, speech utterances
are represented by 3-state HMMs, whose middle state can be the same on
many of such models, while the two outer states represent the context in
which the same utterance may appear. The common approach is to cluster
together any HMM that may share the middle state, by means of specially
crafted decision trees, and to give them all the same emission distribution to
associate to the middle state.

This work will make use of a similar approach; although, because it is
known apriori which state is shared by the small models, it is not required to
use decision trees or other forms of clustering to perform state tying. More
details will be given in the next chapter.

2.2.2 Probability of Error
Hidden Markov Models are often used for classification tasks, hence the third
problem stated above is among the most common to solve with this class of
models.

Being a probabilistic model, one can give a formulation for the probability
of error Pe . As in [20], assume there are M classes Ci , i = 1, ...,M into which
classify observations. A loss can be defined for misclassification, that is to
assign class C j to observation z when instead its real class is Ci . One possible
loss uses the a posteriori probabilities P (Ci |z) and is defined for each class as

R(Ci |z) =
M∑

j=1
ei j P (C j |z) (2.9)

where ei j is the cost of erroneously classify z as belonging toC j instead of its
real class Ci . When this quantity is set to

ei ,j =


0 i = j

1 i , j
(2.10)

(2.9) becomes the probability of error Pe (Ci |z) = R(Ci |z), and it can be refor-
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mulated as
Pe ,Ci =

∑
j,i

P (C j |z) = 1 − P (Ci |z)

Pe =

∫
Pe ,C (z)p(z)dz

(2.11)

Where C (z) is the class assigned to z. The optimal classifier, that achieves
Pe in a Maximum a Posteriori (MAP) fashion, implements then the rule

C (z) = Ci if P (Ci |z) = max
j

P (C j |z) (2.12)

But in order to really minimize Pe , one needs to maximize P (Ci |z) ∀i , as can
be seen in (2.11). Usually, these conditional probabilities depend on the joint
distribution of the observations and classes, and can only be estimated from
the training set (hence they are fixed for a particular dataset). It will be shown
in section 2.3.2 and the next chapter, that there’s actually a way to directly
maximize P (Ci |z) ∀i instead.

2.3 Systems’ behavior
In what follows, it is explained the theory developed for this work, and who’s
behind the method whose implementation is presented in greater detail in
a later chapter. For the moment, let’s assume the proposed systems is com-
posed of two probabilistic models λ and θ, each with (learnable) parameters
that define them uniquely. How do they interact together when they share
the same statistical manifold Z for their target distribution?

2.3.1 The minimax game
It turns out that one of the possibilities they have is to play a minimax game
with objective function

V (θ, λ) = Ez∼Pθ

[
log

(
1

pλ(z)

)]
(2.13)
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where Pλ(z) =
∫
z pλ(z)dz and Pθ(z) =

∫
z pθ(z)dz are the respective target dis-

tributions.

An immediate result is readily available:

Theorem 1 In the unique equilibrium point, assuming independence of sam-
ples z ∈ Z, it is verified that Pλ = Pθ and Ez∼Pθ [log (pθ(z))] is maximum with
respect to θ.

Proof.
The minimax game’s objective function can be written as

min
θ

max
λ

V (θ, λ) = min
θ

max
λ

Ez∼Pθ

[
log

(
1

pλ(z)

)]
=

= min
θ

max
λ

∫
z

pθ(z)log

(
1

pλ(z)

)
dz

+

∫
z

pθ(z)log (pθ(z))dz −
∫
z

pθ(z)log (pθ(z))dz =

= min
θ

max
λ
−DK L(Pθ | |Pλ) − Ez∼Pθ [log (pθ(z))]

(2.14)

At λ’s turn, its only way to maximize V (·) is to minimize DK L(·), being this
quantity not only always nonnegative, but also the only one λ has direct ac-
cess to. This is possible only for Pλ = Pθ, where DK L(·) = 0.

When is θ’s turn instead:

min
θ
−DK L(Pθ | |Pθ) − Ez∼Pθ [log (pθ(z))] = max

θ
Ez∼Pθ [log (pθ(z))] (2.15)

Hence there is an equilibrium point, with the required properties. This
point is also unique sinceV (·) only has this saddle point with respect to λ and
θ: as mentioned, λ can only minimize DK L , which has a single global min-
ima, whereas the expected value in (2.15) is always unique for each possible θ,
moreover no two different θ′ and θ̂ can have the same value for (2.15), because
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trivially
Ez∼Pθ′ [g (z )] = Ez∼Pθ̂ [g (z )]

⇐⇒
∫

z
g (z )pθ′(z )dz =

∫
z

g (z )p θ̂(z )dz

⇐⇒ Pθ′ = Pθ̂

⇐⇒ θ′ = θ̂

(2.16)

�

This theorem alone is not all that useful, because the equilibrium distribu-
tion cannot be controlled. But interpreting Theorem 1 as the stage of an infi-
nite horizon repeated game may bring some benefits towards such end. This
is exactly the result the following theorem explains:

Theorem 2 Let k = 1, 2, ... be the number of iterations forwhich the stage game
is repeated. Let also gk : RN → RN be a sequence of measurable functions (so
that y = gk (z) is a r.v. itself) such that limk→∞gk (z) = [I de nt it y F unct ion y = z].
Then for k → ∞ the infinite horizon repeated game has an equilibrium point
where Pλ(y) = Pg∞(y) = Pθ(g −1∞ (y)) = Pθ(z) and Ez∼Pθ [log (pθ(z))] is maximum
with respect to θ.

Proof.
The objective function of the repeated game is only slightly modified due to
gk (·)with respect to Theorem 1:

min
θ

max
λ

Ey∼Pgk

[
log

(
1

pλ(y)

)]
(2.17)

Due to Theorem 1, though, at each iteration k , for the stage game, is still
true that it converges toward the unique equilibrium point given by

Pλ(y) = Pgk (y)

max
θ

Ey∼Pgk

[
log (pgk (y))

]
= max

θ
Ey∼Pθ(g −1k (y))

[
log

(
dPθ(g −1k (y))

dy

)]
(2.18)

where the measurability of gk has been leveraged. Because the equilibrium
point is unique at each stage, for Proposition 2 in Appendix A, also the re-
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peated game has the same equilibrium point. Finally, the equality

Pλ(y) = Pg∞(y) = Pθ(g −1∞ (y)) = Pθ(z) (2.19)

is a direct consequence of the measurability of gk and the convergence of
the sequence towards the identity function, as k →∞.

�

The function gk (·)practically enables gradually shaping the equilibriumdis-
tribution in a desirable way. For this reason, while formally the same, the
equilibrium point of Theorem 2 is rather different from that of Theorem 1, on
a practical, operational, level.

The following lemma instead gives an operativeway to find the equilibrium
point for θ:

Lemma 1 maxθ Ex∼Pθ [log (pθ(x))] ⇐= maxθ
∑

n log (pθ(xn)) for n →∞.

Proof.
From [21] the Monte Carlo Estimator for Ex∼Pθ [log (pθ(x))] is

1
N

N∑
n=1

[
log (pθ(xn))pθ(xn)

p(xn)

]
(2.20)

Indeed it is

Ep

[
1
N

N∑
n=1

[
log (pθ(xn))pθ(xn)

p(xn)

] ]
=

=
1
N

N∑
n=1

Ep

[
log (pθ(x))pθ(x)

p(x)

]
=

=
1
N

N∑
n=1

∫ [
log (pθ(x))pθ(x)

p(x)

]
p(x)dx =

=

∫
log (pθ(x))pθ(x)dx =

= Epθ [log (pθ(x))]

(2.21)
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where P (x) =
∫ x

−∞ p(x)dx is an arbitrary distribution, hence it can be chosen
equal to Pθ(x), obtaining the estimator

1
N

N∑
n=1
[log (pθ(xn))] (2.22)

Such estimator equals the estimated quantity only for n →∞. In this situa-
tion

max
θ

Ex∼Pθ [log (pθ(x))] = max
θ

1
N

N∑
n=1
[log (pθ(xn))] = max

θ

∑
n

log (pθ(xn)) (2.23)

from which the Lemma follows.

�

The Lemma allows to operatively estimate the value for the equilibrium
point of θ, in particular as a Maximum Log-Likelihood estimation. There are
several efficient algorithms that performsuchestimation, anotable onebeing
the Expectation-Maximization (EM) family of algorithms.

It still remains to prove that the equilibrium point is actually reached by
the game, since it may be the case that this is not true in some games and or
situations. The proof is adapted from [22, proposition 2]:

Proposition 1 Given a sufficient number of samples from Z, the infinite hori-
zon repeated minimax game converges towards its unique equilibrium point.

Proof.
Since DK L(Pgk | |Pλ) is convex with respect to both distributions, with an argu-
ment similar to [22, proposition2], it follows that actuallyPλ converges toward
Pg∞ (which is held fixed, similarly to D in the reference) for k → ∞. Lastly,
thanks to Lemma 1, even θ converges as expected at each iteration k , given
n →∞ samples coming from Z.

�
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Figure 2.3: A one-dimensional binary Gaussian constellation.

2.3.2 Gaussian constellation

The concept of a constellation, especially associated with Gaussian probabili-
ties, ismainly employedwithin the communication engineeringworld, where
it is used for digital signal modulation, however, its properties about the error
probability can be of interest in this context.

Figure 2.3 depicts a binary constellation, with nonuniformprobabilities for
its components. Inwhat follows all Gaussians probabilities associated to each
component are assumed of equal variance, and in the multivariate case, it is
also assumed independence among dimensions, so that each Gaussian can
be characterized as N(µi ,σ2I). The MAP criterion assigns a random point z
to the Gaussian that maximizes its a posteriori probability, which can be ex-
pressed as P (Ci |z) = P (z|Ci )P (Ci )/P (z). Here P (·|Ci ) is Gaussian, whereas P (Ci )
are the a priori class probabilities. P (z) is instead irrelevant for the maximiza-
tion criterion. This translates in finding optimal regions that partition the
space such that Ri ∩ Rj = ∅ ∀i , j and Z = ∪iRi . When a point falls within
region Ri , then class Ci is assigned to it. In Figure 2.3, optimal regions R0 and
R1 are delimited by ρ01. In such point it must be true that

P (ρ01 |C0)P (C0) = P (ρ01 |C1)P (C1) (2.24)
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With simple enough computations, it turns out that

ρ01 =
d01
2 +

σ2

d01
ln

(
P (C0)
P (C1)

)
=

d01
2 + ϵ01 (2.25)

where d01 =
√
(µ0 − µ1)2 is just the distance between two components of the

constellation. Notice that asd01 →∞ the additional informationcoming from
knowing the a-priory class probabilities becomes negligible in determining
the regions’ edge. In the binary case, then, the error probability is

Pe = 1 − Pc = 1 − [P (z ∈ R0 |C0)P (C0) + P (z ∈ R1 |C1)P (C1)] =

= 1 −
[
P (z ≤ d01

2 + ϵ01 |C0)P (C0) + P (z ≤ d01
2 − ϵ01 |C1)P (C1)

]
=

= Q

(
d01
2 + ϵ01

σ

)
P (C0) +Q

(
d01
2 − ϵ01
σ

)
P (C1)

(2.26)

Where symmetry considerations have been exploited as well. Q (·) is the
complementary error function for a Gaussian probability instead.

Figure 2.4: The two-dimensional version of the constellation employed in this work.

To tackle the case of M +1 classes useful for this work, the constellation that
is actually considered is constructed as follows:

• There is a central component, representing class C0, which also has the
highest probability of all classes (P (C0) > P (Ci ) ∀i = 1, ...,M ), placed at
the origin of RM /2.
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• all the other M classes (M ideally even) are placed in pairs along the
eigenvectors ofRM /2, eachmember of a pair sitting opposite to the other
with respect to C0, along a chosen eigenvector.

Figure 2.4 has a depiction of the constellation for the case M + 1 = 5. This
particular constellation has the advantage to put the central component,
since it is the most probable one, against all the others.

FindingPe for anon-binary constellation, especially in closed form, ismuch
more difficult, hence, as explained in [23], it is convenient to resort to an up-
per bound. An easy method leverages the mutually exclusive events of bi-
nary errors between two classes, and the union bound. This often results in
a bound not very tight, however, due to the low probability assumed for each
non-central component, in this case, most of its inefficiency comes from con-
sidering multiple times the central region. But being the most probable one,
the central regionhas also a lowprobability of an error, hence for such constel-
lation the overall lower bound, albeit loose, is acceptable. This is even more
true, because, in the context of this work, it can be made arbitrarily small,
pushing the real Pe close to zero, by optimizing d0k ∀k = 1, ...,M .

With such considerations, the upper bound for the error probability of the
M + 1 classes instance is

Pe ≤
M∑

k=1

[
Q

(
d0k
2 + ϵ0k

σ

)
P (C0) +Q

(
d0k
2 − ϵ0k

σ

)
P (Ck )

]
(2.27)

At this point, theoretically letting d0k →∞∀k would make sure that Pe → 0.
If one just wants to be sure that Pe for the constellations stays below a thresh-
old h, an even looser upper bound can be used:

Pe ≤ M Q

( d0k
2 − ϵ0k

σ

)
(2.28)

where k represents the index of the second most probable class. Hence

Pe ≤ h =⇒


d0k ≥ Q−1(hM ) +
√
[Q−1(hM )]2 + 2σ2ln

(
P0
Pk

)
d0k ≤ d0k ∀k = 1, ...,M

(2.29)
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WhereQ−1(·) is the inverse of the complementary error function. Of course,
being (2.28) very loose, the resulting d0k will bemuchhigher thanwhat strictly
necessary, but this is uninfluential for this work.
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3
System Architecture

AN IMPLEMENTATION of what has been found previously is presented in
this chapter. With the models that have been chosen, though, a perfect

implementation is not possible: some suboptimalities are present and must
be dealt with.

This chapter therefore first introduces how the flow of input data is orga-
nized. It then proposes an algorithm to implement what is explained in the
Theory Chapter, making some considerations on what influence neural net-
works architecture have on the system in themeantime. Lastly, itmakes some
clarifications on how each piece works together with the others.

3.1 Input Data Flow
This works deals with time series, hence the need to organize the input data
flow in a structured manner. Theory wise, no assumption is made on the di-
mensionality of the data, other than itmust have a dimension interpretable as
time; though when it boils down to the implementation, data are assumed to
come in video format (hence it is 3-dimensional: time × image width × image
height). From now on, input data will be referred to as ”video” without loss of
generalization.
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The video stream is divided into contiguous non-overlapping pieces, cur-
rently exactly one second long, and those pieces shall be referred to as seg-
ments. Each segment is then considered to be made up of t units, where for
the moment t = 5.

The objective of the work is to classify each unit into a class, either repre-
senting normality or one of several abnormalities. In the following, the nor-
mal class may be referred to also as negative, whereas the others as positive.
A rather strong but realistic assumption must be made at this point:

Assumption 1 each unit is strictly classifiable into one and only one class;
moreover, an abnormal unit can only be followed either by another one coming
from the same abnormal class or by a normal unit.

Also, if needed, every segment that contains at least one abnormal unit is
considered tobe the same itself, otherwise it is normal. Assumption1 restricts
the range of ”legal” segments, visible in Table 3.1. Whilst this can not be lever-
aged during training to optimize it, it can be used to filter out false detection
during inference. Further work may investigate also if there is something to
gain in considering the order in which segments can follow each other since
Assumption 1 also imposes restrictions on it.

NORMAL ABNORMAL
− − − − − − − − − +, − − − + +, − − + + +, − + + + +

+ + + + +

+ + + + −, + + + − −, + + − − −, + − − − −

Table 3.1: Visual representation of each allowed segments. Normal units are marked with ”−”,
abnormal with ”+” instead.

To conclude, it should be pointed out for clarity that one unit does not cor-
respond to one video frame, but to a group of them. How large is the group
depends on the frames per second (FPS) property of the video. Currently, the
videos used all have 30 FPS each, hence a unit should map to a group of 6
frames. In reality, it maps only to 3 frames but sampled in an interleaved fash-
ion so as to cover the same time span of 6 of them (this is because of the need
for data augmentation, explained in the next Chapter).

30



CHAPTER 3. SYSTEM ARCHITECTURE

3.2 Minimax Game implementation
The following algorithm provides an implementation of Theorem 2:

Algorithm 1 Infinitely repeated minimax game
Input
λ ← neural network
θ ← hidden markov model
x ← input videos
s ′← ground truth labels

1: procedure training(λ, θ, x , s ′)
2: for k = 1, 2, ... do
3: z ← λ (x) , z ∈ Z ◃ z is the NN prediction about the input x
4: Train HMM on z , z ∈ Z
5: s ← θ (z ) ◃ s are the predicted labels (states of the HMM)
6: if s = s ′ then return

◃ the gk function of Theorem 2 has become an identity
7: Train λ on s ′ and x to output a Gaussian constellation on Z

Algorithm 1 takes as input a neural network and a Hidden Markov model,
with roles of λ and θ respectively. Also, the videos and their unit-level labels
areprovidedas input alongside themodels. The repeated gamecan then start,
but it must be noticed that the minimax stage game is laid out in a different
order than what is hinted at in Theorem 1 and 2: the actual game starts with
training λ and ends when θ is asked to predict the videos’ labels. This is just
an implementation convenience, as it can be assumed that in the very first
iteration the NN has already been trained, finding itself with random weights
as a result.

The gk function Theorem 2 talks about, instead, corresponds to the known
and invertible mapping between s and s ′, for each turn k . The convergence
of such mapping towards the identity is a result of the training procedure of λ.
Now, Assumption 1 makes sure there is a strict one to one mapping from s to
z ∈ Z and s ′ to z ′ ∈ Z (the ground truth sample coming from the target distri-
bution) as well. Therefore as s converges towards s ′, so does z with z ′. When
this happens, both λ and θ share also the samedistributionon the latent space
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Z. Unfortunately, this is not strictly true because of some suboptimalities that
come from the choice of an HMM as θ: it goes further than interpreting the
underlying distribution as a static Gaussian constellation since it also consid-
ers the transition probabilities among components. Luckily, Assumption 1
enforces also low transition probabilities between the normal class C0 and all
the other abnormal classes Ci , i = 1, ...,M , while there aren’t at all transitions
between two abnormal classes. This means that the approximation error of
modeling the static Gaussian constellation outputted by λ by means of θ is
kept somewhat small. In turn suboptimality is traded with a greater easiness
of implementation by utilizing this architecture.

3.3 Neural Network Architectures

Figure 3.1: Neural Network’s architecture.
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The objective the NN architecture must accomplish is to take video seg-
ments as input and produce asmany generative parameters for Gaussians (µi

andσi for i = 0, ...,M ) as there are units within a segment. Many architectures
were evaluated, ranging from simple feedforward networks to recurrent ones.
At last, the architecture stabilized onto the following structure:

• A 3D convolutional part that performs feature extraction fromvideo seg-
ments.

• Two distinct fully connected parts that take the feature vector found be-
fore and output respectively all the needed µ and σ.

A sketch is visible in Figure 3.1. The convolutional componentmainly takes
inspiration from [24], because it allows for great modularity, extending it also
to use 3D convolutions. Of great importance is also the concept of residual
blocks, that allow keeping the vanishing gradient problem, particularly evi-
dent for very deep networks, at bay. Other architectural considerations are
adopted aswell. In particular [25] introduces the use of convolutionswith ker-
nel 1 to allow for increased computational speed, useful for realtime perfor-
mances,while theyare alsohandy tokeep thenumberof trainableparameters
under control. At the same time, reduction/increase of the number of convo-
lutional filters creates bottlenecks in the data flowwithin the network, forcing
it to learn meaningful representation efficiently, softening learning problems
due to a reduced number of weights. In [21, 26] instead is explained how the
use of uncorrelated Gaussians samples as the output of the network helps in
regularizing the results, while at the same time favoring disentanglement of
features. All these considerations are embedded in the network architecture.
There aremany other improvements that can bemade, for instance providing
multiple propagation paths within the network, to encourage for filter uncor-
relatedness, but they are left for future development. As fas as why 3D convo-
lutions have been chosen, asmentioned in the previous Chapter, it is because
of the locality of the features they extract, as well as computational resources
availability and constraints.
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3.3.1 Architecture Details

Figure 3.2: Neural Network’s building modules. Naming conventions are the same as explained
for Table 3.2.

The whole architecture only uses 3 types of modules:

1. The main building block of the convolutional architecture, visible in
Figure 3.2 (left), is the residual block, from [24]. These blocks learn the
input/output mapping y = H (x) − x rather than just y = H ′(x), hence
H (x) = H ′(x) + x . The weights in the block have to be adapted only to
learn the residual with respect to the identity y = x , and this turns out
to be most often an easier problem to solve on its own: rather than
to learn a completely new function H (x) from scratch, the optimizer
that performs gradient descent has a starting point to begin with, x
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itself. Moreover, the gradient backpropagated through the identity
connection doesn’t get multiplied by possibly small weights, keeping its
intensity unchanged for later layers to benefit from, adding quality to
the learning process, and allowing for deeper architectures. Therefore
the block presents two paths: one is cut-through and realizes the
identity mapping y = x , the other one has trainable weights on it, and
learns the residual function. At last the two paths are added together.
The weighted path also presents convolutions with kernel 1 before
and after the main convolutional layer, for computational efficiency
considerations, but whose role is also to perform bottlenecking of the
information by changing the number of filters.

2. Another module, visible inf Figure 3.2 (center), performs instead
spatial/temporal dimensionality reduction by means of a max-pooling
layer. This operation divides the input volume into a grid, and for each
cell of the grid, it takes the maximum value within and copies it to the
output, thus reducing the dimensions of the latter. The pooling layer is
followed by convolution with kernel 1 to allow the network to fine-tune
the result, without impacting performances.

3. The last module employed, as pictured in Figure 3.2 (right) is just a nor-
mal fully connected layer, where each neuron has a connection with all
the neurons of the previous layer.

Each layerwithin amodule is also followed by a LeakyReLU activation func-
tion and by a batch normalization layer, whose role is to standardize the out-
put of a layer during training only. This is a measure to stabilize the learn-
ing process [27]: at each iteration of gradient descent, every layer changes its
weights; this means that at the next iteration every layer not only has to adapt
the weights to converge towards the minimum of the objective function but
also to account for all other layersmodifications; this slows down the training,
and batch normalization aims at reducing this effect by means of standardiz-
ing theoutput of each layer. Theonly exception is the very last fully connected
layer of eachof the two separate paths, where the activation is linear and there
isn’t any batch normalization, being these layers the output ones.

Lastly, to avoid boundary problems, convolutions are padded using sym-
metric extensions of video volumes boundaries, rather than using the default
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BINARY
Conv3D (f[8], k[5,5,5], s[1,2,2])

Pooling Block (f[8], s[1,2,2])
1 Residual Block (f[16])

Pooling Block (f[16], s[3,2,2])
1 Residual Block (f[32])
Global Average Pooling

Fully Connected (f[32]) Fully Connected (f[32])
Fully Connected (f[16]) Fully Connected (f[16])
Fully Connected (f[1]) Fully Connected (f[1])

Gaussian Sampling
MULTICLASS

Conv3D (f[16], k[5,5,5], s[1,2,2])
Pooling Block (f[16], s[1,2,2])

1 Residual Block (f[32])
Pooling Block (f[32], s[3,2,2])

1 Residual Block (f[64])
Global Average Pooling

Fully Connected (f[64]) Fully Connected (f[64])
Fully Connected (f[32]) Fully Connected (f[32])
Fully Connected (f[1]) Fully Connected (f[1])

Gaussian Sampling

Table 3.2: Neural networks architectures parameters for the binary and multiclass classification
problems of the generated dataset.

zero-padding. This is especially useful in the time dimension, to enforce a
more consistent behavior of the convolution near borders of two contiguous
video segments.

The following table sums up the architecture for two neural networks used
on a generateddataset (see next Chapter), for the binary classification and the
multiclass cases respectively. Thenotation f[⋆] highlights howmanyfilters (or
units in a fully connectedmodule) there are at the output of the block. For the
convolutional part of the networks, k[⋆] denotes the dimensions of the kernel
where present, with time being the first dimension. Instead, s[⋆] denotes the
strides, with the same convention as for the kernel.

Both networks receive as input video segments of size 15 × 28 × 28 where

36



CHAPTER 3. SYSTEM ARCHITECTURE

the first number is the time dimension, and output 5 points belonging to Z,
the Gaussian constellation space, grouped in a matrix 1 of size 5 × 1. Here the
first number also denotes time, as interpreted by the HMM that follows.

3.3.2 Variations on architectures
As mentioned, many variations on the architecture were evaluated. The most
notable ones are:

• Different breaking points: different positions for the point where the
architecture splits and creates two paths, after the Global Average Pool-
ing layer, have been analyzed. No particular benefits of moving it lower
were observed over the proposed architecture, though. Quite the con-
traryhappenedbymoving it higher, wheredegradationof performances
was observed. This is expected since the two resulting sub-networks
have too little common points, and end up threating the same input
video segment in anuncorrelatedmanner, whereas this is not true: each
path must find mean and variance, respectively, for the same element,
hence they are correlated in some way.

• Different activation functions: at some point Leaky ReLU were
swapped with classical hyperbolic tangent (”tanh”) activations, mostly
to try to counter a problem of exploding activations the NN model
suffers a bit from. However, they greatly reduced performances since
they often saturated in the small-gradient regions, preventing the NN
from learning adequately.

• Number of learnable parameters: being the NN structure modular, es-
pecially in the convolutional part, it is somewhat easy to change the
number of learnable parameters, from some hundreds of thousands all
the way up to tens of millions. The models in Table 3.2 have approxi-
mately 25k and 57k parameters respectively.

To try to solve some problems on the real dataset, aside from tinkering with
the above architectural changes, two other methods where considered:

1More correctly a tensor, using TensorFlow’s naming convention.
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• AutoEncoder: after the Global Average Pooling layer, a third path, other
than the two Fully Connected ones, was added. This path had the same
functions as the decoder portion of an Auto Encoder.

• Transfer learning: transfer learning from pre-trained I3D [14] and C3D
[15] nets have been attempted. These networks replaced the convolu-
tional part plus some of the first Fully Connected layers of the architec-
ture.

Since this deserves an in-depth explanation, more will be said in the next
Chapter.

3.3.3 Neural Network’s Loss

Algorithm 2 KL divergence loss
Input

µ1,σ1 ← ground truth values
µ2, log _σ2 ← estimated values from the NN

1: procedure KL_loss(µ1,σ1, µ2, log _σ2)
2: σ2 ← exp (log _σ2)
3: d ← Round

(M
2
)

◃ M + 1 is the dimension of the constellation
4: log _det1 ←

∑d
k=1 log(σ1,k )

5: log _det2 ←
∑d

k=1 log _σ2,k
6: log _det ← log _det2 − log _det1
7: t r ace ← ∑d

k=1 σ1,k/σ2,k
8: pr od ← ∑d

k=1(µ2,k − µ1,k )2/σ2,k
9: K L ← 1

2 (t r ace + pr od − d + log _det )
10: return K L

The NN must output, for each unit of a video segment, matching µ and σ
with the ones provided by the Gaussian Constellation. This can be accom-
plished by defining a loss over how much the output of the NN differs from
the target value. A mean squared error loss is often employed for regression
problems such as this one, but in this particular instance, it is also possible to
use directly the Kullbach-Leibler divergence between multivariate Gaussians
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since it has a closed-form expression. This not only more closely matches the
result of Theorem 2, but also provides the optimizer for the NN with direct
knowledge of the difference between two Gaussians, rather than just an indi-
cation of how good the NN is performing.

The KL divergence for the multivariate case is:

DKL(N1 ∥ N2) =
1
2

(
tr

(
Σ
−1
2 Σ1

)
+ (µ2 − µ1)TΣ−12 (µ2 − µ1) − d + ln

(
|Σ2 |
|Σ1 |

))
(3.1)

Finally, because it is assumed that Σi = σi I , i.e a diagonal matrix, the loss is
implemented as in Algorithm 2. The σ2 value is interpreted as log(σ2) by the
NN to force it’s non-negativitywithout imposing constraints on the activation
of the last fully connected layer.

3.4 Hidden Markov Model Architecture

Figure 3.3: Inference procedure for M tied state HMMs: z is the input sequence, whereas s (i )

is the predicted state sequence, selected from the highest scored HMM i , in terms of the log-
probability l (i ).

The Hidden Markov Model architecture is fairly simple, thanks to Assump-
tion 1. For a two classes classification problem it is sufficient to use a two-
state HMM as shown in Figure 2.2. Indeed, the first state represents the neg-
ative class, whereas the other one the positive class. Transition probabilities
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towards the states themselves, that is τ11 and τ22, are expected to be very high,
close to 1; the others are of course low, somewhat close to 0.

To extend the HMM to the multiclass instance, one would need to add one
state per extra positive class. This would result in a quadratic explosion of
trainable parameters, because of the transition matrix. An explosion that is
entirely wasteful, since the matrix is very sparse, having only the main diago-
nal and the first row and column different from zero (because of Assumption
1).

To exploit the knowledge of this sparsity, it is sufficient to notice that the
normal class fares against only one of the positive classes at a time. Hence
it is possible to create M 2-state HMM, where M is the number of abnormal
classes: each one of these little models has one state to represent the normal
class, an the other to represent its positive class of reference. It is then suffi-
cient tomake sure the representationof thenegative class is consistent among
each model. This translates simply in making sure the emission probability
associated with the elected state is the same in each model. This is a very
simple implementation of the state tying strategy briefly explained in Subsec-
tion 2.2.1, especially because which state must be tied is known, eliding the
need for a decision tree (that must be trained as well). Just a little care must
be taken in training separately each HMM on inputs coming only from the
normal class plus the respective positive class.

During inference, instead, each HMM has to be run on the same input se-
quence: the one yielding the highest fit is selected to explain the data. A rep-
resentation is visible in Figure 3.3.

A note on the training is due at this point: as mentioned in Chapter 2,
HMMs are trained by means of MAP criterion. Because their input data
comes from the latent space Z, whose distribution gradually resembles
a Gaussian constellation, it is possible to increment their classification
performance. The constellation is built to maximize P (z |Ci ) ∀i , which has a
Gaussian shape. This ends up being associated with the emission probabil-
ities of the HMM, hence whilst suboptimal, because emission probabilities
do no not define completely the HMM distribution, maximizing them helps
increase the overall performances nonetheless.

Incidentally, the lower bound found for the constellation which considers
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separate binary errors ends up beingmore fit for the particular training proce-
dure chosen for theHMM,which is binary in nature itself. Having M different
models, albeit tied on the negative state, is less efficient error wise, because
the transitions between the negative and positive classes are not normalized
together (i.e. ∑M+1

i=1 τ1i ≥ 1 and ∑M+1
i=1 τi1 ≥ 1), hence Pe found in (2.28) for the

constellation is a bettermatch for the Pe of the overall system thanwhat could
be expected by simply looking at the constellation. Better considerations on
this are deemed as future work though.

3.5 Putting everything together
Now that all elements from theory to their implementation have been
presented, the reasons behind the overall system can be more clearly put
together: objective of this works is to create a realtime system, able to run on
mid- to high-end commodity hardware, that performs continuous anomaly
detection on temporal data, with particular regards to videos (coming from
CCTV cameras, for example).

To tackle the continuous detection problem, input data has been divided
as explained in Section 3.1. This creates a difficulty in keeping consistency
among different video segments and their composing units that go through
the neural network, with the risk for them to end up being treated separately
and independently by the NN. The Hidden Markov Model provides then a
simple solution to the problem: it assumes that each unit within a segment
depends also on the previous one, linking them explicitly. This assumption
though is in itself too weak to tackle the complexity of actions and conse-
quences typically common in a video, not to mention the fact that feeding
directly a video to theHMM is impossible tomanage. Hence the need to train
theNNand theHMM jointly with the considerations of Chapter 2 to optimize
the end result as most as possible.

Lastly, it must be made clear that the space Z over which theory results are
obtained, is not actually the space of the videos, that is instead X. This latter
data space is the input of the neural network alone, while Z is situated at its
output, and it is this one that is of concern for the Hidden Markov Model too.
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4
Methods

THIS CHAPTER first presents the frameworks andhardware adopted for this
work. It then introduces the datasets, then it concludes with some con-

siderations on the training methodology.

4.1 Frameworks

Figure 4.1: Logos of each framework: Tensorflow (left), Keras (center), hmmlearn’s parent
framework, ScikitLearn (right).
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There are many frameworks and enabling technology for Machine Learn-
ing (ML) and Artificial Intelligence (AI). They are mostly built around the
concept of computational optimization, because ML/AI workloads are
notoriously heavy, with different target architectures in mind: from mobile
devices to managed clusters on cloud services. User-friendliness is also
important to make them available to the most widespread range of users.
Tensorflow, with its Python interface and Keras abstraction layer, is chosen in
this context to implement the NN because it is able to scale to every conceiv-
able architecture, while providing an easy-to-use interface, that can be easily
swapped and interchanged with the complete set of functions and tools
when more control is needed. It is also a very complete and comprehensive
framework, albeit still under heavy development. HMMLearn is chosen for
providing an HMM implementation instead.

4.1.1 Tensorflow
Tensorflow is an open-source symbolic math library, especially useful for ma-
chine learning, that is able to operate at a large scale and in heterogeneous
environments [28, 29]. Therefore, of capital importance is for it to be flexible.

Flexibility is achieved by means of a unified data carrier, that is a multi-
dimensional array, called tensor. Many of these structures flow1 around a
computational graph of primitive operators, which represents the symbolic
operations that the program must run. A node in such graph idealizes in-
stead individual mathematical operators, allowing for optimizing computa-
tional performances, but also for automatic differentiation of mathematical
expressions: an extremely important capability, that is leveraged by many al-
gorithms, especially (stochastic) gradientdescent. But a computational graph
expresses also dependences of operators from previous ones, hence compu-
tations can be split and distributed among different hardware, and then run
in parallel. Another key point in Tensorflow’s architecture is the heteroge-
neous hardware abstraction, from which the scalability of this frameworks
comes from, hence multiple hardware components among the same one or

1hence the name of the framework
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distributed within different machines, and even made of different architec-
tures (CPU, GPU, TPU, etc.) is handled almost seamlessly.

4.1.2 Keras
Keras [30] is a high-level neural network library, written in Python, designed
with fast experimentation and easiness of use in mind, achieved in particular
through modularity and extensibility. It supports a variety of backends Ma-
chine Learning libraries, such as Tensorflow, providing a uniform interface
for all of them. Actually, as of the time of writing this work, Keras is officially
supported and shipped within Tensorflow itself, with the role of a landing in-
terface that enables easy prototyping of NN models.

Keras provides implementations of commonly usedNN layer types, such as
fully connected or convolutional, but also advancedones, like gated recurrent
layers. It also provides support for common input data types (text, images,
...) to feed the models with, but can manage also custom types, thanks to
the mentioned extensibility. Lastly, it provides built-in training distribution
strategies that leverage the backend’s facilities to take advantage of parallel
hardware.

4.1.3 HMMLearn
HMMLearn [31] is a library that boasts simple algorithms and models to
learn Hidden Markov Models, and is written in Python. It follows Scikit-
Learn’s2 interface philosophy, with minor adaptations to allows for sequence
data tractability. It provides implementations for HMM with Gaussian or
Gaussian Mixture emissions, trained with the Baum-Welch algorithm, and
either the Viterbi algorithm or a dynamic programming version of a MAP
algorithm, to speed up computations on sequences. It is also extensible to
other distributions, provided one knows how to implement the Estimation
Maximization algorithm for them. This is generally not necessary though

2An open-source library with simple and efficient tools for data mining and data analysis
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since Gaussian Mixture are generic approximations for every distribution,
provided they have enough mixture components.

4.1.4 Hardware
During the first experimentations, the models where run on commodity
hardware, comprising an intel i7-8750H, an NVIDIA GTX1050Ti and 16GB
of system memory. Later on, when dimensions of the NN and memory
requirements to host the dataset demanded a more suitable platform to train
them, development switched to a small cloud solution, with an 8-core virtual
CPU, 25GB of system memory, and an NVIDIA K80 GPU. The cloud solution
is mandatory only when training on the real video dataset (explained in
a short while), whereas with the generated one, the commodity hardware
is more than enough. Once trained, the models were tested for realtime
performances on a desktop PC equipped with a GTX 1070, an Intel Core
i7-6700K, and 16GB of RAM.

4.2 The datasets
A few datasets were used in this work. One is generated starting from fashion-
MNIST and it is intended to test the general behavior of the system, especially
against what has been uncovered in Chapter 2. Then UCSD anomaly detec-
tion dataset was briefly used but foundheavily inadequate, and later replaced
by UCF Crime, although this ended up not resolving the lack of a sizeable en-
semble of training samples either. Each dataset is described in detail in what
follows.

4.2.1 Generated dataset
Fashion-MNIST [32] is a dataset of Zalando’s article images, that keeps the
same size and proportion of the original Digit-MNIST, that is 60,000 train-
ing samples and 10,000 testing samples, divided equally among 10 classes.
Each sample is constituted by a 28x28 image, of grayscale intensities andwith
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the background already removed. The dataset is intended as a more com-
plex benchmarkingdataset thanDigit-MNIST, and the classes areT-Shirt/Top,
Trousers, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, bag, Ankle boot, la-
beled from 0 through 9.

However it is made up of still images, hence there is the need to turn it into
a video sequence for thiswork. The idea is to pile images sequentially tomake
a video, of course. The frames per second are fixed at 15, to match the output
of data augmentation on the two real datasets. One of the classes is elected as
the normal class (the 0 labeled T-Shirt/Top class), and it is given the highest
probability of appearing. All other classes are threated as anomalies and they
are given an equal probability of appearing in the video, which is strictly less
than that of the negative class. To actually generate a stream of labels (out
of which later create the video) that complies to Assumption 1, a 10-states
Markov Chain with a handcrafted transition matrix that has nonzero values
only on themain diagonal and both the very first row and column, is sampled
a sufficient number of times. For each consecutive stream of the same label,
a random image is extracted from the respective class to compose the final
video either from the train or from the test pools of samples, depending on the
circumstances of the training procedure. Random rotationswere also applied
to images but quickly removed too, because the very low resolution made the
images quickly fade to a uniform blob.

4.2.2 UCSD Anomaly Detection dataset

Figure 4.2: Three snapshots from UCSD Anomaly Detection dataset, showcasing three different
anomalies (highlighted within boxes), and the two available scene backgrounds.

The UCSD Anomaly Detection is a dataset collected on the campus of the
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University of California San Diego by means of a stationary camera overlook-
ing two pedestrian walkways.

Anomalies, as considered by the authors, are:

• the circulation of non pedestrian entities in the walkways

• anomalous pedestrian motion pattern

Commonly occurring anomalies include bikers, skaters, small carts, peo-
ple in a wheelchair, and people walking across the grass rather than staying
on the walkway. All events were not staged, as they were captured as nat-
urally occurring [33]. Each video features one of two possible scenarios as
visible in Figure 4.2, with different walking directions of people. Lastly, clip
length is around 150 frames, eachwith dimensions 238x158 pixels for the first
scenery and 360x240 pixels for the second. The first scenery also has a total
of 34 clips void of anomalies and 36 with at least one anomaly, wheres the
second scenery has 16 and 12 respectively.

This dataset quickly became inadequate, due to too few clips to train a neu-
ral network on direct anomaly detection when the anomaly itself is so small
compared to the frame (notice the relative size of the red boxes in Figure 4.2
compared to thewhole frame). Indeed the only information the system is pro-
vided with is whether or not there is an anomaly in a group of frames, but not
where such an event is located spatially to help the NN in learning useful fea-
tures. There have been attempts instead at a more indirect approach, based
on the reconstruction of the normal scene to find the anomaly by difference,
like in [34] where a complex system of autoencoders and a generative adver-
sarial network is used with such end, which can achieve some success in this
dataset.

4.2.3 UCF Crime dataset
UCF Crime is a dataset consisting of 1900 untrimmed surveillance videos
grouped in 13 classes of risks, plus a normal class, selected because of their
impact on public safety [3]. Videoswere collected fromYouTube and LiveLeak
using queries holding the classes as keywords within, in different languages
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Figure 4.3: Some snapshots from UCF Crime dataset. Difficulties inherent this dataset are also
visible: events are little compared to frame size and often out of focus.

as well. The dataset contains videos coming from CCTV cameras, but many
instances where captured as part of some news, hence there are overlays
and cuts, as well as many repetitions of the same scene from different
perspectives. The vast majority of videos are colored, but there are some that
are in grayscale only. Lastly, each video was elaborated to account exactly 30
frames per second, and have 320x240 (4:3) resolution.

Only video level labels are provided with the dataset: manual annotation
of the per-frame ground truth was carried out for this work only on the ”Road
Accidents” class. The criterion used is: the anomaly starts at the firstmoment
two or more vehicles touch each other, or when a vehicle first touches one or
more obstacles/people and ends the first instant all the involved parties lay
still. Each anomaly thus highlighted lasts less than 10 seconds with a mean of
2.5s . To avoid repetitions within the same video, portions of 15 seconds are
cut from these videos, each having an entire abnormal sequence plus some
contours, to reach the target temporal span, where the situation is still consid-
ered as normal. The proportion of negative and positive labeled units is 83%
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and 17% respectively.
This dataset proved itself very challenging, up to thepoint that itwas impos-

sible to extract meaningful results out of it. Part of the difficulty comes from
the same reasons explained for the UCSD dataset: anomalies are small com-
pared to thewhole frame size, andbecause the task is to classify the anomalies
other than detecting them, there are unfortunately too few samples per class
to leverage for training. This problem ismadeworse by the fact that situations
within the same class also boast high variance. For instance, people hit by
cars, bikes falling for many reasons, cars hitting urban obstacles, cars hitting
other vehicles, all with highly varying degrees of ambient conditions ranging
from sunny days to snowy ones going through night conditions as well, are all
classified as road accidents.

CLASS # OF VIDEOS
Abuse 50
Arrest 50
Arson 50

Assault 50
Burglary 100
Explosion 50
Fighting 50

Road Accidents 150
Robbery 150
Shooting 50

Shoplifting 150
Stealing 100

Vandalism 50
Normal 950

Table 4.1: Classes within the UCF Crime dataset and their size. Table reproduced from [3].

Data augmentation was also applied to this dataset. Firstly, to double the
clips, the time dimension was sampled in an interleaved fashion, obtaining
two videos out of the original one, but each with 15 instead of 30 FPS. More
aggressive sampling could have been tried, but this would have reduced the
number of time samples per second too much while generating too similar
samples as well. Whole videos were also randomly flipped along the horizon-
tal dimension (the vertical one wouldn’t make sense) and a small amount of
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white noise or blur was added randomly. The common technique of region
cropping to obtain more clips could not be applied, due to the mentioned
small relative size of the abnormal region withing each frame.

4.3 Training method
The last things left to discuss in this chapter are some considerations on the
training procedure.

Training is done in a fully supervised manner, with manually annotated la-
bels. This means also that this method relies on a good number of examples
coming from the positive classes, an assumption that is not always possible
to adhere to in the context of anomaly detection. Further work must con-
centrate therefore in two directions: (i) relax the supervised approach, with
a more weakly oriented one, maybe leveraging a framework such as Multiple
Instance Learning [35, 36]; this means to provide only video level labels, as
the UCF Crime dataset already does, instead of frame-wise or even pixel-wise
labels; (ii) consider if it is possible to adapt or extend this method to learn
a general definition of normal behavior, to then understand that there is an
anomaly simplybynoting that the analyzed signal behavesdifferently bywhat
has been experienced during training; ideally, this way the system would be
able to classify all the positive instances that had enough samples during the
training phase, and for all those anomalies that didn’t, the system would still
be able to say there is a generic abnormal situation happening.

Moving on the data-feeding pipeline instead, the Neural Network receives
its inputs, regardless of which dataset they come from, in grayscale format
(if they aren’t already), and in batches of consecutive video segments (of size
32 when using generated videos, and size 20 when using real videos, due to
memory constraints), rather than one at a time; each batch is also standard-
ized: the mean µB and the standard deviation σB are found, and then each
frame x of each segment undergoes the following transformation:

x̂ = x − µB

σB
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The NN is then fed with x̂. No other transformations are applied to the in-
put, following a data-driven3 training paradigma.

When it comes to Algorithm 1 instead, it has to be said that at each itera-
tion k the NN must be trained to a sufficient level of accuracy for the current
configuration of the target constellation. This means that for each k , the NN
is trained a certain number of epochs, currently fixed at 10, and the learning
rate of the gradient descent optimizer is also reduced by some schedule de-
pending on k . Then the HMM can be trained. It also has to achieve some
target level of accuracy in its estimations of the gaussian constellation: cur-
rently, the tolerance for the EM algorithm is set to an error of 1 × 10−3. Lastly,
after each iteration k , the system also undergoes a validation test to see how
it is performing overall.

To conclude, as mentioned in Chapter 3, some important modifications to
the architecturewere also experimentedwith: (i) Auto Encoders and (ii) trans-
fer leaning from pre-trained NN models.

An Auto Encoder (AE) is a type of neural network that aims at reconstruct-
ing its own input, that is, it aims to perform an identity function. This would
be useless, if it wasn’t for the fact that in doing so the NN is also forced to en-
code all the information needed for the reconstruction of the input in as little
space as possible, hence there always is a choke point in the architecture of
an AE. Such choke point is in practice a feature vector, therefore AEs are of-
ten used for their ability to extract meaningful and compressed features. This
is possible because the first part of the AE structure, before the choke point,
learns to look only at relevant details in the input, while the second part of
the structure, after the feature vector, learns to encode all the redundant and
correlated portions of the input, to later add such information during the re-
construction of the details from the feature vector, and therefore obtain an
output as close as possible (by some chosen metric) to the input.

While describing the datasets, it was noted that the abnormal event in a
video occupies only a small portion of the frame. The rationale beyond using
anAE in the systemarchitecture, therefore, is to have the secondhalf of the AE

3The NN must learn everything it needs from the original data, without external conditioning,
for instance by providing handcrafted features as inputs alongside or in substitution of the
videos.
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learning all the useless portions of the video signals, allowing the first half to
better concentrate on the relevant patterns within each video segment. After
the training phase, the second part of the AE can be disposed of, obtaining
also a more compute-efficient system (than the whole AE) as a byproduct.

It was also noted that the datasets have too few samples to work upon.
Transfer learning is therefore intended to jump-start the gradient descent for
the NN from a solid starting point, the result of a previous training procedure,
that is hopefully closer to the global optimum rather than a casual starting
point obtained from a random initialization of the weights of the NN.

A discussion about what results these two architectural modifications
brought is left for the next Chapter, though.
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5
Results

THIS CHAPTER AIMS to understand what kind of results the proposed al-
gorithm and its implementations yields. Therefore the binary class case

with the generated dataset is analyzed firstly, to provide a baseline for later im-
plementation and dataset variants. Then, the multi-class instance, with the
generated dataset as well, is put under the magnifying glass, followed by the
binary class realization of the auto-encoder and the I3D architecture on the
UCF crime dataset. UCSD’s dataset is not taken into consideration because
of already mentioned problems.

The properties analyzed for each implementation are twofold:

1. how well a method adheres to results from Theorem 2.

2. how good of a classifier the method is.

The metrics tracked for the first point are the neural network’s loss over
trainingandvalidationepochs1, theHMM’s log likelihoodover iterations, and,
most importantly, the error plot between the target distribution Pt rue of theZ

space, the NN’s output distribution PN N , and the HMM’s distribution PH M M .
In such plot Pt rue is also overlayed on top (or beside if more convenient) to
make clear what is the target distribution’s aspect. The plot actually displays

1Each iteration k of Algorithm 1 comprises 10 epochs for the NN in the current setup
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the MAE error function for each of the L sampled points in Z, computed as
follow:

M AE (z ) = |2Pt rue (z ) − PN N (z ) − PH M M (z )| (5.1)

Because PN N can only be estimated by computing the samples’ histogram,
Confidence Intervals for α = 95% are shown too. The only exception is the
plot for the multi-class case, where for graphical reasons first, Confidence In-
tervals are omitted, and second, the actual 3D constellation is projected onto
two dimensions only to allow for the plot to be drawn.

Lastly the Mean Absolute Error is estimated as:

M AE =
L∑

l=1

M AE (zl )
L

(5.2)

For the second point, instead, the confusion matrix is computed, also in its
normalized version. Suchmatrix encodes information on howwell each class
is identified correctly, as well as displaying both for which classes the current
one is mistaken (type I error, false positives) and which classes are mistaken
for the current one (type II error, false negatives). Out of thismatrix, precision
and recall scores are computed as well to better understand how type I and II
errors affect the system, and the overall harmonic mean of these two, called
Fβ-score, is computed too as

Fβ = (1 + β2)
pr ecision · r ecall

β2 · pr ecision−1 + r ecall−1
(5.3)

The parameter β weights the precision against the recall, and 0 ≤ Fβ ≤
1 (the closer to 1 the better). Since at the moment there is no clear need to
optimize the system’s performances to minimize either type I or II errors, β is
set to 1.

It should also be noticed that the worst-case classification scenario is
adopted: it is not sufficient for the system to just identify a portion of an
anomalous sequence to say that a correct detection happened; it must
instead identify individual anomalous units within a video.
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5.1 Still open problems
There are some open problems that remains to be solved:

• Stopping condition: in Algorithm 1 the stopping condition is attained
when the series of gk (·) functions reaches the identity. This is however
difficult to obtain in practice, because of both the NN’s and HMM’s in-
ability to reach a perfect optimum. The problem is that without such
condition the NN can be over-trained, worsening the results. Common
techniques to stop an NN from over-train can be adopted, but more
studies need to be carried out to understand the impact, if any, on the
overall method.

• Choosing the best HMM: in the multi-class instance, the best HMM is
selected as per the criterion explained in Section 3.4. This may not be
the optimal choice, therefore somemore considerations into thismatter
can prove useful, in the future.

5.2 Generated dataset: binary case

57



CHAPTER 5. RESULTS

Precision [0.982, 0.989]
Recall [0.998, 0.899]

F1-score [0.990, 0.942]
MAE 0.027 ± 0.032

Figure 5.1: Results obtained without using class weighting (Generated dataset, binary case).

Thebinary classification taskwith the generateddataset behavesmostly as ex-
pected. In Figure 5.1 The neural network reaches a good value for the training
loss quickly in a bunch of epochs, and later, as it continues to improve slowly,
the validation loss sticks close to that of the training and shows an overall
good behavior. Fluctuations in both losses are due to the constant changes
of images used to build videos. The HMM likelihood oscillates more wildly,
but it must be considered that it is the end sum of thousands of sequence’s
likelihoods (actually 4200 5-units segments), hence even small oscillations do
matter a lot. No general trend can be spotted for such curve, however, mostly
because the NN converges quickly to it’s optimum and therefore the overall
system benefits from this, stabilizing itself around its optimum too. This also
means that so many iterations and epochs are not strictly necessary, hence
the need for a good stopping condition. It has to be noted also that the very
first HMM’s likelihood was removed from the plot, since it has been executed

58



CHAPTER 5. RESULTS

against the random output from the NN, and therefore it has no actual mean-
ing.

The good behavior of the system is matched by the (normalized) confusion
matrix, where it can be seen that the negative class is recognized almost per-
fectly, whereas the positive class, although it exhibits some type II errors (false
negatives), is found correctly 90% of the times. The F1 score confirms this, be-
ing close to 1 for both classes.

The shape2 of the error function (5.3) reveals the culprit for such inefficien-
cies: it is mostly the NN that is unable to match the target Gaussian constel-
lation, since it shows indecision on some samples, that ultimately causes for
it to put them somewhere in the middle between the two classes. This is the
root cause of the error around the values in the interval [−7.5, 2.5] in the plot.
In turn, this indecision causes theHMMto try tomatch theNN’s output distri-
bution, pumping up the double camel-like hills around −10 and 0, more than
what the sole NN would have caused. However two things should be noted:
(i) the error near −10 and 0, the two chosen constellation centers, is close to
zero, hence a lot of samples do end up having the right distribution, and (ii)
the overall MAE is low.

Still, future work may want to concentrate around solving such NN inef-
ficiency, improving its training routine, while at the same time it may con-
sider changing theHMM’semissiondistribution to themoregeneralGaussian
Mixture, and the target distribution too, in an effort to reduce the described
effects. Moreover, Theorem 1 is instead well adhered to, the problem being
mostly in some difficulty in converging towards the identity function as fore-
casted by Theorem 2.

Lastly, Figure 5.2 shows the most relevant results when class weighting is
applied. It must indeed be remembered that there is a heavy class unbalance,
as can be seen from the unnormalized confusion matrix. Therefore in com-
puting the loss for the NN, the positive class contribution was boosted until it
matched the negative class’s. This showed, however, to bring no benefit at all
in this instance, mostly because of the simplicity of the generated video.

2the closest to zero the better fo course
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Precision [0.983, 0.975]
Recall [0.996, 0.905]

F1-score [0.990, 0.938]
MAE 0.028 ± 0.030

Figure 5.2: Relevant results obtained using class weighting (Generated dataset, binary case).

5.3 Generated dataset: multiclass case
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Precision [0.87, 0.99, 0.68, 0.91, 0.68,
0.97, 0.62, 0.96, 0.96]

Recall [0.97, 0.96, 0.67, 0.82, 0.65,
0.95, 0.22, 0.97, 0.87]

F1-score [0.92, 0.98, 0.68, 0.86, 0.66,
0.96, 0.32, 0.97, 0.91]

MAE 0.001 ± 0.003

Figure 5.2: Results obtained without using class weighting (Generated dataset, multi-class case).

Figure 5.2 shows the results for the multi-class instance instead. As emerged
from trials, and as can be seen anyway slightly towards the end of the NN’s
validation loss (that has a slight tendency in diverging from that of training),
here there is the risk for overfitting, hence the system was stopped training
manually to avoid this phenomenon. Instead, the HMM’s likelihood exhibits
the expected behavior: it improves with the iterations. There are actually no
guarantees on how the likelihood must behave, but it is expected to improve
as the NN’s output distribution becomes closer to the gaussian constellation,
because thiswas chosen since it can be better represented by theHMMrather
than more unstructured ones.

The classification performances are overall good, as told by the (normal-
ized) confusion matrix. Some classes are more difficult for the NN to clas-
sify into the correct peak of the constellation, hence some error is present for
the overall system, for the same reasons exposed in the earlier section. As
expected though, mostly such positive classes are misunderstood for the neg-
ative one, because they are well under-represented with respect to the latter.
This is reflected by the precision and recall metrics, with the first being con-
sistently higher than the second. The errors are understandable as well: the
most misplaced class is the ”SHIRT”, confused with the much more frequent,
and very similar indeed, ”T-SHIRT” (negative) class.

For graphical reasons, the error function is plotted only in two dimensions
rather than the total 3 (there are M + 1 = 8 + 1 classes in total, which gives
3 dimensions for the constellation), and for the same reason Confidence In-
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tervals could not be drawn. The same NN’s indecision can, however, be spot-
ted again between the smaller peaks, belonging to positive classes, and the
central highest peak, representing the normal class. More in general, the be-
havior is the same as for the binary case, only in more dimensions. MAE is
again low, actually much lower than before, but this is also the result of hav-
ing more dimensions to account for, hence performances are the same as the
binary instance.

Lastly, classweighting, as visible inFigure5.3brought somebenefit, increas-
ing reconnaissance in those classes that struggled more before, penalizing
slightly the normal class instead.

Precision [0.91, 0.96, 0.81, 0.71, 0.75,
0.96, 0.51, 0.97, 0.97]

Recall [0.91, 0.96, 0.76, 0.84, 0.71,
0.94, 0.49, 0.96, 0.95]

F1-score [0.91, 0.96, 0.78, 0.77, 0.73,
0.95, 0.50, 0.96, 0.96]

MAE 0.001 ± 0.006

Figure 5.3: Relevant results obtained using class weighting (Generated dataset, multi-class case).
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5.4 UCF crime: auto-encoder

Precision [0.813, 0.183]
Recall [0.869, 0.128]

F1-score [0.840, 0.150]
MAE 0.055 ± 0.047

Figure 5.4: Results obtained without using class weighting (UCF crime, auto-encoder).
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Switching to the UCF Crime datasets caused a whole lot of troubles, and to
try to solve them this and the following methods were attempted. It can be
seen immediately in Figure 5.4 however that theNN training is not successful:
while the training loss keeps decreasing, the validation loss either stays con-
stant or tends to increase rather than doing the converse, and this means that
the network is seemingly overfitting on the training data, whilst being unable
to generalize, even to new data coming from the same (unknown) generating
process. And the auto-encoder structure is of no help in this circumstance
since the decoder part of the NN is not able to guide the encoder towards dis-
criminating those relevant volumes of videos that are of interest for the pur-
pose of anomaly detection. This is probably due to the same reason as amore
straightforward method didn’t work either: the inability to find the relatively
small volume that encloses the anomaly within the video segment, mostly be-
cause of a lack of sufficient data.

Class unbalance, that should have made the NN gravitate towards identify-
ing everything as the normal class, since this is an easy way to optimize the
loss in this circumstance, being this class over-represented, instead did not
play a role. This is visible both in the (normalized) confusion matrix, where a
surprisingly strong classification ability3 for the positive class is present, and
in the error function that shows errors are widespread and consistent along
most of the relevant portion of the Z space. As for the misclassification error
at 13% committed for the normal class, or the same for the positive class (at
87% instead) it should be noticed that relative class frequencies are exactly
87% and 13%, therefore because the error is widespread, this means basically
that the NN is actually guessing mostly randomly the mean and variance to
assign to each unit of a video, rather than overfitting to the normal class only,
therefore units end up being classified either correctly (the diagonal blocks
in the confusion matrix) or wrongly (the anti-diagonal blocks) as positive or
negative by the HMM with the same chances as the classes actually appear in
the dataset. Quite a different effect should have happened if the NN would
have overfitted to the normal class only. This shows that the AE structure has
some regularization capability, that may be of interest to studying on a more
adequate dataset.

3The ability is very poor at 13% only, but it is relatively strong as it is totally unexpected.
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Introducing class weighting instead strangely favors the negative class,
whilst the positive class has no appreciable benefits whatsoever, as Figure
5.5 shows. This is probably because now the positive class is slightly more
decisively discriminated in the few instances the NN is able to do that, and
this is sufficient for the HMM to correctly classify the normal class also in
those 13% situations that previously were ambiguous. The converse is not
true instead, leaving the misclassification error fro the positive class high, at
86%.

Precision [0.834, 0.778]
Recall [0.991, 0.141]

F1-score [0.906, 0.239]
MAE 0.056 ± 0.043

Figure 5.5: Relevant results obtained using class weighting (UCF crime, auto-encoder).

5.5 UCF crime: transfer learning from I3D
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Precision [0.820, 0.444]
Recall [0.985, 0.054]

F1-score [0.895, 0.096]
MAE 0.085 ± 0.083

Figure 5.6: Results obtained without using class weighting (UCF crime, I3D).

The situation shown in Figure 5.6 is similar to that of the previous method
when it comes to theNNandHMMtraining. But now there is actually a strong
tendency of overfitting towards the negative class, with a (normalized) confu-
sion matrix that shows that pretty much every video unit is though to be nor-
mal by the HMM. The error function indeed is more concentrated towards
the negative class this time. The cause of this can be sought in the initial-
ization state for the NN: it was trained on the Kinetics dataset [37], a rather
different one in kind from UCF, and this means that such initialization point
is basically equivalent to a random one from the perspective of this problem.
Unfortunately, it was impossible to find a suitable model trained on a similar
dataset as for the needs of this work.

This, jointly with the lack of samples made the NN unable to find even the
slighted way to discriminate positive and negative classes from each other, at
least without providing class weighting, as it seems from Figure 5.7. Indeed
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there is a dramatic improvement in the latter instance when it comes to the
positive class, albeit not nearly as good as is desirable. This seems to be a
promising direction, but the training procedure must be revised in order to
try to obtain some relevant results, because, again, the system was manually
stopped as it was gradually overfitting and going towards the same results as
in the no-weights case: it simply was taking longer to do that.

Precision [0.848, 0.329]
Recall [0.840, 0.342]

F1-score [0.844, 0.336]
MAE 0.096 ± 0.127

Figure 5.7: Relevant results obtained using class weighting (UCF crime, I3D).

5.6 Real time performances
A supporting data ingestionpipeline is notwithin the aims of thiswork, hence
it is assumed that upstream on a production system there is a data source
able to provide videos at 15 or 30 FPS in realtime from CCTV cameras. With
this premise, the system runtime performances were tested on a desktop PC
equipped with a GTX 1070, an Intel Core i7-6700K, and 16GB of RAM.

Thebottleneck is representedby theNeuralNetworkwhich is computation-
ally expensive, and since it runs off theGPU, it requires data transfer back and
forth from the main system memory (RAM) to the VRAM on the GPU, a noto-
riously slow operation, which is however optimized internally by TensorFlow.
The separate HMM models for the different classes are small and computa-
tionally very fast instead, moreover, they can be executed in parallel to each
other on the output of the NN.
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MODEL RUNTIME (seconds) FPS
AE 8.66 ± 0, 06 ∼ 277
I3D 17.33 ± 0.21 ∼ 138

Table 5.1: Runtime performances of the AE and I3D models.

The models tested were for the AE and the Transfer Learning cases. The
first has about 35M parameters in a ResNet architecture, of which only about
20M active during evaluation (since the others belong to the decoder, not
needed aside when training the model), whereas the second has 12.5M, in
an Inception 3D architecture. The models were repeatedly asked to analyze
2400 frames in total (that is 160 seconds on video), obtaining the following:

The reason for the I3D model performing worse, albeit smaller, is due to
its multiple-paths architecture, which creates many waiting points in Tensor-
Flow’s computational graph, compared to the more linear architecture of a
ResNet. It can be seen in Table 5.1 that both models are more than able to
cope with the required 15 FPS or 30 FPS of the supposed video stream.
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6
Conclusions

THERE ARE MANY WAYS, SYSTEMS, IDEAS, onhowtoperformanomalydetec-
tion since the concept of anomaly itself is ambiguous and especially is

context-dependent. Thereforemost often thannot, handcrafted solutions are
required, depending on each task, as a universally good performing anomaly
detector doesn’t exist.

Hence, this work aims to find an anomaly detection and classification
method suitable for video analysis. Starting therefore from the definition
of what is an anomaly in this context, a theoretical framework that satisfies
the requirements behind this work has been presented and discussed in
detail. This thesis also introduced an architecture that can implement such
a framework, based on a combination of a Neural Network and a Hidden
Markov Model.

The architecture, albeit not perfect, behaves mostly as expected when it
comes to adhering to theoretical results. A practical application couldn’t be
pursued unfortunately instead, due to technical difficulties related to the
dataset, and more work is required around this problem.
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6.1 Future work
Future reflection points have been already proposed throughout this thesis.
To sum them up, the most important future direction to pursue is to stabilize
the system to work properly in a real situation. This not necessarily implies
finding a better dataset, since UCF already is a good starting point (albeit it
can enjoy some expansions), but rather a better NN architecture, able to cor-
rectly identify small portions of video volumes as the focal point where an
anomaly is happening. Some sort of attention mechanism perhaps based on
[7] may be sough to this end, as well as switching to a (gated) recurrent struc-
ture. Coupled with this, further insights into the Auto-Encoder architecture
may be of interest as well.

After this has been accomplished, to implement a weakly supervised train-
ing procedure is ofmost relevance. A candidate framework has been found in
the Multiple Instance Learning paradigm [35], also because it showed already
some results on the UCF Crime dataset itself, as described by the researchers
that created it.

Of a slightly less priority, there is the need for fine-tuning the training proce-
dure for the system, by solving the twopoints exposed in the previous chapter,
namely a better stopping condition to avoid over-training and a more consis-
tent way of choosing the best performing HMM among the pool when multi-
ple positive classes are to be discriminated.

From a theoretical standpoint, switching to a different emission probabil-
ity for each HMM state must be evaluated, with particular reference to the
Gaussian Mixture, which has established proofs in the literature of improving
the HMM model performance. Also, a better understanding of the coupled
NN-HMM system error, and how it is influenced by individual errors of the
two models is required. In particular, it has been seen in the previous chap-
ter that critical for the performance is still the good behavior of the NN, more
than the HMM’s.

To conclude, anomaly detection introduces many interesting challenges,
keeping the research interest alive and stimulated, as well as providing count-
less possibilities for constant improvement.
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A
Additional Theory Notions

THIS APPENDIX contains somematerial taken fromother sources that com-
prise useful notion for Chapter 2, reported in this work also for the sake

of completeness.

A.1 Converging to Equilibrium
Proposition 1 cites the following result from [22, Proposition 2]: the Genera-
tive Adversarial Networks model optimizes the following function:

V (G ,D) = Ex∼pdat a [log DG (x)] + Ex∼pG [log (1 −DG (x))] (A.1)

and for anyfixedG (andhence pG ), Doptimizes the virtual training criterion

U (pG ,D) = max
D

V (G ,D) (A.2)

So then:

Proposition 2 If G and D have enough capacity, and at each step of Algorithm
1, the discriminator is allowed to reach its optimumgivenG, and pG is updated
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so as to improve the criterion

V (G ,D) = Ex∼pdat a [log D∗G (x)] + Ex∼pG [log (1 −D∗G (x))] (A.3)

then pG converges to pdat a .

Proof.
Consider V (G ,D) = U (pG ,D) as a function of pG as done in the above crite-
rion. Note that U (pG ,D) is convex in pG . The subderivatives of a supremum
of convex functions include the derivative of the function at the point where
the maximum is attained. In other words, if f (x) = su pα∈A fα(x) and fα(x) is
convex in x for every α, then ∂f β(x) ∈ ∂f if β = ar g su pα∈A fα(x). This is equiva-
lent to computing a gradient descent update for pG at the optimal D given the
corresponding G. su pDU (pG ,D) is convex in pG with a unique global optima
[as proven in [22, Theorem 1]], therefore with sufficiently small updates of pG ,
pG converges to px , concluding the proof.

�

A.2 Game Theory Bits
What follows is taken from [38, chapters from 7 to 10].

First, let’s introduce the concept of strategy in a game with i = 1, ...,n play-
ers, where each of them, when it’s their turn to move, has some knowledge,
formally described by information sets hi ∈ Hi , about the state of the game
and other players’ strategies:

Definition 1 A pure strategy for player i is a mapping si : Hi → Ai that assigns
an action si (hi ) ∈ Ai (hi ) for every information set hi ∈ Hi . A mixed strategy σi is
just a probability distribution over all pure strategies of player i .

Then, in a game, each player has a payoff (a score on how it values the par-
ticular outcomeof the game)vi (σ1, ...,σi , ...,σn) that depends onhis strategies,
but also the strategies of all other players. At this point:
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Definition 2 The mixed strategy profile σ∗ = (σ∗1, ...,σ∗n) is a Nash equilibrium
if for each player σ∗i is a best response to all σ∗j , j , i , that is

vi (σ∗1, ...,σ∗i , ...,σ∗n) ≥ vi (σ∗1, ...,σi , ...,σ∗n) ∀i ,σi (A.4)

In a rational setting as assumed in Game Theory, all players aim at maxi-
mizing their payoff, whereas cooperation is not guaranteed unless particular
conditions are present. The Nash equilibrium represents just an equilibrium
point where all players are guaranteed to obtain maximum payoff in relation
to other players’ strategies, but it doesn’t entice cooperation on its own since
it arises from selfish considerations of rational payers. It may be the case that
cooperating assures an overall higher payoff for each player, but further deep-
ening these considerations is out of scope for this work.

Lastly, theNash equilibrium is extended as follow in the context of repeated
games:

Definition 3 Let G be an (extensive-form) n-players game. A strategy profile
σ∗ = (σ∗1, ...,σ∗n) is a subgame perfect Nash equilibrium if for every proper sub-
game G’ of G, the restriction of σ∗ to G’ is still a Nash equilibrium in G’.

hence, finally:

Proposition 3 Let G (δ) be an infinitely repeated game with i = 1, ...,n play-
ers, and let (σ∗1, ...,σ∗n) be a static Nash equilibrium strategy profile of the stage
game G. Define the repeated game strategy for each player i to be the history in-
dependent Nash strategyσ∗i (h) = σi for all historyh ∈ H (that is, each player al-
ways plays its Nash equilibrium strategy σi at every turn). Then (σ∗1, ...,σ∗n) is a
subgame-perfect equilibrium in the repeated game for any discount 0 < δ < 1.

The proof is omitted. This proposition simply says that if players start to
play with a Nash Equilibrium strategy for the first stage game, they’ll have
to keep playing it ad infinitum. Other equilibria can be supported by an in-
finitely repeated game, especially because this is also one of the situations in
which cooperation may arise. But, once a Nash equilibrium is played, it must
be stuck to thereafter. This is exactly what Theorem 2 needs to prove its re-
sults: the equilibriumpointmentioned in Theorem 1 is aNash equilibriumof
the stage game later used by Theorem 2, from which its proof follows.

73





References

[1] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,
J. Tong, and Q. Zhang, “Time-series anomaly detection service
at microsoft,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery &DataMining, ser. KDD ’19. New
York, NY, USA: ACM, 2019, pp. 3009–3017. [Online]. Available: http:
//doi.acm.org/10.1145/3292500.3330680

[2] D. Jurafsky and J. H. Martin, Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, 3rd ed. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2018.

[3] W. Sultani, C. Chen, and M. Shah, “Real-world anomaly detection in
surveillance videos,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[4] V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artificial Intelligence Review, vol. 22, no. 2, pp. 85–126, Oct 2004.
[Online]. Available: https://doi.org/10.1007/s10462-004-4304-y

[5] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Technical
Report 1999-66, November 1999, previous number = SIDL-WP-1999-
0120. [Online]. Available: http://ilpubs.stanford.edu:8090/422/

[6] T. Schlegl, P. Seeböck, S. Waldstein, U. Schmidt-Erfurth, and G. Langs,
“Unsupervised anomaly detectionwith generative adversarial networks
to guide marker discovery,” 03 2017, pp. 146–157.

[7] X.HouandL. Zhang, “Saliencydetection: A spectral residual approach,”
in 2007 IEEE Conference on Computer Vision and Pattern Recognition,
June 2007, pp. 1–8.

75

http://doi.acm.org/10.1145/3292500.3330680
http://doi.acm.org/10.1145/3292500.3330680
https://doi.org/10.1007/s10462-004-4304-y
http://ilpubs.stanford.edu:8090/422/


REFERENCES

[8] Z. Liu, Y. Yan, and M. Hauskrecht, “A flexible forecasting framework
for hierarchical time series with seasonal patterns: A case study
of web traffic,” in The 41st International ACM SIGIR Conference on
Research &#38; Development in Information Retrieval, ser. SIGIR ’18.
New York, NY, USA: ACM, 2018, pp. 889–892. [Online]. Available:
http://doi.acm.org/10.1145/3209978.3210069

[9] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Söder-
ström, “Detecting spacecraft anomalies using lstmsandnonparametric
dynamic thresholding,” ArXiv, vol. abs/1802.04431, 2018.

[10] H. Wang, A. Kläser, C. Schmid, and C. Liu, “Action recognition by dense
trajectories,” in CVPR 2011, June 2011, pp. 3169–3176.

[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for human de-
tection,” in 2005 IEEEComputer Society Conference onComputer Vision
and Pattern Recognition (CVPR’05), vol. 1, June 2005, pp. 886–893 vol. 1.

[12] B. Lucas and T. Kanade, “An iterative image registration technique with
an application to stereo vision (ijcai),” vol. 81, 04 1981.

[13] J. Sivic andA. Zisserman, “Efficient visual searchof videos cast as text re-
trieval,” IEEETransactions onPatternAnalysis andMachine Intelligence,
vol. 31, no. 4, pp. 591–606, April 2009.

[14] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[15] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in The IEEE
International Conference on Computer Vision (ICCV), December 2015.

[16] S. Shalev-Shwartz and S. Ben-David, Uderstanding Machine Learn-
ing. Cambridge University Press, 2014, http://www.cs.huij.ac.il/
~shais/UderstandingMachineLearning.

76

http://doi.acm.org/10.1145/3209978.3210069
http://www.cs.huij.ac.il/~shais/UderstandingMachineLearning
http://www.cs.huij.ac.il/~shais/UderstandingMachineLearning


REFERENCES

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[18] B. H. Juang and L. R. Rabiner, “Hidden markov models for speech
recognition,” Technometrics, vol. 33, no. 3, pp. 251–272, 1991. [Online].
Available: http://www.jstor.org/stable/1268779

[19] M. Gales and S. Young, “The application of hidden markov models
in speech recognition,” Foundations and Trends in Signal Processing,
vol. 1, pp. 195–304, 01 2007.

[20] Biing-Hwang Juang, Wu Hou, and Chin-Hui Lee, “Minimum classifica-
tion error rate methods for speech recognition,” IEEE Transactions on
Speech and Audio Processing, vol. 5, no. 3, pp. 257–265, May 1997.

[21] D. P. Kingma and M. Welling, “An introduction to variational autoen-
coders,” 2019.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems 27, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds.
Curran Associates, Inc., 2014, pp. 2672–2680. [Online]. Available:
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

[23] B. Nevio and Z. Michele, Principles of Communications Networks and
Systems. Wiley, 2011.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770–778.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Computer Vision and Pattern Recognition (CVPR), 2015. [Online].
Available: http://arxiv.org/abs/1409.4842

77

http://www.jstor.org/stable/1268779
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1409.4842


REFERENCES

[26] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual con-
cepts with a constrained variational framework,” in ICLR, 2017.

[27] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proceedings of the
32Nd International Conference on International Conference onMachine
Learning - Volume 37, ser. ICML’15. JMLR.org, 2015, pp. 448–456. [On-
line]. Available: http://dl.acm.org/citation.cfm?id=3045118.3045167

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[29] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. War-
den, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 16), 2016, pp. 265–283.
[Online]. Available: https://www.usenix.org/system/files/conference/
osdi16/osdi16-abadi.pdf

[30] F. Chollet et al., “Keras,” https://keras.io, 2015.

[31] “Hmmlearn,” https://hmmlearn.readthedocs.io, 2010.

[32] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[33] “Ucsd anomaly detection dataset,” http://www.svcl.ucsd.edu/
projects/anomaly/dataset.htm, 2008.

78

http://dl.acm.org/citation.cfm?id=3045118.3045167
https://www.tensorflow.org/
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://keras.io
https://hmmlearn.readthedocs.io
http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm


REFERENCES

[34] M. Ravanbakhsh, M. Nabi, E. Sangineto, L. Marcenaro, C. S. Regazzoni,
and N. Sebe, “Abnormal event detection in videos using generative ad-
versarial nets,” 2017 IEEE International Conference on Image Processing
(ICIP), pp. 1577–1581, 2017.

[35] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving the
multiple instance problem with axis-parallel rectangles,” Artif. Intell.,
vol. 89, no. 1-2, pp. 31–71, Jan. 1997. [Online]. Available: http:
//dx.doi.org/10.1016/S0004-3702(96)00034-3

[36] B. Babenko, “Multiple instance learning: Algorithms and applications,”
01 2008.

[37] J. Carreira, E. Noland, C. Hillier, and A. Zisserman, “A short note on the
kinetics-700 human action dataset,” CoRR, vol. abs/1907.06987, 2019.
[Online]. Available: http://arxiv.org/abs/1907.06987

[38] S. Tadelis, Game Theory, an introduction. Princeton University Press,
2013.

[39] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

79

http://dx.doi.org/10.1016/S0004-3702(96)00034-3
http://dx.doi.org/10.1016/S0004-3702(96)00034-3
http://arxiv.org/abs/1907.06987
http://www.deeplearningbook.org




Acknowledgments

Il mio più grande ringraziamento va alla mia famiglia, che mi ha sempre
supportato ed incoraggiato in tutte le mie scelte più importanti, come per es-
empio su quale percorso universitario intraprendere.

Un altro grande grazie va a Riccardo, che sebbene nell’ultimo periodo a
modo suo, è sempre presente; sto ancora aspettando ilmio turnoper lanciarti
uova però! Un altro grazie va a tutti gli amici, molti dei quali ho avuto la for-
tuna di conoscere durante questo percorso universitario, reso senz’altro più
leggero dal buon tempo passato assieme.

Alcuni ringraziamenti vanno anche al Professore Stefano Ghidoni, e a tutti
i colleghi di Data Reply, tra i quali in particolare Michele Giusto e Daniel Man-
rique, per l’opportunità offerta e il supporto fornito durante lo svolgimento di
questa tesi.

Il mio ultimo grazie va infine ai miei 7 coinquilini di Milano, che sono di
sicuro stufi di sentire i miei discorsi sulla tesi, ma non di meno mormorano
assensi, aspettando certamente una giusta vendetta in stile post laurea
all’UniPD.

81


	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Common methods
	Static methods
	Dynamic methods

	Action recognition in videos
	Motivations of the proposed system
	Requisites for the system


	Background Theory
	Neural Networks
	Time analysis with Neural Networks

	The Hidden Markov Model
	Tying parameters together
	Probability of Error

	Systems' behavior
	The minimax game
	Gaussian constellation


	System Architecture
	Input Data Flow
	Minimax Game implementation
	Neural Network Architectures
	Architecture Details
	Variations on architectures
	Neural Network's Loss

	Hidden Markov Model Architecture
	Putting everything together

	Methods
	Frameworks
	Tensorflow
	Keras
	HMMLearn
	Hardware

	The datasets
	Generated dataset
	UCSD Anomaly Detection dataset
	UCF Crime dataset

	Training method

	Results
	Still open problems
	Generated dataset: binary case
	Generated dataset: multiclass case
	UCF crime: auto-encoder
	UCF crime: transfer learning from I3D
	Real time performances

	Conclusions
	Future work

	Appendix Additional Theory Notions
	Converging to Equilibrium
	Game Theory Bits

	References
	Acknowledgments

