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Summary

In the last years, thanks to the growing market of smart-phones, tablets and
others similar devices, access to applications for music information retrieval be-
came easier for a wide variety of users. Among the others, many applications
gained popularity offering services of music recognition. Basically these appli-
cations offer a service that, starting from a little excerpt of sound, can retrieve
the song from which the excerpt belongs. The effectiveness of state of the art
systems is really good if the recognition is carried out on studio version of the
songs, but there is still an open field of research on the recognition of cover and
live versions.
There are some difficult aspects to care about cover and live performance recog-
nition: change in tonality, different instruments used, changes in the song struc-
ture, different tempo. In the case of pop and rock songs usually a lot of differ-
ences are noticeable between a cover and the original song.
In this work, we describe an efficient method for cover song identification fo-
cusing our target on pop and rock music genres. The procedure proposed is
based on the fact that every pop/rock song has usually a main melody or a
easily recognizing theme inside. Usually this theme or this melody, even if the
cover song is really different from the original, is present in every version of the
original song. This means that if we can identify the melody in each song we
can identify also the original song.
First we searched for a good melody and main theme recognition using different
tools available, then we tried different methodologies to obtain a good repre-
sentation of the melody data. After these phases we had some data for every
song that was possible to index and retrieve using Falcon, a search engine for
music identification. At the end we tried to evaluate performance of the new
system searching for the optimal configuration.
Test showed that the chosen approach can achieve encouraging results, opening
the way to a deeper exploration of the system. Different parameters’ configu-
rations tried gave an idea of system’s potentialities.
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Chapter 1

Introduction

Music has always been present along human history. Starting from the pre-
historic period when first humans used percussive sounds to celebrate rituals
and ceremonies until nowadays where every single teenagers along the street
is probably carrying an MP3 player, music is something that accompanies our
lives and moments, with the incredible ability to change our mood simply using
7 notes.
Music styles really changed and evolved during history but the same we can
say for music distribution methods.
Especially with the recent evolution of technologies the way people listen and
have access to music change a lot, even compared to few years ago. The impact
that digitalization had on music environment is not comparable to other arts:
while the access to digital music allows users to enjoy the listening experience
even more than what they were doing with analogic recordings is not possible
to say the same for sculpture or painting; the possibility to see a photo of a
sculpture or a paint, even in a 3D version, it can not substitute the direct in-
teraction with the real work.
Thanks to large distribution of MP3 players, smartphones, tablets and other
kind of devices, everybody can have several gigabytes of music directly in some
centimeters inside a pocket. This fact, combined to the wider access that every-
body has to Internet’s resources, sometimes directly from the device they use
to listen to music, gives to the people the possibility to access to an incredible
amount of recordings.
Digitalization made also some really big changes even in the way music is cre-
ated. Nowadays, with few money and a little bit of passion, the field of music
creation, even with professional results, is accessible to everybody. This means
that there is more music on the market now and, since the creation tools are
everyday easier to use, there will be a consistent music creation increment year
by year.
All of these changes within these years made the music market changing its face.
While we face a crisis for music sellers at the same time we can notice a big
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interest, and also a big economic profit, for who is involved in music services.
On-line personalizable radio like Spotify or GrooveShark had a great success in
this period and their economic profile can confirm the interest of people in these
services. The same thing we can say for famous and popular applications for
smartphones and portable devices like Shazam or SoundHound. These appli-
cations permit to everybody having a compatible device with a microphone to
records a little audio excerpt from a songs and, after a query on the application’s
server, to obtain the name of the song and the author, usually correlated with
different links to buy on-line the MP3 file. Both the applications mentioned
above had in the last year a great success and some of the most interesting
economic relevance in the portable devices applications market. In particular
SoundHound won the title “Top Paid iPad App of All Time” in January, 2011
while Shazam surpasses in December, 2010, 100 Million Users, becoming one of
world’s leading discovery services.

1.1 Music Information Retrieval and applications
All the applications that we mentioned before use large music digital libraries.
To deal with them they have to find specific and effective techniques being
capable of indexing and retrieving music documents. The interdisciplinary sci-
ence that deal with retrieving information from music documents is the music
information retrieval (MIR). Some of the aspects involved in this branch of
inormation retrieval are:

• music analysis and knowledge representation;

• applications of music identification and recognition (score following, auto-
matic accompaniment, routing and filtering for music and music queries,
etc.);

• computational methods for classification, clustering, and modeling like
musical feature extraction, similarity and pattern matching management,
information retrieval, etc.;

• software for music information retrieval like semantic web and musical
digital objects, intelligent agents, web-based search and semantic retrieval,
query by humming, etc.;

• music archives, libraries and digital collections;

• sociology and economy of music like music industry and use of music
information retrieval in the production, distribution, evaluation of music
IR systems, building test collections.

MIR is involved in a lot of different tasks and activities and there are many
related disciplines to it. Anyway, one of the more challenging research field is
the content-based document analysis and retrieval. In particular the query by
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example paradigm has attracted a large amount of attention. This task consists,
given a query in form of a music excerpt, to retrieve all the elements (may be
scores or other audio excerpts), from a dataset or a digital library, that contain
the query or have a similarity with it. The main idea of this problem is to
have an unknown excerpt (in some meaningful sense), in order to discover more
information about it, eventually finalized to index and store the new element
in the library.
Some of the possible applications concerning the solution of this problem are
described below.

Indexing of audio archives

One of the possible scenario it can be observed inside radio and television
companies. Usually these companies have thousand of hours of live recording of
music performances or rehearsals, stored in analog format on tape. Documents
stored in this format are object of audio degradation and eventually of complete
inaccessibility with the risk of losing an enormous amount of data. Also, this
kind of recordings usually lacks of information about contents or even about
who played the content. Manual labeling of these data require a considerable
amount of time and musically trained people, which means an high cost for the
company. An automatic tool which can be able to solve the query-by-example
problem, would make the job completely automatic, or at least much more
easier for the operator.

Automatic recognition of a song in real time

The possibility for somebody to know in real time which is the unknown song
that they are listening to is one of the most famous situation nowadays thanks
to some popular applications for portable devices. These applications solve
the query-by-example problem in real time using the last technologies available.
They can query a remote database obtaining in less than a minute a list of
possible results granting a good reliability. Also, offering the possibility to buy
on-line a digital version of the song, there is the concrete option to create a
new market where the user can buy what he likes at the exact moment when
he hears it somewhere.

Recognition of live performances for calculation of artists’
profits

Lot of live shows are played around every day and it is physically impossible
to control everyone of them to list and archive what it is played. This means
that, for a lot of shows where no controls are made, money that has to be paid
to songwriters is lost because people are not declaring what they play or people
declare false information to gain money for themselves, while playing songs
of somebody else. An application that can recognize automatically every song
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played in a concert will help the authority which controls the music environment
to distribute in a equal way the money due to the authors who retain the song’s
rights.

1.2 Recognition problem for live and cover songs

The query-by-example paradigm could be exploited in several contexts. As said
before, the recognition of unknown audio excerpts is a deeply explored and well
solved task. Unfortunately we can not say the same when we have a cover song
or a live version of a song and we want to know which is the original song and
the information about it. Live versions and cover songs present some different
problems that must be take into account when we perform recognition: changes
in tonality, changes in tempo, variations on the musical structures, different
kinds of voice and instruments.
Taking a look on different papers and proposed work published within last
few years is easy to see how actual is the problem of cover song identification.
Different approaches to the problem were proposed. One of the best is the
work submitted by Joan Serrà [1]. The proposed system exploits nonlinear time
series analysis tools and standard methods for quantitative music description,
and it does not make use of a specific modeling strategy for data extracted from
audio. The system detailed in [1] presents the highest accuracies in the MIREX
[2] “audio cover song identification task” to date (this includes the 2008, 2009
and 2010 editions).
Talking about classical music, the task of recognizing cover versions has been
solved by different approaches, one is documented in [3]. We want to start from
tools used in this approach to develop another one and trying to solve cover
song identification for pop and rock cover songs.

1.2.1 Proposed Approach

In this work we want to use tools currently available for automatic audio recog-
nition and, changing the features they used to perform indexing and retrieval,
develop a new approach for cover song identification. With this goal in mind
we propose, instead of using CHROMA [4] features, to index and retrieve songs
using as descriptor the main melody or the main theme of every song. This
because in pop and rock song there is always a relevant part, usually the melody
sung in the chorus or a particular theme played by an instrument, that is used
to obtain the “stuck-in-your-mind” effect, typical for these kind of music. Usu-
ally this really well-known and repetitive part is something that is never missing
from a cover because it is the characterizing part of the song.
Other works adopt a similar approach to exploit the task of cover song identifi-
cation. A number cover song identification systems use melody representations
as a main descriptor ([5]; [6]; [7]; [8]). As a first processing step, these systems
need to extract the predominant melody from the raw audio signal ([9]; [10]).
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Melody extraction is strongly related to pitch perception and fundamental fre-
quency tracking, both having a long and continuing history ([11]; [12]).
In our work we want also to develop a representation system that can be robust
to all the problems we cited before for live version (tonality changes, tempo
variations, etc.). In the end we want to underline how the representation we
chosen can effectively achieve efficiency on our system. We are using the melody
not for a simple audio matching task but we consider it as our key to index
and retrieve songs. This means that we don’t need the expensive computa-
tion necessary to the perfect match of two audio parts but that our melody
representation is directly the key used to perform the research on the dataset.

1.3 Thesis structure
The thesis is structured as follow:

Chapter 2: describes the process used to extract pitch, and more in general
the melody, from songs, giving an overview to all the tools tested and
explaining in a more detailed way how the tool chosen is configured.

Chapter 3: describes the sequence of steps used to create an appropriate
melody representation. Starting from the values detected with mirpitch
different phases are used: pitch post-processing, intervals calculation, n-
grams creation.

Chapter 4: describes the different experimental tests on the algorithm are de-
scribed, by, particularly, taking care of the parameters that affect mostly
the final result.

Chapter 5: gives some conclusions about the project and possible future works
are treated.
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Chapter 2

Melody Recognition

This chapter describes an approach to perform the recognition of the melody
and main theme for a song, the tools we used and how we parametrized them.
Also we will present a description of how the tool we chosen perform the pitch
recognition.

2.1 What Melody is

Melody is a word that can take different meanings changing the area were it
is used. Anyway most of the time the concept of melody is associated to a
sequence of pitch notes. These definitions can be found in licterature: “A com-
bination of a pitch series and a rhythm having a clearly defined shape” [13], and
on Grove Music: “Pitched sounds arranged in musical time in accordance with
given cultural conventions and constraints” [14]. In [15], melody is defined with
some of these different connotations: “As a set of musical sounds in a pleasant
order and arrangement as a theme in a music structure”. The last definition we
cited is the nearest thing we are searching for in our work. The concept of main
melody that can be remembered within a song carry itself the underlined con-
cepts of pleasant order and arrangement as a theme. Of course, everybody has
a subjective perception of what can be figured out as melody or not but, given
different songs with a melodic repetitive pattern placed in focal points, when
we ask to identify the main theme, probably the result will be the same from
every person. What we want to extract is exactly the characterizing melody,
as defined above, using an automatic tool that take in input any kind of audio
excerpt belonging to a song.
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2.2 Pitch Recognition
Pitch recognition is the process used to identify the value of a sound. By value
of a sound we intend the value of the absolute frequency of that sound. For
example, given the record of a guitar playing a A4 note the pitch recognition
tool will return a value of 440Hz if the guitar is tuned using the standard tuning
convention. Also it is necessary to say that a sound can also have variations
during time. This means that, taking the same example of the guitar presented
above, a guitar perfectly tuned playing a A4 note can have a 440Hz pitch if it
is considered the mean pitch value along the whole note but, if it is analyzed
the note every 10ms for example is it possible to find some pitch variations
that will stay around 440Hz. This is influenced from the different phases that
usually a note has: attack, release, decay. For percussive strings instruments,
like the guitar, the attack phase is usually out of tune due to the percussive
movement on the string and then it will stabilize its value during the release
and the decay. The same we can say for the voice. A singer is usually using the
attack phase of the note, where he hears the note he is singing, to tune himself.
Many different effects also affect the note pitch: tremolo, vibrato, modulation.
As it is possible to see, pitch recognition is not an easy task even talking about
monophonic recordings. Pitch recognition on polyphonic record will be a task
even harder, especially considering a live situation. Many notes are summed
together (bass, guitar, voice, keyboards, etc.) and also “non” sounds are present
and disturb the record (general noise, crowd noise, drums, percussions).
In the work explained in this thesis we will not try to recognize the perfect
pitch of every single time frame of a song but we will focus our attention on
the concept of main melody or main theme of a song.
Especially in pop and rock music every song is characterized by a easy recog-
nizable theme or melody and it is usually sung or played like a kind of solo by
some instruments. Also, by listening to the song, this theme or melody is usu-
ally well audible in the records and is some decibel louder than the background
music. Even if for our perception is easy to recognize a repetitive theme and
identify it as an important feature for the song, this is not a really easy task
for an automatic tool that must perform this recognition.
We start now showing different tools we tried in this work to extract the pitch
melody, giving also some examples for everyone of them.

2.3 Approaches Analyzed
We will show now three different tools we tried to perform in a first phase
pitch recognition on different kind of songs. These tools are the only ones
available for free on-line. Even if different commercial products that included
pitch detection function are available, only these have been created to be used
for pitch detection only. Moreover, the way used by these tools to output
results, permits an easy post-processing phase for pitch values. For everyone
of them we performed a general test to have a global overview of which one
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of them was the best of the three. We submitted to the tools different kinds
of audio excerpts containing previously well known melodies and we analyzed
results returned. The excerpts we used are:

• Jeff Buckley - Hallelujah (male voice and guitar)

• Giorgia - E Poi (female voce and piano)

• Celine Dion - My Hearth Will Go On (female voice and band)

• Vasco Rossi - Alba Chiara (male voce and band)

All the excerpts are live versions. The length of each excerpt is between 4
and 19 seconds. All of these files had a sampling frequency of 22050 Hz and
they are monophonic recordings. All the files were in WAV format.

2.3.1 YIN
YIN is a pitch recognizer tool developed by Alain de Cheveigné [16]. It is a
Matlab tool and the software is distributed with a directory with two .m files,
one that contains the executable function: yin.m, and another one that perform
a test with two different sound files included in the packet: testyin.m. Further
details on YIN implementation are available in [17].
This tool is really easy to use and it offers the possibility to change different
parameters. Anyway to modify them you need to edit directly the file yin.m
changing manually every time the value of every variable. We tried the tool
with the standard configuration.

2.3.2 LabRosa Melody Analyzer
LabRosa Melody Analyzer is a tool developed by Graham Poliner and Dan Ellis.
This tool was developed for the audio melody extraction contest at MIREX, year
2005 [2] and it came in a hybrid version of Matlab functions and a precompiled
Java routine. You can find the tool here [18]. The tool outputs a text file
containing all the frequencies recognized on the audio excerpt, one every 0.10
seconds. The documentation of this tool is really poor and we found hard to
modify parameters to obtain different results or using different values for time
intervals in pitch detection. Also the computation is really long and it takes
around two minutes to compute an audio excerpt of 4 seconds. We decided to
not take further test on this tool and this is the reason why you will not find
any result coming from LabRosa Melody Analyzer in the Test Result section.

2.3.3 MIR ToolBox - mirpitch
MIR ToolBox is a complete suite of audio tools developed by Olivier Lartillot,
Petri Toiviainen and Tuomas Eerola. The suite is a set of Matlab files and
everything is working inside the Matlab environment. The tool is open source
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and distributed under GNU General Public License version 2. You can find
more info on MIR ToolBox and the link to download it here [19]. MIR ToolBox
offers a really good guide to users [20] and an mailing-list where Olivier Lartillot
usually replies very quickly to every question [21].
In particular for our work we focus our attention on the module mirpitch. This
module is in charge of detecting pitch of an audio file and it returns results
using absolute frequencies values. For the preliminary test we used this tool
with the standard configuration.

2.4 Test Results

In this section we proposed the results of some tests made with YIN and the
mirpitch module. The command used to obtain this graphs are:

YIN: yin ’nameOfTheSong.wav’

mirpitch: mirpitch(’nameOfTheSong.wav’,’Frame’,’Max’,600)

About the command used for mirpitch, using it without Frame option returns
a single pitch value that is the mean of the pitch samples calculated all along
the audio excerpt. The command Max is used to restrict the view on the graph,
showing only the frequencies from 0 Hz to 600 Hz in the y-axis.
About figures 2.1, 2.2, 2.3, 2.4, the first graph represents pitch values as a func-
tion of time (in octaves re: 440 Hz); Different colors represent how much is
reliable the sample: more close to blue is the color more reliable is the sample.
The second graph represents the aperiodicity of each frame. The third graph
represents the power of each frame.
About figures 2.5, 2.6, 2.7, 2.8, the graph represents pitch values as a function
of time. Values are represented as absolute frequencies. If more than a pitch
value is detected for a single frame, pitch values are represented using different
colors.

As it possible to see directly from figures mirpitch offers a better represen-
tation of the melody we are searching for. The blue points’ values on the graph
return graphically the melody direction. Only the last graph presented in figure
2.8 has a really noisy representation but the sung melody is still identifiable in
the range from 200Hz to 400Hz. Anyway, after the refining of the parameters
for this tool results become better. Results coming from graph had a final
confirm watching at the numerical results given by the two tools: mirpitch is
slightly more accurate than YIN for the kind of application that we need. Mir-
pitch resulted also faster than YIN by some seconds of difference. To analyze
the excerpt of E Poi - Giorgia mirpitch taken 5.4 seconds while YIN taken 7.7
seconds. In conclusion we have also to say that mirpitch offers the possibility to
change parameters, for trying different types of pitch recognition configurations,
directly on the command line. This offers the possibility to made different tries
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Figure 2.1: YIN Pitch Extractor: Hallelujah - Buckley.
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Figure 2.2: E Poi - Giorgia - Pitch Extraction made by YIN.
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Figure 2.3: My Hearth Will Go On - Celine Dion- Pitch Extraction made by
YIN.
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Figure 2.4: Albachiara - Vasco Rossi - Pitch Extraction made by YIN.
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Figure 2.5: Hallelujah - Jeff Buckley - Pitch Extraction made by mirpitch in
MIR ToolBox.
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Figure 2.6: E Poi - Giorgia - Pitch Extraction made by mirpitch in MIR Tool-
Box.
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Figure 2.7: My Hearth Will Go On - Celine Dion - Pitch Extraction made by
mirpitch in MIR ToolBox.
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Figure 2.8: Albachiara - Vasco Rossi - Pitch Extraction made by mirpitch in
MIR ToolBox.
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with a lot of different experimental setups, without modify every time variables
in the code.

We decided to use mirpitch as the tool for pitch recognition in this work. In
the next section is presented a short description on how mirpitch is computing
pitch recognition and the best way we found to parametrize it.

2.5 Mirpitch: workflow and parametrization

2.5.1 Mirpitch workflow

MIR ToolBox is structured like a chain of functions and, usually, everything
coming from an output of a function can be used as input for another one,
making it possible to perform different kinds of computation on audio files. For
an overview on how MIR Tool Box chain structure is composed is possible to
take a look at [20] pag. 9.

We describe now how this chain is used to compute pitch sampling. First
of all the audio file is passed inside a filter called ’2Channel’. This filter de-
composes the audio file in two different channels: the first is obtained with a
Low-Pass filter using a frequencies band of 70Hz-1000Hz and the other is ob-
tained with a High-Pass Filter using a frequencies band of 1000Hz-10000Hz.
Furthermore, on the second channel, two other steps are performed: first the
signal is passed into an Half Wave Rectifier and then the signal is passed again
in a Low-Pass filter with a frequencies band of 70Hz-1000Hz.
After the filtering phase, both channels are divided into frames where the frame
length and the overlap will be specified later when we will talk about how we
parametrize the tool. Then, the frame-divided two-channels audio file takes
simultaneosly two different ways.
On the first one MIR ToolBox performs the autocorrelation function on both
channels independently. Then the autocorrelation results are summed together
and another module takes care of finding peaks to identify points with best
autocorrelation values. On the other path the audio file obtained after filter-
ing operation and frame division is passed inside a function that calculates the
spectrum of the signal. Results returned by this function highlight the reparti-
tion of the amplitude of the frequencies.
After these operations are computed, results of spectrum function and autocor-
relation peaks are merged together to find the best pitch for every frame. The
pitch value is returned as absolute frequency value.
A graphic representation of this workflow is presented in figure 2.9.
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Figure 2.9: Mirpitch: graphic representation of pitch extraction’s step.
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2.5.2 Mirpitch parameters
The command we used to extract pitch values is:

mirpitch(’fileName’, ’Frame’, frameLength, ’s’, overlap, ’s’, ’Min’,
180, ’Max’, 800, ’Mono’)

Where:

fileName: is the name of the .wav file we have to analyze;

frameLength: is the length of the frame used to divide the audio file after
the filtering process. (It is necessary to put the argument ’Frame’ before this
value to indicate to mirpitch that we want frame division and specify ’s’ after
it to indicate seconds as measure unit for frame length);

overlap: is the overlap for every frame. In example if the frame is 100 sec-
onds and the overlap is 75 seconds the second frame start 25 seconds after the
beginning of the first. (It is necessary to put the argument ’s’ after the overlap
value to indicate seconds as measure unit for overlap);

’Min’, 180, ’Max’, 800 : indicate to mirpitch that we are interested only in
pitch values inside the range of frequency 180Hz-800Hz. This because vocal
range and solo instrument parts are usually inside this interval; we have the
best probability to find main melody or song’s theme in this range;

Mono: indicate to mirpitch to compute a single pitch value for each frames.
This because mirpitch usually computes more than a pitch value for each frame.
With this command the tool automatically computes the best pitch and returns
only it.
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Chapter 3

Melody Representation

In the previous chapter we showed how we perform pitch detection on a song.
In this chapter we start from this step and we describe the procedure we took
to compute pitch values and transform them in a representation that can un-
derline the melody or the theme of a song. We want to highlight how the
representation we chosen can be robust to all the problems we underlined in
Chapter 1 (tonality changes, variations on musical structure, tempo variations,
etc.). At the end of the chapter we will see how we transformed the robust
melody representation in a way that can be indexed and retrieved by Falcon.

3.1 Dataset Configuration

3.1.1 Query songs

The optimal parameters setting for the melody representation has been made
using a dataset of 50 songs. All of these songs are live versions and some of
them were also performed by a different artist than the songwriter. So we have
a dataset including live songs and live cover songs. Table 3.1 presents the list
of the songs that we used.

3.1.2 Dataset description

Starting from these 50 files we created four different sets. Every set is different
from each others for the value of the frame length and the overlap that we used
to execute the mirpitch module. The list of sets with detailed information is
presented below:
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Number Title - Author - Note Number Title - Author - Note
01 24000 Baci - Adriano Celentano 26 Englishman In New York - Sting

(Cover)

02 4 Marzo 1943 - Lucio Dalla and Or-

nella Vanoni (Cover)

27 Enjoy The Silence - Depeche Mode

03 50 Special - Cesare Cremonini

(Cover)

28 Every Breath You Take - The Police

04 A Chi Mi Dice - Blue 29 Everybody Hurts - R.E.M.

05 A Hard Days Night - The Beatles 30 Frozen - Madonna

06 A Kind Of Magic - Queen 31 Girls Just Want To Have Fun -

Cyndi Lauper

07 A Song For You - Whitney Houston 32 Hallelujah - Jeff Buckley (Cover)

08 Albachiara - Vasco Rossi 33 Hey Joe - Jimi Hendrix

09 Almeno Tu Nell’Universo - Elisa

(Cover)

34 I Got You (I Feel Good) - James

Brown

10 American Pie - Don McLean 35 In the air tonight - Phil Collins

11 Baby One More Time - Britney

Spears

36 Io vagabondo - I Nomadi

12 Beat It - Michael Jackson 37 Knockin on Heaven’s Door - Bob

Dylan and Sheryl Crow (Cover)

13 Besame Mucho - Andrea Boccelli

(Cover)

38 La Bamba - The Gypsies (Cover)

14 Caruso - Lucio Dalla 39 Light My Fire - The Doors and Ed-

die Vedder (Cover)

15 Celebration - Kool And The Gang 40 Like A Virgin - Madonna

16 Certe Notti - Ligabue 41 Mas Que Nada - A Cappella

(Cover)

17 Che sará - Ricchi e Poveri 42 More Than Words - Extreme

18 Could You Be Loved - Ziggy Marley

(Cover)

43 My Hearth Will Go On - Celine

Dion

19 Crossroads - Eric Clapton (Cover) 44 Nessuno - Mietta

20 Day Tripper - The Beatles 45 O Sole Mio - Claudio Villa (Cover)

21 Diamante - Zucchero 46 Questo Piccolo Grande Amore -

Claudio Baglioni

22 Dieci Ragazze - Lucio Battisti 47 Satisfaction - Rolling Stones

23 Dont Cry For Me Argentina - Joan

Baez

48 Smells Like Teen Spirit - Nirvana

24 E Poi - Giorgia 49 Smooth Criminal - Michael Jackson

25 Emozioni - Lucio Battisti 50 What A Wonderful World - Louis

Amstrongs

Table 3.1: Query files list - 50 Songs: live versions and live cover versions.
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Dataset 1: Frame length: 0,30 seconds - Overlap: 0,15 seconds;

Dataset 2: Frame length: 0,20 seconds - Overlap: 0,10 seconds;

Dataset 3: Frame length: 0,10 seconds - Overlap: 0,05 seconds;

Dataset 4: Frame length: 0,05 seconds - Overlap: 0,025 seconds.

We used every one of these sets to compute data analysis and to obtain
results that will be presented in the next sections.

3.2 Pitch Post-Processing
After receiving in input a song, mirpitch outputs a list of pitch values that we
can then elaborate and modify to obtain the melody representation we desire.
As an example of what it is the output of mirpitch we take a small excerpt of
the result files of Albachiara by Vasco Rossi which was also one of the song that
we used to test pitch detection tools in Chapter 2.

.., NaN, 392.632744, 394.685048, 235.829549, 395.703268, 392.720145, 198.186974,
390.995919, 195.404064, 266.179055, 255.844199, 374.861648, 366.588746, NaN,
372.088625, 222.229265, 211.547243, NaN,213.477265, NaN, ..1

As we can see values returned are absolute frequencies. Sometimes we find
a special symbol: NaN. This symbol means that mirpitch is unable to compute
a pitch value for that particular frame.

Starting from these values we have to compute and create a consistent rep-
resentation of the song’s melody. Every operative commands used in this thesis
it is listed and explained in [22].

3.2.1 Notes Duration
The first analysis we made on pitch values was concerning notes’ duration. This
was made to understand how many short notes we were detecting with mirpitch.
Usually, especially for sung part, short notes mean a transition phase from a
note to another. Take in example the figure 3.1 where is reported a part of the
melody of the chorus taken from More Than Words by Extreme.

The passage highlighted by the red circle is sung without pause from the
D# to the B. This means that the singer is making a transaction “sliding” with
the voice from the first note to the second. In this case mirpitch detects first
the D#, then some different values from D# to B, including D, C#, C, and
then the note B. We were not interested in all the short notes between D# and
B so we wanted to remove them. Also, some of the short notes that we can find
on mirpitch results could be either noise or a wrong detection of the pitch.

1Is it possible to find further details on commands and instructions to obtain pitch data,
parsed with this method, in [22].
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To perform this cleaning task we first analyzed which was the notes’ length
distribution on the overall set of our query songs. Figure 3.2, 3.3, 3.4, 3.5
present histograms for each dataset we mentioned in the list 3.1.2.

As it possible to see the distribution is more or less the same for every dataset
considered. The only thing that changes is the number of notes detected. This
is normal because having smaller frames it means that we need more frames to
cover a whole songs. So, having more frames, consequently we have more pitch
values.

Considering the high frequencies of very short notes we decided to remove
every note which length was equal to the frame length. So practically we
removed the first column for every histogram we presented in figure 3.2, 3.3, 3.4,
3.5. This was done to obtain a less noisy distribution, remove effects of wrong
pitch detections and to delete transaction notes. Notes deleted were sobstituted
with the value of the longer note on the left or on the right.

Figure 3.1: More Than Words - Extreme: chorus melody.
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Figure 3.2: Notes’ lengths distribution - Dataset 1.
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Figure 3.3: Notes’ lengths distribution - Dataset 2.
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Figure 3.4: Notes’ lengths distribution - Dataset 3.



24 Melody Representation

3.2.2 Pitch correction and cleaning
Together with the deletion of “one-frame-notes” some other operations were ap-
plied to pitch results to improve the overall reliability. Analyzing pitch results
was possible to notice that often in pitch detections were present holes between
values of the same note. Here it is an example:

.. 366.588746, NaN, 372.088625 ..

The NaN value is placed between the same note2. Another similar situation
is when, instead of a NaN value in the middle of a note, we find a complete
different note value. Here is an example of this situation:

.. 392.632744, 394.685048, 235.829549, 395.703268, 392.720145 ..

The pitch value 235.829549 is in the middle of a note. This can happen be-
cause that part of the song is particularly disturbed by the presence of noise
and mirpitch made a wrong pitch detection for that frame.

Both of these situations are observed to be usually related with a hole of
one or two frames. To solve them a Matlab routine was developed. The routine
is in charge to substitute “hole-values” with the value of the note where they
are placed in the middle.3

0.025 0.05 0.075 0.1  0.125 0.15 0.175 0.2  0.225 0.25 0.275 0.3  0.325 0.35 0.375 0.4  0.425 0.45 0.475 0.5  0.525 0.55 0.575 0.6  0.625 0.65 0.675 0.7  

0.5

1

1.5

2

2.5

3

3.5

x 10
4

Figure 3.5: Notes’ lengths distribution - Dataset 4.

2For an overview on how to calculate a note value starting from the absolute frequencies
see Appendix A

3The command to recall the routine and how it is parametrized is explained in [22].
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3.3 Intervals Representation
After we obtained a reliable list of pitch values for each song we had to decide
to represent the melody in a way that must be not affected by problems we
discussed in Chapter 1. The representation we chosen is the intervals represen-
tation.

An interval is the difference between the pitch of two sounds. Is possible to
express it, from a physical point of view, as the ratio between the two sounds’
frequencies. Talking about it from the musical point of view, considering that
the sound available to us are twelve (the seven basic notes plus their alterations),
an interval is a difference between two sounds that define it. [23]

A graphic demonstration on how we intend to elaborate our melody rep-
resentation is given in figure 3.6. Starting from the original song that can be
something like what is represented in Score A we use it as input for mirpitch
module. What we supposed to obtain is only the melody of the song that is
what is represented in Score B. As we said before mirpitch works extracting a
pitch value for each frame the song is divided. Since the frames’ length is fixed
we have more pitch values for long notes than for shorter ones. An example
of mirpitch extraction process for the first and the second bar is given below
the two scores. Just below the examples of pitch values extraction, we found
the interval representation for the first two bars. A 0 means a unison interval
(created by the two G notes on the first bar) while a 2 means an ascendent
second interval (like the one created by the D and the E on the second bar). If
the second interval is descendent, like the one created by the E and the D in
the second bar we indicate that as -2.

We consider different notes with the same pitch as a unique unison interval.
For example, the four C in the last bar in figure 3.6 are considered like a unique C
and the correspondent interval is 0. We are doing this because mirpitch detects
pitch values using fixed temporal intervals and not with dynamic alignment
on notes’ attack. This means that for us, four different notes with the same
pitch are the same thing that a single note with a duration equal to the sum
of the single durations of the previous four notes. We tolerate this behavior
because the melody concept we are working on is not based on the perfect
transcription of the melody but on the recognition of the melody direction.
Also, not representing the tempo make our representation robust to tempo
variations. The chosen interval representations is suitable to this aim.

The intervals representation we chosen is robust to problems given by cover
and live songs. We are going to explain for every single problem why the
representation is robust against it.

Tonality changes: if the tonality of a song is changed the melody is played
on different notes but intervals between notes stay the same.

Tempo variations: since the chosen approach is not representing the tempo
but only the melodic direction given by intervals, even if the song is played
faster or slower we just need to find an appropriate frame length for
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Figure 3.6: Example of melody extraction.
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mirpitch module. Once this value is found, mirpitch is able to detect at
least every short and necessary note to calculate melody direction.

Different voice or instrument: this problem is more concerned to the pitch
detection tool that to the representation. Anyway, if the pitch results
given are reliable the representation of the melody will be the same, even
if the part is sung by a male or female, or played by a guitar or a oboe.

Changes on musical structure: even if in our song some musical parts are
arranged in a different order, compared to the original song, the main
melody or the main theme will stay the same. Once we recognize it
we just need to identify it matching the proper song’s segment. This is
possible because we also segment our melody representation in different
parts (we will talk about in on 4).

3.3.1 Representations
For each dataset presented in list 3.1.2 we tried several types of representation4.
Below is a list of the representations we tried:

Representation 1: Semitones. For this representation we used semitones,
the smallest interval that is possible to find in music (or in the Western
music culture at least. For a further overview on this topic see Appendix
A). Intervals range in this situation is wide but it is possible to represent
every single variation between two notes.

Representation 2: Intervals - Fine. For this representation we used the
classical intervals’ division used in the music field. We put together dif-
ferent variations of the same interval: for example an interval of second
includes the minor and the major second interval. The figure 3.7 explain
how we grouped together semitones to compose intervals.

Representation 3: Intervals - Coarse. This representation is simply a more
generalized version of the Representation 2. Here different intervals are
grouped together. The figure 3.8 explain how we grouped together inter-
vals to compose this representation.

3.3.2 Data analysis on representation
For each of the representations listed in 3.3.1 we conducted a data analysis
to observe if they were congruent to typical melody for pop and rock songs.
Also this analysis was useful to observe how much noise was detectable in
the different representations. When we say “congruent to typical melody ” we
mean that usually, there are some intervals that are more used than others. For

4Functions and routines for computation of representation are explained, as before, in
[22]
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Figure 3.7: Representation 2 - Grouping of the intervals.
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Figure 3.8: Representation 3 - Grouping of the intervals.
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example 3rd interval or 5th interval are usually more used than 6th interval.
Looking at intervals in a more detailed way, 5th diminished interval is less used
that perfect 5th interval. Also we expected to find a majority of small intervals
(2nd intervals and 3rd intervals) because melodies, especially sung ones, are
usually constructed on close notes.

We present now some histograms showing the distribution of intervals calcu-
lated starting from pitch values detected on songs presented in 3.1. Histograms
presented here are the ones computed on the Dataset 2. We present only these
histograms because the behavior for the other datasets is really similar. Anyway
this dataset was the one with the most uniform distribution of two semitones in-
tervals compared to one semitone intervals. Considering that, it appeared that
this dataset was probably the one with the lowest presence of noise coming
from pitch detection phase. It is possible to consult the full set of histograms
for each dataset here [24].
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Figure 3.9: Representation 1 - Semitones distribution - Dataset 2.

The same data analysis we carried out on our query set was done also on
the large dataset we used for experimental tests of cover song recognition. The
experimental dataset is composed of studio songs and for some title also by
live versions (but not the same live we used as query files). There are usually
ten different versions of the song for each title that is present in our list in ??.
For a detailed list of the files in the dataset see [25]. The data analysis on this
dataset was carried out to verify if the distribution given by our representation
was compatible a priori between the two sets. As it can been seen from the
histograms this condition was verified. There are some differences between the
two datasets but the overall distribution of the large dataset is very similar to
the distribution of the query dataset. Pitch values for the large dataset were
calculated using the same parameters of Dataset 2 detailed in list 3.1.2.
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Figure 3.10: Representation 2 - Fine intervals distribution - Dataset 2.
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Figure 3.11: Representation 3 - Coarse intervals distribution - Dataset 2.
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Figure 3.12: Representation 1 - Semitones distribution - Experimental Dataset.
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Figure 3.13: Representation 2 - Fine intervals distribution - Experimental
Dataset.
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Figure 3.14: Representation 3 - Coarse intervals distribution - Experimental
Dataset.
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3.4 Transformation to N-Grams
After we found a good representation for the melody we had to find a way to
index every song and retrieve it. In particular we need to create some index
terms starting from the intervals melodic representation. The concept that we
adopted in this work is based on the concept of N-Grams.

A N-Gram is simply a sequence of N symbols. We wanted to create N-
Grams of different lengths and we had to find a way to code them in a manner
that could give us a single number to represent a N-Gram, something like an
hash. The N-Grams we created have a percentage of overlap on each other. In
particular we created a N-Gram starting from every interval of the sequence we
had for a song. The figure 3.15 can clarify the concept that we used to create
our N-Gram representation.

Figure 3.15: Example of N-Grams creation.

We need to create N-Grams of different length for the necessity to obtain
the best representation possible of the song. Short N-Grams could be good
descriptors for a song since it is plausible that they will be found both in the
query song and in the original one, giving us a good point to match. On the
other hand short N-Grams are also really common in each song. For example
the 3-Gram 0 3 0 is probably really common in every song since the passage
on the third is a really common melodic structure for sung parts. This means
that short N-Grams, even if they have a good matching score, sometimes are
not really useful to identify a single song.
On the other hand, long N-Grams are more characterizing for each song since
they represent a long melodic sequence. Anyway they are probably really few
so if we miss to create them for some problem coming from pitch detection we
lost the songs’ match.
Another good reason to mix-up different types of N-Grams in the representation
is the different robustness that they have to wrong pitch detections. Imagine
that, even after pitch post-processing operations, some wrong pitch values are
present in the results. This means that some wrong intervals are present in
the sequence used to create N-Grams. In the case of 3-Grams a wrong interval
in a sequence it means that we have between one and three wrong 3-Grams
(remember N-Grams’ overlap). On the other hand, considering 6-Grams, one
wrong interval in the sequence it means that we have between one and six
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wrong 6-Grams. Considering the numerosity of 3-Grams and 6-Grams that
can be created starting from the same intervals’ sequence, is easy to see that
3-Grams are less affected by wrong intervals presence than 6-Grams.

For these reasons we decided to combine together all types of N-Grams
creating for each song 3-Grams, 4-Grams, 5-Grams and 6-Grams. In figure
3.16 we can see how N-Grams are distributed in our Dataset 2. Dark blue lines
are 3-Grams, light blue lines are 4-Grams, yellow lines are 5-Grams and red lines
are 6-Grams. As it possible to see the distribution is dominated by 3-Grams
and 4-Grams but soon we find also some 6-Grams that are quite common in
the distribution. The overall number of N-Grams for our collection is around
210000. The number of distinct N-Grams is 3163.

Figure 3.16: Extract from the distribution of 3-Grams, 4-Grams, 5-Grams and
6-Grams - Dataset 2.

3.4.1 N-Gram hashes

To represent each of the N-grams with a different symbol we decided to assign a
numerical value to each of them using interval names to create this value. The
concept behind it is simple: consider that we are talking about 3-Grams using
the fine intervals representation presented before. In this situation we have 3
symbols for each N-Gram that must be computed on the sequence of symbols,
where each symbol is taken from an alphabet of 15 symbols. This because the
intervals we considering in fine intervals representation are -8, -7, -6, -5, -4,
-3, -2, 0, 2, 3, 4, 5, 6, 7, 8; different representations have different number of
symbols. So we transformed every 3-Gram in a three ciphers number using base
15. In our procedure we had a transformation for unison interval and negative
intervals. The table 3.2 presents this transformation.

After this transformation the creation of an hash is an easy task. Consider
for example the 3-Gram 0 3 0. To compute this hash the formula is:
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Interval Transformed Interval
-8 15
-7 14
-6 13
-5 12
-4 11
-3 10
-2 9
0 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

Table 3.2: Transformation of intervals’ names in useful values for N-Grams
hashes computation.

1 ∗ 152 + 3 ∗ 151 + 1 ∗ 150 = 271

Using this type of hashing functions we are able to calculate a value for each
single N-Gram without the problem of overlapping values for different types of
N-Grams. This because the value of a 3-Gram hash will never be as high as
the value of a 4-Gram hash and also the value of a 4-Gram hash will never be
small as the value of a 3-Gram hash. This because we are not using the value
0 to calculate our hashes. The last fact means also that we have the possibility
to use the value 0 (and many other values in fact) as a special value for other
functions that could be useful in our work.



Chapter 4

Experimental Results

In this chapter we will present the results coming from different experiments
we made on the data. We started with a basic configuration and we changed
several parameters trying to achieve better results, looking for an optimal con-
figuration of the system.

4.1 Basic configuration

The configuration we chosen to start our test is the following:

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds (note below this threshold are re-
moved);
N-Gram combination: 3-Grams, 4-Grams, 5-Grams, 6-Grams.

These values were decided as a starting point after the data analysis performed
in Chapter 3. Results obtained from intervals distribution for this configura-
tion were the most uniform looking at the disposition of one semitone and two
semitones intervals. Anyway there are no guarantees that this configuration
can give the best results. We had to find the optimal configuration through
different experiments, refining parameters step by step.

The procedure of the test is composed by three simple steps:

Step 1: indexing of the collection of 555 files (see [25]). The files are processed
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in the same way as the query files. This means that we used the same
mirpitch frame length, same mirpitch overlap, etc. that we used also for
processing the query files. Indexing task is computed by Falcon.

Step 2: retrieval for the 50 query files (see 3.1). Query files are given in input to
Falcon. Then, Falcon outputs for each file a list containing, from the first
to the last, ordered by match score, the 555 songs composing the dataset.
The first song in the list is the one that Falcon believes more probable to
be the original song. This step is executed using three different types of
ranking functions: BM25, MINHF and HFIDF. These ranking functions
are described in the next section.

Step 3: Falcons’ results are elaborated by an evaluation function and results
are summarized together.

All the operative commands used in this phases are listed and explained in
[22].

4.2 Ranking functions
Falcon implements three different types of ranking functions used to measure
the score match of every query against songs that are in the dataset. These
ranking functions are: BM25 [26], HFIDF [27], MINHF [3].
These ranking functions are used to calculate a matching score for a query.
BM25 and HFIDF1 are not designed for a specific application but they are
known in general in the field of information retrieval. MINHF was specially
developed for the usage on Falcon.

4.3 Performance Measures
For each experiment usually two main measures are presented: MRR - Mean
Reciprocal Rank and MAP - Mean Average Precision.

Mean Reciprocal Rank - MRR
The Reciprocal Rank, or RR, is the reciprocal of the first rank position where
the correct song is found. In example, if the first song is correctly matched in
second position the MRR is:

1Also knows as TFIDF. The H of HFIDF means “hashes”, because we are working on
N-Grams hashes instead than text terms that is where T of TFIDF derives.



4.4 N-Grams Segmentation 39

1/2 = 0, 5

The MRR is the mean of all the RRs calculated on a query set. This means
that all the RRs for every single query are summed together and then divided
by the queries number. In example, given a set of 3 query on a dataset of 5
files, let the results be: Query 1 : 1st place, Query 2 : 3rd place, Query 3 : 2nd
place. In this case the MRR is:

(1/1 + 1/3 + 1/2)/3 = 0, 61

It can be easily shown that MRR is better when its value tends to 1, while
result are worst when its value tends to 0.

Mean Average Precision - MAP
The Average Precision, or AP, is the sum of the reciprocal of all the rank posi-
tions founded for a query divided by the number of matches found. In example,
if a song is detected correctly in position 2, 4 and 6 the AP for the query is:

(1/2 + 1/4 + 1/6)/3 = 0, 31

MAP is the mean of all the APs calculated on a query set. This means that
all the APs for every single query are summed together and then divided by
the queries number. It can be shown that MAP is better when its value tends
to 1, while result are worst when its value tends to 0.

4.4 N-Grams Segmentation
The first parameter we started to evaluate was the segmentation length for N-
Grams. Falcon permits to evaluate each song considering it as a sequence of
segments allowing also overlap between them. This is a desirable feature con-
sidering that, for a future application of the system, it is more probable that a
user will try to recognize only small excerpts of a song rather than a complete
song. For our tests we used the entire song as query files but the implementa-
tion of segmentation is a good starting point for future tests on small excerpts.
To exploit segmentation of our N-Grams sequence we simply used a delimiter
which value was not used in computation of hashes: 0. Remember from the
section 3.4.1 where we talked about N-Grams, the value 0, due to the process
of N-Gram creation, is never used.
As an example, the N-Grams sequence coming from the segmentation made in
table 4.1 is:

367 765 456 4563 5674 45637 654763 0 654 456 456 6786 6754 67546 54623
675498 0 1 0 456 654 789 6754 2345 76859 675839 0
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Segment 1 Segment 2 Segment 3 Segment 4
3-Grams 367 765 456 654 456 456 456 654 789
4-Grams 4563 5674 6786 6754 6754 2345
5-Grams 45637 67546 54623 76859
6-Grams 654763 675498 675839

Table 4.1: Example of N-Grams segmentation.

As it possible to see different types of N-Grams belonging to the same seg-
ment are grouped together in order of N-Gram’s size. Segments are separated
by the delimiter 0. A special case is the segment 3 where no N-Grams are
present. This is because not always is possible to detect pitch values for every
frame and the lack of this information can conduct to situations of segments
without any N-Grams. These void segments are coded in our sequence with the
value 1. This is another value that is never used during N-Grams creation.

Falcon was instructed to interpret value 0 and 1 respectively as “segment
delimiter” and “empty segment”.

4.4.1 Segmentation Results
The first experiments set was conducted to test which type of segmentation
obtain the best results. For this scope we used three different types of segmen-
tation:

• Long segments with wide overlap

• A unique segment

• Short segments with small overlap

Below here each configurations is detailed and results are presented.

Configuration 1

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 3-Grams, 4-Grams, 5-Grams, 6-Grams;
Segment length: 40 seconds;
Segment overlap: 30 seconds;
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Configuration 2

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 3-Grams, 4-Grams, 5-Grams, 6-Grams;
Segment length: 600 seconds;
Segment overlap: 0 seconds;

In this set using a segment length of 600 seconds and 0 seconds of overlap
we consider a song as a unique segment.

Configuration 3

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 3-Grams, 4-Grams, 5-Grams, 6-Grams;
Segment length: 12 seconds;
Segment overlap: 6 seconds;

Results

Figure 4.1: MRR of first experiment on N-Gram segmentation.

As it possible to see from the results reported in figure 4.1, the best perfor-
mances are obtained using the segmentation with high segment value and high
percentage of overlap. In particular the best value of MRR is obtained using
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the ranking function MINHF.
Also we can notice that HFIDF is the ranking function that is working always
worst compared to the others. We made also other different tests that con-
firmed this evaluation on ranking functions. Two of these additional tests were
made on the dataset using as query original files in the dataset, one time keep-
ing them in the dataset and one time removing them. Also these tests showed
that HFIDF is the worst ranking function compared to BM25 and MINHF.
Assuming this, from now on, our tests are based only on BM25 and MINHF.

Starting from the results obtained with the first experiment we explored
deeply the possibilities offered by segmentation. We created other configura-
tions with different values, still looking for the best segmentation, focusing on
long segments with a wide overlap. Below here different configurations used
during our tests are reported.

Configuration 4

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 3-Grams, 4-Grams, 5-Grams, 6-Grams;
Segment length: 30 seconds;
Segment overlap: 20 seconds;

Configuration 5

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 3-Grams, 4-Grams, 5-Grams, 6-Grams;
Segment length: 50 seconds;
Segment overlap: 40 seconds;

Configuration 6

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 3-Grams, 4-Grams, 5-Grams, 6-Grams;
Segment length: 60 seconds;
Segment overlap: 50 seconds;

Configuration 7

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
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Threshold for note deletion: 0.10 seconds;
N-Gram combination: 3-Grams, 4-Grams, 5-Grams, 6-Grams;
Segment length: 70 seconds;
Segment overlap: 60 seconds;

Configuration 8

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 3-Grams, 4-Grams, 5-Grams, 6-Grams;
Segment length: 100 seconds;
Segment overlap: 85 seconds;

Figure 4.2: MRR of second experiment on N-Gram segmentation.

In figure 4.2 results of the second experiment are presented. Notice that
the Configuration 1, the same as the first experiment is reported again also
in this one to have a comparison with other configurations. From this new
experimental setup we have seen that increasing until a certain limit the segment
length and its overlap conduct to better results. In particular Configuration 7
gave best results.
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4.5 Overlap Configuration

After we found an optimal value for segments using a segment length of 70 sec-
onds and an overlap of 60 seconds we decided to change the overlap parameter
to try to obtain better results. We tried with different configurations keeping
the segment length value to 70 seconds and changing only the overlap value.
All the tests, carried out both with BM25 and MINHF ranking functions, gave
worst results that the ones obtained with the Configuration 7. So we decided
to keep these values for segment length and overlap for further tests.

4.6 Results with Different Combinations of N-
Grams

After having fixed values for segment length and overlap we tried to mix dif-
ferent types of N-Grams, always with the hope to obtain better results. The
first experiment we tried was carried out analyzing the behavior of 4 different
configurations using only a type of N-Gram each. The configurations for this
test are listed below:

Configuration 9

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 3-Grams;
Segment length: 70 seconds;
Segment overlap: 60 seconds;

Configuration 10

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 4-Grams;
Segment length: 70 seconds;
Segment overlap: 60 seconds;

Configuration 11

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 5-Grams;
Segment length: 70 seconds;
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Segment overlap: 60 seconds;

Configuration 12

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 6-Grams;
Segment length: 70 seconds;
Segment overlap: 60 seconds;

Since from previous tests we have seen that BM25 has always a significative
lower value that MINHF, from now on, tests are carried out using only MINHF
ranking function.

Figure 4.3: MRR for configurations using only one type on N-Grams.

As it possible to see from figure 4.3 and 4.4 Configuration 12 that uses only
6-Grams is the one with the worst results. On the other hand, talking about
others kinds of N-Grams we have a inverse behavior for MRR and MAP. While
MRR is increasing going from 3-Grams to 5-Grams MAP is decreasing. This
is something that we expected considering what we said about N-Grams and
their properties of frequencies, information rate and robustness to wrong pitch
detections.
After the analysis of results coming from this experiment we tried to achieve
both good MRR and MAP values using a combination of 3-Grams and 5-Grams.
What we found is the state of the art of our system. Using the configuration
with the fine intervals representation and values of frame length and overlap for
mirpitch respectively equal to 0.20 seconds and 0.10 seconds, the combination
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Figure 4.4: MAP for configurations using only one type on N-Grams.
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of 3-Grams and 5-Grams gave the best results. A detailed explanation of the
configuration is presented below.

Configuration 13

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 3-Grams, 5-Grams;
Segment Length: 70 seconds;
Segment Overlap: 60 seconds;

Configuration Measure BM25 HFIDF MINHF

Configuration 13 MRR 0,1446 0,0697 0,2537
MAP 4, 92 ∗ 10−4 2, 45 ∗ 10−4 6, 92 ∗ 10−4

Table 4.2: State of the art of the system. MRR and MAP values obtained with
Configuration 13.

Configuration Query Type 1st <= 10 <= 25 <= 50 <= 100

Configuration 13
BM25 8% 34% 58% 74% 80%
HFIDF 2% 18% 42% 50% 68%
MINHF 14% 44% 64% 82% 90%

Table 4.3: Results on correct song matching obtained with Configuration 13.

As it possible to see from table 4.2 the Configuration 13 presents the best
values for MRR and MAP using MINHF ranking function. Table 4.3 presents
also the percentage of correct songs individuated in some predefined intervals.
Performances are appreciable for this configuration, considering that this is the
first version of the system.

4.7 Additional Tests

After having found a good configuration for our system we decided to carry
out some other tests aimed to explore other possibilities offered by our dataset
and tools. In particular we tried other configurations changing at the base
parameters of pitch detection. Also we tried other configurations changing
parameters for pitch post-processing phase and, finally, changing entirely the
type of representation. Results for these other tests are described in the sections
below.
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4.7.1 Changes on pitch post-processing parameters

The first tests we made were focused to see the differences coming from the
modification of the parameters of pitch post-processing. In particular we tried
to see how different approaches on deletion of notes affect results of our system.
We kept all the parameters belonging to Configuration 13 and we changed only
the threshold one. This parameter defines which is the minimum notes’ length
to keep on pitch values during the phase of pitch post-processing. Our new
configurations involved a non-post-processed set (all the notes were kept), a set
with threshold parameter equal to two times the parameter for Configuration
13 and a set with threshold parameter equal to three times the parameter
for Configuration 13. All the results obtained by these sets were inferior to
the results obtained by Configuration 13. In particular, only the set without
post-processing obtained inferior but similar result as Configuration 13 while
the other two sets output very poor results, especially the set with the biggest
threshold value.

4.7.2 Changes on values for pitch detection

Some other tests were made changing the parameters used on mirpitch to detect
pitch values. These parameters are the frame length and the frame overlap.
We created different configurations, one for each dataset listed in 3.1.2. All
other parameters are the same as the ones used in Configuration 13. Results
coming from this set of tests underline that the best configuration was still
Configuration 13. The only configuration with similar results, compared to the
ones of Configuration 13, is the one with frame length equal to 0.10 seconds
and overlap equal to 0.05 seconds. Other two configurations report poor values
for MRR and MAP in the tests. Furthermore, to explore more in detail this
experimental setup, we carried out some other tests using frame length equal
to 0.10 and overlap equal to 0.05 to see if we could obtain better results. To do
this we modified the segment length and segment overlap parameters. Anyway
results were not better that what found before. This was another confirmation
that a segment length of 70 seconds and a segment overlap of 60 seconds are a
kind of “magic combination ” for our dataset and our system.

4.7.3 Changes on representation

After changing parameters of post-processing phase and pitch detection module
we decided then to try to change radically the melody representation. At the
beginning, to create the starting situation we decide to represent melody using
a fine intervals representation. Anyway we had disposable two other types of
representation: coarse interval and semitones. Both of them were presented in
Chapter 2. Changing this parameters means that we change radically also the
N-Grams’ values because they are calculated on a different amount of symbols.
Our system has no problem to manage these new values and we were curious
to see how they affected the system.



4.7 Additional Tests 49

Figure 4.5: MRR value for different type of representation using BM25 and
MINHF ranking functions.
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As it possible to see from the histogram on figure 4.5 coarse intervals rep-
resentation presents the worst performance. This is probably due because this
type of representation is too general and can not represent in a proper way differ-
ences between songs. Furthermore, is important to underline the good results
coming from semitones representation. MRR value calculated with MINHF
has a lower value than the one calculated using fine intervals representation but
MRR value calculated with BM25 is slightly higher than the value calculated
using fine intervals representation.
It is necessary to underline that we obtained this result simply with casual
attempts of configuration sets. This means that, considering semitones repre-
sentation, with some work aimed to refine parameters we can maybe obtain
results better than the ones obtained with our Configuration 13 that use fine
interval representation.

4.7.4 Tests on semitones representation

Since we obtained encouraging results trying to test different types of repre-
sentations, we decided to push a little bit more on this side. So, using the
semitones representation we did several other tests to see if it was possible to
improve the performance of the system. The procedure adopted was a dupli-
cate of what we did to test the first basic representation. We first tried different
types of segment length always using a wide overlap. Then, once the best value
for segment length was founded, we tried different types of overlap value for the
segment. Finally, we also tried to mix different types of N-Grams.

What came out from the results it is that the semitones representation
presents results similar to fine intervals representation. Anyway, the best re-
sult obtained is still the one coming from Configuration 13. What we have
to say is that semitones representation presents results with less variability
than results obtained by fine intervals representation. This means that, even
changing parameters for segment length and overlap, results value present less
differences one from each others compared to the ones obtained using fine in-
tervals representation. Moreover, results obtained using BM25 with semitones
representation are better than results obtained using BM25 on fine intervals
representation even if they do not reach the same good results obtained with
MINHF. In figure 4.6 and 4.7 tests’ results are reported, comparing fine inter-
vals representation and semitones representation. The four configurations used,
both for fine intervals representation and semitones representation are:
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Configuration 1

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 3-Grams, 5-Grams;
Segment length: 70 seconds;
Segment overlap: 60 seconds;

Configuration 2

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 3-Grams, 5-Grams;
Segment length: 60 seconds;
Segment overlap: 50 seconds;

Configuration 3

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 3-Grams, 5-Grams;
Segment length: 50 seconds;
Segment overlap: 40 seconds;

Configuration 4

Mirpitch frame length: 0.20 seconds;
Miripitch frame overlap: 0.10 seconds;
Threshold for note deletion: 0.10 seconds;
N-Gram combination: 3-Grams, 5-Grams;
Segment length: 40 seconds;
Segment overlap: 30 seconds;

The best configuration found for semitones representation is Configuration
3. For this configuration we tried also several different types of overlap values.
Furthermore, we changed also the combination of N-Grams, carrying out some
other tests. None of these other configurations gave better results.

Detailed results, showing also MRR and MAP values, for Configuration 3
are presented in tables 4.4 and 4.5. Notice that for this configuration, even if
the MRR value is lower MAP value is a bit higher than the one obtained with
the best configuration using fine intervals representation.
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Figure 4.6: Comparison on MRR values for semitones representation and fine
interval representation using MINHF.

Figure 4.7: Comparison on MRR values for semitones representation and fine
interval representation using BM25.
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Configuration Measure BM25 HFIDF MINHF

Configuration 3 MRR 0,1735 0,0614 0,2421
MAP 5, 56 ∗ 10−4 2, 33 ∗ 10−4 6, 95 ∗ 10−4

Table 4.4: MRR and MAP values obtained with Configuration 3.

Configuration Query Type 1st <= 10 <= 25 <= 50 <= 100

Configuration 3
BM25 8% 34% 52% 74% 88%
HFIDF 2% 16% 32% 46% 68%
MINHF 16% 42% 54% 70% 88%

Table 4.5: Results on correct song matching obtained with Configuration 3.

4.7.5 Test with post-processing on N-Gram frequencies
Other experiments where carried out after adding a new module to our sys-
tem.2 This module is in charge to count the numerosity of a N-Gram on the
entire dataset. The distribution that we obtained after we counted how many
occurences of the same N-Gram we had in the dataset permitted to us to ex-
ecute an extra phase of post-processing on data. In particular we focused our
attention on the N-Grams generated starting from intervals. Our target was
to remove the “head” and the “tail” of the N-Grams distribution, too see if this
operation could improve the performance of our system. Operatively this oper-
ation consist of avoiding to include in our segments all the N-Grams belonging
to the first or the last part of the graph showed in figure 3.16. How wide is the
“head” or the “tail” to remove is decided by parameters passed to our module.

We tried few tests after we processed our dataset and the query set with this
new function, but without achieving better results than the ones obtained with
non processed sets. Briefly, we removed, first together and then separately, the
head and the tail of the N-Gram distribution. The remotion we performed for
the head was done on the first two N-Grams more frequent in the collection.
On the other hand the remotion we performed on the tail aimed to almost all
the N-Grams which presented only one or two occurences in the whole dataset.

We computed all of the three post-processing operations both on Configu-
ration 13 and Configuration 4.

As it possible to see from figure 4.8 MRR values after N-Grams deletion of
both more frequent and less frequent N-Grams, are worst than values obtained
with non processed sets. Results are worst for both configurations, losing more
or less both a 0,3 value for the MRR measure (computed using MINHF ranking
function). Also is possible to see that responsible for these lower values is only
the cutting operation performed on the head while the test where we performed
only the remotion on the tail has same MRR values than configurations without

2Commands to use this module of the system are listed in the last part of [22].
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Figure 4.8: MRR value for Configuration 13 and Configuration 4 after having
applied different N-Grams post-processing operations. MRR value calculated
with MINHF ranking function.
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post-processing. Anyway it is possible that, using higher values for the cutting
parameters, measures values will improve.

4.8 Computational time
In order to conclude the analysis of the application, it is important to consider
briefly the computation time of the algorithm. As mentioned in Chapter 2 the
most part of the functions of this systems are implemented using Matlab. The
only exception is Falcon that is implemented using Java. In fact, Matlab is a
very good tool to test an algorithm, but it does not fit for a commercial appli-
cation because of its structure. Matlab is optimized for the matrix calculation
and it does not work so fast when, as in this context, a lot of hidden cycles are
present.
The main parameters that affect the running time of the application are:

• Frame length used to detect pitch values;

• Frame overlap used to detect pitch values;

• Segment length used to segment the N-grams sequence;

• Segment overlap used to segment the N-grams sequence.

Off course, the length of a song is playing a fundamental role on computational
time but, since we are talking about pop and rock genres, usually songs belong-
ing to these kinds of music have a length between three and four minutes.
The system used to test the application is composed of an Intel Core 2 Duo 2.4
Ghz with 4 GB as RAM memory and Mac OS X 10.6.8 as operating system.

Basing on parameters used for Configuration 13 we can split the total time
in different pieces that compose the total amount of computation.

Pitch detection: pitch detection process takes usually between 20 and 40 sec-
onds to process each song, depending on the song’s length. Considering
that we had to detect pitch values for the 50 query files and the full
dataset of 555 files the pitch detection module taken more or less 5 hours
to compute pitch values for every song.

Pitch post-processing, intervals creation, n-gram creation, segmentation:
all of these operation were really fast. We can ignore the time taken by
these phases.

Falcon indexing and retrieval: Falcon is really fast, since it is implemented
in Java. Usually for the indexing of the dataset of 555 files it takes more or
less 8 seconds. For the creation of the ranked list of all the 50 query Falcon
it usually takes 30 seconds. Since we are usually creating 3 different result
files, one for each query type, Falcon takes more or less 1,5 minutes for
the indexing and retrieval tasks.
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Results evaluation: the results evaluation routine is written in Matlab and
it takes always around 3 minutes to compute MRR and MAP for each
set of 50 queries. The different segmentation or changing values for pitch
detection do not afflict time taken by this function.

As it possible to see the bottleneck is the calculation of pitch exploited by
mirpitch. Anyway we have to say that calculation of pitch values for the entire
dataset has to be done only once. The results, thus, are not so bad and a
different implementation of the pitch detection algorithm using, for example,
the Java language, will improve surely the computation time.

4.9 Memory usage
After the overview on computational time, to have a complete point of the
situation for the system, it is worth to present also details about usage of
memory of our system. For convenience, as we did for computational time, we
divide the usage of memory in different parts, each one of them compose the
total amount of memory used.

Sound files: even if they are not really needed to perform indexing and re-
trieval, since we are working only on text files containing results of melody
recognition phase, we need them in the first phase to compute all the pitch
values we used for following operations. All of these files had a sampling
frequency of 22050 Hz and they are monophonic recordings. All the files
were in WAV format. Considering that usually, a song, has a length com-
prised between three and four minutes the average dimension for a file is
10 Megabytes. This is confirmed by the fact that our system (that works
on 605 files: 555 files for the dataset and 50 query files) present a usage
of memory for sound files equal to 6,02 Gigabytes.

File descriptor: after all the phases focused on the creation of the melody
representation, data for every song is stored in a text file, saving for every
segment of the song the N-Grams’ hashes. Values for memory usage of
these files are depending by a lot of parameters (segment length, segment
overlap, number of types of N-Grams used, etc.). Considering the two
best cases for fine intervals representation and semitones representation
memory usage for the 50 query files is respectively 7,3 Megabytes and 7,2
Megabytes. We can deduce that the mean memory usage for a single file
is approximately 150 Bytes. The total memory usage for our system is
around 90 Megabytes.

Falcon index: as said before Falcon need to create an index from the dataset
of 555 files. The size of this index is usually comprised between 3,5
Megabytes and 4,5 Megabytes depending on the parameters used to pro-
cess the dataset values.
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Conclusions

During this work, we took care of the live and cover song recognition problem.
The idea consists of retrieving the original song starting from an unknown audio
recording that can be also a live version or a cover of a song. The original song
is part of a dataset previously indexed.
The proposed approach to this problem consists in the use of the melody to
index and retrieve the original song.
First of all we extracted the pitch values for every song. This operations is
exploited by a Matalab function included in MIR ToolBox: mirpitch. Then we
made some post-processing operations aimed to obtain a more reliable sequence
of pitch values.
After the pitch values were properly processed we created a representation of
the melody using intervals. This representation is robust to tonality changes
and, since it does not represent tempo, it is also robust to tempo variations.
After the creation of intervals representation we transformed it into N-Grams
representation. This was done to have a more efficient way to index our melody
and subsequently to retrieve it. In fact, for every single N-Gram we gave a
number identifying it. This means that we simply created an hash for each
N-Gram we had.
Once all this codification phase was done we started, using Falcon, to test our
system using 50 query files. These files were composed of live versions and also
live versions played by different artists than the songwriter. These files were
tested again a dataset of 555 other files representing the original songs.
After a wide range of tests on different parameters, starting from an arbitrary
basic situation, we figured out an optimal configuration for our system. This
configuration had a MRR value of 0,2537 and a MAP of 0,000692. These values,
even if they are not so close to the perfection, gave us a first hope that the way
we started is was right.
After we found a first stable configuration more other tests were carried out
trying different types of representation or changing other kinds of parameters
in our algorithm.



58 Conclusions

What came out from last tests was a sub-optimal configuration that use semi-
tones representation instead of fine intervals representation. This configuration
had a MRR value of 0,2421 and a MAP of 0,000695. Even if this configuration
does not add better results to the ones founded with the optimal configuration,
it can be a good starting point for future tests.
The system gave encouraging results on precision and accuracy. Also, we
achieve the target of efficiency: the system takes around 3 seconds to perform
the query operation.

5.1 Future developments
Talking about future developments there are many directions that can be ex-
plored.
On of the is a research, or a new implementation, of a pitch detector that works
better than mirpitch or, also, to test different configurations for mirpitch. The
focal point is that, having a less disturbed and more reliable pitch values, we
can perform a better melody representation.
Also other approaches could be tested, using different types of representation
and changing parameters for test configurations. Even a rank fusion procedure
between BM25 and MINHF can be explored. This because we noticed on our
tests that often, when MINHF has bad values BM25 has better values.
Another option is to combine results coming from melody-based system with
results coming from CHROMA-based system. Melody approach can, in some
way, affect CHROMA-based systems raising performance of several percentage
points. In a more general way, the approach of results fusion with other system
available, performing audio recognition, even if they are not dedicated to live
and cover songs, could be a directions to explore.
Considering a possible future application for this system we can say that a
target to focus on is a new implementation aimed to be used as a stand alone
application. This can permit to integrate currently available tools of music
recognition with features exploited by our system.



Appendix A

This section is intended to give a quick and general overview about some mu-
sical concepts involved in the work detailed in this thesis.

Tones and Semitones
We start explaining the concept of semitone. A semitone is the minimum
interval that is possible to found in music, as known in the current theory for
musical harmony. Two semitones together form a tone. Tones and semitones
are used to indicate the distance of a note from another. Figure 5.1 represent
the distance between notes in our musical system.

Figure 5.1: Distance between notes using tones and semitones.

As it possible to see from figure 5.1 intervals of a tone are divided in a half
by altered note (C#/Db, D#/Eb, etc. where C# and Db are the same pitch
value called with two different names considering if we want an altered C or
an altered D). So, considering all the notes, including altered ones, we can say
that every note is separate from the next or the previous one by an interval of
a semitone.

Intervals
As seen in the previous section we can always identify an interval between
two notes just counting the number of semitones encountered moving from one
note to the other. To identify in a faster way an interval between a note and
another, tones and semitones are grouped together to create intervals. Each
interval has a name and a quality. The process to create intervals grouping
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Interval name Interval quality Example Semitones
Unison diminished C - Cb -1
Unison perfect C - C 0
Unison augmented C - C# 1
Second diminished C - Dbb 0
Second minor C - Db 1
Second major C - D 2
Second augmented C - D# 3
Third diminished C - Ebb 2
Third minor C - Eb 3
Third major C - E 4
Third augmented C - E# 5
Fourth diminished C - Fb 4
Fourth perfect C - F 5
Fourth augmented C - F# 6
Fifth diminished C - Gb 6
Fifth perfect C - G 7
Fifth augmented C - G# 8
Sixth diminished C - Abb 7
Sixth minor C - Ab 8
Sixth major C - A 9
Sixth augmented C - A# 10

Seventh diminished C - Bbb 9
Seventh minor C - Bb 10
Seventh major C - B 11
Seventh augmented C - B# 12

Table 5.1: Creation of intervals grouping tones and semitones.

tones and semitones is explained in the table 5.1.
Intervals presented in the table are ascendent intervals because are created
considering that the second note has a higher pitch than the first one. For
descending intervals name are the same, just the second note has a lower pitch
than the first one.

As it possible to see from values in semitones column on table 5.1 some
intervals with the same number of semitones difference can take different names.
This is used in music to solve ambiguity between notes with the same pitch but
with different name.

What we did in the work of this thesis was simply to calculate, starting from
the pitch value of two notes, the difference between them in terms of semitones.
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Calculation of semitones difference between two
pitch values
To calculate the distance between two pitch values in term of semitones we
simply start from a formula that calculate the frequency of a note knowing the
difference of the note from the A4 in terms of semitones. When we talk about
A4 we intend the note that is usually used as reference to tune instruments.
This note is an A with an absolute frequency of 440 Hz.
The formula used to calculate the frequency of a note is:

frequency = 440 ∗ 2n/12Hz

where n is the number of semitones separating the desired note from the A4. In
example, if we want to calculate the frequency of C5 we just need to substitute
n with the value 3.

For our scope we used the formula in a reverse manner. In this way, starting
from a frequency value, we calculated the interval from the founded note to the
A4 in terms of semitones. The formula adopted is:

semitones = 12 ∗ log2(PitchV alue/440)

Once the distance in semitones is computed we simply used a subtraction
to obtain the difference in semitones between two notes.

intervals = round(note2− note1)

In the formula above note2 is the difference in semitones from A4 for the second
note of the interval and note1 is the difference in semitones from A4 for the
first note of the interval. The function round(..) simply compute a rounding
operations on final value because, as it possible to see from table 5.1, to compute
an interval value we need a number of semitones without decimal digits.
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