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SUMMARY 
 

In the world, power generation industry and transportation sector are still reliant on fossil fuel 

resources, despite their gradual depletion and the environmental concerns. Moreover, global 

energy demand is rapidly increasing due to the economic and population growth, leading to 

higher carbon dioxide emissions and very challenging future choices. 

European Union, but also many other Countries of the world, are promoting policies to 

stimulate the adoption of Renewable Energy Sources (RES) and the electrification of transport 

in order to reduce fossil fuels use. They expect to combine these two strategies because Electric 

Vehicles (EVs) can support a high penetration of RES and renewable sources can solve several 

problems for the EVs. This is true only if charging of electric vehicles is properly managed, 

otherwise it can lead to severe consequences in the operation of local distribution systems. 

In this context, the thesis project aims to create a novel tool, based on a Matlab/Simulink 

platform, able to model distribution networks and analyse the impact of EV charging, 

renewable energy generation and the adoption of smart grid technologies. The tool, which is 

managed through a user-friendly GUI (Graphic User Interface), needs input information, about 

the characterization of electricity network and connected systems, in order to depict a 

geographical representation and perform a techno-economic assessment of the modelled 

system, considering different EV charging strategies.  

The tool has been applied to analyse an existing low-voltage distribution network, applying 

different scenarios according to current and expected operating conditions in the year 2050. 

Moreover, the simulations of the forecasted ones consider three different charging strategies: 

uncontrolled, smart and V2G (Vehicle-to-Grid). In the last two typologies, the modelling tool 

performs a cost function optimization problem that defines the charging profile of each EV, 

also taking into account battery degradation costs. 

The results show the severe consequences related to uncontrolled EV charging, as current and 

voltage constraints violations and distribution transformer overloading; while vice versa, they 

demonstrate the technical and economic feasibility of smart charging and V2G technology. 

In the next decades, EV penetration is expected to achieve very high targets; therefore, relevant 

regulations will have to be defined in order to maintain the power system operating. 

In conclusion, to ensure a sustainable implementation of EVs in the transportation sector, EV 

charging will have to be properly controlled and, in addition, V2G technologies, by providing 

ancillary services, will be able to represent alternative revenue streams to offset the high 

vehicles initial cost.  
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SOMMARIO 
 

L’industria della generazione di energia elettrica e il settore dei trasporti sono, tuttora nel 

mondo, dipendenti dai combustibili fossili, nonostante il loro progressivo esaurimento e le 

crescenti preoccupazioni in tema ambientale. Inoltre, il consumo mondiale di energia è in 

rapido aumento a causa della crescita economica e demografica, comportando, quindi, da un 

lato maggiori emissioni di anidride carbonica, dall’altro scelte future molto impegnative. 

L’Unione Europea, ma anche molti altri Paesi del mondo, stanno promuovendo politiche per 

incentivare l’adozione di Fonti Energetiche Rinnovabili (FER o RES) e l’elettrificazione dei 

trasporti con l’obiettivo di ridurre l’uso di combustibili fossili. Si prevede, infatti, la 

combinazione di queste due strategie in quanto i veicoli elettrici (EV) possono sostenere un 

alta diffusione di FER e le rinnovabili possono risolvere molti problemi correlati all’adozione 

dei veicoli elettrici. Questo è vero, però, solo se la ricarica dei veicoli elettrici viene gestita 

opportunamente, altrimenti può determinare gravi conseguenze nel funzionamento dei sistemi 

di distribuzione. 

In questo contesto, il lavoro di tesi si è focalizzato sullo sviluppo di un nuovo software, basato 

su una piattaforma Matlab/Simulink, in grado di modellare reti elettriche di distribuzione e di 

analizzare l’impatto della ricarica dei veicoli elettrici, della generazione fotovoltaica e 

dell’adozione di tecnologie per reti intelligenti. Lo strumento di modellazione, che è 

controllabile attraverso una semplice interfaccia grafica utente (GUI), necessita di alcune 

informazioni di input riguardanti la caratterizzazione della rete elettrica e dei sistemi ad essa 

connessi, al fine di costruire la rappresentazione geografica ed eseguire la valutazione tecnico-

economica del sistema esaminato, considerando differenti strategie di ricarica dei veicoli 

elettrici. 

In particolare, lo strumento è stato utilizzato per analizzare una rete elettrica reale di 

distribuzione a bassa tensione, applicando diversi scenari in relazione alle condizioni operative 

attuali e previste per l’anno 2050. Inoltre, nelle simulazioni degli scenari al 2050 sono state 

prese in considerazione tre diverse strategie di ricarica: incontrollata, intelligente e V2G 

(Vehicle-to-Grid). Nelle ultime due tipologie, lo strumento ottimizza una funzione di costo per 

definire il profilo di carica di ciascun veicolo elettrico presente, tenendo in considerazione 

anche i costi relativi alla degradazione della batteria. 

I risultati mostrano le gravi conseguenze legate alla ricarica non controllata, come la violazione 

dei vincoli di corrente e tensione e il sovraccarico del trasformatore di distribuzione; mentre 

viceversa, dimostrano la fattibilità tecnica ed economica della ricarica controllata (intelligente) 

e della tecnologia V2G. 

Nei prossimi decenni, si prevede che la diffusione dei veicoli elettrici raggiungerà livelli molto 

importanti; pertanto, dovranno essere definite normative adeguate al fine di mantenere 

operativo il sistema elettrico. 

In conclusione, per garantire un’implementazione sostenibile dei veicoli elettrici nel settore 

dei trasporti, la loro ricarica dovrà essere gestita adeguatamente e, inoltre, le tecnologie V2G, 

fornendo servizi ancillari, saranno in grado di rappresentare fonti di reddito alternative per 

compensare gli ancora elevati costi iniziali dei veicoli. 
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1. INTRODUCTION 
 

University of Northumbria at Newcastle, which received me for six months of Erasmus 

program, is one of the main partners of SEEV4-Grid consortium. This thesis project comes as 

an attempt to meet the needs of SEEV4-Grid project, described below. 

In the current stage of the plan, the main targets concern modelling and simulations; therefore, 

the purpose of this thesis is to create a new tool, based on Matlab/Simulink platform, able to 

model distribution networks and analyse their operating conditions. It takes into account 

passive loads, photovoltaic generation and the implementation of different EV charging 

strategies, which are settable among uncontrolled, smart or V2G methods. 

 

1.1. Background 
 

In the world, power generation industry and transportation sector are mainly based on fossil 

fuel resources. Their energy consumption has grown rapidly over the last decades. Moreover, 

International Energy Agency projects significant growth in world energy demand [1]. It is 

expected to increase by 40% until 2040.  

Electricity generation and transportation are responsible for about 60% of all energy use in the 

world [2], so the promotion and adoption of Renewable Energy Sources (RES) and 

electrification of transport are essential for future power systems [3] and they offer a great 

potential for reducing fossil fuel use. 

The deployment of RES is expected to speed up not only in Europe, in order to reach the 

targets promoted by the EU Member States, but also in many other Countries of the world, 

where many researches are aimed to achieve high RES implementation, especially after 

Fukushima accident [4]. Indeed, as shown in the following Fig. 1.1.1 and Fig. 1.1.2, the trends 

of annual additions of global photovoltaic (PV) and wind generating capacity [5] reflect what 

was stated before. 

 
Fig. 1.1.1 Solar PV global capacity and annual additions, 2006-2016 [5] 
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Fig. 1.1.2 Wind Power global capacity and annual additions, 2006-2016 [5] 

 

European Union (EU) has set up a challenging 2050 low-carbon roadmap in order to reduce 

by 80% Greenhouse Gas (GHG) emissions by that year. Fig. 1.1.3, provided by European 

Commission in [6], illustrates the planned path to reach the intended goal. The red line 

projection shows how GHG emissions would develop according to current policies.  

 
Fig. 1.1.3 EU GHG emissions towards an 80% domestic reduction (1000% = 1990) [6] 

 

However, it considers two intermediate climate and energy targets for the years 2020 and 2030 

to put the EU on the way to achieve the aforementioned low-carbon economy.  

European leaders set for 2030 [7]: 

 A 40% reduction in greenhouse gas emissions compared to 1990 levels; 

 A 27% share of RES in the energy mix; 

 A 27% increase in energy efficiency. 

Of course, from an electricity generation point of view, these targets are reachable mainly 

through a massive deployment of Photovoltaic (PV) panels and wind farms, if we ignore 

nuclear power plants; while, plug-in Electric Vehicles (EVs), moved by electric motors and 

powered by electrochemical batteries, represent a promising solution from a transportation 

sector point of view [7]. 
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Indeed, EVs have higher efficiency and lower operating costs compared to the conventional 

Internal Combustion Engine (ICE) vehicles [8]; the constant research on lithium-ion batteries 

and fast charging technology will be the major facilitator for EVs roll out, though high initial 

price, limited driving range and limited charging facilities may represent limitations.  

For this reason, many Countries have taken specific policy initiatives to encourage RES 

implementation and EVs introduction [9]. 

International Energy Agency (IEA) reports that the global number of EVs has exceeded 2 

million in 2016 [10] with a global evolution, until 2016, shown in the following Fig. 1.1.4. 

Electric-power industry forecasts that the number of  EVs in the world would increase by 5 

million per year by 2020 [11] and will be more than 2 hundred million by the year 2050 [12]. 

 

 
Fig. 1.1.4 Evolution of the global electric car stock, 2010-2016 [10] 

 

However, both RES and EVs have heavy downsides: 

 Most of renewable energy sources are characterized by an intrinsic intermittency and 

unpredictability, so a large-scale penetration can cause severe challenges in energy 

generation and load balance maintenance to ensure power network stability and reliability 

[13]. A further huge problem arises when many Distributed Generation (DG) plants are 

located in areas where energy demand is low. In this case Power Quality problems, like 

reverse power flow and line overvoltage, can occur [14]. DG can also lead to higher fault 

currents, network protection system failure and phase imbalances [15]; 

 A high EVs penetration can considerably increase the electricity demand and its daily 

peak if EV charging is uncontrolled. Random charging profiles and large scale of EVs 

can cause high voltage deviations, distribution losses and degradation in term of power 

quality. Moreover, they can reduce lifetime of the transformers due to overload and 

instability [16]. 

EV charging can lead to synergies with distributed generation and smart demand-side 

technologies; it can be scheduled to charge the vehicles when green power production is high 

with energy cost savings for users and system. So, EVs can be an important participant in 

Demand Response (DR) strategies [3]; as well as EVs can become electricity storage and 

providers, if they are managed in bulk by an intermediary entity, called aggregator [17]. 

Hence, the large scale of grid-connected EVs can be considered as a huge energy storage 

distributed in the power grid and controlled charging schedules can arrange a charging when 

the grid has a surplus of RES generation and a discharging at the time when grid has less 

capacity, in order to provide a storage facility for supply/demand matching [14]. Therefore, 

the potential of EVs to share energy with the power network has created a new opportunity to 
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improve the system reliability and sustainability, allowing a large-scale integration of RES 

[12]. This concept, called Vehicle-to-Grid (V2G) technology, was firstly adopted by Kempton 

in [18]. 

In the retail energy market, the storage, provided also by EV batteries, can decrease energy 

costs through load levelling and avoiding renewable electricity spillage. In fact, it is possible 

that renewable generation can be spilled during valley hours if no storage is available on the 

electricity network [4]. 

Traditionally, power systems include some large generating power plants, linked together by 

a high voltage transmission system, which supplied electricity to consumers via medium and 

low voltage distribution networks [14]; they have no storage, therefore generation must be 

continuously managed in order to match the fluctuating customer consumption, maintaining a 

constant frequency value in the electricity grid. 

With RES spread, the direction of power flows into the grid is not as obvious as it was before; 

so, if energy storage infrastructures were not implemented in the electricity network, power 

system regulation would become much trickier and a worsening of power quality could be 

occurred. 

A reliable wide scale energy storage technology already exists, Pumped Hydroelectric Energy 

Storage (PHES) is the main and most developed form of energy storage available so far in the 

world, but its available energy capacity is inadequate and, moreover, new suitable locations to 

build up new PHES plants are limited [19]. Other energy storage technologies are currently 

available [3], but they are not economically sustainable because of their capital and operational 

costs.  

However, the capital cost can be avoided if EV batteries are exploited when electric vehicles 

are plugged in, so from this point of view, many researchers assert that V2G implementation 

can lead many potential benefits to the power grid. For example, peak load shaving and load 

levelling, but it can also support the grid by ancillary services such as spinning reserve, voltage 

and frequency regulations. In conclusion, energy regulation services improving energy 

efficiency and mitigation of RES intermittency. 

V2G concept is part of Smart Grid technologies, which involve EVs to make positive change 

in the power system operation. 

For these reasons, a very large implementation of new entities in the electricity grid, such as 

small-distributed generators and electric vehicles, has imposed a redefinition of power systems 

concept. 

The European Technology Platform for Electricity Networks of the Future has defined the 

concept of Smart Grid (SG) as: “An electricity network that can intelligently integrate the 

actions of all users connected to it (generators, consumers and those that do both) in order to 

efficiently deliver sustainable, economic and secure electricity supplies” [14]. 

In the recent years, users that are both producers and consumers are conventionally called 

prosumers (combining pro-ducers with con-sumers). 

SG will have to integrate EVs, renewable generations and distributed generation into the 

traditional power network, exploiting real-time communication in order to coordinate 

bidirectional power flows, through intelligent control strategies. To realize this, fundamental 

infrastructures need an overall upgrade; indeed, both actual power grid infrastructures and EVs 

charging stations are not so developed to manage bidirectional power flows [11]. 

Recapping, it has been introduced that large scale adoption of EVs will permit a much bigger 

implementation of renewable energy generation into the grid than those would have been 
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possible without their energy storage [14], considering the high costs of the electricity storage 

technologies. 

The economic feasibility of EVs depends on the availability of cost-effective batteries with 

high power and energy density [20]. As reported in [21], Lithium-ion batteries are a key 

technology for actual and coming energy storage applications. 

Nowadays, batteries cost covers a significant fraction of the overall cost of many applications, 

but many studies, including [7] and [20], report that batteries cost is expected to decrease with 

high-volume of cell production and the upcoming improvements of manufacturing 

technologies. 

Automotive manufactures recommend battery replacement when the remaining energy 

capacity reaches (70 ÷ 80) % of the nominal value [20]. That is because the energy capacity 

left in the battery is not enough to guarantee the EV’s designed range.  

Nevertheless, a new economic opportunity arises. Decommissioned batteries still have 

significant power and energy capacity, so they can be used in bulk, so in large-scale BESSs 

(Battery Energy Storage Stations) connecting several units in series and parallel arrangement, 

or in distributed scale to provide important grid-balancing services. 

These ancillary services, provided by second use or second life of EV batteries, can represent 

alternative revenue streams to offset their high initial cost [20], also because, BESS control 

strategies are not influenced by the EV user transportation needs anymore.  

In this way, exploiting both EVs and BESSs, the Automatic Generation Control (AGC) could, 

for example, perform frequency regulation (FR) on both generation and load sides 

simultaneously to help traditional generating units [3]. 

The expected development of EV market requires a corresponding progress in the charging 

facilities sector. Next to the batteries, the availability and reliability of chargers are extremely 

important. Many studies are aimed to improve chargers efficiency, to make them more 

versatile and to reduce charging costs. 

Statistics, reported in [7] and [18], show that personal vehicles are used, in average, for 

transportation about only 4% of the time, for an average daily commuting trip of 24 km, about 

15 miles; so, they are parked for more than 22h every day. However, considering a fleet of 

vehicles, the share of those being parked never falls below 75%. Consequently, V2G 

technology appears as a promising innovative solution.  

However, V2G technology requires frequent charging and discharging cycles which cause 

extra battery degradation of EVs. This problem can create a strong social barrier for V2G 

implementation. A very important research area concerns the assessment of the impacts of 

V2G services on the battery life in Battery Electric Vehicles (BEVs) and Plug-in Hybrid 

Electric Vehicles (PHEVs), all referable to the acronym EVs [22]. 

The battery degradation is a function of the number of charging/discharging cycles, the 

operating temperature, the depth of discharge (DOD) or State Of Charge (SOC) and of the 

total energy exchanged. 

Batteries used in the EVs are usually charged between an upper limit of (80 ÷ 90) % of their 

State of Charge (SOC) and a lower limit of (20 ÷ 30) % of SOC [20]. However, battery capacity 

degradation is inevitable as the battery is used to meet transport needs, but V2G strategy can 

make it worse. 

It is also true that nowadays, there are two different payments for the power plants providing 

ancillary services, the first one is for the power capacity contracted, the second one concerns 
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the energy actually provided to the grid [22]. Therefore, by the same token, there may be 

payments to vehicles that will provide ancillary services. 

As mentioned before, some studies [23] revealed that, most of the vehicles are currently parked 

more than 90% of their time, so, if they were electric vehicles, they could make available their 

battery capacity on the electricity network. 

In this case, they could remain plugged-in and ready to store or provide energy from/to the 

grid. As aforementioned, to guarantee the needed power capacity for ancillary services an 

intermediate system, called aggregator, is necessary. It allows to break down the dependence 

on EVs plug-in uncertainties and, finally, to handle small-scale power of EVs in order to 

provide the regulation services on the large-scale network [24]. 

The basic idea is that, the owners of EVs, participating in ancillary services, would not change 

their vehicle usage, but they only have to notify the aggregator, through a dashboard interface, 

the expected plug-out time and the wanted battery level for every plug-in [24]. The aggregator 

would then manage the EV battery charging and discharging in order to, of course charge the 

battery, but also provide the power capacity to the electricity grid. Meanwhile, the aggregator 

would make a contract with the grid operator to provide regulation services with the contracted 

power capacity of EVs. 

 

 

1.2. Electrification of road transport system 
 

Electrification of transport combines a high energy efficiency method to move vehicles with 

the opportunity of using different sources than fossil fuels, indeed, to generate the electricity, 

required by the Electric Vehicles (EVs), Renewable Energy Sources (RES) can be exploited. 

The power is supplied to the EV by on-board battery, which is charged by power grid when 

plugged in, or by on-board generator, if the EV uses regenerative braking technologies [11]. 

In the recent years, EVs are gaining high popularity and attention because they promise 

economic and environmental benefits; in fact, just from an economic point of view, 

International Energy Agency (IEA) expects a substantial increase in the price of crude oil in 

the coming decades [25]. 

 

EVs can be classified, as shown in Fig. 1.2.1 below, into the following four categories [25]: 

 Battery Electric Vehicle (BEV); 

 Hybrid Electric Vehicle (HEV); 

 Plug-In-Hybrid Electric Vehicle (PHEV); 

 Extended Range-Electric Vehicle (EREV).  

The first category of EVs is BEVs, which are completely powered by electrochemical 

batteries. This feature makes BEV zero emission vehicles. However, drivers must beware of 

BEV driving range, as their refuelling is not as immediate as approaching a nearest fuel station.  

Then, HEV is a combination of BEV and traditional Internal Combustion Engine (ICE). The 

vehicle uses the energy stored in the battery below speed of 40 mph (65 km/h) with zero 

emissions, while it uses the combustion engine at higher speeds. Hence, ICE extends driving 

range of BEVs. 
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The third category is PHEVs, which are similar to HEVs, but they can be also charged, through 

a plug, from power grid and renewable energy sources while parked. They have greater fuel 

efficiency and less environment impact than HEVs. 

The last category is EREVs. They are a combination of BEV and PHEV with more improved 

fuel efficiency and reduced emissions. 

 

 
Fig. 1.2.1 Types of EVs [25] 

 

Hybrid energy technologies can be used in two different approaches: battery charge-sustaining 

(CS) mode or battery charge-depleting (CD) mode [11]. In CS mode, fossil fuel is the major 

energy source. In CD mode, the PHEV’s operation depends on the electricity provided by the 

battery and gasoline consumption can be substantially reduced. 

The prices of EV batteries are considerably high, even though the average price of lithium-ion 

(Li-ion) battery pack is decreasing every year [11]. 

Nowadays, PHEVs are generally more competitive than BEVs in terms of driving range and 

price. In fact, BEVs with longer-range features have usually a higher price. Since PHEVs can 

rely also on ICE, they have small capacity battery packs (less than 25% ÷ 33% of those 

equipped by BEVs), so lower final price [11]. 

 

Properties of Rechargeable Batteries 

As reported in [11], the EVs in the current market are equipped with Li-ion batteries because 

they have many important properties, such as, for example, high energy density, slow self-

discharge and less environmental influence. 

However, Li-ion battery charging requires advanced voltage and current controls of charger 

output, because large fluctuations can cause severe damages to the battery. Hence, interaction 

between EVs and Smart Grids (SG) must ensure proper charging quality in order to maintain 

a long EV batteries lifetime. 

The following list shows the key properties of rechargeable batteries suitable for EVs [11]. 
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 Charging power controllability: nowadays, the three charging standards currently in use 

(Sec. 1.3) cannot provide continuously controllable charging power especially since 

battery packs require very smooth DC voltage and current. Some targets, such as 

flattening loads, can be reached only through controllable charging power, which means 

through more advanced batteries. 

 Battery charging rate: current Li-ion batteries show a nonlinear relationship between 

charging time and battery State of Charge (SOC). The time elapsed to complete the final 

stage of charging is usually much longer than that taken for the initial part. According to 

Fig. 1.2.2, the last 1/3 of the charging cycle is characterized by a decrease in the charging 

current since the battery cell open circuit voltage increases; therefore, the SOC increases 

more slowly. 

 
Fig. 1.2.2 Battery SOC/Charging time curve [11] 

 

However, the related discharging cycle shows a linear dependence between SOC and 

discharging time, therefore this discrepancy between charging and discharging leads to 

complications in the determination of charging needs with different initial SOCs. 

 Battery aging: speaking about EV charging, another factor needs to be taken into account 

in the overall cost, in fact Battery Life is a significant aspect since batteries cost comprises 

a large percentage of today’s EVs’ price. Conventionally, battery life is the minimum 

between Calendar Life and Cycle Life. The first one is the elapsed time before a battery 

becomes unusable, while the latter is the number of complete battery charge-discharge 

cycles before its nominal capacity falls under 80% of its original capacity. The 

temperature of the battery mainly influences the Calendar one, while usage patterns and 

Depth of Discharge (DOD) affect the Cycle Life, indeed for many batteries and 

chemistries, deep cycles cause more significant aging compared to small cycle depths 

[21]. 

Different types of Li-ion batteries imply different aging effects, thus it is impossible to 

build a universal model to simulate aging mechanisms; but, as aforementioned, they are 

also affected by different operating conditions, such as daily driving cycles, charging 

schedules and strategies. 

Frequent charging and discharging reduce battery life; therefore, it is also important to 

evaluate the effect of battery aging resulting from providing ancillary services. 
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1.3. Charging infrastructures 
 

One of the most critical components for global EV implementation is charging infrastructure. 

According to [25], the most challenging target is to develop a nationwide network of charging 

points rather than producing batteries at affordable costs. 

Nowadays, there are some standard chargers and plugs based on three levels of power and 

voltage values, but they depend on the locations. For instance, International Electrotechnical 

Commission (IEC) defined the standards for Europe, while SAE International for North 

America.  

In order to describe EV chargers, the first distinction is between AC (Alternating Current) and 

DC (Direct Current) types. Of course, in both cases, the EV battery pack receives DC current, 

but in the former, the EV has an on-board rectifier that converts AC to DC, while in the latter 

case, the conversion is directly performed in the DC charging station. 

As aforementioned, IEC defines three different levels for AC charging type, which are Level 

1, 2 and 3; while for DC charging type, it considers only one level (Tab. 1.3.1). 

The first level of AC typology is an on-board charging facility, which means the charger is 

located inside the vehicle, so the user can directly plug it to a conventional outlet. It does not 

require additional facilities and it is usually performed at home during the night. Because of 

the limited size and weight and thermal constraints, the AC Level 1 charging current, and 

consequently power, are very low, leading to long charging time.  

The second level is the most widespread charging point; it requires a dedicated charging 

infrastructure, due to its higher ratings and it can have a single-phase or a three-phase 

connection. 

The last AC Level ensures fast charging thanks to its very high performances, but as reported 

in [16] it is yet to be implemented. 

The DC fast charging facilities are the most promising candidates for a widespread installation; 

in fact, thanks to the high power ratings they can solve the problem of charging time. They 

can be installed in highway rest areas, car parks of shopping areas, restaurants, etc. or in city 

refuelling points, where users can quickly charge their vehicles.  

The EV charging time depends on three factors: size of battery pack, power rating of the 

charger and number of EVs connected to the same charger at the same time. 

 

Tab. 1.3.1 IEC Standards for EV charging [16] 

Level Max power rating [kW] Max ampere rating [A] 

AC Charging   

- Level 1 4 ÷ 7.5 16 

- Level 2 8 ÷ 15 32 

- Level 3 60 ÷ 120 250 

DC Charging   

- DC Fast Charging 100 ÷ 200 400 

 

As reported in [26], EV battery charging can be classified according to the energy transfer 

mode in conductive, inductive and battery swapping methods. 
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Conductive charging relies on a power transfer through direct contact, which means it uses an 

electrical cable to connect the electronic devices to the electricity source. This type of charging 

is very simple and efficient; it can rely on an on-board or off-board method. 

Inductive charging (wireless charging) is based on an electromagnetic coupling to transfer 

electricity from the source to the EV. This type of charging is the safest one under all-weather 

conditions. At the current state of the art, it has low efficiency with high power loss. 

Battery swapping is a method where EV users can swap their empty battery with a fully 

charged one, approaching a specialized “refuelling” station called Battery Swapping Station 

(BSS). This method has several benefits, such as long battery lifetime and minimal 

management costs, given that batteries can be managed in a centralized way. Furthermore, it 

can give the chance to avoid the peak demand related to uncontrolled charging. On the other 

hand, BSSs require huge initial investments to purchase batteries and huge space to operate. 

There are different available techniques to charge an EV battery, by which charging time 

depends on. They are based on traditional methods or advanced technologies. 

The former are related to slow charging concepts and they rely on Constant Current (CC) or 

Constant Voltage (CV) methods. 

CC technique, for example, is the simplest one and it provides a single low-level current to the 

discharged battery. Usually, the charging current is set as 10% of the maximum rated capacity 

of the battery, but it can lead to gassing and overheating if the battery is overcharged. 

Fast charging is based on advanced technologies, such as CC-CV and Pulse Current (PC) 

techniques. Its advantages include limited charging current and voltage thanks to battery 

control systems, which prevent over-voltages and thermal stress. CC-CV technique starts 

implementing CC charging until a pre-set voltage level is achieved, then it applies a CV 

charging to complete the charging cycle. 

In [26], a method with some rest periods during battery charging are implemented in order to 

reduce battery temperature and therefore battery degradation. 

Some researchers are considering PC technique for fast EV charging because it can double the 

speed of standard CC-CV charging. It uses pulses to supply charging current to the EV battery. 

It relies on sophisticated systems to generate and control pulses.   

 

 

1.4. Impact of EVs on Power System 
 

Electrification of transport system has been proposed both to address environmental concerns 

and to increase energy security of transportation sector. However, the achievement of these 

goals will depend on the management of the overall system. In fact, the targets of reducing 

atmospheric emissions and increasing energy security are obviously related to the mix of 

sources for electricity generation, but also to EV charging management.  

EV charging could negatively affect power and distribution systems if uncontrolled battery 

charging is adopted. Indeed, since EV owners tend to charge their vehicle as soon as they get 

home from work, the evening peak load can result significantly increased. Therefore, it causes, 

according to [27], transformers heating and overloading, voltage deviations and increased fault 

currents and losses in the distribution system. 

EV charging causes a huge power consumption for short periods, hence it has significant 

impact on voltage stability and it can lead to network constraints violations if a large number 

of EVs are simultaneously connected to a distribution grid.  
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The current power system is based on a three-phase framework, but single-phase charging 

infrastructures are more practical, in fact, they are the majority. Therefore, they can lead to 

unbalances because of unequal load distribution in the three-phase system. 

Moreover, power electronic converters are required to transfer power to the EV battery packs, 

thus, since they are highly non-linear devices due to their operating principles and the presence 

of switching power semiconductors elements [15], harmonic currents, dc offset, phantom 

loading, required reactive power [16] can contribute to the degradation of the power quality. 

Harmonic currents lead to additional Joule heating in the power transformer windings and 

cables, while increased eddy current loss in the transformer core induces a higher temperature, 

reducing the transformer efficiency [16]. 

Nowadays, converters are usually based on PWM control, so thanks to high frequency 

switching, they ensure harmonics cancellation.  

On the other hand, if EV charging is properly controlled from a power system point of view, 

EVs can bring significant advantages for power system operation. For example, EV charging 

can decrease the cycling of the power plants and increase the capacity factor of base load 

plants. 

Smart Grids are networks of electrical components used to supply, transmit and consume 

electricity. They enable bidirectional flows of energy that allow new operations and 

opportunities, with the support of a coordinated control [11]. Therefore, considering the 

advanced and challenging concept of V2G (Vehicle-to-Grid), introduced by Kempton and 

Tomic in [18], EVs will have the capability of providing power to the electricity network, 

through bidirectional charging infrastructures. 

Following sec. 1.6 gives further explanations. 

 

 

1.5. Electric Vehicles management 
 

The implementation of a large number of EVs in an electricity network involves many 

challenges that require a severe forecasts and assessments in terms of economic impacts, 

operation and control conditions. In both case of home and off-home charging, EVs directly 

affect the electric power distribution system. As aforementioned, a control of EV charging is 

a key point for a sustainable deployment of this new transportation concept. 

The literature proposes many approaches to integrate large EV fleet into the electricity 

network, but the most common are reported in [11]. 

EV charging coordination can be categorized into three typologies: centralized, decentralized 

and hierarchical.  

Centralized coordination assumes the existence of a central controller that directly manages 

all participated EVs, but this approach is far from viable because of the need of accurate 

acquisition of EV status data and poor scalability. Moreover, the current electricity market 

does not provide support for direct control contract, since the minimum power capacity 

threshold is significantly higher than that of an individual EV.  

In the decentralized coordination, the EV owners have complete control over their vehicles 

and they individually interact with the grid operator through price-based mechanisms. But also 

this case seems no feasible, since the current electricity market does not provide support for 

this kind of contracts.  

The last and most promising approach for short-term implementation of coordinated EV 

charging is the hierarchical one. It is a hybrid solution of the previous ones and considers an 

aggregator, in a price-based mechanism, which intermediates between the grid operator and 

EV owners.  
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However, at the current state of the art, all these approaches are only at a conceptual level 

because they require novel systems of communication, interfaces and control algorithms, 

which must be designed and built up. 

 

 

1.6. V2G technology 
 

According to [26], V2G (Vehicle-to-Grid) technology increases the reliability and decreases 

the costs of power system. When EVs are connected to the distribution grid, they store energy 

during charging time, but they can also perform as generating sources when V2G is enabled. 

Hence, EV owners can benefit by providing V2G services because they can play a very useful 

role in order to mitigate voltage fluctuations and line losses in distribution grids; they can 

participate in frequency control, load shifting and peak-load shaving. 

If we take into account only one electric vehicle performing V2G services, nothing relevant 

happens for the distribution network; but if we consider a large number of EVs properly 

managed, their operations involve several benefits in terms of environment, economics and 

smart grids development. However, EV owners are more concerned about initial cost, charging 

time, driving range, battery lifetime and reliability. 

As explained in sec. 1.5, considering the hierarchical approach, the aggregator obviously 

controls the EV fleet in order to charge their batteries, but it manages them also to provide 

ancillary services. The aggregator makes profits by contracting with EV owners and grid 

operator. 

The aggregated EVs, which are like a large electricity source, can provide [25] voltage and 

frequency regulation, spinning reserve and also non-spinning reverse for load flattening by 

tracking intermittent RES (Sec. 1.8). In fact, V2G mainly aims to store the exceeding 

renewable generation during the day and feed the surplus energy back to the grid during the 

hours of peak demand. Therefore, V2G can lead to considerable reductions in the operating 

costs of power system and increase distribution network security. 

However, the most common battery chargers do not have technical features for V2G 

implementation, indeed, they do not allow bidirectional power flows and therefore they do not 

consider EV battery discharging. 

With the current state of the art, if V2G services were provided by EVS, they would affect 

battery life cycle, but the authors of [26] state that through improved charging/discharging 

systems, also battery life can be preserved. Another practical solution and immediately 

adoptable, proposed by the authors of [11], is that EV owners can take advantage from 

exploiting their EVs without causing severe battery degradation, providing only voltage 

regulation instead of frequency regulation. In fact, the latter causes frequent battery charging 

and discharging that lead to significant degradation. 

The authors of [26] state that innovative lithium-sulfur batteries show promising advantages 

over lithium-ion batteries, such as higher energy density, wide temperature range, improved 

safety and lower costs due to the availability of sulfur, but they are characterized by higher 

self-discharge and capacity degradation with higher number of charging/discharging cycles. 

The success of V2G implementation is intrinsically dependent on the development of a 

sustainable business model for the different players involved in V2G services, but nowadays 

it is highly uncertain. 

Something more feasible in the short term could be Vehicle-to-Home (V2H) solutions, where 

EVs are part of a home energy management system. These solutions are nearer because the 

management of electricity demand is limited to the single home, therefore no direct interfaces 
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between vehicle and grid are required. Communications and controls have only to be 

implemented between vehicle and home. 

 

 

1.7. SOC Control 
 

According to [28], in every moment of the day, only a small percentage of cars are driving on 

the roads in comparison to the overall number of cars. Therefore, this situation is expected to 

be the same in future with a large deployment of EVs. Because of their shorter driving range 

and easy charging, it is expected that EV owners will charge their vehicles frequently. Thus, 

parked EVs will be usually plugged in and near their full SOC. From this points, Kempton and 

Tomic in [18] established their innovative concept of V2G. 

The functional block, which manages the battery charging and discharging, is the Battery 

Management System (BMS). It protects the battery against deep discharging or overcharging 

by estimating the SOC and SOH (State Of Health) of the EV battery. Overcharging is 

dangerous for Li-ion batteries, since it causes a reduction of lifetime and safety, decomposition 

of electrolytes and formation of lithium dendrites; while, deep discharging oxidizes the 

negative electrode copper that dissolves in the electrolyte. [16] Therefore, precise 

measurements of cell voltages, battery current and thermal state are required. 

In general terms, it is possible to describe the behaviour of a plugged EV, as follows [12]: 

𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑖𝑛, 𝑜𝑛𝑙𝑦 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 

𝑆𝑂𝐶𝑚𝑖𝑛  ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥, 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑎𝑛𝑑 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 

𝑆𝑂𝐶 ≥ 𝑆𝑂𝐶𝑚𝑎𝑥, 𝑜𝑛𝑙𝑦 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 

Where 𝑆𝑂𝐶𝑚𝑖𝑛 allows to reserve a certain amount of energy for EV travel usage, while 

𝑆𝑂𝐶𝑚𝑎𝑥 prevents battery overcharging issues. 

The EVs, once the minimum SOC value has been reached, can be managed in bulk in order to 

provide ancillary services.  

 

 

1.8. RES integration with EVs 
 

In the last decade, the global penetration of Renewable Energy Sources (RES) into the 

electricity system is considerably increased, as described in sec. 1.1, but the power system 

must daily deal with unpredictable and intermittent supplies, especially of wind and PV solar 

energy. The RES generation can be very high, sometimes also more than power demand, 

sometimes very low, inadequate compared to power demand, depending on the availability of 

energy sources. Therefore, the only way to match green power generation to the power demand 

is the use of stationary Energy Storage Systems (ESS), which absorb or supply electricity in 

relation to the surplus or lack of renewable generation. However, this solution implies too high 

initial investments. Therefore, as a significant increase in the use of EVs is expected over the 

coming years, some researchers have proposed to exploit these vehicles as dynamic energy 

storage devices. 

As reported in [23], the EVs can be aggregated and absorb the excess RES generation through 

different charging profiles or supply power to the electricity network in the case of low 

generation, in order to support grid operation through V2G services. In this case, the 

aggregated EVs play the role of energy buffer for network regulations and ancillary services. 
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Integrating the distributed RES generation, wind and PV solar, with the adoption of EVs with 

V2G services (Fig. 1.8.1) we can maintain energy security, while reducing GHG (greenhouse 

gas) emissions. Obviously, to reduce both GHG emissions and overall costs, an optimized 

utilization of EVs and RES is essential. 

We can state that EVs can support high RES penetration, but also RES can solve problems for 

EVs. In fact, if EVs are charged by fossil fuels, they do not lead to any improvement in the 

environment, we are just shifting the emissions from the city to somewhere else, but if EVs 

exploit renewable energy, they reduce the emissions related to the transportation sector. 

Therefore, EVs can support renewable generation and RES can support EVs. However, EVs 

can also support autonomous energy operation in the case of losing the grid, because we can 

rely on the renewable energy generation to satisfy electricity demand, while on the energy 

stored in the EVs to control grid voltage and frequency, allowing the operation in islanding 

mode. 

Nowadays, we are not allowed to operate in islanding mode because we cannot keep the values 

of frequency and voltage constant. What the research is interested in is not the operation in 

islanding mode, but the operation in a way to minimize the dependence on the grid in order to 

reduce network losses and improve energy autonomy. However, if everybody does this, we do 

not need the grid anymore, it becomes as a backup just to balance the system. In this way, we 

can make the system more efficient because we are using local renewable energy rather than 

energy from the power system.  

 
Fig. 1.8.1 Wind and PV solar energy sources integration into the electricity grid with EVs [23] 
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1.9. SEEV4-City project 
 

SEEV4-City (Smart, clean Energy and Electric Vehicles for the City) is an Interreg Europe 

project co-founded by North Sea Region Programme and financed by European Regional 

Development Fund for the period 2014-2020. Interreg Europe helps regional and local 

governments across Europe to develop and deliver better policy [29].  

As reported in [30], the aim of this project is making a huge step forward  in green city 

development thanks to a smart integration of Electric Vehicles (EVs), Renewable Energy 

Sources (RES) and Information Communication Technologies (ICT) solutions. In fact, a top 

priority is stimulating clean transport solutions powered by clean renewable energy. 

In the cities of the UK, plug-in electric cars are growing fast, from 3500 units in 2013 to almost 

95000 in March 2017. However, charging EVs during the evening, after working day, involves 

a significant increase in the evening peak load. Therefore, EV charging does not exploit 

renewable energy and does not act as a clean transport solution; moreover, the higher peak 

needs expensive grid adjustments in order to meet the new power demand. 

The challenge is to structure a new policy in order to perform EV charging through locally 

produced renewable energy, rather than through electricity supplied by the power system, by 

achieving a high-performance operation of the electricity grid, a significant reduction in 

emissions and an increase in energy autonomy. 

Anyway, ICT solutions are essential to maximize the integration between EVs and local 

renewable energy generation and therefore optimize the electricity grid operation. 

It consists of 6 operational pilots [30], located in 5 cities of 4 European countries, aimed to 

achieve the same three targets: 

 An increase in energy autonomy; 

 An increase of ultra-low emission kilometers; 

 Avoid additional investments to make the existing electricity network suitable for the 

effects of uncontrolled charging and high renewable energy generation. 

Beyond the main common goals, each pilot has its own individualities [30]: 

1. Leicester (Vehicle2Business) – United Kingdom 

This operational pilot assesses the effects of relatively small V2G implementation in large 

systems; the target is to evaluate the overall cost-effectiveness, considering a limited 

number of EVs in a depot where council vehicles are currently parked. This depot has a 

solar PV generating system that already produces more than a third of the energy 

consumed. 

2. Loughborough (Vehicle2Home) – United Kingdom 

This project focuses on a single household with PV generation, which regularly produces 

more electricity than the consumption, excluding EV charging. Thanks to ICT integration, 

when the EV is plugged in, it charges and discharges in relation to the household’s 

electricity demand and solar energy production forecast. 

3. Kortrijk depot (Vehicle2Business) – Belgium 

This depot hosts the vehicles of forty workers, therefore, it must deal with their different 

mobility needs. It has different charging points, some for cars, two slots for electric bikes 

and three for electric forklifts. The depot is connected to a nearby sports centre that 

consumes the surplus of the production of a rooftop PV system. The target is to manage 

the energy stored in the EVs in order to optimize the overall operation. 
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4. Amsterdam (Vehicle2Neighbourhood) – Netherlands 

This operational pilot wants to optimize the interaction, at district level, between 

prosumers and EVs. The chosen area has preliminary conditions in terms of EV usage, 

PV installations and therefore potential grid constrains problems. The main point is that 

the EV owners do not have to change their electricity usage habits, but they should only 

plug in their vehicle when parked. The ICT solutions forecasts electricity generation and 

consumption in order to manage properly EV charging and discharging. 

5. Amsterdam Arena (Vehicle2Business) – Netherlands 

It considers a different order of magnitude for V2G services. It has to deal with an energy 

consumption comparable to a district of 270 households. It has PV installations that 

produce about 10% of consumption. It is focused on energy storage and V2G 

implementation because most of the energy consumption is during the evening. 

6. Vulkan Project (Vehicle2Neighbourhood) – Oslo, Norway 

This project is on the Vulkan Estate Building, a housing development currently under 

construction. It has geothermal, solar and PV systems. In order to tackle renewable energy 

unpredictability and intermittency, it will rely on a smart grid that includes energy storage 

and EV implementation. In fact, it will serve more than 400 EVs per day and is expected 

to shave 20% of peak demand during the evening. 

Another important challenge is about the creation of a feasible business model, because if you 

do not take care of the benefits of EVs, aggregator, grid operator, community, environment 

and therefore all the benefits of stakeholders, nobody will be interested in this. 

SEEV4-City partners have good knowledge and experience in the field of energy forecasting 

systems, monitoring and modelling tools and, in addition, they are currently working on the 

development of energy management systems to be applied to the Operational Pilots. 

The project results will be a key factor for the development of innovative cities that integrate 

clean electric transport services and renewable energy generation. 

 

 
Fig. 1.9 SEEV4-City Project 



25 

 

1.10. Contents of the thesis 
 

The first chapter has reported an introduction on the state of the art. Sec. 1.1 starts explaining, 

in general terms, the background issues, opportunities and challenges about all the topics that 

this thesis is based on. It reports the trends of RES global capacity and global EV stock, also 

introducing V2G technology with its opportunities and limitations. Then, in sec. 1.2, it 

explains the opportunities related to the spread of electric vehicles, instead of Internal 

Combustion Engine (ICE) vehicles, and classifies the four conventional categories of EVs. 

Other important pieces of information are about the key properties of rechargeable batteries 

suitable for EVs and battery aging. Sec. 1.3 describes one of the most critical components for 

global EV implementation, which are charging infrastructures, listing the standards for EV 

charging and their characteristics in terms of energy transfer mode and charging profiles. 

Sec. 1.4 explains the positive and negative impact that EVs can involve on Power System, 

differentiating the three different charging strategies. Sec. 1.5 describes several approaches 

proposed by literature to integrate large EV fleet into electricity networks. Once the EVs are 

spread in the grid, it is very important to control their state of charge, in fact sec. 1.7 is about 

it. Sec. 1.8 reports the core point, about integrating RES and EVs. It explains the promising 

synergies between renewables and vehicles, revealing the future opportunities. 

In conclusion, sec. 1.9 describes SEEV4-City (Smart, clean Energy and Electric Vehicles for 

the City) project, reporting the main aims, the six European operational pilots, the consortium 

partners and the related current and future challenges. 

 

The second chapter explains the core of the thesis project, the Smart Grid Modelling Tool 

based on Matlab/Simulink platform. Sec. 2.1 describes the design and coding processes of the 

GUI (Graphic User Interface) window. It is a kind of user guide, because it explains all GUI 

functions, commands and procedures, all the input variables and tables and finally the results 

output. Sec. 2.2 describes the Matlab scripts and functions needed by the modelling tool to 

create and analyse the geographical representation of the distribution network in the Simulink 

model. Then, it reports the parameters set to characterise it and the very important information 

about preliminary assumptions. It also describes the cost function optimization process 

performed by the tool in order to define the EV charging profiles, from both theoretical and 

practical points of view. It explains the script performed to obtain the wished results 

representations and tables. 

In conclusion, it lists the most interesting variables available in the workspace output file. 

 

The third chapter reports the case study assessed through the modelling tool. It considers six 

scenarios applied on an existing electricity grid, whose characterization and representation are 

reported in sec. 3.1. The last four evaluate expected frameworks in the year 2050. Sec. 3.2 

shows the network load typologies with their hourly load profiles. Sec. 3.3 describes the 

considered economic parameters needed by the modelling tool in order to perform the 

economic analysis of network operation. Sec. 3.4 reports the parameters related to the EVs 

considered by the tool, to evaluate the charging profiles through the optimization processes. 

Sec. 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10 report the information related to the characterization and 

the analysis results of each scenario. 

In conclusion, since the main aim was to compare the three different charging strategies, sec. 

3.11 shows a comparison of the results obtained by the evaluation of last three scenarios, 

considering Scenario 3 as baseline scenario. The comparisons are in terms of three-phase 

apparent power flowing in the distribution transformer and network operating costs. 
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2. SMART GRID MODELLING TOOL 
 

This thesis project comes as an attempt to meet the needs of SEEV4-Grid project. In the current 

stage of the plan, the main targets are about modelling and simulations. 

The purpose of this tool is to provide an automatic and user-friendly software based on 

MATLAB®/Simulink® platform [31], to perform analysis of the effects of traditional passive 

loads and smart loads, with microgeneration and EV charging, on a distribution electricity 

network. 

The tool, thanks to a simple Graphical User Interface (GUI), allows the user to input all the 

parameters related to the grid topology, number and type of loads and electrical equipment, 

and finally load and generation profiles. 

The proposed tool allows investigations about advantages and disadvantages of uncontrolled-

dumb charging, smart charging and V2G technology. For the last two charging mode, an 

optimization problem is performed in order to define the charging profile of each EV. 

Simulink solver and relevant Matlab scripts evaluate the defined network from an 

electrotechnical and economic point of view and save the results into output files.  

User can find tables and graphical representations of the results directly on the GUI window. 

 

 

2.1. Graphical User Interface (GUI) 
 

All the analysis, which can be performed by the modelling tool, are accessible from the GUI.  

It has been created with Matlab App Designer™ and it is the head of the entire tool. This 

Matlab toolbox is very practical to use and it allows the creation of customized apps, with 

standard components, like buttons, check boxes, dropdown lists, editable fields, sliders and 

text areas; but also instrumentations, like gauges, knobs and besides lamps, switches. 

It is a graphic tool, so you can create your own app from a graphical point of view and it 

automatically translates it into code instructions. In fact, App Designer has two different 

views: “Design view” and “Code view”. 

Following Fig. 2.1.1 shows the GUI window at the launch of the program.  

It has been created starting from three main panels: Input data, Evaluation and Output data. 

Then, they have been gradually filled with the needed parameters or commands. 

The buttons, shown in GUI, are internally linked with proper functions in order to call external 

files, such as Excel files, .csv tables or Matlab script. 

Some lines of code are necessary to set up these inner links; therefore, the suitable functions 

have been called in the relevant sections of the “Code view” of App Designer toolbox. 

Moreover, the code, written in the aforementioned toolbox, needed some data saving and 

loading commands because the app’s execution does not rely on Matlab workspace, thus to 

import and export variables from and to external functions this process is essential. 

Obviously, GUI window has been set up after finishing all the required Matlab scripts; 

otherwise, it would have been difficult to have a complete view of the relevant input and output 

needs. All input text fields already show default values. They have been chosen in according 

to some preliminary assumptions (Sec. 2.2.1). 

As can be noticed in Fig. 2.1.1, all output buttons are disabled before grid evaluation process 

and the feedback text area displays “Ready”, which means that the tool is ready to start the 

modelling process. 

These buttons behaviours are possible thanks to the instruction app.“ButtonName”.Enable. It 

can be set to “on” or “off” directly from the “Code view” of App Designer toolbox. 
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Fig. 2.1.1 GUI Initial Window 

 

Input parameters are all on the left-hand side of the view and some of them can be directly set 

in the window, others are linked to input Excel tables.  

 Buses&Loads Button: it refers to an input table for grid buses and loads characterization.  

Buses of the grid are described by their number, the geographic coordinates expressed in 

decimal degrees of their position and by the nominal Line-to-Line (L-L) voltage. The 

latter is selectable among 400V, 11kV and 33kV. 

Loads, instead, can be chosen among households, schools, shops, light industries and car 

parks. This kind of feature allows us to consider different daily load profiles in another 

input table, as it has been explained in the following. 

Each category has a smart and a traditional version.  

The traditional one consists of the conventional passive load; the smart one, in addition 

to the conventional load, implements also photovoltaic (PV) generation and Electric 

Vehicle (EV) charging.  

An example is shown in Tab. 2.1.1 below. 

 

Tab. 2.1.1 Buses&LoadsData Table 

 
 

 

Buses
Nominal 

voltage
Car Parks

N° Latitude Longitude Vrms
N°        

Smart

N° 

Traditional

N°        

Smart

N° 

Traditional

N°        

Smart

N° 

Traditional

N°        

Smart

N° 

Traditional

N°      

Smart
1 45.406776  11.877277 11000 0 0 0 0 0 0 0 0 0

2 45.409052 11.89461 400 2 0 1 0 0 0 1 0 1

3 45.410845 11.892105 400 0 2 1 0 0 0 1 0 0

Shops Light Industries

BUSES CHARACTERIZATION LOADS CHARACTERIZATION

Geographic    

coordinates
Households Schools
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 Lines Button: it calls an input table for grid lines characterization. 

The starting bus number, the end bus number, the length of the line (expressed in 

kilometers) and cable type define each line of the electricity network.  

Consequently, thanks to a link between the first and second sheet of the Excel table, it 

provides the values of line current rating, specific resistance and inductance in according 

to the cable typology previously set. 

There are 13 available cable types, but others can be easily implemented. They are: 
 

- Al Consac 300 mm2; - Cu 300 mm2; 

- Al Consac 240 mm2; - Cu 240 mm2; 

- Al Consac 185 mm2; - Cu 185 mm2; 

- Al Consac 150 mm2; - Cu 120 mm2; 

- Al Consac 120 mm2; - Cu 95 mm2; 

- Al Consac 70 mm2; - Cu 70 mm2; 

 - Cu 35 mm2. 

Tab. 2.1.2 presents an example of the input table. 

 

Tab. 2.1.2 LineData Table 

 
 

 

 MV Grid Connections Button: it is linked to an input table for Medium Voltage (MV) 

grid connections description. 

This table provides details of the connections between MV grid and Low Voltage (LV) 

grid to the modelling tool. So, in this table, the user have to write the bus number where 

the connection is located, the nominal L-L voltage, the nominal frequency, the three-

phase short-circuit level at base voltage, the base voltage and X/R ratio. 

The L-L voltage is selectable among 11kV and 33kV. 

If the user had to consider an ideal MV grid connection, he should set an infinite (inf) 

three-phase short-circuit level. 

The phase-to-phase base voltage is used to specify the three-phase short-circuit level.  

The base voltage is usually the nominal voltage, but as shown in the following example 

(Tab. 2.1.3), they could also have different values. 

 

Tab. 2.1.3 MVGridData Table 

 
 

 

From     

Bus

To          

Bus
Length Cable Type I(max) Resistance Inductance

km A Ohm/km H/km

2 3 0.18 AL Consac 185 mm2 190 0.164 0.000218

Bus 

number

Nominal                            

Voltage

Phase angle 

of phase A

Nominal 

Frequency

Three-phase                 

short-circuit level                

at base voltage

Base                                    

Voltage

X/R               

ratio

Vrms degrees Hz VA Vrms

1 11000 0 50 5.00E+08 2.00E+04 10
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 Transformers Inputs: this slot has two input tables, one for the conventional two windings 

transformers and the other one for the On Load Tap Changers (OLTC) transformers. 

Both of them show several parameters that are essential for transformers characterization 

in the grid model. User have to specify the value of the parameters described below: 

 

Two windings transformer OLTC transformer 

- Number of “from” and “to” bus;   - Number of “from” and “to” bus;   

- Windings connection; - Windings connection; 

- Nominal power and frequency; - OLTC position (winding 1 or 2) ; 

- Nominal voltage, Resistance and 

Inductance of winding 1; 

- Nominal voltage, Resistance and 

Reactance of winding 1; 

- Nominal voltage, Resistance and 

Inductance of winding 2; 

- Nominal voltage, Resistance and 

Reactance of winding 2; 

- Magnetization Resistance and 

Inductance; 

- Magnetization Resistance and 

Inductance; 

- OCTC value. - Tap changer parameters; 

 - Voltage Regulator parameters. 

 

Resistance and inductance values, for two windings transformers, can be added in two 

different way: pu (per-unit system) or SI (from the French Système International d'unités, 

International System of Units) 

For the first typology, Off Circuit Tap Changers (OCTC) value is considered, so in this 

way a different value of the nominal secondary winding voltage is settable for the 

transformer in order to comply with the voltage constraints of the grid. OCTC value is 

expressed in pu and the user can select a value among: 0.95, 0.975, 1, 1.025 and 1.05. 

On the other hand, for the OLTC transformers type, it is possible to specify the side where 

OLTC is located, all tap changers parameters and, finally, automatic voltage regulation 

can be set on the transformer, but it is important to stress that this automation leads to a 

long processing time during electricity network evaluation performed by Simulink solver.    

 

 Profiles Button: it refers to an input table for loads and generation power profiles 

characterization. 

In this table user can set the array of active powers for each load type (Households, 

Schools, Shops and Light Industries). This list has 24 values, one for each hour, in order 

to establish dynamic load profiles. 

Active power absorbed from the grid and power factor (PF) are the two keys to define 

each load of the electricity network. 

As mentioned before, the table contains also information about generation. It is described 

by 24 values of specific active power injected in to the grid. This means that the values 

are expressed as a fraction of the nominal power of the PV power plant.  

These values are dependent on the geographic location and orientation and on the 

efficiency conditions of PVs. In addition, it is also possible to specify the power factor of 

PV generation. 

Furthermore, the Excel worksheet shows a graphical representation of the profiles listed 

in the table. In this way, the user can perform a first data check. 

Following Fig. 2.1.2 shows an example of the input table. 



31 

 

 

Fig. 2.1.2 ProfilesData Table 

 

 EVs settings Inputs: in this area of GUI window (Fig. 2.1.1), user can set EVs parameters. 

Starting from the top, there is a drop down list with four different options. 

The first and of default one is “No EVs”, where electric vehicles charging is not 

considered on the model.  

The second one is “Dumb charging”, so the model considers dumb charging method to 

charge EVs that are on the grid (Sec. 2.2.1). 

The third one is “Smart charging”, in this case the model considers smart charging 

strategy to charge EVs; therefore, it solves an optimization problem to define charging 

profiles (Sec. 2.2.1). 

The last available setting is “V2G”, in which the model considers V2G technology to 

manage EVs. In this case, Matlab algorithm (Sec. 2.2.1) optimizes the 

charging/discharging profile of each EV. The power exchange between grid and EV is 

based on economic, electrotechnical and EV constraints.  

User can also set EVs efficiency expressed in kWh/mile, average daily trip in miles, 

percentage of the initial and final battery capacity of the EVs, charger efficiency and 

finally, the cell rating expressed in kWh. 

Initial and final battery capacity of the EVs means the battery capacity wanted at 12 a.m. 

and at 11 p.m. This is because, as said before, this model considers 24 points during the 

day, so hour by hour. 

Charger efficiency determines the amount of power provided by the charger to the EV 

during charging period, while it defines the amount of power provided by the charger to 

the grid during discharging session. For example, with a 3kW charger characterized by 

90% of efficiency: during EV charging, it provides 2.7kW to the EV; while during EV 

discharging, it reduces the power coming from EV by 10%. 

Cell rating is necessary to evaluate battery degradation costs related to the 

charging/discharging profile; in fact, the latter is used during the optimization process as 

a variable. 

Finally, in this area of GUI panel, departure and arrival time of household EVs can be set. 

Sec. 2.2.1 explains the other EV schedules. 

GENERATION

Households Schools Shops Light Industries Photovoltaic

PF
0.95 0.95 0.95 0.9 1

Time Active power

h W W W W W/Winst

0 370 0 1833 48319 0.0

1 235 0 1670 50000 0.0

2 195 0 1630 42392 0.0

3 190 0 1605 40413 0.0

4 185 0 1457 34499 0.02459

5 200 0 1323 33469 0.08717

6 225 0 1308 31955 0.18726

7 350 0 1344 34068 0.23597

8 615 0 1284 33115 0.31747

9 650 17108 1141 25863 0.47269

10 660 16609 1107 19193 0.63199

11 650 16700 1113 21214 0.82014

12 660 16778 1119 19942 0.93626

13 670 15477 1032 26343 0.83136

14 560 16065 1071 30328 0.77543

15 558 17555 1170 28813 0.57097

16 605 0 1287 35306 0.38143

17 820 0 1499 40354 0.21611

18 845 0 1860 44936 0.11105

19 785 0 1792 42623 0.02924

20 730 0 1794 45869 0.0

21 710 0 2000 43599 0.0

22 695 0 1941 46714 0.0

23 550 0 1835 46736 0.0
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Home charging share input parameter defines the fraction of household EVs that charges 

their battery at home, therefore, considering their availability, during the evening or the 

morning. The remaining number of household EVs charge their battery during the day, 

in off-home charging infrastructure, which means along the streets, at charging station or 

at work, before getting home from work, exploiting solar generation and making V2G 

power exchange possible and profitable. 

These off-home charges allow the EVs to achieve a battery capacity equal to the battery 

capacity after off-home charging input parameter. 

 

 Economic parameters Inputs: last GUI input slot defines the specifications related to 

economic evaluations. Data button calls an Excel input table where user can insert the 

hourly electricity tariff in pence/kWh. The user can freely decide to impose two different 

prices during the day, one for peak hours and one for off-peak period, or different prices, 

one for each hour. 

For electricity generation a Feed-in Tariff is considered. In this way, the model applies 

two different tariffs, one for generation and one for export. The energy supplier pays the 

PV owner for each kWh of electricity generated (generation tariff) and it pays a further 

rate for each kWh exported back to the grid (export tariff). Normally, Feed-in Tariff 

supports more self-consumption than electricity injection into the distribution network. 

Therefore, PV export tariff consists of a lower price than the cost related to electricity 

purchase. 

Finally, the optimization process also needs other prices. Of course, it needs batteries 

price, in pence per kWh, to evaluate battery degradation costs and, in order to perform 

economic evaluation of off-home charging, the user has to set the related electricity price, 

in pence per kWh, and connection fee, in pence. In fact, public charging networks usually 

have a double pricing, one related to the amount of energy taken from charging point by 

the EV and the other one is just a fee paid to plug in the EV. 

 

At the top right-hand side of GUI there are two slots called respectively Visualization scale 

factors and Saving Settings.  

The first one is useful to modify grid scale factor of the model, we are going to create, and of 

the dimension of blocks in Simulink platform. This is required because this model has no width 

limit, thus to obtain a good representation of the grid a scaled visualization could be necessary. 

The default values are optimised for a network width of about 600 m.  

The latter slot allows the user to select the save files format among comma-separated values 

tables and Excel tables. The results are printed in one of the aforementioned tables with clearly 

abbreviated headers. In the case of daily values array, the first table column reports the list of 

the daily 24 hours. 

 

The Evaluation box contains the GUI main commands, Build grid and Evaluate grid. 

The upper button calls the Matlab main script (Sec. 2.2.1), inside which there is the entire code 

needed to create the grid model on Simulink environment, considering all input parameters set 

in the Excel tables and in the GUI panels.  

By pressing this button, the text area displays the notice “Loading data…”, then once loaded, 

it shows “Grid built” and finally “Ready for evaluation” (First three lines of text area shown 

in Fig. 2.1.3). The tool creates the distribution network model, calling it ElectricityGrid. 
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After that, it enables the button called Evaluate grid. By pressing it, Simulink starts the 

evaluation of the ElectricityGrid model. Therefore, user can read “Evaluating grid…” in the 

text area.  

Then, automatically, the program performs the electrotechnical computation calling another 

Matlab script (Sec. 2.2.2) and consequently it shows “Electrotechnical computation…”.  

Now, it saves the electrotechnical and economic results on tables, in according to the save files 

format set before and it displays “Saving results…” on the text area of GUI. The saving is 

performed calling another Matlab script (Sec. 2.2.3). 

Finally, once all the aforementioned steps are completed, “Completed” will appear in the text 

area. 

From now on, as Fig. 2.1.3 shows, GUI window enables all the output buttons inside the 

Output data panel. 

 

 

Fig. 2.1.3 GUI Final Window 

 

All output tables, saved during “Saving results…” period, are now accessible through the 

Output data panel.  

Voltage, single-phase power and power losses results are shown per each phase of each 

network bus, three-phase power results are evaluated per each bus, while current results are 

presented per each phase of each grid line. 

In this panel user can find: 

 complex, abs, angles Buttons: they refer to output voltages and currents tables with, 

respectively, complex values, complex magnitude values (modulus) and phase angle 

values; 
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 graph Button: it refers to voltage and current values, as well, but it calls a Matlab script 

in order to create graphical representations of the modulus of these quantities during the 

day. It shows a window for each voltage level (400V, 11kV and 33kV), if related buses 

exist on the electricity network. In each window, user can analyse three different charts 

one per each phase of the electricity grid. Currents graph displays pu current values, 

because the absolute results are compared to lines current ratings; 

 

 Voltage deviation graph Button: it allows the user to view the trend of the difference 

between nominal and actual voltage during the 24 hours. Also in this case, it creates a 

window for each voltage level, if related buses exist on the electricity grid. In each 

window, three different figures are plotted, one for each phase, with the correspondent 

buses results.  

The graphs additionally show the voltage drop limits imposed by [32] for low voltage 

(LV) and medium voltage (MV) supplies. The user can easily verify if these bounds are 

complied or not by all the network feeder lines. 

The table below, Tab. 2.1.4, shows aforementioned voltage drop limits. 

 

Tab. 2.1.4 Voltage drop specification [32] 

Supply level 
Voltage drop 

Upper limit Lower limit 

Low Voltage (LV) + 10% - 6% 

Medium Voltage (MV) + 5% - 5% 

 

 Check lines current ratings Button: it refers to an output table where a comparison 

between nominal and maximum actual current for each line is printed. 

An example of output table can be Tab. 2.1.5: 

 

Tab. 2.1.5 CheckIratings Output Table 

Line_2-3 Current rating complied: 109.3035A vs 150A nominal 

Line_3-4 Current rating complied: 99.5434A vs 150A nominal 

Line_4-5 Current rating complied: 73.6941A vs 110A nominal 

Line_5-6 Current rating complied: 52.4931A vs 110A nominal 

 

 complex, active, reactive Buttons: they are related to output powers tables with, 

respectively, complex power values, active power values and reactive power values; 

Power losses results take account of the active power losses along each line of the 

electricity network. 

 

 graph Buttons: it refers to powers values, as well, but it calls a Matlab script in order to 

create graphical representations of the active and apparent power during the 24 hours. 

In the case of single-phase power graph, it generates only one window with three different 

charts, where user can analyse the active power profile in each phase of each node of the 

electricity network. 
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By pressing three-phase power graph, it shows one chart with the three-phase apparent 

power profiles of all grid nodes. 

The latter representation also takes into account the power rating of distribution 

transformer. In fact, the chart has a horizontal line corresponding to the value of 

transformer power rating. An example of a graphical representation of three-phase 

apparent power is shown in Fig. 2.1.4 below. 

 

 
Fig. 2.1.4 Three-phase Apparent Power graph 

 

 costs Button: it is linked to an output table where costs related to the operation of the 

electricity network, expressed in pound (£), are reported. 

The first rows (i.e. Tab. 2.1.6) show the operating costs of grid archetypes; each value 

can be positive or negative depending on the predominant typology of load, active or 

passive load. Printed archetypes costs are the sum of the costs related to the electricity 

absorbed by passive loads and the revenues from PV generation and export tariffs. In case 

of EVs implementation, the modelling tool takes account the electricity absorbed for EV 

charging, the electricity supplied by the EVs to the grid with V2G technology and finally 

it also considers battery degradation costs.  

If the cost of power absorbed by the archetype from the grid is higher than the revenues 

related to PV generation or V2G technology, the values will be positive; otherwise if 

revenues are higher than costs, it will be negative. 

The second group of rows report the costs of energy dissipated along each grid lines. 

Obviously, these values will be always positive and they are borne by the distribution 

system operator. They are evaluated, by the tool, in the same way of the other charges, 

which means through the hourly electricity tariff. 

Finally, at the bottom of the table, the user can find the overall operational cost of the 

entire grid. 
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Tab. 2.1.6 Costs Output Table 

Archetype1 Archetype2 Archetype3 Archetype4 Archetype5 Archetype6 Archetype7 

[£] [£] [£] [£] [£] [£] [£] 

0.00 3.89 13.60 119.37 4.36 -6.45 26.42 

       

       

ELoss23 ELoss34 ELoss45 ELoss26 ELoss67   

[£] [£] [£] [£] [£]   

1.05 1.10 0.06 0.04 0.39   

       

       

Total       

[£]       

163.83       

 

In this section, GUI has been presented; the user can set all parameters and find all results of 

the modelling tool directly from it, without any interaction with Matlab. This was a 

precondition; in fact, the intent was to create a Matlab tool that was also suitable for 

inexperienced users. 

 

 

2.2. Description of main software routines 
 

All the code needed for the modelling tool is on Matlab environment.  

Three key scripts are presented below. 

 

2.2.1. Main script 

 

This code is the fundamental one, because it is responsible for all the model creation and 

characterization on Simulink. It has over 7300 lines of code. 

It starts by loading all input parameters and settings provided in the GUI panels and in the 

input tables. Once it has raked all the values, it creates a Simulink model called 

“ElectricityGrid” and it sets the simulation parameters, such as simulation stop time and 

solver typology. Stop time is set equal to 82800 s (seconds), because the modelling tool is 24 

hours based. The model simulates every second, but the results are saved at the beginning       

(t=0) and every 3600 s, therefore they result 24 values.  

At the beginning, several solver typology were performed, but Ode23tb solver has been chosen 

as a compromise between processing time and solution accuracy.  

To solve a phasor problem on Simulink, a PowerGui block is necessary. Thus, the script has 

some lines of code to set the parameters of this block, such as simulation type and frequency. 

As mentioned before, the simulation type must be set to “phasor” and the frequency depends 

on the GUI setting.   

The modelling tool creates a geographical representation of the electricity grid, so it 

establishes, in an automatic way, a reference point on the model to link all the others to it.  
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The generated reference point (0 in Fig. 2.2.1.1) is located on the top-left side of the model 

because Simulink coordinate system has horizontal axis oriented to the right and the vertical 

one oriented downwards. Therefore, all other points have positive distances from it, as Fig. 

2.2.1.1 shows. 

 
Fig. 2.2.1.1 Simulink Coordinate System 

 

In the input table, buses position information are expressed in decimal degrees, so a unit 

conversion is needed. 

As E. Heskey reports in [33], a recognised standard conversion from decimal degrees to linear 

distance, i.e. kilometres, is through the multiplication between the number of degrees and the 

factor 111.325. 

In this way, a very simple characterization of the buses position is feasible because the program 

has already set the reference point, so by knowing its location, the tool can determine the 

relative distances between all grid nodes. 

 

In according to [34], to add blocks into Simulink model, by using Matlab code, 

add_block(source, dest) function must be used. Where “source” slot needs the block path 

from Simulink library, while “dest” slot requires the specifications of destination model and 

block name. A position setting is necessary after destination path to insert the block in the 

desired area of the model. The instruction is like [left, top, right, bottom], where the values of 

the block sides coordinates must be written in the related slots.  

The program starts implementing grid buses in the model. Actually, they are not blocks 

directly available in Simulink library, but they are subsystems created ad hoc.  

Inside them, there are several objects: currents and voltages measurements and a To 

Workspace block. The instruments measure complex values of the aforementioned quantities 

because they are essential for the network electrotechnical computation performed after 

Simulink evaluation. To Workspace block allows the measures saving, because otherwise all 

the results of model evaluation would remain on Simulink environment, while they are needed 

on Matlab workspace for further calculations.     

The second implementation is about MV Grid Connections blocks. To add them in Simulink 

model, Three-Phase Source blocks must be considered.  

Some lines of code are necessary to upload the input settings to the blocks using 

set_param(Object, ParameterName, Value, ..., ParameterNameN, ValueN). In this function, 

“Object” is the allocation where the block path must be written, “ParameterName” is the 

name of the setting parameter and “Value” is the input value set. 

At this point, depending on the last blocks positioning, a buses orientation adjustment is 

necessary to obtain correct results in terms of currents. Each grid node is characterized by 

input and output ports; therefore, to consider a proper currents evaluation along the network 

branches, they must be oriented in the right way. If the conventional current is flowing from 
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the left to the right side of the node, the related ports must be in the same order. Therefore, the 

input one must be on the left, while the output one must be on the right; otherwise, the currents 

evaluation determines opposite values. 

For this purpose, the model considers the lines connections order and buses position 

information, written in the related input tables. For example, if there are two lines in the model, 

one 1-2 and the other 2-3, the first one starts at node 1 and finishes at node 2, while the other 

one is from bus 2 to bus 3. Therefore, depending on the relative position of the grid nodes, the 

input and output ports can be on the left or on the right side of the bus.  

The third addition is about Transformers blocks, both OCTC and OLTC types. For this reason, 

Three-Phase Transformer (Two Windings) and Three-Phase OLTC Regulating Transformer 

(Phasor Type) blocks are implemented. 

For OLTC transformer adding, the code firstly creates a subsystem block and then puts the 

transformer block inside it. This is necessary because the latter needs a voltage measure to 

control it through voltage regulator. Therefore, some other blocks are indispensable. The input 

measure is usually in terms of magnitude of positive-sequence voltage, expressed in pu. 

As it will be explained in some paragraphs below, all the loads and PV generation blocks are 

modelled as current sources, so they need some initial conditions to correctly represent power 

profiles, like initial current phase. For this reason, the script presents some lines of code to 

determine initial conditions in according to transformers windings connections.  

Now, the script implements lines blocks. It uploads Three-phase Series RLC Branch blocks 

into the model. They are positioned in a mean distance between the related grid nodes. 

Since this model considers medium and low voltage systems, it can neglect cable capacitance, 

so the branch typology is set on RL type. 

At this point, it is possible to connect all these objects through add_line(sys, out, in) command. 

Where “sys” is the allocation for model name, while “out” must be the output port name and 

“in” the input port name of the blocks which must be connected. 

 

As mentioned before, the electricity network loads can be: 

 Smart and traditional households (Fig. 2.2.1.2): 

 
Fig. 2.2.1.2 Household blocks 

 Smart and traditional schools (Fig. 2.2.1.3): 

 
Fig. 2.2.1.3 School blocks 
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 Smart and traditional shops (Fig. 2.2.1.4): 

 
Fig. 2.2.1.4 Shop blocks 

 Smart and traditional light industries (Fig. 2.2.1.5): 

 
Fig. 2.2.1.5 Light Industry blocks 

 Smart car parks (Fig. 2.2.1.6): 

 
Fig. 2.2.1.6 Park block 

The model groups all these loads into subsystems, called archetypes, one for each bus of the 

grid; this ensures a clearer view.  

Now, the script considers every type of load, smart and traditional, one by one; for a pragmatic 

development convenience, it has many sections where each type of each category is considered 

systematically.  

 

Before explaining how this part of the script works, it is important to focus on some hypothesis.   

In fact, some preliminary assumptions have been made about smart loads, in relation to EV 

charging and PV generation.  

The first supposition is about EV fleet battery capacity: it has been considered that 80% of 

EVs has 30 kWh battery capacity and the remaining 20% has 85 kWh [35]. 

According to [35], it has been considered that charging infrastructures can absorb, from the 

electricity network, powers of 3, 7, 23 or 50 kW, depending on the voltage level and the 

number of phases of the power supply system. Moreover, charging points are characterized by 

a unitary power factor, as reported in [36]. 

 

 

Following Tab. 2.2.1.1 summarizes all other assumptions. 
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Tab. 2.2.1.1 Preliminary assumptions 

 Electric Vehicle  PV generation 

 
Number of EV 

chargers 

Power of charging 

points  

Nominal Power    

PV power plant 

Smart households 100% → 1 
70% → 3 kW ˟  

30% → 7 kW ˟          

94% → 4 kW ˟           

4% → 6 kW ˟            

2% → 12 kW 

Smart schools 

50% → 0      

30% → 3       

20% → 5 

70% → 3 kW ˟ 

30% → 7 kW ˟  

70% → 10 kW            

30% → 12 kW 

Smart shops 

50% → 0      

40% → 1      

10% → 2 

100% → 7 kW ˟ 

90% → 4 kW ˟           

7% → 6 kW ˟            

3% → 12 kW  

Smart light industries 

50% → 0       

40% → 2      

10% → 4 

80% → 7 kW ˟ 

20% → 23 kW  

90% → 25 kW            

10% → 60 kW         

Smart car parks 

10% → 20    

30% → 8      

60% → 2 

50% → 7 kW ˟ 

40% → 23 kW  

10% → 50 kW  

30% → 0 kW         

60% → 8 kW ˟            

10% → 16 kW  

 

Just to clarify the table above, smart schools, for example, are characterized by: 

 50% of the total number of smart schools at each node has no EV chargers, 30% has 3 

EV chargers and 20% has 5 EV chargers; 

 70% of smart school EVs at each node has 3 kW chargers, 30% has 7kW chargers; 

 70% of the total number of smart schools at each node has 10 kW of PV generation and 

30% has 12kW. 

The ˟ symbol, shown in some power values, means they are single-phase active powers, so the 

script evaluates the total number of systems, for each category, at each node and it spreads 

them on the three-phase line to achieve a situation as balanced as possible. 

This also happens for smart and traditional household loads, since they are single-phase loads 

as well. 

The percentages and the nominal powers of PV power plants taken in Tab. 2.2.1.1 are based 

on the “Solar Photovoltaics Deployment in the UK” document [37], drafted by the Department 

for Business, Energy and Industrial Strategy of UK government. It has been considered how 

PV systems are spread in the UK, in terms of cumulative capacity and count, obtaining relevant 

percentages and nominal power sizes. 
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All load and generation blocks are based on the implementation of a Controlled Current 

Sources blocks. This means that, for each block, input power values govern the current 

generated by the source. The program uses lookup tables to impose currents values to the 

Controlled Current Sources. In this way, the user can directly see a representation of current 

profile inside each Simulink block. 

Of course, three-phase loads and generation have three current sources blocks offset by 120 

degrees.  

Phase initial values, mentioned before, are now essential to create the right current phasor. To 

obtain it, some Interpreted Matlab Fcn blocks must be used inside each subsystem. 

For the categories that have both single-phase and three-phase PV generation, to evaluate the 

number of plants of each size per phase, the script starts considering the total percentage of 

the cluster of single-phase PV plants and once found this, it allocates them to the related single-

phase loads. 

 

If user set EVs implementation in the model, the code considers EVs representation and 

characterization, after load and generation blocks creation.  

Firstly, it assesses the total number of EVs for each category in each node, secondly it 

calculates the number of chargers in relation to the aforementioned assumptions, then it 

evaluates how many EVs have 30kWh battery capacity and vice versa how many have 85kWh 

battery capacity; finally, the script determines the daily-required energy by each EV. 

In a for cycle, each EV is considered: the code generates random values of departure and 

arrival trip distances, which are normally distributed around half of the input value of average 

total daily mileage with variance equal to 1. This allows considering the existing EV users 

diversity.  

Total daily mileage value obtained is necessary to evaluate the daily-required energy by each 

EV, taking into account the input value of EV efficiency.  

Only household EVs schedule is editable in GUI window, providing to the code t_arr and 

t_dep parameters.  

Following Tab. 2.2.1.2 groups all categories assumptions about availability time of EVs. 

Tab. 2.2.1.2 EVs schedule assumptions 

 
 EVs availability time 

Lower limit [h] Upper limit [h] 

Household EVs t_arr t_dep 

Schools EVs 8:00 14:00 

Shops EVs 10:00 18:00 12:00 20:00 

Industries EVs 17:00 8:00 

Parks EVs t_dep + 1 t_arr - 1 

 

With the values reported in Tab. 2.2.1.2, the script can build hourly EVs availability matrices 

per node and per phase for each load category. Starting from zero matrices, if the i-vehicle at 

x-hour is available at the charging point it sums 1, otherwise it sums 0. Therefore, the overall 

EVs availability matrix takes account of the total number of EVs, while an example of 

normalized results is shown in the following representations (Fig. 2.2.1.7). 
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Fig. 2.2.1.7 Normalized EV availability 

 

After this point, the EVs charging mode, set in input, is crucial as shown below: 

 Dumb charging (“Uncontrolled charging”): in this case, the program evaluates the needed 

charging time by each EV related to its daily-required energy and builds the hourly 

chargers power matrix per node and per phase, starting from the EV arrival time. 

Therefore, EV owners charge their vehicles as soon as they arrive at the charging point. 

Finally, an external function is called to perform costs evaluation; 

 Smart charging: under this circumstance, an optimization process is implemented to find 

the minimum of a cost function using pattern search solver, complying with some 

constraints (See sec. 2.2.1 to further details). 

With the optimization results, it is possible to define the hourly chargers power matrix 

per node and per phase and the charging cost. We will obtain a charging profile based on 

the economic profitability; 

 V2G technology: this is the last event and, as for Smart charging mode, an optimization 

process is performed to find the minimum of a cost function using pattern search solver, 

complying with different constraints than the previous method (See 2.2.1 to further 

details). In this case, we can obtain positive and negative values, so both EV charging and 

discharging, depending on the economic viability. 

With the optimization results, it is possible to define the hourly chargers power matrix 

per node and per phase and the charging/discharging cost. 
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As aforementioned, a certain share of household EVs charges its battery at off-home 

infrastructures, which means their power profiles do not affect the household consumption, 

but only the economic results. In fact, the modelling tool evaluates the related off-home 

charging cost. 

Following Fig. 2.2.1.8 reports a comparison of charging profiles, related to one household EV, 

obtained by the processing of the modelling tool in the three different charging strategies, 

considering the same boundary conditions.  

 
Fig. 2.2.1.8 EV charging profiles comparison 

 

 

Optimization process 

 

Smart charging and V2G technology need an optimization algorithm in order to obtain the 

chargers power profiles. As aforementioned, the Matlab solver used for the optimization 

process is pattern search. It is characterized by x = patternsearch(fun, x0, A, b, Aeq, beq, lb, 

ub, nonlcon, options), where: 

 x: is a vector of local minimums founded by the optimization; 

 fun: is the function to minimize; 

 x0: is a vector specifying the initial conditions for the algorithm; 

 A, b: are useful to impose linear inequalities of the type A*x ≤ b; 

 Aeq, beq: are useful to impose linear equalities of the type Aeq*x = beq; 

 lb, ub: define a set of lower and upper bounds for the solution x, so lb ≤ x ≤ ub; 

 nonlcon: subjects the minimization to the nonlinear inequalities, c(x) ≤ 0, or equalities, 

ceq(x) = 0, defined in nonlcon; 

 options: permits to set optimization options. 
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The optimization process is the same for both smart charging and V2G technology, except the 

lower bound parameter. In fact, negative power values are not allowed for smart charging, 

while for V2G they are permitted.  

The function to minimize is a cost function, where the variable x is the hourly active power 

vector absorbed for EV charging. The optimization process is performed for each load system 

that implements an electric vehicle, evaluating the net electric power absorbed from the grid, 

considering load consumption, PV generation and EV charging. The cost function takes into 

account also battery degradation. For this reason, another function is called during the 

optimization process, to evaluate the cost of battery degradation caused by the involved power 

exchange between grid and EV battery.  

The optimization algorithm performs: 

min 𝑓(𝑥) 

𝑓(𝑥) = 𝑐𝑜𝑠𝑡(𝑥)   ,   𝑥 = (𝑥1, 𝑥2, … , 𝑥24) 

𝑐𝑜𝑠𝑡(𝑥) = 𝑐𝑒𝑛𝑒𝑟𝑔𝑦 × 𝑃𝑖𝑛𝑝𝑜𝑟𝑡 − 𝑟𝑔𝑒𝑛 × 𝑃𝑠𝑜𝑙𝑎𝑟 − 𝑟𝑒𝑥𝑝𝑜𝑟𝑡 × 𝑃𝑒𝑥𝑝𝑜𝑟𝑡 + 𝑐𝑑𝑒𝑔 × 𝑥 

𝑃𝑛𝑒𝑡 = 𝑃𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑 − 𝑃𝑠𝑜𝑙𝑎𝑟 + 𝑥   ,   {
𝑃𝑒𝑥𝑝𝑜𝑟𝑡 = |𝑃𝑛𝑒𝑡|    𝑖𝑓   𝑃𝑛𝑒𝑡 < 0 

𝑃𝑖𝑛𝑝𝑜𝑟𝑡 =  𝑃𝑛𝑒𝑡      𝑖𝑓   𝑃𝑛𝑒𝑡 ≥ 0
 

Where: 

 𝑐𝑜𝑠𝑡(𝑥) is the cost function to minimize; 

 𝑥 is the hourly active power vector absorbed for EV charging; 

 𝑃𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑 is the hourly active power vector of load consumption; 

 𝑃𝑠𝑜𝑙𝑎𝑟 is the hourly active power vector of PV generation; 

 𝑐𝑒𝑛𝑒𝑟𝑔𝑦 is the hourly electricity tariff vector; 

 𝑟𝑔𝑒𝑛 is the PV generation tariff; 

 𝑟𝑒𝑥𝑝𝑜𝑟𝑡 is the PV export tariff; 

 𝑐𝑑𝑒𝑔 is the vector of battery degradation cost. 

In each optimization step, the evaluated power exchange determines a consequently charging 

and discharging energy rate according to the maximum battery capacity. During all these 

considerations, we can easily translate power into energy because our data is defined hour by 

hour, so 1 kW results equal to 1 kWh.  

Degradation cost function evaluates the entity of battery degradation related to the charging 

rate values. It applies some theories achieved by laboratory experiments performed at 

Northumbria University at Newcastle upon Tyne. 

The obtained degradation data allows finding out the corresponding battery cycle life before 

the end of its life. The latter is defined as the moment in which maximum battery capacity 

reaches 80% of its original value, which corresponds 20% of battery degradation. 

At this point, the function calculates the value of cell energy throughput scaled according to 

its rating. Finally, the cost of the cell is divided by the cell energy throughput before 

mentioned, to have the specific battery degradation cost. 

 

Once, the cost function has received the specific battery degradation cost from the internal 

function, it can evaluate the consequently total energy cost of the overall load system, which 

means load consumption, PV generation and EV charging. 
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The solver performs some iterations to achieve an optimal solution of EV charging profile, 

according to all imposed constraints. Initially, a smart use of problem constrains was 

investigated in order to improve as much as possible the optimization efficiency and clarity in 

the definition of the problem.  

In the following, these optimization problem constraints are systematically discussed.    

 x boundary limitations: for both charging modes the upper one is related to the charger 

power rating. The lower one is equal to zero in the case of Smart charging, while, for 

V2G, lb is equal to the charger power rating, considered negative, if the load consumption 

of the related load category is higher than the charger rating, otherwise it is the opposite 

of the load power consumption, in the other case. In this way, the electric vehicle cannot 

inject power in to the grid, but it can at most feed the related load consumption requests 

on site, basically, it is a Vehicle-to-Home (V2H) implementation. 

Another clarification must be done. If there are more than one EV in the considered load 

system, each EV will be bound of a proportional share of the total load consumption. 

 EVs availability constraints: they are imposed through Aeq and beq input parameters, so 

x has been forced to be equal to zero when EV is not available at the charging point; 

 Linear inequalities and equalities related to EV battery capacity, EV daily-required 

energy, but also limitations in terms of positive and negative peak of net power absorbed 

from the grid, are considered by using nonlcon input parameter of the optimization 

algorithm. This is not a simple parameter, but it is a proper function called by the 

optimization process to set this type of constraints. Actually, there are two different 

functions, one related to off-home charging and the other one for all other charging 

typology. These functions evaluate the battery capacity at each time step considering the 

hourly power vector absorbed for EV charging optimized so far and it forces the following 

constraints, considering reported abbreviations. (Tab. 2.2.3.3) 

 

Tab. 2.2.3.3 Constraints and abbreviations 

cap(tinitial) = initial capacity + x(tinitial)*effch   (i) 

cap = battery capacity;  

tinitial = hour 0; 

effch = charger efficiency; 

i = i-hour; 

tdep = time of departure; 

Etrip_dep = energy required by 

                    departure trip; 

tarr = time of arrival; 

Etrip_arr = energy required by 

                   arrival trip; 

tfinal = hour 23. 

Edailytrip = daily-required energy; 

maxcap = max battery capacity; 

Pnet = Net Power absorbed from  

           the grid considering EVs 

           charging; 

cap(i) = cap(i-1) + x(i)*effch                                (ii) 

cap(tdep+1) = cap(tdep) – Etrip_dep                   (iii) 

cap(tarr) = cap(tarr-1) – Etrip_arr                        (iv) 

cap(tfinal) = final capacity                                    (v) 

cap(tdep) ≥ 30% maxcap + Edailytrip                 (vi) 

cap(i) ≥ 30% maxcap                                          (vii) 

cap(i) ≤ 80% maxcap                                         (viii) 

Pnet(i) ≤ Positive Power peak without EVs        (ix) 

Pnet(i) ≥ Negative Power peak without EVs        (x) 
 

In case of off-home charging, (iv) and (vi) become: 

cap(tarr) = off-home charging capacity – Etrip_arr                        

cap(tdep) ≥ 30% maxcap + Etrip_dep 
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Initial (i) and final (v) capacity restrictions allow the user to set the wanted EV battery 

conditions, as off-home charging capacity input parameter. They are directly read from 

the GUI panel. 

It is important to stress, however, that the (vi) constraint already ensure the energy needed 

to perform the daily trip, so some different battery conditions could be set to find out 

different scenarios. 

Equation (ii) takes into account the progress of energy stored in the battery in relation to 

hourly charging power, considering charger efficiency. 

The consumptions related to departure and arrival trips are subtracted in the equations 

(iii) and (iv). 

As mentioned in [2], it is not good practice to fully charge or discharge EV batteries, so 

(vii) and (viii) requirements are useful to maintain battery capacity, at each time step, 

between 30% and 80% of the maximum value, in order to ensure a longer battery life. 

Finally, (ix) and (x) have been considered to avoid a worsening of power demand profile. 

Indeed, the hourly power vector absorbed for EV charging, obtained with the optimization 

process, must not create new peaks of power demand from the grid, so the algorithm 

evaluates charging profiles in order to achieve at most the same peak of the case without 

EV charging. 

These last constraints have been implemented to guarantee a good network operation. 

Of course, this can be a strong limitation for V2G provision, in fact, even if discharging 

towards the grid in those hours was economically profitable, the grid constraint would 

impede this option. 

 

 

2.2.2. Electrotechnical computation 

 

As mentioned before, inside each node block of the grid model there is a To Workspace block, 

with which is possible to export grid measurements from Simulink to Matlab platform. 

This block saves on Matlab workspace a variable for each bus of the Electricity Grid. Each 

variable is a table with 24 rows, one value per hour, and 6 columns; the first three are the phase 

voltages values, the last three are the currents of each phase measured at the considered node. 

To obtain magnitudes and phases results, abs and angle functions are implemented in the 

Matlab script. 

For buses line-to-ground voltages evaluation, the script is very easy because all the data is 

already available from the workspace variables without any processing. 

The code performs the standard following subtractions for each phase to evaluate line-to-line 

voltages. For example for a generic k-bus: 

�̅�𝑘−12 =  �̅�𝑘−𝑝ℎ1 − �̅�𝑘−𝑝ℎ2 

�̅�𝑘−23 =  �̅�𝑘−𝑝ℎ2 − �̅�𝑘−𝑝ℎ3 

�̅�𝑘−31 =  �̅�𝑘−𝑝ℎ3 − �̅�𝑘−𝑝ℎ1 

For currents evaluation, line currents and bus currents must be distinguished. 

Buses currents are directly derivable from the saved variables on the workspace; but the real 

currents flowing on the lines of the electricity grid, responsible of joule heating and so related 

to the lines current ratings, must be evaluated as well. 
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Buses currents are useful to calculate buses power.  

The script considers single-phase apparent powers and three-phase apparent powers. In this 

way, results elaboration does not restrict the potential operating conditions of the grid. In fact, 

the script allows the user to implement also unbalanced loads on the electricity grid. 

To evaluate single-phase apparent power, at j-phase of k-bus, the script performs the following 

formula: 

𝑆�̅�−𝑝ℎ𝑗 =  �̅�𝑘−𝑝ℎ𝑗 × 𝐼𝑘−𝑝ℎ𝑗 

To obtain single-phase active and reactive powers, the code applies real and imag functions 

to the single-phase apparent power. 

Therefore, to achieve the three-phase active and reactive power values (𝑃𝑘 and 𝑄𝑘), Matlab 

code executes the sum among the three single-phase power values, as shown below. For a 

generic k-node: 

𝑃𝑘 =  ∑ 𝑃𝑗      ;       𝑄𝑘 = ∑ 𝑄𝑗

3

𝑗=1

  

3

𝑗=1

 

Then, the electrotechnical computation script evaluates lines voltage drop starting from the 

line-to-ground voltage values, for example, if we want to calculate the voltage drop along 

phase 1 of line 1-2 (from bus 1 to bus 2), the formulation is: 

𝑑𝑉̅̅̅̅
12−𝑝ℎ1 =  �̅�1−𝑝ℎ1 − �̅�2−𝑝ℎ1 

Now, since the impedance �̇� = 𝑅 + 𝑗𝑋𝐿 of each branch is an input parameter of the model, 

lines current, in each phase, can be easily obtained from the voltage drop. For example, for a 

generic i-line, the current flowing along j-phase: 

𝐼�̅�−𝑝ℎ𝑗 =
𝑑𝑉̅̅̅̅

𝑖−𝑝ℎ𝑗

�̇�𝑖
 

Another interesting physical quantity evaluated by the program is the active power loss in each 

phase of the network branches. It is found out from the voltage drop values, as well. For 

instance, the formulation to obtain active power loss along a j-phase of a general i-line is: 

𝑃𝑙𝑜𝑠𝑠𝑖−𝑝ℎ𝑗
= 𝑅𝑖 × |(

𝑑𝑉̅̅̅̅
𝑖−𝑝ℎ𝑗

�̇�𝑖
)

2

| 

Lines current ratings are an input parameter, so this script checks the ratings compliance of all 

network lines. It builds a vector with the check results. To obtain this, it assesses the maximum 

current value detected on each phase of each line during the 24 hours; then, it checks the rating 

compliance for every three-phase feeder considering the highest value evaluated among the 

three phases.  

Finally, it collects all the costs evaluated by the main program and sums them in different 

levels. It starts considering them from an archetype point of view, therefore it groups the costs 

of all categories within each archetype; then, it quantifies the costs related to the energy losses 

along network lines and finally it prints the overall cost of the electricity grid operation. 
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2.2.3. Saving Results 

 

The third key script is responsible for results management and outputting.  

Actually, there are two different scripts to perform this task, in relation to the Saving Settings 

selected in the GUI window. 

At the beginning .txt files had been considered instead of .csv tables, but the printing of the 

output results inside text files, gave some range problems with large matrices. For this reason, 

.csv tables have been preferred. It has been chosen an alternative format than .xlsx because 

Matlab takes a long time to print the results in this kind of files; therefore, it has been necessary 

to find a quicker way to perform the whole process.    

The first script is called when .csv tables are selected as output files.  

This script exploits cell2table(C, Name, Value) and then writetable(T, filename) functions. 

Where C is the cell array we want to convert into table and in Value allocation must be entered 

the value of the parameter designated in Name argument, e.g. ‘VariableNames’ that is useful 

to define the variable names in the table. T is the Matlab table that we want to save and filename 

is the slot where it is necessary to insert the name of .csv output table. 

Each output table needs a customized code in order to obtain the wanted output features, like 

i.e. table headers.  

The second script is called when .xlsx tables are selected as output files.  

This script works mainly with xlswrite(filename, A, sheet, xlRange) function, where filename 

is the space for name of the .xlsx output table, A is the matrix we want to print in the .xlsx 

table, sheet is the allocation to specify the Excel worksheet number and xlRange is the Excel 

range where we want to write the table. 

Also in this case, each output table needs a customized code in order to obtain the preferred 

output features, like i.e. table headers.  

 

In addition, the user can have access to all the variables created and exploited by Matlab during 

the scripts/functions processing. 

The modelling tool folder has been organized in some subfolders, in order to obtain a better 

clarity. In one of them, “Data” folder, all Matlab variables are saved. 

If workspace.mat file is loaded on Matlab, the user can call them directly from Matlab 

workspace. Not all variables are useful because the scripts use some of them only for coding 

needs; these can be overwritten during the process. 

The list, reported in Tab. A.1 (APPENDIX) shows the most interesting variables. 
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3. APPLICATION ON A REAL ELECTRICITY GRID 
 

In the previous chapter, all the modelling tool sections have been inspected: from the GUI 

window appearance and utilization, to the internal Matlab functions.   

It has been reported the logical procedure for input data implementation and the available 

choices for EVs implementation. Finally, it has shown a review of the obtainable output data. 

This chapter aims to analyse a model of a real electricity grid, applying different scenarios in 

terms of PV generation and EV charging strategies.  

In this way, we can easily make many comparisons in terms of voltage and current profiles, 

voltages deviations caused by network power flows and grid power losses. 

The modelling tool allows also economic evaluations, so we can additionally deduce what are 

the most convenient scenarios in economic terms. 

The scenarios will be inspected with the modelling tool are: 

 Scenario 1: it implements only traditional loads in the electricity grid, so there are not PV 

generation and EV charging; 

 Scenario 2: it considers traditional and smart loads, without EV implementation. The 

smart households share is 3.5% of the overall number. This is the amount of actual PV 

penetration in the UK; 

 Scenario 3: it considers traditional and smart loads, without EV implementation, as 

Scenario 2, but with a different smart loads penetration. Its share is 15% compared to the 

overall number. This value is the PV penetration expected in the UK in the 2050; 

 Scenario 4: it is based on the electricity network of Scenario 3, but it considers EV dumb 

charging; 

 Scenario 5: it is based on the electricity network of Scenario 3, but it applies smart 

charging mode for EVs; 

 Scenario 6: it is based on the electricity network of Scenario 3, but it implements V2G 

strategy.  

 

 

3.1. Electricity network characterization 
 

The real electricity grid studied in this thesis project has a traditional UK distribution scheme.  

This system includes an 11 kV connection, which represents the grid supply, with a maximum 

grid infeed of 60 MVA. The MV/LV substation has an 11/0.4 kV distribution transformer with 

Off-Circuit Tap Changer (OCTC) with 500 kVA of power rating. 

The substation consists of four 400 V outgoing radial feeders, with an average length of 400m, 

which supply the network customers.  

The information about the provided supply system are: 

 MV connection: 

Three-phase short-circuit power: 60 MVA 

Voltage: 11 kV 

 11/0.4 kV transformer: 

Capacity: 500 kVA 

Impedance: 5% on rating X/R = 15 Winding: Delta-Star   

OCTC taps: (-5 ÷ 5) % with 2.5% steps 
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Following Fig. 3.1.1 shows a pictorial graph representation of the electricity network. As it 

can be seen, the grid has been split in some numerical nodes in order to allow a clear 

categorization of it. The detailed line diagram is reported in Fig. A.1 (APPENDIX). 

 
Fig. 3.1.1 Network graph 

 

Moreover, the information about the typology and length of the existing distribution network 

feeders are summarized in Tab. 3.1.1 below: 

Tab. 3.1.1 Network feeders information 

Network buses 
Length [m] Cable type 

from to 

2 3 82 AL Consac 120 mm2 

3 4 97 AL Consac 120 mm2 

4 5 38 AL Consac 70 mm2 

5 6 42 AL Consac 70 mm2 

2 7 50 AL Consac 70 mm2 

7 8 53 AL Consac 240 mm2 

8 9 42 AL Consac 185 mm2 

9 10 56 AL Consac 120 mm2 

2 11 110 CU 240 mm2 

11 12 65 CU 240 mm2 

12 13 77 CU 185 mm2 

13 14 45 CU 185 mm2 

14 15 30 CU 185 mm2 

15 16 130 CU 185 mm2 

2 17 250 CU 185 mm2 

17 18 100 CU 35 mm2 

17 19 100 CU 185 mm2 
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The Simulink representation of the electricity grid, created by the Smart Grid Modelling Tool, 

is reported in Fig. A.1 (APPENDIX). It has minor differences compared to the graph shown 

in Fig. 3.1.1. It locates the grid buses in the right position on the resulting map, but it links 

them through straight branches, so eventual curves of feeder route are neglected. 

 

 

3.2. Network loads characterization 
 

The considered electricity grid is located in the UK, in a predominantly residential area. 

Indeed, the main customers are households. 

At the beginning, to start the loads characterization, it has been performed a grid analysis in 

order to calculate the different types of load. 

The results show that there are 295 houses, 3 shops and 1 school, connected to the grid. 

To evaluate a more comprehensive and diverse case study some other types of load, i.e. light 

industries have been added. 

Three light industries have been considered into the grid. Therefore, recapping, the loads taken 

into account in the case study are reported in the following Tab. 3.2.1. 

 

Tab. 3.2.1 Load typologies 

Load typology Number 

Households 295 

Schools 1 

Shops 3 

Light industries 3 

 

Each load category has a typical daily load profile, which are based on Distribution System 

Operators (DSOs) After Diversity Maximum Demand (ADMD) reports.  

They have estimated Low Voltage (LV) network demands through the aforementioned 

procedure, considering a hundred nominal consumers and measuring their consumptions at the 

MV/LV substation [35]. 

Therefore, the following figures (Fig. 3.2.1 and Fig. 3.2.2) illustrate the load active power 

profiles considered for this case study.  

While, Fig. 3.2.3 shows the specific active power considered for PV generation. To evaluate 

the actual power injected by the generating system, it is necessary to multiply these values by 

the nominal power of the PV power plant. These values, based on [35], are dependent on the 

geographic location and orientation and on the efficiency conditions of PVs. 
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Fig. 3.2.1 Households and Schools profiles 

 
Fig. 3.2.2 Shops and Light Industries profiles 

 
Fig. 3.2.3 PV generation profile 

 

3.3. Economic parameters 
 

To characterize all economic variables, four prices must be set. Firstly, it is necessary to fix 

hourly electricity tariff. In according to [38], it has been considered two different prices during 

the day: 16.64 p/kWh for peak hours; 5.73 p/kWh during off-peak time. So the input data for 

this parameter is shown in Tab. 3.3.1. 
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Tab. 3.3.1 Hourly electricity tariff 

Time [h] Price [p/kWh] 

8 a.m. ≤ t ≤ 12 a.m. 16.64 

1 a.m. ≤ t ≤  7 a.m. 5.73 

 

As aforementioned, for PV generation a Feed-in Tariff is considered. Therefore, two different 

values must be set, one for generation tariff and one for export tariff. The energy supplier pays 

PV owners for each kWh of electricity generated (generation tariff) and it pays them a further 

rate for each kWh exported back to the grid (export tariff). The considered values are 13.39 

p/kWh for PV generation tariff and 4.85 p/kWh for PV export tariff [38]. 

Finally, in according to [38] the batteries price has been set equal to 148 p/kWh. 

 

 

3.4. Electric Vehicles characterization 

The parameters related to EVs, taken into account in this thesis project, result from a literature 

and state of art analysis.  

The European Union has established a new procedure [39] to evaluate the official energy 

consumption and CO2 emission for new cars starting from 1 September 2017. It is called 

WLTP (Worldwide Harmonised Light Vehicle Test Procedure) and it will replace the current 

unrealistic NEDC (New European Driving Cycle) procedure.  

Anyway, the resulting average value of EVs efficiency is about 0.2 kWh/mile. 

Comparisons, in terms of average daily trip, show up that a reliable value can be 24 km per 

day, which means about 15 miles per day [7]. 

Literature [40] indicates that charger efficiency is depending on the charging/discharging 

power, for example at 1 kW it is very low, about 80%, at 2.5 kW it moves up to 90%, finally 

above 6 kW it can be higher than 95%. Therefore, in this case study, it has been considered 

equal to 90% considering that the lowest EV charger power is 3kW. 

To determine the battery cell rating value, some other comparisons has been realized. But, a 

relevant benchmark value is 0.125 kWh.  

Once these parameters are set, the remaining two are initial and final capacity of EV batteries. 

To put real and reliable values it has been necessary a deep reasoning. 

These values affect the charging and eventual discharging of EVs, so they have deserved close 

attention. The Matlab project needs these values, which are its initial conditions, because is 

based on 24-hours evaluations. It has been decided to set them with an equal value in order to 

support neither charging nor discharging. Hence, it has been put equal to 50%. 

For the household EVs departure and arrival time, the default values have been maintained: 8 

a.m. for the average departure time; 6 p.m. for the arrival one.   

Overviews of EV market [41] report that about 65% of EV owners charge their vehicle at 

home between 4 p.m. and 10 p.m., which means as soon as they get home from work. 

Therefore, the input parameter related to home charging share has been set equal to 65%. 

The remaining 35% charges its batteries in off-home charging points, along the streets, at 

charging stations or at work and it has been considered that these charges allow to achieve a 

battery capacity equal to 70% of their ratings. 

From this point forward, it is possible to start studying the reference grid considering each 

scenario previously mentioned.  
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Anyway, first of all, each scenario will be explained to understand the reasons that led to 

making the relevant choices. For example about the share of smart load than traditional ones. 

 

 

3.5. Scenario 1 (no PV, no EV charging) 
 

In this first context, only traditional loads are implemented in the electricity grid. It means that 

neither PV generation, nor EV charging are considered.  

It was reputed important to start from this framework for a first understanding of the network 

operation. 

This scenario considers the loads reported in sec. 3.2 (Tab. 3.2.1). Their distribution on the 

electricity grid is shown in Tab. 3.5.1 below. 

Tab. 3.5.1 Scenario 1 loads 

 
 

At this point, once all the network and loads parameters have been set on the modelling tool, 

all is ready for the creation and evaluation of the electricity grid. 

The main results obtained by the network calculation are reported in the following. 

Fig. 3.5.1 shows the hourly voltage deviation profile at the different 400V network nodes. It 

can be seen that, maintaining a transformer secondary voltage equal to 0.4 kV, which means 

an Off-Circuit Tap Changers (OCTC) value equal to 1 pu, the voltage curve at node 18 and 20 

does not comply with the imposed limits [-6%, +10%].  

Car 

Parks

N° Vrms
N°        

Smart

N° 

Traditional

N°        

Smart

N° 

Traditional

N°        

Smart

N° 

Traditional

N°        

Smart

N° 

Traditional

N°      

Smart

1 11000 0 0 0 0 0 0 0 0 0

2 400 0 12 0 0 0 0 0 0 0

3 400 0 12 0 0 0 0 0 0 0

4 400 0 8 0 0 0 0 0 0 0

5 400 0 12 0 0 0 0 0 0 0

6 400 0 12 0 0 0 0 0 0 0

7 400 0 17 0 0 0 0 0 0 0

8 400 0 18 0 0 0 0 0 0 0

9 400 0 11 0 0 0 0 0 0 0

10 400 0 8 0 0 0 0 0 0 0

11 400 0 12 0 0 0 0 0 0 0

12 400 0 26 0 0 0 1 0 0 0

13 400 0 9 0 0 0 0 0 0 0

14 400 0 17 0 0 0 0 0 0 0

15 400 0 25 0 0 0 1 0 0 0

16 400 0 21 0 0 0 0 0 1 0

17 400 0 17 0 0 0 0 0 0 0

18 400 0 5 0 1 0 0 0 1 0

19 400 0 23 0 0 0 1 0 1 0

20 400 0 30 0 0 0 0 0 0 0

Buses
Nominal 

voltage Households Schools Shops Light Industries

LOADS CHARACTERIZATION
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The profile of bus 1, 11 kV, is not reported here because it is basically flat at the nominal 

voltage. 

 
Fig. 3.5.1 S1 - Voltages deviations (tap=1) 

For this reason, the calculation has been re-performed with a higher value of OCTC at the 

distribution transformer. 

The necessary value in order to comply with the voltage constraints is 1.025 pu, which means 

+2.5% tap. The resulting voltage profiles at the different network nodes are shown in the 

following Fig. 3.5.2. 

 
Fig. 3.5.2 S1 - Voltages deviations (tap=1.025) 
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In this case, all the voltage curves are within the limits; therefore, it makes sense to continue 

the network analysis considering this OCTC value. 

Line currents can be inspected through two different outputs: graphical representation of 

branch currents (Fig. 3.5.3) and lines current ratings check table (Tab. 3.5.2). 

It can be seen from them that there is no significant load in all the lines. The maximum line 

load is slightly greater than 70% and the mean value is around 40%. The most loaded branches 

are those at the beginning of the electricity network, nearby the distribution substation, and 

the line 17-18, which supplies both school and one light industry. 

Fig. 3.5.3 allows us to realize how much the daily variation, in terms of lines utilization, is. In 

fact, if we consider the lines that supply industries, such as lines 2-17, 17-18 and 17-19, the 

load variation is very low during the day. While, for lines providing energy to residential areas 

this variation is very significant. For instance, for the line 2-11 the percentage ratio between 

daily minimum and maximum current value is more than 40%. 

 

 
Fig. 3.5.3 S1 - Line Currents 
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Tab. 3.5.2 S1 - Lines current ratings 

 
 

In Fig. 3.5.3 above, the three graphs show the current profiles on each phase. If we compare 

them, we can see that the load is almost balanced.  

The resulting output tables are huge, but if we consider the lines starting from the distribution 

substation, shown in the following Tab. 3.5.3, we can confirm what stated before.   

 

Tab. 3.5.3 S1 - Phase currents comparison 

 
 

 

 

Line_2-3 Current rating complied: 57.8881A vs 150A nominal

Line_3-4 Current rating complied: 42.3285A vs 150A nominal

Line_4-5 Current rating complied: 30.8513A vs 110A nominal

Line_5-6 Current rating complied: 15.4067A vs 110A nominal

Line_2-7 Current rating complied: 73.2336A vs 110A nominal

Line_7-8 Current rating complied: 50.1581A vs 218A nominal

Line_8-9 Current rating complied: 26.9413A vs 190A nominal

Line_9-10 Current rating complied: 11.5503A vs 150A nominal

Line_2-11 Current rating complied: 223.7096A vs 393A nominal

Line_11-12 Current rating complied: 208.0792A vs 393A nominal

Line_12-13 Current rating complied: 170.7703A vs 342A nominal

Line_13-14 Current rating complied: 159.174A vs 342A nominal

Line_14-15 Current rating complied: 136.3357A vs 342A nominal

Line_15-16 Current rating complied: 98.8533A vs 342A nominal

Line_2-17 Current rating complied: 246.6463A vs 342A nominal

Line_17-18 Current rating complied: 82.2954A vs 135A nominal

Line_17-19 Current rating complied: 143.8072A vs 342A nominal

Line_19-20 Current rating complied: 38.5223A vs 270A nominal

Hour
Magnitude     

I23_ph1

Magnitude     

I23_ph2

Magnitude     

I23_ph3

Magnitude     

I27_ph1

Magnitude     

I27_ph2

Magnitude     

I27_ph3

Magnitude     

I211_ph1

Magnitude     

I211_ph2

Magnitude     

I211_ph3

Magnitude     

I217_ph1

Magnitude     

I217_ph2

Magnitude     

I217_ph3

[h] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A]

0 25,354 25,381 23,683 32,061 32,085 27,025 145,193 146,899 141,888 201,335 201,357 196,298

1 16,126 16,143 15,054 20,377 20,391 17,169 124,696 125,774 122,591 190,583 190,598 187,372

2 13,383 13,396 12,492 16,909 16,920 14,247 105,659 106,553 103,911 161,408 161,420 158,743

3 13,038 13,051 12,171 16,475 16,486 13,881 101,569 102,441 99,867 154,431 154,444 151,835

4 12,689 12,702 11,848 16,038 16,049 13,515 90,802 91,651 89,146 134,651 134,662 132,126

5 13,714 13,728 12,806 17,336 17,348 14,610 91,264 92,184 89,476 132,909 132,921 130,182

6 15,421 15,437 14,403 19,498 19,513 16,434 92,994 94,031 90,985 130,977 130,991 127,913

7 23,969 23,995 22,395 30,319 30,343 25,561 117,513 119,130 114,391 152,546 152,567 147,787

8 42,086 42,132 39,334 53,256 53,301 44,907 160,418 163,269 154,940 180,683 180,718 172,328

9 44,471 44,522 41,569 56,280 56,330 47,462 154,290 157,310 148,507 187,309 187,345 178,475

10 45,147 45,198 42,204 57,141 57,192 48,190 145,224 148,292 139,353 166,350 166,386 157,380

11 44,466 44,516 41,566 56,276 56,327 47,461 146,784 149,805 141,001 171,778 171,814 162,944

12 45,148 45,199 42,204 57,141 57,192 48,191 146,454 149,521 140,582 169,018 169,055 160,048

13 45,839 45,891 42,848 58,011 58,063 48,922 158,096 161,209 152,135 188,572 188,610 179,467

14 38,323 38,367 35,819 48,493 48,536 40,893 146,053 148,652 141,069 189,268 189,301 181,657

15 38,150 38,194 35,658 48,276 48,319 40,710 143,512 146,101 138,551 186,532 186,565 178,955

16 41,405 41,450 38,696 52,392 52,436 44,178 162,244 165,048 156,855 186,526 186,560 178,306

17 56,110 56,172 52,443 71,005 71,065 59,875 207,167 210,969 199,864 228,420 228,466 217,281

18 57,824 57,888 54,044 73,172 73,234 61,701 219,793 223,710 212,266 246,599 246,646 235,119

19 53,720 53,779 50,207 67,977 68,034 57,320 205,785 209,423 198,792 231,997 232,041 221,333

20 49,963 50,018 46,693 63,219 63,272 53,306 201,720 205,102 195,217 235,906 235,947 225,987

21 48,593 48,646 45,413 61,486 61,537 51,845 195,348 198,637 189,023 226,583 226,623 216,936

22 47,572 47,623 44,456 60,190 60,240 50,751 197,625 200,843 191,432 234,703 234,742 225,259

23 37,658 37,699 35,188 47,640 47,678 40,165 172,931 175,475 168,028 217,498 217,530 210,021
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From a voltage unbalances point of view, we can evaluate the hourly percentage value with 

the following formula: 

 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒 [%] = 100 ×
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑜𝑙𝑡𝑎𝑔𝑒
   (3.5.1) 

 

If we consider upstream and downstream nodes of the transformer, so bus number 1 and 2, the 

average value of voltage unbalance, as shown in Tab. 3.5.4, is 0.009 % in the MV bus, while 

is 0.048 % in the LV node. 

Tab. 3.5.4 S1 - Phase voltages comparison 

 

 

The grid modelling tool provides also power graphs. Fig. 3.5.4 shows the single-phase active 

power at each phase of network nodes.  

Through the results printed on the output tables of power, it is possible to obtain the hourly 

values of utilization factor of the distribution transformer. 

As aforementioned, it has a power rating of 500 kVA and the graphical representation of 

hourly three-phase apparent power at each grid node is reported in Fig. 3.5.5, while the values 

of power flowing towards the distribution network are reported in Tab. 3.5.5 below. It 

demonstrates that the transformer utilization factor is, naturally, very low in the morning, while 

it reaches the highest values during the evening. 

The daily average value is around 60%, so it means that this residential area can be extended, 

in terms of number of houses or, more in general, number of loads, without overloading the 

distribution transformer. It will be very interesting to study this area in the next scenarios to 

understand how much future trends can change this values. 

 

Hour
Magnitude    

E1_ph1

Magnitude     

E1_ph2

Magnitude     

E1_ph3

Magnitude     

E2_ph1

Magnitude    

E2_ph2

Magnitude     

E2_ph3

[h] [V] [V] [V] [V] [V] [V]

0 6339,25 6339,04 6339,72 0,006% 233,378 233,343 233,459 0,028%

1 6339,63 6339,53 6339,95 0,004% 233,512 233,489 233,573 0,021%

2 6341,43 6341,34 6341,69 0,003% 234,015 233,997 234,066 0,017%

3 6341,84 6341,75 6342,09 0,003% 234,129 234,111 234,178 0,017%

4 6342,92 6342,84 6343,17 0,003% 234,435 234,417 234,482 0,016%

5 6342,95 6342,85 6343,22 0,003% 234,441 234,421 234,492 0,017%

6 6342,93 6342,82 6343,23 0,004% 234,432 234,410 234,489 0,020%

7 6341,12 6340,96 6341,59 0,006% 233,917 233,883 234,008 0,031%

8 6338,12 6337,85 6338,96 0,010% 233,074 233,014 233,237 0,055%

9 6338,27 6337,99 6339,16 0,011% 233,108 233,044 233,282 0,059%

10 6339,36 6339,07 6340,27 0,011% 233,408 233,344 233,584 0,059%

11 6339,12 6338,84 6340,01 0,011% 233,343 233,279 233,516 0,058%

12 6339,22 6338,93 6340,13 0,011% 233,370 233,306 233,546 0,059%

13 6338,02 6337,73 6338,94 0,011% 233,040 232,975 233,220 0,061%

14 6338,61 6338,37 6339,38 0,009% 233,208 233,154 233,358 0,051%

15 6338,85 6338,60 6339,61 0,009% 233,271 233,217 233,419 0,050%

16 6337,83 6337,57 6338,66 0,010% 232,995 232,937 233,157 0,055%

17 6334,18 6333,85 6335,33 0,014% 231,996 231,915 232,220 0,076%

18 6332,93 6332,60 6334,11 0,014% 231,658 231,575 231,891 0,079%

19 6334,14 6333,83 6335,23 0,013% 231,985 231,908 232,200 0,073%

20 6334,25 6333,96 6335,27 0,012% 232,016 231,944 232,216 0,068%

21 6334,90 6334,61 6335,88 0,012% 232,192 232,122 232,385 0,066%

22 6334,53 6334,24 6335,49 0,012% 232,091 232,023 232,281 0,064%

23 6336,36 6336,13 6337,12 0,009% 232,594 232,540 232,742 0,050%

0,009% 0,048%

Voltage 

unbalance

Voltage 

unbalance
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Fig. 3.5.4 S1 - Single-phase Active Power 

 

 
Fig. 3.5.5 S1 - Three-phase Apparent Power 
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Tab. 3.5.5 S1 - Transformer utilization factor 

 
 

At this point, it is possible to focus on the power losses in the network lines. They depend on 

the characteristics of the cable and on the magnitude of the current that is flowing in them.   

The most critical line in terms of power loss is the 2-17 (Fig. 3.5.6), because it supplies energy 

to two light industries and one school, so the flowing current is very high.  

 
Fig. 3.5.6 S1 - Power losses 

Hour P + jQ A

[h] [W + jVAr] [VA]

0 265658.82 + 98449.71i 283314,24 57%

1 226613.64 + 97229.80i 246591,52 49%

2 191965.83 + 82365.18i 208889,69 42%

3 184500.16 + 78930.91i 200674,86 40%

4 164814.36 + 69643.95i 178924,71 36%

5 165780.04 + 69338.48i 179696,54 36%

6 168611.52 + 69386.19i 182330,17 36%

7 212117.52 + 83907.73i 228110,39 46%

8 287148.57 + 106539.28i 306275,89 61%

9 292458.32 + 104767.22i 310657,43 62%

10 275028.22 + 95763.15i 291223,46 58%

11 278209.16 + 97805.45i 294900,40 59%

12 277464.96 + 96891.55i 293895,86 59%

13 297809.07 + 106609.12i 316315,90 63%

14 278002.76 + 102747.27i 296382,41 59%

15 274575.58 + 100854.97i 292512,35 59%

16 290642.73 + 108976.65i 310401,52 62%

17 368870.92 + 135888.40i 393104,84 79%

18 390461.57+ 145335.22i 416632,41 83%

19 366074.41 + 136608.53i 390733,11 78%

20 359624.27 + 136303.95i 384588,59 77%

21 347770.93 + 131409.18i 371770,08 74%

22 352374.89 + 134480.90i 377164,66 75%

23 309834.70 + 121364.98i 332756,67 67%

59%

Transformer 

Utilization 

factor
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Finally, we can investigate the economic results of the electricity network operation. The 

modelling tool calculates them in terms of operational costs, so it evaluates the costs related 

to the energy flowing in the grid. The results are presented in an output table where the 

operational costs of the archetypes are systematically printed, then it shows the costs related 

to the energy loss in each lines and, in conclusion, it indicates the total cost. 

The economic results are as follows in Tab. 3.5.6. 

Tab. 3.5.6 S1 - Economic results 

 
 

As could be expected, the higher costs are related to the Archetypes number 16, 18 and 19, 

where are located industries and school. 

Through a comparison between the costs of energy consumed and those of energy losses, we 

can observe that the firsts are about 98% of the overall cost, £ 951.74 compared to a total cost 

of £ 972.31. Therefore, we can state that this electricity network with the data considered by 

Scenario 1 is operating in an efficient way. 

 

 

3.6. Scenario 2 (3.5% of household PV, no EV charging) 
 

The second scenario investigates the operating conditions of the considered electricity network 

with a 3.5% of smart households share compared to the overall number, without considering 

EVs on the grid. 

This value has been evaluated considering the actual PV penetration level in the UK, through 

National Statistics reports.  

The first document analysed is Solar Photovoltaics Deployment in the UK: December 2017 

[37], which is provided by the Department for Business, Energy & Industrial Strategy of the 

UK government. Table 1 of the report shows the amount of the total capacity and the 

cumulative count of PVs subdivided by power rating. 

The second information investigated is about the actual number of houses in the UK. This 

information is provided by the ONS (Office for National Statistics) of UK government [42]. 

At this point, some calculations have been made to evaluate the share as follows. 

 Number of household PV plants in the UK [37]: 933065; 

 Number of houses in the UK [42]: 26994000. 

Archetype1 Archetype2 Archetype3 Archetype4 Archetype5 Archetype6 Archetype7 Archetype8 Archetype9 Archetype10

[£] [£] [£] [£] [£] [£] [£] [£] [£] [£]

0 23.32 23.32 15.54 23.32 23.32 33.03 34.97 21.37 15.54

                    

Archetype11 Archetype12 Archetype13 Archetype14 Archetype15 Archetype16 Archetype17 Archetype18 Archetype19 Archetype20

[£] [£] [£] [£] [£] [£] [£] [£] [£] [£]

23.32 55.25 17.49 33.03 53.31 155.81 33.03 144.07 164.43 58.29

                    

                    

ELoss23 ELoss34 ELoss45 ELoss56 ELoss27 ELoss78 ELoss89 ELoss910 ELoss211

[£] [£] [£] [£] [£] [£] [£] [£] [£]

0.35 0.22 0.09 0.02 0.57 0.08 0.02 0.01 2.18

                    

ELoss1112 ELoss1213 ELoss1314 ELoss1415 ELoss1516 ELoss217 ELoss1718 ELoss1719 ELoss1920   

[£] [£] [£] [£] [£] [£] [£] [£] [£]   

1.12 1.2 0.61 0.31 0.76 9.23 2.57 1.15 0.07

                

                

Total

[£]

972.31
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Therefore, finally it is possible to evaluate the actual share by dividing the values shown above, 

obtaining about 3.5%. 

The total number of electricity customers is maintained equal to the Scenario 1, so, as 

aforementioned, the total number of households is 295. While, the houses that actually have 

PV generation, called smart households, are now 10. 

Their location on the electricity network is established by a statistical approach. The most 

populated nodes of the grid have been evaluated in order to draw up an ordered list. Thus, the 

10 smart houses have been spread in relation to this sequence. 

 

From the provided data of the electricity grid, we can state that: 

 The school, at node 18, has a 10kW rooftop photovoltaic generation; 

 All the shops do not have PV installations; 

 Only the light industry at node 19 has a 25kW rooftop photovoltaic generation, while the 

others do not have generation. 

 

In conclusion, the distribution of the customers on the electricity network is reported in Tab. 

3.6.1 below.  

Tab. 3.6.1 Scenario 2 loads 

 
 

Car 

Parks

N° Vrms
N°        

Smart

N° 

Traditional

N°        

Smart

N° 

Traditional

N°        

Smart

N° 

Traditional

N°        

Smart

N° 

Traditional

N°      

Smart

1 11000 0 0 0 0 0 0 0 0 0

2 400 0 12 0 0 0 0 0 0 0

3 400 0 12 0 0 0 0 0 0 0

4 400 0 8 0 0 0 0 0 0 0

5 400 0 12 0 0 0 0 0 0 0

6 400 0 12 0 0 0 0 0 0 0

7 400 1 16 0 0 0 0 0 0 0

8 400 1 17 0 0 0 0 0 0 0

9 400 0 11 0 0 0 0 0 0 0

10 400 0 8 0 0 0 0 0 0 0

11 400 0 12 0 0 0 0 0 0 0

12 400 1 25 0 0 0 1 0 0 0

13 400 0 9 0 0 0 0 0 0 0

14 400 1 16 0 0 0 0 0 0 0

15 400 1 24 0 0 0 1 0 0 0

16 400 1 20 0 0 0 0 0 1 0

17 400 1 16 0 0 0 0 0 0 0

18 400 0 5 1 0 0 0 0 1 0

19 400 1 22 0 0 0 1 1 0 0

20 400 2 28 0 0 0 0 0 0 0

Light Industries

LOADS CHARACTERIZATION

Buses
Nominal 

voltage Households Schools Shops
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To evaluate this new scenario, it is necessary to change the information inside Buses&Loads 

input table and then click on the relevant GUI buttons. 

The resulting grid representation, from a macroscopic point of view, is the same as before, but 

if we look under the Archetype blocks, we can find the different loads. Now we have smart 

household blocks, smart school block and smart light industry block. 

 

The first analysis of the electricity grid is in terms of voltage deviation. 

Fig. 3.6.1 shows that, by setting an OCTC value of the transformer equal to 1.025 pu, the 

voltage is within the imposed limits, while with 1 pu they are not complied (this last situation 

is not graphically reported on these pages). 

The profile of bus 1, 11 kV, is not shown because it is basically flat at the nominal voltage. 

 

 
Fig. 3.6.1 S2 - Voltages deviations 

 

If we compare the voltages deviations of Scenario 1 and Scenario 2 (Fig. 3.5.2 and Fig. 3.6.1) 

we can observe different profile shapes during the central hours of the day, when PV 

generation reduces the amount of power absorbed from the electricity grid. 

There are not major discrepancies because the share of prosumers in the network is very low, 

therefore, much energy is still provided by the grid. 

These slight differences can be easily observed in the graphical representation of branch 

currents. In Fig. 3.6.2 the profiles of lines 2-17, 17-18 and 17-19 stay lower than Fig. 3.5.3, 

relative to Scenario 1, because the related archetypes directly consume the power produced by 

the installed PV plants.  

There are no differences in terms of maximum line load, as shown in Tab. 3.6.2, because PV 

generation operates in the central hours of the day, while the peak of power demand, detectable 

in Fig. 3.6.2, is during the late afternoon/evening. 



64 

 

If we compare the actual maximum current values of Scenario 1 and 2 (Tab. 3.5.2 and Tab. 

3.6.2) we can observe minor differences. They are not caused by errors, but since there are 

different values of voltage on the electricity grid, there are also different values of flowing 

current. 

 
Fig. 3.6.2 S2 - Line Currents 

 

 

Tab. 3.6.2 S2 - Lines current ratings 

 

Line_2-3 Current rating complied: 57.8196A vs 150A nominal

Line_3-4 Current rating complied: 42.3493A vs 150A nominal

Line_4-5 Current rating complied: 30.8804A vs 110A nominal

Line_5-6 Current rating complied: 15.3978A vs 110A nominal

Line_2-7 Current rating complied: 77.1032A vs 110A nominal

Line_7-8 Current rating complied: 52.1933A vs 218A nominal

Line_8-9 Current rating complied: 26.9681A vs 190A nominal

Line_9-10 Current rating complied: 11.5427A vs 150A nominal

Line_2-11 Current rating complied: 227.6817A vs 393A nominal

Line_11-12 Current rating complied: 212.7926A vs 393A nominal

Line_12-13 Current rating complied: 173.1024A vs 342A nominal

Line_13-14 Current rating complied: 161.5523A vs 342A nominal

Line_14-15 Current rating complied: 136.4983A vs 342A nominal

Line_15-16 Current rating complied: 100.9337A vs 342A nominal

Line_2-17 Current rating complied: 247.5479A vs 342A nominal

Line_17-18 Current rating complied: 82.3155A vs 135A nominal

Line_17-19 Current rating complied: 144.3187A vs 342A nominal

Line_19-20 Current rating complied: 40.5478A vs 270A nominal
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In the following Tab. 3.6.3, it is possible to compare the values of current flowing in each 

phase of the three-phase lines starting from the distribution substation. 

The household PV generation, implemented in this scenario, is represented by single-phase 

systems, therefore their low penetration and consequent uneven distribution leads to current 

imbalances; while vice versa if the penetration was higher, the total would result almost 

balanced. 

This is evident if we consider Tab. 3.6.3 below. Line 2-3 is not subject to smart households, 

so its phase currents are nearly balanced. Line 2-7 and 2-11 have some PV systems, in fact, 

we can observe important imbalances mostly during the central hours of the day, when the 

generation is not negligible. While line 2-17, having predominant three-phase PV systems of 

light industry and school, shows an almost balanced condition. 

  

Tab. 3.6.3 S2 - Phase currents comparison 

 

 

In the same way as Scenario 1, it is possible to evaluate the voltage unbalances in the electricity 

network. It can be expected, from the above, that the results will be worse than before. 

If we just look at upstream and downstream nodes of the transformer, bus 1 and 2, we can 

calculate the hourly values considering the above equation 3.5.1. 

Tab. 3.6.4 shows that the average value of voltage unbalance is 0.017% in the MV bus and 

0.082% in the LV node. However, while in Scenario 1 the average values were very close to 

the peaks, in this case the upper values are 0.035% and 0.140%, respectively. 

Hour
Magnitude     

I23_ph1

Magnitude     

I23_ph2

Magnitude     

I23_ph3

Magnitude     

I27_ph1

Magnitude     

I27_ph2

Magnitude     

I27_ph3

Magnitude     

I211_ph1

Magnitude     

I211_ph2

Magnitude     

I211_ph3

Magnitude     

I217_ph1

Magnitude     

I217_ph2

Magnitude     

I217_ph3

[h] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A]

0 25,329 25,204 23,641 30,363 35,091 25,306 141,815 151,638 140,113 197,967 206,263 194,585

1 16,095 15,980 15,025 19,287 22,242 16,075 122,536 128,688 121,455 188,434 193,667 186,278

2 13,356 13,259 12,468 16,004 18,455 13,339 103,865 108,967 102,969 159,624 163,965 157,835

3 13,013 12,920 12,148 15,593 17,984 12,997 99,822 104,797 98,949 152,694 156,924 150,951

4 12,669 12,587 11,826 15,182 16,831 12,654 89,105 92,403 88,254 131,446 134,798 130,138

5 13,694 13,614 12,782 16,413 16,559 13,680 89,433 89,167 88,512 125,725 127,463 125,260

6 15,404 15,325 14,377 18,464 16,377 15,389 90,939 85,046 89,903 117,462 116,704 118,315

7 23,955 23,862 22,357 28,721 26,875 23,937 114,328 108,654 112,715 134,870 135,408 135,355

8 42,082 41,966 39,272 50,463 49,772 42,057 154,842 151,021 152,005 155,479 159,435 154,850

9 44,471 44,368 41,504 53,332 49,145 44,452 148,401 135,686 145,403 152,070 152,075 153,553

10 45,153 45,062 42,138 54,152 46,260 45,135 139,249 116,835 136,203 121,353 117,109 125,107

11 44,469 44,379 41,501 53,332 41,253 44,451 140,899 106,800 137,897 115,824 106,532 122,316

12 45,153 45,065 42,138 54,152 39,878 45,134 140,479 99,728 137,431 106,306 94,748 114,233

13 45,839 45,738 42,779 54,974 42,813 45,819 152,027 117,731 148,933 131,756 122,380 138,273

14 38,317 38,218 35,760 45,949 34,189 38,297 140,974 107,460 138,389 136,926 126,649 143,601

15 38,145 38,046 35,600 45,743 38,211 38,127 138,456 117,268 135,885 146,295 141,438 150,059

16 41,399 41,281 38,634 49,643 47,188 41,373 156,757 148,631 153,965 157,537 159,343 157,972

17 56,108 55,958 52,361 67,284 71,877 56,076 199,734 207,869 195,953 207,530 219,203 203,476

18 57,820 57,657 53,960 69,336 77,103 57,786 212,131 227,682 208,236 232,003 247,548 226,062

19 53,714 53,561 50,129 64,413 73,672 53,683 198,666 217,876 195,049 223,043 239,838 216,349

20 49,953 49,799 46,620 59,900 69,259 49,922 195,096 214,689 191,733 229,276 245,749 222,616

21 48,584 48,436 45,342 58,259 67,364 48,555 188,905 207,967 185,635 220,134 236,159 213,657

22 47,560 47,407 44,386 57,029 65,934 47,529 191,315 209,955 188,114 228,390 244,066 222,049

23 37,641 37,502 35,130 45,132 52,166 37,614 167,931 182,638 165,399 212,499 224,882 207,479
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Tab. 3.6.4 S2 - Phase voltages comparison 

 
 

From an electric power point of view, Fig. 3.6.3 shows the single-phase active power at each 

phase of network nodes. 

 

 
Fig. 3.6.3 S2 - Single-phase Active Power 

Hour
Magnitude    

E1_ph1

Magnitude     

E1_ph2

Magnitude     

E1_ph3

Magnitude     

E2_ph1

Magnitude    

E2_ph2

Magnitude     

E2_ph3

[h] [V] [V] [V] [V] [V] [V]

0 6339,68 6338,59 6339,81 0,012% 233,445 233,275 233,474 0,053%

1 6339,89 6339,24 6340,02 0,008% 233,560 233,436 233,586 0,039%

2 6341,65 6341,10 6341,75 0,006% 234,055 233,953 234,076 0,032%

3 6342,05 6341,51 6342,15 0,006% 234,168 234,069 234,188 0,031%

4 6343,06 6342,69 6343,22 0,005% 234,472 234,381 234,497 0,029%

5 6342,93 6342,90 6343,26 0,004% 234,480 234,393 234,519 0,030%

6 6342,65 6343,17 6343,26 0,006% 234,475 234,394 234,537 0,032%

7 6340,87 6341,34 6341,67 0,007% 233,988 233,853 234,074 0,051%

8 6338,00 6338,24 6339,16 0,011% 233,206 232,953 233,338 0,091%

9 6337,79 6338,88 6339,36 0,014% 233,250 233,011 233,418 0,092%

10 6338,45 6340,50 6340,44 0,021% 233,551 233,337 233,751 0,089%

11 6337,69 6340,92 6340,17 0,030% 233,484 233,312 233,721 0,092%

12 6337,48 6341,40 6340,27 0,035% 233,513 233,357 233,774 0,097%

13 6336,63 6339,87 6339,13 0,030% 233,191 233,015 233,432 0,094%

14 6337,22 6340,42 6339,52 0,029% 233,333 233,200 233,551 0,081%

15 6337,99 6339,95 6339,76 0,020% 233,394 233,223 233,570 0,075%

16 6337,55 6338,21 6338,86 0,010% 233,129 232,896 233,273 0,087%

17 6334,59 6333,66 6335,63 0,016% 232,178 231,795 232,317 0,130%

18 6333,60 6331,98 6334,43 0,021% 231,844 231,418 231,968 0,140%

19 6334,92 6332,96 6335,52 0,024% 232,154 231,740 232,254 0,133%

20 6335,04 6333,05 6335,53 0,024% 232,171 231,779 232,259 0,125%

21 6335,67 6333,73 6336,13 0,023% 232,342 231,962 232,427 0,121%

22 6335,28 6333,38 6335,74 0,022% 232,239 231,866 232,322 0,119%

23 6336,96 6335,44 6337,30 0,018% 232,709 232,417 232,774 0,093%

0,017% 0,082%

Voltage 

unbalance

Voltage 

unbalance
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If we make a comparison with Fig. 3.5.4, it is possible to notice a bigger difference among the 

power profiles of bus 1 and 2. This is because of the actual load unbalance conditions.  

The peak of power consumption is experienced during the evening, when PV generation is not 

producing; therefore, it is not different from the case of Scenario 1. Indeed, also analysing Fig. 

3.6.4, which shows the hourly profiles of apparent power at each node of the electricity grid, 

we can state that the power supplied to the loads by the transformer is lower than its nominal 

power. If we compare the following figure with Fig. 3.5.5 of Scenario 1, we can observe a 

significant decrease in the power absorbed from the MV connection by the distribution 

network during the daytime, thanks to the electricity supplied by PV generation.  

 

 
Fig. 3.6.4 S2 - Three-phase Apparent Power 

 

What stated before is confirmed by Tab. 3.6.5. It is based on the power output tables and it 

shows the hourly values of the utilization factor of the distribution transformer.  

The resulting average value is 55%, with lower values during the morning (minimum equal to 

34%) and higher values in the evening (maximum equal to 82%).  

As mentioned before, in the central hours of the day, the utilization factor of the transformer 

results lower than the case of Scenario 1, because PV generation supplies electric energy to 

the loads. Therefore, the overall average value goes down from 59% to 55%. 
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Tab. 3.6.5 S2 - Transformer utilization factor 

 
 

 

Considering now the power losses in the network lines, we can expect lower values in the 

central part of the day than Scenario 1, because PV generation directly supplies the loads 

located at the same grid node, without affecting the network branches. 

This is an advantage of local consumption of the electricity generated by PV systems. In fact, 

from an electricity grid point of view, this energy does not affect the grid, or at least it affects 

very few parts of the grid. 

Fig. 3.6.5 below shows the profiles of active power losses in the network lines.  

As aforementioned, it can be observed that the power losses in the electricity grid are lower 

during the day, while in the morning and in the evening they remain equal. 

The most critical line is still the 2-17, because it supplies energy to two light industries and 

one school, so the flowing current is very high.  

 

Hour P + jQ A

[h] [W + jVAr] [VA]

0 265668.09 + 98239.35i 283249,89 57%

1 226622.78 + 97089.52i 246544,63 49%

2 191973.27 + 82249.89i 208851,09 42%

3 184507.25 + 78818.78i 200637,30 40%

4 162971.25 + 69573.73i 177200,83 35%

5 159230.20 + 69356.46i 173679,52 35%

6 154533.79 + 69545.70i 169461,78 34%

7 194445.30 + 84044.60i 211831,23 42%

8 263507.93 + 106610.21i 284257,22 57%

9 257229.32 + 105027.97i 277844,91 56%

10 227806.10 + 96301.54i 247324,90 49%

11 216935.92 + 98644.52i 238310,58 48%

12 207495.34 + 97915.37i 229437,86 46%

13 235858.11 + 107350.91i 259139,47 52%

14 220159.80 + 103453.90i 243255,11 49%

15 231998.10 + 101247.00i 253128,58 51%

16 262274.41 + 109070.03i 284049,54 57%

17 352946.55 + 135577.36i 378090,59 76%

18 382322.58 + 144884.18i 408854,47 82%

19 363956.03 + 136123.03i 388578,78 78%

20 359658.68 + 135837.79i 384455,82 77%

21 347800.98 + 130964.32i 371641,19 74%

22 352404.57 + 134045.36i 377037,32 75%

23 309857.73 + 121025.73i 332654,54 67%

55%

Transformer 

Utilization 

factor
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Fig. 3.6.5 S2 - Power losses 

In conclusion, we can investigate the economic results of the electricity network operation, 

through the output table provided by the modelling tool, reported in Tab. 3.6.6.  

Comparing it with the economic results of Scenario 1 shown in Tab. 3.5.6, it is evident that 

the nodes, where there is PV generation, have a lower operational cost than the previous 

scenario. The overall cost results equal to £ 847.08 (in the Scenario 1 was £ 972.31). 

The cost of energy consumed is now £ 829.13£ (£ 951.74), while the cost of energy losses is 

£ 17.96 (£ 20.56). The first cost typology cover about 98% of the total cost.  

The saving related to the lower cost of energy losses confirms what previously stated, which 

is that PV generation, if locally consumed, reduces line currents and consequently the losses.  

Tab. 3.6.6 S2 - Economic results 

 

Archetype1 Archetype2 Archetype3 Archetype4 Archetype5 Archetype6 Archetype7 Archetype8 Archetype9 Archetype10

[£] [£] [£] [£] [£] [£] [£] [£] [£] [£]

0.00 23.32 23.32 15.54 23.32 23.32 27.36 29.30 21.37 15.54

                    

Archetype11 Archetype12 Archetype13 Archetype14 Archetype15 Archetype16 Archetype17 Archetype18 Archetype19 Archetype20

[£] [£] [£] [£] [£] [£] [£] [£] [£] [£]

23.32 49.58 17.49 27.36 47.64 150.14 27.36 126.04 110.86 46.95

                    

                    

ELoss23 ELoss34 ELoss45 ELoss56 ELoss27 ELoss78 ELoss89 ELoss910 ELoss211

[£] [£] [£] [£] [£] [£] [£] [£] [£]

0.35 0.22 0.09 0.02 0.51 0.07 0.02 0.01 2.03

                    

ELoss1112 ELoss1213 ELoss1314 ELoss1415 ELoss1516 ELoss217 ELoss1718 ELoss1719 ELoss1920   

[£] [£] [£] [£] [£] [£] [£] [£] [£]   

1.04 1.12 0.57 0.29 0.73 7.61 2.30 0.92 0.06

                

                

Total

[£]

847.08
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3.7. Scenario 3 (15% of household PV, no EV charging) 
 

This scenario inspects the operating conditions of the considered electricity network with a 

view to the year 2050, without considering EVs on the grid. Therefore, it considers a 15% of 

smart households share compared to the overall number, which is increased by 17% than the 

actual one. 

Some National Statistics reports and forecasts have been analysed to find out the information 

related to the year 2050. 

National Grid in [43] investigates the UK Future Energy Scenarios. It expects a rapid growth 

from the mid-2020s of wind and solar generation capacity. It forecasts that the actual 12.7 GW 

of solar generation capacity [37] will become 63 GW in 2050. 

Nowadays, the total number of PV systems in the UK is 937421 [37], so if we perform a ratio 

between the actual generation capacity and the overall number of PV, we can obtain an average 

value of power of each plant. It results equal to 13.55 kW. Assuming that, this value will 

remain constant also in the 2050, we can evaluate the total number of PV plants in the UK in 

2050 by dividing the expected power capacity by the average power per plant. 

It results equal to 4650199 units. Nowadays in the UK, the ratio between the total number of 

PV and the number of household PV, evaluated considering [37], is 99.5%. Assuming that this 

percentage will remain valid also in 2050, the number of household PV systems in the year 

2050 will be equal to 4628590. 

To evaluate the share of smart households compared to the overall number, another value is 

necessary. This is the total number of houses in the UK in 2050. It has been evaluated starting 

from the population increase. 

The current UK population is around 65.64 million [44], while the number of houses, as 

aforementioned, is 26994000 [42]. Therefore, the resulting average number of people in each 

house is 2.43. Population forecasts expects [44] 77 million people in the UK in 2050. 

Assuming that the number of people per house will remain constant, we can evaluate the 

number of houses in the UK in the year 2050. It results equal to 31665722. 

Hence, we can state the following: 

 The penetration level of household PV in 2050 will be around 15%; 

 The number of houses in the UK by 2050 will increase by around 17%. 

 

To proceed with the evaluation of the electricity grid is firstly needed to redefine the number 

of electricity customers. 

Nowadays, in the considered electricity network, the number of households is 295, but 

considering the increase mentioned above, the houses will be 345 in 2050, of which 52 (15%) 

will have PV generation. 

Since the location of the electricity grid in the UK is known, the 50 new houses (345-295) will 

be considered in nodes where new buildings can be potentially built, in according to the 

available land space. These nodes are 6, 10, 16 and 19 with respectively 16, 8, 16 and 10 new 

houses. It has been considered that most of the new buildings has PV generation, so this has 

been taken into account to allocate the 52 households with solar panels. The resulting 

distribution of them on the grid is shown below. 

With a view to the year 2050, one new car park at node 6 and one new shop at node 4 are 

added to the grid. The new shop is considered “smart”, so it implements a PV generation 

system. The modelling tool applies a 4 kW PV power plant on the smart shop, while an 8 kW 

system on the car park. 
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In conclusion, the distribution of the customers on the electricity network is reported in the 

following Tab. 3.7.1.   

Tab. 3.7.1 Scenario 3 loads 

 
 

To evaluate this new scenario, the new information must be loaded inside Buses&Loads input 

table and then click on the relevant GUI buttons. 

Also in this case, the resulting grid representation, from a macroscopic point of view, is the 

same as before, because new network nodes have not been added to the grid; but inside the 

Archetype blocks, we can find all different typologies of load. 

 

This scenario considers a higher PV penetration, but at the same time also a higher power 

consumption because the number of loads is greater. Therefore, we can expect higher shapes 

in the morning and evening compared to Scenario 2, while the opposite during the daytime. 

To follow a standard scheme, the first analysis of the electricity grid is in terms of voltage 

deviation. 

Here again, it has been set an OCTC value of the distribution transformer equal to 1.025 pu 

and, as can be seen in the following Fig. 3.7.1, the voltage deviations comply with the voltage 

constraints.  

 

Car 

Parks

N° Vrms
N°        

Smart

N° 

Traditional

N°        

Smart

N° 

Traditional

N°        

Smart

N° 

Traditional

N°        

Smart

N° 

Traditional

N°      

Smart

1 11000 0 0 0 0 0 0 0 0 0

2 400 1 11 0 0 0 0 0 0 0

3 400 1 11 0 0 0 0 0 0 0

4 400 0 8 0 0 1 0 0 0 0

5 400 1 11 0 0 0 0 0 0 0

6 400 10 18 0 0 0 0 0 0 1

7 400 2 15 0 0 0 0 0 0 0

8 400 2 16 0 0 0 0 0 0 0

9 400 1 10 0 0 0 0 0 0 0

10 400 6 10 0 0 0 0 0 0 0

11 400 0 12 0 0 0 0 0 0 0

12 400 2 24 0 0 0 1 0 0 0

13 400 0 9 0 0 0 0 0 0 0

14 400 2 15 0 0 0 0 0 0 0

15 400 2 23 0 0 0 1 0 0 0

16 400 10 27 0 0 0 0 0 1 0

17 400 1 16 0 0 0 0 0 0 0

18 400 0 5 1 0 0 0 0 1 0

19 400 8 25 0 0 0 1 1 0 0

20 400 3 27 0 0 0 0 0 0 0

Buses
Nominal 

voltage

LOADS CHARACTERIZATION

Households Schools Shops Light Industries
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Fig. 3.7.1 S3 - Voltages deviations 

Analysing these diagrams, we can notice a rise of the profiles during the central hours of the 

day, because of solar generation. Moreover, in the second diagram, concerning the second 

phase of the distribution lines, there is a greater voltage increase. This phenomenon can be 

explained taking into account the random distribution of the single-phase systems. In fact, the 

modelling tool performs a random splitting inside each archetype, so could be possible to 

obtain a more loaded phase, from an overall point of view, if uneven single-phase systems are 

considered on the grid. 

If we perform a line currents analysis, as shown in the Fig. 3.7.2 below, it is evident that some 

branches are more loaded in the daytime, compared to Fig. 3.6.2 of Scenario 2. These lines 

are, for instance, those relative to the branch 2-3-4-5-6. This phenomenon can be explained 

considering the high PV penetration at node 6, in fact, during these hours, generation is much 

higher than consumption in this part of the network, so we have a reverse power flow. 

As aforementioned, this can be a big issue for PV generation deployment, if local consumption 

is not guarantee.  

Hence, if we consider the results reported in Tab. 3.7.2, but also the complete currents output 

tables, network lines are more loaded than Scenario 2 (Tab. 3.6.2). 

Since Fig. 3.7.2 and Tab. 3.7.2 show only results in terms of pu or modules, we cannot state 

that this higher load causes an overall worsening in economic terms, because we need more 

information. Of course, we will have higher costs related to energy losses, but we could have 

savings by consuming renewable electricity, rather than electricity from power system.  

In the following, through the transformer analysis, power profiles and economic results, it will 

be easier to investigate on this point.  
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Fig. 3.7.2 S3 - Line Currents 

 

 

Tab. 3.7.2 S3 - Lines current ratings 

 

 

 

 

Line_2-3 Current rating complied: 85.7761A vs 150A nominal

Line_3-4 Current rating complied: 81.5819A vs 150A nominal

Line_4-5 Current rating complied: 72.8923A vs 110A nominal

Line_5-6 Current rating complied: 69.3132A vs 110A nominal

Line_2-7 Current rating complied: 83.4999A vs 110A nominal

Line_7-8 Current rating complied: 62.4773A vs 218A nominal

Line_8-9 Current rating complied: 37.8997A vs 190A nominal

Line_9-10 Current rating complied: 20.5157A vs 150A nominal

Line_2-11 Current rating complied: 234.1801A vs 393A nominal

Line_11-12 Current rating complied: 218.8523A vs 393A nominal

Line_12-13 Current rating complied: 183.0237A vs 342A nominal

Line_13-14 Current rating complied: 171.7519A vs 342A nominal

Line_14-15 Current rating complied: 150.3624A vs 342A nominal

Line_15-16 Current rating complied: 116.5622A vs 342A nominal

Line_2-17 Current rating complied: 252.4726A vs 342A nominal

Line_17-18 Current rating complied: 82.317A vs 135A nominal

Line_17-19 Current rating complied: 149.1494A vs 342A nominal

Line_19-20 Current rating complied: 36.7007A vs 270A nominal
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In the Tab. 3.7.3 below, it is possible to compare the values of current flowing in each phase 

of the three-phase lines starting from the distribution substation. 

The worst unbalanced conditions are in the line 2-3. In fact, for example at 12 and 2 p.m., it 

has very high differences among the three currents values.  

As explained above, in this branch we have an even PV generation at node 6, but uneven PV 

distribution at nodes 2, 3 and 5.  

Line 2-17 is almost balanced; in fact, we can observe very slightly differences in phase current 

values.  

While, lines 2-7 and 2-11 are in a middle operational condition, in fact we can notice higher 

imbalances during the central hours of the day. 

 

Tab. 3.7.3 S3 - Phase currents comparison 

 

 

To evaluate the network imbalances, we can assess a calculation of voltage unbalances in the 

electricity grid. Because of the uneven distribution, we can expect worse values than the 

previous scenarios. 

Tab. 3.7.4 reports the measured voltage values at upstream and downstream nodes of the 

distribution transformer, so at bus 1 and 2, and the hourly results of the voltage unbalances 

evaluation, calculated through the above equation 3.5.1. 

The average values are 0.022% and 0.106% at MV and LV sides respectively. 

As it can be seen in Tab. 3.7.4, the maximum values are 0.055% and 0.171% much higher than 

the previous scenarios and they occur at 1 p.m. when PV production is about at its maximum. 

 

 

 

 

Hour
Magnitude     

I23_ph1

Magnitude     

I23_ph2

Magnitude     

I23_ph3

Magnitude     

I27_ph1

Magnitude     

I27_ph2

Magnitude     

I27_ph3

Magnitude     

I211_ph1

Magnitude     

I211_ph2

Magnitude     

I211_ph3

Magnitude     

I217_ph1

Magnitude     

I217_ph2

Magnitude     

I217_ph3

[h] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A]

0 36,526 41,597 31,519 33,786 40,497 30,412 155,239 156,945 148,665 204,657 209,694 201,355

1 23,968 27,195 20,789 21,468 25,726 19,319 131,033 132,127 126,897 192,669 195,871 190,585

2 20,259 22,937 17,622 17,814 21,347 16,030 110,915 111,826 107,486 163,137 165,795 161,409

3 19,765 22,374 17,195 17,356 20,799 15,619 106,693 107,579 103,350 156,117 158,707 154,433

4 17,875 18,444 15,372 15,287 18,239 14,399 93,447 93,917 91,359 133,619 135,750 132,363

5 16,007 13,011 13,311 12,665 14,904 13,600 88,370 87,928 88,969 125,242 126,598 124,824

6 13,602 13,422 10,652 9,159 10,516 12,489 81,398 79,563 86,170 112,866 113,048 113,731

7 22,634 18,452 17,976 17,188 19,933 21,146 104,605 102,558 109,481 130,257 131,370 130,756

8 42,673 33,342 34,412 35,889 42,056 40,230 146,777 144,605 150,850 151,813 155,228 151,207

9 38,443 34,600 29,857 29,991 34,675 38,186 127,040 122,768 137,568 141,992 143,583 143,371

10 32,338 47,021 24,018 23,102 26,497 34,103 103,787 97,557 120,977 105,096 104,840 108,383

11 24,430 70,521 17,714 18,553 22,558 27,837 89,108 81,165 113,676 92,900 90,761 98,162

12 21,839 85,776 16,649 20,351 25,882 25,477 79,848 71,546 108,058 80,787 78,426 86,524

13 25,496 70,920 18,436 19,123 23,097 29,086 99,691 91,443 124,659 108,198 105,895 113,678

14 19,144 70,041 14,339 16,813 21,202 22,118 90,338 82,587 114,429 113,554 110,455 119,351

15 26,128 43,720 19,248 18,149 20,886 27,698 105,179 99,363 121,376 130,551 129,647 134,030

16 38,792 31,083 30,722 31,213 36,312 37,382 142,358 139,203 149,537 150,849 153,193 151,266

17 66,480 61,726 55,388 60,792 72,180 60,316 208,684 208,967 204,378 212,144 219,863 208,190

18 74,424 77,227 62,984 69,857 83,381 65,799 232,113 234,180 222,334 242,032 251,754 236,207

19 72,868 81,224 62,240 69,731 83,500 63,554 224,389 227,499 211,736 235,898 246,117 229,308

20 69,299 79,287 59,416 66,637 79,886 59,997 221,649 224,983 208,576 242,532 252,473 235,973

21 67,787 77,503 58,175 64,810 77,697 58,353 214,733 217,977 202,018 233,028 242,697 226,649

22 66,330 75,841 56,922 63,443 76,057 57,121 216,590 219,767 204,152 241,007 250,470 234,765

23 52,945 60,475 45,500 50,211 60,191 45,205 187,918 190,437 178,095 222,472 229,960 217,542
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Tab. 3.7.4 S3 - Phase voltages comparison 

 

At this point, we can focus on the electric power analysis. Fig. 3.7.3 shows the single-phase 

active power at each phase of network nodes, while Fig. 3.7.4 illustrates the profiles of three-

phase apparent power. 

If we compare this figure with Fig. 3.6.3, related to Scenario 2, we can notice two main things. 

The first one is about the evening load, it is higher than before due to the greater number of 

loads on the grid; while the second thing concerns the profile shapes during the daytime, they 

decresed because of the higher penetration of PV generation.   

 
Fig. 3.7.3 S3 - Single-phase Active Power 

Hour
Magnitude    

E1_ph1

Magnitude     

E1_ph2

Magnitude     

E1_ph3

Magnitude     

E2_ph1

Magnitude    

E2_ph2

Magnitude     

E2_ph3

[h] [V] [V] [V] [V] [V] [V]

0 6338,84 6337,78 6339,24 0,013% 233,220 233,063 233,284 0,054%

1 6339,25 6338,62 6339,56 0,008% 233,384 233,272 233,439 0,040%

2 6341,12 6340,59 6341,36 0,007% 233,908 233,816 233,953 0,033%

3 6341,53 6341,02 6341,77 0,007% 234,026 233,936 234,069 0,032%

4 6342,55 6342,27 6342,84 0,004% 234,344 234,254 234,390 0,032%

5 6342,34 6342,60 6342,79 0,004% 234,365 234,262 234,426 0,038%

6 6341,92 6343,02 6342,63 0,009% 234,377 234,251 234,463 0,048%

7 6339,84 6341,04 6340,81 0,011% 233,830 233,641 233,951 0,071%

8 6336,36 6337,57 6337,82 0,014% 232,914 232,594 233,107 0,119%

9 6335,98 6338,51 6337,83 0,023% 232,995 232,642 233,224 0,134%

10 6336,44 6340,40 6338,69 0,033% 233,337 232,957 233,601 0,146%

11 6335,47 6341,17 6338,20 0,046% 233,331 232,925 233,633 0,159%

12 6335,05 6341,80 6338,11 0,055% 233,382 232,949 233,714 0,171%

13 6334,43 6340,16 6337,18 0,046% 233,041 232,626 233,347 0,163%

14 6335,27 6340,80 6337,77 0,045% 233,228 232,870 233,501 0,141%

15 6336,29 6339,96 6338,27 0,030% 233,230 232,906 233,458 0,125%

16 6335,91 6337,73 6337,49 0,018% 232,871 232,551 233,072 0,120%

17 6332,48 6332,26 6334,01 0,017% 231,709 231,301 231,936 0,150%

18 6331,34 6330,16 6332,74 0,021% 231,296 230,877 231,518 0,153%

19 6332,79 6331,03 6333,96 0,025% 231,606 231,219 231,803 0,140%

20 6333,03 6331,16 6334,08 0,025% 231,645 231,287 231,826 0,129%

21 6333,71 6331,89 6334,72 0,025% 231,829 231,481 232,004 0,125%

22 6333,36 6331,58 6334,35 0,024% 231,736 231,395 231,908 0,123%

23 6335,46 6334,03 6336,23 0,019% 232,313 232,045 232,446 0,096%

0,022% 0,106%

Voltage 

unbalance

Voltage 

unbalance
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Fig. 3.7.4 S3 - Three-phase Apparent Power 

 

In Fig. 3.7.4, we can also notice that, even though the peak of load consumption is increased, 

the power rating of the distribution transformer is big enough to manage the overall power 

demand.  

What was mentioned above is confirmed by the following Tab. 3.7.5, which shows the hourly 

values of the transformer utilization factor. In fact, if we compare it with Tab. 3.6.5, we can 

notice that the electricity provided by the MV grid is lower, compared to Scenario 2, between 

6 a.m. and 5 p.m., while it is higher in the rest of the time. In these results, the effects of PV 

generation are very evident. The resulting average value is 53%, so two percentage points less 

than Scenario 2, but the range between minimum and maximum values is wider, therefore the 

transformer works in very different conditions during the day. 

Another important thing must be noticed in the following figure. PV systems generate only 

active power because their power factor is set equal to 1. Therefore, during the central hours 

of the day, some active power consumptions of the electric loads are covered by solar 

generation, while reactive power must be supplied by the power system. It means that, in the 

event of high PV penetration, in the MV grid connection can flow more reactive power than 

active power. 

This happen at 1 p.m., when the transformer sees a very unnatural power flow.  
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Tab. 3.7.5 S3 - Transformer utilization factor 

 

Considering now power losses in the network lines, we can expect higher values than Scenario 

2, during almost all the day; because more energy flows in the daytime due to solar generation, 

while there is more load consumption during the night, than the previous scenario. 

The first cause is due to the low presence of local consumption of the power generated by PV 

systems, so this energy must flow in the network lines to reach load points. 

Fig. 3.7.5 below shows the profiles of active power losses in the network lines.  

 
Fig. 3.7.5 S3 - Power losses 

Hour P + jQ A

[h] [W + jVAr] [VA]

1 286266,37 + 106180,57i 305324,00 61%

2 239843,11 + 103357,59i 261165,67 52%

3 203249,54 + 87522,01i 221292,74 44%

4 195526,04 + 83954,79i 212788,25 43%

5 169137,43 + 74467,18i 184804,85 37%

6 154585,90 + 74382,30i 171550,37 34%

7 132843,20 + 74893,35i 152500,26 31%

8 170175,14 + 92225,90i 193559,28 39%

9 237506,26 + 120815,09i 266468,59 53%

10 204663,36 + 119636,57i 237065,39 47%

11 146727,61 + 110822,55i 183876,67 37%

12 101208,16 + 112631,68i 151423,21 30%

13 71157,82 + 112022,42i 132711,93 27%

14 119243,33 + 121669,73i 170359,90 34%

15 108165,42 + 115291,46i 158088,20 32%

16 157115,66 + 113386,47i 193757,12 39%

17 224270,30 + 122754,79i 255667,57 51%

18 355358,01 + 154902,72i 387652,12 78%

19 404948,93 + 165415,64i 437431,10 87%

20 398342,99 + 155598,53i 427654,11 86%

21 396637,47 + 154145,57i 425537,47 85%

22 384083,11 + 148865,05i 411923,10 82%

23 387873,36 + 151560,36i 416432,81 83%

24 338391,98 + 135009,06i 364330,31 73%

53%

Transformer 

Utilization 

factor
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Comparing it with Fig. 3.6.5, we can notice what was explained above. For example, graph of 

phase 2 shows a considerable increase between 10 a.m. and 3 p.m., in the network branch 2-

6, while all the graphs demonstrate a decrease of the power losses in the line 2-17, during the 

same period, thanks to a local consumption of solar electricity by school and industries. 

 

In conclusion, to understand if the overall operating conditions of the electricity network are 

more cost-effective than the previous Scenario 2, it is necessary to consider the available 

output table of economic results. 

Following Tab. 3.7.6 shows that the overall operating cost results equal to £ 696.27. 

Tab. 3.7.6 S3 - Economic results 

 
 

In Scenario 2 the total cost resulted equal to £ 847.08, so even if network loads have increased 

in Scenario 3, for instance household loads have increased by 17%, the overall cost is lower 

thanks to the higher PV penetration. Therefore, from a macroscopic point of view, the amount 

of energy supplied by the MV network is lower.  

The cost of energy consumed is now £ 677.77 (in the Scenario 2 was £ 829.13) and it covers 

about 97% of the total, while the cost of energy losses is £ 18.50 (£ 17.96). 

As reported, the amount related to the losses has increased, but it is worth because we have a 

huge saving in terms of energy consumed. 

Finally, we can state that, if this grid will operate as forecast without considering EV 

implementation, it will be much more affordable than the present. 

 

 

 

 

 

 

 

 

 

 

 

Archetype1 Archetype2 Archetype3 Archetype4 Archetype5 Archetype6 Archetype7 Archetype8 Archetype9 Archetype10

[£] [£] [£] [£] [£] [£] [£] [£] [£] [£]

0,00 17,65 17,65 14,90 17,65 -11,98 21,69 23,63 15,70 -2,94

                    

Archetype11 Archetype12 Archetype13 Archetype14 Archetype15 Archetype16 Archetype17 Archetype18 Archetype19 Archetype20

[£] [£] [£] [£] [£] [£] [£] [£] [£] [£]

23,32 43,91 17,49 21,69 41,97 130,19 27,36 126,04 90,59 41,28

                    

                    

ELoss23 ELoss34 ELoss45 ELoss56 ELoss27 ELoss78 ELoss89 ELoss910 ELoss211

[£] [£] [£] [£] [£] [£] [£] [£] [£]

0,47 0,38 0,17 0,13 0,45 0,07 0,03 0,02 2,00

                    

ELoss1112 ELoss1213 ELoss1314 ELoss1415 ELoss1516 ELoss217 ELoss1718 ELoss1719 ELoss1920   

[£] [£] [£] [£] [£] [£] [£] [£] [£]   

1,03 1,14 0,58 0,31 0,82 7,60 2,30 0,96 0,05

                

                

Total

[£]

696,27
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3.8. Scenario 4 (15% of household PV, EV uncontrolled charging) 
 

This scenario investigates the operating conditions of the inspected electricity distribution 

network considering the same load configuration as in Scenario 3 (Tab. 3.7.1), but, in addition, 

it also implements electric vehicles on the grid.  

Therefore, it considers the operating conditions expected for the year 2050, if all the EV 

owners will apply dumb charging mode to charge their vehicles. It means that all the household 

EV owners will charge their vehicles as soon as they get home from work and more generally, 

all EV owners will charge as soon as they arrive at the recharging station. 

As explained in section 2.2.1, the modelling tool implements one EV per each smart 

household, while for smart schools, smart shops, smart industries and smart car parks it 

considers different numbers of EVs in relation to the percentages reported in Tab. 2.2.1.1. 

The total number of EVs in the electricity grid is 54. 52 related to smart houses and 2 to the 

smart park. 

As aforementioned, not all the EVs, related to the smart household loads, are charged at home, 

in fact, their percentage is an input variable of the modelling tool and it has been set equal to 

65%. The remaining 35% charges its batteries in off-home charging infrastructures, along the 

streets, at charging stations or at work. It has been considered that these charges allow the 

vehicles to achieve a battery capacity equal to 70% of their ratings. 

Once all the parameters have been uploaded on the modelling tool, we can proceed with the 

grid analysis. 

In this scenario, we can find new blocks inside the archetype blocks, those related to the EV 

chargers. In fact, they take into account the power consumed to charge the aggregated EVs. 

What we can expect from the analysis of the operating conditions of Scenario 4 is an increase 

of daily power peak, because power demand related to EV charging occurs in the same hours 

of the peak of power consumed by household loads. This is the main problem of an 

uncontrolled charging of electric vehicles. They can lead to very dangerous consequences on 

the electricity network. 

 

To follow the same scheme as before, the first analysis of the grid is in terms of voltage 

deviation. 

Scenario 4 considers the same distribution transformer as Scenario 3, with same settings and 

ratings. This because we want to compare the consequences, on the electricity network, caused 

by different EVs charging strategies. 

 

Following Fig. 3.8.1 shows the voltage deviations for each phase of each grid node. 

The profiles of node 1, MV bus, are not reported because they do not add useful information 

since they are basically flat at the nominal voltage. In the figure below, the profiles of phases 

1 and 3 are within the imposed limits, while phase 2 of bus 18 slightly exceeds the lower limit. 

This is caused by the high power demand in that part of the electricity grid. 

Comparing Fig. 3.8.1 with Fig. 3.7.1 of Scenario 3, many differences can be notice during the 

evening: all shapes have an important decrease. 

From a voltage deviation point of view, an higher OCTC value of the distribution transformer 

would be necessary to ensure that the voltage constraints are actually complied.  

 



80 

 

 
Fig. 3.8.1 S4 - Voltages deviations 

Considering now line current profiles and lines current ratings, shown in Fig. 3.8.2 and Tab. 

3.8.1 respectively, we can observe that branches 2-3, 4-5 and 2-7 are overloaded. As it can be 

seen in Fig. 3.8.2, the worsening of operational conditions is limited to the evening, when all 

EV charging is performed. 

This means that uncontrolled charging will need significant grid upgrades, therefore huge 

investments should be planned by the distribution system operators. 

Fig. 3.8.2 shows worse results in phase number 2 compared against the others. This is due to 

the random distribution of single-phase loads and therefore EV chargers on the electricity grid.  

As aforementioned, this kind of load demand causes a higher daily peak, hence, enhanced 

power infrastructures would be only needed to satisfy the greater power demand during the 

evening, while it would result very oversized in the other hours of the day. In fact, for instance, 

comparing the maximum value of current flowing in the branch 2-7 with its average value, 

thanks to the available results in the output tables, we can state the following. The rating of 

this line is exploited only about 30% during the day, while it reaches about 148% at 6 p.m. 

Comparing Fig. 3.8.2 with Fig. 3.7.2, related to Scenario 3, we can also observe some 

differences, between 7 and 11 a.m., in the phase 2 of lines correlated to node 6 because of the 

charging of the EVs at the car park located in that node.  
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Fig. 3.8.2 S4 - Line Currents 

 

 

Tab. 3.8.1 S4 - Lines current ratings 

 
 

Following Tab. 3.8.2 shows the values of current flowing in each phase of the three-phase 

branches starting from the distribution substation. 

Line_2-3 Current rating exceeded: 154.4774A vs 150A nominal

Line_3-4 Current rating complied: 124.4772A vs 150A nominal

Line_4-5 Current rating exceeded: 112.156A vs 110A nominal

Line_5-6 Current rating complied: 82.2426A vs 110A nominal

Line_2-7 Current rating exceeded: 163.5479A vs 110A nominal

Line_7-8 Current rating complied: 130.0176A vs 218A nominal

Line_8-9 Current rating complied: 92.9636A vs 190A nominal

Line_9-10 Current rating complied: 63.0425A vs 150A nominal

Line_2-11 Current rating complied: 324.5024A vs 393A nominal

Line_11-12 Current rating complied: 309.6A vs 393A nominal

Line_12-13 Current rating complied: 261.0846A vs 342A nominal

Line_13-14 Current rating complied: 249.5088A vs 342A nominal

Line_14-15 Current rating complied: 215.8556A vs 342A nominal

Line_15-16 Current rating complied: 167.7657A vs 342A nominal

Line_2-17 Current rating complied: 316.5061A vs 342A nominal

Line_17-18 Current rating complied: 82.3145A vs 135A nominal

Line_17-19 Current rating complied: 201.3989A vs 342A nominal

Line_19-20 Current rating complied: 49.1466A vs 270A nominal
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The worst unbalanced conditions in terms of currents are experienced in the line 2-3 as in the 

Scenario 3 at 12 and 2 p.m.  

Considering the values reported in Tab. 3.7.3, related to Scenario 3, we can notice the 

significant increase of current absorbed by loads for EV charging during the charging period. 

In addition to what has been said in the previous scenario analysis, we can see an increase of 

imbalances during the EV charging period. 

 

Tab. 3.8.2 S4 - Phase currents comparison 

 

 

As performed for previous scenarios, to evaluate the network imbalances, we can perform an 

evaluation of voltage unbalances in the distribution grid. 

Tab. 3.8.3 shows the measured voltage values at upstream and downstream nodes of the 

distribution transformer, so at bus 1 and 2, and the hourly values of voltage unbalances 

evaluation, calculated through the aforementioned equation 3.5.1. 

The average values are 0.027% and 0.091% at 11 kV and 400 V sides, respectively. 

The maximum values of voltage unbalance occur at 6 p.m., when the power consumed for EV 

charging is the highest, and they result equal to 0.087% and 0.298%. 

These results are greater than the values assessed in Scenario 3, once again because of the 

uneven distribution of single-phase EV chargers on the three-phase distribution system related 

to the low number of EV chargers on some nodes of the electricity network. 

Hour
Magnitude     

I23_ph1

Magnitude     

I23_ph2

Magnitude     

I23_ph3

Magnitude     

I27_ph1

Magnitude     

I27_ph2

Magnitude     

I27_ph3

Magnitude     

I211_ph1

Magnitude     

I211_ph2

Magnitude     

I211_ph3

Magnitude     

I217_ph1

Magnitude     

I217_ph2

Magnitude     

I217_ph3

[h] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A]

0 36,58 41,58 31,53 33,78 40,48 30,39 155,27 156,83 148,53 204,68 209,69 201,30

1 24,02 27,18 20,81 21,46 25,71 19,31 131,06 132,03 126,80 192,69 195,87 190,54

2 20,30 22,92 17,64 17,81 21,33 16,03 110,94 111,74 107,40 163,16 165,79 161,37

3 19,81 22,36 17,21 17,35 20,78 15,61 106,72 107,50 103,27 156,14 158,70 154,40

4 17,91 18,01 15,38 15,28 18,23 14,39 93,47 93,84 91,28 133,63 135,75 132,33

5 16,04 10,93 13,32 12,67 14,89 13,59 88,40 87,85 88,89 125,26 126,60 124,79

6 13,64 9,37 10,66 9,16 10,51 12,48 81,44 79,49 86,09 112,89 113,06 113,70

7 22,68 12,11 17,97 17,19 19,92 21,13 104,66 102,46 109,38 130,28 131,38 130,72

8 42,74 24,84 34,39 35,89 42,05 40,19 146,85 144,48 150,69 151,85 155,26 151,17

9 38,51 60,29 29,83 30,00 34,66 38,15 127,14 122,69 137,42 142,04 143,63 143,35

10 32,41 38,28 23,99 23,11 26,47 34,07 103,92 97,48 120,84 105,17 104,92 108,39

11 24,51 65,30 17,71 18,54 22,49 27,82 89,29 81,14 113,56 93,03 90,91 98,22

12 21,92 81,70 16,65 20,33 25,79 25,47 80,08 71,58 107,95 80,96 78,63 86,63

13 25,58 65,39 18,43 19,12 23,02 29,07 99,87 91,40 124,53 108,33 106,04 113,74

14 19,22 66,32 14,34 16,80 21,13 22,11 90,50 82,55 114,32 113,66 110,57 119,40

15 26,20 36,97 19,24 18,16 20,86 27,68 105,29 99,27 121,25 130,61 129,71 134,03

16 38,86 20,62 30,71 31,22 36,30 37,35 142,43 139,08 149,38 150,90 153,23 151,23

17 66,56 57,23 55,37 60,78 72,16 60,27 208,76 220,85 232,65 212,18 219,89 208,12

18 86,87 154,48 75,31 98,86 95,65 65,75 272,98 324,50 234,29 294,54 316,51 264,19

19 102,14 105,60 74,69 69,72 163,55 92,77 236,69 239,55 223,76 247,97 258,17 229,24

20 69,37 79,27 59,40 66,62 92,29 59,95 221,72 224,86 208,38 242,56 252,48 235,90

21 67,86 77,48 58,16 64,79 77,67 58,30 214,81 217,85 201,83 233,05 242,70 226,57

22 66,40 75,82 56,91 63,42 76,03 57,07 216,66 219,64 203,97 241,03 250,47 234,69

23 53,01 60,46 45,49 50,20 60,17 45,17 187,98 190,32 177,94 222,50 229,96 217,48
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Tab. 3.8.3 S4 - Phase voltages comparison 

 

From the point of view of electric power analysis, following Fig. 3.8.3 shows the graphical 

representation of the single-phase active power profiles at each phase of network nodes. 

New power peaks, due to EV charging, can be easily observed between 5 and 8 p.m. and their 

values are much higher than Scenario 3, while in the other hours of the day the shapes are 

basically the same, since there are minor load differences. 

 
Fig. 3.8.3 S4 - Single-phase Active Power 

Hour
Magnitude    

E1_ph1

Magnitude     

E1_ph2

Magnitude     

E1_ph3

Magnitude     

E2_ph1

Magnitude    

E2_ph2

Magnitude     

E2_ph3

[h] [V] [V] [V] [V] [V] [V]

0 6339,01 6338,54 6337,52 0,013% 233,15 232,98 233,23 0,061%

1 6339,40 6339,04 6338,44 0,008% 233,34 233,21 233,40 0,045%

2 6341,23 6340,95 6340,44 0,007% 233,87 233,77 233,92 0,036%

3 6341,65 6341,37 6340,88 0,007% 233,99 233,89 234,04 0,035%

4 6342,72 6342,43 6342,18 0,004% 234,31 234,23 234,36 0,031%

5 6342,66 6342,28 6342,58 0,004% 234,33 234,27 234,40 0,028%

6 6342,48 6341,95 6343,14 0,010% 234,34 234,32 234,43 0,029%

7 6340,58 6339,82 6341,15 0,011% 233,77 233,72 233,90 0,046%

8 6337,41 6336,20 6337,61 0,014% 232,80 232,66 233,02 0,083%

9 6337,40 6337,24 6337,30 0,001% 232,92 232,71 233,08 0,083%

10 6338,26 6336,60 6340,87 0,036% 233,22 233,22 233,52 0,085%

11 6337,77 6335,83 6341,92 0,054% 233,21 233,31 233,55 0,083%

12 6337,67 6335,52 6342,69 0,064% 233,26 233,40 233,63 0,086%

13 6336,73 6334,78 6340,90 0,054% 232,92 233,01 233,26 0,085%

14 6337,40 6335,65 6341,54 0,053% 233,13 233,25 233,43 0,070%

15 6337,90 6336,47 6340,41 0,034% 233,13 233,15 233,39 0,070%

16 6337,09 6335,84 6337,87 0,017% 232,76 232,66 232,99 0,079%

17 6332,69 6332,24 6332,17 0,005% 231,53 231,24 231,73 0,112%

18 6333,08 6331,26 6323,87 0,087% 230,91 229,99 231,13 0,298%

19 6332,95 6333,17 6327,71 0,056% 231,37 230,69 231,47 0,211%

20 6333,55 6332,58 6330,25 0,030% 231,50 231,07 231,69 0,153%

21 6334,23 6333,08 6331,33 0,024% 231,68 231,30 231,89 0,140%

22 6333,87 6332,74 6331,04 0,024% 231,59 231,22 231,80 0,137%

23 6335,85 6334,98 6333,61 0,019% 232,20 231,91 232,36 0,107%

0,027% 0,091%

Voltage 

unbalance

Voltage 

unbalance
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Fig. 3.8.4 shows the profiles of three-phase apparent power at each grid node compared to the 

nominal power rating of the distribution transformer, which is equal to 500 kVA. It is evident 

that dumb charging lead to significant overload for the transformer. Therefore, as 

aforementioned, this charging method would need significant grid upgrades in order to satisfy 

the increased peak of power demand.  

Comparing the graphs of three-phase apparent power of Scenario 4 and Scenario 3, so the 

effects of dumb charging implementation on the baseline scenario, we can observe significant 

increases of power demand in many network nodes during the evening. 

 

 
Fig. 3.8.4 S4 - Three-phase Apparent Power 

 

 

What was stated above is confirmed by the hourly values of utilization factor of the distribution 

transformer, shown in the following Tab. 3.8.4. We can observe significant increases between 

5 and 8 p.m. when EV charging is performed. Comparing Tab. 3.8.4 with Tab. 3.7.5 of 

Scenario 3, we can confirm another point. The average values of utilization factor in the two 

different scenarios are very close, the first one is 54% and the second one was 53%. Therefore, 

related huge investments to enhance power infrastructures would be only needed to satisfy the 

greater power demand during the evening, leading to significant oversizing in the other hours 

of the day. 

As can be seen in following Tab. 3.8.4, the maximum value, experienced at 6 p.m., is about 

536 kVA, 7% more than the nominal power rating of the distribution transformer. 
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Tab. 3.8.4 S4 - Transformer utilization factor 

 
 

Another interesting analysis is about the evaluation of power losses along the network lines. 

We can expect greater losses during the evening, given the higher power flows due to EV 

charging, while only minor differences in the rest of the day. 

Fig. 3.8.5 below shows the profiles of active power losses in the network lines.  

 
Fig. 3.8.5 S4 - Power losses 

Hour P + jQ A

[h] [W + jVAr] [VA]

0 286266,65 + 106180,58i 305324,28 61%

1 239843,25 + 103357,60i 261165,81 52%

2 203249,64 + 87522,02i 221292,84 44%

3 195526,14 + 83954,80i 212788,34 43%

4 169137,51 + 74467,18i 184804,92 37%

5 154585,99 + 74382,32i 171550,45 34%

6 132843,29 + 74893,37i 152500,34 31%

7 170175,31 + 92225,94i 193559,45 39%

8 237506,69 + 120815,18i 266469,01 53%

9 219414,31 + 119559,20i 249874,05 50%

10 146711,94 + 110831,62i 183869,63 37%

11 101208,41 + 112631,83i 151423,48 30%

12 71158,02 + 112022,58i 132712,18 27%

13 119243,62 + 121669,89i 170360,21 34%

14 108165,63 + 115291,59i 158088,44 32%

15 157115,95 + 113386,58i 193757,41 39%

16 224270,70 + 122754,89i 255667,97 51%

17 365269,80 + 155129,22i 396846,45 79%

18 509442,35 + 167302,17i 536210,34 107%

19 457754,14 + 156290,03i 483699,72 97%

20 399541,08 + 154330,61i 428311,82 86%

21 384080,02 + 148874,10i 411923,48 82%

22 387874,11 + 151560,45i 416433,55 83%

23 338392,49 + 135009,12i 364330,82 73%

54%

Transformer 

Utilization 

factor



86 

 

Fig. 3.8.5 shows very high values in the line 2-17, indeed 316.5 A flow on it at 6 p.m., causing 

about 2500 W of power loss. 

To conclude the analysis of Scenario 4, the economic results, shown in Tab. 3.8.5, must be 

investigated. 

The overall operating cost results now equal to £ 767.37, while in Scenario 3 it was equal to £ 

696.27. We can assess the overall cost of EV charging comparing the sums of the archetype 

costs of two scenarios. Concerning Scenario 4, it results equal to £ 747.37, while about 

Scenario 3, it was equal to £ 677.76. Therefore, the overall cost, related to 54 EVs applied on 

the electricity grid, is £ 69.61, which means, on average, about £ 1.30 per each electric vehicle. 

The cost of energy consumed, as already presented, is now £ 747.37 and covers about 97% of 

the total cost. Power losses and therefore the related cost have increased by 7.5% than previous 

Scenario 3. 

Tab. 3.8.5 S4 - Economic results 

 
 

 

3.9. Scenario 5 (15% of household PV, EV smart charging) 
 

The fifth scenario analyses the operating conditions of the reference electricity distribution 

network considering the same load configuration as in Scenario 3 (Tab. 3.7.1), but, in this case, 

to perform EV charging, it applies smart charging mode. 

Therefore, it considers the operating conditions expected for the year 2050, if all EV owners 

will apply smart charging mode to charge their vehicles. It means that all the electric vehicles 

will be charged in an optimized way in order to minimize charging costs (Sec. 2.2.1).  

As explained in section 2.2.1, the modelling tool implements one EV per each smart 

household, while for smart schools, smart shops, smart industries and smart car parks it 

considers different numbers of EVs in relation to the percentages reported in Tab. 2.2.1.1. In 

conclusion, the number of EVs applied on the electricity network is the same of Scenario 4, 

but with different charging profiles, because now they are optimized.  

The total number of EVs is 54. 52 related to smart houses and 2 to the smart park. 

As aforementioned, not all the EVs related to the smart household loads, are charged at home, 

in fact, their percentage is an input variable of the modelling tool and it has been set equal to 

65%. The remaining 35% charges its batteries in off-home charging infrastructures, along the 

Archetype1 Archetype2 Archetype3 Archetype4 Archetype5 Archetype6 Archetype7 Archetype8 Archetype9 Archetype10

[£] [£] [£] [£] [£] [£] [£] [£] [£] [£]

0,00 18,31 18,97 14,90 18,31 7,86 23,53 25,49 17,03 5,59

                    

Archetype11 Archetype12 Archetype13 Archetype14 Archetype15 Archetype16 Archetype17 Archetype18 Archetype19 Archetype20

[£] [£] [£] [£] [£] [£] [£] [£] [£] [£]

23,32 45,77 17,49 24,23 44,52 142,56 28,02 126,04 100,33 45,12

                    

                    

ELoss23 ELoss34 ELoss45 ELoss56 ELoss27 ELoss78 ELoss89 ELoss910 ELoss211

[£] [£] [£] [£] [£] [£] [£] [£] [£]

0,60 0,48 0,23 0,17 0,57 0,09 0,04 0,04 2,16

                    

ELoss1112 ELoss1213 ELoss1314 ELoss1415 ELoss1516 ELoss217 ELoss1718 ELoss1719 ELoss1920   

[£] [£] [£] [£] [£] [£] [£] [£] [£]   

1,11 1,24 0,64 0,34 0,91 7,97 2,30 1,04 0,06

                

                

Total

[£]

767,37
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streets, at charging stations or at work. It has been considered that these charges allow the 

vehicles to achieve a battery capacity equal to 70% of their ratings. 

Once all the parameters have been uploaded on the modelling tool, we can proceed with the 

grid analysis. Also in this scenario, we can find EV chargers blocks, which take into account 

the power consumed to charge the aggregated EVs, inside archetype blocks.  

The optimization of EV charging, applied in Scenario 5, should be able to lead to money 

savings, because the minimization algorithm is based on a cost function, complying with some 

constraints. Therefore, power demand related to EV charging will occur when it causes the 

lowest costs. Considering the electricity tariff (Tab. 3.3.1) and the generation tariff (Sec. 3.3) 

taken into account in this case study, they will be placed during the morning if the EVs are not 

available during PV generation hours, otherwise they will exploit the PV generation if they 

are available in the central hours of the day.  

To follow the same scheme as before, the first analysis of the grid is in terms of voltage 

deviation. 

Scenario 5 considers the same distribution transformer as Scenario 3, with same settings and 

ratings. This because we want to compare the consequences, on the electricity network, caused 

by different EVs charging strategies. 

Fig. 3.9.1 shows the graphical representation of voltage deviations for each phase of each grid 

node. The results at bus 1, MV node, are not reported because they are basically flat at the 

value of nominal voltage. In this scenario, as can be seen in figure below, all the profiles are 

within the imposed limits, contrary to what happened in Scenario 4.  

Comparing Fig. 3.9.1 with Fig. 3.7.1, related to the voltage deviations of Scenario 3 (without 

EV charging), we can observe that they have only minor differences. 

 
Fig. 3.9.1 S5 - Voltages deviations 
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Indeed, the optimization process, performed by the modelling tool, avoids the creation of new 

peaks in the profile of power demand; therefore, as will be shown below, the resulting shapes 

will be very close to those of Scenario 3, with the exception of absolute values. 

From a line currents point of view, Fig. 3.9.2 shows their hourly profiles, while Tab. 3.9.1 

reports the results compared to the lines current rating.  

 
Fig. 3.9.2 S5 - Line Currents 

Tab. 3.9.1 S5 - Lines current ratings 

 

 

Line_2-3 Current rating complied: 81.7031A vs 150A nominal

Line_3-4 Current rating complied: 78.6454A vs 150A nominal

Line_4-5 Current rating complied: 72.036A vs 110A nominal

Line_5-6 Current rating complied: 69.3645A vs 110A nominal

Line_2-7 Current rating complied: 83.4754A vs 110A nominal

Line_7-8 Current rating complied: 62.502A vs 218A nominal

Line_8-9 Current rating complied: 37.902A vs 190A nominal

Line_9-10 Current rating complied: 20.508A vs 150A nominal

Line_2-11 Current rating complied: 234.0262A vs 393A nominal

Line_11-12 Current rating complied: 219.0903A vs 393A nominal

Line_12-13 Current rating complied: 183.0707A vs 342A nominal

Line_13-14 Current rating complied: 171.6393A vs 342A nominal

Line_14-15 Current rating complied: 150.3795A vs 342A nominal

Line_15-16 Current rating complied: 116.5816A vs 342A nominal

Line_2-17 Current rating complied: 252.4761A vs 342A nominal

Line_17-18 Current rating complied: 82.3145A vs 135A nominal

Line_17-19 Current rating complied: 149.1602A vs 342A nominal

Line_19-20 Current rating complied: 36.7036A vs 270A nominal
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In this scenario, as shown before, all current ratings of network branches are complied. This 

means that EV charging will not negatively affect the overall distribution system, if it is 

properly managed. Therefore, in this scenario, contrary to what happened in Scenario 4, where 

uncontrolled charging has been implemented, the distribution network does not need lines 

upgrades in order to satisfy power request. The existing grid is already able to respond to the 

power demand of the loads. 

Analysing Fig. 3.9.2 and Fig. 3.7.2 of Scenario 3, we can recognize some differences 

throughout the morning until midday, because there is a global increase of current flowing 

along the lines due to the power absorbed to charge the EVs. 

Focusing on the second chart of Fig. 3.9.2, the currents flowing from bus 2 to bus 6 and vice 

versa are lower thanks to the power consumed by car park, located inside archetype 6, to 

charge the EVs during the daytime. This consumption increase the local exploitation of 

electricity generated by PV systems. 

Following Tab. 3.9.2 shows the values of current of each phase of the three-phase branches 

starting from the distribution substation. 

The worst unbalanced conditions in terms of currents are experienced in the line 2-3 as in the 

Scenario 3 at 12 and 2 p.m.  

Considering the values reported in Tab. 3.7.3, related to Scenario 3, we can notice the increases 

of current absorbed by loads for EV charging during the charging periods and the 

aforementioned current decrease in phase 2 of line 2-3. 

 

Tab. 3.9.2 S5 - Phase currents comparison 

 
 

To analyse the network imbalances, we can evaluate the voltage unbalances in the electricity 

grid. Tab. 3.9.3 reports the measured values of voltage at upstream and downstream nodes of 

the distribution transformer, bus 1 and bus 2, and the hourly values of voltage unbalances 

evaluated through the equation 3.5.1 described above. 

The average values are 0.026% and 0.087% at 11 kV and 400 V sides, respectively. They are 

slightly lower than those of Scenario 4 because the charging profiles are optimized vehicle by 

Hour
Magnitude     

I23_ph1

Magnitude     

I23_ph2

Magnitude     

I23_ph3

Magnitude     

I27_ph1

Magnitude     

I27_ph2

Magnitude     

I27_ph3

Magnitude     

I211_ph1

Magnitude     

I211_ph2

Magnitude     

I211_ph3

Magnitude     

I217_ph1

Magnitude     

I217_ph2

Magnitude     

I217_ph3

[h] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A]

0 39,72 48,15 35,15 35,06 44,91 31,34 157,96 164,52 150,77 207,63 214,96 202,08

1 27,20 34,10 23,99 22,52 31,56 20,37 135,16 141,27 130,90 196,74 201,95 191,55

2 22,42 40,16 22,97 19,93 28,80 18,15 117,10 130,35 113,56 170,25 175,95 163,39

3 20,86 27,68 17,21 17,35 25,04 15,61 106,72 116,75 105,31 160,18 160,73 155,40

4 17,91 20,08 15,38 15,28 18,23 14,39 93,47 93,84 91,28 133,63 135,75 132,33

5 16,04 13,62 13,32 12,67 14,89 13,59 88,40 87,85 88,89 125,26 126,60 124,79

6 25,97 31,61 22,89 12,72 30,32 16,55 93,47 116,17 98,35 128,74 132,86 117,64

7 35,00 37,49 30,21 20,97 39,94 25,22 116,74 139,12 121,66 146,13 151,17 134,67

8 50,90 24,84 38,41 35,89 49,92 44,31 146,86 144,48 150,70 155,78 155,26 151,17

9 38,51 23,05 29,83 30,00 34,66 38,15 127,14 122,66 137,42 142,04 143,63 143,35

10 32,41 27,97 23,99 23,11 26,47 34,07 103,92 97,49 120,84 105,17 104,92 108,39

11 24,51 65,30 17,71 18,54 22,49 27,82 89,29 81,14 113,56 93,03 90,91 98,22

12 21,92 81,70 16,65 20,33 25,79 25,47 80,08 71,58 107,95 80,96 78,63 86,63

13 25,58 65,39 18,43 19,12 23,02 29,07 99,87 91,40 124,53 108,33 106,04 113,74

14 19,22 66,32 14,34 16,80 21,13 22,11 90,50 82,55 114,32 113,66 110,57 119,40

15 26,20 36,97 19,24 18,16 20,86 27,68 105,29 99,27 121,25 130,61 129,71 134,03

16 38,86 20,62 30,71 31,22 36,30 37,35 142,43 139,08 149,38 150,90 153,23 151,23

17 66,56 57,23 55,36 60,78 72,16 60,26 208,76 208,81 204,17 212,18 219,88 208,12

18 74,50 75,17 62,96 69,84 83,36 65,74 232,19 234,03 222,12 242,06 251,77 236,13

19 72,94 80,71 62,21 69,71 83,48 63,50 224,47 227,37 211,54 235,92 246,12 229,23

20 69,37 79,27 59,40 66,62 79,86 59,95 221,72 224,85 208,38 242,56 252,48 235,90

21 67,86 77,48 58,16 64,79 77,67 58,30 214,81 217,85 201,83 233,05 242,70 226,57

22 66,40 75,82 56,91 63,42 76,03 57,07 216,66 219,64 203,97 241,03 250,47 234,69

23 53,01 60,46 45,49 50,20 60,17 45,17 187,98 190,32 177,94 222,50 229,96 217,48
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vehicle, so the overall power consumption is better spread during the hours of the day, while 

in Scenario 4 all EV charging was at the same time.  

The maximum values of voltage unbalance are lower as well and they result equal to 0.064% 

and 0.150%. 

Tab. 3.9.3 S5 - Phase voltages comparison 

 

From an electric power point of view, following Fig. 3.9.3 shows the profiles of single-phase 

active power at each phase of each grid node. 

 
Fig. 3.9.3 S5 - Single-phase Active Power 

Hour
Magnitude    

E1_ph1

Magnitude     

E1_ph2

Magnitude     

E1_ph3

Magnitude     

E2_ph1

Magnitude    

E2_ph2

Magnitude     

E2_ph3

[h] [V] [V] [V] [V] [V] [V]

0 6339,07 6338,89 6337,12 0,020% 233,16 232,96 233,21 0,064%

1 6339,41 6339,29 6337,92 0,015% 233,33 233,15 233,37 0,055%

2 6341,20 6341,63 6339,38 0,021% 233,87 233,66 233,86 0,058%

3 6341,67 6341,71 6340,37 0,014% 233,99 233,84 234,02 0,046%

4 6342,72 6342,51 6342,07 0,006% 234,31 234,22 234,36 0,033%

5 6342,66 6342,34 6342,51 0,003% 234,33 234,27 234,40 0,027%

6 6342,64 6343,31 6341,00 0,021% 234,33 234,12 234,31 0,058%

7 6340,70 6341,11 6338,95 0,021% 233,75 233,50 233,78 0,077%

8 6337,45 6336,05 6337,56 0,015% 232,77 232,64 233,01 0,086%

9 6337,40 6335,97 6338,75 0,022% 232,87 232,81 233,14 0,085%

10 6338,26 6336,90 6340,56 0,031% 233,23 233,21 233,50 0,082%

11 6337,77 6335,83 6341,92 0,054% 233,21 233,31 233,55 0,083%

12 6337,67 6335,52 6342,69 0,064% 233,26 233,40 233,63 0,086%

13 6336,73 6334,78 6340,90 0,054% 232,92 233,01 233,26 0,085%

14 6337,40 6335,65 6341,54 0,053% 233,13 233,25 233,43 0,070%

15 6337,90 6336,47 6340,41 0,034% 233,13 233,15 233,39 0,070%

16 6337,09 6335,84 6337,87 0,017% 232,76 232,66 232,99 0,079%

17 6333,45 6332,02 6331,97 0,015% 231,55 231,25 231,81 0,124%

18 6332,16 6330,73 6329,68 0,021% 231,12 230,74 231,39 0,148%

19 6333,41 6332,12 6330,47 0,024% 231,44 231,04 231,68 0,150%

20 6333,57 6332,38 6330,59 0,025% 231,49 231,10 231,71 0,144%

21 6334,23 6333,08 6331,34 0,024% 231,68 231,30 231,89 0,140%

22 6333,87 6332,74 6331,04 0,024% 231,59 231,22 231,80 0,137%

23 6335,85 6334,98 6333,61 0,019% 232,20 231,91 232,36 0,107%

0,026% 0,087%

Voltage 

unbalance

Voltage 

unbalance
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It has been stated in the previous pages that car park, located at node 6, increased local power 

consumption of PV generation by limiting reverse power flows. It can be seen also in Fig. 

3.9.3. Indeed, comparing it with Fig. 3.7.3 of Scenario 3, we can observe a decrease of negative 

power around 10 a.m. 

In general, the magnitude of power flows is slightly increased throughout the morning until 

midday, increasing the power consumed during the valley hours, while it is the same in the 

other part of the day.  

Consequently, as shown in Fig. 3.9.4, the peak of the daily power demand is the same as in 

Scenario 3 and, therefore, the power rating of the distribution transformer is suitable to respond 

to the load demand of the distribution network. 

 

 
Fig. 3.9.4 S5 - Three-phase Apparent Power 

 

If we compare the results of utilization factor of the distribution transformer shown in Tab. 

3.9.4 with those reported in Tab. 3.8.4 of Scenario 4, we can see the same average values, but 

deeply different maximum values. In fact, in this scenario we obtain hourly utilization factors 

between 27% and 87%, in Scenario 4 they were between 27% and 107%. 

From these results, we can state that EV charging does not negatively affect the daily operation 

of the electricity network, if the EVs are managed properly to charge their batteries. Indeed, 

for example, if they charge their batteries during off-peak hours, existing power system could 

easily withstand the overall power demand, therefore huge investments by system operators 

are not required. 
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Tab. 3.9.4 S5 - Transformer utilization factor 

 

At this point, we can focus on the power losses along the network lines. Fig. 3.9.5 below shows 

the profiles of active power losses in the network lines. Their magnitudes are obviously lower 

than those of Scenario 4, during the evening, while they are slightly greater during the morning 

until midday. 

 
Fig. 3.9.5 S5 - Power losses 

Hour P + jQ A

[h] [W + jVAr] [VA]

0 296995,48 +105428,45i 315153,09 63%

1 252173,06 + 103490,98i 272583,26 55%

2 225161,70 + 87718,10i 241644,89 48%

3 203250,88 + 84053,65i 219945,30 44%

4 170168,51 + 74479,23i 185753,81 37%

5 155363,53 + 74381,82i 172251,22 34%

6 181507,98 + 75095,39i 196429,29 39%

7 218628,80 + 92537,45i 237406,26 47%

8 244649,00 + 120913,10i 272897,62 55%

9 204655,89 + 119649,23i 237065,34 47%

10 150021,00 + 110788,24i 186494,87 37%

11 101204,73 + 112631,41i 151420,71 30%

12 71158,02 + 112022,58i 132712,18 27%

13 119243,62 + 121669,89i 170360,21 34%

14 108165,63 + 115291,59i 158088,44 32%

15 157115,95 + 113386,58i 193757,41 39%

16 224270,70 + 122754,89i 255667,97 51%

17 355358,84 + 154902,85i 387652,94 78%

18 404949,90 + 165415,77i 437432,05 87%

19 398343,87 + 155598,64i 427654,97 86%

20 396638,28 + 154145,66i 425538,26 85%

21 384083,88 + 148865,14i 411923,85 82%

22 387874,11 + 151560,45i 416433,55 83%

23 338392,49 + 135009,12i 364330,82 73%

54%

Transformer 

Utilization 

factor
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For a better understanding of savings related to controlled charging method, we can investigate 

the economic results provided by the modelling tool. Tab. 3.9.5 reports that the overall 

operating cost results equal to £ 726.13, while in Scenario 3 it was £ 696.27. Thus, we can 

evaluate the overall cost incurred to charge all 54 EVs, spread on the electricity grid, 

subtracting the aforementioned values. The result is £ 29.86, which means that each EV 

charging costs, on average, about £ 0.55. In Scenario 4, which considered uncontrolled 

charging, the cost resulted equal to £ 1.30 per each electric vehicle. This reduction is possible 

thanks to the optimized charging that consumes power in the off-peak hours, when it costs less 

than in the evening.  

In Scenario 5, the cost of energy consumed is £ 707.41, which means more than 97% of the 

overall cost, and the cost of energy losses is £ 18.72. The latter was equal to £ 20 in Scenario 

4, therefore smart charging also allows savings in terms of energy losses of about 10%. 

In conclusion, the overall operating cost results 5% lower than the case of uncontrolled 

charging of Scenario 4. 

Tab. 3.9.5 S5 - Economic results 

 
 

 

3.10. Scenario 6 (15% of household PV, V2G strategy) 
 

The sixth and last scenario of this case study analyses the operating conditions of the reference 

electricity distribution network considering the same load configuration as in Scenario 3 (Tab. 

3.7.1), but, in this circumstance, it applies V2G technology to perform EV charging. 

Therefore, it evaluates the operating conditions expected for the year 2050, if all EV owners 

will apply Vehicle-to-Grid technology to manage their vehicle charging. It means that all the 

electric vehicles will be charged in an optimized way in order to minimize charging costs, but 

this setting also allows power flows from the vehicle to the grid, thus both charge and discharge 

of EV battery (Sec. 2.2.1).  

As explained in section 2.2.1, the modelling tool implements one EV per each smart 

household, while for smart schools, smart shops, smart industries and smart car parks it 

considers different numbers of EVs in relation to the percentages reported in Tab. 2.2.1.1. In 

conclusion, the number of EVs applied on the electricity network is the same of Scenario 5, 

Archetype1 Archetype2 Archetype3 Archetype4 Archetype5 Archetype6 Archetype7 Archetype8 Archetype9 Archetype10

[£] [£] [£] [£] [£] [£] [£] [£] [£] [£]

0,00 18,08 18,01 14,90 18,16 -9,78 23,20 25,20 16,15 1,09

                    

Archetype11 Archetype12 Archetype13 Archetype14 Archetype15 Archetype16 Archetype17 Archetype18 Archetype19 Archetype20

[£] [£] [£] [£] [£] [£] [£] [£] [£] [£]

23,32 45,46 17,49 23,29 43,53 136,22 27,71 126,04 96,07 43,27

                    

                    

ELoss23 ELoss34 ELoss45 ELoss56 ELoss27 ELoss78 ELoss89 ELoss910 ELoss211

[£] [£] [£] [£] [£] [£] [£] [£] [£]

0,48 0,39 0,18 0,13 0,46 0,07 0,03 0,02 2,03

                    

ELoss1112 ELoss1213 ELoss1314 ELoss1415 ELoss1516 ELoss217 ELoss1718 ELoss1719 ELoss1920   

[£] [£] [£] [£] [£] [£] [£] [£] [£]   

1,04 1,16 0,59 0,31 0,84 7,67 2,30 0,97 0,05

                

                

Total

[£]

726,13
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but with different charging profiles, because now they are optimized considering V2G 

technology.   

The total number of EVs is 54, 52 related to smart houses and 2 to the smart park. 

As in the previous scenarios, not all the EVs related to the smart household loads, are charged 

at home, in fact, their percentage is an input variable of the modelling tool and it has been set 

equal to 65%. The remaining 35% charges its batteries in off-home charging infrastructures, 

along the streets, at charging stations or at work. It has been considered that these charges 

allow the vehicles to achieve a battery capacity equal to 70% of their ratings. 

From a V2G point of view, these off-home charging are the key point to perform a profitable 

power shifting during the day. Indeed, these EVs can charge their battery exploiting the 

electricity produced by PV systems during the central hours of the day, along the streets, at 

charging stations or at work and return energy to the grid during the peak hours, achieving 

good profits.  

As reported in sec. 2.2.1, the minimization algorithm of the modelling tool optimizes EV 

charging profiles through a cost function, complying with some constraints. Since it also takes 

into account battery degradation, the resulting profiles are a compromise between profits 

related to power shifting and costs of battery degradation. 

Therefore, the EVs, that charge their battery off-home, can play the role of distributed energy 

storage systems, allowing delayed green energy consumption: they accumulate solar energy 

during the daytime and provide it during the other hours of the day. This benefits the operation 

of electricity grid because it reduces the value of daily peak of power demand. The effect is 

higher, the more the percentage of off-home charging is high. 

Once all the parameters have been set on the modelling tool, we can proceed with the grid 

analysis. Also in this scenario, we can find EV chargers blocks, which take into account the 

power consumed to charge the aggregated EVs, inside archetype blocks.  

To follow the same scheme as before, the first analysis of the grid is in terms of voltage 

deviation. 

Scenario 6 considers the same distribution transformer as Scenario 3, with same settings and 

ratings. This because we want to compare the consequences, on the electricity network, caused 

by different EVs charging strategies. 

Fig. 3.10.1 shows the daily profiles of voltage deviations for each phase of grid nodes.  

The results related to bus 1, MV node, are not shown because they are basically flat and equal 

to the value of nominal voltage. In this scenario, as can be seen in figure below, all the profiles 

are within the imposed limits, contrary to what happened in Scenario 4, and if we analyse the 

shapes during the evening we can observe they are farer from the lower border than those of 

Scenario 5. In fact, firstly, the optimization process, performed by the modelling tool, avoids 

the creation of new peaks in the power demand profiles and moreover V2G technology reduces 

the power absorbed by the distribution network from the medium voltage connection during 

the peak hours, which means it reduces the peak value of power demand from the distribution 

substation point of view. 

The implementation of V2G, being a kind of distributed energy storage, can allow extensions, 

in terms of number of loads and PV generation, of existing distribution networks without 

affecting the overall operating condition of distribution substations and therefore without 

requiring significant investments for network enhancements. 
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Fig. 3.10.1 S6 - Voltages deviations 

Analysing the results in terms of line currents, Fig. 3.10.2 shows their hourly profiles, while 

following Tab. 3.10.1 reports the maximum measures compared to the lines current rating.  

 
Fig. 3.10.2 S6 - Line Currents 
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Tab. 3.10.1 S6 - Lines current ratings 

 
 

Focusing on current profiles, if we compare Fig. 3.10.2 with Fig. 3.9.2, related to Scenario 5, 

we can observe some differences during the evening, where some energy is directly provided 

to the loads by EVs, which have been recharged off-home during the daytime. As explained 

in sec. 2.2.1, the energy consumed for off-home charging is not taken into account in the 

operating conditions of the distribution network, but it is considered only in the costs 

evaluations. 

As we could have expected, in Tab. 3.10.1 all current ratings of network lines are complied. 

This means that EV charging does not negatively affect the overall distribution system, if EVs 

are properly managed. 

 

Following Tab. 3.10.2 reports the hourly values of line current of each phase of the three-phase 

branches starting from the distribution substation. 

The worst unbalanced conditions in terms of currents are experienced in the line 2-3 as in the 

Scenario 3 at 12 and 2 p.m. 

Comparing Tab. 3.10.2 with Tab. 3.7.3 of Scenario 3 and with Tab. 3.9.2 of Scenario 5, we 

can notice some differences in the magnitudes of current flowing along grid lines during 

charging periods. From a macroscopic point of view, we can state that current absorbed by 

archetypes, after the EVs return home, is generally lower thanks to the contribution of EVs to 

respond to the power demand. 

It is noteworthy that EVs energy discharge causes an increase in current unbalances among 

the lines of three-phase branches because of the uneven distribution of EVs that charge their 

battery during the day and consequently they can supply energy to the grid during the peak 

hours. 

Line_2-3 Current rating complied: 81.7031A vs 150A nominal

Line_3-4 Current rating complied: 78.6454A vs 150A nominal

Line_4-5 Current rating complied: 72.036A vs 110A nominal

Line_5-6 Current rating complied: 69.3645A vs 110A nominal

Line_2-7 Current rating complied: 83.4756A vs 110A nominal

Line_7-8 Current rating complied: 62.5014A vs 218A nominal

Line_8-9 Current rating complied: 37.9026A vs 190A nominal

Line_9-10 Current rating complied: 20.508A vs 150A nominal

Line_2-11 Current rating complied: 230.6282A vs 393A nominal

Line_11-12 Current rating complied: 215.6939A vs 393A nominal

Line_12-13 Current rating complied: 179.6898A vs 342A nominal

Line_13-14 Current rating complied: 168.2707A vs 342A nominal

Line_14-15 Current rating complied: 147.0189A vs 342A nominal

Line_15-16 Current rating complied: 113.6785A vs 342A nominal

Line_2-17 Current rating complied: 249.5586A vs 342A nominal

Line_17-18 Current rating complied: 82.3144A vs 135A nominal

Line_17-19 Current rating complied: 146.2331A vs 342A nominal

Line_19-20 Current rating complied: 36.6908A vs 270A nominal
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Tab. 3.10.2 S6 - Phase currents comparison 

 
 

To evaluate network unbalances, we can calculate the voltage unbalances in the electricity 

grid. Tab. 3.10.3 shows the measured values of voltage at upstream and downstream nodes of 

the distribution transformer, bus 1 and bus 2, and the hourly values of voltage unbalances 

evaluated through the equation 3.5.1 described above. 

Tab. 3.10.3 S6 - Phase voltages comparison 

 

Hour
Magnitude     

I23_ph1

Magnitude     

I23_ph2

Magnitude     

I23_ph3

Magnitude     

I27_ph1

Magnitude     

I27_ph2

Magnitude     

I27_ph3

Magnitude     

I211_ph1

Magnitude     

I211_ph2

Magnitude     

I211_ph3

Magnitude     

I217_ph1

Magnitude     

I217_ph2

Magnitude     

I217_ph3

[h] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A]

0 33,99 45,02 32,55 30,51 41,72 29,81 152,02 162,51 149,28 205,15 213,49 199,16

1 26,22 34,72 23,01 19,63 31,56 19,40 131,41 140,84 129,95 195,81 201,02 189,70

2 25,89 39,33 23,23 17,52 32,05 17,34 113,98 129,56 112,78 170,50 175,17 161,85

3 20,08 26,89 16,43 15,03 25,04 14,83 103,70 115,99 104,55 159,43 159,98 153,91

4 17,56 19,73 15,03 14,23 18,23 14,04 92,10 93,50 90,94 133,29 135,41 131,65

5 16,04 13,62 13,32 12,67 14,89 13,59 88,40 87,85 88,89 125,26 126,60 124,79

6 25,97 31,61 22,89 12,72 30,32 16,55 93,47 116,17 98,35 128,74 132,86 117,64

7 35,00 37,49 30,21 20,97 39,94 25,22 116,74 139,12 121,66 146,13 151,17 134,67

8 50,90 24,84 38,41 35,89 49,92 44,31 146,86 144,48 150,70 155,78 155,26 151,17

9 38,51 23,05 29,83 30,00 34,66 38,15 127,14 122,66 137,42 142,04 143,63 143,35

10 32,41 27,97 23,99 23,11 26,47 34,07 103,92 97,49 120,84 105,17 104,92 108,39

11 24,51 65,30 17,71 18,54 22,49 27,82 89,29 81,14 113,56 93,03 90,91 98,22

12 21,92 81,70 16,65 20,33 25,79 25,47 80,08 71,58 107,95 80,96 78,63 86,63

13 25,58 65,39 18,43 19,12 23,02 29,07 99,87 91,40 124,53 108,33 106,04 113,74

14 19,22 66,32 14,34 16,80 21,13 22,11 90,50 82,55 114,32 113,66 110,57 119,40

15 26,20 36,97 19,24 18,16 20,86 27,68 105,29 99,27 121,25 130,61 129,71 134,03

16 38,86 20,62 30,71 31,22 36,30 37,35 142,43 139,08 149,38 150,90 153,23 151,23

17 66,56 57,23 55,36 58,84 72,16 60,26 203,50 208,81 204,17 212,18 219,88 208,12

18 71,07 71,81 59,52 66,42 83,36 62,30 218,65 230,63 218,70 238,72 248,42 229,44

19 69,73 77,51 59,00 60,15 83,48 60,28 211,83 224,19 208,36 232,80 242,99 222,98

20 66,38 76,27 56,40 57,69 79,86 56,95 209,97 221,90 205,43 239,65 249,56 230,08

21 64,95 74,57 55,24 56,11 77,67 55,39 203,37 214,98 198,96 230,22 239,86 220,92

22 63,55 72,97 54,05 54,92 76,03 54,22 205,48 216,83 201,16 238,26 247,70 229,16

23 50,75 58,20 43,23 43,47 60,17 42,91 179,15 188,10 175,72 220,31 227,77 213,11

Hour
Magnitude    

E1_ph1

Magnitude     

E1_ph2

Magnitude     

E1_ph3

Magnitude     

E2_ph1

Magnitude    

E2_ph2

Magnitude     

E2_ph3

[h] [V] [V] [V] [V] [V] [V]

0 6338,83 6339,07 6337,17 0,019% 233,17 232,98 233,21 0,061%

1 6339,36 6339,52 6337,82 0,017% 233,35 233,16 233,37 0,058%

2 6341,24 6341,70 6339,30 0,023% 233,87 233,66 233,86 0,060%

3 6341,62 6341,83 6340,34 0,015% 234,01 233,85 234,02 0,046%

4 6342,69 6342,57 6342,06 0,006% 234,32 234,22 234,36 0,033%

5 6342,66 6342,34 6342,51 0,003% 234,33 234,27 234,40 0,027%

6 6342,64 6343,31 6341,00 0,021% 234,33 234,12 234,31 0,058%

7 6340,70 6341,11 6338,95 0,021% 233,75 233,50 233,78 0,077%

8 6337,45 6336,05 6337,56 0,015% 232,77 232,64 233,01 0,086%

9 6337,40 6335,97 6338,75 0,022% 232,87 232,81 233,14 0,085%

10 6338,26 6336,90 6340,56 0,031% 233,23 233,21 233,50 0,082%

11 6337,77 6335,83 6341,92 0,054% 233,21 233,31 233,55 0,083%

12 6337,67 6335,52 6342,69 0,064% 233,26 233,40 233,63 0,086%

13 6336,73 6334,78 6340,90 0,054% 232,92 233,01 233,26 0,085%

14 6337,40 6335,65 6341,54 0,053% 233,13 233,25 233,43 0,070%

15 6337,90 6336,47 6340,41 0,034% 233,13 233,15 233,39 0,070%

16 6337,09 6335,84 6337,87 0,017% 232,76 232,66 232,99 0,079%

17 6333,31 6332,21 6331,98 0,013% 231,56 231,26 231,81 0,124%

18 6332,17 6331,18 6329,63 0,021% 231,19 230,78 231,42 0,152%

19 6333,30 6332,71 6330,43 0,027% 231,52 231,08 231,70 0,153%

20 6333,46 6332,93 6330,56 0,028% 231,56 231,14 231,73 0,147%

21 6334,12 6333,61 6331,30 0,027% 231,75 231,33 231,91 0,143%

22 6333,77 6333,26 6331,00 0,026% 231,66 231,25 231,82 0,140%

23 6335,75 6335,38 6333,57 0,021% 232,25 231,93 232,37 0,109%

0,026% 0,088%

Voltage 

unbalance

Voltage 

unbalance
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The average values are 0.026% and 0.088% at 11 kV and 400 V sides, respectively. The first 

one is the same as in Scenario 5, while the second one is slightly higher because of the 

aforementioned uneven distribution of EVs that can supply energy to the grid during the peak 

hours. Indeed, in the LV side of the distribution transformer, the highest values are experienced 

after 6 p.m. 

The maximum values of voltage unbalance follow the trend of the average values and they 

result equal to 0.064% and 0.153%. 

Following Fig. 3.10.3 shows the hourly profiles of single-phase active power at each phase of 

each grid node. 

 
Fig. 3.10.3 S6 - Single-phase Active Power 

As has been explained in Scenario 5 analysis, the car park, located at node 6, increases local 

power consumption of PV generation by limiting reverse power flows. This can be seen in 

Fig. 3.10.3, in fact, comparing it with Fig. 3.7.3 of Scenario 3, we can observe a decrease of 

negative power around 10 a.m. Moreover, other differences can be noticed during the evening 

with a small decrease in absolute values, while the shapes are roughly the same. 

In general, from the three-phase apparent power point of view, we can expect that V2G 

technology leads to an additional decrease in the daily peak of power demand compared to 

that of Scenario 5, which has considered only smart charging strategy. 

Fig. 3.10.4 reports the hourly profiles of three-phase apparent power at each grid node 

compared to the nominal power rating of the distribution transformer, which is equal to 500 

kVA, as usual.  

As we could have expected, the power rating of the distribution transformer is suitable to 

respond to the load demand of the distribution network. 
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Fig. 3.10.4 S6 - Three-phase Apparent Power 

Tab. 3.10.4 shows the hourly values of utilization factor of the distribution transformer. They 

remain in the range (27 ÷ 85) %, with an average value equal to 53%. Comparing these results 

with those of Scenario 5, we can state that V2G implementation reduces the highest value by 

2%, while the average by 1%. 

Tab. 3.10.4 S6 - Transformer utilization factor 

 

Hour P + jQ A

[h] [W + jVAr] [VA]

0 287438,37 + 106084,77i 306389,94 61%

1 248941,26 + 103438,08i 269575,94 54%

2 224150,16 + 87687,92i 240691,65 48%

3 199993,22 + 84030,34i 216929,45 43%

4 168681,87 + 74465,82i 184387,45 37%

5 155364,71 + 74379,45i 172251,26 34%

6 181507,98 + 75095,39i 196429,29 39%

7 218628,80 + 92537,45i 237406,26 47%

8 244649,00 + 120913,10i 272897,62 55%

9 204655,89 + 119649,23i 237065,34 47%

10 150021,00 + 110788,24i 186494,87 37%

11 101204,73 + 112631,41i 151420,71 30%

12 71158,02 + 112022,58i 132712,18 27%

13 119243,62 + 121669,89i 170360,21 34%

14 108165,63 + 115291,59i 158088,44 32%

15 157115,95 + 113386,58i 193757,41 39%

16 224270,70 + 122754,89i 255667,97 51%

17 353559,33 + 154888,46i 385998,24 77%

18 392395,65 + 165257,69i 425775,12 85%

19 385110,39 + 155414,37i 415287,42 83%

20 384331,47 + 153967,13i 414024,83 83%

21 372098,02 + 148697,79i 400709,33 80%

22 376148,50 + 151395,52i 405472,93 81%

23 329077,93 + 134882,26i 355648,01 71%

53%

Transformer 

Utilization 

factor
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In absolute terms, Scenario 6 (V2G technology) has an highest value equal to 425,78 kVA, 

Scenario 5 (smart charging) equal to 437,43 kVA. 

Focusing now on the hourly power losses along the network branches, Fig. 3.10.5 graphs the 

profiles of active power losses in the grid lines. Their magnitudes result lower than Scenario 

5 because less power and consequently lower currents flow in the distribution network.  

 
Fig. 3.10.5 S6 - Power losses 

At this point, to understand the cost-effectiveness of V2G technology we have to investigate 

the economic results, evaluated by the modelling tool, reported in the following Tab. 3.10.5. 

Tab. 3.10.5 S6 - Economic results 

  

Archetype1 Archetype2 Archetype3 Archetype4 Archetype5 Archetype6 Archetype7 Archetype8 Archetype9 Archetype10

[£] [£] [£] [£] [£] [£] [£] [£] [£] [£]

0,00 18,06 18,01 14,90 18,16 -10,94 22,89 24,89 16,12 0,36

                    

Archetype11 Archetype12 Archetype13 Archetype14 Archetype15 Archetype16 Archetype17 Archetype18 Archetype19 Archetype20

[£] [£] [£] [£] [£] [£] [£] [£] [£] [£]

23,32 45,11 17,49 22,93 43,17 135,13 27,71 126,04 94,99 42,89

                    

                    

ELoss23 ELoss34 ELoss45 ELoss56 ELoss27 ELoss78 ELoss89 ELoss910 ELoss211

[£] [£] [£] [£] [£] [£] [£] [£] [£]

0,46 0,36 0,16 0,12 0,43 0,07 0,02 0,02 1,96

                    

ELoss1112 ELoss1213 ELoss1314 ELoss1415 ELoss1516 ELoss217 ELoss1718 ELoss1719 ELoss1920   

[£] [£] [£] [£] [£] [£] [£] [£] [£]   

1,00 1,11 0,57 0,30 0,81 7,52 2,30 0,94 0,05

                

                

Total

[£]

719,41
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The overall operating cost results equal to £ 719.41, while in Scenario 3, without EVs, it was 

£ 696.27. Therefore, we can evaluate the overall cost incurred for charging and discharging all 

54 EVs, spread on the electricity grid, subtracting the aforementioned values. The result is £ 

23.14, which means that each EV incurs a cost of about £ 0.43. In Scenario 5, which considered 

smart charging strategies, the cost was equal to £ 0.55 per each vehicle. This means that off-

home EV charging is more cost-effective than home charging. The resulting value is an 

average value, therefore the EVs that have been recharged off-home during the daytime have 

a much lower cost than the others, considering that they are only 35% of the overall number 

and they reduce the overall cost by more than 20%. 

In Scenario 6, the cost of energy consumed is £ 701.20, which means more than 97% of the 

overall cost, and the cost related to energy losses is £ 18.20. The latter is about 3% less than 

in Scenario 5. In fact, as we stated above, the overall energy losses are lower than they were 

in the previous case. 

In conclusion, V2G technology leads to a reduction by 1% of the overall operating cost 

compared to smart charging strategies. 

 

 

3.11. Relevant results comparison  
 

In the last three scenarios, operating conditions of the reference electricity distribution network 

have been analysed in order to compare the effects of different strategies of electric vehicles 

management. The baseline scenario is the number 3, which does not consider EVs on the 

electricity grid.  

In summary, Scenario 4 has considered uncontrolled charging, Scenario 5 smart charging and 

finally Scenario 6 has considered V2G implementation. 

In the following, we will focus on three-phase apparent power profile at the downstream node 

of distribution transformer and on the network operating costs in order to highlight the pros 

and cons of each strategy.  

Fig. 3.11.1 shows the power profiles at node 2, downstream side of distribution transformer, 

in the case of Scenario 3 and Scenario 4. 

 
Fig. 3.11.1 There-phase Apparent Power comparison [Sc 3 vs Sc 4] 
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Fig. 3.11.2 shows the power profiles at node 2, downstream side of distribution transformer, 

in the case of Scenario 3 and Scenario 5. 

 
Fig. 3.11.2 There-phase Apparent Power comparison [Sc 3 vs Sc 5] 

 

Fig. 3.11.3 shows the power profiles at node 2, downstream side of distribution transformer, 

in the case of Scenario 3 and Scenario 6. 

 
Fig. 3.11.3 There-phase Apparent Power comparison [Sc 3 vs Sc 6] 

 

The daily peak values of load demand result equal to: 

 Scenario 3: 437.43 kVA, 87% of transformer power rating; 

 Scenario 4: 536.21 kVA, 107% of transformer power rating; 

 Scenario 5: 437.43 kVA, 87% of transformer power rating; 

 Scenario 6: 425.78 kVA, 85% of transformer power rating. 
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Following Fig. 3.11.4 summarizes the hourly three-phase apparent power profiles of 

considered scenarios. 

 
Fig. 3.11.4 There-phase Apparent Power comparison 

 

As explained in the previous chapters, uncontrolled charging is the worst adoptable solution 

to charge electric vehicles, because most of EV charging occurs when the users get home from 

work, therefore, in the same hours of the peak of power consumed by household loads. If this 

strategy will be pursued to charge electric vehicles, huge investments must be planned by 

distribution system operators to make significant improvements on the electricity grid in order 

to comply with lines current ratings, transformer power rating and voltage deviation limits.  

Smart charging strategy implies an increase of power consumed during the morning, when 

electricity is cheap, while keeping the same power profile at the other hours of the day. 

V2G implementation scenario has an hourly profile very close to that of smart charging during 

the morning, while it reduces power demand from the distribution transformer during the 

evening. The EVs, that recharge their battery off-home, supply power to the electricity network 

in the peak hours, reducing the overall daily power peak. The magnitude of peak shaving 

depends, of course, on the economic parameters, but also on off-home charging share and 

reached battery capacity after off-home charging, because they have key roles on the 

determination of V2G profitability. 

Both smart charging and V2G are valley-filling charging strategies because they aim to shift 

EV charging schedules in order to flat the power load profiles, filling load valley. Therefore, 

controlled charging increase social welfare, because it involves savings for EV owners and 

network advantages for system operators. 

 

Tab. 3.11.1 summarizes the economic results assessed by the modelling tool in the different 

scenarios. Scenario 3, the baseline one, does not consider EVs on the electricity grid; therefore, 

the related cost of energy consumed is imputable to the operating conditions of only power 

loads and PV generation, which are implemented on the electricity network. 
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The last column of table below, reports the average charging cost for each electric vehicle in 

the case of dumb and smart charging, while it is related to the overall EV battery management, 

which includes both charging and discharging, in the case of V2G implementation. Let us 

remember that the number of EVs applied on the electricity grid is 54. 

Tab. 3.11.1 Economic results comparison 

 
Cost of energy 

consumed [£] 

Cost of energy 

losses [£] 

Total operating 

cost [£] 

Average EV 

operating cost [£] 

Scenario 3 677.77 18.50 696.27 / 

Scenario 4 747.37 20.00 767.37 1.30 

Scenario 5 707.41 18.72 726.13 0.55 

Scenario 6 701.20 18.21 719.41 0.43 

 

Scenario 4, that implements dumb charging, involves the highest cost in terms of both energy 

consumed and energy losses. Indeed, according to what explained before, uncontrolled 

charging does not make benefits either for EV owners or system operators.  

From the results reported in Tab. 3.11.1 above, the most challenging strategy, that is V2G 

technology, is also the most profitable way to manage EV batteries. It saves about 6% of the 

overall operating costs compared to uncontrolled charging and it has an average operating cost 

related to EV charging of about 33% of that of dumb charging, implemented in Scenario 4. 

It has been stated that V2G is the most challenging strategy since some difficult tasks must be 

overcome to achieve its implementation on the electricity networks; for example, global EV 

charging management system, bidirectional battery chargers and, of course, regulations for 

EVs implementation on the power system. 
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CONCLUSION 
 

The purpose of this thesis was to create a Smart Grid Modelling Tool able to model distribution 

networks and analyse their operating conditions in order to evaluate the impact of different 

charging strategies of electric vehicles. It has been created a user-friendly GUI that allows the 

user to manage all the input parameters and output results as planned in the project definition. 

This thesis has analysed six different scenarios applied on an existing low-voltage distribution 

network, simulating current and expected operating conditions in the year 2050; in fact, in the 

next decades, EV and RES penetration is expected to achieve very high targets, providing 

many opportunities, but also leading to many challenges for system operators.  

The results demonstrate that many local grid issues, such as grid constraints violations, 

distribution transformer overloading and congestion, can be mitigated performing controlled 

EV charging, moreover, it is possible to increase the local consumption of renewable 

generation by charging the vehicles during the daytime. 

This project also takes into account V2G implementation, allowing both charging and 

discharging of EV batteries. This strategy allows the EVs to play the role of dynamic energy 

storage devices in order to provide several services to the power system, such as peak load 

shaving, load levelling and as solution for renewable energy shifting in the hours of peak load 

demand. The thesis describes the cost function optimization processes performed by the tool 

to define the charging/discharging profiles of EV batteries in both smart charging and V2G 

modes. 

The modelling tool performs a techno-economic assessment of the modelled system applying 

the considered EV charging strategy and it also takes into account the cost of battery 

degradation; therefore, has been possible to evaluate the technical and economic feasibility of 

smart charging and V2G technology. 

The results show that the most challenging strategy, that is V2G, is also the most profitable 

way to manage EV batteries from both EV owners’ and system operators’ point of view. It 

saves, in the assessed case study, about 6% of the overall operating costs of the electricity 

network, compared to the uncontrolled charging scenario, but considering only the costs 

related to EV management, V2G allows saving about 33% of those of uncontrolled charging. 

As aforementioned, the case study considers a real distribution network, but all the information 

has been provided in confidential way, therefore anything that could allow an identification 

has been omitted in the thesis. 

The modelling tool, as described in chapter 2 is based on some preliminary assumptions to 

define the characteristics of grid loads, for example, a “smart house” consists of one EV 

charger, one PV system and the power consumption. To establish the expected framework in 

the year 2050, the forecasted evolution of PV generation and number of houses in the UK have 

been considered as reference. Therefore, since the projections to the year 2050 in the UK state 

that the penetration of household PV will be around 15% and the number of houses will 

increase by around 17%, the number of EVs, taken into account in the electricity grid, is 

implicitly determined by those percentages. In summary, the EV implementation is directly 

related to the share of smart houses. A possible improvement in the tool could be to break this 

correlation and consider another input parameter to define the number of EV chargers installed 

in each grid load. 

Moreover, another assumption considered by the tool is about the SOC of the EV batteries. 

Indeed, it is maintained between 30% and 80%, in order to preserve battery lifetime, as 

explained in the introduction chapter. 
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This tool evaluates the hourly availability of each electric vehicle at its charger, taking into 

account its daily trip schedule. In fact, an input parameter defines the share of household EVs 

that charge their battery at home, while the remaining EVs charge their battery in off-home 

charging infrastructures during the day, which means along the streets, at charging station or 

at work, before getting home from work. These off-home charges do not affect the electricity 

grid from an energy point of view, because it is impossible to decide in which nodes they are 

performed, due to the unpredictability of the trips. Therefore, it has been considered that this 

share of EVs charges the battery in nodes of other distribution networks; nevertheless, 

charging costs are taken into account in the economic assessment. 

A possible improvement could be to consider the hourly space distribution of each vehicle in 

order to take accounts of more interactions with the electricity grid, but obviously, this requires 

much more information. 

In the cases of smart charging and V2G strategy, the tool applies to each charger the optimized 

charging profile, without taking into account that the standard charging infrastructures 

currently in use cannot provide continuously controllable charging power, especially because 

of battery requirements. Therefore, another possible improvement could be to consider proper 

charging patterns in order to meet the batteries needs in terms of smooth DC voltage and 

current. 

The modelling tool allows many other comparisons, which are not considered in this thesis, 

by changing the values of input parameters. For instance, an interesting assessment could be 

to investigate the variation of profitability caused by different shares of home charging or 

different levels of initial and final battery capacity and that reached after off-home charging. 

It is important to stress that this tool is composed by several blocks, which are Matlab scripts; 

therefore, future work could easily allow the implementation of new features, such as 

advanced ancillary services, and system components, such as different typologies of 

generation. 

In conclusion, Smart Grid Modelling Tool meets all initially planned goals of this thesis 

project, providing several opportunities to model and analyse different electricity grids in order 

to investigate the technical and economic feasibility of their operating conditions, considering 

three different EV charging strategies: uncontrolled, smart and V2G technology. 
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APPENDIX 
 

Tab. A.1 Workspace variables 

 Costs_arch: total electricity operational costs in each network node 

 Costs_PLoss: power loses costs in each network line; 

 Costs_sh: electricity operational costs of smart households in each network node; 

 Costs_sind: electricity operational costs of smart industries in each network node; 

 Costs_sp: electricity operational costs of smart car parks in each network node; 

 Costs_ss: electricity operational costs of smart shops in each network node; 

 Costs_ssc: electricity operational costs of smart schools in each network node; 

 Costs_th: electricity operational costs of traditional households in each network node; 

 Costs_tind: electricity operational costs of traditional industries in each network node; 

 Costs_tot: total electricity network operational costs; 

 Costs_ts: electricity operational costs of traditional shops in each network node; 

 Costs_tsc: electricity operational costs of traditional schools in each network node; 

 dpuE: hourly line to ground voltage deviation (pu) matrix per phase of each network node; 

 dV: hourly voltage drop matrix in each network line; 

 Ebuses: hourly line to ground voltage matrix per phase of each network node; 

 EVi_ind: total Industries’ EVs (single-phase and three-phase) in each network node; 

 EVi_p: total car parks’ EVs (single-phase and three-phase) in each network node; 

 EVph_h: matrix of total single-phase household EVs per phase of each network node; 

 EVph_ind: matrix of single-phase industries’ EVs per phase of each network node; 

 EVph_p: matrix of single-phase car parks’ EVs per phase of each network node; 

 EVph_s: matrix of single-phase shops’ EVs per phase of each network node; 

 EVph_sc: matrix of single-phase schools’ EVs per phase of each network node; 

 EVtri_ind: number of three-phase industries’ EVs in each network node; 

 EVtri_p: number of three-phase car parks’ EVs in each network node; 

 Ibranches: hourly line current matrix per phase of each network branch; 

 Ipu: hourly line current magnitude (pu) matrix per phase of each network branch; 

 magE: hourly line to ground voltage magnitude matrix per phase of each network node; 

 magI: hourly line current magnitude matrix per phase of each network branch; 

 magV: hourly line to line voltage magnitude matrix per phase of each network node; 

 maxI: vector of maximum current magnitudes per each network line; 

 nEVph_h: matrix of single-phase household EVs, which charge at home, per phase of 

each network node; 

 nEVph_nh: matrix of single-phase household EVs, which charge off-home, per phase of 

each network node; 

 nPVph_h: matrix of single-phase household PV per phase of each network node; 

 nPVph_p: matrix of single-phase car parks’ PV per phase of each network node; 

 nPVph_s: matrix of single-phase shops’ PV per phase of each network node; 

 nPVtri_h: number of three-phase household PV in each network node; 

 nPVtri_ind: matrix of three-phase industries’ PV in each network node. First row is 

related to the number of 25 kW PV, second row of 60 kW PV. 

 nPVtri_p: number of three-phase car parks’ PV in each network node; 

 nPVtri_s: number of three-phase shops’ PV in each network node; 
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 nPVtri_sc: matrix of three-phase schools’ PV in each network node. First row is related 

to the number of 10 kW PV, second row of 12 kW PV. 

 PEV23_ind: hourly industries’ 23 kW EV’s charger power matrix per phase of each node; 

 PEV23_p: hourly car parks’ 23 kW EV’s charger power matrix per phase of each node; 

 PEV3_h: hourly household 3 kW EV’s charger power matrix per phase of each node; 

 PEV3_sc: hourly schools’ 3 kW EV’s charger power matrix per phase of each node; 

 PEV50_p: hourly car parks’ 50 kW EV’s charger power matrix per phase of each node 

 PEV7_h: hourly household 7 kW EV’s charger power matrix per phase of each node; 

 PEV7_ind: hourly industries’ 7 kW EV’s charger power matrix per phase of each node; 

 PEV7_p: hourly car parks’ 7 kW EV’s charger power matrix per phase of each node; 

 PEV7_s: hourly shops’ 7 kW EV’s charger power matrix per phase of each node; 

 PEV7_sc: hourly schools’ 7 kW EV’s charger power matrix per phase of each node; 

 PEV_h: overall hourly household EV’s charger power matrix per phase of each node; 

 PEV_ind: overall hourly industries’’ EV’s charger power matrix per phase of each node; 

 PEV_p: overall hourly car parks’ EV’s charger power matrix per phase of each node; 

 PEV_s: overall hourly shops’ EV’s charger power matrix per phase of each node; 

 PEV_sc: overall hourly schools’ EV’s charger power matrix per phase of each node; 

 PEVtri23_p: hourly car parks’ 23 kW EV’s charger power matrix of each node; 

 PEVtri50_p: hourly car parks’ 50 kW EV’s charger power matrix of each node; 

 PEVtri_ind: hourly industries’ EV’s charger power matrix of each node; 

 PEVtri_p: overall hourly car parks’ EV’s charger power matrix of each node; 

 phiE: hourly line to ground voltage phase matrix per phase of each network node;  

 phiI: hourly line current phase matrix per phase of each network branch; 

 phiV: hourly line to line voltage phase matrix per phase of each network node;  

 puE: hourly line to ground voltage magnitude (pu) matrix per phase of each network node; 

 P: hourly three-phase active power matrix of each network node; 

 Ploss: hourly active power losses matrix per phase of each network branch; 

 Psph: hourly phase’s active power matrix per phase of each network node; 

 Pwbuses: hourly phase’s apparent power matrix per phase of each network node; 

 PwPVph46_h: single-phase household PV’s power matrix per phase of each node; 

 PwPVph46_s: single-phase shops’ PV’s power matrix per phase of each node; 

 PwPVph8_p: single-phase car parks’ PV’s power matrix per phase of each node; 

 PwPVtri12_h: three-phase household PV’s power matrix of each node; 

 PwPVtri12_s: three-phase shops’ PV’s power matrix of each node; 

 PwPVtri16_p: three-phase car parks’ PV’s power matrix of each node; 

 PwPVtri_ind: three-phase industries’ PV’s power matrix of each node; 

 PwPVtri_sc: three-phase schools’ PV’s power matrix of each node; 

 Q: hourly three-phase reactive power matrix of each network node; 

 Qsph: hourly phase’s reactive power matrix per phase of each network node; 

 S: hourly three-phase apparent power matrix of each network node; 

 smarthouseph: matrix of smart houses per phase of each network node; 

 tradhouseph: matrix of traditional houses per phase of each network node; 

 Vbuses: hourly line to line voltage matrix per phase of each network node; 

 XEV23_ind: hourly EVs availability matrix at 23 kW industries’ EV chargers per phase 

of each node; 
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 XEV23_p: hourly EVs availability matrix at 23 kW car parks’ EV chargers per phase of 

each node; 

 XEV3_h: hourly EVs availability matrix at 3 kW household EV chargers per phase of 

each node; 

 XEV3_sc: hourly EVs availability matrix at 3 kW schools’ EV chargers per phase of each 

node; 

 XEV50_p: hourly EVs availability matrix at 50 kW car parks’ EV chargers per phase of 

each node; 

 XEV7_h: hourly EVs availability matrix at 7 kW household EV chargers per phase of 

each node; 

 XEV7_ind: hourly EVs availability matrix at 7 kW industries’ EV chargers per phase of 

each node; 

 XEV7_p: hourly EVs availability matrix at 7 kW car parks’ EV chargers per phase of 

each node; 

 XEV7_s: hourly EVs availability matrix at 7 kW shops’ EV chargers per phase of each 

node; 

 XEV7_sc: hourly EVs availability matrix at 7 kW schools’ EV chargers per phase of each 

node; 

 XEV_h: overall hourly EVs availability matrix at household EV chargers per phase of 

each node; 

 XEV_ind: overall hourly EVs availability matrix at industries’ EV chargers per phase of 

each node; 

 XEV_p: overall hourly EVs availability matrix at car parks’ EV chargers per phase of 

each node; 

 XEV_s: overall hourly EVs availability matrix at shops’ EV chargers per phase of each 

node; 

 XEV_sc: overall hourly EVs availability matrix at schools’ EV chargers per phase of each 

node. 
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Fig. A.1 Simulink representation of the Electricity grid 


