
Università degli studi di Padova

Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in

Ingegneria delle Telecomunicazioni

TESI DI LAUREA

A POPULARITY-BASED APPROACH

FOR THE DESIGN OF MOBILE

CONTENT DELIVERY NETWORKS

RELATORE: Prof. Michele Zorzi

CORRELATORI: Daniele Munaretto, Gerald Kunzmann

LAUREANDO: Daniele Romani

Padova, 14 ottobre 2013

ii

Misura ciò che è misurabile,

e rendi misurabile ciò che non lo è.

(Galileo Galilei)

iv

Sommario

Le Reti per la consegna di contenuti (CDN) sono progettate per supportare effi-

cacemente la fornitura di servizi multimediali continui e discreti ai consumatori.

La distribuzione dei contenuti su larga scala ad un costo ragionevole e senza

sovraccaricare la core network mobile è una scelta progettuale fondamentale per

gli operatori di rete. Al giorno d’oggi, un punto chiave è lo sviluppo di Reti mobili

per la consegna di contenuti (MCDN) efficienti dovuto principalmente all’aumento

giorno per giorno del volume di traffico video presente nella rete. In questa tesi

viene trattato un nuovo “approccio basato sulla popolarità” per la progettazione

e la realizzazione di MCDN. Per dimostrare queste funzionalità è stato imple-

mentato un vero e proprio testbed, con l’obiettivo di adattare flessibilmente il

caching video nella rete cellulare basandosi sulla dinamica degli utenti. Vengono

quindi discusse le possibili nuove sfide e fatte alcune considerazioni pratiche per

la distribuzione su larga scala in reti cellulari di nuova generazione.

v

vi

Abstract

Content Delivery Networks (CDNs) are designed to effectively support the deliv-

ery of continuous and discrete media to consumers. Enabling large scale content

distribution at a reasonable cost and without overloading the mobile core network

is a crucial design choice for Network Operators (NOs). Nowadays, a key task for

NOs is the development of efficient Mobile Content Delivery Networks (MCDNs)

due to the day-by-day increase of the video traffic volume in the network. In this

thesis, a novel “popularity-based approach” for the design and implementation of

MCDN is treated. To prove these functionalities, a real testbed is implemented,

with the target of flexibly adapting the video caching in the cellular network to

the users’ dynamics. New challenges are discussed and practical considerations

are drawn for wide-scale deployment in next generation cellular networks.

vii

viii

Contents

Sommario v

Abstract vii

1 Introduction 1

2 Delivery architecture 5

2.1 Functional requirements . 5

2.2 Technical approach . 7

2.2.1 Functional architecture . 7

2.2.2 Transport Optimization subsystem: details 9

TO modules . 9

CDN modules . 10

2.3 MEDIEVAL network topology . 12

3 MCDN architecture: a popularity-based approach 13

3.1 Reference Technologies and Challenges 13

3.1.1 Mobile Content Distribution Networks 13

3.1.2 Quality of Service (QoS) and Quality of Experience (QoE) 14

3.2 CDN component: architecture . 15

3.2.1 Decision Module (DM) . 17

3.2.2 CDN Node Control (CDNNC) 17

3.2.3 Application monitoring (AM) 18

3.3 MEDIEVAL: physical placement of nodes 18

3.4 MCDN System . 19

3.4.1 Entities . 19

3.4.2 Features . 22

ix

4 Implementation of the MCDN 24

4.1 Technological requirements . 24

4.2 System features: implementation 26

4.2.1 Node . 26

Popularity Management . 28

Request Routing Management . 29

4.2.2 Core Router . 30

Popularity Management . 32

Request Routing Management . 36

4.2.3 Origin . 38

4.2.4 Portal . 39

5 Simulation work and real testbed implementation 44

5.1 Mobile CDN: Simulation work . 44

5.1.1 Regional and global popularity 44

5.1.2 Generation of regional and global popularity 46

5.1.3 Optimal cache dimensioning for MCDNs: cost model . . . 51

5.2 Real testbed implementation . 57

6 Results 60

6.1 Popularity-based caching and distributed request routing 60

6.1.1 Testbed: simulator of requests 62

6.1.2 Real scenarios: analysis . 66

6.1.3 Simulations results . 68

6.2 Features of the real system . 76

6.2.1 Segmented videos and request routing 76

6.2.2 Robustness of CDN component 77

6.2.3 Session continuity during handovers 78

7 Conclusions 81

Bibliography 85

x

List of Abbreviations

ALTO Application-Layer Traffic Optimisation

AM Application Manager (component / module)

AN Access Network

CDN Content Delivery Network (component / module)

CDNNC CDN Node Control (component / module)

CN Core Network

CNM Core Network Monitoring (component / module)

DASH Dynamic Adaptive Streaming over HTTP

DM Decision Manager (component / module)

DMM Distributed Mobility Management

FM Flow Manager (component / module)

HA Home Agent

HoA Home Address

HTTP Hypertext Transfer Protocol

IEEE The Institute of Electrical and Electronics Engineers

IETF The Internet Engineering Task Force

IP Internet Protocol

LMA Local Mobility Anchor

LTE Long Term Evolution

MAC Medium Access Control

MAG Mobile Access Gateway

MAR Mobile Access Router

xi

MCDN Mobile Content Delivery Network

MEDIEVAL MultimEDia transport for mobIlE Video AppLications

MPD Media Presentation Description

MM Mobility Management (component / module)

MN Mobile Node

MPEG Moving Picture Experts Group

NAT Network Address Translation

NO Network Operator

PoA Point of Attachment

P-GW Packet Data Network Gateway

QoE Quality of Experience

QoS Quality of Service

S-GW Serving Gateway

TE Traffic Engineering (component / module)

TO Transport Optimisation (component / module)

UMTS Universal Mobile Telecommunications System

URL Uniform Resource Locator

VoD Video on Demand

VoIP Voice over IP

VSC Video Service Control (component / module)

WA Wireless Access (component / module)

WLAN Wireless Lan

XLO Cross-Layer Optimisation (module)

xii

List of Figures

2.1 MEDIEVAL system: Mobile Video Delivery network 6

2.2 MEDIEVAL Global Architecture 8

2.3 Transport Optimization subsystem 9

2.4 CDN component: modules and interfaces 11

2.5 MEDIEVAL system: global structure 12

3.1 CDN component . 16

3.2 Physical placement of the MEDIEVAL entities 18

3.3 MCDN software structure. 20

4.1 MCDN software structure. 26

4.2 Node: Apache and Squid servers, network and popularity databases. 27

4.3 Node: details of local popularity database 28

4.4 Core Router: popularity and network databases. 30

4.5 Core Router: details of main popularity database 31

4.6 Core Router: details of network information database 32

4.7 Popularity management. 35

4.8 Request Routing management. 37

4.9 Origin: Apache server and network database. 38

4.10 Portal: homepage site. 40

4.11 Portal: player page, with video description and VLC-player em-

bedded. 41

4.12 Portal: popularity simulator page, with the available settings. . . 42

4.13 Portal: network configuration page, with the available settings. . . 43

5.1 Rank-Frequency-Plot of the Top 100 music charts in 15 European

countries. 45

5.2 Number of songs being popular in X out of 15 regions. 45

xiii

5.3 Number of globally popular items at different thresholds to con-

sider content as globally popular. 46

5.4 Local popularity generation: theoretical model. 47

5.5 Rank correlation of the different regions. 50

5.6 MCDN network topology: cost model. 52

5.7 Real testbed architecture. 58

6.1 Testbed: GUI of the request generator. 63

6.2 GUI showing the content in Node. 64

6.3 Simplified cost model used to optimize the total cost. 68

6.4 Scenario 1: Sum of traffic volume between entities. 71

6.5 Scenario 1: Cache size on Number of request/region. 71

6.6 Scenario 2: Total cost in the Core Network. 73

6.7 Scenario 2: Cost minimization of CDN system: percentage of the

costs on system without CDN functionalities. 74

xiv

List of Tables

3.1 MOS values and their QoE levels 15

6.1 Simulation: Scenario 1 - Results 70

6.2 Simulation: Scenario 2 - results with N. of request/region = 1000 75

6.3 Simulation: Scenario 2 - results with N. of request/region = 5000 75

6.4 Scenario 2: percentage of total cost of CDN system on total cost

of NO-CDN system . 76

xv

Chapter 1

Introduction

Internet traffic has increased steeply in recent years, mainly due to the fruition

of video and others streaming contents, social platforms (with embedded video

players) and peer-to-peer networks. In addition, the quick penetration of hand-

held devices equipped with multiple ways of access to Internet, mainly 3G, WiFi

and a LTE, suggests that wireless access represents an ever-growing portion of

current and future demand with the users’ expectation of an “anywhere, any-

time” connectivity, thus encouraging operators to investigate and deploy different

combinations of wireless access technologies with the purpose of reducing their

operational costs.The increasing demand of mobile data services from users is no

longer a threat to operators, but a reality that now needs be analysed and dealt

with. Video traffic represents almost 90% of the consumer traffic and has become

a major challenge for the future Internet.

However, the current Mobile Internet is not designed for video and its archi-

tecture is very inefficient when handling video traffic. The idea is that the future

Internet architecture should be tailored to efficiently support the requirements of

this traffic. Specific mechanisms for video should be introduced at all layers of

the protocol stack for enhancing the efficiency of video transport and delivery,

that can increased, besides Quality of Service (QoS), a new concept of quality

called Quality of Experience (QoE) to the final user.

Mobile operators have to face these problems taking into account the fact that

the proposed solutions have to be also compatible within the existing mobile

network. To address this problem, a set of mechanisms that individually pro-

vide enhancements in the efficiency of video transport while cumulatively ex-

1

ploiting their cross-layer functionalities to boost performance. These mechanisms

include enhanced wireless support (with general abstractions to address heteroge-

neous wireless technologies), improved mobility (to allow opportunistic handovers

across technologies), improved video distribution (with embedded caches in the

network), and flexible video service provisioning and control (exploiting the in-

teraction with video applications). Morover, these enhancements can potentially

be incorporated separately to future cellular networks.

In particular our focus is on the transport optimization aspects regarding

principally the video distribution and secondly the mobility management. We

study critical aspects to be tackled and we propose a solution which involves the

negotiation of resource allocation at the wireless access and implements optimal

handover decisions based on the mobility module. MCDN is designed to enhance

video transport via caching strategies specifically designed for improving the video

performance and takes into account the environment of the entire system. MCDN

integrates mobile delivery services that optimize the transport of several contents

including live video streaming, video on demand and delivery of content assets.

The purpose of our work is to design and to implement a MCDN tailored to the

challenging world of the mobile video traffic over next generation cellular networks

reminding that the technology developed takes into account the requirements of

NOs for commercial deployment improves the QoE of the final users as well

as reduces the costs for mobile operators. Moreover, the studied technology is

implemented in a testbed that serves as a proof of concept as well as a basis for

future commercial deployments.

The structure of the thesis is as follows:

• Chapter 2 provides a short summary on the reference model of our mobile

video delivery system.

• Chapter 3 describes the study and the design of a mobile CDN (MCDN)

concept for efficient media delivery based on intelligent caching with the

integration of the standard video technology MPEG-DASH.

• Chapter 4 presents how the system is implemented.

• Chapter 5 shows some studies on popularity aspects and introduces a con-

tent popularity model to evaluate the CDN component, which is then im-

2

plemented in a simulator. Finally, we described a practical scenario imple-

mented in a real testbed.

• Chapter 6 gives some results about the performance of our simulations.

• Chapter 7 concludes the thesis.

3

4

Chapter 2

Delivery architecture

The reference model of our mobile video delivery system is taken from the Eu-

ropean project MEDIEVAL [1]. MEDIEVAL (MultiMEDia transport for mo-

bIlE Video AppLications) is a small or medium-scale focused research project

(STREP) of the 7th Framework Programme [2] of the European Commission [3],

addressing the core of the strategic objective “The Network of the Future”. ME-

DIEVAL aims at evolving the Internet architecture for efficient video transport,

following a cross-layer design. The Figure 2.1 shows MEDIEVAL’s vision of the

future Internet architecture that should be tailored to efficiently support the re-

quirements of video traffic.

In particular, the technology studied and developed by this work will be designed

taking into account the requirements of network operators for commercial deploy-

ment, and will aim at improving the Quality of Experience by users as well as

reducing the costs for operators by exploiting Content Delivery Networks (CDNs)

techniques adapted for the mobile environment and managed by a popularity-

based approach.

2.1 Functional requirements

The MEDIEVAL services refer to a list of challenging user services which are

expected to dominate the traffic over the wireless networks in the near future. In

particular, as you can see in Figure 2.1, the main typologies of video traffic will be

the following: Personal Broadcast, MobileTV, Mobile Video on Demand (VoD)

5

Technical Approach
The key components of the MEDIEVAL
architecture are illustrated in the figure on the
right. The proposed architecture comprises the
following five key functionalities:
• Interaction with the underlying network

mechanisms to allow video services
optimally customise the network behaviour.

• Enhanced wireless access to optimise video
performance by exploiting the features of
each available wireless technology.

• Novel dynamic mobility architecture for next
generation mobile networks adapted to video
service requirements.

• Optimisation of the video transport by
means of Quality of Experience driven
network mechanisms, including caching and
network support for P2P video streaming.

• Support for broadcast and multicast video
services by introducing multicast mechanisms
at different layers of the protocol stack.

LTE

Internet

LTEWLAN

Local
Gateway

Local
Gateway

Mobile Network Provider

Video
Content &
Services

Other Mobile
Network Providers

Internet TV

Personal
Broadcasting

local
mobility

global
mobility

Multimode
terminal

Video on
Demand

Interactive
video

Video
Content &
Services

Content Provider

MEDIEVAL vision

Key Issues
The proposed architecture will address the
following five key issues:

• Specification of an interface between the

video services and the underlying network
mechanisms.

• Enhanced wireless access to optimise video
performance.

• Design of a novel dynamic mobility
architecture adapted to video service
requirements.

• Optimisation of the video delivery by means
of Quality of Experience (QoE) driven network
mechanisms.

• Support for broadcast and multicast video
services, including Internet TV and Personal
Broadcasting.

Expected Impact
Video services are a very promising business
case. One key goal of the project is to propose an
operator-driven architecture, resulting in an
integrated video solution that can be
implemented by an operator and offered to its
customers.

The research conducted in MEDIEVAL will also
aim at strengthening current mobile core and
video solutions, resulting in both IPR generation
(when applicable) as well as dissemination of
these results in prestigious scientific fora.

The project will follow and contribute to the main
standardisation bodies such as 3GPP, IETF and
IEEE, which have already detected the need for
video enhancements.

MEDIEVAL
October 2010

Figure 2.1: MEDIEVAL system: Mobile Video Delivery network

and Interactive Video. These services drive the main goal of the project, which

consists in designing a video-aware transport architecture suitable for commer-

cial deployment by mobile network operators. The proposed architecture aims

at including video specific enhancements at each layer of the protocol stack to

provide better video support at a lower exploration cost. This key point of the

project is achieved based on the following requirements:

• Improve the user experience by allowing the video services to optimally

customize the network behaviour;

• Optimize the video performance by enhancing the features of the available

wireless accesses in coordination with the video services;

• Design a novel dynamic architecture for next generation mobile networks

tailored to the proposed video services;

• Perform a transport optimization of the video by means of QoE driven

network mechanisms, including MCDN techniques, which represent the core

of this work;

• Introduce multicast mechanisms at different layers of the protocol stack to

provide both broadcast and multicast video services, including Mobile

6

TV and Personal Broadcast.

2.2 Technical approach

The purpose of this section is to introduce the architecture design of the ME-

DIEVAL Transport Optimization subsystem. In the design of this subsystem,

the idea is a novel dynamic transport architecture for next generation mobile

networks that is adapted to video service requirements. The plan is to follow

a QoE-oriented redesign of networking mechanisms as well as the integration of

Content Delivery Networks (CDN) techniques with a popularity-based approach.

2.2.1 Functional architecture

First of all, we introduce a brief description of four subsystems placed in the

global architecture of MEDIEVAL system1. This is depicted Figure 2.2:

• Video Services Control (VSC). The aim of this is to provide the link between

video applications and the core network mechanisms by using enablers that

permit to communicate with the rest of the architecture;

• Wireless Access (WA). The performance of the video delivery can be op-

timized in the wireless access by exploiting the specific features of the dif-

ferent underlying wireless technologies; in particular defines a solution to

provide multiple accesses at the last hop, mainly focusing on a novel joint

abstract level, i.e., IEEE 802.11. Due to the mobility of the users a mobil-

ity management component is designed to perform the handovers between

different points of access, without loosing the session continuity, i.e., using

Distributed Mobility Management (DMM) functions [5, 6];

• Mobility Management (MM). Global reachability and session continuity

of mobile terminals are provided by mobile IP-like solutions, which have

proved to be hard to deploy and operate. For video services, global reacha-

bility is not critical, since initial reachability can be managed at the appli-

cation level;

1More details about all subsystem can be found in [4].

7

• Transport Optimization (TO). The MEDIEVAL architecture design aims

at controlling resources of the operator network. To maximise the per-

ceived quality (QoE) experienced by video users in the wireless link the

transport optimization module performs a negotiation of the resource al-

locations within the wireless access and takes optimal handover decisions

by interacting with the mobility module. Moreover, CDN-based techniques

will be also designed to further enhance video transport, including caching

specifically designed for video performance.

Figure 2.2: MEDIEVAL Global Architecture

8

2.2.2 Transport Optimization subsystem: details

Figure 2.3 shows the architecture of the Transport Optimisation subsystem [7]

composed of two main components CDN (CDN) and Transport Optimisation

(TO). In this section we give a short wrap-up about the components and their

functionalities and how they interact with Mobility Management, Wireless Access

and Video Services. In particular, the CDN component functionality and the

interaction/cooperation between the sub-modules inside are the main effort of

the work in this thesis.

Figure 2.3: Transport Optimization subsystem

TO modules2

The modules of the TO component form a feedback loop between the Cross-

layer Optimisation module and the Traffic Engineering module. The TO aims at

optimising the user perceived quality, while trying to reduce the traffic in the core

network and avoid congestion in the access. It is limited by the physical capacity

of the wireless links.

• Cross-layer Optimisation (XLO): is triggered by events in the network and

cooperates with TE and other layers to address these issues. Triggers are

2More details are provided in [7]

9

mainly due to congestion in the PoA (Point of Attachment) or inside the

network (detected by CNM), or low quality observed by the end-to-end mon-

itoring in the Video Services subsystem. Having access to various metrics

and (cross-layer) information from other modules, the different algorithms

in the XLO try to address and solve the problems in different dimensions

(time, granularity, scope) and levels (access, network, service);

• Traffic Engineering (TE): is the entity which executes actions within the

network dictated by the XLO. These actions include layer filtering, video

frame dropping, video frame scheduling, transcoding, and application-layer

FEC adaptation;

• Core Network Monitoring module (CNM): is monitoring the status of the

mobile network, and providing this information to Video Services subsystem

when needed. Commercial solutions already exist that provide the required

set of monitoring functionalities.

CDN modules3

The modules of the CDN component (Figure 2.4, taken from [8]) provide and

manage a set of in-network CDN nodes caching the most popular content. The

enclosing CDN modules are responsible to maintain an optimal content placement

inside these caches and perform request routing to forward user requests to the

most appropriate CDN node. The request routing thereby not only considers

availability of content in the local cache, but also takes into account other criteria

and policies specified by the network operator. Interfaces with the Video Service

Portal and the Mobility subsystem support the setup of multimedia streams and

allow for optimised handover decisions.

• Decision Module (DM): acts as the main intelligence of the CDN compo-

nent. It makes all decisions concerning request routing, content and service

placement, resource management, and handover optimisation. It uses pop-

ularity information for make decision about content displacement;

• CDN Node Control (CDNNC): is the mediator between the DM and the

actual CDN Nodes. As such, it is responsible to monitor and manage

3More details are provided in [8]

10

Figure 2.4: CDN component: modules and interfaces

CDN Nodes and the content stored inside. Its operations include content

management (e.g. store/delete requests, replication, recovery) and node

monitoring and maintenance;

• Application Monitoring (AM): is a database-like component monitoring the

popularity of content items in the different regions of the network. It sup-

ports the content placement decisions of the DM.

11

2.3 MEDIEVAL network topology

Here we provide the global structure of the MEDIEVAL system. In Figure 2.5

[4], the typical MEDIEVAL network topology is given, where the main nodes are

the Mobile Nodes, the Mobility Access Router (MAR), the Point of Attachment

(PoA) (WLAN, UMTS and LTE-A are the wireless access technologies consid-

ered), the mobile MAR (mMAR), the Core Routers and the CDN nodes.

	

Administrative	

Domain	
 2

Administrative	

Domain	
 1

PoA

PoA

PoA

PoA LTE

MAR

LTEWLAN
PoA

MAR

PoA

PoAPoA

PoAPoA

Local	
 Mobility	

Domain	
 2

CDN

CDN

PoA

PoA

PoA

PoALTE

MAR

LTE WLAN
PoA

MAR

PoA

PoA PoA

PoA PoA

Local	
 Mobility	

Domain

MN

MN

Internet

Video Content & Services
Content Providers

CDN

CDN

mMAR

mMAR

Over	
 The	
 Top	
 (OTT)	

Video	
 Servers

Personal	

Broadcasters

Network Transport

Core Router

Core Router

CDN node

CDN node

CDN node

CDN node

ISP
Video Server

ALTO ServerMIIS ServerSession
Management

Provisioning
Platform

Video Service
Portal

MN

Core Router

Core Router

Core Router

MN

MN

PBS	
 (multicast	
 traffic)

Figure 2.5: MEDIEVAL system: global structure

12

Chapter 3

MCDN architecture: a

popularity-based approach

We study and design of a mobile CDN (MCDN) for efficient media delivery based

on intelligent caching, in contrast to existing solutions that rely on information

provided by the network for optimal source (cache) selection and on any kind of

network access from the final user. The decision about which content to store

in the CDN nodes (i.e., the replacement strategy) is based on the popularity of

videos considering the different regions of the network. For these reasons we can

talk about MCDN with a popularity based approach. Afterwards, a new standard

video technology MPEG-DASH (ISO/IEC 23009-1) is integrated in the system.

3.1 Reference Technologies and Challenges

3.1.1 Mobile Content Distribution Networks

Mobile Content Distribution Networks (MCDNs) are used to manage the distri-

bution of content in the network optimizing the delivery to end users on any type

of access network. As for traditional CDNs, MCDNs can reduce the traffic in the

network (thereby also reducing network congestion) by caching popular content

close to the users. Moreover, by locating the CDN servers close to the users, fast

and reliable applications and services can be offered to the users. CDN networks

are more than just pure network caches, but they also support content routing

and accounting. They can also improve access to content that is typically un-

cacheable by caching proxies, including secured content, streaming content and

13

dynamic content. In general, CDNs improve the scalability of service by reducing

the origin server load. In the MEDIEVAL project the CDN component provides

a MCDN solution where we aim at improving cooperative cache management

algorithms in order to maximize the traffic volume served from the local cache

and minimize the costs in the overall network. Thereby, costs can be represent

by monetary expenses (e.g. for deploying the caches), as well as other metrics

like management overhead or network congestion. Moreover, in contrast to Web-

oriented CDNs, setting up a CDN network inside a mobile operator network puts

different requirements on the decision where to place the CDN nodes, as mobile

specific network architectures and protocols must be considered.

3.1.2 Quality of Service (QoS) and Quality of Experience

(QoE)

QoS represents a combination of several objective attributes of services, typically

the bitrate, delay, error ratio, etc. There has been a common belief that by im-

proving QoS (Quality of Service) the operators could provide high level of quality

to users. In recent years this thinking has evolved to the concept of QoE (Quality

of Experience). Rather than the performance statistics of the service, QoE con-

cerns more the user experience impacted by the service performance. Especially

for video applications, experience of the application is more sensitive and has

more dimensions compared to traditional applications. For video applications,

which are the focus in the MEDIEVAL project, there could be a broad defini-

tion of QoE, covering all aspects of a video application, e.g., satisfaction of video

quality, user interfaces, devices, etc. In the MEDIEVAL project we will refer to

the perceptual quality of videos impacted by the video delivery chain as QoE.

As an original video is subject to several impairments during the delivery, the

video quality perceived by users is degraded. The quality of impaired videos can

be measured by performing subjective tests, in which subjects are asked to rate

the videos. However this kind of methods is not feasible in service and network

development work. Objective video quality assessment methods are therefore

extensively developed to be applied in multiple scenarios where the perceptual

quality of videos is demanded without performing time-consuming subjective test.

Based on the type of input data being used for perceptual quality assessment,

the objective video quality assessment methods can be classified into several cat-

14

MOS Perceptual quality

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

Table 3.1: MOS values and their QoE levels

egories. One of them, that is widely used, is a media-layer method analysing

video signals to assess QoE. The perceptual quality of videos is rated numerically

by MOS (Mean Opinion Score) levels, see Table 3.1. Comparing the MOS lev-

els rated by subjects and computed by the aforementioned objective assessment

methods, the performance of the objective assessment can be evaluated. Given an

objective QoE assessment method, network optimizers are able to perform their

decision making by taking into account the impact on resulted QoE. QoE-based

optimization allows operators to maintain user satisfaction when deciding on the

policy and managing their traffic.

3.2 CDN component: architecture

As we said in section 2.2.2, the Transport Optimization subsystem is composed

of two main components providing CDN mechanisms for video streaming as well

as cross-layer transport optimization. In particular, this thesis discuss the design

and implementation of CDN component to provide a mobile CDN solution for

video delivery including network based caching, network guided optimisation of

content delivery and advanced multicast solutions. This includes maintaining an

efficient and stable overlay topology for the control and management of the CDN

nodes, performing load balancing among the video sources and network elements,

selecting optimal content locations as well as relaying connections for mobility,

caching, or confidentially reasons. This requires a continuous monitoring of the

current conditions of the entire system, in particular the status and distribution

of the CDN nodes, as well as the popularity of content. Using the collected data it

will dynamically maintain an optimal configuration of a set of servers for content

15

distribution and select optimal sources for transmitting the video to the user.

Summarizing, the CDN component is used to:

• Provide a mobile CDN solution for video delivery including network based

caching, peer-to-peer mechanisms, and advanced multicast solutions.

• Dynamically maintain an optimal configuration of a set of servers for con-

tent distribution with respect to the current conditions of the entire system.

• Appropriately select content locations to save network resources, inter-

domain traffic and delivery delay.

• Coordinate with the Mobility subsystem to achieve handover optimization

and QoE optimization.

Figure 3.1: CDN component

Moreover, CDN component drives optimization at several stages of content

handling:

• Pro-active off-line placement of content in the CDN nodes;

• On-line network guided selection of content locations from which to down-

load;

• On-line download and placement of contents in CDN nodes;

• Multicast content delivery and Relay-assisted delivery.

16

As shown in Figure 3.1, the CDN component consists of three modules that we

show more in deep in the next sections.

3.2.1 Decision Module (DM)

The decision module (DM) is the central module of the CDN component. It is

part of the session initiation and handover preparations. It decides when and

where to store content in the CDN nodes, based on the popularity of the video

files. During the session initiation, the DM also informs the mobile client about

which source should be used for streaming/downloading the content, e.g. from

either the (external) content provider or a cached copy from one of the CDN

nodes. Based on the information from the application monitoring module (AM)

and the CDN Node Control (CDNNC), the decision module will decide on which

storage location should be selected as the optimal source for transmitting the

video to the user. Particularly the DM and the CDNNC need to be closely

coordinated. While the DM is responsible for content placement with respect to

resource requests (content popularity, etc.), the CDNNC is responsible for CDN

maintenance and may need to relocate content for this purpose.

3.2.2 CDN Node Control (CDNNC)

The CDN node control module (CDNNC) is responsible for management and con-

trol of the operations of the CDN nodes. It is responsible for maintaining CDN

related status information such as the current load, (free) capacities, and informa-

tion about stored content. This information is provided to the decision module.

The CDNNC will also receive commands from the decision module requesting it

to store, move, replicate, or delete content, based on the changing popularity of

content, the mobility of users or user groups, or congestion in certain parts of

the core or access network that may require shifting flows and content to less

congested parts of the network.

This requires a close interworking between the decision module and the control

module. The CDNNC module has (internal) interfaces to the actual CDN nodes,

and an interface to the decision module. If the CDN is merely used for caching,

but content can always be reliably retrieved from the original server, CDN re-

silience is of less concern.

17

3.2.3 Application monitoring (AM)

The application monitoring module (AM) receives input from the decision module

about the request rate of certain videos. This information is used to calculate

the popularity of the videos. This popularity data is necessary for the decision

block to optimize the content placement.

3.3 MEDIEVAL: physical placement of nodes

The following figure (3.2) and list shows the physical placement of the functional

entities in MEDIEVAL vision, see [9].

Figure 3.2: Physical placement of the MEDIEVAL entities

18

• Decision module:

- Dedicated server in core network (including the central ALTO1 information

server), or attached to the MAR (P-GW or PCRF) with a central ALTO

information server;

• CDN node control:

- Attached to the MAR (P-GW);

• Application Monitoring in CDN nodes:

- Attached to the MAR (P-GW, S-GW).

The MEDIEVAL model with the specific requirements are the starting point of

the design and implementation of MCDN that we discuss in section 3.4.

3.4 MCDN System

With reference to the previous section, now we describe the architecture imple-

mented in the software managing of MCDN; in particular the main entities with

their features and functionalities. The development of the software, following the

specifications required by the MEDIEVAL system is the real result of our efforts

for this thesis.

3.4.1 Entities

Since mobile core networks are usually hierarchical, i.e., with a central core part as

well as branches and leaves in different regions of a deployment area, for example

a country, the MCDN software has a hierarchical structure too. Thus, four main

entities builds the overall structure, as you can see in Figure 4.1:

1. Core Router, is the principal entity, where is located almost the entire

intelligence of the system; it provides the functionalities of the CDN com-

ponent defined before (see 2.4): DM, CDNNC and AM.

1ALTO (Application-Layer Traffic Optimisation) [10] module, provides a database contain-

ing network status characteristics. In our work, we don’t implement the functionalities of this

module.

19

Figure 3.3: MCDN software structure.

The functions that it performs are:

• CDN cache managing:

– checks for local information databases provided by the Nodes;

– analyzes the received databases;

– updates the main internal database;

– makes decision on delivering, deleting and maintaining contents

in local Nodes cache relying on a policy based on the popularity

of content, in particular the number of views of video2.

• Request Routing:

If the user’s request is not deployable directly to the Node (content no

in the local cache), this is forwarded to Core Router:

2In the next Chapter, we will introduce a new concept of popularity no longer based on the

views of a video but but rather on the views of the video chunks, using a new standard called

MPEG-DASH.

20

– it computes the best-path3 to serve the request choosing another

Node or directly the Origin/Source;

– then, it sends the address of the best location to the Node to serve

the client request.

The first functionalities of cache managing are performed off-line while the

second of request routing, every time the Nodes require a content not in

local cache.

2. Node, positioned at the edge of the network, close to PoA. This entity have

both caching and proxy-server functionalities installed:

• Caching content:

– this function is driven through commands sent by the DM (through

the CDNNC module) about the data to be stored, delete or mod-

ify;

– after the command, the Node take action to fixes up the internal

cache (i.e., requests to the Core Router and/or deletes in local

cache).

• Request Routing:

– if the user’s request can be performed directly from the local cache

the request does not travel through the Core Network;

– in the other case, if the request routing can not be done by Node

(i.e., the content is not stored locally), it must contact DM to

obtain the routing information to obtain the resource.

• Update local database:

– this is simply the number of requests, for a certain content, that

reach a Node in a given time interval (settable). This information

is stored in the local database, that is uploaded into the Core

Router. Every time a content is required the counter of number

of requests is increased.

We can observe that due to the nature of the MCDN it is clear that the

popularity is obtained at the edge of the network, and we can talking

about local popularity.

3The policies of best-routing will be discuss in the next Chapter.

21

3. Origin, that is the entity where the original contents are stored, and is

positioned inside the Core Network. This is the main cache of the system:

• Storing content

– gives access to the stored contents and provides to the Nodes the

possibility to get the contents to be stored in the local caches.

The location of the Origin impacts the performance of the overall

system, and, should be located at an equal distance from all the

local caches.

4. Portal, the entity through which the users can access the contents (via

Web Portal):

• Viewer of Available contents

– simple web page with video playing feature where the stored con-

tents in the Origin are shown and where the users can connect to

retrieve them;

• Simulator popularity request

– we can simulate the popularity behaviour of the videos and we

also set the network parameters (provided by ALTO) to test some

critical network configuration.

3.4.2 Features

The main general features of MCDN system are summarized here below, while

in Chapter 4 we analyse how to they are implemented and realized:

• Popularity-based caching

Since the system is mobile, a new concept of popularity is foreseen. The

caching is based on values of popularity, thus, a specific algorithm based on

these would be beneficial for the system;

• Request Routing

In our system this functionality is moved to the edge of the network. In

fact, most of CDN systems are based on a centralized request routing,

that means, a client, after a request, is redirected to the correct cache and

22

this action is taken by a centralized entity. Thus, the problem is that the

signalling inside the Core Network increases while the purpose of our work

is minimize it;

• Robustness of the CDN component

In case of failures (e.g., Node fails or loses packets), the subsystem must

be able to react without introducing extra delay and without letting users

know about it. This aspect is very important since the users can be involved

in some failures, it is unavoidable, and following the QoE guidelines, they

should continue to use the service without knowing absolutely what has

happened;

• Session continuity during mobility

Is the ability of maintaining the session continuity during mobility of the

clients. In fact, the CDN module works also when a user moves from a PoA

to another PoA. Thus, we pay attention to the sessions opened during the

streaming and manage them during the handovers among different Nodes.

MPEG-DASH standard

Very important is the integration of MPEG-DASH4 standard in the system [11,

12, 13]; in particular, the request routing is made for a segment video and not

for whole video; then, the popularity-based caching is founded on the segment

requests. Thus, robustness and session continuity have better performance with

small chunks of video instead complete video. Also the memory space is better

managed.

4Dynamic Adaptive Streaming over HTTP where any multimedia file is divided into one or

more segmtens, and these are delivered to the client via HTTP (see Chapter 4).

23

Chapter 4

Implementation of the MCDN

In this chapter we describe how the system is implemented. We analyze how the

entities of the system, described in the previous Chapter 3, work by defining the

implementation details and the proposed solutions.

4.1 Technological requirements

The entire system is IPv6-based since 1) it is the latest revision of the Internet

Protocol (IP) and 2) supports the mobility giving us the possibility to use the

DMM [5], implemented to manage the mobile handovers among different access

technologies (i.e. WiFi, 3G and LTE, etc).

The streaming services are based on the HTTP protocol and are independent

of media transport protocols such as Real Time Streaming Protocol (RTSP) or

Real Time Protocol (RTP). Thus, we can transport over HTTP any kind of file,

and the key aspect of this protocol is that it works well using proxies and mas-

querading features.

Moreover, the system is integrated with the standard MPEG-DASH (Dynamic

Adaptive Streaming over HTTP) [11, 12, 13] as video streaming protocol that is

an adaptive bitrate streaming technology where a multimedia file is partitioned

into one or more segments and delivered to a client using HTTP transport proto-

col. A media presentation description (MPD file) describes segment information

(timing, URL, media characteristics such as video resolution and bit rates). Seg-

24

ments can contain any media data, however the specification provides guidance

and formats with two types of containers: MPEG-4 file format and MPEG-2

Transport Stream. One or more representations (i.e., versions at different resolu-

tions or bit rates) of multimedia files are available, and the selection can be made

based on the current network conditions, device capabilities and user preferences.

DASH is agnostic of the underlying application layer protocol. [14, 15, 16]

Exploiting the HTTP protocol, a simple Proxy Web Server for the proxy

functionalities and simple Web Server for caching are used. In particular, in our

system we use Squid proxy server [18, 19] and Apache web server [17].

Squid in an open-source proxy server able also to do web caching. It has a

wide variety of uses, from speeding up a web server by caching repeated requests,

to caching web, DNS and other computer network lookups for a group of people

sharing network resources and to aiding security by filtering traffic.

The Apache HTTP server, commonly referred to as Apache, is a web server

software program notable for playing a key role in the initial growth of the World

Wide Web. Apache supports a variety of features implemented as compiled mod-

ules which extend the core functionality. These can range from server-side pro-

gramming language support to authentication schemes. Some common language

interfaces support Perl, Python and PHP.

The functionalities of the framework are mainly written in Perl [20], that is

an high-level, general-purpose, interpreted and dynamic programming language.

It is well supported by Apache web server and Squid proxy server.

Moreover, the testbed is prepared with machines Unix system (in particular Linux

Ubuntu v10.04).

To communicate popularity information, we use a simple customized database

system based on text files and not a Database Management System.1 Besides

this popularity database, there are also the network information database on the

Nodes and in the Core Router.

1Database Management System (DBMS) is a software system designed to allow the defini-

tion, creation, querying, update, and administration of databases

25

4.2 System features: implementation

In this section, we analyse the details of each entity deployed in our system. We

present, for everyone, the software structure with a short description of the specific

blocks and how they work. We remember that every block is implemented in Perl

language and inside each entity there is a configuration file (.pm), through which

we let the entities gather information such as IP addresses (to be communicated)

and paths of databases (to let scripts reach them). There are also some tuning

parameters, such as time interval between uploads for databases in the Nodes

and time interval between maintenance actions for the main database in the

Core Router. For the sake of clarity, we represent the Figure 4.1 proposed in

section 3.4.

Figure 4.1: MCDN software structure.

4.2.1 Node

As depicted in the Figure 4.2, the Node, that is located in the edge of network

close to the PoA, is responsible of the functionalities of content caching and Proxy

server. This entity works transparently to the end-user; it intercepts and manages

all the requests passing through it. Two distinct roles has the Node:

1. management of local cache supervised by Core Router; in particular it re-

ceives commands from CDNNC module;

26

2. proxy service that takes into account the mobility issues and leverages the

communication with the DMM system for the management of handovers

using a system of sophisticated networking rules.

Figure 4.2: Node: Apache and Squid servers, network and popularity databases.

The Node performs these function with four scripts:

• NodeConfig.pm

• whichServer.pl

• DBNodeUpload.pl

• serverMAR.pl.

Moreover, both Apache web server and Squid proxy server are used. There are

even local and network configuration databases stored in the Node that we de-

scribe later in this section.

By adopting the standard MPEG-DASH, see 4.1, where a multimedia file is

partitioned into one or more segments called chunks, the user downloads and

opens a Media Presentation Description (MPD) file through a video player (in

our case VLC [21]) that, in sequentially way, requires chunks and plays the video.

Each chunk is downloaded automatically via a simple single HTTP GET request.

27

Before the description of operations performed in the Node, we explain how is

structured the local database, Figure 4.3,to manage the popularity and routing:

Figure 4.3: Node: details of local popularity database

The local database is named [IP−MAR] [FOOTPRINT] FOOTPRINT MASK,

key for the uploading to the Core Router, where is recorded in unique way the IP

address of Node, IP-MAR, and the subnet served FOOTPRINT FOOTPRINT MASK;

- ID CONTENT is the unambiguous identification of the chunk in the Origin (i.e.,

http : //Origin cache path/name of video/name of chunck.m4s);

- NUMBER OF VIEWS is the field where we store the number of requests for

that chunk during a certain time interval, ∆T (e.g., [30, 60] s);

- AVAILABILITY, that is a flag (‘Y’ or ‘N’), is used to indicate if the content is

stored in the local cache or not; it is checked every ∆τ (e.g., fraction of ∆T);

- TLS (Time Last Seen), as even for the main database, takes into account also

the expiration of an entry, for the sake of maintenance.

Starting from the interception by Squid Proxy of the user request for a specific

video chunk, made in the begin of whichServer.pl that define the proxy rules, we

can split well the two main implementations of the capabilities of Node:

Popularity Management

1. open the local popularity database;

2. search of the entry associated to the requested chunk in the database:

• if is recorded, NUMBER OF VIEWS +1 and TLS update at actual

time;

• in the other case, record new entry with all information above.

3. close the local popularity database;

4. wait new client request through proxy interception;

28

These operations are all made by proxy server using the rules defined in which-

Server.pl;

In the same temporal time, there is a second script, DBNodeUpload.pl, that

working in a timer way, manages the updating of content available directly from

the local cache and the forwarding of local database to the Core Router; summa-

rizing:

1. open the local popularity database;

2. check files inside local cache and update the AVAILABILITY in local database

(timing: ∆τ);

3. reorder of entities of local database based on decreasing values of NUMBER

OF VIEWS and delete the entry too old (old time is settable);

4. close the local popularity database;

5. upload the local database to Core Router;

6. after timeout event restart the script (timing: ∆T);

In the Node we can even find serverMAR.pl, through which the Core Router,

using the CDNNC module, informs the Node about actions to be taken, i.e.

storing and deleting chunks inside the local cache; these operations are performed

with the opening of Sockets. Moreover, a configuration file, NodeConfig.pm, holds

information about IP addresses, directory paths and some timers values;

Request Routing Management

Starting from the intercept of user’s request, for the request routing are made

these operations:

1. open local database for reading;

2. check the requested content inside the local cache:

• if it is stored, go directly to Node cache;

• else forward the request to Core Router (DM module) and wait the

address of best location to take the content (Origin cache or another

Node cache);

29

3. close local database;

4. wait new client request through proxy interception;

4.2.2 Core Router

Core Router, the main entity of system (Figure 4.4), is responsible of function-

alities of managing local caches and request routing to find the best path. This

entity works in direct communication with local Nodes. Two main roles of Core

Router are:

Figure 4.4: Core Router: popularity and network databases.

1. management of local caches of Nodes; in particular DM module makes

decision and sends commands to CDNNC module;

2. calculate the best path (best-routing algorithm) to serve the content request

not deployable directly from local cache of Node.

The scripts that running in the Core Router are:

• DMConfig.pm

• DM.pl

• CDNNC pop.pl

• serverDM.pl.

30

Before describing the functions, here below, we explain the central popularity

database, Figure 4.5, called even main or DBmain database and network infor-

mation database, Figure 4.6, called even DBNode:

Figure 4.5: Core Router: details of main popularity database

- ID CONTENT, is the unambiguous name of the content in the Origin as said

in previous section of the Node description;

- FOOTPRINT and the IP of the Node from which we received the popularity

values of that content;

ID CONTENT, FOOTPRINT and IP we can refer universally to a specific ele-

ment, and it can be considered a key in the database;

- AVAILABILITY, that is a flag (‘Y’ or ‘N’), to indicate if the content is stored

in the local cache or not.

The last fields are about the popularity values for the specific element;

- LAST-UPDATES, is an array composed of ten values, i.e., the number of re-

quests in a ∆T (time interval between two consecutive uploads), helpful to cal-

culate an universal value of popularity;

- TLS, is the Time Last Seen, to take into account also the expiration of an entry,

for the sake of maintenance;

- AVERAGE-POPULARITY is an average value among the chunk popularity

values to order the entries in the database.

31

Now, we present the network information database, Figure 4.6:

Figure 4.6: Core Router: details of network information database

- IP-NODE FROM, IP address of reference Node;

- IP-NODE TO, IP address of compared Node;

- HOPS, distance in number of hops between reference and compare Nodes;

- LOAD, workload (in percent over maximum requests);

- MAX REQUESTS, number of maximum requests deployable;

- FP or ORIGIN, footprint (served subnet) or Origin entity;

- CACHE THRESHOLD, cache size in MB.

Popularity Management

This functionality is the most complex function of whole system and uses the

DM.pl and CDNNC.pl scripts; in particular the first regards the DM and AM

modules, responsible of optimize the content placement and decide where and

when store content in CDN Nodes, while the second, is responsible for commu-

nication, management and control of the operations on the CDN Node, i.e. it is

invoked by DM module.

In this entity, there is a special directory in charge of receiving local databases

from Nodes; in fact, as we said in Chapter 4.2.1, when a local timer expires, the

popularity database is sent to Core Router and reaches this folder.

Now, we can explain how is manage the popularity aspect in Core Router:

1. open, save in memory and close main database;

2. open network information database for reading;

3. check the active nodes to know the expected databases;

4. close network information database;

32

5. for each active node:

(a) check the local database;

(b) open, save in memory and close local database;

(c) each local entry is searched in the main database:

• if there is, the main database is update: AVAILABILITY, LAST-

UPADTES, TLS and AVERAGE-POPULARITY2 are upgraded

and computed;

• else, a new entry is added;

(d) delete the local database analyzed;

6. delete the old entries in main database (this parameter, old-entry, is settable

and equal for all entities);

7. Cache Management: this operation is quite complex, so for the sake of clar-

ity is described below, in a separate section:

Cache Management

1. search the parameter CACHE THRESHOLD for analysed Node;

2. for each entry of the Node, where the flag AVAILABILITY is set to ‘N’ and

the content is not in the local cache:

(a) to know the cache status, call the subroutine free space in CDNNC pop.pl

with parameters IP MAR and CACHE THRESHOLD:

• if the cache is in status “CACHE FREE”, send directly the file to

the Node recall the subroutine send file in CDNNC pop.pl;

• else, while status is “CACHE BUSY”:

i. evaluate the rifPop of all contents stored in the Node (AVAIL-

ABILITY set to ‘Y’);

ii. delete the content, through the subroutine delelte file in CDNNC pop.pl,

with value less than the content of reference;

2Afterwards, we show the algorithm where is used this parameter.

33

iii. if free memory in local cache is enough to store content, recall

the subroutine send file in CDNNC pop.pl;

(b) if there are entries still to be analyze, come back to 2.

Popularity value rifPop Algorithm

In order to evaluate the popularity value of the content we introduce an algo-

rithm; this is located in a subroutine in DM.pl and can be changed whenever a

new policy to manage the popularity is required.

To calculate this parameter, we treat two aspects:

• average value of views onto last 10 updates for the purpose of consider the

behaviour of “long period”;

• weighted moving average onto last 10 updates in order to attach more im-

portance to the last popularity values, i.e. the most currents;

So, we need the values of LAST-UPDATES in main database; now, is shown the

algorithm:

1. define of increasing values of weights (e.g. [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.6, 0.65, 0.7]);

2. read the 10 values in LAST-UPDATES;

3. calculate the normal average popularity (NAP);

4. calculate the weighted moving average with weights (WMAP) define in 1.

(remember that in LAST-UPDATES the first value is the oldest and the

last is the most updated);

5. evaluate rifPop =
1

2
∗NAP +

1

2
∗WMAP

34

In the next Figure 4.7, we briefly summarize the Popularity management,

starting from client request (a), going through the Core Router operations (b,c),

ending with deletion and storage operations of contents in the local Node:

Figure 4.7: Popularity management.

35

Request Routing Management

When a local Node receives a content request and it is not available in the local

cache, the request is forwarded to DM module of Core Router and the Node waits

the response with the address of best location to obtain the content (Origin cache

or another Node cache).

This operation is performed in serverDM.pl (located in DM module) and is

structured as follow:

1. open network information database to read the status of the network, i.e

the active Nodes, their workload and distance, in number of hops, between

them and the requesting Node;

2. open main database to read the informations of the content in the network,

i.e. which are the caches where it is available as well as entity Origin;

3. now, there are two selections and a final reorder:

(a) based on active Node;

(b) after, on the workload of Node, which must be less than Work Thereshold

(e.g., in our system we use 0.9);

(c) finally, there is a reordering based on number of hops (decreasing);

4. starting from the first Node of the ordered list, check in the main database

the availability of the content requested:

• if there is a match, return the address of the closest Node with content

available and stop the research;

• else return the address of the Origin;

5. close all databases;

As in the Node,there is a configuration file, DMConfig.pm, holds information

about IP addresses, directory paths and some timer values.

36

The Figure 4.8 summarizes briefly the Request Routing management, starting

from client request intercepted from Squid Proxy (a), going through the Routing

operations in the Node (b,c) and in the Core Router (d):

Figure 4.8: Request Routing management.

37

4.2.3 Origin

The Origin and the Portal are two separated entities that we implement together,

in the same machine, but their functionalities are well defined and bounded, Fig-

ure 4.9. This choice is made only for a convenience aspect, i.e. displaying the

contents available on the Portal directly from the Origin cache without the need

of unnecessary signalling. Here we describe only the Origin and in the next sec-

tion we conclude with the description of Portal.

Figure 4.9: Origin: Apache server and network database.

The principal role of the Origin is to store the contents in a big central cache,

ideally with infinite memory space. This central cache is managed from an Apache

web server and no others services are provided, i.e. no others scripts or specific

tools are present.

Moreover, not only the chunks are cached, but also the MPD (Media Pre-

sentation Description) and the MP4 control file for each content and so, all the

files are stored in the Apache web server folder (i.e., /var/www/). The names of

the main folders (BigBuckBunny 15 900kbps, Ed 10 500kbps, Sintel 5 800kbps)

are used to distinguish the different contents. In this way we can insert, without

ambiguity, the links to the contents in the MPD files.

38

For the sake of clarity, we report here a section of an MPD file:

<?xml version="1.0" encoding="UTF-8"?>

<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema"

xmlns="urn:mpeg:mpegB:schema:DASH:MPD:DIS2011"

xsi:schemaLocation="urn:mpeg:mpegB:schema:DASH:MPD:DIS2011"

profiles= "urn:mpeg:mpegB:profile:dash:isoff-basic-on-demand:cm"

type="OnDemand"

mediaPresentationDuration="PT0H8M10.02S"

minBufferTime="PT1.5S">

<name>Big Buck Bunny</name>

<subname>5 sec</subname>

<description>Big Buck Bunny plot.</description>



<width>960</width>

<height>720</height>

<segment>PT5.00S</segment>

<Period>

<Group segmentAlignmentFlag="true" mimeType="video/mp4">

<Representation mimeType="video/mp4" width="960" height="720" startWithRAP="true" bandwidth="907879">

<SegmentInfo duration="PT5.00S">

<InitialisationSegmentURL sourceURL="http://Origin/BigBuckBunny_5_900kbps/bunny_5_900kbps_dash.mp4"/>

<Url sourceURL="http://Origin/BigBuckBunny_5_900kbps/bunny_5s1.m4s"/>

<Url sourceURL="http://Origin/BigBuckBunny_5_900kbps/bunny_5s2.m4s"/>

...

The links refer always to the Origin caches (see ‘http://Origin/’), thus, the re-

quests sent by the users and those that are forwarded to the Nodes, are referring

to it.

4.2.4 Portal

The Portal is a web platform to allow displaying contents available to the clients

(Figure 4.10). Then, there are others two functions, the first is to set some

network parameters to obtain a network information database and the second to

set a simulator of popularity values on the local Nodes with the possibility to

observe the behaviour of the whole system.

So, these functions are made of several scripts, divided in three parts:

• The main Portal pages, i.e., index.pl, FindFiles.pl, request.pl and about.html.

We have also css (cascading style sheets) and js (javascripts) files for the

sake of presentation;

• The popularity simulator page, i.e., pop settings.pl, SimCreateDBs.pl and

SimSendDBs.pl;

39

Figure 4.10: Portal: homepage site.

• The network configuration page, i.e., net settings.pl and NetCreateDB.pl.

Then, there is OriginConfig.pm that is the configuration file.

The index.pl is the script to build the home page, where the users can look all

contents the stored. The homepage is shown in Figure 4.10. All the contents are

collected and managed by the script FindFiles.pl. This is able to look for all the

MPD files inside the Apache web server folder and, using the stored information,

communicates them to the index.pl. When selecting one of the videos, we recall

the request.pl script which opens a new page where there is more information

about the file and there is also an embedded player, based on the VLC web plu-

gin [21], through which the selected video starts playing (Figure 4.11).

The request.pl, in practice, automatically asks the VLC web plugin to download

the MPD file to play it.

The popularity simulator page gives to the user the possibility to perform simula-

tions about the popularity distribution of the videos, or further in, of the chunks

of the videos. In Figure 4.12 we simply build artificial local databases to be dis-

tributed among the Nodes; of this tje system is unaware, i.e. these databases are

handled by the Nodes as the real. Substantially, using pop settings.pl (reachable

40

Figure 4.11: Portal: player page, with video description and VLC-player embed-

ded.

from the Portal using the link called ‘Popularity settings’), for any video and for

any Node, we decide how many requests we want to simulate and how those are

distributed. The graphics in Figure 4.12 are such that in the x axis we have the

entire length of the video file and in y axis we have the percentage of requests to

the video chunk containing that instant. As depicted in the same Figure 4.12, we

can choose initially the Node for which we want create the database taking into

account the maximum number of requests.

Chosen the number of requests for the video, we can then select the percentage

for every popularity distribution and the possibility are decreasing exp, gaussian,

increasing exp, searching, view all and jumping.

For example, we can simply set the distribution to 100% gaussian, for example,

and see that in the Node the chunks stored, after a reasonable time, are those in

the middle of the entire video length.

After setting the parameters, we can ‘Save the popularity setting’, as reported in

the right side of Figure 4.12. With this, after some checks for percentages and

number of requests (within specified bounds), we recall SimCreateDBs.pl which

creates the database, following the structure reported for the local database, with

the correct name for each one.

41

Then, SimSendDBs.pl is the script that randomizes the popularity distributions3

and periodically uploads these to the specific Node.

Figure 4.12: Portal: popularity simulator page, with the available settings.

This action continuously run and through it we can change the popularity dis-

tribution asymptotically, which means we continue to upload the same database

(until we do not further change it) to the Node and finally we can see that in the

local cache we have the chunks following the distribution values of the database.

This requires some uploads since the changes of the popularity values are not in-

stantaneous, but are carried out weighting them and considering also the average

and weight moving average values.

An important aspect of the system is the dynamicity and the adaptability to

the network and popularity conditions, so even the time to achieve a condition

of stability (if this condition exists) can be affected.

3Function random (Gaussian) to avoid the same behaviour in the simulation work

42

The network configuration page gives to the user the possibility of setting some

network parameter and create the network information database to be flooded

on every entity of the system. Selecting the ‘Network settings’ link in the Portal

we access the net settings.pl script. As shown in Figure 4.13, we can see the

old values of the network and set all the new network parameters for each node:

load, maximum number of users, cache size in MB, number of hops to the Origin

and to every other Node. Then, clicking on the button ‘Save the popularity set-

ting’ all the checks are done and, if are fine, the script NetCreateDB.pl is recalled.

Figure 4.13: Portal: network configuration page, with the available settings.

This script creates a database with the structure analysed above and floods

it to all the machines. Since this database is static (as long as we change it from

the Portal), the flooding is done only at once. It is not modified by the machines

since it is used only for consulting purposes.

43

Chapter 5

Simulation work and real testbed

implementation

In this section we describe some studies over popularity aspects considered in the

work of this thesis. In the following, we explain the content popularity model to

evaluate the CDN component, then implemented in a simulator written in Mat-

lab code that interfaces a Linear Programming software called lp solve1. Further-

more, in this part is presented a practical scenario implemented in a real testbed

in order to test the networking features and the popularity management.

5.1 Mobile CDN: Simulation work

After a brief discussion on the topic of regional and global popularity, we introduce

a model to obtain an optimal cache dimensioning for mobile CDNs.

5.1.1 Regional and global popularity

In order to study the regional popularity, we looked at the Top 100 music charts

in 15 European countries. Not surprisingly, even in such small dataset the rank-

frequency plot is following a Zipf-distribution2 with heavy tail as shown in Fig-

ure 5.1.

1lp solve is a free (see LGPL in [25] for the GNU lesser general public license) linear (integer)

programming solver based on the revised simplex method and the Branch-and-bound method

for the integers.
2More details on [26].

44

Figure 5.1: Rank-Frequency-Plot of the Top 100 music charts in 15 European

countries.

Out of the 845 unique singles and albums (in the following referred to as songs),

7 singles are among the Top 100 of all countries, whereas 640 songs are only

popular in one region.

Figure 5.2 shows the number of songs that are popular in exactly X out of

the 15 regions. You can roughly distinguish two areas: content that is popular in

only a few regions, and content that is popular in most or all regions.

Figure 5.2: Number of songs being popular in X out of 15 regions.

We consider content being globally popular if it is popular in 8 or more regions

45

and regionally popular if it is in the Top 100 of 7 or less regions. In the given

dataset, 30 songs belong to the first group and 815 songs to the latter group. The

15 regions have in between 11 and 27 global popular songs (23.4 on average), and

thus on average 76.6 songs that are only regionally popular.

Figure 5.3 shows the number of globally popular songs for different thresholds,

i.e., the minimum number of regions a song most be among the Top 100 to be

considered as globally popular. The threshold of 8 used in Figure 5.2 is also

marked with orange colour in Figure 5.3. The figure also shows that a ratio

between global and region popular songs of about 1:7 seems to be a reasonable

value for later evaluations. In the following section, we design a model to generate

popularity data, which can then be used to evaluate the performance of content

placement in the in-network CDN.

Figure 5.3: Number of globally popular items at different thresholds to consider

content as globally popular.

5.1.2 Generation of regional and global popularity

Bottleneck link is the main problem when lots of users make requests of video con-

tent that overload the network. Caching nodes are strategically placed through-

out the network and store a subset of the available contents. However the size

of such caching nodes is usually limited, so they are only capable of storing a

46

fraction of available contents. Therefore, it is important to accurately determine

the popularity of content so that the most popular items can be offered close to

the end-users.

In the following we describe a model to generate popularity data necessary for

the content placement analysis. The study of this model can be found in [24].

So now, is presented an approach to generate popularity for content items with

specific, realistic regional and global popularity ranks. Thereby, the popularity

of content in the different regions is not equal, but it is correlated. Part of the

content is globally popular, that is, the data item is ranked high in all regions.

Yet, still the individual rank in the different regions will (slightly) differ from other

regions. Other content items are only popular within one or a few region(s), and

this content will have a low rank in the other regions. The global frequency,

i.e. the number of requests for each content item, is then the sum of all regional

frequencies.

In Figure 5.4, we can see the problem of the popularity generation.

Figure 5.4: Local popularity generation: theoretical model.

47

The popularity of an object directly relates to the rank of an object via Zipf’s

law as

P (r) =
c

rα

where c is a constant to normalize the popularity and α is a parameter specifying

the degree of popularity variation with higher values having a steeper increase of

popularity with the rank. The dependency of popularity between regions is char-

acterized by a correlation matrix C with Ck,l, specifying the correlation between

regions k and l (k, l ∈ K). Please note that this value does not explicitly describe

the correlation of either rank or popularity in a mathematical sense but is used

to steer the correlation.

In the following we distinguish objects of global and regional popularity. The

popularity of an object with global popularity is statistically equal in all regions,

i.e., it has the following properties:

• similar popularity in all regions;

• rank in different region is correlated;

• total and regional rank are correlated.

Therefore, we determine the correlation of a globally popular object in any

two regions k and l as Cg
k,l = ρhigh. A typical value for ρhigh is 0.9. The higher

the value of ρhigh, the higher the probability that the rank difference of an object

in different regions is small.

An object with regional popularity is popular in a single region and less popular

in other regions. Also, the correlation of the relative popularity between regions

is rather small between regions where the object is popular and regions where the

object is not popular. Therefore, we determine the correlation of any two regions

k and l as Cr
k,l = ρlow. A typical value for ρlow is 0.5.

We introduce the matrix Rj,k that defines the relative regional popularity of

an object. For objects j with global popularity we set Rj,k = 1 for all k in order

to obtain equal popularity in all regions. For an object j that is popular in region

k∗j we set Rj,k = Upop for k = k∗j and Rj,k = Uunpop for k 6= k∗j .

48

Concretely, correlated ranks and popularity are generated using the following

algorithm:

1. determine by Cholesky factorisation (LTL = C) the matrices Lg and Lr for

Cg and Cr.

2. for every object j

(a) determine vector of white Gaussian noise for every region Wj,k

(b) determine correlated Gaussian vector G = WL with L = Lg for global

and L = Lr for regional objects

(c) map Gaussian vector G to uniform vector U with numbers in [0, 1]

(d) normalize U for regional popularity: Uj,k := Uj,kRj,k

3. for all regions k

(a) determine the rank rj,k for objects j in region k according to matrix U

rk,j < rk,i ⇐⇒ Uk,j > Uk,i

(b) determine the regional popularity

pk,j =
ck
rαk,j

where ck relates to the size of region k.

The scaling parameters of the above model are given in the following list. It

also lists sample parameters used in the analysis below.

• Number of regions: K = 3

• Number of objects with global popularity: 1500

• Number of objects with regional popularity per region: 500

• Global constant (Zipf’s law): 3

• Slope parameter (Zipf’s law): 1

49

• Correlation between regions for objects

- with global popularity: ρhigh = 0.9

- with regional popularity that are popular in both regions: -

- with regional popularity that are popular in one region: ρlow = 0.3

- with regional popularity that are popular in no region: ρlow = 0.3

• Number of popular regions for regional popular objects: 1

• Scope reduction for regional popular objects in popular region: 0.8

• Scope reduction for regional popular objects in other region: 0.2

The Figure 5.5 shows the rank correlation of the different regions.

Figure 5.5: Rank correlation of the different regions.

50

5.1.3 Optimal cache dimensioning for MCDNs: cost model

The purpose of this section is to define a cost model to obtain an optimal cache

dimensioning for MCDN; in particular, we want to know about:

• the activation or no of local caches;

• the activation or no of the central cache;

• the optimal cache size;

• which objects should be cached;

Some aspects have to be considered:

– the possibility to request content from other regional caches or the central cache

(instead of the source), if the content is not available in the closest regional cache;

– different popularities in the different regions (see previous subsection);

– distinguish objects with global and regional popularity. Objects with global

popularity will be cached in all regions. Objects with regional popularity are

only stored in the respective regions, as costs for caching are lower than least

transport costs;

– introduce regions with different sizes by scaling the popularity constant;

– possibility of cache pooling3.

The optimisation model described below is based on the mobile network ar-

chitecture shown in Figure 5.6. It consists of an external network, containing the

media servers providing the content, and the mobile network. The mobile net-

work itself consists of a core network, reaching from the external network to K

regions with P-GWs/MARs, and an access network ranging from P-GW to eNB.

Basically, two different possibilities to implement caches in this mobile network

architecture exist: a central, global cache (G) in the core network and regional

caches (R) in the access part. Note that some operators maintain their own

core network (CN), whereas others exit their own network after the P-GW. This

3Cache pooling means that content with (moderate) popularity will not be stored on each

regional cache, but adjacent regions pool together, providing the content items in one of the

caches and serving it to all participating regions from that cache. Low transport costs among

regions will foster cache pooling, whereas high transport costs will result in the content items

being cached individually or in the central cache.

51

does not affect the cost model, only the variables describing the costs need to be

adapted accordingly.

In the following, we develop the cost model used to evaluate and optimise the

forward caching, Figure 5.6; then, this model is translated in a Linear Program-

ming script, in our case lp solve4, interfaced with MatLab software. Thus, the

problem is defined using constraints and an objective function.

Figure 5.6: MCDN network topology: cost model.

4lp solve is a free (see LGPL in [25] for the GNU lesser general public license) linear (integer)

programming solver based on the revised simplex method and the Branch-and-bound method

for the integers [25].

52

Constants

• Nk,j Mean number of requests for object j in region k in considered time

period T

• Nmax Total number of traffic over all regions in considered time period T

Nmax =
K∑
k=1

J∑
j=1

Nk,j

• Vj Volume of object j

Functions

• CS,C(v) Costs for transporting traffic volume v from server to central cache

• CC,k(v) Costs for transporting traffic volume v from central cache to region

k

• Ck,l(v) Costs for transporting traffic volume v from region k to region l

• CM,L(v) Costs for storing volume v in cache at level L,∀L ∈ {G,R}

• Ci,L(v) Costs for installing a cache at level L,∀L ∈ {G,R}

• CL(v) Total costs for deploying and operating a cache at level L, with

CL(v) = Ci,L(v) + CM,L(v)

Variables

• xk,j binary; true if object j is cached in cache k,∀k ∈ {G, 1, ..., K}

• MC,j real; mean number of requests to central cache

• Yk,l,j binary; true if cache k pre-fetches objects j from server l

• Xk,j binary; true if object j is either cached by cached by cache of region k

or central cache

• DS,C real; inter-domain traffic volume between server and central cache for

serving client requests

• DC,k real; traffic volume between region k and central cache for serving

client requests

53

• Dk,j real; traffic volume between region k and region l for serving region k

client requests

• FS,C real; inter-domain traffic volume between server and central cache for

filling caches with pre-fetched content

• FC,k real; traffic volume between region k and central cache for filling caches

with pre-fetched content

• Fk,l real; traffic volume between region k and region l for filling caches with

pre-fetched content

• Sk Capacity of cache in region k,∀k ∈ {C, 1, ..., K}

Objective Function

The objective function is to minimise the sum of all costs, i.e., costs for transport-

ing all traffic through the network (including content delivery D and pre-fetching

traffic F) and costs for deploying(installation) and operating (storage) central

and regional caches (costs are zero if a cache is not deployed).

Basically, the more content is cached in the network, the higher the costs for

storage, yet the lower the costs for traffic. The goal is to find the configuration

minimising the overall costs, i.e., where to optimally place caches and what con-

tent to put in each cache. The functions should be piecewise-linear such that the

objective function can be modified accordingly.

min{CS,C(DS,C + FS,C) +
K∑
k=1

CC,k(DC,k + FC,k) +
K∑
k=1

K∑
l=1

Ck,l(Fk,l) + CG(SC) +
K∑
k=1

CR(Sk)}

Constraints

• Cache Capacity The cache capacity should be at least the sum of the

volume of the cached objects:

J∑
j=1

xk,j · Vjj ≤ Sk,∀k ∈ {C, 1, ...K}

54

• Traffic to pre-fetch content in caches Our assumption is that all content

stored in a cache is not stored ”on-the-fly”, but is downloaded following a

request from the DM. Otherwise, traffic to pre-fetch content will be zero

(FS,C = FC,k = Fk,l = 0).

Enforce that all cached objects are pre-fetched:

xk,j ≤
K∑
l=1

yk,l,j + yk,C,j + yk,S,j,∀k ∈ {1, ..., K}, j ∈ {1, ..., J}

Enforce that all regional caches that serve others pre-fetch from central

cache or server (one-hop forwarding among regional caches only, could be

extended to general forwarding):

yk,l,j ≤ yl,C,j + yl,S,j,∀k, l ∈ {1, ..., K}, j ∈ {1, ..., J}

Enforce that only cached objects are pre-fetched from central cache:

yk,C,j ≤ xC,j,∀k ∈ {1, ..., K}, j ∈ {1, ..., J}

Total amount of pre-fetching traffic:

FS,C =
J∑
j=1

Vj · cC,j +
J∑
j=1

K∑
k=1

Vj · yk,S,j

FC,k =
J∑
j=1

Vj · yk,C,j + Vj · yk,S,j,∀k ∈ {1, ..., K}

FC,k =
J∑
j=1

Vj · yk,l,j,∀k, l ∈ {1, ..., K}

• Traffic to serve request

Depending on the availability of the requested content in the respective

cache, requests can be served either from the local cache, the global cache

or the external server. Thus, traffic sums up as costs on link external server

- core network (S−C) and core network - regional gateway (C−k). Traffic

below the regional gateway (the MAR in MEDIEVAL architecture) is not

considered, as we (for this analysis) do not consider caching on the base

55

station (eNB) and the client. Thus, traffic on these links is not affected by

any evaluated caching scenario and as such can be omitted in the compar-

ison.

Total amount of traffic for serving requests:

DS,C =
J∑
j=1

K∑
k=1

Vj ·Nk,j · (1−Xk,j)

Xk,j ≤ xk,j + xC,j,∀j ∈ {1, ..., J}, k ∈ {1, ..., K}

DC,k =
J∑
j=1

Vj ·Nk,j · (1− xk,j),∀k ∈ {1, ..., K}

• Caching Strategy Constraints These constraints should ensure a certain

caching strategy. They are only required if a non-optimal strategy needs

to be enforced. The intended popularity based solution should be adopted

by the optimal solution also if no caching strategy constraints are added.

However, adding these constraints may significantly reduce the problem

complexity.

– Caching Strategy for regional cache

Popularity based caching means that the cache is filled with the objects

in the order of their popularity which is expressed by the expected

number of downloads Nj,k in the target period T . Since the expected

number of downloads is assumed to be known a priori, we can define

the order Ok(j) of an object j in region k. The variable xk,j is true

if the jth object according to global numbering is cached in region k.

The following constraints enforce popularity based caching:

xk,O−1
k (j) ≤ xk,O−1

k (j−1), ∀k ∈ {1, ..., K}, j ∈ {2, ..., J}

– Caching Strategy for central cache

The popularity based caching strategy appears in two variants the

overall popularity based caching strategy or the reduced popularity

based caching strategy. In the first variant, the cached objects are de-

termined according to the popularity of an object in the whole network

not taking into account the regional caching. In the second variant,

56

the objects are cached in the order of their popularity of requests at

the central cache, i.e. excluding requests already server by regional

caches. The first variant is potentially not optimal, so if this caching

strategy is desired the constraints need to be added. The second vari-

ant is presumably the optimal solution such that the constraints are

not required. The drawback of the second solution is that popular ob-

jects are cached and pre-fetched from the central cache. Consequently,

the caching strategy of the central server should either not be prede-

fined or a special solution distinguishing caching for pre-fetching and

long-term caching should be distinguished.

– Overall Popularity based Caching Strategy

The constraints are formulated analogous to the regional caches:

xC,O−1
k (j) ≤ xC,O−1

k (j−1),∀j ∈ {2, ..., J}

– Reduced Popularity based Caching Strategy

In order to define the constraints the variable MC,j is introduced count-

ing the number of requests arriving at the central cache:

MC,j =
K∑
k=1

Nk,j · (1− xk,j),∀j ∈ {1, ..., J}

The caching strategy according to the order of MC,j is enforced by:

MC,j −MC,i ≤ (1 + xC,j − xC,i) ·Mmax,∀i, j ∈ {1, ..., J}

The reasoning is that if MC,j ≥ MC,i, then, if xC,i is true xC,j must also be true.

If the left side is positive then the bracket must yield the value one or higher.

5.2 Real testbed implementation

Our framework is implemented in a real testbed which makes it possible to assess

the performance of the implemented functionalities.

We test the networking features and the popularity management concept. This

is important also for testing how modules interact in the system. We describe

the test scenario as the following use case [8]:

57

DEMONSTRATION 1
MOBILITY AND CDN SCENARIO

DEMO DESCRIPTION

 Dynamic & Distributed Mobility Management (DMM) concept:
“anchors to the edge” as deployed in the default gateway of the
mobile node

 Intelligent video distribution systems (distributed caching with
central control)

 Integration of CDN nodes/caches inside the mobile network
 IP flow selected mobility
 Logical Interface concept at the MN (the radio interfaces are

grouped under a single virtual network interface seen by upper
layers)

 IEEE 802.21 as cross layer solution for mobility optimization
 Unified management for both 3GPP and not 3GPP accesses
 Economic benefits for operators (this may vary on data traffic

patterns and/or mobile network topologies)

 A mobile node MN is accessing both a video service
(Video flow) and VoIP (VoIP flow)

 The video is available in the Video Server and caches
 The caches are co-located with MARs
 While the mobile node is moving around, the best cache

is selected to serve it
 Different handover triggers mechanisms/logic

Sequence of the demo:

1. MN attaches to MAR1 (3G technology) and starts/gets a

VoIP flow
2. MN starts video application and gets video (from cache1

or VoD Server)
3. MN discovers a WiFi PoA (MAR2) and attaches to it:

Handover triggered by the network due to caching
optimization

4. VoIP flow stays anchored to MAR1 (the traffic is
tunnelled between the MAR anchoring the flow and the
MAR serving the MN), video flow comes now from
cache2

5. MN moves out of WLAN coverage and goes under
MAR3 (LTE): handover triggered by loss of coverage

6. VoIP is still anchored to MAR1. The video flow comes
from cache3

KEY CONCEPTS & BENEFITS

September 2012, Alcatel-Lucent Bell Labs, Paris

Source

RRDM

Mobile
Node

CDN CacheCDN CacheCDN Cache

Mobile
Node

Content
Portal

LTE
Access Network

WiFi
Access Network

3G
Access Network

VoD server

Cache1 Cache2 Cache3

MAR1 MAR2 MAR3

CN – VoIP terminal

MN MNMN

Video
flow

Video
flow

Video
flow

VoIP
flow

VoIP
flow

VoIP
flow

MAR = Mobility Access RouterFigure 5.7: Real testbed architecture.

“A user through his mobile node (MN) is accessing both a video service (Video

flow) and VoIP (VoIP flow) when connected to the first PoA (MAR1), that offers

3G connectivity. He is playing the video using VLC Media Player and DASH.

The MPD is downloaded and the player starts to request the chunks listed in

it. All the HTTP requests pass through the request routing in the MAR, which

intercepts and analyses all of them and if the chunks of the video are available

in the local cache (co-located with the MAR), the request is forwarded to the

local cache and the requested chunk is replied directly from there. Since the first

chunks of the video are, in general, the more popular, also in the demo the first

minutes of the video are available in the local cache, and the user is thus, retriev-

ing the chunks from it.

The user in the meantime is moving and at a certain point his MN discovers a

WiFi connectivity PoA (MAR2) that is offloaded or at least is less loaded than

the previous PoA; due to this it triggers an handover due to transport optimiza-

tion and in the end it is connected to MAR2. Now the video flow, that is not

anchored, goes through this PoA and on the contrary VoIP flow stays anchored

to MAR1 (the traffic is tunnelled between the MAR anchoring the flow and the

58

MAR serving the MN). This happens because the VoIP flow is not as heavy as

video. The local cache in MAR2 also contains the requested chunks for the video

and, thus, the video is now streamed from his cache; but, since the video con-

tinues and the chunks towards the end of the video are no longer as popular as

the first minutes of the video, they are not available in the local cache. Then the

MAR, upon receiving a request for these chunks, sends a request to the DM to

check the best location of them. The DM selects the best cache (Origin or other

cache/MAR) to serve the MN and takes this decision based, amongst others, on

the availability of the content in other caches, the current load of these caches,

and the PoA of the user.

Then, in the demo, the user moves out of WiFi coverage and goes under LTE

which means that, this time, the handover is triggered by loss of coverage. VoIP is

still anchored to MAR1 but the video now is streamed via MAR3, where the local

request routing in coordination with the DM is taking over the role to choose the

best location for streaming the video to the user. In the entire demo, the user is

unaware of what is happening but he can see where the chunks are taken reading

the name of the cache directly from the video.”

For the sake of completeness, the architecture of the real testbed is depicted in

Figure 5.7.

We designed and tested our module and software first of all in DOCOMO

Communications Laboratories Europe located in Munich using only two Nodes via

WiFi. This is the minimum setting for testing all the functionalities implemented

and the networking features installed (also DMM). The testbed is based only on

virtual machines and all the WiFi networks are virtualized.

We emphasize the fact that, to stress more the system, and to highlight the

crucial aspects, such as the request routing, the local caches are fulfilled. In this

way, by appropriately labelling chunks in the local caches, it is visually simple to

understand how we move from a Node to another one.

59

Chapter 6

Results

In this section we assess the performance of the system. First, we describe the

benefits of the popularity-based caching, then we show the experimental results

for typical real scenarios implemented in the simulator studied in Chapter 5.

Thereafter, we explain assessments of segmented video stream in combination

with request routing, the robustness of the in-network CDN system, the session

continuity during mobility and the general performance of the CDN component.

6.1 Popularity-based caching and distributed re-

quest routing

The goal of the popularity-aware content placement algorithm is to minimize

the cost within the Core Network, in particular monetary costs associated to

transport traffic costs inside Core Network, transport traffic costs from external

IP network to Core Network, installing cache costs and storing costs in the cache.

Another goal is the power saving, in fact almost all the operators switch off

some Nodes during the nightly hours and also the costs defined in the previous

list are subject to changes during the night.

Neglecting the last observation, our system is developed in order to minimize the

costs defined above. To do this a new concept of popularity is introduced, and

this is the base of the features of smart caching and smart routing request of the

system that now we describe.

The decentralization of various Nodes, near the PoA where the clients make

the contents’ requests, allows the more specific knowledge of local popularity ;

60

instead to treat this aspect in classical way, we intend the popularity as localized

factor, more in depth considering the number of requests for a content made in

a specific Node. Moreover, with the technology of the standard MPEG-DASH,

the popularity can consider singles segments of video (defined chunks) and not

on the whole video.

Another very important point is the management of popularity, in particular

are treated two aspects:

• popularity on “long period”, considered as 10 uploads of the local popularity

database in our simulation/evaluation framework;

• popularity on “short period”, as number of requests starting from the last

update of the database.

This is done to obtain a dynamic and stable system, avoiding useless overload in

certain periods, e.g., peaks of demands for a content in the short period and then

come back as in the previous behaviour (storing the content in the local cache

probably results useless or even lead to the waste of resources thus money).

To implement this feature, we defined a parameter rifPop; this parameter is

the reference value of the entire system and allows, given two objects, to decide

what is the one with greater popularity comparing these two values. Recalling

the section 4.2 and remembering that the parameter rifPop refers to a content

that is requested in a given specific Node (e.g., number of clients’ requests), it is

calculated as follows:

1. using a weighted average value on the last 10 uploads with increasing values

of weights, where the first is associated to the oldest update and the last

to the newest (more important value is the last, so this factor regards the

popularity in the “short period”);

2. exploiting the classical arithmetic mean on the last 10 uploads (“long pe-

riod” factor).

Operationally, these two values are considered in equal measure.

Summarizing:

• the local Nodes update only the number of request for each content and

forward this to the Core Router;

61

• the Core Router, when receiving the local databases from each Node:

– calculates the rifPop of requested contents;

– compares the rifPop values and assesses if store or delete contents are

necessary in the local cache until the local memory space is enough;

– sends commands to specific Nodes to store/delete content.

The second aspect to be treated is the request routing. This functionality is

distributed in whole system; exploiting the smart caching, a large percentage of

the work is carried out in the access Nodes without burdening the Core Router,

i.e., in particular in the Core Network we have less signalling data and less video

data traffic thereby resulting in lower transport costs, that also relates to a mon-

etary cost advantage. Only the contents that cannot directly be served from local

Nodes are requests to the Core Router.

Thus, an algorithm of optimal routing is provided in the Core Router; given a

content request from a Node client, this evaluates the best location from where

to retrieve the content:

• searches the Nodes, in the main database, where the requested content is

available;

• selections of Nodes not in overloaded status (under a threshold, where the

load of the node is provided from ALTO module, see [10]);

• selection of the closest candidate Nodes or Source.

Finally, we remark here that the two functionalities popularity-based caching

and distributed request routing are studied with the main purpose to minimize

the total costs of whole system.

6.1.1 Testbed: simulator of requests

As we said in Chapter 4 the popularity-aware content placement algorithm was

assessed and can be demonstrated using a request generator implemented in the

testbed. As we are not able to connect hundreds or thousands of clients to the

testbed, generating real requests for videos, the request generator can be used to

generate artificial requests at the different Nodes (see Figure 6.1). In its GUI,

62

Figure 6.1: Testbed: GUI of the request generator.

you can specify the regional popularity of the different videos available in the

testbed, as well as compose the viewing behaviour for each video.

For example, for movies, users usually start watching the movie from the begin-

ning, but after some time a user may stop the video, as he does not like the

movie or he is distracted by some other issue. Thus, the popularity of chunks of

a specific movie is high for the first chunks and getting smaller for later chunks

(distribution “decreasing exp”). For other types of videos, the popularity distri-

bution of the chunks may be different, e.g. a user may skip through a tutorial

video to search for a particular topic he is interested in (distribution “jumping”),

or he already knows a certain funny sequence within a YouTube video where he is

directly jumping to that scene but not exactly hitting the right spot (distribution

“Gaussian”).

The popularity distribution can be changed dynamically during the demo. The

request generator is taking the input from the popularity distribution and is emu-

lating user requests for the chunks of all videos based on the specified popularity

distribution. The number of requests for each chunk is not deterministic, but a

random function ensures small variations in the request pattern. The new request

pattern is monitored at the Nodes and an aggregated report is periodically sent

63

to the AM. The DM is periodically requesting the updated content popularity,

and the DM will, depending on the specified reporting and update frequencies,

start to adapt the content in the local caches to the new content popularity.

Figure 6.2 shows the content available in the cache located at Node1 resulting

from the popularity distribution specified in Figure 6.1. For the movie “Big Buck

Bunny”, the first 12 chunks are stored in the cache, whereas later chunks are

below the dynamic popularity threshold, and thus are not cached locally. The

“Sintel” clip follows the “searching” distribution, i.e. the first few chunks as well

as some random chunks at times 0:25-0:30 and 0:45-0:50 are cached in the node,

as they are above the popularity threshold.

Figure 6.2: GUI showing the content in Node.

Basically, the update frequencies determine the reaction time of the CDN

system towards changes in the content popularity. There is a trade-off between

low update frequencies, i.e. low overhead in signalling and processing, and fast

reaction to quick changes, e.g. in case of a flash crowd. The operator may also

64

decide to implement a more complex algorithm in the Request Routing capable

of recognizing sudden changes in popularity and triggering the DM by sending

an immediate report. In the testbed, we decided to trade off overhead for speed,

such that we are able to demonstrate the impact of changing popularity on the

cached content within a reasonable time of a few minutes.

The prototype is behaving as expected and is correctly adapting to the new

content popularity distribution.

This function can be found inside the Portal (see Section 4.2), precisely in the

popularity simulator page.

65

6.1.2 Real scenarios: analysis

The performance of the system is difficult to assess from a prototype, as the size

of the system and the number of requests are smaller in several dimensions com-

pared to a real implementation.

Even, hardware and code are not optimised compared to an actual high-performance

product. Thus, in order to assess the performance of the system based on popu-

larity approach, we look at the savings and costs imposed by the CDN component.

We distinguish four cases:

1. requested content is available in the cache attached to the local Node;

2. local cache does not host the requested content and the request is forwarded

to another copy;

3. content is not available in the mobile network;

4. a network without in-network CDN functionalities.

The performance can be measured in terms of signalling, processing, and

latency. In all cases, the request is intercepted at the Nodo of PoA, requiring some

additional processing capacities and adding a small overhead on the latency.

In case 1 the request can directly be served by the local cache, i.e., the total

round-trip-time (RTT) of the request is much smaller compared to case 2 where

content is requested from another cache or (case 3) from the origin server outside

the mobile network (assuming a high-performance CDN node).

Also, there is no traffic in the mobile core network, thus transport costs and

network load in the mobile network is significantly reduced. In cases 2 and 3

the request routing is contacting the DM in order to get the optimal copy for

each specific request. That is, an additional signalling, processing, and latency

overhead is introduced for each request. Whereas in case 2, the total RTT may

still be smaller than in a network without in-network caches (case 4), in case 3,

due to the additional packet interception at the Node and the signalling exchange

with the DM, the total RTT will be definitely larger than in case 4.

Thus, looking at the popularity distributions observed, caching around 20% of

the requested and distinct videos, results in being able to serve up to 80% of the

requests from the cache.

This means that most requests benefit from the in-network caches, whereas only a

66

smaller percentage of requests for less-popular content experience longer latencies.

Similarly, for 80% of the requests, the load in the network is reduced significantly

(the big data part must not be transferred through the network) compared to

20% of requests where a minor signalling overhead is introduced (just two small

packets to request the optimal copy from the DM).

Moreover, assuming that the operator runs a firewall and performs deep packet

inspection at the gateway of its network, in 80% of the cases this processing is

not utilized, but traded against the request routing at the Node in 100% of the

requests.

Another advantage of in-network caching is also that, in cases 1 and 2 the operator

is in control of the CDN nodes, being able to ensure a certain QoS, whereas for an

external source, its QoS is out of the operator’s influence. Overall, the additional

effort and costs of in-network caching are easily compensated by its benefits.

67

6.1.3 Simulations results

Now, we assess some numerical results obtained in a simulation work explained

in Chapter 5.

Starting from a discussion of the cost model from Section 5.1.3 (also taking into

account the previous Sections 5.1.1 and 5.1.2), we can make the mapping of the

cost model depicted in Figure 5.6 in a simpler architecture/model used in our

MatLab script (i.e. the software that interfaces the lp solve program) showed in

Figure 6.3.

Figure 6.3: Simplified cost model used to optimize the total cost.

The variables used in MatLab are as follows:

• C CI C and C CI R are installation cache costs of Central Cache (CC) and

Regional Cache (RC) (equal for each local Node);

• C CV C and C CV R are storing costs for volume v for CC and RC (equal

for each local Node);

• C T S C, C T C R and C T R R are transporting cost for volume v be-

tween CC and Media Server (S), CC and local Node, and between Nodes.

68

As mentioned in Section 5.1.3, the traffic below the regional gateway (Node

of access) is not considered in these simulations; only the traffic in the internal

Core Network and the pre-fetching traffic to fill the caches from external Media

Server.

Thus, we can see two representative scenarios to demonstrate the cost mini-

mization through the optimal cache placement, in particular made within regional

caches and a central cache inside the Core network, exploiting the knowledge of

the global and regional popularity of the contents, that are defined as objects in

these simulations.

For this work we used N = number of regions, i.e. Nodes, equal to 3 and v=volume

of object equal to 1 for each object.

SCENARIO 1

Parameters

• C T S C = 1; transport costs from server to central cache, normalised “cost

unit” [cu];

• C T C R = 1; transport costs from central cache to regional cache, [cu];

• C T R R = 10; transport costs from regional cache to regional cache, [cu];

• C CV C = 1; caching costs per volume unit, in central cache, normalised

“cost unit of volume” [vu];

• C CI C = 500; costs for central cache installation, normalised “installation

cost” [ci];

• C CV R = 1; caching costs per volume unit, in regional cache, [vu];

• C CI R = 1000; costs for regional cache installation, [ci];

• J global = 100; number of objects with global popularity

• J region = 100; number of objects with regional popularity

69

Parameter Cache [cu] Traffic [vu] Tot Cost

of requests CC R1 R2 R3 S-CC CC-R RC-RC

1000 390 228 184 76 12.95 455.36 0 5.724e+03

2000 400 400 383 152 0 307.14 0 6.477e+03

3000 400 400 384 228 0 274.87 0 6.598e+03

4000 400 400 358 304 0 234.30 0 6.658e+03

Table 6.1: Simulation: Scenario 1 - Results

Variable

• N region(i), with i = 1, 2, 3; number of requests for region i.

This scenario simulates the behaviour of the system with four values of

N region(i): 1000, 2000, 3000 and finally 4000.

We can observe that the number of requests are the same for each region

(this is due to implementation of the simulator software).

In Table 6.1, we show the detailed results obtained in the simulation of sce-

nario 1.

We can immediately note that the traffic volume between Nodes is null, as trans-

port costs between local caches quite high, 10 times more than the other transport

costs. Thus, the ”cache pooling” is not used in this scenario.

Increasing the number of requests from each region, and hence the number of

objects stored in the cache (see Cache size in Table 6.1), the traffic volume be-

tween central and regional cache decreases steadily, see the red line in Figure 6.4.

Another observation is that despite the increase in requests of contents is sub-

stantial, the total cost of the system does not grow so much. This fact you

can see observing the last column of Table 6.1: the total cost from 5.724e+03

(case 1 where the number of request/ region is 1000) goes up to 6.658e+03 (case 4

with number of request/region equal to 4000), therefore the requests increased by

four times but the total cost is increased only by about 16% respect the first case.

70

1000 2000 3000 4000

0
25

100

200

300

400

450

500

Number of requests/region

T
ra

ffi
c

vo
lu

m
e

[v
u]

Traffic Server − Central Cache

Traffic Central Cache − Regional Node

Traffic Regional Node − Regional Node

Figure 6.4: Scenario 1: Sum of traffic volume between entities.

CC R1 R2 R3
0

50

100

150

200

250

300

350

400

450

Cache

C
ac

he
 s

iz
e

[v
u]

N. req/region = 4000
N. req/region = 3000
N. req/region = 2000
N. req/region = 1000

Figure 6.5: Scenario 1: Cache size on Number of request/region.

71

From this analysis, we can understand how a system based on CDN, with

smart placement of content in the local caches, is useful in the minimization of

costs within the Core Network of NOs.

Figure 6.5 shows the load of number of contents stored in central and regional

caches for the different caches. We can easily see that increasing requests for

content are associated with an increase of content stored in the cache, and this

aspect is well clear in Figure 6.5. As we said before, all these observations lead

to understand the importance of a CDN system.

SCENARIO 2

Parameters

• C T S C = 1; transport costs from server to central cache, normalised “cost

unit” [cu];

• C T C R = 1; transport costs from central cache to regional cache, [cu];

• C T R R = 1; transport costs from regional cache to regional cache, [cu];

• C CV C = 100; caching costs per volume unit, in central cache, normalised

“cost unit of volume” [vu];

• C CV R = 1; caching costs per volume unit, in regional cache, [vu];

• J global = 100; number of objects with global popularity

• J region = 100; number of objects with regional popularity

Variables

• C CI C costs for central cache installation, normalised “installation cost”

[ci];

• C CI R = “2*C CI C ”; costs for regional cache installation, [ci];

• N region(i), with i = 1, 2, 3; number of requests for region i;

In this scenario we set the N region(i) equal to 1000 or to 5000 requests/re-

gion.

72

Then, the installation costs of caches are related by C CI R = 2 * C CI C.

The cost C CI C goes from 10 up to 10000 and consequently the cost C CI R

goes from 20 up to 20000.

To test some features of the system, we wanted to enforce that only local

caches are used; thus, the caching costs per unit of volume in the central

cache, C CV C, is imposed equal to 100, that is 100 times higher the caching

costs per unit of volume in the local caches (C CV R).

10 100 500 1.000 10.000

1.000

2.000

3.000

4.000

5.000
6.000

10.000

30.000

Installation cost CC [ci]

C
or

e
N

et
w

or
k:

 T
ot

al
 c

os
t [

c]

In−network CDN, 1000 requests for region

In−network CDN, 5000 requests for region

NO In−network CDN, 1000 requests for region

NO In−network CDN, 5000 requests for region

Figure 6.6: Scenario 2: Total cost in the Core Network.

In Figure 6.6, we show the total costs inside the Core Network as a function

of installation costs of caches, where Central Cache and Regional caches are

connected by the relationship “installation cost of regional cache is always double

of installation cost of the central cache”.

Besides, the total costs to serve client’s request are depicted without the in-

network CDN functionality for two cases of number of requests (the black dotted

line refers to the case where number of regional requests is equal to 5000, and the

blue dashed line refers to the other case where the number of requests is 1000).

The green dotted line and red dashed line show the behaviour of the system with

73

the in-network CDN functionality with the policy “optimal placements of the

objects in the caches”.

Figure 6.7 shows the percentage of costs of the system implementing the CDN

over the system without CDN functionality (the two cases under examination).

From these results we can observe that the total costs of a system NO-CDN can

be considered as an upper bound to decide if the system with in-network CDN

provides an improvement or not to the performance. Further, the numerical re-

10 100 500 1.000 10.000

0

20%

40%

60%

80%

100%

Installation cost CC [ci]

P
er

ce
nt

ag
e

of
 c

os
t r

es
pe

ct
 N

O
 in

−
ne

tw
or

k
C

D
N

 [%
]

No In−network CDN
In−network CDN, 1000 requests/region
In−network CDN, 5000 requests/region

Figure 6.7: Scenario 2: Cost minimization of CDN system: percentage of the

costs on system without CDN functionalities.

sults are reported in Table 6.2 and Table 6.3 (always on two cases: number of

requests/region equal 1000 and equal 5000). In these tables you can find: 1)Cache

size: number of objects stored in the CC, Node1 (R1), Node2 (R2), Node3 (R3)

and 2)Traffic vol : sum of traffic volume between Server and Central Cache (S-

CC), Central Cache and Nodes (CC-R) and between Nodes (R-R).

Now, we can analyze that in neither case the CC is used, this is due to the

fact that the cost of storage per object is 100 times higher than the costs of local

74

Parameters Cache size [cu] Traffic vol [vu]

C CI C C CI R CC R1 R2 R3 S-CC CC-R RC-RC

10 20 0 387 219 87 12.41 12.41 315.67

100 200 0 387 216 87 12.41 12.41 317.76

500 1000 0 387 222 87 12.41 12.41 313.60

1000 2000 0 0 0 0 3000 3000 0

10000 20000 0 0 0 0 3000 3000 0

Table 6.2: Simulation: Scenario 2 - results with N. of request/region = 1000

Parameters Cache size [cu] Traffic vol [vu]

C CI C C CI R CC R1 R2 R3 S-CC CC-R RC-RC

10 20 0 400 380 379 0 0 79.15

100 200 0 400 378 376 0 0 76.12

500 1000 0 400 380 382 0 0 78.13

1000 2000 0 400 380 380 0 0 78

10000 20000 0 0 0 0 15000 15000 0

Table 6.3: Simulation: Scenario 2 - results with N. of request/region = 5000

storage and transport costs in the various sections of the core network.

Despite not using the Central Cache, the system integrated with CDN pro-

vides a notable minimization in the total cost by exploiting only the local caches;

as is depicted in Figure 6.7 and summarized in Table 6.4.

Nevertheless, we can understand that where the installation cost are higher com-

pared to the transport and storage costs, but also taking in account the number

of requests, may occur the two cases of Table 6.2, where the CDN function is un-

used (caches’ size are null with C CI C = 1000 and 10000) and the performance

are the same of NO-CDN system, and Table 6.3, where the CDN is unused with

C CI C = 10000.

75

Parameter Number of requests/region

C CI C 1000 5000

10 36.31% 9.53%

100 45.24% 11.33%

500 85.37% 19.33%

1000 100% 29.33%

10000 100% 100%

Table 6.4: Scenario 2: percentage of total cost of CDN system on total cost of

NO-CDN system

6.2 Features of the real system

6.2.1 Segmented videos and request routing

We show the beneficial functionality of video segmentation (DASH) of our system

used in the video streaming. Usually, segmented videos are used in peer-to-peer

video, to overcome the limitations of asymmetrical Internet access, or in adaptive

video streaming, allowing the client to adapt to changing bandwidth conditions.

In the latter approach, the client can choose among different encodings of the

video when requesting the next segment. The client is informed about available

bitrates in the form of a manifest file, called Media Presentation Description

(MPD) file for DASH, during the session setup. The manifest file for a video con-

tains information about the URLs of each combination of encoding and segment,

i.e., a list of URLs for all segments of encoding 1, segments of encoding 2, and so

on. In our system we use segmented video in a novel way to also:

• introduce in-network caches and

• adapt to the mobility of the user.

Thus, we realized in the testbed the redirection of requests to the appropriate

copy of the segment is completely managed by a transparent proxy at the MAR.

The proxy is intercepting all HTTP requests (this could also be narrowed down,

e.g., to specific ports).

As the segments of the video are rather short, we are quite flexible in adapting to

mobility of users and availability of cached content. For each request the Squid

76

proxy in the Node is first checking the availability of the requested file in the local

cache and, if available, forwarding the request to it. Otherwise, the request rout-

ing in the Node is contacting the Decision Module to find out about the optimal

source for downloading the content, and the request is forwarded to that source.

Note that the whole process is transparent to the user. The user may only be

aware of it, if he would closely monitor the latency of the requests.

By being able to dynamically redirect requests to any available copy of the re-

quested content, the CDN system also supports Traffic Optimisation/Engineering

actions dictated by the XLO, like selecting a different path between application

and source, e.g., through changing the wireless access (vertical or horizontal han-

dover) or selecting a different copy of the requested content.

6.2.2 Robustness of CDN component

Thus, let us look at the robustness of the system in case of failures of CDN nodes

or lost packets.

If a Node fails, the Node will not receive any messages from the Node and after

a timer expired, it will redirect incoming requests to other caches or the origin

server.

In the worst case, the user may realize this outage with a short disruption of the

playback, yet, in most cases, the application can survive several seconds due to

its internal buffer, e.g., in some version of VLC is possible to set a buffer size (in

seconds). In the meantime the request routing will be aware of the non-responsive

Node and, assuming a re-transmission-like algorithm in the application, the next

request for the missing chunk will be redirected to another node.

In case of failure of the AM, there is no possibility to update the content pop-

ularity distribution. This means, the DM is not aware of changes in popularity

and thus will not be able to update the content in the CDN nodes. This implies

that the system will not operate in optimal mode, but as severe changes in the

popularity distribution are quite rare, the system will still show almost optimal

performance. Even in case of one video, e.g. some top news, suddenly being re-

quested in a flash-crowd like manner, the system would still perform better than

a system without any in-network caching functionality.

Similarly, if a CDNNC fails, the communication with the attached Node(s) is

lost. Yet, requests can still be forwarded to these Node(s), as long as they are

77

still up and running. Only content update and status request messages cannot

be processed, thus the Node will not be able to change its cached content.

6.2.3 Session continuity during handovers

The system is able to provide a non-anchored application-layer-based mobility

support for videos. For each request of a chunk a new HTTP is set up. Also,

when the user is moving and connecting to a new PoA, a new HTTP session for

the next request will be established through the new PoA. This means, the on-

going playout of the video can continue with the next segment. In addition, the

mobility management is applied to the currently streamed segment, and thus, by

anchoring that flow, ensuring that the HTTP session is not lost and the segment

is streaming to the end. In that way, we can provide a continuous playback of

the video to the user. The mobility management must not anchor the flow during

the whole video session, but only seconds to few minutes to finish the already

started segment.

A video player having already buffered a certain part of the video should easily

be able to survive a handover, even without anchoring the ongoing flow, but by

re-requesting the lost segment after finishing the handover. If the playout buffer

is full enough, there would be enough time to detect a lost HTTP connection,

restart a new session for the lost chunk, and finish the download of that chunk

before reaching its playout time. However, the video players tested by our team

were not able to support a loss of the HTTP session with serious distortion of

the playback. Some players were even stopping the video, restarting it from the

beginning, or the application crashed. Also the VLC player with DASH support,

which we are finally using in our testbed, is not able to survive mobility if the

ongoing segment is lost. Thus, as long as the majority of applications are not

capable of handling this situation gracefully, the mobility management for the

ongoing segment is required. Also, without anchoring, an additional delay for re-

requesting the whole chunk after the handover would require more pre-buffering

in the application, which would in turn also increase the startup-delay of the

video.

The performance of this application-layer-based mobility support is mainly de-

pending on the duration of the segments. Short segments enable high flexibility

during mobility, and the anchor for the ongoing segment is only needed for a

78

short period.

However, with current applications the anchor must be setup up in any case in

order to provide smooth playback of the video and avoid problems mentioned

above. Also, short segments increase linearly the overhead of parts of the system:

the size of the manifest file is almost increasing linearly with the number of seg-

ments contained, the request routing needs to interrupt each additional segment,

and the overhead for establishing the HTTP connections as well as the number

of packets to transmit will increase with shorter segments. Thus, a tradeoff be-

tween flexibility and overhead must be made. In our prototype, we tested several

lengths of the segments (from 1s to 15s), and finally choose a duration of 5s, to

have a stable system, but being able to demonstrate the non-anchored handover

with reasonable response time.

As an example, we report the signalling messages exchange between client appli-

cation, Node of PoA (Node1), and the forwarded requests to the others Nodes of

the system from Node1.

79

REQUEST FROM MAR1 (MPD+MP4 control files from origin)
1366209463.341 2100::21f:3bff:fe6b:ea4b TCP_MISS/206 011549 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5_900kbps_dash.mpd - HIER_DIRECT/6000::102

1366209463.371 2100::21f:3bff:fe6b:ea4b TCP_MISS/206 001208 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5_900kbps_dash.mp4 - HIER_DIRECT/6000::102

1366209466.296 2100::21f:3bff:fe6b:ea4b TCP_MISS/206 644606 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s1.m4s - FIRSTUP_PARENT/5000::51

1366209471.216 2100::21f:3bff:fe6b:ea4b TCP_MISS/206 613061 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s2.m4s - FIRSTUP_PARENT/5000::51

1366209475.645 2100::21f:3bff:fe6b:ea4b TCP_MISS/206 646902 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s3.m4s - FIRSTUP_PARENT/5000::51

MAR1->MAR2
1366209479.683 2200::21f:3bff:fe6b:ea4b TCP_MISS/206 338212 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s4.m4s - FIRSTUP_PARENT/5000::52

1366209486.327 2200::21f:3bff:fe6b:ea4b TCP_MISS/206 643752 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s5.m4s - FIRSTUP_PARENT/5000::52

1366209491.719 2200::21f:3bff:fe6b:ea4b TCP_MISS/206 717152 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s6.m4s - FIRSTUP_PARENT/5000::52

1366209495.273 2200::21f:3bff:fe6b:ea4b TCP_MISS/206 710915 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s7.m4s - FIRSTUP_PARENT/5000::52

MAR1->MAR3
1366209500.427 2200::21f:3bff:fe6b:ea4b TCP_MISS/206 338403 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s8.m4s - FIRSTUP_PARENT/5000::53

1366209506.097 2200::21f:3bff:fe6b:ea4b TCP_MISS/206 435621 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s9.m4s - FIRSTUP_PARENT/5000::53

1366209511.211 2200::21f:3bff:fe6b:ea4b TCP_MISS/206 698744 GET

http://origin/BigBuckBunny_5_900kbps/bunny_5s10.m4s - FIRSTUP_PARENT/5000::53

...

80

Chapter 7

Conclusions

We want to conclude this thesis underlining the results obtained through theo-

retical and simulation analysis, ending with the implementation of a real testbed.

Moreover, we show a list of learned lessons and some points for future research

work.

As we said, the system works in practice in three real testbeds: the first is lo-

cated in the laboratories of DoCoMo Euro-Labs Munich (DE) [27], which is also

the main place where the work for this thesis was done, then in Alcatel-Lucent

Bell Labs Paris (FR) [28] and eventually in EURECOM Laboratories in Sophia

Antipolis (FR) [29].

Before summarizing the results, we show the main steps to get to the final

implementation of the system:

• Initially, we studied the general architecture of the MEDIEVAL system

with focus on the Transport Optimization (TO) module, in particular CDN

component;

• After that, we analyzed the functionalities of the open source software called

oCDN, which managed a simple CDN video system and tried it in our

testbed [30];

• Then, we examined a proxy server in PoA level to allow the interception of

the client’s request (in the final system the PoA is located in the Nodes);

as proxy server we chose and tried some version of Squid proxy;

81

• Secondly, a new standard video, named MPEG-DASH, was studied to in-

tegrate in the future system;

• Afterwards, we changed the system based on IPv6 protocol and not only in

IPv4 as was oCDN;

• Thus, a new customized software was implemented completely to manage

all entities of the system;

• Then, we added the component which manage the optimal popularity-based

caching in the local Nodes, through Apache web servers with the purpose

to manage the caches;

• Finally, we implemented a real simulator into the system with a popular-

ity requests generator and setted some scenarios in a Linear Programming

simulator to obtain the optimal cache dimensioning to demonstrate the im-

provement in a CDN system with “popularity-based approach”.

Therefore, we can explain briefly the main technical characteristics of the

system developed:

• it is IPv6-based since it gives us the possibility to use the DMM [5], imple-

mented to manage the handovers among different access technologies and

network regions;

• it is focused on a streaming solution based on the HTTP protocol and

independent of media transport protocols such as Real Time Streaming

Protocol (RTSP) or Real Time Protocol (RTP). Thus, we can transport

over HTTP any kind of file, and the key aspect of this protocol is that it

works well using proxies and masquerading features;

• it supports MPEG-DASH standard as video streaming protocol that is an

adaptive bitrate streaming technology;

• a simple Proxy Web Server (Squid proxy server) for the proxy functionali-

ties and a simple Web Server (Apache web server) for caching are used to

manage all operations (exploiting HTTP protocol);

82

• the scripts are mainly written in Perl [20], that is an high-level, general-

purpose, interpreted and dynamic programming language and it is well

supported by Apache web server and Squid proxy server;

• simple text-file are used as database files to exchange popularity informa-

tion between local Nodes and Decision Module in Core Router of system;

Finally, we highlighted some results; with the system in-network CDN based

on “optimal cache dimensioning” and considering a new concept of “popularity”

(that refers no longer at the global level but rather at local/regional level), the

system improves greatly the performance on costs, traffic and access to the con-

tents. In particular, this is done exploiting local knowledge at proxy servers,

intercepting the requests of local users.

Then, with the integration of the technology MPEG-DASH, where the basic

content is a single chunk of video and not the whole video, the popularity con-

cerns the single segment requested; this allows a better managing of the memory

space in the caches thanks to the ability to store the more useful data to serve

clients. The basic idea of this approach is “manage smaller pieces of video allow

more useful data stored, but also a greater computational cost (e.g video editing

DASH)”.

Therefore, with a “regional popularity” and with the technology DASH, we have

an improvement in the performance of the system respect the system without

these functionalities.

Besides these aspects, we can discuss about the features derived from the man-

agement through the “popularity algorithm” implemented in the Core Router.

This algorithm lets a management dynamical and smoothly without excessively

overloading the system during periods of high demand for contents. In fact, the

operations are carried out in a balanced and stable way avoiding the overload of

work in the nodes due too many simultaneous operations of storing/deletion.

In addition, we can see how the request routing is handled; in particular, the

operations to serve the clients’ requests are distributed between all Nodes and

the Core Router of the network. In this way, also the workload is distributed

83

and not centralized in one unique entity, thereby avoiding overloaded Nodes and

increasing the robustness of the system.

Thus, taking also into account the tests carried out in the testbed, we assess

that the system is generally stable and efficient in a mobility environment during

handover between different PoA maintaining a session continuity.

As final remark we can say that our system is full running and shows the

benefits of the MEDIEVAL Transport Optimization architecture. Thus, we leave

some ideas to improve the system:

• Improve the scalability issues; in fact, the system is running in a simple

environment, where are located only three PoA, with three different tech-

nologies of access;

• Use of functionalities of MPEG-DASH for video bitrate adaptation, to im-

prove not only the video streams, but also their bandwidth considering the

features of the wireless channels and of the technologies used in wireless

access;

• Switch from a video-service system to a multiple-services system using

HTTP protocol;

• Introduction of a module to detect the type of users in the system in order

to make decisions based on mobile or static aspects. The system we im-

plemented is meant for mobile scenarios. If a user is static, pipelining and

persistent connections could be a good solution to avoid additional over-

head;

These observations conclude the discussion of this thesis, pointing out that

future developments will be traceable in MEDIEVAL Project, looking at the

reference website [1].

84

Bibliography

[1] MEDIEVAL (MultiMEDia transport for mobIlE Video AppLications), 2010,

[Online]. Available: http://www.ict-medieval.eu/

[2] 7th Framework Programme, [Online].

Available: http://cordis.europa.eu/fp7/home en.html

[3] European Commission, 1958, [Online].

Available: http://ec.europa.eu/index en.htm

[4] MEDIEVAL, Deliverable D1.1, Preliminary architecture design.

[5] T. Melia, F. Giust, R. Manfrin, A. de la Oliva, C. J. Bernardos, and M.

Wetterwald, IEEE 802.21 and Proxy Mobile IPv6: A Network Controlled

Mobility Solution, Future Network and Mobile Summit 2011 Conference Pro-

ceedings, June 2011.

[6] T. Melia, C. J. Bernardos, A. de la Oliva, F. Giust, and M. Calderon, IP

Flow Mobility in PMIPv6 Based Networks: Solution Design and Experimen-

tal Evaluation, Wireless Personal Communication, vol. Special issue, 2011.

[7] MEDIEVAL, Deliverable D5.2, Final Specification for transport optimization

components & interfaces.

[8] MEDIEVAL, Deliverable D5.3, Advanced CDN mechanisms for video stream-

ing.

[9] MEDIEVAL, Deliverable D5.1, Transport Optimization: initial architecture.

[10] ALTO: IETF application-layer traffic optimization (active WG). [Online].

Available: http://tools.ietf.org/wg/alto/

85

[11] C. Müller and C. Timmerer, A Test-Bed for the Dynamic Adaptive Streaming

over HTTP featuring Session Mobility, In Proceedings of the ACM Multi-

media Systems Conference 2011, San Jose, California, February 23-25, 2011.

[12] I. Sodagar, The MPEG-DASH Standard for Multimedia Streaming Over the

Internet, IEEE Multimedia, IEEE MultiMedia, October-December 2011, pp.

62-67.

[13] T. Stockhammer, I. Sodagar, MPEG DASH: The Enabler Standard for Video

Deliver Over The Open Internet, IBC Conference 2011, Sept 2011.

[14] S. Lederer, C. Müller, B. Rainer, C. Timmerer, and H. Hellwagner, Adaptive

Streaming over Content Centric Networks in Mobile Networks using Multiple

Links, In Proceedings of the IEEE International Workshop on Immersive &

Interactive Multimedia Communications over the Future Internet, Budapest,

Hungary, June, 2013.

[15] I. Sodagar and H. Pyle, Reinventing multimedia delivery with MPEG-DASH,

SPIE Applications of Digital Image Processing XXXIV, Sept 2011.

[16] T. Stockhammer, Dynamic Adaptive Streaming over HTTP-Design Prici-

ples and Standards, MMSys 11: Proceedings of the second annual ACM

conference on Multimedia systems New York, ACM Press, February 2011,

S. 133-144.

[17] Apache HTTP Server Project, February 1995, [Online]. Available:

http://httpd.apache.org

[18] squid-cache.org: Optimising Web Delivery, 1990, [Online]. Available:

http://www.squid-cache.org

[19] Saini K., Squid Proxy Server 3.1 Beginner’s Guide, Packt Publishing Lim-

ited, 2011.

[20] S. Cozens and P. Wainwright, Beginning Perl (Programmer to Programmer),

Wrox Press, May 2000.

[21] C. Müller and C. Timmerer, A VLC Media Player Plugin enabling Dynamic

Adaptive Streaming over HTTP, In Proceedings of the ACM Multimedia

2011 , Scottsdale, Arizona, November 28, 2011.

86

[22] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and

T. Berners-Lee, Hypertext Transfer Protocol – HTTP/1.1, RFC 2616, June

1999. [Online]. Available: http://tools.ietf.org/html/rfc2616.

[23] UNI Klagenfurt, Institute of Information Technology - ITEC. [Online]. Avail-

able: http://www.uni-klu.ac.at/tewi/inf/itec/

[24] MEDIEVAL, Deliverable D5.4, Resources efficient mobile transport: final

operational architecture.

[25] lp solve, lp solve: a Mixed Integer Linear Programming (MILP) solver. [On-

line]. Available: http://lpsolve.sourceforge.net/5.5/

[26] Zipf’s law, [Online]. Available: http://en.wikipedia.org/wiki/Zipf’s law

[27] DOCOMO Euro-Labs Munich (DE), [Online]. Available:

http://www.docomoeurolabs.de/

[28] ALCATEL LUCENT Bell Labs France(FR), [Online]. Available:

http://http://www3.alcatel-lucent.com/wps/portal/belllabs/

[29] EURECOM Laboratories Sophia Antipolis (FR), [Online]. Available:

http://www.eurecom.fr/

[30] OpenCDN Project, [Online]. Available: http://labtel.ing.uniroma1.it/opencdn/

87

Acknowledgements

My first heartfelt thanks to Prof. Michele Zorzi for the nice opportunity given to

me with the experience in DoCoMo.

I sincerely thank Daniele to the efforts made to support me before and during

the thesis and to convince me to exploit this possibility abroad.

Then, I would like to thank you all colleagues of DoCoMo Euro-Labs in Munich;

in particular, my supervisor Gerald, the best supervisor that everyone would

like, a person very knowledgeable and helpful. Besides him, there are Dirk,

extraordinary technical knowledge, the ‘’italian coffee-group” composed by David,

Wolfgang, Xueli, Joan, Bo, Sandra and also Jamal, Jens, Qing and all the others.

Finally, there are also all the people with whom I worked in the implementations

of the testbed for the MEDIEVAL project, especially Fabio, Telemaco and Carlos.

Thank you very much for this extraordinary experience!!!

Daniele Romani

88

