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Abstract

Ultracold atomic gases in one dimension are often described using the Lieb-Liniger model
of interacting bosons. The model is exactly solvable using techniques of integrability and
the Bethe Ansatz. In the repulsive regime, it describes a strongly correlated quantum
gas with finite compressibility. In the attractive regime, the model exhibits additional
richness in the form of bound states of constituent particles. The unique combination
of experimental feasibility and exact theoretical solvability, as well as the possibility to
compare the exact theory with various effective approaches, make the Lieb-Liniger model an
extraordinary platform to study the many-body physics of strongly correlated systems. The
thesis investigates the dynamical properties of the model in both the attractive and repulsive
regimes, by constructing particular solutions of the quantum theory that are the analogue
classical solitons. Therefore extensive comparisons are made between the exact results of
the quantum theory and those of the related mean field theory. A detailed discussion of the
ground state and the excitation spectrum of the system, using a combination of exact and
effective approaches, contributes to this main objective.
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Introduction

The experimental realization of ultracold quasi-one-dimensional atomic gases in optical lat-
tices, obtained by confining three-dimensional Bose-Einstein condensates in a long cylindri-
cal shape (Fig. 1), see e.g. Görlitz et al. (2001); Greiner et al. (2001); Moritz et al. (2003);
Paredes et al. (2004); Kinoshita et al. (2004), has renewed the interest in the rather idealized
theoretical model of interacting bosons in one dimension, known as the Lieb-Liniger model
(Lieb and Liniger, 1963; Lieb, 1963). Rigorous analyses of the many-body Schrödinger equa-
tion indeed show that the low-energy states of such cylindrical atomic gases are described
by the Lieb-Liniger model1 (Lieb et al., 2003; Seiringer and Yin, 2008).

Quantum physics in one dimension is very peculiar. In higher dimensions, quantum
many-body systems can only be described perturbatively, namely starting from the free
theory and summing a series of contributions coming from the expansion of the interac-
tion terms, or by mean field techniques. In one dimension, there are methods for treat-
ing interacting systems in a completely non-perturbative way. The Lieb-Liniger model,
in particular, belongs to a class of one-dimensional models that are exactly solvable via a
technique called Bethe Ansatz, which was originally introduced by Bethe to treat exactly
the nearest-neighbor interactions of the Heisenberg XXX spin chain (Bethe, 1931). These
exactly solvable models have the special property that a single interaction between multi-
ple particles can be described as multiple interaction between just two particles. In this
way, the Bethe Ansatz is able to turn the time-independent Schrödinger equation into a
system of algebraic equations (the Bethe equations) involving sets of complex numbers (the
rapidities) which uniquely identify the eigenstates of the Hamiltonian. This property can
be considered the distinctive feature of quantum integrable systems, although (unlike in the
classical world) there is not yet a universally accepted definition of quantum integrability
(Caux and Mossel, 2011).

The unique combination of experimental feasibility and exact theoretical solvability,
as well as the possibility to compare the exact theory with various effective approaches,
make the Lieb-Liniger model an extraordinary platform for studying the interplay between
theory and experiment and between different theoretical descriptions. From the theory
perspective, the purely one-dimensional case can also serve as a basis for the investigation
of effects beyond the mean field in higher dimensions.

This thesis is centered around the study of a specific phenomenon within the Lieb-Liniger
model, namely the existence of particular states representing the quantum analogue of
soliton solutions in classical field theories. We will perform this study in both the attractive
and repulsive interaction regimes, where the underlying physics is markedly different, and
carry out extensive analyses of the relationship between the exact ‘quantum’ solutions of
the model and the ‘classical’ solutions of the related mean field theory.

The contents are organized as follows. In Chapter 1 we present the Lieb-Liniger model
and its exact solution via the Bethe Ansatz, following the original treatment of Lieb and
Liniger, both in the attractive and repulsive cases. In Chapter 2 we study in detail the

1The cylinder does not have to be as narrow as the atomic diameter; it can be much wider if the excitation
energy in the direction orthogonal to the axis is large compared to the energy per particle.
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Figure 1: A 2D lattice potential is formed by overlapping two optical standing waves along
the y axis and the z axis with a Bose-Einstein condensate in a magnetic trap.
The condensate is then confined to an array of several thousand narrow potential
tubes (inset). Adapted from Greiner et al. (2001).

ground state of the attractive model, deriving in particular its density profile, and compare
the exact result with that obtained from the mean field theory. We will see that the
ground state is represented by a bright soliton at rest, namely a localized density peak. In
Chapter 3 we construct single and double quantum bright solitons as superpositions of exact
eigenstates of the attractive model; we study their stability under time evolution and their
scattering properties by exploiting general results of scattering theory in one dimension and
the knowledge of the exact scattering phase shifts obtained from the Bethe Ansatz. We
compare the exact results with those for the scattering of bright solitons within the mean
field theory.

In Chapter 4 we turn to the repulsive model, studying the ground state and the elemen-
tary excitations using a combination of exact and effective approaches. We will show that
hole-like excitations of the model can be identified (to some extent) with dark soliton solu-
tions of the corresponding mean field theory. This motivates the search for quantum dark
solitons built from superpositions of hole-like excited states. In Chapter 5 we thus present
the construction of such quantum dark solitons and study their time evolution, discussing
how to improve their stability.

2



Chapter 1

The Lieb-Liniger model

1.1 Interacting bosons in one dimension

The subject of this work is a system of N spinless bosons in one-dimensional (1D) space,
interacting via an ultra-local delta function potential. The Hamiltonian is

H(N) = − ℏ2

2m

NX

j=1

∂2xj + 2c
X

i<j

δ(xi − xj) (1.1)

where m is the mass of the particles and c is the interaction coupling. A positive value
of c denotes repulsive interaction, whereas a negative value of c corresponds to attractive
interaction. As mentioned in the Introduction, such a system can be experimentally realized
by applying a strong transverse confinement to a 3D ultracold atomic gas. It is then useful
to relate the 1D interaction strength g1D = 2c to that of the analogous three-dimensional
model, that is g3D = 4πℏ2as/m, where as is the s-wave scattering length (Landau and
Lifshitz, 1980). The coupling c can be expressed in terms of an effective 1D scattering length
a1D as c = −ℏ2/ma1D. Introducing the characteristic length of the transverse confinement
a⊥ =

p
ℏ/mω⊥, where ω⊥ is the frequency of the confinement, for as ≪ a⊥ one has the

identification a1D = −a2⊥/as. When the above condition is not satisfied, a1D should be
properly renormalized, taking the value a1D = −a⊥(a⊥/as −C), where C = |ζ(1/2)|/

√
2 ≃

1.0326, and ζ(z) is the Riemann zeta function (Olshanii, 1998; Cazalilla et al., 2011). The
resonant behavior of c as a⊥/as → C is called confinement-induced resonance. Positive
values of c, corresponding to negative values of a1D and repulsive interaction, are only
obtained in the interval 0 < as < a⊥/C.

The second-quantized version of the Hamiltonian (1.1) is

Ĥ =

Z
dx ψ̂†(x) −ℏ2∂2x

2m
ψ̂(x) + c ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x) (1.2)

where ψ̂(x) and its adjoint ψ̂†(x) are bosonic field operators satisfying the canonical com-
mutation relations

h
ψ̂(x), ψ̂†(y)

i
= δ(x− y),

h
ψ̂(x), ψ̂(y)

i
= 0. (1.3)

The Heisenberg equation of motion for the field operator ψ̂(x, t) = e−itĤ/ℏψ̂(x)eitĤ/ℏ is then

iℏ ∂tψ̂(x, t) = e−itĤ/ℏ
h
ψ̂(x), Ĥ

i
eitĤ/ℏ = −ℏ2∂2x

2m
+ 2c ψ̂†(x, t)ψ̂(x, t) ψ̂(x, t). (1.4)

The particle number and total momentum operators,

N̂ =

Z
dx ψ̂†(x)ψ̂(x), P̂ = −iℏ

Z
dx ψ̂†(x)∂xψ̂(x), (1.5)

3



commute with the Hamiltonian, [N̂ , Ĥ] = 0 and [P̂ , Ĥ] = 0, giving us the two simplest
conservation laws. There exist also higher-order conservation laws (Davies, 1990).

Hereafter we shall focus on the N -particle sector of the Fock space of the quantum field
theory defined by Eq. (1.2). The N -particle eigenstates |ΨN ⟩ of Ĥ can be parametrized in
terms of complex-valued wavefunctions ΨN (x1, . . . , xN ) as

|ΨN ⟩ =
Z
dx1 · · · dxN ΨN (x1, . . . , xN )ψ̂

†(x1) . . . ψ̂†(xN )| 0 ⟩, (1.6)

| 0 ⟩ being the normalized Fock vacuum defined by ψ̂(x)| 0 ⟩ = 0. The Bose statistics imposes
that the wavefunctions are completely symmetric in the exchange of positions. Projecting
onto the position basis, the eigenvalue problem for Ĥ is then given by the time-independent
Schrödinger equation

H(N)ΨN (x1, . . . , xN ) = ENΨN (x1, . . . , xN ). (1.7)

For convenience, from now on we choose units such that ℏ = 1 and 2m = 1, thus obtaining
the Lieb-Liniger Hamiltonian

H(N) =

NX

j=1

−∂2xj + 2c
X

i<j

δ (xi − xj) . (1.8)

In the next section we present the exact solution of the Schrödinger equation for such
Hamiltonian, first obtained by Lieb and Liniger (1963), and subsequently deepened by
Yang (1967, 1968) and Sutherland (1968), based on the Bethe Ansatz. Our treatment
follows mainly Caux (2023).

1.2 Exact eigenstates

Let us begin with the N = 2 case, for which the Schrödinger equation is

−∂2x1 − ∂2x2 + 2c δ(x1 − x2)− E2 Ψ2(x1, x2) = 0, (1.9)

with (x1, x2) ∈ R2. For x1 ̸= x2 the interaction term vanishes and the eigenfunctions should
be given by plane waves. For x1 = x2, however, the delta function brings a discontinuity in
the first derivative of the wavefunction Ψ2(x1, x2) evaluated at x2 − x1 = 0+, so that1

(∂x2 − ∂x1 − c)Ψ2(x1, x2)
x2−x1=0+

= 0. (1.10)

To explicitly solve the Schrödinger equation, we restrict to a fundamental open domain
D2 : x1 < x2 with boundary ∂D2 : x2 − x1 = 0+. The restriction of Eq. (1.9) to D2 is

−∂2x1 − ∂2x2 − E2 Ψ2(x1, x2)
(x1,x2)∈D2

= 0 (1.11)

and is simply solved in terms of free waves, ei(λ1x1+λ2x2) and ei(λ2x1+λ1x2), for λ1, λ2 generic
complex numbers representing quasimomenta. These plane wave solutions have total energy
and total momentum

E2 = λ21 + λ22, P2 = λ1 + λ2. (1.12)
1This can be seen by rewriting the Schrödinger equation (1.9) using the coordinates x+ = 1

2
(x1 + x2)

and x− = x1 − x2, so that [−∂2
x− + 2c δ(x−) − E2]Ψ2 = 0, and integrating over x− ∈ [−ϵ, ϵ] for ϵ → 0+.

This yields the condition

−1

2
(∂x1 − ∂x2)Ψ2

x1−x2=0+

x1−x2=−0+
+ cΨ2

x1=x2

= 0,

which, with the symmetry of the bosonic wavefunction, Ψ2(x1, x2) = Ψ2(x2, x1), leads to Eq. (1.10).
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Therefore we look for a solution in the form

Ψ2(x1, x2|λ1, λ2)
(x1,x2)∈D2

= A1e
i(λ1x1+λ2x2) +A2e

i(λ2x1+λ1x2) (1.13)

for some complex amplitudes A1, A2. By imposing to Eq. (1.13) the boundary condition
(1.10), we obtain the following relation between the two amplitudes,

A2

A1
= −c+ i(λ1 − λ2)

c− i(λ1 − λ2)
= −eiϕ(λ1−λ2), (1.14)

where we have defined the scattering phase shift

ϕ(λ) =
1

i
ln

c+ iλ

c− iλ . (1.15a)

If λ is real, ϕ takes the form

ϕ(λ) = 2 arctan
λ

c
. (1.15b)

Hence we rewrite the wavefunction (up to an overall phase and a normalization factor) as

Ψ2(x1, x2|λ1, λ2)
(x1,x2)∈D2

= ei(λ1x1+λ2x2)−
i
2
ϕ(λ1−λ2) − ei(λ2x1+λ1x2)+

i
2
ϕ(λ1−λ2). (1.16)

Since ϕ(−λ) = −ϕ(λ), the wavefunction is symmetric in coordinates and antisymmetric in
quasimomenta. In particular, for λ1 = λ2 it identically vanishes, and does not represent a
good eigenstate. Without prejudice to this property, we may as well make our wavefunction
symmetric under quasimomenta exchange by multiplying it by sgn(λ2 − λ1). We can then
extend the domain of validity of this form to all (x1, x2) ∈ R2 by imposing total symmetry
under coordinate exchange. This gives

Ψ2(x1, x2|λ1, λ2) = sgn(x2 − x1)sgn(λ2 − λ1)

×
X

Q∈π2
(−1)[Q] exp iλQ1x1 + iλQ2x2 −

i

2
sgn(x2 − x1)ϕ(λQ1 − λQ2) ,

(1.17)

where π2 is the group of permutations of two objects and [Q] denotes the parity of Q.
The above construction is directly generalizable to N particles by defining the funda-

mental open domain DN : x1 < x2 < · · · < xN with boundaries ∂jDN : xj+1 − xj = 0+,
where the Schrödinger equation (1.7) is equivalent to

NX

j=1

−∂2xj − EN ΨN (x)
x∈DN

= 0, ∂xj+1 − ∂xj − c ΨN (x)
x∈∂jDN

= 0, (1.18)

with x = (x1, . . . , xN ). In this domain, the solution is

ΨN (x|λ)
x∈DN

=
X

Q∈πN
AQ exp i

NX

j=1

λQjxj , (1.19)

with λ = (λ1, . . . , λN ), and the boundary conditions impose the relations among the AQ’s
(cf. Eq. (1.14)),

AQ′ =
λQj+1 − λQj + ic

λQj+1 − λQj − ic
AQ, (1.20)
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where Q′ is the permutation obtained from Q by interchanging the jth and (j + 1)th
components. We can then extend this solution to the region of RN in which at most
two coordinates exactly coincide, obtaining the Bethe wavefunction

ΨN (x|λ) =
Y

N≥j≥k≥1

sgn(xj − xk)sgn(λj − λk)

×
X

Q∈πN
(−1)[Q] exp i

NX

j=1

λQjxj +
i

2

X

N≥j≥k≥1

sgn(xj − xk)ϕ(λQj − λQk
) . (1.21)

We notice that Bethe wavefunction is a superposition of plane waves labeled by inter-
nal quasimomenta (also called rapidities), the relative amplitude of each plane wave being
determined by the scattering phase shift characteristic of the two-body interaction. The ra-
pidities obey a sort of Pauli exclusion principle, so that the wavefunction identically vanishes
if two rapidities coincide.

1.3 Bethe equations

Until now we have considered our system as being defined on the whole real line. In this
case the quasimomenta could in principle assume any value. In order to have a discrete set
of eigenstates we introduce a finite quantization length by putting the system on an interval
of length L and imposing periodic boundary conditions (equivalently, we put the system on
a ring of circumference L). Starting again with the N = 2 case, the periodicity conditions
read

Ψ2(x1 + L, x2|λ1, λ2) = Ψ2(x1, x2 + L|λ1, λ2) = Ψ2(x1, x2|λ1, λ2). (1.22)

Taking for instance the first of these conditions and using the symmetry of the wavefunction,
we have

Ψ2(x2, x1 + L|λ1, λ2) = Ψ2(x1, x2|λ1, λ2). (1.23)

Imposing this condition to Eq. (1.17) yields the quantization conditions for the rapidities,

eiλ1L = −e−iϕ(λ1−λ2), eiλ2L = −eiϕ(λ1−λ2), (1.24)

or
eiλ1L =

λ1 − λ2 + ic

λ1 − λ2 − ic
, eiλ2L =

λ2 − λ1 + ic

λ2 − λ1 − ic
. (1.25)

These are the Bethe equations for the two-particle Lieb-Liniger model. In view of state
classification, it is more convenient to take the logarithm of Eqs. (1.24),

λ1 +
1

L
ϕ(λ1 − λ2) =

2π

L
I1, λ2 +

1

L
ϕ(λ2 − λ1) =

2π

L
I2, (1.26)

with Ij ∈ Z + 1
2 , j = 1, 2, taking the role of quantum numbers of the theory. Notice that

taking the product of Eqs. (1.24), or equivalently, taking the sum of Eqs. (1.26), we obtain

ei(λ1+λ2)L = 1, or λ1 + λ2 =
2πI

L
, I ∈ Z, (1.27)

that is the quantization condition for the total momentum of Ψ2(x1, x2|λ1, λ2).
The above considerations generalize to an arbitrary number N of particles. The period-

icity conditions, combined with the symmetry of the wavefunction, give

ΨN (x1, . . . , xj−1, xj+1, . . . , xN , xj + L|λ) = ΨN (x1, . . . , xj−1, xj , xj+1, . . . , xN |λ) (1.28)
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for j = 1, . . . , N , which lead to the Bethe equations

eiλjL = (−1)N−1e−i
PN

k=1 ϕ(λj−λk) =
Y

k ̸=j

λj − λk + ic

λj − λk − ic
(1.29)

or in log-form

λj +
1

L

NX

k=1

ϕ(λj − λk) =
2π

L
Ij , Ij ∈

(
Z+ 1

2 , N even,
Z, N odd.

(1.30)

Proof. We have eiλjL = (−1)N−1e−i
PN

k=1 ϕ(λj−λk) = eiπ(N−1)−i
PN

k=1 ϕ(λj−λk), that gives

λjL− π(N − 1) +

NX

k=1

ϕ(λj − λk) = 2πnj , nj ∈ Z.

Bringing the factor π(N − 1) to the right-hand side we obtain Eq. (1.30) with Ij = nj + (N − 1)/2.
Therefore Ij is half-integer for N even and integer for N odd.

A complete set of eigenstates is obtained by choosing all proper sets of quantum numbers
and constructing their associated Bethe wavefunctions. As can be seen from Eq. (1.21), the
eigenstate parameterized by the set of rapidities {λ1, . . . , λN} has total energy and total
momentum

EN =
NX

j=1

λ2j , PN =
NX

j=1

λj . (1.31)

The closure relation, orthogonality and normalizability of Bethe states has been show by
Gaudin (2014, 1971a,b) and Dorlas (1993).

1.4 Attractive interaction

We now specialize the general results above to attractive interaction (c < 0), characterizing
the ground state and the excited states of the Lieb-Liniger model in this regime.

1.4.1 String solutions

Let us introduce c = −c > 0 as the interaction parameter, and rewrite Eq. (1.29) as

eiλαL =
Y

β ̸=α

λα − λβ − ic
λα − λβ + ic

. (1.32)

for α, β = 1, . . . , N . For a complex rapidity λα = µα + iηα, where µα ≡ Reλα and
ηα ≡ Imλα, the Bethe equation is

eiµαL−ηαL =
Y

β ̸=α

µα + i(ηα − c)− λβ
µα + i(ηα + c)− λβ

. (1.33)

Now suppose to take the infinite volume limit, L→∞, while keeping the number of particles
N fixed. If ηα > 0, the left-hand side goes to zero as O(e−ηαL). The equality implies that
there must be a λβ such that λβ = µα+ i(ηα− c)+O(e−ηαL). On the other hand, if ηα < 0
the left-hand side goes to infinity as O(e|ηα|L), and there must be a rapidity λβ such that
λβ = µα+ i(ηα+ c) +O(e−|ηα|L). Thus we see that in the attractive case rapidities arrange
themselves into clusters in the complex plane, the elements of each cluster being evenly
spaced by c in the imaginary direction. Such clusters are called strings and represent bound
states of particles.
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To give a clearer physical picture, let us consider just two particles, and thus two rapidi-
ties λ1 and λ2. We parametrize the first one as λ1 = µ1+iη1, up to deviations exponentially
small in system size. Assuming for instance that η1 > 0, the Bethe equations are solved by
λ2 = µ1 + i(η1 − c). To have a real energy eigenvalue E2 = λ21 + λ22, it must be λ2 = λ∗1,
that gives η1 = c/2. Introducing the simplified notation λ = µ1, the two rapidities are then

λ1 = λ+ i
c

2
+O(e−cL/2), λ2 = λ− i c

2
+O(e−cL/2). (1.34)

Assuming that η1 < 0 one would have found η1 = −c/2, which simply leads to an exchange
of labels of the rapidities. Using λ1−λ2 = ic+O(e−cL/2), we can now evaluate the relation
(1.14) between the two amplitudes of the Bethe wavefunction,

A1 =
λ1 − λ2 − ic
λ1 − λ2 + ic

A2 = O(e−cL/2) ≃ 0. (1.35)

Hence the Bethe wavefunction in the fundamental domain x1 < x2 is

Ψ2(x1, x2) = A2 e
iλ(x1+x2)e−

c
2
(x2−x1) (1.36a)

and it can be extended to all (x1, x2) ∈ R2 by writing

Ψ2(x1, x2) = N2 e
iλ(x1+x2)e−

c
2
|x2−x1| (1.36b)

where N2 is a normalization constant. The first term represents a free wave for the center of
mass, while the second term brings an exponential suppression in the separation between the
two particles. The wavefunction thus represents a bound state of two particles (2-string),
with binding length 2/c. Eq. (1.27) gives e2iλL = 1, which means that λ, the ‘center’ of
the 2-string, is quantized as the total momentum P of a single ‘collective’ particle, with
P = 2λ.

For a given number of atoms N , we can construct eigenstates with fixed string content
by partitioning N into Nj strings of integer length j ∈ [1, N ], the length of a string being
defined as the number of rapidities within it. Denoting the total number of strings as Ms,
we have

N =
X

j

jNj , Ms =
X

j

Nj . (1.37)

We will parametrize string rapidities as

λj,aα = λjα + i
c

2
(j + 1− 2a) + iδj,aα (1.38)

where j is the string length, α = 1, . . . , Nj identifies the j-string under consideration and
a = 1, . . . , j is the internal index labeling rapidities within the string (Calabrese and Caux,
2007). Here δj,aα ∼ e−(const.)L are exponentially small deviations in system size. In general
the string deviations δj,aα are complex numbers, and depend sensitively on the particular
boundary conditions used, with the constraint that the full set of rapidities {λj,aα } remains
self-conjugate so that the energy eigenvalue is real. Perfect strings (i.e. with all δj,aα = 0) are
exact eigenstates in the limit L→∞ with Ns/L→ 0 for arbitrary N . It is then natural to
consider the limit L→∞ at fixed N , in which the deviations can be dropped. Notice that
this is different from the usual thermodynamic limit, that corresponds to taking N, L→∞
at fixed density N/L. Here, despite N remaining finite, taking L → ∞ does not trivialize
the physics, as the N particles remain strongly correlated and bound to one another (we
will return on this in Section 1.4.5, where we discuss the norm of a string state). These
string states should be viewed as individual particles of mass j, with energy and momentum
of the string centered on λjα given by

E(j,α) =

jX

a=1

(λj,aα )2 = j(λjα)
2 − c2

12
j(j2 − 1), P(j,α) =

jX

a=1

λj,aα = jλjα. (1.39)
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1.4.2 Bethe equations for strings

The Bethe equations (1.32) are written in terms of the string parametrization (1.38) as

eiλ
j,a
α L =

Y

(k,β,b)̸=(j,α,a)

λj,aα − λk,bβ − ic
λj,aα − λk,bβ + ic

=
Y

(k,β,b)̸=(j,α,a)

λjα − λkβ + ic j−k
2 − a+ b− 1 + iδj,aα − iδk,bβ

λjα − λkβ + ic j−k
2 − a+ b+ 1 + iδj,aα − iδk,bβ

=
Y

(k,β)̸=(j,α)

kY

b=1

λjα − λkβ + ic j−k
2 − a+ b− 1

λjα − λkβ + ic j−k
2 − a+ b+ 1

jY

a′=1
a′ ̸=a

c(−a− a′ − 1) + δ
j(a,a′)
α

c(−a− a′ + 1) + δ
j(a,a′)
α

(1.40)

where we have separated the product into inter-string, (k, β) ̸= (j, α), and intra-string,
(k, β) = (j, α), parts, dropped all string deviations for inter-string factors, and introduced
the notation δ

j,(a,a′)
α = δj,aα − δj,a

′
α for the differences in the intra-string deviations. These

equations can be simplified by taking the product within the string considered. The left-
hand side becomes

jY

a=1

eiλ
j,a
α L = ei

Pj
a=1 λ

j,a
α L = eijλ

j
αL. (1.41)

On the right-hand side, the intra-string part gives

jY

a=1

jY

a′=1
a′ ̸=a

c(−a− a′ − 1) + δ
j(a,a′)
α

c(−a− a′ + 1) + δ
j(a,a′)
α

= (−1)j(j+1) = 1, (1.42)

while the inter-string part, writing λ = λjα − λkβ , gives a product over λ ̸= 0 of the factors

jY

a=1

kY

b=1

λjα − λkβ + ic j−k
2 − a+ b− 1

λjα − λkβ + ic j−k
2 − a+ b+ 1

= e|j−k|(λ)e
2
|j−k|+2(λ)e

2
|j−k|+4(λ) . . . e

2
j+k−2(λ)ej+k(λ) ≡ Ejk(λ), (1.43)

where
ej(λ) =

λ− icj/2
λ+ icj/2

. (1.44)

Eqs. (1.40) have thus been reduced to the Bethe-Gaudin-Takahashi equations (Takahashi
and Suzuki, 1972), that are a set of Ms coupled equations for the string centers λjα,

eijλ
j
αL =

Y

(k,β)̸=(j,α)

Ejk(λ
j
α − λkβ). (1.45)

Defining

ϕj(λ) =
1

i
ln(−ej(λ)) = 2 arctan

2λ

cj
, (1.46)

these can be rewritten in the log-form

jλjαL−
X

(k,β)

Φjk(λ
j
α − λkβ) = 2πIjα, Ijα ∈

(
Z+ 1

2 , Nj even,
Z, Nj odd,

(1.47)
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Eq. (2.44) has thus been reduced to a set of Ns coupled equations for the string centers λj
↵,

eijλj
↵L =

Y

(k,β) 6=(j,↵)

Ejk(λ
j
↵ − λk

β). (2.49)

Defining

φj(λ) =
1

i
ln(−ej(λ)) = 2 arctan

✓
2λ

cj

◆
, (2.50)

these can be rewritten in the log-form

jλj
↵L−

X

(k,β)

Φjk(λ
j
↵ − λk

β) = 2⇡Ij
↵, Ij

↵ 2
(

Z + 1
2 , Nj even,

Z, Nj odd,
(2.51)

with the scattering phase shifts

Φjk(λ) = (1− δjk)φ|j−k|(λ) + 2φ|j−k|+2(λ) + · · · + 2φj+k−2(λ) + φj+k(λ). (2.52)

2.4.3 Ground state

Reλ
Imλ

2.4.4 Excited states

2.4.5 Norm of string states

2.5 Bound state wave packets

2.5.1 Building n-string wave packets

2.5.2 Stability of n-string wave packets
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Figure 1.1: Three string states of a gas of N = 9 atoms. Black: the ground state consists
of a single N -string centered at λNgs = 0 (zero total momentum). Red: a single-
particle excited state obtained by giving momentum to the ground state N -
string. Blue: a two-particle excited state obtained by splitting the ground state
N -string into an M -string and an (N −M)-string (in this example M = 3).

with

Φjk(λ) = (1− δjk)ϕ|j−k|(λ) + 2ϕ|j−k|+2(λ) + · · ·+ 2ϕj+k−2(λ) + ϕj+k(λ) (1.48)

representing the scattering phase shift of a j-string at a k-string, which satisfies

Φjk(λ) = Φkj(λ), Φjk(−λ) = −Φjk(λ). (1.49)

In the limit L→∞, Eq. (1.47) simplifies to

P(j,α) = jλjα =
2πIjα
L

, (1.50)

which tells us that each individual string is quantized as a free particle of mass j.

1.4.3 Ground state

It is clear from Eq. (1.39) that the energy of a string state of length j is minimized for
λjα = 0, that gives

E
(0)
j = − c

2

12
j(j2 − 1), P

(0)
j = 0. (1.51)

The lowest energy state, i.e. the ground state of the system, will thus be obtained by
forming a bound state of all N particles centered on zero (McGuire, 1964) (Fig. 1.1), by
choosing

λN,ags = i
c

2
(N + 1− 2a) +O(δ), a = 1, . . . , N. (1.52)

The corresponding energy and momentum are

Egs = −
c2

12
N(N2 − 1), Pgs = 0. (1.53)

Being of order N3, the ground state energy is not extensive. It has been argued that
the attractive Lieb-Linger model therefore does not have a proper thermodynamic limit
(Takahashi, 1999), since in the limit of large N the energy per particle is proportional to
(cN)2 → ∞. Furthermore, it will be shown in Chapter 2 that the ground state density
collapses to a linear volume of order (cN)−1 → 0.
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We now derive the form of the Bethe wavefunction for the ground state. Substituting
Eq. (1.52) into Eq. (1.19), we find that in the fundamental domain DN : x1 < · · · < xN ,

Ψgs(x)
x∈DN

=
X

Q∈πN
AQ exp − c

2

NX

a=1

(N + 1− 2Qa)xa , (1.54)

with the amplitudes AQ satisfying

AQ′ =
λQa+1 − λQa − ic
λQa+1 − λQa + ic

AQ = −1 + (Qa+1 −Qa)
1− (Qa+1 −Qa)

AQ, (1.55)

This implies that there is only one non-vanishing amplitude, namely the one associated to the
permutation Q such that Q[1, 2, . . . , N−1, N ] = [N,N−1, . . . , 2, 1]. In fact, Qa = N+1−a,
which means that (Qa+1−Qa) = −1 for any a, and thus the amplitude of any permutation
other than Q vanishes. Therefore

Ψgs(x)
x∈DN

= AQ exp − c
2

NX

a=1

(2a−N − 1)xa

= AQ exp − c
2

X

N≥a>b≥1

(xa − xb) . (1.56)

This represents indeed a bound state of N particles, since for xj ≪ xj+1 the wave function
is exponentially small2. Clearly, the validity of Eq. (1.56) can be extended beyond the
fundamental domain simply as

Ψgs(x) = NN exp − c
2

X

N≥a>b≥1

|xa − xb| (1.57)

where NN is a normalization constant.

1.4.4 Excited states

Excitations above the ground state are obtained either by giving momentum to the ground
state N -string, thus obtaining a single-particle excited state, or by partitioning it into
smaller strings to which individual momenta are given (Fig. 1.1). Each of these smaller
strings behaves like a collective particle; in this way we generate multi-particle excited states.

Single-particle states A single-particle excited state centered at µ is given by

µN,a = µ+ i
c

2
(N + 1− 2a) +O(δ), a = 1, . . . , N, (1.58)

2We can easily convince ourselves of the equality of the two expressions above by looking at the structure
of the sum P

N≥a>b≥1(xa − xb) = (xN − x1) + (xN−1 − x1) + · · ·+ (x3 − x1) + (x2 − x1)

+ (xN − x2) + (xN−1 − x2) + · · ·+ (x3 − x2)

+ · · · · · ·
+ (xN − xN−1).

We see that x1 appears only in the first line, for N − 1 times, and always with negative sign; hence its
coefficient is −(N − 1) = (2a − N − 1)|a=1. x2 appears in the second line, for N − 2 times, with negative
sign, and in the first line, one time, with positive sign; hence its coefficient is −(N−2)+1 = (2a−N−1)|a=2.
The same goes for all the other xa’s.
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and its energy above the ground state is

ωN (µ) = E(µ)− Egs = Nµ2 =
P (µ)2

N
, (1.59)

where P (µ) = Nµ is the total momentum of the excited state. For these states there is
only one Bethe equation for the string center µ, namely µ = 2πI/NL, with I ∈ Z, hence
the total momentum is quantized as for a free wave,

P =
2πI

L
, I ∈ Z. (1.60)

In the limit of large N , the energy of these single-particle states becomes flat and quasi-
degenerate with the ground state.

The Bethe wavefunction of a single-particle excited state differs from the one of the
ground state, given by (1.57), simply by a factor of exp(iµ

PN
a=1 xa), which can be rewritten

as exp(iPx), where x =
PN

a=1 xa/N is the coordinate of the center of mass of the N atoms.
Therefore

ΨNP (x) = NN exp iPx− c

2

X

N≥a>b≥1

|xa − xb| . (1.61)

Two-particle states A two-particle excited state is made of an M -string centered at µ1
and an (N −M)-string centered at µ2,

µM,a = µ1 + i
c

2
(M + 1− 2a) +O(δ), a = 1, . . . ,M, (1.62)

µN−M,a = µ2 + i
c

2
(N −M + 1− 2a) +O(δ), a = 1, . . . , N −M. (1.63)

The energy of this state is the sum of the two string energies, and with respect to the ground
state energy it is given by

ωM :N−M (µ1, µ2) = ω0
M :N−M +Mµ21 + (N −M)µ22

= ω0
M :N−M +

PM (µ1)
2

M
+
PN−M (µ2)

2

N −M , (1.64)

where we have defined the rest energy

ω0
M :N−M =

c2

4
NM(N −M) > 0, (1.65)

and PM (µ1), PN−M (µ2) are the two string momenta, whose sum gives the total momentum
of the state,

PM :N−M (µ1, µ2) = PM (µ1) + PN−M (µ2) =Mµ1 + (N −M)µ2. (1.66)

The Bethe equations are

Mµ1L− ΦM,N−M (µ1 − µ2) = 2πI1,

(N −M)µ2L+ΦM,N−M (µ1 − µ2) = 2πI2,
(1.67)

with I1, I2 ∈ Z. In the limit of large L, we can ignore the scattering phase shift and take µ1
and µ2 as free parameters. The total momentum k = PM :N−M can then take on the values

k =
2π(I1 + I2)

L
=

2πI

L
, I ∈ Z (1.68)
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while the energy is bounded from below by

ωℓM :N−M (k) = ω0
M :N−M +

k2

N
. (1.69)

As it can be easily seen, the bound is saturated for µ1 = µ2. Given the total energy ω
and momentum k as external parameters, using Eqs. (1.64), (1.66) and (1.69) we find two
solutions to the dynamical constraints, namely

µ±1 (k, ω) =
k

N
± N −M

NM

1
2 h
ω − ωℓM :N−M (k)

i 1
2
, (1.70)

µ±2 (k, ω) =
k

N
∓ M

N(N −M)

1
2 h
ω − ωℓM :N−M (k)

i 1
2
. (1.71)

Therefore, in the large L limit these states form a twofold-degenerate continuum beginning
at ωℓM :N−M (k) and extending to arbitrarily high energy, ωℓM :N−M (k) ≤ ω < ∞. Again,
ω = ωℓM :N−M (k) for µ1 = µ2. For finite L, this is of course not strictly a continuum; µ1 and
µ2 are quantized according to the Bethe equations and only discrete energy levels exist.

1.4.5 Norm of Bethe states

We complete the characterization of the eigenstates by reporting a formula for their norm.
Given a set of rapidities {λ} solving the Bethe equations, the norm of the corresponding
Bethe eigenfunction is given by the Gaudin-Korepin formula (Gaudin et al., 1981; Korepin,
1982; Gaudin, 2014), in this case

∥{λ}∥2 = |c|N
Y

j>k

(λj − λk)2 + c2

(λj − λk)2
detNG (1.72)

where G is the Gaudin matrix, whose entries are given by

Gjk({λ}) = δjk L+
NX

l=1

K(λj , λl) −K(λj , λk) (1.73)

with
K(λ, µ) =

2c

(λ− µ)2 + c2
. (1.74)

the Cauchy kernel. As shown by Calabrese and Caux (2007), this formula is adapted to the
string parametrization (1.38) as

∥{λjα}∥2 = (Lc)Ms
Y

j

j2Nj
Y

(k,β)>(j,α)

Fjk(λ
j
α − λkβ) (1.75)

where

Fjk(λ) =
λ2 + ((c/2)(j + k))2

λ2 + ((c/2)(j − k))2 . (1.76)

The norm of a single N -string is thus simply

∥{λ}∥2 = cLN2 (1.77)

and that of an M : N−M state with rapidities µ1, µ2 respectively for the M - and (N−M)-
strings,

∥{µ1, µ2}∥2 = c2L2(N −M)2M2 ((µ1 − µ2)/c)2 + (N/2)2

((µ1 − µ2)/c)2 + (N/2−M)2
. (1.78)

The dependence on L of the norm of the Bethe wavefunction as LMs , Ms being the
number of strings, reflects the fact that the strings are essentially independent, almost free
particles. The limit L → ∞ at fixed N is far from trivial, as the atoms tend to clump
together in wave packets of finite extent.
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1.5 Repulsive interaction

We now specialize to repulsive interaction (c > 0), characterizing the ground state and the
excited states of the Lieb-Liniger model in this regime. For simplicity, we shall limit our
discussion to a thermodynamically large system. Useful references this section are Korepin
et al. (1993); Takahashi (1999).

1.5.1 Properties of solutions of the Bethe equations

Let us start by proving some important properties of the solutions of Bethe equations in
the repulsive case (c > 0).

1. For c > 0, all solutions to the Bethe equations are real.

Proof. Consider a set {λj}, j = 1, . . . , N , solution to the Bethe equations, and pick from this set
the rapidity λmax with maximal imaginary part, so that Imλmax ≥ Imλj for any j. Using the fact
that, for c > 0,

λ+ ic

λ− ic =
(Reλ)2 + (Imλ+ c)2

(Reλ)2 + (−Imλ+ c)2

1/2

=

(
≥ 1, Imλ ≥ 0,

≤ 1, Imλ ≤ 0,

the Bethe equation for λmax gives

eiλmaxL =
Y

j

λmax − λj + ic

λmax − λj − ic
≥ 1.

On the other hand,

eiλL = eiLReλe−L Imλ = e−L Imλ =

(
≤ 1, Imλ ≥ 0,

≥ 1, Imλ ≤ 0,

which means that Imλmax ≤ 0, and thus Imλj ≤ 0 for any j. If instead we pick the rapidity λmin
with minimal imaginary part, we can show in the same way that Imλmin ≥ 0, and thus Imλj ≥ 0
for any j. Hence it must be Imλj = 0 for any j.

2. For c > 0, if Ij > Ik then λj > λk, and if Ij = Ik then λj = λk. On the other hand, if
λj = λk then Ij = Ik. Thus λj = λk if and only if Ij = Ik. Since the Bethe wavefunction
vanishes if two rapidities coincide, and in that case does not represent an eigenstate, a
proper set of quantum numbers {Ij} does not contain coincident Ij ’s.

Proof. Subtracting the Bethe equation for λk from the one for λj we get

λj − λk +
1

L

X

m

h
ϕ(λj − λm)− ϕ(λk − λm)

i
=

2π

L
(Ij − Ik) (1.79)

Since the scattering phase shift (1.15b) is monotonic, the first and second terms on the left-hand
side have the same sign, which then is the same sign of Ij − Ik. Furthermore, Ij − Ik = 0 implies
λj − λk = 0. Finally, λj − λk = 0 obviously implies Ij − Ik = 0.

3. For c > 0, rapidity differences are bounded by

2π

L

|Ij − Ik|
1 + 2n/c

≤ |λj − λk| ≤
2π

L
|Ij − Ik| (1.80)

Proof. Consider the Cauchy kernel

C(λ) ≡ 1

2π

dϕ(λ)

dλ λ∈R
=

1

π

c

c2 + λ2
, 0 ≤ C(λ) ≤ 1

πc
. (1.81)

Then ϕ(λ1)−ϕ(λ2) = 2π
R λ1

λ2
dλ C(λ) satisfies 0 ≤ ϕ(λ1)−ϕ(λ2) ≤ (2/c)(λ1−λ2). Substituting this

into Eq. (1.79) proves the statement.
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4. For c > 0, given a proper set of quantum numbers {Ij}, the solution for the set {λj}
exists and is unique (Yang and Yang, 1969).

Proof. The Bethe equations are the extremum conditions for the Yang-Yang action

S({λ}) = L

2

X

j

λ2j +
X

j<k

Φ(λj − λk)− 2πIjλj , (1.82)

where

Φ(λ) =

Z λ

0

dµϕ(µ) = 2λ arctan
λ

c
− c ln 1 +

λ2

c2
. (1.83)

In fact, equating
∂λj

S({λ}) = λjL+
X

k

ϕ(λj − λk)− 2πIj

to zero for all j gives the set of Bethe equations. The Hessian of the Yang-Yang action,

Sjk =
∂2S

∂λj∂λk
= ∂λj λkL+

X

m

2 arctan
λk − λm

c
− 2πIk

= δjk L+
X

m

2c

(λj − λm)2 + c2
− 2c

(λj − λk)2 + c2
,

is positive definite, since for any v ∈ RN \ {0} we have the quadratic form

X

j,k

vjSjkvk =
X

j

v2jL+
X

j,m

v2j
2c

(λj − λm)2 + c2
−
X

j,k

vjvk
2c

(λj − λk)2 + c2

=
X

j

v2jL+
X

j>k

(vj − vk)2
2c

(λj − λk)2 + c2 c>0

> 0.

Thus, S is a strictly convex function in RN , and the solution to the extremum condition for a given
proper set of quantum numbers is unique.

1.5.2 Thermodynamic limit of the Bethe equations

According to the theorems of Section 1.5.1, in the repulsive case the Bethe equations map
a proper set of (integer or half-integer) quantum numbers {Ij} to a set of real rapidities
{λj}. No two quantum numbers in the set {Ij} coincide, so they can always be ordered
as I1 < I2 < · · · < IN , which by monotonicity implies that λ1 < λ2 < · · · < λN . If the
interaction parameter c is neither 0 nor ∞, the Bethe equations are a system of N non-
linear coupled equations which cannot be solved in closed form, as changing one quantum
number changes all the rapidities. Taking the thermodynamic limit allows us to make
some progress. Since for a quantum number difference Ii − Ij ∼ 1 the difference in the
corresponding rapidities is λi − λj ∼ 1/L, in the thermodynamic limit L → ∞, N → ∞,
N/L finite, rapidities become dense on the real line.

Given a proper set of quantum numbers {Ij}, we introduce the discrete set of points
{xj = Ij/L}, and define a function λ(x), x ∈ R, such that λ(xj) = λj , where {λj} solves
the Bethe equations with {Ij},

λ(xj) +
1

L

NX

k=1

ϕ(λ(xj)− λ(xk)) = 2πxj . (1.84)

At this stage the value of λ(x) remains arbitrary for x ̸= xj . However, since xj becomes
continuous as L→∞, this suggests constraining λ(x) for any x ∈ R according to

λ(x) +

Z
dy ϕ(λ(x)− λ(y))ρ(y) = 2πx, (1.85)
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where

ρ(x) =
1

L

NX

j=1

δ x− Ij
L

=
1

L

X

n∈{I}
δ x− n

L
(1.86)

is the density of occupied quantum numbers, the set of occupied quantum numbers being
denoted by {I}. In a similar way we can define the density of unoccupied quantum numbers,
or ‘holes’, ρh, and the total density ρt,

ρh(x) =
1

L

X

m∈{eI}
δ x− m

L
, ρt(x) = ρ(x) + ρh(x) =

1

L

X

t∈{T}
δ x− t

L
, (1.87)

where {eI} denotes the set of unoccupied quantum numbers, which is complementary to {I}
with respect to the set of all possible quantum numbers, that is {T} = Z+ 1

2 for N even or
{T} = Z for N odd. In the thermodynamic limit, these densities become smooth functions
of x, and in particular

ρt(x)→
Z
dy δ(x− y) = 1. (1.88)

The continuum Bethe equations (1.85) define a continuous differentiable mapping be-
tween the x- and λ-spaces. Thus we can rewrite the densities as function in λ-space as

ρ(λ) = ρ(x(λ))
dx

dλ
, ρh(λ) = ρh(x(λ))

dx

dλ
, (1.89)

ρt(λ) = ρ(λ) + ρh(λ) = ρt(x(λ))
dx

dλ
=
dx

dλ
, (1.90)

and we can rewrite Eq. (1.85) as

λ+

Z
dλ′ ϕ(λ− λ′)ρ(λ′) = 2πx(λ). (1.91)

Differentiating with respect to λ, and using the definition of the Cauchy kernel C(λ) (1.81),
gives

ρ(λ) + ρh(λ) =
1

2π
+ C ∗ ρ(λ), (1.92)

where ∗ denotes the convolution f ∗ g(λ) ≡
R
dλ′ f(λ− λ′)g(λ′). Eq. (1.92) is a functional

relation between ρ(λ) and ρh(λ). Thus, given any function ρh(λ), it determines a function
ρ(λ) which is uniquely associated to an eigenstate of the Lieb-Liniger Hamiltonian. Once
ρ(λ) has been found, the particle, momentum, and energy densities of the corresponding
eigenstate are

N

L
=

Z
dλ ρ(λ),

P

L
=

Z
dλλ ρ(λ),

E

L
=

Z
dλλ2ρ(λ). (1.93)

1.5.3 Ground state

For any c > 0, the ground state is obtained by choosing the maximally compact set of
quantum numbers symmetric with respect to zero,

{I0j }N = −N − 1

2
, . . . ,

N − 1

2 N

= −N + 1

2
+ j

N

, j = 1, . . . , N. (1.94)

This is obviously true for c → ∞, which is known as Tonks-Girardeau limit (Tonks, 1936;
Girardeau, 1960). In this regime, the scattering phase shifts go to zero and λj = (2π/L)Ij ,
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thus EN = (2π/L)2
PN

j=1 I
2
j is minimized by choosing the quantum numbers (1.94) and

takes the value

Egs =
π2

3L2
N(N2 − 1) (c→∞). (1.95)

This is equivalent to the energy of a 1D system of non-interacting spinless fermions3. Any
other choice of {Ij} gives a larger energy. By the continuity and unicity of the Bethe
solutions {λj(c)} with respect to c for a given {Ij}, and the fact that the energy eigenvalues
are non-degenerate, we conclude that there cannot be a level crossing, hence the same
quantum numbers describe the ground state for any c > 0 (Yang and Yang, 1969).

Given the quantum numbers {I0j }, by varying c the values of the rapidities will change,
but will remain ordered; in particular, since λN is the largest rapidity,

PN
k=1 ϕ(λN−λk) > 0,

and the Bethe equation for λN yields λN < (2π/L)IN . Similarly, since λ1 is the smallest
rapidity, λ1 > (2π/L)I1. Therefore for any c > 0,

2π

L
I1 < λ1 < λ2 < · · · < λN <

2π

L
IN . (1.96)

In the thermodynamic limit and at arbitrary c > 0, to obtain the ground state we thus look
for a density function ρ(λ) that is non-zero only within a finite interval [−λF , λF ],

ρ(λ) =

(
ρt(λ), |λ| ≤ λF ,
0, |λ| > λF ,

and ρh(λ) = ρt(λ)− ρ(λ). (1.97)

We immediately see from Eq. (1.93) that this state has zero momentum. This can also be
seen from the fact that, since arctan(λ/c) + arctan(−λ/c) = 0, in the repulsive case

PN =

NX

j=1

λj =
2π

L

NX

j=1

Ij , (1.98)

and therefore Pgs =
PN

j=1 −N+1
2 + j = 0. With the ground state density function (1.97),

the integral equation (1.92) becomes the Lieb equation

ρ(λ)−
Z λF

−λF
dλ′ C(λ− λ′)ρ(λ′) = 1

2π
, |λ| ≤ λF . (1.99)

The Fermi momentum λF can be viewed as an independent variable which (indirectly)
specifies the particle density n ≡ N/L according to

n =

Z λF

−λF
dλ ρ(λ). (1.100)

Eqs. (1.99) and (1.100) should be solved self-consistently for the required particle density.
In the Tonks-Girardeau limit the Cauchy kernel vanishes and therefore

ρ(λ) =
1

2π
θ(λF − |λ|), λF = πn (c→∞). (1.101)

These correspond to the momentum distribution and the Fermi momentum of a 1D system
of non-interacting spinless fermions.

3The wavefunction of a system of N non-interacting spinless fermions is a Slater determinant of N
free waves exp(ikx), where the allowed values of k are determined by the periodic boundary conditions;
k = 2πj/L, with j any integer. The single-particle energies are ϵk = k2. For N odd, the ground state is
obtained by choosing the values of j in the Fermi interval − 1

2
(N − 1) ≤ j ≤ 1

2
(N − 1), and has the energy

E(F )
gs =

1
2
(N−1)X

j=− 1
2
(N−1)

2πj

L

2

=
π2

3L2
N(N2 − 1).
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1.5.4 Elementary excitations

We now turn to the excitations. Lieb (1963) found two distinct types of excitations, which
in the Tonks-Girardeau limit correspond to particle and hole excitations of the ideal Fermi
gas. The two types of excitations are constructed analogously in the finite interaction case,
namely by adding a particle with given rapidity to the ground state or by removing a particle
from the Fermi interval. Here we present the construction and obtain the fundamental
equations for the momentum and the energy of the excitations. A more detailed analysis
and their numerical and analytical solutions will be presented in Chapter 4.

Type I excitations A one-particle excitation over the N -particle ground state (‘Type I’
excitation) is obtained by constructing the (N + 1)-particle state with quantum numbers

{Ij}N+1 = −N
2
,−N

2
+ 1, · · · , N

2
− 1,

N

2
+m

N+1

. (1.102)

This state is realized starting from the ground state of N + 1 particles and moving the
particle at the right edge of the Fermi interval by m steps, i.e. giving it the quantum
number IN+1 = N/2 +m (alternatively, one may choose I1 = −N/2−m):

●    ●    ● ●    ●    ● 

●    ●    ● ●    ●    ● 

The total momentum is P = (2π/L)m. Since adding a particle turns integer quantum num-
bers into half-integers, and vice-versa, the total momentum is produced by a rearrangement
of all quantum numbers (and rapidities) with respect to the N -particle ground state.

We denote the rapidities of the new state by {λ1, . . . , λN , k}, where k > λF is the rapidity
of the added particle, and the rapidities of the N -particle ground state by {λ01, . . . , λ0N}.
The Bethe equations

Lλ0j = 2π −N + 1

2
+ j −

NX

l=1

ϕ(λ0j − λ0l ), (1.103a)

Lλj = 2π −N + 2

2
+ j −

NX

l=1

ϕ(λj − λl)− ϕ(λj − k), (1.103b)

show that the rapidities will shift by a small amount λj − λ0j ≡ dj/L, where dj is given by

dj = −π − ϕ(λj − k)−
NX

l=1

h
ϕ(λj − λl)− ϕ(λ0j − λ0l )

i

= −π − ϕ(λj − k)−
1

L

NX

l=1

2c

(λ0j − λ0l )2 + c2
(dj − dl) +O(N/L2). (1.104)

This can be rewritten as

dj 1 +
1

L

NX

l=1

2c

(λ0j − λ0l )2 + c2
= −π − ϕ(λj − k) +

1

L

NX

l=1

2c

(λ0j − λ0l )2 + c2
dl. (1.105a)

Introducing the density ρ(λ) and defining the function d(λj , k) = dj , we can again extend
the definition of d(λ, k) to all λ as

d(λ, k) 1+2π

Z λF

−λF
dλ′ C(λ−λ′)ρ(λ′) = −π−ϕ(λ−k)+2π

Z λF

−λF
dλ′ C(λ−λ′)ρ(λ′)d(λ′, k).

(1.105b)
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Making use of the Lieb equation, on the left-hand side we have the quantity 2πd(λ, k)ρ(λ).
Defining the displacement function of the Type I (particle-like) excitations

Dp(λ, k) ≡ d(λ, k)ρ(λ) (1.106)

we thus obtain

Dp(λ, k)−
Z λF

−λF
dλ′ C(λ− λ′)Dp(λ

′, k) = − 1

2π

h
π + ϕ(λ− k)

i
, |λ| < λF , k > λF .

(1.107)
The change in momentum with respect to the ground state is

pI(k) = k +

NX

j=1

(λj − λ0j ) = k +
1

L

NX

j=1

dj = k +

Z λF

−λF
dλDp(λ, k), (1.108)

while the change in energy, including the chemical potential µ, is

ωI(k) = k2 − µ+
NX

j=1

(λ2j − (λ0j )
2) = k2 − µ+ 2

Z λF

−λF
dλλDp(λ, k). (1.109)

These equations demonstrate the collective nature of the excitations, which cannot be simply
assigned to the single particle we added. The addition of a particle with bare momentum
k and bare energy k2 produced a reorganization of the entire system, which collectively
acquires momentum (1.108) and energy (1.109). This is a manifestation of the non-local
nature of the excitations of a one-dimensional system and provides a concrete example of
the concept that one-dimensional systems are intrinsically strongly interacting, regardless
of the actual strength of the coupling constant.

In the limit c→ 0+, µ→ 0, λF → 0, ϕ(λ− k)→ −π, and C(λ− λ′)→ 0, thus Dp → 0,
pI = k > 0, and

ωI(pI) = p2I . (1.110)

In the limit c → ∞, µ = λ2F = (πn)2 and ϕ(λ − k), C(λ − λ′) → 0, thus Dp → −1
2 ,

pI = k − λF = k − πn > 0, and

ωI(pI) = p2I + 2πnpI. (1.111)

Type II excitations A one-hole excitation above the N -particle ground state (‘Type II’
excitation) is obtained by constructing the (N − 1)-particle state with quantum numbers

{Ij}N−1 = −N
2

+ 1, . . . ,
N

2
−m− 1,

N

2
−m+ 1, . . . ,

N

2 N−1

, (1.112)

that is, by punching a hole in the Fermi interval:
●    ●    ● ●    ●    ● 

●    ●    ● ●    ●    ● 

This state also has momentum P = (2π/L)m. We have removed the quantum number
I0 = (N − 1)/2−m in the Fermi interval, considering 0 < m < N/2 (namely, the hole is on
the right side of the Fermi interval). We denote by q the associated rapidity, which is such
that |q| < λF . Following the same logic as for Type I, we therefore have

dj = π + ϕ(λj − q)−
1

L

NX

l=1

2c

(λ0j − λ0l )2 + c2
(dj − dl) +O(N/L2), (1.113)
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which leads to the equation for the displacement of the Type II (hole-like) excitations,

Dh(λ, q)−
Z λF

−λF
dλ′ C(λ− λ′)Dh(λ

′, q) =
1

2π

h
π + ϕ(λ− q)

i
, |λ| < λF , 0 < q < λF .

(1.114)
The change in momentum with respect to the ground state is

pII(q) = −q +
Z λF

−λF
dλDh(λ, q), (1.115)

while the change in energy is

ωII(q) = −q2 + µ+ 2

Z λF

−λF
dλλDh(λ, q). (1.116)

In the limit c → 0+, µ → 0, λF → 0, C(λ − λ′) → 0, and q < λF → 0, hence
ϕ(λ− q)→ π sgn(λ), Dh → θ(λ), pII = −q → 0, and

ωII(pII) = 0. (1.117)

In the limit c → ∞, µ = λ2F = (πn)2 and ϕ(λ − q), C(λ − λ′) → 0, thus Dp → 1
2 ,

pII = −q + λF = −q + πn ∈ [0, πn]. Extending the definition of q to the whole interval
[−λF , λF ] (namely, the hole can also be on the left side of the Fermi interval), we have
pII = −q + πn ∈ [0, 2πn], and

ωII(pII) = −p2II + 2πnpII, pII ∈ [0, 2πn]. (1.118)

Particle-hole excitations The linearity of the Eqs. (1.107) and (1.114) for the dis-
placement functions of Type I and Type II excitations implies that we can describe more
general excitations as superpositions of these two fundamental excitations. In particular,
all the excitations over the physical vacuum in the zero-charge sector (i.e., excitations with
the number of particles N in the excited state the same as the number of particles in the
ground state) can be constructed as a superposition of equal numbers of particles and holes.

Consider for instance a single particle-hole excitation, obtained by picking out one par-
ticle with rapidity q ∈ [−λF , λF ] and giving it rapidity k > kF . The rearrangement of the
rapidities will be described by the displacement function Dph(λ, k, q) satisfying the integral
equation

Dph(λ, k, q)−
Z λF

−λF
dλ′ C(λ− λ′)Dph(λ

′, k, q) =
1

2π

h
ϕ(λ− q)− ϕ(λ− k)

i
. (1.119)

By linearity, it is evident that this displacement function is equal to the sum of a single-
particle and single-hole displacement functions,

Dph(λ, k, q) = Dp(λ, k) +Dh(λ, q). (1.120)

The momentum and energy of the particle-hole excitation will then be

∆P = k − q +
Z λF

−λF
dλDph(λ, k, q) = pI(k) + pII(q), (1.121)

∆E = k2 − q2 + 2

Z λF

−λF
dλλDph(λ, k, q) = ωI(k) + ωII(q). (1.122)
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This construction generalizes directly to an arbitrary number of particle and hole excitations,
with the constraint that the number of particles equals the number of holes if we are to
describe the excitations in the zero-charge sector,

∆P =
X

particles

pI(k) +
X

holes

pII(q), (1.123)

∆E =
X

particles

ωI(k) +
X

holes

ωII(q). (1.124)
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Chapter 2

Ground state in the attractive case

In the limit of a large number of particles, the ground state of the attractive Lieb-Liniger
model should be well described by a Hartree mean field approximation. In this approxi-
mation, the ground state wavefunction is the solution of a nonlinear Schrödinger equation
(NLSE) with cubic nonlinearity, the Gross-Pitaevskii equation (GPE). As shown by Za-
kharov and Shabat (1971) using the inverse scattering method, this equation admits an
extensive family of analytical solutions, called n-solitons, which describe the scattering pro-
cess of n bright solitons (fundamental solutions) one by another, and are such that asymp-
totically, i.e. for t → ±∞, they break up in n individual solitons. In this chapter we are
interested in the static problem, described by the fundamental soliton solution. We will
prove that this is the only1 non-trivial normalizable solution of the time-independent GPE.
Once the solution is known, we can calculate the energy and density profile of the ground
state, and compare the results of the mean field theory with the exact results obtained via
the Bethe Ansatz. Moreover, we will see that giving momentum to the soliton of the ground
state we obtain an approximate single-particle excited state.

2.1 Hartree mean field

The Hartree mean field approximation consists in assuming that all particles occupy the
same single-particle state, ϕ(x), so that we can write the N -body wavefunction in the form
of a product (Hartree, 1928),

ΨN (x1, . . . , xn) =

NY

j=1

ϕ(xj). (2.1)

The expectation value of the Hamiltonian (1.1) in this state, treated as a functional of
the (as yet undetermined) normalized single-particle wavefunction ϕ(x) and its complex
conjugate ϕ∗(x), is the so-called Hartree functional,

EN [ϕ, ϕ
∗] =

Z
dx1 . . . dxN Ψ∗

N (x1, . . . , xN )H
(N)ΨN (x1, . . . , xN )

= N

Z
dx
h
|∂xϕ(x)|2 + (N − 1)c|ϕ(x)|4

i
. (2.2)

The variational theorem ensures that, whatever the ‘trial wavefunction’ ϕ(x), this expec-
tation value provides a rigorous upper bound to the exact ground state energy of the sys-
tem (Cohen-Tannoudji et al., 2020). To find the optimal form for ϕ(x), we thus mini-
mize the Hartree functional with respect to independent variations of ϕ(x) and its com-
plex conjugate ϕ∗(x), subject to the normalization condition

R
dx |ϕ(x)|2 = 1. This con-

straint is conveniently taken care of by the method of Lagrange multipliers. One defines
1Except for the degeneracy due to the translational invariance of the GPE.
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ΩN [ϕ, ϕ
∗] = EN [ϕ, ϕ

∗] − µN
R
dx|ϕ(x)|2 and imposes δΩN [ϕ, ϕ∗] = 0 at fixed µN . This

gives h
−∂2x + 2(N − 1)c|ϕ(x)|2

i
ϕ(x) = µϕ(x), (2.3)

which is the time-independent Gross-Pitaevskii equation (GPE) (Gross, 1961; Pitaevskii,
1961). Multiplying both sides by ϕ∗(x) and integrating, we find for the Lagrange multiplier
µ the expression

µ =

Z
dx
h
|∂xϕ(x)|2 + 2(N − 1)c|ϕ(x)|4

i
. (2.4)

Comparing Eqs. (2.4) and (2.2), we see that EN −EN−1 = µ, thus the Lagrange multiplier
µ has the physical meaning of the chemical potential of the system. Moreover one can write

EN [ϕ, ϕ
∗] = Nµ−N(N − 1)c

Z
dx |ϕ(x)|4. (2.5)

Therefore the GPE is a nonlinear Schrödinger equation with cubic nonlinearity, and with
the chemical potential replacing the energy eigenvalue.

It is now convenient to rescale the wavefunction ϕ(x) so that it is normalized to the
total number of particle N . Introducing ψ(x) =

√
Nϕ(x), so that

R
dx |ψ(x)|2 = N , and

neglecting terms of order 1/N , Eq. (2.3) becomes
h
−∂2x + 2c|ψ(x)|2

i
ψ(x) = µψ(x). (2.6)

The time-dependent version of this equation is, by analogy with the standard Schrödinger
equation,

i∂tψ(x, t) =
h
−∂2x + 2c|ψ(x, t)|2

i
ψ(x, t), (2.7)

and an obvious solution is
ψ(x, t) = ψ(x)e−iµt. (2.8)

Eq. (2.7) may be derived directly from the least action principle δ
R
dtL = 0 for the

Lagrangian (Pethick and Smith, 2008)

L[ψ,ψ∗] =
i

2

Z
dx (ψ∗∂tψ − ψ∂tψ∗)− EN [ψ,ψ∗]

=

Z
dx

i

2
(ψ∗∂tψ − ψ∂tψ∗)− |∂xψ|2 − c|ψ|4 , (2.9)

that is equivalent to consider Eq. (2.7) as the equation of motion of a classical field with
Hamiltonian H = EN =

R
dxH,

i∂tψ(x, t) =
δH[ψ,ψ∗]
δψ∗ . (2.10)

It may also be obtained from the Heisenberg equation of motion (1.4), by approximating
the field operator ψ̂(x, t) by its expectation value in the state (2.1). Indeed, |ΨN ⟩ =
[ψ̂†(ϕ)]N | 0 ⟩ = (N !)−1/2

R
dx1 · · · dxN ϕ(x1) · · ·ϕ(xN )ψ̂†(x1) · · ·ψ†(xN )| 0 ⟩, thus under the

assumption that N ≫ 1, which implies ψ̂(ϕ)|ΨN ⟩ ≃
√
Nϕ(x)|ΨN ⟩, the average of ψ̂(x, t)

is ⟨ΨN | ψ̂(x, t) |ΨN ⟩ =
√
Nϕ(x, t) = ψ(x, t).
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Figure 2.1: The two possible behaviors of the potential V (ψ) for µ ≥ 0 and µ < 0.

2.1.1 Bright solitons

For attractive interaction (self-focusing nonlinearity), Eq. (2.6) reads

−ψ′′(x)− 2c |ψ(x)|2ψ(x) = µψ(x), (2.11)

where the primes denote derivatives with respect to x. We are interested in normalizable
solutions, that must therefore vanish asymptotically. This implies that ψ(x) must be real up
to a constant phase factor. To show this, let us insert in Eq. (2.11) the polar representation
ψ(x) = A(x)eiθ(x), with A(x) > 0 and θ(x) real. This yields the two coupled equations

−A′′(x) +A(x)[θ′(x)]2 − 2cA3(x) = µA(x), (2.12a)

θ′′(x)A(x) + 2θ′(x)A′(x) = 0. (2.12b)

The second equation can be rewritten as θ′′(x)/θ′(x) = −2A′(x)/A(x) and thus immediately
integrated, yielding θ′(x) = α[A(x)]−2 for an arbitrary real constant α. Inserting this in
(2.12a) we get

−A′′(x) + α2A−3(x)− 2cA3(x) = µA(x). (2.13)

Considering this equation in the asymptotic region, where A(x) and its derivatives are
required to vanish, we conclude that it must be α = 0 and thus θ(x) = θ0 = const.
Hereafter we can ignore this constant phase factor and consider ψ(x) as a real field. Eq.
(2.11) can then be rewritten as

ψ′′(x) = −∂V (ψ)

∂ψ
, with V (ψ) =

ψ2

2
µ+ c ψ2 . (2.14)

Now this is a second-order differential equation that can be easily integrated by quadra-
tures. The 1D GPE is thus a classical integrable model. If we think of x as ‘time’ and ψ
as the coordinate of a unit-mass point particle, then (2.14) is just Newton’s second law for
this particle’s motion in a potential given by V (ψ), and ψ(x) is the corresponding trajec-
tory. Such mechanical analogues are quite common in the treatment of classical solitons
(Rajaraman, 1982). The total ‘energy’ of the motion, conserved as x varies, is given by

E =
1

2
(ψ′)2 + V (ψ) = const. = 0, (2.15)

since the boundary conditions discussed above require that V (ψ) → 0 and ψ′ → 0 for
x→ ±∞. It follows that a non-trivial solution exists only for µ < 0. In fact, for µ ≥ 0 the
potential V (ψ) has a unique minimum for ψ = ψ0 = 0, where it takes the value zero (Fig.
2.1). The boundary conditions demand a zero-energy trajectory beginning and ending at
ψ0 in the far past and far future (x = ±∞). It is clear that in this case the only possible
trajectory is the equilibrium one, namely the trivial solution ψ(x) = ψ0. Instead, for µ < 0
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Figure 2.2: Probability density of the bright soliton ψs(x) for different values of the inter-
action parameter c and arbitrary number of particles N .

the potential V (ψ) has a local maximum for ψ = ψ0, where it takes the value zero, and two
local minima (Fig. 2.1). There are now two non-trivial zero-energy trajectories beginning
and ending at ψ0, which corresponds to the particle moving to the right (left) up to the
point ψ1 (−ψ1) where the potential crosses the value zero, and coming back to ψ0. Therefore
we take µ = −|µ|. From (2.15) we get ψ′ = ±

p
−2V (ψ), that gives

Z x

x0

dx = ±
Z ψ(x)

ψ(x0)

dψp
|µ|ψ2 − c ψ4

. (2.16)

We take as ‘initial condition’ ψ′(x0) = 0, so that x0 represents the time at which the particle
inverts its motion; hence V (ψ(x0)) = 0 and ψ(x0) =

p
|µ|/c. Changing integration variable

from ψ to ζ =
p
c/|µ|ψ, we obtain

x− x0 =
±1p
|µ|

Z ζ(x)

1

dζ

ζ
p
1− ζ2

=
∓1p
|µ|

arcsech ζ(x), (2.17)

that gives ψ(x) =
p
|µ|/c sech [

p
|µ|(x− x0)]. The value of µ is then fixed by imposing the

normalization condition
R
dx |ψ(x)|2 = N ; this yields |µ| = −µ = N2c2/4 and finally

ψs(x) =
N
√
c

2
sech

Nc

2
(x− x0) eiθ0 , (2.18)

where we have reintroduced the constant phase factor exp(iθ0). The arbitrariness of x0
originates from the translational invariance of Eq. (2.11). This solution is called a bright
soliton and the corresponding probability density is shown in Fig. 2.2. The term ‘bright’
refers to the fact the amplitude of ψs(x) is positive, but we postpone the discussion of the
term ‘soliton’ to Section 2.4.

2.1.2 Ground state energy

Substituting the solution ψs(x) into EN [ψ,ψ∗] we obtain the estimate for the ground state
energy,

E(GP)
gs =

Z
dx
h
|∂xψs(x)|2 − c |ψs(x)|4

i
= − c

2

12
N3. (2.19)

The superscript (GP) refers to the fact that we have considered the the energy functional
in the Gross-Pitaevskii approximation, where a factor of (1 −N−1) in front of the quartic
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term |ψ(x)|4 is neglected (cf. Eq. (2.2))2. To evaluate the ground state energy in the proper
Hartree approximation, it is sufficient to correct the value of c in the previous result by a
factor of (1−N−1), i.e. c→ (1−N−1)c, which yields

E(H)
gs = − c

2

12
N(N − 1)2. (2.20)

A variation of Hartree’s method is proposed by Calogero and Degasperis (1975) (CD),
where the expectation value of the center-of-mass Hamiltonian, Hc.m. = −N−1∂2/∂x2c.m.,
xc.m. =

PN
j=1 xj/N , is subtracted from the expectation value of the N -body Hamiltonian.

The intention of this approach is to correct (at least partially) the error introduced by the
fact that the trial wavefunction (2.1) is not translationally invariant. The modified Hartree
functional is

E
(CD)
N [ϕ, ϕ∗] = N

Z
dx
h
1−N−1 |∂xϕ(x)|2 − (N − 1)c|ϕ(x)|4

i
, (2.21a)

or in terms of ψ(x), ψ∗(x),

E
(CD)
N [ψ,ψ∗] = 1−N−1

Z
dx
h
|∂xψ(x)|2 − c|ψ(x)|4

i
. (2.21b)

Thus the corresponding ground state energy differs from the one obtained in the GP ap-
proximation by a factor of (1−N−1),

E(CD)
gs = − c

2

12
N2(N − 1). (2.22)

The comparison of these mean-field results with the exact ground state energy Egs deduced
from the Bethe Ansatz, given by Eq. (1.53), is straightforward (Fig. 2.3).

For completeness, we now show how one can perturbatively correct the mean-field re-
sults. Of course, this is not of great interest for our problem, because we already know
the complete exact solution, but it may be of methodological interest for those cases where
the exact solution is not known. Let us consider the standard Hartree approximation. We
define the unperturbed Hamiltonian to include the mean field,

H0 =
NX

i=1

h
−∂2xi + U(xi)

i
, (2.23)

where

U(x) = −2(1−N−1)c ρ(H)(x) = −(N − 1)2c2

2
sech2 (N − 1)c

2
x , (2.24)

and consider as a small perturbation the difference between the exact interaction potential
and the mean field,

V = −2c
X

i<j

δ(xi − xj)−
NX

i=1

U(xi). (2.25)

The second-order correction to ground state energy is then

∆E(2) =
X

i

|⟨Ψi | V̂ |Ψ(H)
gs ⟩|2

E
(H)
gs − Ei

, (2.26)

2This nomenclature is not universal, and we only use it to distinguish this approximation from the one
in which one retains the factor (1 − N−1) in front of the quartic term, which we will call the Hartree
approximation.

26



2 3 4 5 10 20 50 100 200
N

0.2

0.4

0.6

0.8

1

1.2

1.4

E
(:
::
)

gs
=E

gs

E
(GP)
gs E

(CD)
gs E

(H)
gs

150 160 170 180 190 200
0.985

0.99

0.995

1

Figure 2.3: Ratio between the mean-field results E(...)
gs (2.19), (2.20), (2.22), and the exact

result Egs (1.53) for the ground state energy of the attractive Lieb-Liniger gas.
All these energies are negative, thus E(CD)

gs and E
(H)
gs , which are obtained from

the minimization of the expectation value of the Hamiltonian, provide an upper
bound to the exact ground state energy, according to the variational theorem.
This is not true for E(GP)

gs , since it is obtained by further approximating a term in
the expectation value. Nevertheless, the latter provides the best approximation
of the exact result, the error being of 1% already for N = 10 and of 0.25% for
N = 20.

where |Ψ(H)
gs ⟩ is the Hartree ground state, in which all the particles occupy the single-particle

state |ϕs ⟩, E(H)
gs is the corresponding energy (2.20), and {|Ψi ⟩} is a complete set of excited

eigenstates of H0 constructed from symmetrized products of single-particle eigenfunctions
satisfying (Cohen-Tannoudji et al., 2020)

h
−∂2x + U(x)

i
ϕk(x) = ϵkϕk(x). (2.27)

The energies Ei are the sums of the eigenvalues ϵk of the occupied single-particle states.
The potential (2.24) belongs to the class of Pöschl-Teller potentials, whose Schrödinger

equation (2.27) has long been known to be exactly solvable (Pöschl and Teller, 1933; Landau
and Lifshitz, 1981). With α = (N − 1)c/2, the Schrödinger equation is

ϕ′′(x) + 2α2sech2(αx) + ϵ ϕ(x) = 0, (2.28)

and with the change of variables ξ = tanh(αx) ∈ (−1, 1), ν =
p
−ϵ/α2, ϕ(ξ) = (1− ξ2)ν/2,

and u = (1− ξ)/2, we obtain

u(1− u)w′′(u) + (ν + 1)(1− 2u)w′(u)− (ν − 1)(ν + 2)w(u) = 0. (2.29)

This is an hypergeometric differential equation and its solutions are given in terms of the
hypergeometric function 2F1(a, b; c; z)

3.
For negative ϵ, ν ∈ R+, and the finite solution for ξ = 1 (i.e. x = +∞) is

ϕ(ξ) = (1− ξ2)ν/2 2F1 ν − 1, ν + 2; ν + 1;
1− ξ
2

. (2.30)

For ϕ(ξ) to remain finite also for ξ = −1 (i.e. x = −∞), we must have ν− 1 = −n, where n
is a non-negative integer4. Then 2F1 is a polynomial of degree n, and the energy levels for

3See Olver et al. (2010), Ch. 15, for details.
4See Olver et al. (2010), Eq. 15.8.4.
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ϵ < 0 are determined by the condition 1− ν = n. The only possibility is ν = 1, which gives
ϵ = −α2 and ϕ(x) = [1− tanh2(αx)]1/2 = sech(αx), that is exactly the soliton of the GPE.

For positive ϵ, ν is imaginary, and we can set ν = ik with ϵ = α2k2. In this case we
have two independent solutions around ξ = 0 (i.e. x = 0), namely

ϕ1(ξ) = (1− ξ2)ik/2 2F1 ik − 1, ik + 2; ik + 1;
1− ξ
2

= ϕ−k(x) (2.31)

and

ϕ2(ξ) = (1− ξ2)ik/2 1 + ξ

2

−ik
2F1 −1, 2; 1− ik;

1− ξ
2

= ϕk(x), (2.32)

where
ϕk(x) = 2ikeikαx

tanh(αx)− ik
1− ik . (2.33)

These solutions are finite for any k ≥ 0, therefore the spectrum is continuous for positive
energy. If we allow k to take on any real value, the eigenfunctions are, up to a phase factor
independent of x,

ϕk(x) = eik(N−1)c x/2 tanh[(N − 1)c x/2]− ik
1 + ik

, (2.34)

with eigenvalues

ϵk =
c2

4
(N − 1)2k2. (2.35)

Having determined the eigenfunctions and the spectrum of H0, one can then explicitly
compute the second order energy correction ∆E(2), finding (Yoon and Negele, 1977)

∆E(2) ≃ −0.9956 c
2

12
N(N − 1). (2.36)

This correction accounts for almost half of the difference between the exact Egs and the
Hartree estimate E(H)

gs ,

Egs − E(H)
gs = −c

2

6
N(N − 1) ≃ 2.0088∆E(2). (2.37)

2.2 Ground state density profile

Knowing both the exact and the mean-field ground state wavefunctions, we can compare
the corresponding density profiles. The number density operator is

ρ̂(x) =

NX

i=1

δ(x− x̂i) (2.38)

and its average in the ground state is

ρ(x) =
NX

i=1

Z
dx1 · · · dxN δ(x− xi)|ΨN (x1, . . . , xN )|2

= N

Z
dx2 · · · dxN |ΨN (x, x2, . . . , xN )|2. (2.39)

In the mean-field approach, the ground state wavefunction (2.1) is factorized in the product
of N identical single-particle states. Within the GP and CD approximations, the normalized
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single-particle states are ϕs(x) = N−1/2ψs(x), where ψs(x) is the bright soliton (2.18).
Therefore

ρ(GP, CD)(x) = N |ϕs(x)|2 = |ψs(x)|2. (2.40)

The maximum of the density occurs at x = x0 and is

ρ(GP, CD)(x0) =
c

4
N2. (2.41)

In the Hartree approximation, the value of c appearing in Eq. (2.18) is corrected by a factor
of (1−N−1), thus

ρ(H)(x) = |ψs(x)|2
c→(1−N−1)c

(2.42)

and
ρ(H)(x0) =

c

4
N(N − 1). (2.43)

The exact ground state wavefunction obtained from the Bethe Ansatz is instead given
by Eq. (1.57). Since it is translational invariant, i.e. Ψgs(x) = Ψgs(x + b1) for any real b,
the average density of the ground state satisfies ρ(x) = ρ(x + b), and therefore is uniform
and equal to

ρgs(x) = N

Z
dx2 · · · dxN |Ψgs(x, x2, . . . , xN )|2 =

N

L
. (2.44)

However there is a way in which the exact ground state wavefunction can be associated with
the bright soliton known from the mean field description. In fact, a bright soliton structure
emerges when one measures the particles’ positions, although, due to the translational
invariance of the many-body ground state, in each realization of the measurement process
the soliton is centered at a random position, corresponding to the center of mass position of
the measured particles (Staroń et al., 2020). Therefore, the average density of the ground
state in many realizations of the measurement is indeed uniform, but a single determination
of the particles’ positions fixes a specific position for the center of mass, and this gives rise
to a bright soliton-like density profile.

To show this, the value of the normalization constant NN of Ψgs(x) shall be fixed in
such a way that the norm squared of the wavefunction for a fixed value x0 of the center of
mass position xc.m. =

PN
j=1 xj/N is equal to unity (Calogero and Degasperis, 1975; Castin,

2009). Without loss of generality we can take x0 = 0, that is equivalent to consider the
coordinates xj as the positions with respect to the center of mass. Thus the normalization
condition reads Z

dx1 · · · dxN δ(xc.m.)|Ψgs(x1, . . . , xN )|2 = 1. (2.45)

Exploiting the bosonic symmetry of the wavefunction, the integral to compute is N ! times
the integral over the fundamental domain DN : x1 < · · · < xN , where the wavefunction
can be conveniently expressed in the form Ψgs(x1, . . . , xN ) = NN exp(− c

2

PN
j=1 αjxj), with

αj = 2j −N − 1 (see Eq. (1.56)). Thus

N ! |NN |2
Z

DN

dx1 · · · dxN δ
1

N

NX

j=1

xj exp −c
NX

j=1

αjxj = 1. (2.46)

With the change of variables, of Jacobian equal to unity, xj =
Pj

k=1 uk, the condition
that (x1, . . . , xN ) is in DN becomes that u2, . . . , uN are positive, and u1 can vary over the
entire real line. Using

PN
j=1 xj =

PN
j=1

Pj
k=1 uk =

PN
k=1(N + 1 − k)uk and

PN
j=1 αjxj =
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PN
j=1(2j −N − 1)

Pj
k=1 uk =

PN
k=1(

PN
j=k(2j −N − 1))uk =

PN
k=1(N + 1 − k)(k − 1)uk,

Eq. (2.46) is then

1 = N ! |NN |2
Z

R
du1

Z

(R+)N−1

du2 · · · duN δ
NX

k=1

N + 1− k
N

uk exp −c
NX

k=2

(N + 1− k)(k − 1)uk

= N ! |NN |2
NY

k=2

Z ∞

0
duk e

−c(N+1−k)(k−1)uk

= N ! |NN |2 c1−N
NY

k=2

1

(N + 1− k)(k − 1)

= N ! |NN |2 c1−N [(N − 1)!]−2. (2.47)

Therefore
|NN |2 = cN−1 (N − 1)!

N
. (2.48)

The average of the density operator is now

ρgs(x) = N

Z
dx1 · · · dxN δ(xc.m.)δ(x− x1)|Ψgs(x1, . . . , xN )|2 (2.49)

where x clearly represents the distance from the center of mass. Bringing the factor N−1

outside of δ(xc.m.), we obtain

ρgs(x) = N2 |NN |2 c2−N IN (c x), (2.50)

where we have defined

IN (t) =

Z
dt1 · · · dtN δ

NX

j=1

tj δ(t− t1) exp −
X

j>k

|tj − tk| =
N !

N

NX

n=1

IN,n(t), (2.51)

IN,n(t) =

Z +∞

−∞
dtN

Z tN

−∞
dtN−1 · · ·

Z t2

−∞
dt1 δ

NX

j=1

tj δ(t− tn) exp −
NX

j=1

αjtj . (2.52)

Clearly IN,n(t) is an even function of t; hereafter we assume, for convenience, that t > 0.
Let us now consider the Fourier transform of IN,n(t), that is eIN,n(ν) =

R
dt e−iνtIN,n(t).

Writing δ(
PN

j=1 tj) = (2π)−1
R
dω exp(iω

PN
j=1 tj), we get

eIN,n(ν) =
Z
dω

2π

Z +∞

−∞
dtN e(iω−αN )tN

Z tN

−∞
dtN−1 e

(iω−αN )tN−1 · · ·

· · ·
Z tn+1

−∞
dtn e

(iω−iν−αn)tn · · ·
Z t2

−∞
dt1 e

(iω−α1)t1

=

Z
dω

N−1Y

j=1

jX

k=1

iω − α(n)
k

−1

δ
NX

k=1

ω + iα
(n)
k

= N
N−1Y

j=1

jX

k=1

A− α(n)
k

−1

, (2.53)

where

α
(n)
k = αk + iνδkn, (2.54)

A =
1

N

NX

k=1

α
(n)
k =

iν

N
, (2.55)
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and δkn is the Kronecker delta. Since
Pj

k=1 δkn is equal to unity if j ≥ n and equal to zero
if j < n, we have

N
N−1Y

j=1

jX

k=1

iν

N
− αk − iνδkn

= N
n−1Y

j=1

j
iν

N
+N − j

N−1Y

j=n

(−1)(N − j) iν

N
− j

= N(N − n)!(n− 1)!(−1)N−n i

N

N−1 n−1Y

j=1

ν − iN(N − j)
N−1Y

j=n

ν + iNj (2.56)

and therefore

eIN,n(ν) =
(−1)niN+1NN−2

(N − n)!(n− 1)!

N−1Y

j=1

ν − ν(n)j

−1
, (2.57)

where

ν
(n)
j =

(
iN(N − j), j = 1, . . . , n− 1,

−iNj, j = n, . . . , N − 1.
(2.58)

We can now evaluate the Fourier anti-transform

IN,n(t) =

Z
dν

2π
eiνt eIN,n(ν) (2.59)

using Jordan’s lemma and the residue theorem. Assuming that t > 0, eiνt = eiRe(ν)t−Im(ν)t

goes to zero for Im(ν) → +∞, thus we close the integration contour in the upper half-
plane, and the integral is given by the sum of the residues at the poles νj = iN(N − j),
j = 1, . . . , n− 1,

IN,n(t) = i
(−1)niN+1NN−2

(N − n)!(n− 1)!

n−1X

j=1

e−N(N−j)t
N−1Y

k=1
k ̸=j

νj − νk −1
. (2.60)

The product on the right-hand side is

N−1Y

k=1
k ̸=j

νj − νk −1
=

j−1Y

k=1

νj − νk −1
n−1Y

k=j+1

νj − νk −1
N−1Y

k=n

νj − νk −1

= (iN)2−N
j−1Y

k=1

(k − j)−1
n−1Y

k=j+1

(k − j)−1
N−1Y

k=n

(N + k − j)−1 (2.61)

= (iN)2−N (−1)j+1 (N + n− j − 1)!

(j − 1)!(n− j − 1)!(2N − j − 1)!
. (2.62)

Substituting this into Eq. (2.60), and the result into Eq. (2.51), we obtain

IN (t) = (N − 1)!
NX

n=1

(−1)n+1

(N − n)!(n− 1)!

n−1X

j=1

(−1)j(N + n− j − 1)! e−N(N−j)t

(j − 1)!(n− j − 1)!(2N − j − 1)!
. (2.63)

It is convenient to perform the change of variables j = N −m, n = N − r, which yields

IN (t) = (N − 1)!
N−1X

m=1

(−1)m+1e−mNt

(N +m− 1)!(N −m− 1)!

m−1X

r=0

(−1)r(N +m− 1− r)!
r!(m− 1− r)!(N − 1− r)! , (2.64)
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because now the sum over r can be performed using Saalschütz’s theorem on generalized
hypergeometric functions,

nX

r=0

(a)r(b)r(−n)r
r! (c)r(1 + a+ b− c− n)r

=
(c− a)n(c− b)n
(c)n(c− a− b)n

, (2.65)

where (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) = Γ(a+ n)/Γ(a), n ≥ 1, (a)0 = 1, is the rising
factorial or Pochhammer symbol (Slater, 1966). To apply this formula to our case, we set
a = 1−N , n = m− 1, and c = b+ 2, and take the limit b→ +∞. Eq. (2.65) then gives

Γ(N) Γ(m)

Γ(N +m)

m−1X

r=0

(−1)r(N +m− 1− r)!
r!(m− 1− r)!(N − 1− r)!

(b)r
(b+ 2)r

=
Γ(N) Γ(m)

Γ(N +m)
mN

(b+ 1−N)m−1

(b+ 2)m−1
(2.66)

and in the limit b→ +∞ the terms containing b simplify. Therefore the sum over r in Eq.
(2.64) gives mN , and

IN (t) = N !
N−1X

m=1

(−1)m+1m e−mNt

(N +m− 1)!(N −m− 1)!
. (2.67)

Substituting this into Eq. (2.50) and using the expression (2.48) for |NN |2, we arrive at

ρgs(x) =
N−1X

n=1

(−1)n+1 (N !)2 n c e−nNc |x|

(N + n− 1)!(N − n− 1)!
, (2.68)

a result originally obtained by Calogero and Degasperis (1975). The maximum of the density
occurs at x = 0 (i.e. at the position of the center of mass) and is

ρgs(0) =
N−1X

n=1

(−1)n+1 (N !)2 n c

(N + n− 1)!(N − n− 1)!
=
c

2

N2(N − 1)

(2N − 3)
. (2.69)

We can verify that in the limit N →∞ the exact ρgs(x) reduces to the mean field result
|ψs(x)|2 (with x0 = 0). Using Stirling’s approximation,

(N !)2

(N + n− 1)!(N − n− 1)!
≃ N2 1 +

n

N

1/2−N−n
1− n

N

1/2−N+n

≃ N2 1− n2 +O(N−1) , (2.70)

and the identities (1− n2) = (1−N−1) +N−1(1− n2), P∞
n=1(−1)n+1n e−2nt = 1

4sech
2(t),P∞

n=1(−1)n+1n(1− n2)e−2nt = 3
8sech

4(t), we obtain indeed

ρgs(x)
N→∞≃ N2c

4
sech2 Nc

2
x 1− 1

N
1− 3

2
sech2 Nc

2
x +O(N−2) . (2.71)

In Fig. 2.4 we compare the exact and the mean-field results for few particles. We notice
the mean-field results systematically underestimate the central value of the density and
therefore the sharpness of the peak. The GP and CD approximations work better than the
standard Hartree approximation, and as expected, in the limit of a large number of particles
the mean field results approximate increasingly better the exact result.
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Figure 2.4: Comparison between the mean field results ρ(GP, CD) (2.40), ρ(H) (2.42), and the
exact result ρgs (2.68) for the ground state density of the attractive Lieb-Liniger
gas. Here the coordinate x represents the distance from the position of the
center of mass. The functions are plotted for N = 5, 10, 15, 20 and c = 1.

2.3 Moving soliton as a single-particle excited state

Given the stationary solution ψs(x), a solution for the time-dependent GPE is

ψs(x, t) = ψs(x)e
−iµt, µ = −N2c2/4. (2.72)

Here the time dependence is contained in the overall phase factor, thus ψ(x, t) still describes
a bright soliton at rest. However there is an infinity of solutions of the time-dependent GPE
which differ from (2.72) by a Galilean transformation, and describe a bright soliton moving
at arbitrary constant velocity v. These can be obtained exploiting the Galilean invariance
of the Lagrangian (2.9). Under a Galilean transformation,

x→ x̃ = x− vt, (2.73a)

ψs(x, t)→ ψ̃s(x̃, t) = eiΘ(x,t)ψs(x− vt, t), (2.73b)

and the Lagrangian is invariant provided that

∂xΘ(x, t) = v/2, ∂tΘ(x, t) = −[∂xΘ(x, t)]2 = −v2/4, (2.74)

from which we have

Θ(x, t) =
1

2
vx− 1

4
v2t = λx− 1

4
v2t, λ = v/2. (2.75)
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Therefore the solution in the moving frame is

ψNλ(x, t) ≡ ψ̃s(x− vt, t) = exp i λx− 1

4
v2t ψ(x− vt, t)

=
N
√
c

2
sech

Nc

2
(x− x0 − vt) ei[θ0+λx+(N2c2−v2)t/4]. (2.76)

The corresponding normalized single-particle wavefunction is ϕNλ(x, t) = N−1/2ψNλ(x, t),
in terms of which the N -body wavefunction is ΨNλ(x, t) =

QN
i=1 ϕNλ(xi, t), and the associ-

ated momenta and energy are

Ps = −i
Z
dxψ∗

Nλ(x, t)∂xψNλ(x, t) = Nλ, (2.77)

Es =

Z
dx
h
∂xψNλ(x, t)

2 − c ψNλ(x, t) 4
i
= − c

2

12
N3 +

P 2
s

N
. (2.78)

Here the energy has been calculated in the GP approximation, but can be calculated simi-
larly in the Hartree and CD approximations using the appropriate energy functionals. The
result is that Es is given by the ground state energy (in the approximation considered) plus
P 2
s /N , where Ps = Nλ is the total momentum. This is the same structure of the exact

result for the energy and momentum of a single-particle excited state, constructed by giving
momentum λ to the ground state N -string (see Eq. (1.59)). Therefore, just as by giving
momentum to the ground state N -string we obtain an exact single-particle excited state, by
giving momentum to the soliton of the GPE that approximates the ground state we obtain
an approximate single-particle excited state.

2.4 Solitons and solitary waves

We are now in position to justify why we call ‘soliton’ the solution of the GPE. We start by
clarifying the meaning of this term in the context of classical field theory, and distinguish
between solitons and solitary waves, following Rajaraman (1982); Scott et al. (1973).

The names ‘solitary wave’ and ‘soliton’ refer to some special solutions of nonlinear equa-
tions of motion (or wave equations) of classical fields. The simplest wave equation is the
one originally discovered by d’Alembert,

∂2t u(x, t)− v2∂2xu(x, t) = 0, (2.79)

where u(x, t) is a real field in one space dimension, and v is the velocity. The properties
of this equation are very well known. Its elementary solutions are the right- and left-
propagating plane waves e±i(kx−ωt), satisfying the dispersion relation ω = vk. Being a
linear equation in the field u(x, t), a linear combination of two solutions is also a solution.
Therefore any function of the form u(x − vt) that is sufficiently well-behaved to admit
a Fourier transform eu(k) is a solution of Eq. (2.79), since it can be written as a linear
combination of the elementary solutions,

u(x− vt) =
Z
dk

2π

h
eu(k) ei(kx−ωt) + eu(−k) e−i(kx−ωt)

i
. (2.80)

These solutions have two features that are relevant to our discussion:
(i) Choosing appropriately eu(k) (e.g. in the form of a Gaussian) we can construct a

localized wave packet u(x − vt) that will travel with uniform velocity v and no distortion
in shape. The fact that the wave packet travels without deformation is of course due to the
fact that all its plane-wave components have the same phase velocity v = ω/k, i.e. that the
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dispersion relation is linear in k. For this reason, a system with a linear5 dispersion relation
is said to be non-dispersive.

(ii) Thanks to the linearity of the wave equation, given two localized wave packet solu-
tions u1(x−vt) and u2(x+vt), their sum u3(x, t) = u1(x−vt)+u2(x+vt) is also a solution.
For t → −∞, u3(x, t) consists of the two wave packets widely separated and approaching
each other essentially undistorted. Around t = 0, they collide, but after the collision they
will asymptotically (for t→ +∞) separate into the same two wave packets, retaining their
original shapes and velocities.

These two features, namely (i) the shape and velocity retention of a single wave packet
and (ii) the asymptotic shape and velocity retention of several wave packets after scattering
with one another, hold for Eq. (2.79) because this particular equation is both linear and
non-dispersive. The question is whether more complicated equations, which may contain
dispersive and nonlinear terms, admit solutions that enjoy feature (i) and maybe even (ii).
Solutions that enjoy feature (i) are called solitary waves. The (small) subset of these which
exhibit also feature (ii) are called solitons. While all solitons are also solitary waves, the
converse is clearly not true.

Generally speaking, for some equations where both dispersive and nonlinear terms are
present, their effects might balance in such a way that solitary wave solutions are possible.
Dispersion without nonlinearity destroys the possibility of solitary waves, because the vari-
ous plane-wave components will propagate at different velocities v(k) = ω(k)/k, leading to
a broadening of the wave packet. On the other hand, nonlinearity without dispersion also
prevents the existence of solitary waves, because the wave packet steepens to the point of
breaking. This can be easily seen from the simplest example of nonlinear, non-dispersive
wave equation,

∂tu(x, t) + v(u)∂xu(x, t) = 0, (2.81)

where the velocity v(u) = v0 + αum, m > 0, depends on the amplitude u. Assuming
for instance that α > 0, the formal solution u(x, t) = u(x − v(f)t) shows that the points
of the wave that have grater amplitude travel faster. Thus the wave steepens and then
breaks. However, with both dispersion and nonlinearity, solitary waves can again form from
a balance between the tendency of the wave packet to broaden due to dispersion and to
become steeper due to nonlinearity.

We shall now give a more quantitative definition of the properties (i) and (ii), in terms
of the energy density (rather than the fields themselves)6.

A solution of the equations of motion will be said localized if the corresponding energy
density at fixed time is localized in space, i.e. it goes to zero at spatial infinity sufficiently
rapidly as to be integrable. For a theory where E[u] = 0 if and only if u(x, t) = 0, such a
localized solution also has the fields themselves localized in space.

Given localization in this sense, we define a solitary wave as a solution of the equations
of motion whose energy density, as well as being localized, has a space-time dependence of
the form

ε(x, t) = ε(x− vt) (2.82)

where v is some constant velocity. Notice that any time-independent localized solution is
automatically a solitary wave, with the velocity v = 0. As we have seen, assuming Galilean
(or Lorentz, in high-energy context) invariance, once a static solution is known, moving

5Not to be confused with the (non)linearity of the wave equation, which is independent from the
(non)linearity of the dispersion relation.

6Unfortunately there is no universal consensus on the definition of solitary waves and solitons, and
different authors often adopt (slightly) different definitions. Since our definition will be given in terms if the
energy density, this means that we are considering field theories that have an energy density ε(x, t) which
is some function of the fields u(x, t), and whose space integral is the conserved total energy functional E[u],
i.e. the classical Hamiltonian.
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solutions are trivially obtained by boosting, i.e. transforming to a moving coordinate frame.
It is clear that the solution of the GPE is a solitary wave in the sense of this definition.

A soliton is a solitary wave with an additional requirement regarding its properties under
scattering. Let the system have a solitary wave solution whose energy density is ε0(x− vt).
Consider any other solution which in the far past consists of n such solitary waves, with
arbitrary initial positions xi and velocities vi, i = 1, . . . , n. The energy density of this
solution will be

ε(x, t) =
nX

i=1

ε0(x− xi − vit), t→ −∞. (2.83)

The solution will then evolve in time according to the equations of motion. If the evolution
is such that

ε(x, t) =
nX

i=1

ε0(x− xi − vit+ χi), t→ +∞. (2.84)

where χi are constants, this solution is called a soliton. Therefore solitons are those solitary
waves whose energy densities are asymptotically (as t → +∞) restored to their original
shapes and velocities. The constants χi account for the possibility of a bodily displacement
compared with their prescattering trajectories, which should be the sole residual effect of
the collisions.

It is evident that finding a soliton is much more difficult than finding a solitary wave.
Assuming Galilean or Lorentz invariance, given a nonlinear and dispersive wave equation,
to find a solitary wave solution it is sufficient to look for a localized static solution. In
contrast, to verify that a solution is a soliton, we must find many time-dependent solutions
consisting of an arbitrary number of solitary waves, and check that (2.83) and (2.84) are
satisfied. Thus it is very hard to tell if a given wave equation admits soliton solutions, let
alone evaluate them explicitly7.

In the case of the GPE, Zakharov and Shabat (1971) have shown that the fundamental
hyperbolic secant solution is really a soliton, according to our definition. However, it has
also been shown that even a small modification of the nonlinear term of the equation, such
that i∂tψ = [−∂2x + cF (|ψ|2)]ψ, with F (ξ) = −2ξ2 + O(ξ2) for ξ → 0, and (2.76) is still a
solution, implies that in the scattering between two such solitary waves their structure is
no longer preserved after the collision (Perelman, 2011).

7Since condition (2.84) is very stringent, it is likely that most of the localized solutions discussed in
literature are only solitary waves, although in the absence of information on all time-dependent solutions
for such systems this is difficult to prove or disprove conclusively.
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Chapter 3

Soliton scattering in the attractive case

Being exact eigenstates of the attractive Lieb-Liniger model, string states are stable under
time evolution and thus under scattering with one another, in the sense that their energy is
the same before and after the collision. This reminds us of classical solitons. However, string
states are not really the quantum analogues of classical solitons, since being eigenstates of
a translationally invariant system they are not localized in space. We shall see that it is
possible to construct a localized bound state wave packet as a linear superposition of string
states with different momenta. This wave packet will no longer be an eigenstate, and thus
will not be perfectly stable, unlike its classical counterpart. However, if it is constructed in
such a way that the dispersion is only relevant over very long times, it will be a quasi-soliton.
In the following, we take the license to call these objects simply solitons.

Hereafter we construct spatially localized wave packets of n bound atoms as linear
combinations of n-string states with Gaussian-distributed momenta (fundamental solitons).
We discuss their stability in time and show how they are related to the classical solitons
considered previously. We will then construct higher-order solitons and study the scattering
problem exploiting the exact phase shifts obtained from the Bethe Ansatz and general results
from scattering theory. In the last section of the chapter, we present the construction of
soliton states and study the scattering properties within a mean field approach, and compare
it with the exact approach.

3.1 General results of scattering theory

Since what we are really interested in are the asymptotic states of the solitons before and
after scattering, instead of studying the whole dynamics we can make use of some general
results from scattering theory, which allow us to relate the relevant observables to just the
scattering phase shifts, which are known exactly from the Bethe Ansatz.

3.1.1 Scattering of two particles in one dimension

Let us consider two particles with asymptotic momenta p1 and p2 and dispersion relations
Ej(pj), j = 1, 2, in an infinite volume. The statement of the Bethe Ansatz is that in the
asymptotic region where the two particles are very far apart, i.e. when the distance between
them is much larger than the range of interaction, the eigenfuncitons of the system are plane
waves,

φp1,p2(x1, x2) =

(
ei(p1x1+p2x2), x1 ≪ x2

S(p1, p2)e
i(p1x1+p2x2), x1 ≫ x2

(3.1)

where
S(p1, p2) = eiχ(p1,p2) (3.2)
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is the scattering matrix and χ(p1, p2) is the scattering phase shift (Vlijm et al., 2015). At
zero density, the energy of these eigenfunctions is simply

E(p1, p2) = E1(p1) + E2(p2). (3.3)

For elementary particles, Eq. (3.1) is a consequence of the conservation of energy and mo-
mentum in one dimension, and is therefore valid for any model with sufficiently short-range
interactions. Instead, if one of the particles is not elementary but is a bound state, the
previous form of the post-scattering eigenfunction is not true anymore in general, since the
bound state might decay, and the scattering be diffractive. Eq. (3.1) therefore assumes that
the scattering process occurs without particle production. This is the case for integrable
models such as Lieb-Liniger, where bound states cannot decay, but are protected by inte-
grability. Hence the Bethe Ansatz describes a complete set of asymptotic eigenfunctions
and Eq. (3.1) holds also for quasiparticles corresponding to spatially localized wave packets
of bound states excitations.

Now we turn to the scattering problem. At time t = 0 the two quasiparticles are very
far apart and have almost well defined positions (x1, x2) and momenta (p1, p2), and move
with group velocities

vj =
∂Ej
∂pj pj=pj

, j = 1, 2. (3.4)

Without loss of generality we may assume that x1 ≪ x2. Therefore if v1 < v2 the evolution
is always free, while if v1 > v2 at some time the two quasiparticles will become close and
interact. With these assumptions, the initial state two-body wavefunction is factorized,

ψ(x1, x2) = ψ1(x1)ψ2(x2). (3.5)

Its unitary time evolution is given by

ψ(x1, x2, t) =

Z
dp1
2π

dp2
2π

C(p1, p2)e
−it[E1(p1)+E2(p2)]φp1,p2(x1, x2), (3.6)

where
C(p1, p2) =

Z
dx1 dx2 φ

∗
p1,p2(x1, x2)ψ1(x1)ψ2(x2). (3.7)

To make progress, we can make the following approximations:
(i) Since the initial state ψ1(x1)ψ2(x2) is sharply peaked around x1 and x2, with x1 ≪ x2,

the only relevant contribution to (3.7) comes from the regions around these two points.
We may then substitute to φp1,p2(x1, x2) the asymptotic form (3.1) valid for x1 ≪ x2.
Expressing ψj(xj) in terms of the Fourier transform eψj(pj),

ψj(xj) =

Z
dpj
2π

eψj(pj)eipjxj , (3.8)

we then obtain
C(p1, p2) ≃ eψ1(p1) eψ2(p2). (3.9)

(ii) Since the functions eψ(pj) in Eq. (3.9) are sharply peaked around pj , we may expand
the dispersion relations Ej(pj) around these momenta in the integrand of Eq. (3.6),

Ej(pj) ≃ Ej(pj) + vj(pj − pj) +
1

2
δj(pj)(pj − pj)2, (3.10)

where δj = ∂2Ej/∂p
2
j . Furthermore, for x1 ≫ x2, i.e., long after the scattering, when

we are again in the asymptotic region, we may substitute the asymptotic form (3.1) for
φp1,p2(x1, x2) into (3.6), and similarly expand the scattering phase shift,

χ(p1, p2) ≃ χ(p1, p2) + χi(p1, p2)(pi − pi) +
1

2
χij(p1, p2)(pi − pi)(pj − pj), (3.11)
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Figure 3.1: Qualitative representation of the one-dimensional scattering of two wave pack-
ets. In the asymptotic regions before and after the scattering the centers of
the wave packets translate rigidly with their original velocities, but exhibit a
displacement of positions. The scattering region is represented in gray; there
the wave packets cannot be identified individually.

where χi = ∂χ/∂pi and χij = ∂2χ/∂pi∂pj , and we sum over repeated indices.
Using these approximations, we can write the pre-scattering (x1 ≪ x2) two-body wave-

function as

ψ(x1, x2, t) =

Z
dp1
2π

dp2
2π

eψ1(p1) eψ2(p2)e
−it[E1(p1)+E2(p2)]ei(p1x1+p2x2) (3.12)

with Ej(pj) given by (3.10), and the post-scattering (x1 ≫ x2) wavefunction as

ψ(x1, x2, t) =

Z
dp1
2π

dp2
2π

eψ1(p1) eψ2(p2)e
−it[E1(p1)+E2(p2)]eiχ(p1,p2)ei(p1x1+p2x2) (3.13)

with Ej(pj) given by (3.10) and χ(p1, p2) by (3.11).

3.1.2 Displacement, spreading, and correlation of wave packets

We are now in position to compute the motion of the center of each wave packet, which is
given by

xj(t) = ⟨ x̂j ⟩(t) =
Z
dx1 dx2 ψ

∗(x1, x2, t)xj ψ(x1, x2, t), (3.14)

before and after the scattering. In the asymptotic regions the centers of the wave pack-
ets translate rigidly. However the scattering between the two quasiparticles introduces
a displacement proportional to the derivative of the scattering phase shift, χj(p1, p2) =
(∂χ/∂pj)|p1=p1, p2=p2 (Fig. 3.1), so that

xj(t) =

(
xj + vjt before scattering,
xj + vjt− χj(p1, p2) after scattering.

(3.15)

This result is independent of the specific form of the wave packets (see the proof below).
The scattering has also an effect on the width of each wave packet. To compute the

spreading in time, we now assume that the functions ψj(xj) are normalized Gaussian wave
packets centered around xj ,

ψj(xj) =
2

πα2
j

1
4

e
− (xj−xj)

2

α2
j

+i pjxj
, (3.16)
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with
R
dxj |ψj(xj)|2 = 1 and ∆x2j =

R
dxj (xj−xj)2|ψj(xj)|2 = α2

j/4. The Fourier transform
of (3.16) is

eψj(pj) =
Z
dxj ψj(xj)e

−ipjxj = 2πα2
j

1
4 e−

1
4
α2
j (pj−pj)2−i(pj−pj)xj (3.17)

and is normalized as
R dpj

2π
eψj(pj) 2

= 1. We can now evaluate explicitly

∆x2j (t) = x̂j − xj 2
(t) =

Z
dx1 dx2 ψ

∗(x1, x2, t)x2j ψ(x1, x2, t)− x2j (t) (3.18)

where xj(t) is given by Eq. (3.15). We find

∆x21(t) =





α2
1

4
+
δ21t

2

α2
1

before scattering,

α2
1

4
+
χ2
12

α2
2

+
(χ11 − δ1t)2

α2
1

after scattering,
(3.19)

where δ1 is evaluated in p1 and χij in (p1, p2). An analogous formula holds for ∆x22(t).
Moreover, scattering builds up correlations between the (initially uncorrelated) Gaussian

wave packets. The correlator

(∆x1∆x2)(t) = x̂1 − x1 x̂2 − x2 (t)

=

Z
dx1 dx2 ψ

∗(x1, x2, t)x1 x2 ψ(x1, x2, t)− x1(t)x2(t) (3.20)

reads

(∆x1∆x2)(t) =





0 before scattering,

χ12
χ11 − δ1t

α2
1

+
χ22 − δ2t

α2
2

after scattering,
(3.21)

where δ1 is evaluated in p1, δ2 in p2, and χij in (p1, p2).
All the quantities above carry information about the derivatives of the scattering phase

shift and the dispersion relations and can be in principle measured in scattering experiments.

Proof. Hereafter we prove Eqs. (3.15), (3.19) and (3.21). Let us start from x1(t). Using the relationR
dx2 e

i(p2−q2)x2 = δ(p2 − q2),

x1(t) =

Z
dx1 dx2 x1

Z
dq1
2π

dq2
2π

eψ∗
1(q1)

eψ∗
2(q2)e

it[E1(q1)+E2(q2)]e−iχ(q1,q2)e−i(q1x1+q2x2)

×
Z
dp1
2π

dp2
2π

eψ1(p1) eψ2(p2)e
−it[E1(p1)+E2(p2)]eiχ(p1,p2)ei(p1x1+p2x2)

=

Z
dx1 x1

Z
dq1 dp1 dp2

(2π)3
eψ∗
1(q1)

eψ1(p1) eψ2(p2)
2
ei(p1−q1)x1e−it[E1(p1)−E1(q1)]ei[χ(p1,p2)−χ(q1,p2)].

Now
R
dx1 x1 e

i(p1−q1)x1 = −2πiδ′(p1 − q1), where the prime denotes the distributional derivative of
the δ function. Changing integration variable from p1 to u = p1− q1 and making use of Eqs. (3.10)
and (3.11), we obtain

x1(t) = −i
Z
dq1 dp2
(2π)2

eψ∗
1(q1)

eψ2(p2)
2

×
Z
du δ′(u) eψ1(q1 + u)ei[χ1−v1t+

1
2 (χ12+χ21)(p2−p2)]ue

i
2 (χ11−δ1t)(u+2q1−2p1)u
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and since
R
du δ′(u)f(u) = −f ′(0),

x1(t) = i

Z
dq1
2π
eψ∗
1(q1)

eψ′
1(q1) + v1t− χ1,

having taken into consideration the normalization of eψj and the symmetry of the integration interval.
The remaining integral is

Z
dq1
2π
eψ∗
1(q1)

eψ′
1(q1) =

Z
dq1
2π

Z
dxψ∗

1(x)e
iq1x

d

dq1

Z
dy ψ1(y)e

−iq1y

= −i
Z
dx dy ψ∗

1(x) y ψ1(y)

Z
dq1
2π

eiq1(x−y)

= −i
Z
dxψ∗

1(x)xψ1(x) = −i x1

and therefore x1(t) = x1 + v1t−χ1, which proves Eq. (3.15). An analogous formula holds for x2(t).
Now consider ∆x21(t). Following the same procedure of the previous derivation,

∆x21(t) + x21(t) =Z
dx1 x

2
1

Z
dq1 dp1 dp2

(2π)3
eψ∗
1(q1)

eψ1(p1) eψ2(p2)
2
ei(p1−q1)x1e−it[E1(p1)−E1(q1)]ei[χ(p1,p2)−χ(q1,p2)].

In this case
R
dx1 x

2
1 e

i(p1−q1)x1 = −2πδ′′(p1 − q2), thus

∆x21(t) + x21(t) = −
Z
dq1 dp2
(2π)2

eψ∗
1(q1)

eψ2(p2)
2

×
Z
du δ′′(u) eψ1(q1 + u)ei[χ1−v1t+

1
2 (χ12+χ21)(p2−p2)]ue

i
2 (χ11−δ1t)(u+2q1−2p1)u

and since
R
du δ′′(u)f(u) = f ′′(0), calculating explicitly the derivatives of eψ1 from Eq. (3.17),

taking into consideration the normalization of eψj and the symmetry of the integration interval, and
performing the Gaussian integrations, we obtain

∆x21(t) + x21(t) =
α2
1

4
+

(χ12 + χ21)
2

4α2
2

+
(χ11 − δ1t)2

α2
1

+ (x1 + v1t− χ1)
2.

Exploiting the symmetry of second derivatives (Schwarz’s theorem) this reduces to (3.19). An
analogous formula holds for ∆x22(t).

Now consider ∆x1(t)∆x2(t). Following the same procedure,

(∆x1∆x2)(t) + x1(t)x2(t) =Z
dx1 dx2 x1 x2

Z
dq1
2π

dq2
2π

eψ∗
1(q1)

eψ∗
2(q2)e

it[E1(q1)+E2(q2)]e−iχ(q1,q2)e−i(q1x1+q2x2)

×
Z
dp1
2π

dp2
2π

eψ1(p1) eψ2(p2)e
−it[E1(p1)+E2(p2)]eiχ(p1,p2)ei(p1x1+p2x2).

Now
R
dx1 x1 e

i(p1−q1)x1
R
dx2 x2 e

i(p2−q2)x2 = −(2π)2δ′(p1 − q1)δ′(p2 − q2). Changing integration
variables from p1 to u = p1 − q1 and from p2 to s = p2 − q2 and making use of Eqs. (3.10) and
(3.11), we obtain

(∆x1∆x2)(t) + x1(t)x2(t) =

−
Z
dq1
2π

dq2
2π

eψ∗
1(q1)

eψ∗
2(q2)

Z
du δ′(u) eψ1(q1 + u)ei[χ1−v1t+

1
2 (χ12+χ21)(q2−p2)]ue

i
2 (χ11−δ1t)(u+2q1−2p1)u

×
Z
ds δ′(s) eψ2(q2 + s)ei[χ2−v2t+

1
2 (χ12+χ21)(q1−p1)]se

i
2 (χ22−δ2t)(s+2q2−2p2)se

i
2 (χ12+χ21)us

=

Z
dq1
2π

dq2
2π

eψ∗
1(q1)

eψ∗
2(q2)

Z
du δ′(u) eψ1(q1 + u)ei[χ1−v1t+

1
2 (χ12+χ21)(q2−p2)]ue

i
2 (χ11−δ1t)(u+2q1−2p1)u

× i

2
(χ12 + χ21) eψ2(q2)u+

d

ds
eψ2(q2 + s)ei[χ2−v2t+

1
2 (χ12+χ21)(q1−p1)]se

i
2 (χ22−δ2t)(s+2q2−2p2)s

s=0
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= − i
2
(χ12 + χ21)−

Z
dq1
2π

dq2
2π

eψ∗
1(q1)

eψ∗
2(q2)

× d

du
eψ1(q1 + u)ei[χ1−v1t+

1
2 (χ12+χ21)(q2−p2)]ue

i
2 (χ11−δ1t)(u+2q1−2p1)u

u=0

× d

ds
eψ2(q2 + s)ei[χ2−v2t+

1
2 (χ12+χ21)(q1−p1)]se

i
2 (χ22−δ2t)(s+2q2−2p2)s

s=0
.

Calculating explicitly the derivatives of eψj from Eq. (3.17), taking into consideration the normaliza-
tion of eψj and the symmetry of the integration interval, and performing the Gaussian integrations,
we arrive at

(∆x1∆x2)(t) + x1(t)x2(t) =
χ12 + χ21

2

χ11 − δ1t
α2
1

+
χ22 − δ2t

α2
2

+ (x1 + v1t− χ1)(x2 + v2t− χ2).

Exploiting the symmetry of second derivatives this reduces to Eq. (3.21).

3.2 n-string states

Consider the n-particle sector of the Fock space, and let {λ(n)} denote the set of rapidities
of an n-string centered at λ(n) = p/n, where p is the total momentum of the string. We will
denote by |n, p ⟩ the corresponding eigenstate, which in the position basis is represented by
a Bethe wavefunction of the form (1.61),

Ψn(x|{λ(n)}) ≡ Ψnp(x) = Nn exp ipx− c

2

X

n≥j>k≥1

|xj − xk| , (3.22)

where x = (x1, . . . , xn), Nn is a normalization constant and x =
Pn

j=1 xj/n is the position
of the center of mass of the n atoms. Thus

|n, p ⟩ = 1√
n!

Z
dx1 · · · dxnΨnp(x1, . . . , xn) ψ̂

†(x1) · · · ψ̂†(xn)| 0 ⟩. (3.23)

These are simultaneous eigenstates of the Hamiltonian, the momentum operator and the
total number operator,

Ĥ|n, p ⟩ = − c

12
n(n2 − 1) +

p2

n
|n, p ⟩, (3.24)

P̂ |n, p ⟩ = p|n, p ⟩, (3.25)

N̂ |n, p ⟩ = n|n, p ⟩, (3.26)

and can be normalized in such a way that

⟨n′, p′ |n, p ⟩ = n δnn′δ(p− p′). (3.27)

In fact, if n′ ̸= n then ⟨n′, p′ |n, p ⟩ = 0, because states of different n involve a different
number of field operators. For equal n’s, using the same change of variables as in Eq. (2.47),
we get

⟨n, p′ |n, p ⟩ = n! |Nn|2
Z

DN

dx1 · · · dxn exp −c
nX

j=1

(2j − n− 1)xj +
i

n
(p− p′)

nX

j=1

xj

= n! |Nn|2
Z

R
du1

Z

(R+)n−1

du2 · · · duN exp −c
nX

k=2

(n+ 1− k) k − 1 +
i

nc
(p− p′) uk

= n! |Nn|2
nY

k=2

Z ∞

0
duk e

−c(n+1−k)(k−1+i(p−p′)/nc)uk
Z +∞

−∞
du1 e

−i(p−p′)u1

= n! |Nn|2 c1−n[(n− 1)!]−2 2πδ(p− p′), (3.28)
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hence the normalization condition (3.27) is obtained by fixing

|Nn|2 = cn−1 (n− 1)!

2π
. (3.29)

Naturally we will take Nn = |Nn|.

3.2.1 Matrix elements

It is useful to compute the matrix elements of the field operator and the density operator
between two string states.

Field operator The matrix elements of the field operator ψ̂(z) between an n-string and
an (n+ 1)-string state are

⟨n, p′ | ψ̂(z) |n+ 1, p ⟩

=
1p

n!(n+ 1)!

Z
dx′1 · · · dx′n dx1 · · · dxn+1Ψ

∗
np′(x

′
1, . . . , x

′
n)Ψn+1,p(x1, . . . , xn+1)

× ⟨ 0 | ψ̂(x′1) · · · ψ̂(x′n)ψ̂(z)ψ̂†(x1) · · · ψ̂†(xn+1) | 0 ⟩

=
(n+ 1)!p
n!(n+ 1)!

Z
dx1 · · · dxnΨ∗

n,p′(x1, . . . , xn)Ψn+1,p(x1, . . . , xn, z), (3.30)

where in the last step we have used the symmetry of the wavefunction. By the same
property, the integration over Rn is equal to n! times the integration over the domain of
ordered positions

Sn
m=0{x1 < · · · < xm < z < xm+1 < · · · < xn}. Denoting the strings’

centers as λ = p/(n+ 1) and λ′ = p′/n, we get1,2

⟨n, p′ | ψ̂(z) |n+ 1, p ⟩

=
√
n+ 1N ∗

nNn+1 n!
nX

m=0

Z z

−∞
dxm · · ·

Z x2

−∞
dx1

Z +∞

z
dxm+1 · · ·

Z +∞

xn−1

dxn

× exp i(λ− λ′)
nX

j=1

xj + iλz − c
nX

j=1

(2j − n− 1)xj −
c

2
(2m− n)z + c

2

mX

j=1

xj −
c

2

nX

j=m+1

xj

=
√
n+ 1N ∗

nNn+1 n! (2/c)
nei[λ+n(λ−λ

′)]z
nX

m=0

1

m!(n−m)!

×
mY

j=1

1

2(n− j) + 1 + i(2/c)(λ− λ′)
n−mY

j=1

1

2(n− j) + 1− i(2/c)(λ− λ′) . (3.31)

1The summations in the exponential are obtained as follows. We let {x1, . . . , xm, z, xm+1, . . . , xn} =
{x1, . . . , xs, xs+1, xs+2, . . . , xl}, write

Pl
j=1(2j − l− 1)xj =

Ps
j=1(2j − l− 1)xj + [2(s+ 1)− l − 1]xs+1 +Pl

j=s+2(2j − l − 1)xj , reparametrize the last summation as
Pl−1

j=s+1(2j − l + 1)xj , and finally substitute
xs+1 → z, s → m, l → n+ 1. We thus get (2m− n)z +

Pm
j=1(2j − n− 2)xj +

Pn
j=m+1(2j − n), which we

reexpress as
Pn

j=1(2j − n− 1)xj + (2m− n)z −
Pm

j=1 xj +
Pn

j=m+1 xj .
2To compute the integrals, notice that

R xj+1

−∞ dxj exp(ajxj) yields a−1
j times exp(ajxj+1), which enters in

the integration over xj+1; therefore aj =
Pj

k=1 ak, for j = 1, . . . ,m. For the integrals over xm+1, . . . , xn, it is
convenient to change labels as j → j−m, so that

Pn
j=m+1(2j−n−1)xj →

Pn−m
j=1 (2j−n+2m−1)xj . ThenR +∞

xj−1
dxj exp(−ajxj) gives a−1

j times exp(−ajxj−1), which enters in the integration over xj−1; therefore

aj =
Pn−m

k=j ak, for j = 1, . . . , n−m.
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Now the sum over m can be rewritten as
nY

j=1

1

(2n− 2j + 1)2 + (4/c2)(λ− λ′)2
nX

m=0

1

m!(n−m)!

×
nY

j=m+1

[2(n− j) + 1 + i(2/c)(λ− λ′)]
nY

j=n−m+1

[2(n− j) + 1− i(2/c)(λ− λ′)]

= 2n
nY

j=1

1

(2n− 2j + 1)2 + (4/c2)(λ− λ′)2

= 2n
nY

j=1

1

(2j − 1)2 + (4/c2)(λ− λ′)2 , (3.32)

where we have used the identity

nX

m=0

1

m!(n−m)!

n−mY

j=1

(2j − 1 + ia)
mY

j=1

(2j − 1− ia) = 2n, (3.33)

and, in the last step, relabeled j → n−j+1. Substituting (3.32) and (3.29) into Eq. (3.31),
we arrive at

⟨n′, p′ | ψ̂(z) |n+ 1, p ⟩ = δnn′
p
n(n+ 1)n!(n− 1)!

22n

2π
√
c
ei(p−p

′)z

×
nY

j=1

1

(2j − 1)2 + (4/c2)[ p/(n+ 1)− p′/n ]2 , (3.34)

in agreement with Nohl (1976); Wadachi and Sakagami (1984). The same result may be
obtained from the Algebraic Bethe Ansatz (Calabrese and Caux, 2007). Using the identities

nY

j=1

1

(2j − 1)2 + x2
=

1

[(2j − 1)!!]2

nY

j=1

(2j − 1)2

(2j − 1)2 + x2
, (3.35)

lim
n→∞

nY

j=1

(2j − 1)2

(2j − 1)2 + x2
= sech

πx

2
, (3.36)

lim
n→∞

1

n

22n(n!)2

[(2n− 1)!!]2
= lim

n→∞
1

n

(2n)!!

(2n− 1)!!

2

= π, (3.37)

in the limit n→∞ the matrix elements (3.34) reduce to

⟨n′, p′ | ψ̂(z) |n+ 1, p ⟩ n→∞≃ δnn′

r
n(n+ 1)

4c
ei(p−p

′)z sech
π

c

p

n+ 1
− p′

n
. (3.38)

Density operator We can compute in a similar way the matrix elements of the density
operator ρ̂(z) = ψ̂†(z)ψ̂(z),

⟨n, p′ | ρ̂(z) |n, p ⟩ = n

Z
dx1 · · · dxn−1Ψ

∗
np′(x1, . . . , xn−1, z)Ψnp(x1, . . . , xn−1, z). (3.39)

We remark that for p − p′ = 0 this matrix element does not reduce to the static density
(2.49) that we considered in Section 2.2, because here we are not fixing the position of the
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center of mass; in fact ⟨n, p′ | ρ̂(z) |n, p ⟩|p−p′=0 is not localized in space. As before, we have

⟨n, p′ | ρ̂(z) |n, p ⟩

= n |Nn|2(n− 1)!
n−1X

m=0

Z z

−∞
dxm · · ·

Z x2

−∞
dx1

Z +∞

z
dxm+1 · · ·

Z +∞

xn−2

dxn−1

× exp i(λ− λ′)
n−1X

j=1

xj + z − c
n−1X

j=1

(2j − n)xj − c(2m− n+ 1)z + c
mX

j=1

xj − c
n−1X

j=m+1

xj

= n |Nn|2(n− 1)! c1−nei(p−p
′)z

n−1X

m=0

1

m!(n− 1−m)!

×
mY

j=1

1

n− j + (i/c)(λ− λ′)
n−1−mY

j=1

1

n− j − (i/c)(λ− λ′) . (3.40)

With the identity

n−1X

m=0

1

m!(n− 1−m)!

n−1−mY

j=1

(j + ia)
mY

j=1

(j − ia) = n, (3.41)

the sum over m reduces to

n
n−1Y

j=1

1

(n− j)2 + (λ− λ′)2/c2 = n
n−1Y

j=1

1

j2 + (1/c2)(λ− λ′)2 , (3.42)

and we thus obtain

⟨n′, p′ | ρ̂(z) |n, p ⟩ = δnn′
(n!)2

2π
ei(p−p

′)z
n−1Y

j=1

1

j2 + (1/nc)2(p− p′)2 . (3.43)

Using the identities

n−1Y

j=1

1

j2 + x2
=

1

[(n− 1)!]2

n−1Y

j=1

j2

j2 + x2
, (3.44)

lim
n→∞

n−1Y

j=1

j2

j2 + x2
= πx csch(πx), (3.45)

in the limit n→∞ the matrix elements (3.43) reduce to

⟨n′, p′ | ρ̂(z) |n, p ⟩ n→∞≃ δnn′
n

2c
ei(p−p

′)z(p− p′) csch
π

nc
(p− p′) . (3.46)

3.3 Bound state wave packets

3.3.1 Building the fundamental soliton

To create, at a reference time t = 0, a localized wave packet |ψ(0) ⟩ of n bound atoms with
almost well-defined momentum p and well-defined position x, we sum over many n-string
states with momenta p taken from a Gaussian distribution around p,

g(p) = (2πα2)
1
4 e−

1
4
α2(p−p)2−i(p−p)x. (3.47)
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The parameter α is related to the width of the distribution, a larger α corresponding to a
more sharply peaked Gaussian. The n-string wave packet (fundamental soliton) is thus

|ψ(0) ⟩ =
Z

dp

2π
g(p)|n, p ⟩ (3.48)

and depends on the free parameters x, p and α.
Although not strictly necessary, we can also sum over string states with different n,

obtaining a wave packet with an average number of particles n. Because of the phase-
number uncertainty relation, this makes our bound state wave packet to also have almost
well-defined phase (Auletta et al., 2009). We will thus consider

|ψ(0) ⟩ =
X

n

an

Z
dp

2π
g(p)|n, p ⟩, (3.49)

with
P

n |an|2 = 1. The natural choice for an is

an =
ζn√
n!

e−|ζ|2/2, |ζ|2 = n, (3.50)

so that the overlaps of |ψ(0) ⟩ with the n-string states |n, p ⟩ are

1

n2
|⟨n, p |ψ(0) ⟩|2 = g2(p)|an|2 = g2(p)

nn

n!
e−n. (3.51)

That is, the probability amplitude (normalized to n2) of finding n particles in the bound
state wave packet follows a Poisson distribution with expectation value n.

In terms of wavefunctions,

ψ(x, 0) =

Z
dp

2π
(2πα2)

1
4 e−

1
4
α2(p−p)2−i(p−p)xX

n

anΨnp(x). (3.52)

Substituting to Ψnp(x) its expression (3.22) and performing the integration over p, we obtain
the n-string wave packet in real space,

ψ(x, 0) =
2

πα2

1
4

e−
(x−x)2

α2 + ipxΥ(x), (3.53)

where Υ(x) =
P

n anNn e−(c/2)
Pn

j>k |xj−xk| represents the suppression in the separation
among the atoms constituting the bound state. The effective binding length is ξ = 2/c.
Thus the shape of the bound state wave packet in real space is that of a Gaussian centered
around x, g(x) = (2/πα2)

1
4 e−(x−x)2/α2+ipx, of width

∆x(0) =

sZ
dx (x− x)2|g(x)|2 = α

2
, (3.54)

and whose amplitude is modulated by an exponential decay with characteristic length ξ.
This average distance between the constituent atoms provides a lower bound on how local-
ized the wave packets can be, since for α < ξ the wave packet will begin to lose its Gaussian
shape in real space in favor of a simple exponential decay around x.
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3.3.2 Stability of the fundamental soliton

The wave packet (3.49) prepared at t = 0 evolves unitarily in time according to

|ψ(t) ⟩ = e−itĤ |ψ(0) ⟩ =
X

n

an

Z
dp

2π
g(p, t)|n, p ⟩, (3.55)

where
g(p, t) = (2πα2)

1
4 e−

1
4
α2(p−p)2−i(p−p)xe−itE

(n)(p) (3.56)

and E(n)(p) is the energy of the n-string eigenstate |n, p ⟩, given by Eq. (3.24). Correspond-
ingly, the Gaussian profile in real space at time t > 0 will be

g(x, t) = (2πα2)
1
4

Z
dp

2π
e−

1
4
α2(p−p)2−i(p−p)xe−itE

(n)(p)eipx. (3.57)

Let us consider the equation of motion for the center of mass of the wave packet. This
is given by x(t) = ⟨ x̂ ⟩ψ(t), where x̂ is the center-of-mass’ position operator and ⟨· · · ⟩ψ(t) is
the quantum average

⟨O ⟩ψ(t) ≡
⟨ψ(t) | O |ψ(t) ⟩
⟨ψ(t) |ψ(t) ⟩ (3.58)

for a generic operator O in the Schrödinger picture. We have3

x(t) =
X

n

|an|2
Z
dx g∗(x, t)x g(x, t) = x+

X

n

|an|2 v(n, p) t, (3.59)

where

v(n, p) =
∂E(n)(p)

∂p p=p

=
2p

n
(3.60)

is the group velocity of an n-string wave packet. Since we are summing over different n’s,
the group velocity of our fundamental soliton is the average of the v(n, p) with Poissonian
weights |an|2,

v(n, p) =
X

n

|an|2 v(n, p) = C(n)
2p

n
, (3.61)

where

C(n) = n
X

n

|an|2
n

= n e−n
Z n

0
dt

sinh t+ cosh t− 1

t
(3.62)

is a O(1) correction, which takes the maximum value Cmax ≃ 1.29436 for n = 4 and tends
monotonically to 1+ for n→∞.

As anticipated, the wave form of the bound state wave packet is not constant in time.
Two effects contribute to the spreading of the wave packet. The first is related to the fact
that the wave packet is constructed from string states having different momenta. Since
E(n)(p) has constant positive curvature δ(n) = ∂2E(n)(p)/∂p2 = 2/n, the width of the
Gaussian profile would increase over time according to Eq. (3.19). Moreover, we are sum-
ming over many n-string Gaussian wave packets with different string lengths; each of these
n-string wave packets moves at a different group velocity (3.60), further favoring the spread-
ing. The width thus increases over time as

∆x(t) =

sX

n

|an|2
Z
dx g∗(x, t)x2 g(x, t)− x(t)2 =

r
α2

4
+D(n)

δ2(n)t2

α2
, (3.63)

3For details on the calculations of x(t) and other averages of interest for a Gaussian wave packet, see the
proofs of Section 3.1.2.
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where the factor

D(n) = n2
X

n

|an|2
n2

= n3e−n 3F3(1, 1, 1; 2, 2, 2; n) (3.64)

accounts for the effect of the different string lengths. Here 3F3 is a generalized hyperge-
ometric function4. D(n) takes the maximum value Dmax ≃ 2.47802 for n = 4 and tends
monotonically to 1+ for n→∞. The broadening of the bound state wave packet of initial
width ∆x(0) = α/2 is thus slower the larger the product nα. In particular, for the same
number n of atoms, an initially very localized wave packet (in real space) widens more
rapidly than an initially less localized one.

3.3.3 Classical limit

In the previous section we have constructed spatially localized bound state wave packets
from a linear combination of n-string eigenstates. We now might ask what the relation is
between these wave packets and the classical solitons considered in Section 2.3. In general,
the relation between a (nonrelativistic, bosonic) quantum field theory and the corresponding
classical field theory is obtained by showing that, taking the expectation value of the field
operator in a the limit of a large number of particles, one obtains a classical solution, i.e.

⟨α | ψ̂(z) |α ⟩ n→∞−→ ψα(z). (3.65)

In our case, ⟨ψ̂(z)⟩ψ(t) ≡ ⟨ψ(t) | ψ̂(z) |ψ(t) ⟩ is

⟨ψ̂(z)⟩ψ(t) =
X

n

a∗nan+1

Z
dp′

2π

dp

2π
g∗(p′, t)g(p, t)⟨n, p′ | ψ̂(z) |n+ 1, p ⟩

≃
X

n

a∗nan+1e
in(n+1)c2t/4

r
n(n+ 1)

4c

Z
dp′

2π

dp

2π
g∗r (p

′)gr(p)

× e−i[p
2/(n+1)−p′2/n]tei(p−p

′)(z−x)sech
π

c

p

n+ 1
− p′

n
, (3.66)

where gr(p) = (2πα2)
1
4 e−α

2(p−p)2/4 (cf. Eq. (3.47)), having used in the second line Eq.
(3.38) for the large n limit of the matrix elements. Here it is convenient to consider, instead
of the total momenta p and p′, the corresponding string centers λ = p/(n+1) and λ′ = p′/n.
The integrand then reads

g∗r (λ
′)gr(λ) e−i[(n+1)λ2−nλ′2]tei[(n+1)λ−nλ′](z−x)sech

π

c
(λ− λ′) , (3.67)

where

g∗r (λ
′)gr(λ) ≃ (2πα2)

1
2 e−(α2/4)[(nλ−p)2+(nλ′−p)2]. (3.68)

Changing variables to λ1 = 1
2(λ − λ′) and λ2 = 1

2(λ + λ′), in terms of which λ = λ1 + λ2
and λ′ = λ2 − λ1, Eq. (3.66) becomes

⟨ψ̂(z)⟩ψ(t) ≃
X

n

a∗nan+1e
in(n+1)c2t/4n(n+ 1)√

c
(2πα2)

1
2

Z
dλ1
2π

dλ2
2π

e−(α2/2)[(nλ1)2+(nλ2−p)2]

× ei[(2n+1)λ1(z−x)+λ2(z−x)−λ21t−λ22t−(4n+2)λ1λ2t]sech
2πλ1
c

. (3.69)

4See Olver et al. (2010), Ch. 16, for details.
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With two further assumptions, namely (i) c2t ≪ 1, so that we can ignore the term iλ21t
in the phase, and (ii) ∆λ ∼ (nα)−1 ≫ c, so that we can neglect the exponential term
e−(αn)2λ21/2, we can carry out the integration over λ1, which gives the Fourier transform of
the hyperbolic secant. Renaming λ2 as λ, and multiplying by an overall factor of 2π in
order to adjust the normalization, we thus get

⟨ψ̂(z)⟩ψ(t) ≃
X

n

a∗nan+1
nα√
2π

Z
dλ e−(α2/2)(nλ−p)2

× (n+ 1)
√
c

2
sech

(n+ 1
2)c

2
(z − x− 2λt) ei[λ(z−x)+(n(n+1)c2−4λ2)t/4]. (3.70)

Approximating one last time n+ 1 ≃ n+ 1
2 ≃ n, and recognizing that 2λ = 2p/n = v, the

group velocity, the final result is

⟨ψ̂(z)⟩ψ(t) ≃
X

n

|an|2
nα√
2π

Z
dλ e−(α2/2)(nλ−p)2

× n
√
c

2
sech

nc

2
(z − x− v(λ)t) ei[λ(z−x)+(n2c2−v2(λ))t/4]. (3.71)

In the last line we have precisely the classical soliton of Eq. (2.76). This shows that in
the large n limit, the expectation value of the quantum field in the bound state wave packet
is the average of a set of classical soliton solutions with Gaussian-distributed momenta and
Poissonian-distributed number of particles (Lai and Haus, 1989b). The difference in phase
velocity and group velocity among the classical solitons implies a spreading of the phase and
the amplitude of the quantum average. With a simple change of variables, we can shift the
time dependence from the argument of the hyperbolic secant to the Gaussian factor; then we
see that the width of the momenta distribution is doubled after a period tdis ∼ 2/nc∆λ. The
dispersion effect is thus proportional to the ‘bandwidth’ ∆λ of momenta. Comparing tdis
with the soliton period ts ∼ 2π/n2c2/4, we have tdis/ts ∼ nc/4π∆λ. In order to localize the
soliton in Eq. (3.70), we imposed the condition c≪ ∆λ. Here we see that if c≪ ∆λ≪ nc,
then the soliton is localized and the dispersion effect is relevant only after many soliton
periods. This also means that the width of the hyperbolic secant pulse is much smaller than
the inverse of the momentum bandwidth5.

3.4 Scattering of bound state wave packets

3.4.1 Higher-order soliton states and scattering phase shifts

Consider the (n1+n2)-particle sector of the Fock space. To construct a two-soliton state we
start from a two-particle excited state, i.e. an eigenstate whose rapidities are partitioned
into two strings of length n1 and n2,

λj =
p1
n1

+ i
c

2
(n1 + 1− 2j), j = 1, . . . , n1, (3.72a)

λn1+j =
p2
n2

+ i
c

2
(n2 + 1− 2j), j = 1, . . . , n2. (3.72b)

5Compare this with the case of a linear wave function, where a bandwidth of order 1/∆x is necessary to
construct a pulse of width ∆x, because the distribution of momenta is the Fourier transform of the pulse in
real space.
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The two-particle excited state is

|n1, p1; n2, p2 ⟩ =
Z
dx1 · · · dxn1+n2Ψ{njpj}(x1, . . . , xn1+n2)ψ̂

†(x1) · · · ψ̂†(xn1+n2)| 0 ⟩

= (n1 + n2)!

Z

Dn1+n2

dxΨ{njpj}(x)ψ̂
†(x1) · · · ψ̂†(xn1+n2)| 0 ⟩ (3.73)

where Dn1+n2 : x1 < · · · < xn1+x2 and, in this domain,

Ψ{njpj}(x) x∈Dn1+n2
=

X

Q∈πn1+n2

AQ exp
ip1
n1

n1X

j=1

xQ−1
j
− c

2

X

n1≥j>k≥1

(xQ−1
j
− xQ−1

k
)

× exp
ip2
n2

n1+n2X

j=n1+1

xQ−1
j
− c

2

X

n1+n2≥j>k≥n1+1

(xQ−1
j
− xQ−1

k
) . (3.74)

Here we have converted the permutation over λ’s into the permutation over x’s. The sum
is extended to all permutations of [n1 + n2, . . . , n1 + 1, n1, . . . , 1] such that the order of
[n1 + n2, . . . , n1 + 1] and [n1, . . . , 1] is unchanged, otherwise the amplitude AQ vanishes for
the same reason we discussed in Section 1.4.3. As always, the ratios between non-vanishing
AQ’s are then fixed by the Bethe equations.

The two-soliton state |ψ(2)(0) ⟩ is prepared at the reference time t = 0 as two Gaussian
wave packets with initial average positions and momenta (xj , pj), j = 1, 2, constructed
separately at large distances from the n1-string and n2-string within a two-particle excited
state,

|ψ(2)(0) ⟩ =
Z
dp1
2π

dp2
2π

g(p1)g(p2)|n1, p1; n2, p2 ⟩, (3.75)

where
g(pj) = (2πα2

j )
1
4 e−

1
4
α2
j (pj−pj)2−i(pj−pj)xj . (3.76)

depends on the free parameters x, p and α. The unitary time evolution is then

|ψ(2)(t) ⟩ = e−i[E
(n1)(p1)+E(n2)(p2)]t|ψ(2)(0) ⟩. (3.77)

For simplicity, in this case we do not sum over different n’s, but consider n-string wave
packets with fixed particle content. As can be deduced from the discussion in Section 3.3,
this does not significantly change the physics. The results for wave packets constructed by
summing over n are obtained from those for wave packets with fixed n by averaging the
dependencies on n according to the probability distribution chosen for n. Of course the
indeterminacy of n introduces variances in the results, which can be calculated.

Since the n1- and n2-string wave packets are initially localized and well-separated, the
two-soliton state at t = 0 is composed of two well-separated fundamental solitons, with
{xQ−1

j
: j = 1, . . . , n1} grouped together and {xQ−1

j
: j = n1 + 1, . . . , n2} grouped to-

gether. Thus the wavefunction Ψ{njpj} in Eq. (3.75) factorizes into the product Ψn1p1Ψn2p2 .
The time evolution then makes the two solitons collide, and long after the collision they
are again well-separated. For t → +∞ the wavefunction differs from the one at t = 0
just for a phase factor − exp(−iΦn1n2(p1, p2)), that is equal to the ratio between Aout =
A[n1,...,1,n1+n2,...,n1+1] and Ain = A[n1+n2,...,n1+1,n1,...,1],

Ψ{njpj}(x1, . . . , xn1+n2)

=

(
Ψn1p1(x1, . . . , xn1)Ψn2p2(xn1+1, . . . , xn1+n2), before collision,

−e−iΦn1n2 (p1,p2)Ψn1p1(x1, . . . , xn1)Ψn2p2(xn1+1, . . . , xn1+n2), after collision.
(3.78)
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The scattering phase shifts of two strings of arbitrary length is obtained from the scat-
tering kernel Φn1n2 (1.48) of the Bethe-Gaudin-Takahashi equations, which can be rewritten
more explicitly as

Φn1n2(λ) = 2(1− δn1n2) arctan
2λ

c |n1 − n2|
+ 2arctan

2λ

c (n1 + n2)

+ 4

min(n1,n2)−1X

j=1

arctan
2λ

c (|n1 − n2|+ 2j)
. (3.79)

3.4.2 Displacement of trajectories

Analytic expressions for the displacement of the trajectory of each wave packet, as function
of the interaction strength c and the incoming momenta p1, p2, are obtained by taking
derivatives of the Bethe Ansatz scattering kernel, according to Eq. (3.15). For the scattering
of an n1-string wave packet with a n2-string wave packet, the displacements are given by

χ
(n1,n2)
j (p1, p2) = −

∂Φn1n2 λ(n1)(p1)− λ(n2)(p2)

∂pj p1=p1, p2=p2

(3.80)

where λ(nj)(pj) = pj/nj . Eq. (1.49) implies that they satisfy

χ
(n,n)
1 (p1, p2) = −χ(n,n)

2 (p1, p2), χ
(n,m)
1 (p1, p2) = −χ(m,n)

2 (p2, p1). (3.81)

Explicitly,

χ
(n1,n2)
j (p1, p2) =

(−1)j
nj

(1− δn1n2)
c |n1 − n2|

(p1/n1 − p2/n2)2 + [(c/2)|n1 − n2|]2

+
c (n1 + n2)

(p1/n1 − p2/n2)2 + [(c/2)(n1 + n2)]2

+ 2

min(n1,n2)−1X

l=1

c (|n1 − n2|+ 2l)

(p1/n1 − p2/n2)2 + [(c/2)(|n1 − n2|+ 2l)]2
. (3.82)

Notice that, in terms of the group velocities, (p1/n1−p2/n2) = 1
2(v1−v2). The displacements

as functions of n1, n2 for fixed v1 − v2 have the trend shown in Fig. 3.2. At fixed n1, n2,
the displacements are given by a summation of Lorentzian functions of (p1/n1 − p2/n2).
They are maximized for p1/n1 → p2/n2, or v1 → v2, i.e. in the limit of an infinitely slow
scattering process, where

maxχ
(n1,n2)
j =

(−1)j4
njc

(1− δn1n2)
1

|n1 − n2|
+

1

n1 + n2
+ 2

min(n1,n2)−1X

l=1

1

|n1 − n2|+ 2l
.

(3.83)

Given n1, n2, the absolute value of the maximal displacement is larger the smaller c is. On
the other hand, given c, a larger total number of particles n1 + n2 generally produces a
smaller maximal displacement (Fig. 3.3).
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�v = 5 �v = 10

�v = 5 �v = 10

𝛥v = 1

𝛥v = 20

Figure 3.2: Pseudocolor plots of the absolute value of the displacement of the first soliton,
|χ1|, as a function of n1, n2, for ∆v = v1 − v2 = 1, 5, 10, 20 and c = 1. Notice
that the colorbar limits are different for each plot.
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(n1, n2)=(2, 3)

(n1, n2)=(5, 5)

(n1, n2)=(3, 5)

(n1, n2)=(10, 10)

Figure 3.3: Pseudocolour plots of the absolute value of the displacement of the first soliton,
|χ1|, as function of p1, p2, for (n1, n2) = (2, 3), (3, 5), (5, 5), (10, 10) and c = 1.
Notice that the colorbar limits are equal for the first two plots, and different for
the last two plot.
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By way of illustration, we give below the explicit expressions of the displacements for
some few-particle cases,

χ
(1,1)
1 (p1, p2) = −

2c

c2 + (p1 − p2)2
,

χ
(2,2)
1 (p1, p2) = −8c

1

4c2 + (p1 − p2)2
+

1

16c2 + (p1 − p2)2
,

χ
(3,3)
1 (p1, p2) = −6c

2

9c2 + (p1 − p2)2
+

4

36c2 + (p1 − p2)2
+

3

81c2 + (p1 − p2)2
,

χ
(4,4)
1 (p1, p2) = −16c

1

16c2 + (p1 − p2)2
+

2

64c2 + (p1 − p2)2
+

3

144c2 + (p1 − p2)2

+
2

256c2 + (p1 − p2)2
,

χ
(1,2)
1 (p1, p2) = −4c

1

c2 + (2p1 − p2)2
+

3

9c2 + (2p1 − p2)2
,

χ
(1,2)
2 (p1, p2) = 2c

1

c2 + (2p1 − p2)2
+

3

9c2 + (2p1 − p2)2
,

χ
(1,3)
1 (p1, p2) = −4c

"
1

4c2 + 2
9(3p1 − p2)2

+
1

4c2 + 1
9(3p1 − p2)2

#
,

χ
(1,3)
2 (p1, p2) =

4c

3

"
1

2c2 + 2
9(3p1 − p2)2

+
1

4c2 + 1
9(3p1 − p2)2

#
.

3.4.3 Spreading and correlations

Second order derivatives of the scattering kernel,

χ
(n1,n2)
ij (p1, p2) = −

∂2Φn1n2 λ(n1)(p1)− λ(n2)(p2)

∂pi∂pj p1=p1, p2=p2

, (3.84)

allow us to evaluate the spreading of the wave packets and their correlation after scattering
according to Eqs. (3.19) and (3.21). Explicitly,

χ
(n1,n2)
ij (p1, p2) =

(−1)i+j
ninj

2(p1/n1 − p2/n2)

× (1− δn1n2)
c |n1 − n2|

[(p1/n1 − p2/n2)2 + ((c/2)|n1 − n2|)2]2

+
c (n1 + n2)

[(p1/n1 − p2/n2)2 + ((c/2)(n1 + n2))2]2

+ 2

min(n1,n2)−1X

l=1

c (|n1 − n2|+ 2l)

[(p1/n1 − p2/n2)2 + ((c/2)(|n1 − n2|+ 2l))2]2
. (3.85)

In particular,
χ
(n1,n2)
ij (p1, p2) = 0 for p1/n1 = p2/n2. (3.86)

3.5 Mean-field soliton scattering

Similarly to the static case, where the Hartree mean field approximation (or its variations)
approximates well the exact ground state for a large number of particles, we expect also
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the scattering of quasi-solitons to be well described by a mean field approximation if the
number of particles composing each wave packet is large.

The fundamental soliton state in the mean field approach is given by an Hartree product
with all the particles having the same classical soliton wavefunction (2.76),

|ψs(t) ⟩ =
1√
n!

Z
dxϕnλ(x, t)ψ̂

†(x)
n

| 0 ⟩. (3.87)

Notice that the wavefunction is ϕnλ(x, t) = n−1/2ψnλ(x, t), so that |ψs(t) ⟩ is normalized to
unity6. This the mean field analogue of the n-string state defined by Eq. (3.23). However,
since ϕnλ(x, t) already localized in space, there is no need to sum over different momenta
to obtain a localized wave packet. In the limit of large n,

⟨ψs(t) | ψ̂(z) |ψs(t) ⟩
n→∞≃ ψnλ(z, t), (3.88)

that is the mean field analogue of Eq. (3.71).
A two-soliton state is constructed in the same way, now taking as single-particle wave-

function a two-soliton solution of the time-dependent GPE,

i∂tϕn1n2λ(x, t) = −∂2x − 2(n1 + n2)c|ϕn1n2λ(x, t)|2 ϕn1n2λ(x, t). (3.89)

The structure of the general n-soliton solution is discussed by Zakharov and Shabat (1971),
and the explicit expression for the two-soliton solution can be found in Yoon and Negele
(1977); Dolan (1976). The total wavefunction is thus

Ψ(c)
n1n2

(x1, . . . , xn1+n2 , t) =

n1+n2Y

j=1

ϕn1n2λ(xj , t) (3.90)

and the two-soliton state is

|ψ(2)
s (t) ⟩ = 1p

(n1+n2)!

Z
dx1 · · · dxn1+n2Ψ

(c)
n1n2

(x1, . . . , xn1+n2 , t)ψ̂
†(x1) · · · ψ̂†(xn1+n2)| 0 ⟩.

(3.91)
As before, the actual expression of the two-soliton wavefunction is unnecessary, since

long before and long after the scattering it factorizes into the product of two well-separated
fundamental solitons. That is, the total wavefunction (3.90) is asymptotic to

Ψ(0)
n1n2

(x1, . . . , xn1+n2 , t) =
X

Q

n1Y

j=1

ϕn1λ1(xQj , t)

n1+n2Y

j=n1+1

ϕn2λ2(xQj , t) (3.92)

where Q are the permutations of [1, . . . , n1, n1+1, . . . , n1+n2] with the grouping of bosons
into [1, . . . , n1] and [n1 +1, . . . , n1 + n2] unchanged. The corresponding two-soliton state is

|ψ(2)
s (t) ⟩ = Nn1n2

Z
dx1 · · · dxn1+n2Ψ

(0)
n1n2

(x1, . . . , xn1+n2 , t)ψ̂
†(x1) · · · ψ̂†(xn1+n2)| 0 ⟩

=
1√
n1!n2!

Z
dxϕn1λ1(x, t)ψ̂

†(x)
n1
Z
dxϕn2λ2(x, t)ψ̂

†(x)
n2

| 0 ⟩ (3.93)

The connection between ϕn1n2λ and ϕn1λ1 , ϕn2λ2 is (Zakharov and Shabat, 1971)

ϕn1n2λ(x, t) =




N1ϕn1λ1(x, t) +N2ϕn2λ2(x, t), before collision,

N1e
iδθ1ϕn1λ1(x− δx1, t) +N2e

iδθ2ϕn2λ2(x− δx2, t), after collision,
(3.94)

6Here we consider the wavefunction in the GP or CD approximation; as usual, the result in the Hartree
approximation is recovered by setting c→ (1− n−1)c.
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where Nj =
p
nj/(n1 + n2) ensures the correct normalization, and the phase shifts and

position displacements are (Lai and Haus, 1989a)

δθ1 = −2 arctan
2(λ1 − λ2)
c |n1 − n2|

+ 2arctan
2(λ1 − λ2)
c (n1 + n2)

, (3.95a)

δθ2 = −δθ1, (3.95b)

δx1 =
2

n1c
ln

(λ1 − λ2)2 + (c2/4)(n1 − n2)2
(λ1 − λ2)2 + (c2/4)(n1 + n2)2

, (3.95c)

δx2 = −
2

n2c
ln

(λ1 − λ2)2 + (c2/4)(n1 − n2)2
(λ1 − λ2)2 + (c2/4)(n1 + n2)2

. (3.95d)

We can verify that the displacement obtained from the Bethe Ansatz approaches the mean
field result in the limit of large n1,

χ
(n1,n2)
1 = − 1

n1

∂Φn1n2(λ1 − λ2)
∂λ1

= − 1

n1
(1− δn1n2)

c |n1 − n2|
(λ1 − λ2)2 + [(c/2)|n1 − n2|]2

+
c (n1 + n2)

(λ1 − λ2)2 + [(c/2)(n1 + n2)]2

+ 2

min(n1,n2)−1X

l=1

c (|n1 − n2|+ 2l)

(λ1 − λ2)2 + [(c/2)(|n1 − n2|+ 2l)]2

n1→∞≃ − 1

n1

Z n1+n2

|n1−n2|
dx

c x

(λ1 − λ2)2 + (c2/4)x2
= δx1. (3.96)

In Figs. 3.4 and 3.5 we compare the Bethe Ansatz and mean field results for the displacement
of the first soliton as a function of the incoming momenta or group velocities. The first
observation is that the mean field result has a pathological behavior for n1 = n2 and any
finite c in the limit of a zero collision velocity, since it diverges logarithmically. For n1 ̸= n2,
the mean field approach approximates quite well the Bethe Ansatz already for a relatively
small total number of particles, such as n1 + n2 = 10. In general, the approximation works
better for larger collision velocities.
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(n1, n2)=(3, 7)

(n1, n2)=(5, 5)

(n1, n2)=(3, 7)

(n1, n2)=(5, 5)

Bethe Ansatz Mean Field

Figure 3.4: Pseudocolour plots of the absolute value of the displacement of the first soliton,
|χ1|, as function of p1, p2, for (n1, n2) = (3, 7), (5, 5) and c = 1, obtained from
the Bethe Ansatz (left column) and the mean field approach (right column).
The white line cut in the mean field plot represents the divergence for n1 = n2
and p1 → p2.
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Figure 3.5: Absolute value of the displacement of the first soliton as a function of v2, for
several values of (n1, n2) and c = 1, along the line p1 = −(n2/n1)p2, orthogonal
to the line p1/n1 = p2/n2 (i.e. v1 = v2) where the displacement is maximal.
The mean field result diverges logarithmically for v2 → 0 when n1 = n2.
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Chapter 4

Ground state and excitations in the
repulsive case

In the repulsive case, the excitation spectrum of the Lieb-Liniger model has two distinct
branches, corresponding to particle-like (Type I) and hole-like (Type II) excitations. The
coexistence of these two types of elementary excitations leads to a significant broadening of
the dynamical response functions, clearly visible for strong interactions (Caux et al., 2007;
Meinert at al., 2015). Particle-like excitations, which exist also in 2D and 3D, are of the
same nature of Bogoliubov modes, which represent their weakly interacting limit. Hole-
like excitations, instead, have no counterpart in Bose systems in higher dimensions. They
cannot be obtained directly in the framework of Bogoliubov or mean field theories, however
their dispersion relation can be identified with that of dark soliton solutions of the mean
field theory.

In this chapter we discuss in detail the energetics of the repulsive model, comparing
the exact results with various effective approaches, and we investigate the correspondence
between classical dark solitons and Lieb’s Type II excitation, which motivates the search
for quantum dark solitons we will consider in the next chapter.

4.1 Thermodynamic Bethe Ansatz

The dispersion relations of Type I and Type II excitations depend on the corresponding
displacement functions, which quantify how the rapidity of the additional particle or hole
influences all the other rapidities of the system. They can be written in a more explicit form
by using the Thermodynamic Bethe Ansatz, that is a formulation of the thermodynamics of
the system in terms of the densities of rapidities which define Bethe eigenstates, and taking
eventually T = 0.

The equilibrium thermodynamics of our system is encoded in the partition function. In
the grand canonical ensemble, this is given by

Z = Tr exp −Ĥ − µN̂
T

=

∞X

N=0

X

{I}N
exp −

E{I}N − µN
T

, (4.1)

where µ is the chemical potential, T is the absolute temperature, and {I}N represents a
proper set of quantum numbers at fixed number of particles N .

In the thermodynamic limit, we can transform the explicit summation over all possible
configurations of quantum numbers into a functional integral. In order to do so, we partition
the real line for x = I/L into ‘boxes’ Bα = [xα, xα+∆xα ≡ xα+1], α ∈ Z, with the condition
L−1 ≪ ∆xα ≪ 1. In each such box, for each individual eigenstate specified by the densities
ρ(xα), ρh(xα), and ρt(xα), there are Lρt(xα)∆xα allowed quantum numbers, Lρ(xα)∆xα
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particles, and Lρh(xα)∆xα holes. We can then rewrite the sum over quantum number
configurations as

∞X

N=0

X

{I}N
. . . =

∞Y

α=−∞

L∆xaX

nα

X

{ I
L
}nα∈Bα

. . . , (4.2)

i.e. we take the product over all boxes, and for a given box we sum over the possible
occupations and over the sets of occupied quantum numbers given the occupation. In the
thermodynamic limit, ‘in-box’ rearrangements of quantum numbers do not affect the result
to leading order, i.e. (. . . ) is insensitive to the choice of {I/L}nα ∈ Bα. Thus we factor out

X

{ I
L
}nα∈Bα

1 =
(Lρt(xα)∆xα)!

(Lρ(xα)∆xα)!(Lρh(xα)∆xα)!
. (4.3)

By assumption, L∆xα ≫ 1, so all these factorials are very large and we can use Stirling’s
approximation, lnn! ≃ n lnn− n, to write

X

{ I
L
}nα∈Bα

1 = eL∆xαSα(xα), (4.4)

where
Sα(xα) ≡

h
(ρ+ ρh) ln(ρ+ ρh)− ρ ln ρ− ρh ln ρh

i
(xα). (4.5)

This leads us to rewrite the partition function as a functional integral weighted by an entropy
functional,

Z =

Z
D[ρ(x)] eS[ρ(x)]− 1

T
(E[ρ(x)]−µN [ρ(x)]), (4.6)

where
R
D[ρ(x)](. . . ) =Q∞

α=−∞
R 1
0 dρ(xα)(. . . ) and the entropy functional is

S[ρ(x)] ≡ L
Z +∞

−∞
dx
h
(ρ+ ρh) ln(ρ+ ρh)− ρ ln ρ− ρh ln ρh

i
(x). (4.7)

Since it is more convenient to work with densities in rapidity space rather than quantum
number space, we formally perform the functional transformation

ρ(x), ρh(x)
ρ(x)+ρh(x)=1

−→ ρ(λ), ρh(λ)
ρ(λ)+ρh(λ)=

1
2π

+C∗ρ(λ)
(4.8)

and rewrite Z as the functional integral of a Gibbs weight G[ρ, ρh] (from now on, except if
explicitly stated otherwise, ρ = ρ(λ) and ρh = ρh(λ)),

Z =

Z
D[ρ, ρh] e−G[ρ,ρh]/T , (4.9)

where
R
D[ρ, ρh](. . . ) =

R
D[ρ(λ)]D[ρh(λ)] det

h
δρ(x)
δρ(λ)

i
δ(ρ(λ) + ρh(λ) − C ∗ ρ(λ) − 1

2π )(. . . )

and

G[ρ, ρh] = E[ρ]− TS[ρ, ρh]− µN [ρ], (4.10)

with

E[ρ] = L

Z +∞

−∞
dλλ2ρ(λ), N [ρ] = L

Z +∞

−∞
dλ ρ(λ)

S[ρ, ρh] = L

Z +∞

−∞
dλ
h
(ρ+ ρh) ln(ρ+ ρh)− ρ ln ρ− ρh ln ρh

i
(λ).

(4.11)
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In the limit L→∞, the functional integral can be evaluated in a saddle-point approxima-
tion, i.e. at the minimum of G. Imposing δG = 0 for arbitrary variations δρ (the variations
δρ and δρh are related by the Bethe equations, δρ − C ∗ δρ = −δρh) yields the Yang-Yang
equilibrium condition (Yang and Yang, 1969),

ϵ(λ) = λ2 − µ− C ∗ T ln
h
1 + e−ϵ(λ)/T

i
, (4.12)

where ϵ(λ) is the function defined by

ϵ(λ) ≡ T ln
ρh(λ)

ρ(λ)
. (4.13)

Substituting this into the expression of G we finally obtain the grand canonical potential of
the system,

G(µ, T, L)

L
= −T

Z +∞

−∞

dλ

2π
ln
h
1 + e−ϵ(λ)/T

i
. (4.14)

Eqs. (4.12)–(4.14) encode all the equilibrium thermodynamics of the system.

4.1.1 Lieb and Yang-Yang equations

Let us now consider the ϵ function for the ground state, which we shall denote ϵg. The
Yang-Yang equation (4.12) for ϵg is

ϵg(λ) = λ2 − µ+ C ∗ T ln
ρg,h

ρg + ρg,h
(4.15)

where ρg and ρg,h are the densities of particles and holes of the ground state, respectively.
The former satisfies the Lieb equation (1.99). Introducing the Cauchy kernel restricted to
the Fermi interval,

C(F )(λ, λ′) ≡ θ(λF − |λ|) C(λ− λ′) θ(λF − |λ′|), (4.16)

and its inverse L(F ), such that

1 + L(F ) ∗ 1− C(F ) (λ, λ′) = δ(λ− λ′), λ, λ′ ∈ R, (4.17)

the Lieb equation can be rewritten in a form that is valid for all λ,

1− C(F ) ∗ ρg(λ) =
θ(λF − |λ|)

2π
, (4.18)

and solved as

ρg(λ) =
1

2π
1 + L(F ) ∗ θ(λF − |λ|) =

θ(λF − |λ|)
2π

+
1

2π

Z λF

−λF
dλ′ L(F )(λ, λ′). (4.19)

Since ρg = 0 outside the Fermi interval, and ρg,h = 0 inside it, in the limit T → 0 the
Yang-Yang equation becomes

ϵg(λ)−
Z λF

−λF
dλ′ C(λ− λ′)ϵg(λ′) = ϵ0(λ), λ ∈ R, (4.20)

where ϵ0(λ) ≡ λ2 − µ. The chemical potential µ is fixed by the condition

ϵg(±λF ) = 0. (4.21)
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Let us now define a function ϵ(−)(λ) such that

1− C(F ) ∗ ϵ(−)(λ) = ϵ0(λ), i.e. ϵ(−)(λ) = 1 + L(F ) ∗ ϵ0(λ). (4.22)

Clearly this function is equal to ϵg(λ) inside the Fermi interval, while it is equal to ϵ0(λ)
outside the Fermi interval. Therefore, we can rewrite Eq. (4.20) as

ϵg(λ) = ϵ0(λ) +

Z λF

−λF
dλ′ C(λ− λ′)ϵ(−)(λ′), λ ∈ R. (4.23)

This is the solution of the zero temperature Yang-Yang equation, and it is determined once
the function ϵ(−)(λ) inside the Fermi interval is known1. The function ϵg(λ) satisfies the
following properties:

ϵg(λ) = ϵg(−λ), (4.24a)
∂λϵg(λ) > 0, for λ > 0, (4.24b)
ϵg(λ) < 0, for |λ| < λF , (4.24c)
ϵg(λ) > 0, for |λ| > λF , (4.24d)

ϵg(λ)→ ϵ0(λ) +O(λ−2), for λ → ±∞. (4.24e)

Finally, notice that using Eqs. (4.19) and (4.22) we can rewrite the total ground state
energy E0 − µN , which includes the contribution from the microcanonical ensemble, E0 =
L
R λF
−λF dλλ

2ρg(λ), and from the chemical potential, −µN = −µL
R λF
−λF dλ ρg(λ), as

E0 − µN = L

Z λF

−λF
dλ ϵ0(λ)ρg(λ) =

L

2π

Z λF

−λF
dλ ϵg(λ). (4.25)

4.1.2 Dispersion relations of particle and hole excitations

Eq. (1.107) for the displacements of Type I excitations is written in terms of the restricted
kernel C(F ) as

1− C(F ) ∗Dp(λ, k) = −
θ(λF − |λ|)

2π

h
sgn(k)π + ϕ(λ− k)

i
, |k| > λF . (4.26)

The formal solution is

Dp(λ, k) = −
1

2π

Z λF

−λF
dλ′′

h
δ(λ− λ′′) + L(F )(λ, λ′′)

i h
sgn(k)π + ϕ(λ′′ − k)

i

= −
Z sgn(k)∞

k
dλ′
Z λF

−λF
dλ′′

h
δ(λ− λ′′) + L(F )(λ, λ′′)

i
C(λ′′ − λ′). (4.27)

The momentum (1.108) of a Type I excitation can then be written

pI(k) = k − 1

2π

Z λF

−λF
dλ′′

Z λF

−λF
dλ
h
δ(λ− λ′′) + L(F )(λ, λ′′)

i h
sgn(k)π + ϕ(λ′′ − k)

i
, (4.28)

and using the Lieb equation to perform the integration over λ we obtain

pI(k) = k +

Z λF

−λF
dλ
h
ϕ(k − λ)− sgn(k)π

i
ρg(λ) ≡ p(k), |k| > λF . (4.29)

1Notice that ϵg(λ) is a smooth function, and it is different for ϵ0(λ) outside the Fermi interval, sinceR λF

−λF
dλ′ C(λ− λ′)ϵ(−)(λ′) gives a finite contribution. Consequently, ϵ(−)(λ) is discontinuous in |λ| = λF .
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The energy (1.109) of a Type I excitation can be written

ωI(k) = ϵ0(k) +

Z λF

−λF
dλ

dϵ0(λ)

dλ
Dp(λ, k), (4.30)

and since Dp(λ, k) vanishes identically for |λ| > λF , we can equivalently write

ωI(k) = ϵ0(k) +

Z +∞

−∞
dλ

dϵ0(λ)

dλ
Dp(λ, k)

= ϵ0(k)−
Z sgn(k)∞

k
dλ′
Z λF

−λF
dλ′′

Z +∞

−∞
dλ

dϵ0(λ)

dλ

h
δ(λ− λ′′) + L(F )(λ, λ′′)

i
C(λ′′ − λ′)

= ϵ0(k)−
Z sgn(k)∞

k
dλ

dϵg(λ)

dλ
− dϵ0(λ)

dλ
. (4.31)

Finally, using property (4.24e) to simplify the last integral, we obtain

ωI(k) = ϵg(k), |k| > λF . (4.32)

Thus the function ϵg(k) represents the energy of a fundamental particle-like excitation above
the ground state.

The same considerations applied to Type II excitations lead to similar equations,

pII(q) = −q −
Z λF

−λF
dλ
h
ϕ(q − λ)− sgn(q)π

i
ρg(λ) = −p(q), (4.33)

ωII(q) = −ϵg(q), |q| < λF . (4.34)

Then for a generic number of particle and hole excitations,

∆P =
X

particles

p(k)−
X

holes

p(q), (4.35)

∆E =
X

particles

ϵg(k)−
X

holes

ϵg(q). (4.36)

4.1.3 Sound velocity and effective masses

At small momenta, and for arbitrary interaction strength, the dispersion relations of Type
I and Type II excitations may be expanded in series of p as

ω(p) = vp+
p2

2m∗ +O(p3), (4.37)

where

v =
∂ω(p)

∂p p→0

and
1

m∗ =
∂2ω(p)

∂p2 p→0

(4.38)

are respectively the group velocity and the inverse effective mass of the elementary excita-
tions. From Eqs. (4.29), (4.32), (4.33), and (4.34) it is clear that

v ≡ vI = vII and m∗ ≡ m∗
I = −m∗

II. (4.39)

Let us first consider the group velocity. We have

v =
∂ω(p)

∂p p→0

=
∂ω(k)

∂k

∂p(k)

∂k

−1

k→λF

(4.40)
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and from Eq. (4.29),

∂p(k)

∂k k→λF

= 1 + 2π

Z λF

−λF
dλ C(λF − λ)ρg(λ) = 2πρg(λF ). (4.41)

Therefore
v =

1

2πρg(λF )

∂ϵg(k)

∂k k=λF

. (4.42)

This group velocity is actually the sound velocity in the Lieb-Liniger gas.
By a well-known macroscopic argument, the sound velocity vs is related to the isoentropic

compressibility κS of the system,

1

κS
= −L ∂P

∂L S

= n
∂P

∂n S

, (4.43)

by the Newton-Laplace equation

vs =

r
1

ϱκS
, (4.44)

where ϱ = mn is the mass density. In our units, where 2m = 1, we thus have

vs =

s
−2L

n

∂P

∂L S

=

s
2

∂P

∂n S

. (4.45)

By definition, the pressure is the derivative of the internal energy at fixed entropy and
number of particles. At zero temperature, P = −∂E0/∂L, where E0 is the ground state
energy. Introducing the dimensionless coupling constant (Lieb parameter)

γ ≡ c

n
, (4.46)

we may parametrize the ground state energy as E0(γ) = Nn2(γ)e(γ), where e(γ) represents
the dimensionless ground state energy per particle. Substituting the definition of the pres-
sure into Eq. (4.45) and writing ∂2E0/∂L

2 = (c2/N2)∂2E0/∂γ
2, we then obtain the exact

thermodynamic relation (Lieb, 1963; Lang et al., 2017)

vs = 2n

s
3e(γ)− 2γ

∂e

∂γ
(γ) +

γ2

2

∂2e

∂γ2
(γ). (4.47)

In the Lieb-Liniger model,

e(γ) =

R λF
−λF dλλ

2ρg(λ)

[
R λF
−λF dλ ρg(λ) ]

3
, (4.48)

but remarkably, one does not need to compute e(γ) to find vs, as the latter can be expressed
simply in terms of the ground state density evaluated in λ = λF :

vs =
vF

[ 2πρg(λF ) ]2
, (4.49)

where vF = 2πn is the Fermi velocity in the Tonks-Girardeau regime. This equality, which
is proved in Appendix A, is based on the fact that the pressure is also the derivative of the
grand canonical potential (4.14) with respect to the volume at fixed temperature,

P = − ∂G(µ, T, L)

∂L T

= T

Z +∞

−∞

dλ

2π
ln
h
1 + e−ϵ(λ)/T

i
T→0−→ − 1

2π

Z λF

−λF
dλ ϵg(λ), (4.50)
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and on the properties of the functions ϵg(λ) and ρg(λ). Eq. (4.49) also establishes the iden-
tity between the macroscopic definition of the sound velocity in terms of pressure variations,
and the microscopic definition as group velocity of the elementary excitations. In fact, as
shown in Appendix A, Eqs. (4.49) and (4.42) are identical.

The inverse effective mass is

1

m∗ =
∂2ω(p)

∂p2 p→0

=
∂p(k)

∂k

−2 ∂2ω(k)

∂k2
− ∂ω(k)

∂k

∂p(k)

∂k

−1 ∂2p(k)

∂k2 k→λF

. (4.51)

We compute it explicitly in Appendix A, showing that it can be written as

1

m∗ =
vs
K

∂

∂µ
vs
√
K , (4.52)

or equivalently
1

2m∗ = 1− γ ∂
∂γ

1√
K
, (4.53)

where the parameter
√
K is defined as

√
K = 2πρg(λF ) =

r
vF
vs
. (4.54)

We notice that m∗ is positive; therefore Type I excitations have positive effective mass,
corresponding to upward curvature of the dispersion relation, while Type II excitations
have negative effective mass, corresponding to downward curvature.

4.2 Numerical solutions

By integrating the Lieb equation, one can easily verify that pI(±λF ) = 0. Moreover
ϵg(±λF ) = 0. We can use these properties to reexpress Eqs. (4.29), (4.32), (4.33), and
(4.34) in the unitary form

p(k) = 2π

Z k

λF

dλ ρg(λ) , ω(k) =

Z k

λF

dλ
dϵg(λ)

dλ
, (4.55)

where |k| ≥ λF (|k| ≤ λF ) for the Type I (Type II) excitations2, and λF is fixed by

n ≡ N

L
=

Z λF

−λF
dλ ρg(λ). (4.56)

We notice that the momentum p of Type II excitations takes value in the interval [0, 2πn].
The associated energy is zero at the endpoints of this interval. The upper endpoint p = 2πn
(which is equal to twice the Fermi momentum in the Tonks-Girardeau limit) corresponds
to a hole rapidity k = −λF , and is called ‘umklapp point’. The maximal energy associated
with the Type II excitations lies at k = 0, corresponding to p = πn. Since for |k| ≤ λF ,
p(−k) = 2πn − p(k) and ω(−k) = ω(k), we have ωII(p) = ωII(2πn − p), therefore the
dispersion curve of Type II excitations is symmetric with respect to p = πn, exacly as in
the Tonks-Girardeau regime.

We can now conveniently switch to dimensionless variables, obtaining

p(k) = 2πλF

Z k/λF

1
dx fe(x) , ω(k) = 2λ2F

Z k/λF

1
dx fo(x) , (4.57)

2Notice that in Eq. (4.55), ρg(λ) is not strictly the ground state particle density in λ-space, because that
vanishes outside the Fermi interval, but is the solution of the Lieb equation (1.99) for λ ∈ R. Outside the
Fermi interval, ρg(λ) corresponds to the ground state hole density in λ-space.
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where fe(x) ≡ 1
2 [f(x)+ f(−x)] and fo(x) ≡ 1

2 [f(x)− f(−x)] are, respectively, the even and
the odd part of the function f(x) solving the Fredholm integral equation of the second kind

f(x) = g(x) +

Z 1

−1
dyK(x− y)f(y),

g(x) =
1

2π
+ x, K(x) = α

π(α2 + x2)
, α ≡ c

λF
> 0.

(4.58)

The value of f(x) for any real x is thus determined once f(x) is known in the interval [−1, 1].
The Fermi momentum is

λF = n

Z 1

−1
dx fe(x)

−1

, (4.59)

the ground state density of rapidities is

ρg(λ/λF ) = fe(x), x ∈ [−1, 1], (4.60)

and the ground state energy is E0 = Nn2e(γ), where

e(γ) =

R 1
−1 dxx

2fe(x)

[
R 1
−1 dx fe(x) ]

3
. (4.61)

Fredholm integral equations have been widely studied in mathematics for many years.
There is therefore a well-developed theory, of which Farina et al. (2022) review the funda-
mental points. Eq. (4.58) has exactly one solution, which although not known in closed
form, can be constructed via the convergent iterative process

f0(x) = g(x), fn(x) = g(x) +

Z 1

−1
dyK(x− y)fn−1(y). (4.62)

This is equivalent to the Liouville-Neumann expansion

f(x) = g(x) +
∞X

n=0

Z 1

−1
dyKn(x− y)g(x), (4.63)

where the iterated kernels Kn are defined by K0 = K and

Kn(x− y) =
Z 1

−1
dsK(x− s)Kn−1(s− y). (4.64)

To solve Eq. (4.58) numerically, a convenient route is offered by Nyström’s method,
which consists of discretizing the integral with a quadrature scheme

Z 1

−1
dxh(x) ≃

MX

j=1

wjh(xj), (4.65)

with weights wj and the quadrature points (‘nodes’) xj such that x1 = −1, xM = 1 and
xj < xj+1. Collocation at x = xi then gives the M ×M linear system

f(xi)−
MX

j=1

wjK(xi − xj)f(xj) = g(xi), i = 1, . . . ,M. (4.66)

Having solved this system, the solution of Eq. (4.58) for any real x is given by Nyström’s
natural interpolant

f(x) ≃ g(x) +
MX

j=1

wjK(x− xj)f(xj). (4.67)
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Figure 4.1: Ground state density of rapidities for different values of the interaction param-
eter c at unit filling.
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Figure 4.2: Spectrum of Type I excitations for different values of the interaction parameter
c at unit filling. For comparison, the finer red line represents the dispersion
relation in the Tonks-Girardeau limit, ω = 2πp + p2, while the finer blue line
corresponds to the dispersion relation of non-interacting bosons, ω = p2.
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Figure 4.3: Spectrum of Type II excitations for different values of the interaction parameter
c at unit filling. For comparison, the finer red line represents the dispersion
relation in the Tonks-Girardeau limit, ω = 2πp − p2, while the finer blue line
corresponds to non-interacting bosons, which do not have hole-like excitations.
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An implementation of Nyström’s method in Matlab is provided by the Fie package
developed by Atkinson and Shampine (2008). In Figs. 4.1-4.3 we show the numerical
solutions for the ground state density function and the spectra of Type I and Type II
excitations at unit filling (n = 1) for different values of the interaction strength c, obtained
using Fie3. The ground state energy is plotted in Fig. 4.5, where the exact result is
compared with various effective approaches that we will discuss shortly.

Over the years there have been many efforts to obtain analytical approximations of
the ground state energy in the weak and strong interaction regimes. Relevant works on
weak interaction are the ones by Tracy and Widom (2016); Prolhac (2017); Mariño and
Reis (2019); Ristivojevic (2019). In particular, the latter provides an expansion of e(γ)
in powers of γ up to the order γ5. Relevant works on strong interaction are the ones by
Ristivojevic (2014); Lang et al. (2017). The latter provides an expansion of e(γ) in powers
of 1/γ up to the order 1/γ20. Such high-precision results on the ground state energy, namely
on the ground state density of rapidities, are relevant also for the excitation spectrum, as
the energy of the excitations can also be written (Petković and Ristivojevic, 2018)

ω(k) =

Z |k|

λF

dλ
ρg(k, λ)ñ(λ)

ρ2g(λ, λ)
, (4.68)

where ñ(λ) =
R λ
−λ dλ

′ ρg(λ′, λ), and

ρ(k, λ) =
1

2π
+

Z λ

−λ
dk′ C(k − k′)ρ(k′, λ). (4.69)

This remarkable result shows that knowing the ground state density of rapidities one can
directly infer the whole excitation spectrum, and therefore the spectrum at arbitrary mo-
mentum is fully determined by the properties of the ground state.

We will not go into the details of the sophisticated analytical approximations mentioned
above. For moderate to strong interaction, we present below a relatively simple result
obtained from the first step in the iterative solution of Eq. (4.58). In the next section, the
case of weak interaction is addressed through effective theories, in particular the Bogoliubov
theory and the hydrodynamic (or Luttinger liquid) approach, which are independent from
the exact Bethe Ansatz solution.

4.2.1 Moderate to strong coupling expansion

Since the kernel K(x) is at most 1/πα, for moderate to strong interaction the first few
terms of the expansion (4.63) should provide a sufficiently accurate approximation of f(x).
In particular, if we limit ourselves to just the first step of the iterative procedure, we get

fe(x) =
1

2π
1 +

α

arctanα

1

(x2 + α2)
, (4.70)

fo(x) = x 1 +
1

π
arctan

2α

α2 + x2 − 1
+

α

2π
ln

(x− 1)2 + α2

(x+ 1)2 + α2
. (4.71)

Substituting the first equation into Eq. (4.61), we obtain the dimensionless ground state
energy per particle

e =
(2 arctanα)3

π

1

3
+

α

arctanα
1− α arctan

1

α
. (4.72)

3The unit filling fixes λ(TG)
F ≡ λF (c = ∞) = π and p ∈ [0, 2λ

(TG)
F ] = [0, 2π], but does not entail a loss

of generality. The results for generic γ can be obtained from the results for (c = γ, n = 1) by rescaling the
momenta as p→ np and energies as ω → n2ω.
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Figure 4.4: Comparison between exact numerical results and the analytical expressions
(4.73a)-(4.73e) of the dispersion relations of Type I and Type II excitations
at unit filling. The insets show the very small-momentum region.

In the Tonks-Girardeau limit e(γ) tends to the constant value π2/3, consistently with Eq.
(1.95) in the thermodynamic limit. The comparison of Eq. (4.72) with the exact result is
shown in Fig. 4.5.

Substituting Eqs. (4.70) and (4.71) into Eqs. (4.55) and (4.59), we obtain

λF = 2n arctanα, (4.73a)

pI = k − λF
arctan(α/χ)

arctanα
, (4.73b)

ωI = k2 − λ2F 1 +
1

π
arctan

2α

χ2 + α2 − 1

+
c2

π
arctan

2χ2 − 2

α(χ2 + α2 + 3)
+

1

α
ln 1 +

4

α2
+
χ

α
ln

(χ− 1)2 + α2

(χ+ 1)2 + α2
, (4.73c)

pII = k + λF 1 +
arctan α(χ+1)

α2−χ
arctanα

, (4.73d)

ωII = |ωI|, (4.73e)

where χ ≡ k/λF ∈ [1,+∞) for Type I and χ ∈ [−1, 1] for Type II excitations. Eq.
(4.73a) is the self-consistent equation for λF = λF (c), and once λF is known the last four
equations allow us to determine the dispersion relations parametrically as ω(k)[p(k)], with
k in the appropriate interval. It is worth mentioning that in the limit of large momenta
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(p≫ p∗0 ≡ nγ, for finite γ), the Type I dispersion relation simplifies to

ω(p) = p2 + 4n2γ − π2n2 +O(p−2). (4.74)

As can be seen in Fig. 4.4, the analytical expressions (4.73a)-(4.73e) approximate quite
well the exact dispersion relations already for γ ∼ 4. For such value of γ, the sound
velocity is underestimated by about 3% and the maximum energy of Type II excitations is
underestimated by about 4%. In principle, a better approximation could be obtained with
an additional step in the iterative procedure, but in practice it is a huge challenge to express
p(k) and ω(k) in closed form, so one has to resort to more sophisticated methods (Lang et
al., 2017).

4.3 Effective approaches for weak interaction

In this section we discuss some effective approaches that allow to determine the ground state
energy and the excitation spectrum in the weak interaction regime independently from the
exact solution obtained via the Bethe Ansatz. We emphasize that these effective approaches
can reproduce only the Type I dispersion relation.

4.3.1 Bogoliubov approach

Expressing the bosonic field operators occurring in the Lieb-Liniger Hamiltonian (1.2) in
terms of the operators that create and destroy a particle with well-defined momentum via
the Fourier transform4

ψ̂(x) =
1√
L

X

p

âpe
ipx, (4.75)

where âp and â†p satisfy the canonical commutation relations [âp, â
†
p′ ] = δp,p′ , [âp, âp′ ] = 0,

Eq. (1.2) becomes
Ĥ =

X

p

p2â†pâp +
c

L

X

p p′ q

â†p+qâ
†
p′−qâp′ âp. (4.76)

Assuming that at zero temperature the zero-momentum mode is macroscopically occupied5,
i.e. ⟨â†0â0⟩ = N0 ∼ O(N), we can treat perturbatively the quartic interaction term in Eq.
(4.76) following Bogoliubov’s theory for quasi-degenerate Bose gases. The key observation
is that in the thermodynamic limit

â0|N0, {Np ̸=0} ⟩ =
p
N0 |N0 − 1, {Np ̸=0} ⟩

N0∼O(N)≃
p
N0 |N0, {Np ̸=0} ⟩, (4.77)

and similarly for â†0. These operators may therefore be regarded as ordinary c-numbers,
equal to

√
N0 (Bogoliubov, 1947). In terms of the field operator, this means that

ψ̂(x) = ψ0 +
1√
L

X

p ̸=0

âpe
ipx = ψ0 + δψ̂(x), (4.78)

where ψ0 =
p
N0/L. Since δψ̂(x) is assumed to be small, one retains in Eq. (4.76) only

those terms that are no more than quadratic in âp and â†p for p ̸= 0, finding

ĤBog =
cN2

L
+
X

p ̸=0

h
p2 + 2cn â†pâp + cn âpâ−p + â†pâ

†
−p

i
. (4.79)

4Notice that with our conventions, âp is the Fourier transform of ψ̂(x)/
√
L.

5We will return on the validity of this assumption at the end of Section 4.4.1.
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Clearly such approximation can only be valid for weak interaction. This Hamiltonian can
be diagonalized by a Bogoliubov transformation (see Appendix B), which leads to

ĤBog = E0 +
X

p ̸=0

ωBog(p)b̂
†
pb̂p, (4.80)

where b̂p and b̂†p are bosonic operators,

ωBog(p) =
p
p2(p2 + 4cn) (4.81)

is the spectrum of elementary excitations, and

E0 =
cN2

L
+

1

2

X

p ̸=0

ωBog(p)− p2 − 2cn (4.82)

is the ground state energy. (The first term represents the ground state energy at tree-level
or zeroth-order in perturbation theory).

These results demonstrate that, within the assumptions made, the original system of
interacting bosons can be described by the Hamiltonian for non-interacting quasiparticles,
having the dispersion relation ωBog(p) and bosonic nature. The operators b̂p and b̂†p represent
the annihilation and creation operators of these quasiparticles. From this perspective, a
physical particle created by â†p is described as a superposition of quasiparticles, according to
â†p = upb̂

†
p + vpb̂−p (see Appendix B). At small momenta, up ∼ n

√
γ/p ≫ 1 and vp ∼ −up,

therefore â†p ∼ n√γ p−1(b̂†p− b̂−p) and a physical particle is described by a very large number
of quasiparticles. This is equivalent to say that a single quasiparticle excitation corresponds
to a collective excitation of many physical particles. Instead, at high momenta up ∼ 1

and vp ∼ 0, so that â†p ∼ b̂†p and the quasiparticles become indistinguishable from the real
particles.

Going to the continuum limit, the ground state energy reads

E0 = cn2L+
L

2π

Z ∞

0
dp
hp

p2(p2 + 4cn)− p2 − 2cn
i
= Nn2γ 1− 4

3π

√
γ . (4.83)

This is the analogue in one dimension of the well-known Lee-Huang-Yang result for the
ground state energy of a 3D weakly interacting Bose gas (Lee and Yang, 1957; Lee et al.,
1957). The zero-temperature chemical potential is

µ =
∂E0

∂N
= 2n2γ 1− 1

π

√
γ (4.84)

and the dimensionless ground state energy per particle is

e(γ) = γ 1− 4

3π

√
γ . (4.85)

The latter is compared with the exact result in Fig. 4.5. Substituting Eq. (4.85) into the
thermodynamic relation (4.47), we obtain for the sound velocity

vs = 2n

r
γ − 1

2π
γ3/2. (4.86)

This is different from the ‘bare’ sound velocity occurring in the Bogoliubov spectrum (4.81),
that is instead

u =
∂ωBog(p)

∂p p→0

= 2n
√
γ, (4.87)
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Figure 4.5: Dimensionless ground state energy per particle as a function of γ. The exact
result is obtained numerically from Eq. (4.61). The large γ approximation is
given by Eq. (4.72). The prediction of Bogoliubov’s theory is Eq. (4.85), while
the tree-level result is e(γ) = γ. In the Tonks-Girardeau limit, the exact e(γ)
approaches π2/3 ≃ 3.29.

and provides a much better approximation of the exact result, accurate up to the remarkable
value of γ ∼ 10 (Fig. 4.6). Using Eq. (4.86) in Eq. (4.53) we then get an approximation
for the effective mass valid in the same range of γ,

1

2m∗ =
12πγ − 5γ3/2

[213/3π(2πγ − γ3/2)]3/4 . (4.88)

4.3.2 Hydrodynamic approach

The collective nature of elementary excitation motivates a field theoretic description in terms
of collective fields, which is known as ‘hydrodynamic approach’ or ‘bosonization’ (Haldane,
1981a; Giamarchi, 2003; Cazalilla et al., 2011). Appendix C provides a summary of the
bosonization method, where all the results necessary for the purposes of this section are
obtained. In the case of the repulsive Lieb-Liniger model,

Ĥ =

Z
dx
h
∂xψ̂

†(x)∂xψ̂(x) + c ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x)
i
, c > 0, (4.89)

the collective fields are the density ρ̂(x) and the phase θ̂(x), in terms of which the field
operator is written

ψ̂(x) =
p
ρ̂(x)eiθ̂(x). (4.90)

The canonical commutation relations of the field operator impose
h
ρ̂(x), e−iθ̂(x

′)
i
= δ(x− x′)e−iθ̂(x′), (4.91)

which is satisfied by h
ρ̂(x), θ̂(x′)

i
= iδ(x− x′). (4.92)

In a translationally invariant system, the ground-state density is constant and equal to
ρ0 = n = N/L. At small excitation energies, we can account for small density fluctuations
consistently with Eq. (4.92) by writing the density operator as

ρ̂(x) ≃ n− 1

π
∂xϕ̂(x), (4.93)
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with the fields θ̂ and ϕ̂ satisfying the commutation relation [∂xϕ̂(x), θ̂(x
′)] = −iπδ(x− x′).

Eq. (4.93) is only valid in the weak interaction regime, characterized by γ ≪ 1, since this
is only the p = 0 component of the density, which in general contains an infinite series
of harmonics of 2[πρ0x − ϕ̂(x)] (Cazalilla et al., 2011). In this regime, the Lieb-Liniger
Hamiltonian is thus

Ĥ ≃
Z
dx n− 1

π
∂xϕ̂(x) (∂xθ̂(x))

2 +
1

4π2n
(∂2xϕ̂(x))

2 +
c

π2
(∂xϕ̂(x))

2 . (4.94)

Ĥ contains two operators of scaling dimension two, (∂xθ̂)
2 and (∂xϕ̂)

2, one operator of
scaling dimension three, (∂xϕ̂)(∂xθ̂)2, and one operator of scaling dimension four, (∂2xϕ̂)2.
At lowest momenta, the excitation spectrum is determined by the most relevant6 operators,
namely those with scaling dimension two. Retaining only these operators, we obtain the
effective Hamiltonian

Ĥ0 =

Z
dx
h
n(∂xθ̂(x))

2 +
c

π2
(∂xϕ̂(x))

2
i
, (4.95)

describing a Luttinger liquid with renormalized velocity u = 2n
√
γ = (

√
γ/π)vF , and Lut-

tinger parameter K = π/
√
γ = vF /u (see Appendix C). Therefore the excitation spectrum

is linear, with the sound velocity u,

ω0(p) = up, u = 2n
√
γ. (4.96)

This sound velocity coincides with that of Bogoliubov, Eq. (4.87). Notice that since a
Luttinger liquid exactly describes both the excitations of free bosons and of fermions with
linear spectrum, Ĥ0 does not uniquely determine the statistics of quasiparticle excitations.

At lowest momenta, the first correction to the effective theory Ĥ0 comes from the leading
irrelevant operator, namely the one of scaling dimension three, which gives the Hamiltonian

ĤF = Ĥ0 −
1

π

Z
dx ∂xϕ̂(x)(∂xθ̂(x))

2. (4.97)

This is the Hamiltonian of a Luttinger liquid with a band curvature term and can be mapped
to a basis of free fermionic quasiparticles having the spectrum ω = up+ p2/2m∗, where the
effective mass m∗ is related to the Luttinger parameters by m∗−1 = π−1∂(u

√
K)/∂n (see

Appendix C and in particular Eq. (C.60)). Therefore ĤF yields the fermionic excitation
spectrum

ωF (p) = up+
p2

2m∗ , m∗ = 2
√
π/3γ1/4. (4.98)

We notice that the relation u = 2πn/K between the Luttinger parameters for the Lieb-
Liniger model allows us to rewrite Eq. (C.60) for the effective mass in the form

1

2m∗ = 1− γ ∂
∂γ

r
u

vF
, (4.99)

which coincides with the exact relation (4.53). This is a very significant result. It tells us that
for the Lieb-Liniger model, the phenomenological relation between the effective mass and the
sound velocity in the Luttinger theory, which is an effective description for weak interaction
and small momenta, actually holds for arbitrary interaction strength. This means that the
effective description correctly captures the degrees of freedom of the system even at strong
interaction, although the Luttinger parameter must be properly ‘renormalized’ to agree with

6An operator is more relevant, in the sense of the renormalization group, the smaller its scaling dimension
is. Relevant operators determine the low-energy properties of the theory.
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Figure 4.6: Sound velocity as a function of γ. The exact result is obtained numerically from
Eq. (4.49). The sound velocity of the Bogoliubov spectrum, which coincides
with the sound velocity in the Luttinger liquid theory, is given by Eqs. (4.87)
and (4.96). The sound velocity obtained from the macroscopic compressibility
using Bogoliubov’s e(γ), Eq. (4.86), is indistinguishable from the exact result
up to γ ∼ 10. In the Tonks-Girardeau limit, the exact vs/n approaches 2π.

the exact value. Both in the effective and exact descriptions, the dispersion relation up to
order p2 is thus completely characterized by the sound velocity vs = vF /K (Matveev and
Pustilnik, 2016); in the effective theory K = π/

√
γ, while for arbitrary interaction strength

K = [2πρg(λF )]
2. As expected, the former relation agrees with the exact one in the limit

of weak interaction (Fig. 4.6), see also Pustilnik and Matveev (2014).
At larger momenta, we expect the operator of scaling dimension four to be more impor-

tant than the one of scaling dimension three. The first correction to Ĥ0 will then be

ĤB = Ĥ0 +
1

4π2n

Z
dx (∂2xϕ̂(x))

2. (4.100)

The excitation spectrum of this theory is most easily obtained in a functional integral
approach. The Euclidean action

SB =

Z
dτ dx

h
ψ†(x, τ)∂τψ(x, τ) +HB

i
=
T

L

X

q

θ−q ϕ−q G−1
q

 
θq

ϕq

!
, (4.101a)

where q = (p, ωℓ), is Gaussian, with

G−1
q =

 
np2

iωℓp
2π

iωℓp
2π

cp2

π2 + p4

4π2n

!
. (4.101b)

The single-particle Green’s function is simply Gq, and the excitation spectrum is given by
its poles, which are the solutions of detG−1

q = ω2
ℓ + p2(p2 + u2) = 0. Rotating to real

frequencies by iωℓ → ω, we thus obtain that ĤB describes bosonic quasiparticles with the
Bogoliubov spectrum

ωB(p) =
p
p2(p2 + u2) = up

r
1 +

p2

u2
. (4.102)

Below and above the crossover momentum p0 ≡ u = 2n
√
γ, the Bogoliubov spectrum

simplifies to

ωB(p) ≃
(
up+ p3/2u, p ≲ p0,

u2/2 + p2, p ≳ p0,
(4.103)
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Figure 4.7: Particle-like excitations in different regions of the momentum-interaction plane.
In the pink regions elementary excitations are fermionic quasiparticles, while
in the cyan region they are bosonic. The crossover momenta are p∗ ∼ γ3/4,
p0 ∼ √γ, and p∗0 ∼ γ, while the value of the Lieb parameter separating the
weak and strong interaction regimes is γ ∼ 1. For weak interaction and small
momenta, we have the Luttinger dispersion relation (4.98). Above the crossover
momentum p∗, the Bogoliubov spectrum (4.102). For strong interaction and
small momenta, the ‘Luttinger-like’ dispersion relation given by Eq. (4.37),
with Eqs. (4.49) and (4.53). In region I the dispersion relation is given by Eq.
(4.74), while in region II terms of order p3 and higher are important (for γ ≳ 4
Eqs. (4.73a)-(4.73c) provide a quite accurate approximation). The separation
(dotted line) between the regions II and ‘Luttinger-like’ is just qualitative.

and ωF (p) and ωB(p ≲ p0) cross at p∗ ≡ (3n/
√
π)γ3/4.

We can thus distinguish the excitation spectrum of the repulsive Lieb-Liniger model in
different regions of the momentum-interaction plane (Fig. 4.7). For weak interaction and
small momenta, the system is described by the Luttinger liquid paradigm. Elementary exci-
tations are fermionic quasiparticles characterized by a linear dispersion with sound velocity
vs = u and a quadratic correction controlled by the effective mass m∗, which is related to
vs by Eq. (4.99). At larger momenta, between the values p∗ ∼ γ3/4 and p0 ∼ √γ, the
cubic correction in the spectrum becomes dominant with respect to the quadratic one, and
fermionic quasiparticles transform into Bogoliubov phonons. Finally, above p0 the Bogoli-
ubov spectrum is quadratic up to a constant term 2n2γ, with the effective mass equal to
the physical mass of the particles.

For moderate and strong interaction, the Bethe Ansatz shows that for small momenta
the dispersion relation is still ‘Luttinger-like’, i.e. it is linear with a quadratic correction
controlled by the effective mass, which is related to the sound velocity by the same relation
valid at weak interactions. Ristivojevic (2014) has shown that the next term in the expansion
in powers of p, of order p3, is controlled by a coefficient σ(γ) ∼ γ−3, therefore the momentum
interval in which the dispersion is Luttinger-like increases with the interaction strength.
In fact, in the Tonks-Girardeau limit the exact dispersion relation is Luttinger-like with
vs = vF and m∗ = m. Instead, at finite γ and momenta larger than p∗0 ∼ γ, according
to Eq. (4.74) the dispersion relation is quadratic up to the constant 4n2γ − πn2, with
the effective mass equal to the physical mass. This is qualitatively similar to the large-
momenta limit of the Bogoliubov spectrum, however the constant terms are different; the
one for strong interaction is larger than that for weak interaction. This is consistent with
a picture of fermionic quasiparticles at strong interaction, which due to the Pauli principle
are expected to have higher energy than bosonic ones for a given momentum. Indeed, we
have just seen that a change in the nature of quasiparticles is signaled by the fact that the
cubic correction becomes dominant over the quadratic one. Since the cubic correction is
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σ(γ)p3, with σ(γ) ∼ γ−3 to leading order, the crossover momentum would be p∗> ∼ γ3,
which however for γ ≫ 1 is higher than p∗0 ∼ γ. We see from the Eq. (4.74) that at such
large momenta the cubic correction is not present at all. Therefore, at strong interaction
we do not have a change in the statistics of quasiparticles, as there is simply no room for
bosonic quasiparticles to develop.

4.4 Mean field approaches and dark solitons

In addition to Bogoliubov’s perturbative approach and the hydrodynamic approach, some
relevant physical aspects of the model in the weak interaction regime are captured by the
Hartree mean field approach, which we have already used previously in the attractive case.

4.4.1 Gross-Pitaevskii equation

As discussed in Section 2.1, in the mean field approach the many-body wavefunction is
assumed to be a product of single-particle wavefunctions satisfying the Gross-Pitaevskii
equation (GPE)

i∂tψ(x, t) =
h
−∂2x + 2c|ψ(x, t)|2

i
ψ(x, t). (4.104)

To ensure consistency between the time-dependent GPE and the time-independent one,
under stationary conditions ψ(x, t) must evolve in time as

ψ(x, t) = ψ(x)e−iµt. (4.105)

The underlying assumption of is that there is (at least approximately, for weak interaction)
a macroscopic occupation of the state described by ψ(x, t), in the same spirit of Bogoliubov’s
approach. The validity of this assumption will be addressed shortly. It is then not surprising
that if one considers small-amplitude oscillations over the stationary and spatially-uniform
solution, ψ(x, t) = [ψ0 + δψ(x, t)]e−iµt, and linearizes the GPE in δψ(x, t), one obtains
exactly the Bogoliubov spectrum of elementary excitations (Pethick and Smith, 2008).

In the attractive case, the GPE admits a class of analytical solutions describing bright
solitons, i.e. localized and shape-invariant density peaks over a uniform zero-density back-
ground. A similar class of analytical solutions exists in the repulsive case, but this time it
describes dark solitons, i.e. localized and shape-invariant density depressions over a uniform
constant-density background. Here we discuss just the fundamental (one-soliton) solution;
the n-soliton solution was obtained by Zakharov and Shabat (1973) using the inverse scat-
tering method, similarly to the attractive case. However, in contrast to the attractive case,
where a bright soliton can be observed even in the ground state, a dark soliton always rep-
resents a collective excitation imprinted on the uniform ground state, for a dark soliton with
non-vanishing amplitude necessarily has non-zero momentum (see the discussion below).

For repulsive interaction (self-defocusing nonlinearity), the time-independent GPE reads

−ψ′′(x) + 2c|ψ(x)|2ψ(x) = µψ(x), c > 0, (4.106)

where the primes denote derivatives with respect to x. Let us look for a real solution with
the properties that ψ′(x) → 0 and |ψ(x)| → ψ0 = const. (non-zero) for x → ±∞. The
analogue mechanical problem is

ψ′′(x) = −∂V (ψ)

∂ψ
, with V (ψ) =

ψ2

2
µ− c ψ2 . (4.107)

The potential V (ψ) is sketched in Fig. 4.8, and it is clear that a non-trivial solution with
the required properties exists only for µ > 0. In particular, it must be ∂V (ψ0)/∂ψ = 0,
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Figure 4.8: The two possible behaviors of the potential V (ψ) for µ ≤ 0 and µ > 0.

that gives µ = 2cψ2
0, and the total ‘energy’ of the motion must be

E =
1

2
(ψ′)2 + V (ψ) = V (ψ0) =

c

2
ψ4
0. (4.108)

We can now integrate Eq. (4.107) by quadratures. We have ψ′ = ±
p
c(ψ2

0 − ψ2)2, hence
Z x

x0

dx =
±1√
c

Z ψ(x)

ψ(x0)

dψ

ψ2
0 − ψ2

. (4.109)

Taking as ‘initial condition’ ψ′(x0) =
√
2E , so that V (ψ(x0)) = 0 and ψ(x0) = 0, we obtain

x− x0 =
1√
c

Z ψ(x)

0

dψ

ψ2
0 − ψ2

=
1

ψ0
√
c

arctanh
ψ(x)

ψ0
, (4.110)

and therefore

ψs(x) =

r
µ

2c
tanh

r
µ

2
(x− x0) =

√
n tanh

x− x0√
2ξ

. (4.111)

Here we have used the fact that the chemical potential is related to the amplitude of the
wavefunction for x → ±∞ by µ = 2cψ2

0, but according to Eq. (4.84) it is also (to leading
order) µ = 2cn, where n is the background density. We thus have the identification ψ2

0 = n.
In the last step, we have introduced the quantity

ξ =
1√
2cn

, (4.112)

which is called the coherence (or healing) length. It represents the distance over which the
wavefunction tends to its bulk value (ψ0, in our case) from a localized variation. Eq. (4.111)
describes a black soliton, namely a localized density depression which reaches the value zero
in x = x0 (Fig. 4.9).

The GPE also possesses solutions for which the associated density depends on the spatial
coordinate x and the time t through the combination x− vt. These represent propagating
dark solitons, and have the form

ψs(x, t) = ψs(x− vt)e−iµt. (4.113)

Substituting this expression into Eq. (4.104), we get

−ivψ′
s(x̃) + µψs(x̃) = −ψ′′

s (x̃) + 2c|ψs(x̃)|2ψs(x̃), (4.114)

where the primes denote derivatives with respect to x̃ = x−vt. We separate ψs(x̃) into real
and imaginary parts by writing

ψs(x̃) = ψ0

h
f(x̃) + ig(x̃)

i
, (4.115)
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Figure 4.9: Probability density of the black soliton ψs(x) for different values of the interac-
tion parameter c and arbitrary background density n.

with the condition that f2(x̃) + g2(x̃) = 1 for x̃→ ±∞. Let us consider the case for which
the imaginary part is a constant, g(x̃) = g0. Substituting Eq. (4.115) into Eq. (4.114) then
yields the two equations

f ′′(x̃) = µ f2(x̃) + g20 − 1 f(x̃), (4.116a)

f ′(x̃) = −µ
v
f2(x̃) + g20 − 1 g0. (4.116b)

We notice that the first equation is formally equivalent to Eq. (4.106) upon the substitutions
x→ x̃, µ→ µ(1− g20), and 2c→ µ. Its solution is therefore

f(x̃) =
q

1− g20 tanh
"r

µ(1− g20)
2

(x̃− x0)
#
. (4.117)

We then have to ensure consistency between the Eqs. (4.116a) and (4.116b). Multiplying
the first one by f ′(x̃) and integrating gives 2[f ′(x̃)]2 = µ(f2(x̃) + g20 − 1)2. The comparison
with the second equation yields the condition

g20 =
v2

2µ
. (4.118)

As one last step, we can relate the chemical potential to the velocity of Bogoliubov phonons
by u =

√
2µ. Putting things together, the soliton wavefunction is (Tsuzuki, 1971)

ψs(x, t) =
√
n

"
i
v

u
+

r
1− v2

u2
tanh

x− x0 − vt√
2ξv

#
e−iu

2t/2, (4.119)

with ξv = ξ/
p

1− v2/u2. The associated density is

|ψs(x, t)|2 = n
v2

u2
+ 1− v2

u2
tanh2

x− x0 − vt√
2ξv

= n− (n− nmin) sech2 x− x0 − vt√
2ξv

, (4.120)

where nmin ≡ |ψs(x = x0+vt, t)|2 = nv2/u2 is the minimal value of the density, correspond-
ing to the bottom of the soliton dip. The integrated density is

Z
dx |ψs(x, t)|2 = N − 2

s
1− v2/u2

γ
= N − 2

r
n− nmin

c
. (4.121)
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Since u2 = 4cn, the propagation velocity v of the soliton is given by v = 2
√
cnmin, that is

the bulk sound velocity evaluated at the density nmin. The latter is zero when the soliton
is stationary (black soliton), while for non-zero v the minimum density is grater than zero,
and we call ψs(x, t) a gray soliton. In Fig. 4.10 we present the time evolution of the density
of dark soliton for different propagation velocities. It is worth emphasizing that the velocity
of gray solitons cannot exceed the bulk sound velocity, while there is no similar limitation
on the velocity of bright solitons in the attractive Bose gas, as the height and width of a
bright soliton are independent from the velocity at which it propagates.

The density notch is associated to a flip of the phase of the wavefunction. The phase is

θ(x, t) = arctan
v√

u2 − v2
coth

x− x0 − vt√
2ξv

(4.122)

for x > x0 + vt, and θ(x, t) + π for x < x0 + vt. The change of phase along the soliton is
therefore

∆θ = θ(+∞, t)− θ(−∞, t) = 2 arctan
v√

u2 − v2
− π = −2 arccos v

u
. (4.123)

For a gray soliton moving in the positive x direction the phase change is negative. In the
case of a black soliton (v = 0), one observes a single phase flip ∆θ = −π at the position of
the density dip.

The energy associated to the soliton can be obtained by substituting the expression of
ψs(x, t) into the Gross-Pitaevskii energy functional E =

R
dx |∂xψ|2 + c|ψ|4 , which we

introduced in Section 2.1. Actually, to allow for the deficit of particles in the soliton, we
consider the quantity E−µN =

R
dx |∂xψ|2 + c|ψ|4 − µ|ψ2| , namely the zero-temperature

grand canonical potential, rather than the energy E itself (Pethick and Smith, 2008)7. In
the absence of the soliton, assuming the background density to be uniform, (E−µN)unif =
cn2−µn. The difference ∆(E−µN) between the grand canonical potential with and without
the soliton is thus

Es = ∆(E − µN) =

Z
dx
h
|∂xψs(x, t)|2 + c |ψs(x, t)|2 − n 2

i
, (4.124)

which yields the soliton energy

Es =
4

3
nu 1− v2

u2

3/2

. (4.125)

Identification of the soliton momentum requires a more careful discussion, as one needs to
take into account two separate contributions (Syrwid, 2021). The first is of course the ‘local
momentum’ associated to the field ψs(x, t),

P1 = −i
Z
dxψ∗

s(x, t)∂xψs(x, t) = −2n
v

u

r
1− v2

u2
, (4.126)

which is produced in a region of the order of ξv around the density dip. The second contribu-
tion is related to the asymptotic change of phase of the soliton. This effect is well understood
if one consider the system on a ring with circumference much larger than the soliton width;
then the requirement of a single-valued wavefunction enforces the appearance of a coun-
terflow at large distances, which compensates the phase difference (4.123). Concretely, in
the hydrodynamic formulation of the Gross-Pitaevskii equation, the space-dependent phase

7For a direct derivation of the dark soliton energy using a limiting procedure that conserves the number
of particles, see Zhao et al. (2020).
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Figure 4.10: Time evolution of the probability density of dark solitons with different prop-
agation velocities. We set cn = 1 (thus u = 2) and x0 = −5.

θ(x) of the wavefunction is identified with the particles’ velocity field V (x) according to
V (x) = (ℏ/m)∂xθ(x) (Pethick and Smith, 2008). This is associated to a momentum density
p(x) = mnV (x) = ℏn∂xθ(x) and a total momentum P = ℏn

R
dx ∂xθ(x) = ℏn∆θ. To

compensate the phase difference as required by periodic boundary conditions, we thus need
a counterflow carrying opposite momentum, which in our units (ℏ = 1) reads

∆P = −n∆θ = 2n arccos
v

u
. (4.127)

The total momentum of the soliton is then

Ps = P1 +∆P = 2n

"
arccos

v

u
− v

u

r
1− u2

v2

#
. (4.128)

One can easily check that Ps satisfies the relation v = dEs/dPs, or Ps =
R
dv
v
dEs(v)
dv , and

therefore is the canonical momentum of the soliton.
Due to its localization and stability, a simple description of the dark soliton is that

it behaves as a mass defect (a ‘hole’) moving with velocity v and momentum P1. The
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Figure 4.11: Dispersion relation of dark solitons of the Gross-Pitaevskii equation (continu-
ous lines) compared with the dispersion relation of Lieb’s Type II excitations
(discrete markers), for different values of the interaction parameter c at unit
filling.

additional counterflow momentum ∆P can be interpreted as contribution accounting for
the reorganization of particles around the moving soliton. This description sounds quite
similar to the definition of Lieb’s Type II excitations. Indeed, as first noted by Kulish et
al. (1976), the dispersion relation of a classical dark soliton closely follows that of Type II
excitations. Evident clues to this correspondence are that Ps takes values in the interval
[0, 2πn] (Ps = 0 for v = u and Ps = 2πn for v = −u), exactly as the momentum of
Type II excitations, and that Es has downward curvature, thus negative effective mass, and
vanishes at the endpoints of the momentum interval. The correspondence becomes exact in
the weakly interacting limit (Ishikawa and Takayama, 1980). We can prove it analytically
by using the expansions for α≪ 1 of the functions fe(x) and fo(x) occurring in Eq. (4.57),
obtained by Popov (1977) and Reichert et al. (2019), respectively:

fe(x) =

√
1− x2
2πα

+
1 + ln 16π

α − x ln 1+x
1−x

4π2
√
1− x2

+O(α), (4.129a)

fo(x) =
x
√
1− x2
α

+
x 1 + ln 16π

α + (1− 2x2) ln 1+x
1−x

4π
√
1− x2

+O(α). (4.129b)

Retaining only the first term of each expansion, Eqs. (4.57) and (4.59) give

λF = 4αn, (4.130a)

pII = 2πλF
1

4πα
arccosχ− χ

p
1− χ2 , (4.130b)

ωII = 2λ2F
(1− χ2)3/2

3α
, (4.130c)

with χ = k/λF ∈ [−1, 1]. Eq. (4.130a) fixes λF = 2
√
cn, and the dispersion curve

ωII(χ)[pII(χ)] obtained parametrically from Eqs. (4.130b) and (4.130c) is identical to the
dispersion curve Es(v/u)[Ps(v/u)] obtained from Eqs. (4.125) and (4.128). In Fig. 4.11 we
compare the dispersion relation of dark solitons with the Type II dispersion relation obtained
numerically. Rather surprisingly, this correspondence remains quite good well beyond the
range of c within which the mean field is expected to provide an accurate description of the
system.
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Our discussion has focused on the zero-temperature case, however further insights into
the correspondence between dark solitons and Type II excitations of the Lieb-Liniger model
come from exploring the statistical distribution excitations at finite temperature (Karpiuk
et al., 2015). Let us just give an idea of how to proceed. The equilibrium properties of the
system can be described in terms of a gas of two kinds of quasiparticles, corresponding to
Type I and Type II excitations. The total energy of the system is

E({npI , ñpII}) =
X

pI

npIωI(pI) +
X

pII

ñpIIωII(pII), (4.131)

where npI and ñpII are the number of Type I excitations with momentum pI and the number
of Type II excitations with momentum pII, respectively, and ωI(pI) and ωII(pII) are the
corresponding spectra, which are obtained based on the Yang-Yang equation (4.12). The
quasiparticles’ states are populated according to the probability distribution

P({npI , ñpII}) =
1

Z
e−E({npI ,ñpII})/T , (4.132)

where Z is the partition function, and then one can compute the average number of Type
II excitations at a given temperature as a function of the momentum. This number should
be compared with the statistical distribution of dark solitons within the mean field ap-
proach. The latter can obtained with the following method. Using a Monte Carlo algorithm
(Witowska et al., 2010), one prepares an ensemble of classical fields corresponding to a
given temperature, in which the density ρ(x, t) associated to a classical field is a sum of
regularized dark soliton densities,

ρ(x, t) =
X

j

ρs(x− xj − vjt), (4.133)

where ρs(x, t) = |ψs(x, t)|2−n, and xj and vj are the initial position and the velocity of the
jth soliton, respectively. The Fourier transform of the density in both position and time is8

eρ(k, ω) =
X

j

e−ikxj eρs(k; vj)δ(ω − vjk), (4.134)

where eρs(k; vj) is the Fourier transform of a single solitonic density, which depends on the
soliton velocity as a parameter. The square of eρ(k, ω) is then

|eρ(k, ω)|2 =
X

j

Aj |eρs(k; vj)|2 δ(ω − vjk),

Aj = Nj + 2
X

j1>j2

cos[k(xj1 − xj2)],
(4.135)

where Nj is the number of solitons with velocity vj . Since in the thermal ensemble the
initial positions of solitons are random, averaging Eq. (4.135) over many realizations one
obtains

⟨|eρ(k, ω)|2⟩ =
X

j

Nj |eρs(k; vj)|2 δ(ω − vjk). (4.136)

It follows that the ratio ⟨|eρ(k, ω)|2⟩/ |eρs(k;ω/k)|2 yields the number of solitons with velocity
v = ω/k. Implementing this soliton-counting procedure (and introducing a phenomenolog-
ical correction at higher temperatures to take into account soliton collisions), Karpiuk et

8Explicitly, eρ(k, ω) =
P

j

R
dx dt ρs(x − xj − vjt)e

−ikxeiωt. Introducing the variable x̃ = x − xj − xjt,
this can be written as eρ(k, ω) = P

j e
−ikxj (

R
dx̃ ρs(x̃)e

−ikx̃)
R
dt ei(ω−vjk)t, which gives the result.
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al. (2015) have matched the thermal distribution of dark solitons with that of Type II
excitation, providing further evidence that Type II excitations are solitonic in nature.

The question remains whether the relationship between dark solitons and Type II ex-
citations is valid also for stronger interactions. In order to address this problem, in the
next section we present a generalized mean field approach, leading to nonlinear Schrödinger
equations (NLSEs) with different nonlinearities depending on the interaction strength, and
which reduce to the usual Gross-Pitaveskii equation (GPE), namely a NLSE with cubic
nonlinearity, in the limit c→ 0. The hope is that this approach can extend the effectiveness
of the mean field theory to the moderate and strong interaction regimes. However, that is
probably too optimistic9. The main concern is that mean field theory relies on the intro-
duction of an ’order parameter’, i.e. a single-particle wavefunction which is assumed to be
able to collectively describe the bosonic system. While this is typically the case in 3D, at
temperatures below the critical temperature of Bose-Einstein condensation (BEC), whose
occurrence is signaled by the presence of off-diagonal-long-range-order (ODLRO) in the
one-body density matrix ρ(x, y) = ⟨ψ̂†(x)ψ̂(y)⟩ (Penrose and Onsager, 1956; Pitaevskii and
Stringari, 2016), in 1D the situation is more delicate. In 1D, ODLRO is absent at any T ≥ 0
and for any c > 0, and therefore we never have true BEC. However, for small interaction, at
T = 0 we have a mesoscopic condensation (or quasi-condensation) characterized by a finite
condensate fraction, a phenomenon that, for all practical purposes, can be considered as an
ordinary condensation (Colcelli et al., 2018, 2020). For this reason, the mean field approach
works reasonably well for weak interaction even in 1D. For stronger interaction, however, we
do not even have mesoscopic condensation. It is therefore difficult to base the generalized
mean field approach on solid ground. We will discuss its effectiveness by comparing it with
the exact result, but we can already expect, for instance, that the agreement between the
dispersion relation of mean-field solitons and Type II excitations in the strong interaction
regime will not be as good as the agreement we observe for weak interaction.

4.4.2 Generalized Gross-Pitaevskii equation

A modified GPE in 1D was first introduced by Kolomeisky et al. (2000) for the Tonks-
Girardeau regime. Despite initial criticisms by Girardeau and Wright (2000)10, the idea was
soon after generalized by Dunjko et al. (2001); Öhberg and Santos (2002) and successfully
applied to the problem of an expanding 1D cloud, and was later used by Lieb et al. (2003)
to study the 3D to 1D dimensional crossover. The idea is the following. The standard mean
field approach starts from the Gross-Pitaevskii energy functional,

EGP[ψ,ψ
∗] =

Z
dx
h
|∂xψ(x)|2 + c|ψ(x)|4

i
, (4.137)

where the nonlinear term c|ψ(x)|4 corresponds to the tree-level approximation of the ground
state energy density, E0/L = cn2 (for a uniform system, the energy is minimized by |ψ(x)| =√
n = const.). Minimization of the associated action leads to the GPE. In the generalized

mean field approach, we conserve the relationship between the nonlinear term and the
ground state energy density, but instead of using the tree-level result for the latter, we use
the exact ground state energy density of the Lieb-Liniger model, that is E0/L = n3eLL(γ).

9See also the next footnote.
10Girardeau and Wright pointed out that if a 1D atomic cloud in the ground state of a harmonic trap is

split and later recombined, the mean field treatment of Kolomeisky et al. predicts interference, whereas the
exact analysis does not. Thus the mean field approach endows the order parameter with phase information
that is beyond the real degree of coherence present in the system. This is consistent with the lack of off-
diagonal-long-range-order in the 1D Bose gas, which instead is normally required for the introduction of
an order parameter (macroscopic occupation). This is a problem that also affects the 1D Gross-Pitaevskii
approximation, although, as we have discussed, we expect it to be less severe for weak interaction.
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This leads to the energy functional

EGGP[ψ,ψ
∗] =

Z
dx |∂xψ(x)|2 + |ψ(x)|6 eLL

c

|ψ(x)|2 . (4.138)

Applying the least action principle in the usual way (see Section 2.1), one obtains the
generalized Gross-Pitaevskii equation (GGPE)

i∂tψ(x, t) = −∂2x + 3|ψ|4eLL
c

|ψ|2 − c|ψ|2e′LL
c

|ψ|2 ψ(x, t). (4.139)

Similarly to what is done with the standard GPE, we can determine the spectrum of
the elementary excitations of the GGPE by linearizing on small amplitude oscillations over
the stationary and spatially uniform solution ψ0 =

√
n. Thus we consider

ψ(x, t) =
√
n+ δ(x, t) e−iµt, (4.140)

where µLL = ∂E0/∂N = 3n2eLL(γ)−cne′LL(γ) is the exact chemical potential. Substituting
this expression into the GGPE we obtain

i∂tδψ(x, t) = −∂2x +
v2LL
2

δψ(x, t) +
v2LL
2
δψ∗(x, t), (4.141)

where vLL is the exact sound velocity (4.47). Taking the Fourier transform of Eq. (4.141)
and its complex conjugate yields the homogeneous linear system

 
−ω + p2 +

v2LL
2

v2LL
2

v2LL
2 ω + p2 +

v2LL
2

! fδψ(p, ω)
fδψ∗

(p, ω)

!
= 0, (4.142)

which has non-trivial solution only if the the determinant of the matrix of coefficients is
zero. This gives the excitation spectrum of the GGPE,

ω(p) =
q
p2(p2 + v2LL), (4.143)

which differs from the Bogoliubov spectrum just by having the exact sound velocity of the
Lieb-Liniger model vLL in place of u = 2n

√
γ.

In the limit γ ≪ 1, Eq. (4.139) reduces either to the GPE (using the tree-level result
e(γ) ≃ γ) or, by using the Bogoliubov result e(γ) ≃ γ − 4γ3/2/3π, to

i∂tψ(x, t) = −∂2x + 2c|ψ|2 − 2c3/2

π
|ψ| ψ(x, t), (4.144)

that is a NLSE with quadratic-cubic nonlinearity. In the Tonks-Girardeau limit, instead,
where eLL approaches the constant value π2/3, Eq. (4.139) coincides with the equation
originally proposed by Kolomeisky et al. (2000),

i∂tψ(x, t) =
h
−∂2x + π2|ψ|4

i
ψ(x, t), (4.145)

that is a NLSE with quintic nonlinearity. Since our next discussion will focus on the con-
struction of quantum dark solitons in the Tonks-Girardeau limit, we now consider this
specific equation, which should represent a sort of classical limit of the strong interaction
regime. For brevity, in the following we shall refer to it as the Kolomeisky equation.

The sound velocity and the chemical potential in the Tonks-Girardeau limit are vLL =
2πn and µLL = π2n2, respectively. As usual, we look for a solution of the form ψs(x, t) =
ψs(x− vt)e−iµLLt. Substituting this into Eq. (4.145), we obtain

−ivψ′
s(x̃) = −ψ′′

s (x̃) + π2 |ψs(x̃)|4 − n2 ψs(x̃), (4.146)

84



where the primes denote derivatives with respect to x̃ = x− vt. We can parametrize ψ(x̃)
in polar coordinates as

ψs(x̃) =
√
nA(x̃)eiθ(x̃), (4.147)

with the assumptions that |A(x̃)| → 1 and θ′(x̃) → 0 for x̃ → ±∞. This yields the two
coupled equations

vAθ′ = −A′′ +A(θ′)2 +
v2LL
4

(A4 − 1)A, (4.148a)

vA′ = 2A′θ′ +Aθ′′. (4.148b)

The second one is a linear first-order differential equation for θ′, which can be integrated to
obtain θ′ = (v/2)(1 − A−2). With some work, one can then integrate the first equation to
finally obtain

A2(x, t) = 1− 3(1− v2/v2LL)

2 +
q

1 + 3v2/v2LL cosh
h
2πn

q
1− v2/v2LL(x− x0 − vt)

i (4.149a)

θ(x, t) =
1

2
arccos


(3v

2/v2LL)/A
2 − 1q

1 + 3v2/v2LL


 (4.149b)

These equations describe a gray soliton propagating with velocity v, which bears some
similarities with the gray soliton of the GPE. The density |ψs(x, t)|2 = nA2(x, t) takes the
minimal value

nmin = |ψs(x = x0 + vt, t)|2 = n
q

1 + 3v2/v2LL − 1 , (4.150)

which goes to zero for zero propagation velocity (black soliton). The density notch is
associated to a flip of the phase of the wavefunction, whose total change along the soliton is

∆θ = arccos


 3v2/v2LL − 1q

1 + 3v2/v2LL


 , (4.151)

and takes value between −π (for v = 0) and zero (for v = vLL). Following the same
procedure of Section 4.4.1, we can then compute the energy and momentum of the dark
soliton of the Kolomeisky equation, which are given by

Es =
√
3πn2 1− v2

v2LL
ln



2 +

q
3(1− v2/v2LL)q
1 + 3v2/v2LL


, (4.152a)

Ps = −
v/vLL

(1− v2/v2LL)

Es
πn

+ n arccos


 3v2/v2LL − 1q

1 + 3v2/v2LL


, for 0 ≤ v ≤ vLL. (4.152b)

The dispersion relation, which is determined parametrically as Es(v/vLL)[Ps(v/vLL)], is
compared with the exact dispersion relation of Type II excitation in the Tonks-Girardeau
regime, ω(p) = 2πnp− p2, in Fig. 4.12. As we can see, the agreement is only qualitative at
moderate and large momenta, however for p≪ 1 the two dispersion relations have the same
linear behavior. This is ensured by construction in the generalized mean field approach,
since we use the exact value of the sound velocity vLL.

Using different expansions for eLL(γ), the GGPE takes on various particular forms that
might be more or less appropriate for describing the system in a given interaction regime.
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Figure 4.12: Dispersion relation of dark solitons of the Kolomeisky equation (continuous
line) compared with the dispersion relation of Lieb’s Type II excitations
(dashed-dotted line) in the Tonks-Girardeau regime at unit filling.

The corresponding dark soliton solutions will likely have to be found numerically, as recently
discussed by Kopyciński et al. (2022). The agreement between such classical solitons and
quantum dark solitons in the same interaction regime remains to be investigated. In the
next chapter we begin the construction of quantum dark solitons and propose a new way
to search for wave packets that enjoy the stability of classical solitons while remaining
sufficiently well localized.
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Chapter 5

Quantum solitons in the repulsive case

The correspondence between the dispersion relations of classical dark solitons and Lieb’s
Type II excitations (which is exact in the limit of weak interaction and arguably only
qualitative for moderate and strong interactions) motivates the search for quantum dark
solitons built from a superposition of Type II excited states. This has been subject of intense
research in recent years (Sato et al., 2016; Shamailov and Brand, 2019; Golletz et al., 2020;
Kaminishi et al., 2020; Ishiguro et al., 2022; Kinjo et al., 2022, 2023). Current literature
has mainly focused on the construction of localized wave packets from a superposition all
possible one-hole states, weighted in various ways (for instance, according to a uniform
or a Gaussian distribution). Such wave packets, although well localized, do not enjoy the
stability under time evolution that one would like to find in the quantum analogue of a
classical soliton. In this chapter we will analyze these aspects in detail and propose a
possible solution to the above mentioned difficulty, based on the inclusion of a selective
superposition of multi-hole states. Unlike the previous chapters, the results of the present
one are based on the algebraic formulation of the Bethe Ansatz, which we present in the
first section.

5.1 Algebraic Bethe Ansatz

Although the Coordinate Bethe Ansatz provides a convenient framework for finding the
eigenstates of the Lieb-Liniger model, it is not suited for computing overlaps between states
or matrix elements in a tractable way. We have seen in previous chapters that already in the
attractive case, even though the Bethe wavefunctions are quite simple, since the rapidities
are organized in string clusters, the explicit computation of matrix elements of the field
operator or the density operator is rather cumbersome. In the repulsive case, where the
wavefunctions are more complicated, similar computations are totally infeasible. To this
end, a different approach has been developed, which we refer to as the Algebraic Bethe
Ansatz (Sklyanin et al., 1979; Korepin et al., 1993).

Rather than starting from a given Hamiltonian and finding its eigentstates, the purpose
of the Algebraic Bethe Ansatz is to start from an Hilbert space H and construct a complete
set of operators {Q̂n} which are in involution, i.e. satisfy [Q̂n, Q̂m] = 0 for any n,m. One
of this operator will be identified with the Hamiltonian of the model, ensuring that {Q̂n}
is a complete set of conserved charges. Instead of constructing the charges one at a time,
one looks for a generating function for them all. This is called the transfer matrix, and is
an operator-valued function taking as argument a spectral parameter λ, of the form

τ(λ) = exp

∞X

n=0

αn
n!
Q̂nλ

n . (5.1)

The problem of finding a complete set of operators in involution is then equivalent to the
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problem of finding a transfer matrix satisfying

[τ(λ), τ(µ)] = 0 for any λ, µ. (5.2)

To solve this problem, one introduces an auxiliary space A along with a new operator-valued
function T (λ) acting on the tensor product space A ⊗ H, called the monodromy matrix,
such that

τ(λ) = TrA T (λ). (5.3)

Then Eq. (5.2) is satisfied provided that

[TrA1T1(λ),TrA2T2(µ)] = TrA1⊗A2 [T1(λ)T2(µ)− T2(µ)T1(λ)] = 0, (5.4)

where the indices denote on which auxiliary space the operators act1. By the cyclicity of
the trace, we can satisfy Eq. (5.4) by finding an intertwining operator for the monodromy
matrix, i.e. an invertible operator-valued function R12(λ, µ) acting on A1 ⊗A2, called the
R-matrix, such that

R12(λ, µ)T1(λ)T2(µ) = T2(µ)T1(λ)R12(λ, µ). (5.5)

Consistency of the intertwining relations for three monodromy matrices is ensured by the
condition that the R-matrix satisfies the Yang-Baxter equation

R12(λ, µ)R13(λ, ν)R23(µ, ν) = R23(µ, ν)R13(λ, ν)R12(λ, µ). (5.6)

This automatically guarantees that all higher products are also consistently defined. Thus
the problem of constructing a quantum integrable model reduces to defining a monodromy
matrix T (λ) and finding a corresponding R-matrix satisfying the Yang-Baxter equation.

For the Lieb-Liniger model, the auxiliary space A is isomorphic to C2. The monodromy
matrix is represented as the 2× 2 matrix

T (λ) =
A(λ) B(λ)
C(λ) D(λ)

, (5.7)

whose elements A, B, C, and D are operators depending on a spectral parameter λ and
acting on the Hilbert space. Their commutation relations are fixed by the intertwining
relation (5.5) with the R-matrix

R(λ, µ) =




f(µ, λ) 0 0 0
0 g(µ, λ) 0 0
0 0 g(µ, λ) 0
0 0 0 f(µ, λ)


 , (5.8a)

in which
f(λ, µ) =

λ− µ+ ic

λ− µ and g(λ, µ) =
ic

λ− µ. (5.8b)

The operators A, B, C, and D are used to construct the states in Hilbert space. We first
notice that the transfer matrix is

τ(λ) = TrA T (λ) = A(λ) +D(λ). (5.9)

Simultaneous eigenstates of all conserved charges are obtained by seeking eigenstates of
the transfer matrix itself, i.e. the operator A(λ) + D(λ). We assume the existence of a
pseudovacuum | 0 ⟩ that is an eigenstate of A(λ) and D(λ),

A(λ)| 0 ⟩ = a(λ)| 0 ⟩ and D(λ)| 0 ⟩ = d(λ)| 0 ⟩, (5.10)
1More precisely, T1(λ) = T (λ) ⊗ 12 and T2(µ) = 11 ⊗ T (λ) are operators acting on A1 ⊗ A2 ⊗H, and

T1(λ)T2(µ) is a shorthand notation for T1(λ)⊗ T2(µ)
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with a(λ) = e−iLλ/2 and d(λ) = eiLλ/2, while B(λ) and C(λ) act respectively as creation
and annihilation operators,

⟨ 0 |B(λ) = 0 and C(λ| 0 ⟩ = 0. (5.11)

Repeatedly applying B(λ) to the pseudovaccum then gives rise to new states,

| {λ}N ⟩ =
NY

j=1

B(λj)| 0 ⟩, (5.12)

which are eigenstates of the transfer matrix provided that the set of rapidities {λ}N solves
the Bethe equations

eiλjL =
Y

l ̸=j

λj − λl + ic

λj − λl − ic
, j = 1, . . . , N. (5.13)

Once the Bethe equations are solved for the rapidities, the eigenstate is fully characterized.
Its norm is given by the Gaudin-Korepin formula (1.72),

∥{λ}N∥2 = cN
Y

j>k

λ2jk + c2

λ2jk
detN δjk L+

X

l

Kjl −Kjk , Kjk =
2c

λ2jk + c2
, (5.14)

which can be proven by using the commutation relations between B and C operators. (Here
and in the following sections, we use the shorthand notation λjk to denote the difference
λj−λk, and the absence of limits in a sum or a product means that it extends from 1 to N).
Based on this algebraic description of the eigenstates, a crucial theorem by Slavnov (1989)
provides a formula for the overlaps between two states of the form (5.12), in which at least
one satisfies the Bethe equations. This theorem underpins the matrix element expressions
that we discuss in the following section.

5.2 Density matrix elements

We are interested in the matrix elements of the density operator ρ̂(x) = ψ̂†(x)ψ̂(x) between
two arbitrary Bethe states | {µ}N ⟩ and | {λ}N ⟩. These are clearly related to the matrix
elements of the integrated density

Q̂1(x) =

Z x

0
dy ρ̂(y), (5.15)

representing the number of particles in the interval [0, x]. We thus consider the form factor

FN ({µ}, {λ}) =
⟨ {µ}N | Q̂1(x) | {λ}N ⟩
∥{µ}N∥ ∥{λ}N∥

. (5.16)

The matrix elements of Q̂1(x) obtained from the Algebraic Bethe Ansatz are (Izergin and
Korepin, 1984; Slavnov, 1990)

⟨ {µ}N | Q̂1(x) | {λ}N ⟩ = eiPx − 1 Ω({µ}, {λ}), (5.17)

where P =
P

j(λj − µj) is the difference in momenta between | {λ}N ⟩ and | {µ}N ⟩, and

Ω({µ}, {λ}) =
Y

j

(V +
j − V −

j )
Y

j,k

λjk + ic

µj − λk
detN (δjk + Ujk(λp))

V +
p − V −

p
. (5.18)
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Here λp is an arbitrary element of the set {λ}N , and the quantities V ±
j , Ujk are defined by

V ±
j =

Y

m

µm − λj ± ic
λmj ± ic

, (5.19)

Ujk(λp) =
i(µj − λj)
V +
j − V −

j

Y

m ̸=j

µm − λj
λmj

(Kjk −Kpk). (5.20)

In particular, the matrix elements of ρ̂(x) are

ρ(x) =
∂

∂x
FN ({µ}, {λ}) = eiPxρ(0), (5.21)

where
ρ(0) =

iP Ω({µ}, {λ})
∥{µ}N∥ ∥{λ}N∥

. (5.22)

Strong coupling expansions In the limit of large c, we can simplify the above result by
expanding the various quantities up to the order 1/c.

∗ Expansion of rapidities. Substituting ϕ(λ) = 2 arctan(λc ) =
2λ
c + O(c−3) into the Bethe

equations (1.30), we obtain

λj =
2πIλj
L
− 1

L

X

k

ϕ(λj − λk) =
2πIλj
L

1− 2N

cL
+

2P{λ}
cL

+O(c−2), (5.23)

where P{λ} =
2π
L

P
k I

λ
k is the momentum of the state | {λ}N ⟩.

∗ Expansion of Kjk. We have

Kjk =
2c

λ2jk + c2
=

2

c
−

2λ2jk
c3

+O(c−5) (5.24a)

and thus
Kjk −Kpk = −

2

c3
λjp(λjk + λpk) +O(c−5). (5.24b)

∗ Expansion of V ±
j . We have

V ±
j =

Y

m

µm − λj ± ic
λmj ± ic

=
Y

m

1∓ i

c
(µm − λm) +O(c−2)

= 1∓ i

c

X

m

(µm − λm) +O(c−2) = 1± iP
c

+O(c−2), (5.25a)

where P = P{λ} − P{µ}, and thus

Y

j

(V +
j − V −

j ) =
2iP
c

N

+O(c−2N ). (5.25b)

∗ Expansion of Ujk. Inserting the expansions (5.23), (5.24b), and (5.25a) into (5.20), we
get

Ujk = −
1

L
(Iµj − Iλj )

π

P c− 2N

L
− 1

×
Y

m ̸=j

Iµm − Iλj − P
π (c− 2N

L )−1

Iλm − Iλj
2

c3
λjp(λjk + λpk) + · · · = O(c−2). (5.26)
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∗ Expansion of Ω. According to (5.26), to leading order detN (δjk +Ujk) ≃ 1, and since λjk
is at most O(1),

Q
j,k(λjk + ic) ≃ (ic)N

2 . Using also (5.25a) and (5.25b) we thus obtain

Ω =
iN

2+N−1cN
2−N+1(2P)N−1

Q
j,k(µj − λk)

+ · · · (5.27)

∗ Expansion of the norm. To leading order the determinant is simply LN , and sinceQ
j>k(λ

2
jk + c2) ≃Qj>k c

2 = cN
2−N , we obtain

∥{λ}N∥2 =
cN

2
LNQ

j>k λ
2
jk

+ · · · (5.28a)

Therefore
1

∥{µ}N∥∥{λ}N∥
=

Q
j>k |µjk||λjk|
cN2LN

+ · · · (5.28b)

From (5.27) and (5.28b) we obtain the expansion for large c of the density matrix element,

ρ(0) =
iN(N+1)PN

L

2

cL

N−1
Q
j>k |µjk||λjk|Q
j,k(µj − λk)

+ · · · (5.29)

Let us look more carefully at the relationship between the quantum numbers of the states
| {µ}N ⟩ and | {λ}N ⟩. State | {λ}N ⟩ can be obtained from state | {µ}N ⟩ by punching n holes,
with n an integer between 1 andN , and adding an equal number of particles. In other words,
the set of quantum numbers {Iλ} differs from the set {Iµ} by n elements. We parametrize
the quantum numbers {Iµ} in increasing order, so that Iµ1 < Iµ2 < · · · < IµN . To minimize
the number of Iλj ’s that are different from Iµj ’s for the same value of j, we parameterize
{Iλ} so as to keep unchanged the indices of the quantum numbers that remain occupied,
while we parameterize in increasing order the new quantum numbers. For example,

1 2 3 4 5 6 7 8 9 10

2 3 4 5 7 8 101 6 9
{ }Iλ

{ }Iμ

j = 

j = 

We will denote by H the set of indices j corresponding to the new quantum numbers. The
number of elements in H is n. In the example above, n = 3 and H = {1, 6, 9}.

With this convention, several terms in the product on the right-hand side of Eq. (5.29)
simplify. We can write the product in the denominator as

Y

j,k

(µj − λk) =
Y

j

(µj − λj)
Y

j<k

(µj − λk)
Y

j>k

(µj − λk). (5.30)

We compute each of these three factors separately, splitting the product over j or k into
the product over {1, . . . , N} \H and H . Recalling that

µj − λk =
2π

L
(Iµj − Iλk )−

2N

cL

2π

L
(Iµj − Iλk ) +

P
N

+O(c−2), (5.31)
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we see that for j /∈ H or k /∈ H , (i) if j = k, then Iµk − Iλk = 0 and µk − λk = −2P/cL+
O(c−2); (ii) if j ̸= k, then µj − λk = λj − λk +O(c−1). Therefore

Y

j

(µj − λj) = −2P
cL

N−n Y

j∈H

(µj − λj), (5.32a)

Y

j<k

(µj − λk) = (−1)N(N−1)/2
Y

j>k

(λj − µk)

= (−1)N(N−1)/2
Y

j>k
k/∈H

(µj − µk)
Y

j>k
k∈H

(λj − µk) +O(c−1)

= (−1)N(N−1)/2(−1)ℓ
Y

j>k
k/∈H

(µj − µk)
Y

j<k
j∈H

(µj − λk) +O(c−1), (5.32b)

Y

j>k

(µj − λk) =
Y

j>k
j /∈H

(λj − λk)
Y

j>k
j∈H

(µj − λk) +O(c−1), (5.32c)

where ℓ is the number of elements in the product
Q
j>k, k∈H (λj − µk). Substituting these

expressions into (5.29), and noting that iN(N+1)(−1)N(3−N)/2 = 1, we thus obtain

ρ(0) =
(−P)n
L

2

cL

n−1

(−1)ℓsgn
Q

j>k
k/∈H

µjk
Q

j>k
j /∈H

λjk

Q
j>k
k∈H

|µjk|
Q

j>k
j∈H

|λjk|
Q

j,k
j∈H

(µj − λk)
. (5.33)

One-hole differences Consider for instance the simplest case n = 1, when the states
| {λ}N ⟩ and | {µ}N ⟩ differ by only one quantum number. We can always take this quan-
tum number to be the one of index N , i.e. H = {N}, and the other quantum numbers
parameterized in increasing order. Then the products on the right-hand side of Eq. (5.33)
simplify to2 (µN − λN )−1 = (−P)−1, and the density matrix elements, which we denote as
ρ1(0), read

ρ1(0) =
1

L
sgn

Q
j>k µjkλjk =

1

L
sgn

QN−1
k=1 I

µ
NkI

λ
Nk =

(−1)|Ch,h′ |

L
, (5.34)

where |Ch,h′ | is the number of particles (i.e. occupied quantum numbers) between the two
holes’ quantum numbers, eIh = IλN and eIh′ = IµN , in agreement with Sarvi (2023).

Multi-hole differences We can treat in a similar fashion the cases n > 1, by taking
H = {N,N − 1, . . . , N − n+ 1}. Then

ρ(0) =
(−P)n
L

2

cL

n−1

(−1)n(n−1)/2sgn
Q

j>k
k/∈H

µjkλjk

Q
j>k |µjk||λjk|Q
j,k(µj − λk) j,k∈H

. (5.35)

2We use the fact that

sgn
Q

j>k
k/∈H

µjk

Q
j>k
j /∈H

λjk

Q
j>k
k∈H

|µjk|
Q

j>k
j∈H

|λjk|Q
j,k

j∈H
(µj − λk)

= sgn
Q

j>k
k/∈H

µjkλjk

Q
j>k
k∈H

|µjk|
Q

j>k
k∈H

|λjk|Q
j∈H (µj − λj)

Q
j<k
j∈H

(µj − λk)
Q

j>k
k∈H

(µj − λk)
.
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Notice that the factors µj−λk in the denominator are always non-zero, therefore the matrix
elements are well-behaved. The equation implies that in the Tonks-Girardeau regime the
density matrix elements between Bethe states differing by more than one quantum number
are zero.

5.3 Type II wave packets

We now wish to construct a localized wave packet out of many Type II states. Let us begin
by setting some conventions. We call ‘n-hole Type II state’ a Bethe state in the N -particle
sector, constructed from the ground state of the N -particle system, e.g.

. . .. . .

. . .. . .

. . .. . .

by removing one particle and adding it to the first empty slot to the right of the Fermi edge,
and repeating the process for n distinct hole positions, e.g.

. . .. . .

. . .. . .

. . .. . .The N -particle ground state is specified by the quantum numbers

{I0j } = −N + 1

2
+ j

N

, j = 1, . . . , N. (5.36)

The quantum numbers of the n holes in the ground state interval are

{eIhj } =
N + 1

2
− hj

n

, j = 1, . . . , n, (5.37)

with hj ∈ {1, . . . , N}, and the quantum numbers of the resulting n particles to the right of
the ground state interval are

{Ipj } =
N − 1

2
+ j

n

, j = 1, . . . , n. (5.38)

The quantum numbers of the n-hole Type II state are thus

{I}N = {I0}N ∪ {Ip}n \ {eIh}n, (5.39)

and according to Eq. (1.98) the corresponding momentum is

Ph
n =

2π

L

NX

j=1

Ij =
2π

L

n(n− 1)

2
+

nX

j=1

hj , (5.40)

where h denotes the set {h1, . . . , hn}. For finite interaction strength, the energy of the state
is Eh

n =
PN

j=1 λ
2
j , where {λj} is the set of rapidities to which the Bethe equations map the

set of quantum numbers {Ij}. In the Tonks-Girardeau regime, this simplifies to

Eh
n =

2π

L

2 NX

j=1

I2j (c→∞)

= Egs +
2π

L

2 nX

j=1

j(j − 1)− hj(hj − 1) +N(j + hj − 1) , (5.41)
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where Egs is the ground-state energy (1.95).
We can construct a spatially localized ‘Type II wave packet’ |ψ(t) ⟩ as a linear superpo-

sition of n-hole Type II states |Ph
n ⟩, according to

|ψ(t) ⟩ = 1√
S

X

{eIh}n
Ah
n e

−iEh
n t|Ph

n ⟩, (5.42)

where S is the number of Type II states in the superposition and the coefficients Ah
n ≡

⟨Ph
n |ψ(0) ⟩ should be tuned in order to obtain the desired density profile at t = 0. The

density profile is given by ρ(x, t) = ⟨ψ(t) | ρ̂(x) |ψ(t) ⟩, and since by translational invariance
ρ̂(x) = e−iP̂ xρ̂(0)eiP̂ x,

ρ(x, t) =
1

S

X

h,h′

(Ah′
n )∗Ah

n e
−i[(Ph′

n −Ph
n )x−(Eh′

n −Eh
n)t]⟨Ph′

n | ρ̂(0) |Ph
n ⟩. (5.43)

In the logic of a ‘flat summation’, we take the coefficients Ah
n to be simply Ah

n = e−iP
h
n x0 ,

where x0 is a constant position. This results in the density profile

ρ(x, t) =
1

S

X

h,h′

e−i[(P
h′
n −Ph

n )(x−x0)−(Eh′
n −Eh

n)t]⟨Ph′
n | ρ̂(0) |Ph

n ⟩, (5.44)

which is centered around L/2− x0.
In addition to the choice of the number n of holes and the sum weights Ah

n, there is
further freedom that comes from the possibility of choosing which subset of the n-hole
Type II states to include in the superposition that defines |ψ(t) ⟩. The standard choice is
to include in the summation all possible states, the number of which is N

n in a system
of N particles. We will call this a ‘flat superposition’ of states. This choice endows the
wave packet with two properties that are of contrasting utility in the search for soliton-
like robustness. On the one hand, summing over states with the widest distribution of
momenta produces a maximally localized wave packet. On the other hand, the large energy
difference between these states leads to a rapid dephasing and decay of the wave packet,
which seriously compromise the correspondence with a classical soliton.

The pseudo-parabolic form of the Type II dispersion relation offers an enticing oppor-
tunity to build very long-lived wave packets, exploiting the singularity of the density of
states which occurs for hole rapidities close to zero, i.e. for hole quantum numbers close
to the center of the Fermi interval. To see this, let us consider first a 1-hole state with
hole rapidity λ, and expand the dispersion relation around λ = 0: ω(λ) ≃ ω(0) − α

2λ
2,

where α = −d2ω(0)/dλ2 > 0. In the thermodynamic limit, the number of states with hole
rapidity within λ and λ + dλ is dI = g(λ)dλ, where g(λ) is the density of states (in the
Tonks-Girardeau regime, g(λ) is simply L/2π). The number of states with energy between
ω and ω + dω is then

dI =
dI

dω
dω = g(λ)

dω

dλ

−1

dω ∝ dωp
ω(0)− ω

. (5.45)

For λ→ 0 the density of states is indeed divergent, exhibiting a Van Hove singularity. This
provides us with a large number of states with closely spaced energies, and thus with the
possibility of constructing a very long-lived wave packet. In order to do so, we will restrict
the summation to hole quantum numbers close to zero, creating a ‘selective superposition’
of states. While restricting the distribution of momenta will necessarily lead to a wider (less
localized) wave packet, the idea is to compensate for this problem by considering multi-hole
states. In this case, denoting by λ1, . . . , λn the holes’ rapidities, the Type II dispersion
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relation ω = ω(λ1, . . . , λn) is represented by a n-dimensional pseudo-paraboloid, and a
small energy interval at the maximum of this hyper-surface contains more states than the
equivalent interval in the 1-hole case.

In the following, we start implementing this program in the Tonks-Girardeau regime,
where Eq. (5.34) is all we need to compute the expectation value of the density operator in
the wave packets, and some analytical results can be obtained. These will serve as a useful
benchmark for numerical results that may be obtained more generally by calculating all
matrix elements directly from the Algebraic Bethe Ansatz and which will allow to extend
the construction of wave packets to finite interaction strength.

5.3.1 One-hole Type II wave packets

Consider a wave packet constructed from a flat superposition of 1-hole Type II states |P h1 ⟩,
which have momentum P h1 = (2π/L)h and energy Eh1 − Egs = (2π/L)2h(N + 1 − h). The
density matrix elements are given by ⟨P h′1 | ρ̂(0) |P h1 ⟩ = (−1)|Ch,h′ |/L, where |Ch,h′ | (the
number of particles between the holes h and h′) is simply |Ch,h′ | = |eIh−eIh

′ |−1 = |h−h′|−1.
Therefore ⟨P h′1 | ρ̂(0) |P h1 ⟩ = −eiπ(h−h

′)/L. Substituting these expressions into Eq. (5.44),
we get

ρ1(x, t) =
N

L
− 1

NL

X

h̸=h′

exp −i2π
L

(h′ − h) x− x0 +
L

2
− 2π

L
(N + 1− h− h′)t ,

(5.46)
where

P
h̸=h′(· · · ) means

PN
h′=1[

Ph′−1
h=1 (· · · ) +

PN
h=h′+1(· · · ) ]. In particular, at t = 0 we

have (taking for convenience x0 = L/2),

ρ1(x, 0) =
N + 1

L
− 1

NL

X

h,h′

e−i(2π/L)(h−h
′)x =

N + 1

L
− 1

NL

sin2(Nπx/L)

sin2(πx/L)
, (5.47)

which coincides with the expression obtained by Sato et al. (2016) through a mapping to
free fermions. In the thermodynamic limit, the quantity z ≡ h/L becomes continuous and
takes values in the interval [0, n], where n is the particle density. Therefore

ρ1(x, t)
Th.Lim.
= n− 1

n

Z n

0
dz

Z n

0
dz′ exp −2πi(z − z′)[x− 2π(n− z − z′)t] . (5.48)

At t = 0, we get

ρ1(x, 0)
Th.Lim.
= n− sin2(nπx)

nπ2x2
, (5.49)

which coincides with the thermodynamic limit of Eq. (5.47).
Some comments are in order:
i. As expected, the ‘flat’ 1-hole Type II wave packet describes a single localized density

depression, of width (measured at the base) equal to 2/n. The density takes values between
1/L and (N + 1)/L, and thus between zero and n in the thermodynamic limit (Fig. 5.1).
This is physically clear if we think that what we are actually doing is removing a particle at
a given position x0 and adding it back with a fixed momentum, hence delocalized in space.
Then, similarly to what happens in a liquid, a localized depletion causes the overall level of
the liquid to rise.

ii. There is decent qualitative agreement between the density profile of the 1-hole Type
II wave packet at t = 0 and that of the black soliton solution of the Kolomeisky equation
(NLSE with quintic nonlinearity), given by Eq. (4.149a). In particular, the widths of the
two profiles are quantitatively close. However, the mean field approach predicts a smooth
density profile, whereas ρ1(x, 0) is characterized by long-range oscillations of wavelength
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Figure 5.1: ‘Flat’ 1-hole density profiles ρ1(x, 0) for N = L = 8, 20, and in the thermody-
namic limit, in the Tonks-Girardeau regime (left panel). On the right panel,
ρ1(x, 0) in the thermodynamic limit (labeled ‘1-hole’) is compared with the
black soliton solution of the generalized Gross-Pitaevskii equation in the Tonks-
Girardeau regime, Eq. (4.149a).

π/λF = n−1, whose amplitude decays with the inverse square of x−x0 (Friedel oscillations),
which are yet another sign of the fermionization of the 1D Bose system in the Tonks-
Girardeau regime. There are at least two reasons for this difference. The first is that the
GGPE is an effective bosonic theory, while the system is essentially fermionic. The second
is is to be found in the failure of the assumptions underlying the mean field description in
the strong interaction regime. In addition to the difficulty related to the introduction of
an order parameter, which we have already discussed, there is the fact that a mean field
or hydrodynamic approach is founded on the assumption of local equilibrium, i.e. on the
possibility of describing collectively a group of many atoms distributed over a length much
shorter than the length scale of density variations. In the present case, such length scale
is of the order of the soliton width, i.e. n−1 = L/N . But due to the fermionization which
occurs in the Tonks-Girardeau regime, the average interparticle distance is also L/N . In this
situation, where the average interparticle distance is of the same order of the length scale
of density variations, we cannot expect the mean field to go beyond a merely qualitative
description of the system.

iii. Concerning the dynamical evolution of the wave packet, we first notice that since we
are summing over h, h′ in the full interval [1, N ], the density profile remains symmetric with
respect to x = x0 for any t. Therefore, the density depletion is produced at rest. What we
observe is that, under time evolution, the initial depletion at x = x0 is soon redistributed
throughout the whole system. The time t∗ it takes for the depletion to disappear depends
only on the particle density n, with a higher density corresponding to a shorter lifetime. In
the thermodynamic limit, this can be seen by evaluating Eq. (5.48) for x = x0 = 0, which
gives

ρ1(0, t) = n+
erf (−1)1/4πn

√
t erf (−1)3/4πn

√
t

4πnt
, (5.50)

where erf is the error function. For n = 1, for instance, the disappearance time, identified
as the value of t > 0 for which ρ1(0, t) has its first local maximum, is t∗ ≃ 0.5815.

At finite size, however, the disappearance of the initial depletion is not definitive, because
the time evolution shows a recurrence, called quantum revival3 (Fig. 5.2). The revival time
trev can be identified as the smallest value of t > 0 such that exp(iEh1 t) = 1 for any

3See e.g. Robinett (2004) and Zhao and Wu (2019) for discussions of the concept of quantum revival.

96



N=8 N=9

Figure 5.2: ‘Flat’ 1-hole density profiles ρ1(x, t) for N = L = 8 (left panel) and N = L = 9
(right panel) in the Tonks-Girardeau regime, plotted for −L/2 ≤ x ≤ L/2
and 0 ≤ t ≤ trev. The recursion time is trec = L2/4π ≃ 5.09 for L = 8 and
trev = L2/2π ≃ 12.89 for L = 9.

h ∈ [1, N ], that is

trev =
L2

2π gcd[h(N + 1− h)] =





L2

4π for N even,
L2

2π for N odd.
(5.51)

Since trev scales with L2, in the thermodynamic limit we will have no revival.
Let us now discuss an example of a selective wave packet at finite size and in the ther-

modynamic limit. In the first case, we construct the wave packet restricting the summation
over h, h′ between ⌈(N + 3)/4⌉ and ⌊(3N + 1)/4⌋. For N even, this is exactly one-half of
the original interval [1, N ]. The normalization constant S should be adjusted accordingly to
N/2. In the thermodynamic limit, we construct the wave packet restricting the integration
over z, z′ between to [2n/5, 3n/5], which corresponds to one-fifth of the original interval,
and appropriately adjusting the normalization constant to n/5. The wave packets thus con-
structed are compared with the corresponding flat wave packets in Fig. 5.3. As anticipated,
selective wave packets are wider (and therefore shallower) and longer-lived. Halving the
intervals available for hole positions produces a wave packet twice as wide and with four
times the disappearance time. We remark that as long as the interval available for hole
positions is symmetric with respect to the midpoint (N + 1)/2, the depletion will still be
produced at rest.

5.3.2 Multi-hole Type II wave packets

Consider instead a wave packet constructed from a flat superposition of 2-hole Type II
states |P h,h̄2 ⟩, which have momentum P h,h̄2 = (2π/L)(h + h̄ + 1) and energy Eh,h̄2 − Egs =
(2π/L)2[h(N + 1 − h) + (1 + h̄)(N + 2 − h̄)]. In the Tonks-Girardeau regime, the hole h̄
must be common to all the states in the superposition. The density matrix elements are
then given by ⟨P h′,h̄2 | ρ̂(0) |P h,h̄2 ⟩ = (−1)|Ch,h′,h̄|/L, where |Ch,h′,h̄| (the number of particles
between the holes h and h′) is |Ch,h′,h̄| = |h− h′| − 1 if h̄ is not between h and h′, whereas
|Ch,h′,h̄| = |h − h′| − 2 if h̄ is between h and h′. The difference amounts to a global
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Figure 5.3: Comparison between the ‘flat’ and ‘selective’ 1-hole density profiles ρ1(x, t) for
N = L = 20 (upper panels) and in the thermodynamic limit (lower panels), in
the Tonks-Girardeau regime. The selective wave packets are obtained restricting
the summation over h, h′ between ⌈(N + 3)/4⌉ and ⌊(3N + 1)/4⌋ in the case
N = 20, which corresponds to 1/2 of the original interval, and restricting the
integration over z, z′ between to [0.4n, 0.6n] (with n = 1) in the thermodynamic
limit, which corresponds to 1/5 of the original interval.

98



change of sign of the matrix elements (that is a signal of the fermionic nature of the Lieb-
Liniger model in the Tonks-Girardeau regime), which are thus given in the two cases by
⟨P h′,h̄2 | ρ̂(0) |P h,h̄2 ⟩ = ∓eiπ(h−h′)/L. Beside the crucial difference in the matrix elements,
since |P h′,h̄2 ⟩ and |P h,h̄2 ⟩ still differ by just one hole, the constitutive exponential carrying
the space-time dependence of the ρ(x, t) is the same as in the 1-hole case, namely

Fh,h′(x, t) ≡ exp −i2π
L

(h′ − h) x− x0 +
L

2
− 2π

L
(N + 1− h− h′)t . (5.52)

The density is therefore

ρ2(x, t) =
N

L
+

1

SL

′X

h̄,h,h′

(∓Fh,h′)(x, t), S =
N
2

, (5.53)

where the summation is, according the above discussion,
P′

h̄,h,h′ ∓F =
PN

h̄=1{
P

h>h̄[
P

h′>h(−F) +
P

h̄<h′<h(−F) +
P

h′<h̄(+F) ]
+
P

h<h̄[
P

h′<h(−F) +
P

h<h′<h̄(−F) +
P

h′>h̄(+F) ] }.

In the thermodynamic limit, the constitutive exponential becomes

Fz,z′(x, t) ≡ exp −2πi(z − z′)[x− 2π(n− z − z′)t] (5.54)

and the density is

ρ2(x, t)
Th.Lim.
= n+

2

n2

Z

D
dz̄ dz dz′ (∓Fz,z′)(x, t), (5.55)

where the integration is the continuous version of the summation above,
R
D dz̄ dz dz

′ ∓F =
R n
0 dz̄ {

R n
z̄ dz [

R n
z̄ dz

′ (−F) +
R z̄
0 dz

′ (+F) ]}
+
R z̄
0 dz [

R z̄
0 dz

′ (−F) +
R n
z̄ dz

′ (+F) ] }.

The density profiles at t = 0 of flat 2-hole and 1-hole wave packets are compared in Fig. 5.4.
Instead of a single density depletion centered at x = x0 = 0, we now have a double depletion.
The dynamical evolution of a flat and a selective 2-hole wave packet in the thermodynamic
limit is compared in Fig. 5.5. The comments made for 1-hole wave packets also apply here.

It is clear that the above construction can be generalized to n-hole Type II wave packets
with arbitrary number of holes n. The density in the Tonks-Girardeau regime will be given
by

ρn(x, t) =
N

L
+

1

SL

′X

h̄1,...,h̄n−1,
h,h′

(∓Fh,h′)(x, t), S =
N
n

, (5.56)

where h̄1, . . . , h̄n−1 are the n − 1 holes that must be common between |Ph
n ⟩ and |Ph′

n ⟩ in
order for ⟨Ph′

n | ρ̂(0) |Ph
n ⟩ to be non-vanishing. As in the 2-hole case, the matrix element

leads to the contribution −F (respectively, +F) if the number of h̄’s between h and h′ is
even (respectively, odd).

In the thermodynamic limit, we have the possibility to consider a very large number of
holes. We expect that this, combined with the selection of hole positions around the center
of the Fermi interval, should produce very long-lived wave packets. Further investigations
are ongoing in this direction.
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Figure 5.4: Comparison between the ‘flat’ 2-hole and 1-hole density profiles, ρ2(x, 0) and
ρ1(x, 0), for N = L = 8 in the Tonks-Girardeau regime.

Figure 5.5: Comparison between the ‘flat’ and ‘selective’ 2-hole density profiles ρ2(x, t)
in the thermodynamic limit, in the Tonks-Girardeau regime. The selective
wave packet is obtained restricting the integration over z̄, z, z′ to the inter-
val [n/4, 3n/4] (with n = 1), which corresponds to 1/2 of the original interval.
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Conclusions and outlook

In this thesis we have discussed the construction of quantum bright solitons and quantum
dark solitons in the Lieb-Liniger model, in the attractive and repulsive regimes, respectively.
A detailed analysis of the ground state and the excitations using a combination of exact
and efficient techniques has been helpful for this purpose.

In the attractive case, rapidities are organized in strings in the complex plane, which
greatly simplifies the form of the Bethe wavefunctions. This has allowed us to proceed
analytically using the Coordinate Bethe Ansatz, and to study the soliton scattering by
exploiting general results from scattering theory and the knowledge of the exact scattering
phase shifts appearing in the Bethe equations. We have found that in the limit of a large
number of particles, the density profile of quantum bright solitons reduces to that of bright
solitons of the Hartree mean field theory. The results for the scattering within the mean field
theory are in good agreement with those of the Bethe Ansatz even for a moderate number of
particles in each soliton, and the agreement is better for higher collision velocities. However,
the Bethe Ansatz is able to cure a non-physical divergence of the displacement of trajectories
predicted by the mean field approach in the limit of a very slow scattering of two identical
solitons.

In the repulsive case, things are much more complicated, and we had to resort to the
Algebraic Bethe Ansatz. The exact correspondence between the dispersion relation of hole-
like (Type II) excitations and that of the dark solitons of the Gross-Pitaveskii mean field
theory in the weak interaction limit, and the existence of a similar correspondence, although
only qualitative, with a generalized mean field theory for strong interaction, prompted us
to try to construct Type II wave packets that enjoy the robustness of classical solitons.
We showed that the procedure usually considered in the literature is not satisfactory from
this point of view, and we suggested how this difficulty could be solved by the inclusion of
multi-hole states with quasi-degenerate energies exploiting the Van Hove singularity that
characterizes the Type II dispersion relation. The first steps in this direction have been
presented in the last chapter, with the derivation of some analytical results in the Tonks-
Girardeau limit. Looking ahead, we intend to continue the implementation of this improved
procedure by considerably increasing the number of holes and by extending the treatment to
the case of finite interaction strength, which will necessarily have to be treated numerically,
due to the extremely large number of matrix elements entering the computations. An
important simplification of this process would be provided by finding semi-analytic relations
for the ratio of matrix elements involving states differing by a few quantum numbers. Some
preliminary results in this direction are reported in Appendix D. The analytical results
in the Tonks-Girardeau limit that we have already obtained will serve as benchmark for
this numerical treatment. Soliton scattering in the repulsive regime could then be studied
numerically by directly simulating the dynamics of multi-solitons, in the same way we
simulated the dynamics of a single soliton.
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Appendix A

Sound velocity and effective masses

In the first part of this appendix we prove Eq. (4.49) for the macroscopically-defined sound
velocity and its equivalence to the microscopic definition given by Eq. (4.42). In the second
part we derive Eqs. (4.52) and (4.53) for the effective mass.

Sound velocity The sound velocity is defined macroscopically as

vs =

r
2

nκS
, (A.1)

where κS is the compressibility. Its inverse is given by

1

κS
= n

∂P

∂n
= n

∂µ

∂n

∂P

∂µ
= − n

2π

∂µ

∂n

Z λF

−λF
dλ

∂ϵg(λ)

∂µ
, (A.2)

where for the last equality we have used Eq. (4.50). We compute this as follows.

∗ From Eq. (4.20) we have

∂ϵg(λ)

∂µ
−
Z λF

−λF
dλ′ C(λ− λ′)∂ϵg(λ

′)
∂µ

= −1, λ ∈ R, (A.3)

where we have used the fact that the boundary terms involve ϵg(±λF ) = 0. Comparing
this with the Lieb equation (1.99) immediately gives

∂ϵg(λ)

∂µ
= −2πρg(λ), |λ| < λF . (A.4)

∗ From Eq. (1.100) we have

∂n

∂µ
=

∂

∂µ

Z λF

−λF
dλ ρg(λ) = 2ρg(λF )

∂λF
∂µ

+

Z λF

−λF
dλ

∂ρg(λ)

∂µ
. (A.5)

The quantity ∂λF /∂µ can be rewritten starting again from Eq. (4.20),

∂ϵg(λ)

∂λF
−
Z λF

−λF
dλ′ C(λ− λ′)∂ϵg(λ

′)
∂λF

= − ∂µ

∂λF
. (A.6)

The right-hand side is independent of λ, therefore we can invoke the Lieb equation to get

∂µ

∂λF
= − 1

2πρg(λ)

∂ϵg(λ)

∂λF
, (A.7)

where the right-hand side is the same constant for any λ in the Fermi interval.
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It remains to compute ∂ρg(λ)/∂µ. From the Lieb equation we have

∂ρg(λ)

∂µ
= ρg(λF ) C(λ− λF ) + C(λ+ λF )

∂λF
∂µ

+

Z λF

−λF
dλ′ C(λ− λ′)∂ρg(λ

′)
∂µ

. (A.8)

This can be solved by using the inverse kernel L(F )(λ, λ′), yielding

∂ρg(λ)

∂µ
= ρg(λF )

∂λF
∂µ

h
L(F )(λ, λF ) + L(F )(λ,−λF )

i
, (A.9)

and in particular, using Eq. (4.19),
Z λF

−λF
dλ

∂ρg(λ)

∂µ
= 2ρg(λF )

∂λF
∂µ

h
2πρg(λF )− 1

i
. (A.10)

Substituting Eqs. (A.7) and (A.10) into Eq. (A.5) we thus obtain

∂µ

∂n
= − 1

8π2ρ3g(λF )

∂ϵg(λ)

∂λF λ=λF

(A.11)

and from this, together with Eq. (A.4), the inverse compressibility

1

κS
= − n2

8π2ρ3g(λF )

∂ϵg(λ)

∂λF λ=λF

. (A.12)

∗ To further simplify the last result, we consider the following equalities. For |λ| < λF ,
deriving Eq. (4.22) with respect to λ we obtain

2λ =
∂

∂λ
1− C(F ) ∗ ϵg(λ) = 1− C(F ) ∗ ∂ϵg

∂λ
(λ) (A.13)

(the last equality follows from an integration by parts and the fact that the boundary
terms vanish), hence

∂ϵg(λ)

∂λ
= 2λ+

Z λF

−λF
dλ′ 2λ′ L(F )(λ, λ′). (A.14)

Similarly, for ρg(λ) we have

0 =
∂

∂λ
1− C(F ) ∗ρg(λ) = 1− C(F ) ∗ ∂ρg

∂λ
(λ)+ρg(λF ) C(λ−λF )−C(λ+λF ) (A.15)

and therefore
∂ρg(λ)

∂λ
= ρg(λF )

h
−L(F )(λ, λF ) + L(F )(λ,−λF )

i
. (A.16)

On the other hand, the particle density can be written

n =

Z λF

−λF
dλ ρg(λ) =

Z λF

−λF
dλ

∂

∂λ
(λρg(λ))− λ

∂ρg(λ)

∂λ
= 2λFρg(λF )−

Z λF

−λF
dλλ

∂ρg(λ)

∂λ
.

(A.17)

Thus Eqs. (A.14) and (A.16) yield the useful relation

n = ρg(λF )
∂ϵg(λ)

∂λ λ=λF

. (A.18)
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∗ Since we obviously have

−∂ϵg(λ)
∂λF λ=λF

=
∂ϵg(λ)

∂λ λ=λF

, (A.19)

Eq. (A.18) allows us to rewrite the inverse compressibility in the equivalent forms

1

κS
=

n

8π2ρ2g(λF )

∂ϵg(λ)

∂λ λ=λF

2

=
n3

8π2ρ4g(λF )
. (A.20)

The sound velocity is then

vs =
1

2πρg(λF )

∂ϵg(λ)

∂λ λ=λF

=
n

2πρ2g(λF )
. (A.21)

This concludes the proof of Eq. (4.49), where n is expressed in terms of the Fermi velocity
vF = 2πn, and of the equivalence between Eqs. (4.49) and (4.42). It is worth noting that
Eq. (A.7) is then equal to

∂µ

∂λF
= vs. (A.22)

Effective mass We now look at the inverse effective mass

1

m∗ =
∂2ω(p)

∂p2 p→0

=
∂p(λ)

∂λ

−2 ∂2ω(λ)

∂λ2
− ∂ω(λ)

∂λ

∂p(λ)

∂λ

−1 ∂2p(λ)

∂λ2 λ→λF

, (A.23)

where ω(λ) = ϵg(λ) (Eq. (4.32)). From Eq. (4.41) we have ∂p/∂λ|λ→λF = 2πρg(λF ) and

∂2p(λ)

∂λ2 λ→λF

= 2π
∂ρg(λ)

∂λ λ→λF

= 2πρg(λF )L(F )(λF ,−λF ), (A.24)

having used for the last equality Eq. (A.16). From Eq. (A.18) we have ∂ϵg/∂λ|λ→λF =
n/ρg(λF ), and then from Eq. (A.13),

∂2ϵg(λ)

∂λ2
= 4πρg(λ)−

n

ρg(λF )

h
L(F )(λ, λF ) + L(F )(λ,−λF )

i
. (A.25)

It follows that

1

m∗ =
1

[ 2πρg(λF ) ]2
4πρg(λF )−

2n

ρg(λF )
L(F )(λF ,−λF ) . (A.26)

To express this in terms of physical quantities, let us consider the total derivative of the
sound velocity vs with respect to λF , i.e. the derivative with respect to λF with λ thought
of as depending on λF in such a way that ∂λ/∂λF |λ=λF = 1. Then

dvs
dλF

=
1

2πρg(λF )

∂2ϵg(λ)

∂λ2 λ=λF

+
∂2ϵg(λ)

∂λF∂λ λ=λF

− 1

2πρ2g(λF )

∂ϵg(λ)

∂λ λ=λF

∂ρg(λ)

∂λ λ=λF

+
∂ρg(λ)

∂λF λ=λF

. (A.27)

Using Eq. (A.22) to write ∂/∂λF = vs∂/∂µ, and exploiting the previous results for the
various derivative quantities, we obtain

dvs
dλF

= 2− 2n

πρ2g(λF )
L(F )(λF ,−λF ) = 2 + 2

∂vs
∂λF

. (A.28)
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Defining
√
K = 2πρg(λF ), this can also be written as

dvs
dλF

= 2− 2
vs√
K

d
√
K

dλF
= 2− 4

vs√
K

∂
√
K

∂λF
. (A.29)

The inverse effective mass is then

1

m∗ =
1

4πρg(λF )
2 +

dvs
dλF

=
vs
K

d

dµ
vs
√
K . (A.30)

Exploiting Eqs. (A.11) and (A.19), which give

∂µ

∂n
=
πvs
K

, (A.31)

Eq. (A.30) becomes
1

m∗ =
1

π

d

dn
vs
√
K , (A.32)

and writing ∂/∂n = (−γ2/c)∂/∂γ, this is equivalent to

1

2m∗ = 1− γ d
dγ

1√
K
. (A.33)
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Appendix B

Bogoliubov theory

In this appendix we show how to arrive at the Hamiltonian (4.79) using the Bogoliubov
prescription â†0, â0 →

√
N0, and how to diagonalize it with a Bogoliubov transformation,

leading to Eqs. (4.80)-(4.82) (Landau and Lifshitz, 1980).
With the Bogoliubov prescription, the interaction term in Eq. (4.76) becomes

X

p p′ q

â†p+qâ
†
p′−qâp′ âp = N2

0 +N0

X

p̸=0

âpâ−p + â†pâ
†
−p + 4 â†pâp +O(â3). (B.1)

Notice that terms containing a single âp operator with p ̸= 0 are ruled out by momentum
conservation. Since the original Hamiltonian conserves the total number of particles N , we
prefer to express N0 in terms of N by using the relation

N̂ = N0 +
X

p ̸=0

â†pâp. (B.2)

To quadratic order, N2
0 ≃ N2 − 2N

P
p̸=0 â

†
pâp, while N0 ≃ N in the second term of Eq.

(B.1), so that
X

p p′ q

â†p+qâ
†
p′−qâp′ âp = N2 +N

X

p ̸=0

âpâ−p + â†pâ
†
−p + 2 â†pâp +O(â3). (B.3)

The Hamiltonian then becomes the one of Eq. (4.79),

ĤBog =
cN2

L
+
X

p ̸=0

h
p2 + 2cn â†pâp + cn âpâ−p + â†pâ

†
−p

i
. (B.4)

The reduction of the coefficient of â†pâp from p2 + 4cn0 to p2 + 2cn ≃ p2 + 2cn0, is due to
the condition that the total number of particles be fixed. In the grand canonical treatment
this corresponds to the subtraction of the chemical potential, since for a uniform Bose gas
at zero temperature the chemical potential (at tree level) is µ = 2cn0.

Eq. (B.4) can be written in the symmetrical form

ĤBog =
cN2

L
+
X

p>0

h
p2 + 2cn â†pâp + â†−pâ−p + 2cn âpâ−p + â†pâ

†
−p

i
(B.5)

and can be diagonalized by an appropriate canonical transformation. We introduce new
operators b̂p and b̂†p by the transformation

âp = upb̂p + vpb̂
†
−p, â−p = upb̂−p + vpb̂

†
p, (B.6)
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where up and vp are real coefficients to be determined. Requiring that the new operators
satisfy canonical commutation relations, [b̂p, b̂

†
p′ ] = δp,p′ and [b̂p, b̂p′ ] = 0, imposes that

u2p − v2p = 1. (B.7)

We notice, parenthetically, that such condition allows us to write the inverse transformation
corresponding to Eq. (B.6) as

b̂p = upâp − vpâ†−p, b̂−p = upâ−p − vpâ†p. (B.8)

Substituting Eq. (B.6) into Eq. (B.5), and introducing the shorthand notations ϵ0 ≡ p2+2cn
and ϵ1 ≡ 2cn, we obtain

ĤBog =
cN2

L
+
X

p>0

h
2v2pϵ0 + 2upvpϵ1 + (u2p + v2p)ϵ0 + 2upvpϵ1 b̂†pb̂p + b̂†−pb̂−p

+ (u2p + v2p)ϵ1 + 2upvpϵ0 b̂pb̂−p + b̂†pb̂
†
−p

i
. (B.9)

The non diagonal term proportional to (b̂pb̂−p + b̂†pb̂
†
−p) can be made to vanish by imposing

(u2p + v2p)ϵ1 + 2upvpϵ0 = 0. (B.10)

If we choose to parametrize up and vp as

up = cosh θp, vp = − sinh θp, (B.11)

which is consistent with Eq. (B.7), condition (B.10) becomes

ϵ1
ϵ0

= tanh 2θp. (B.12)

This gives θp = 1
2arctanh(ϵ1/ϵ0) > 0, and

u2 =
1

2

ϵ0
ϵ
+ 1 , v2 =

1

2

ϵ0
ϵ
− 1 , ϵ =

q
ϵ20 − ϵ21. (B.13)

In particular,
u2p + v2p =

ϵ0
ϵ

and 2upvp = −
ϵ1
ϵ
, (B.14)

which substituted into Eq. (B.9) yield

ĤBog =
cN2

L
+
X

p>0

h
ϵ− ϵ0 + ϵ b̂†pb̂p + b̂†−pb̂−p

i
. (B.15)

This corresponds to Eqs. (4.80)-(4.82).
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Appendix C

Luttinger liquids

This appendix provides a brief review of the bosonization method, which allows mapping a
low-energy effective theory of 1D interacting fermions (Luttinger liquid) to massless, non-
interacting bosons. The paradigm of the Luttinger liquid is actually a universal low-energy
theory of interacting quantum particles in one dimension. The excitations in this theory are
phonons, i.e. bosonic quasiparticles representing particle density waves propagating with
constant velocity. When including the effect of the curvature of the spectrum of physical
fermions, the bosonized theory is no longer free. However, by performing a Bogoliubov
transformation and following the bosonization procedure in reverse, we can map the system
of interacting bosons to a basis of (almost) free fermionic quasiparticles (‘fermionization’).
This last mapping is our main point of interest and is what is needed to justify the results
of Section 4.3.2. Throughout this chapter ℏ = 1, and to simplify the notation we omit to
write a hat above operators.

C.1 Bosonization without band curvature

We begin by reviewing standard bosonization (i.e. without band curvature effects), following
Giamarchi (2003); Haldane (1981b); Fradkin (2013). Let us consider a system of non-
interacting (spinless) fermions on a line segment x ∈ [0, L]. The single-particle energy is
given as function of the momentum p (possibly taking discrete values due to finite size
quantization) by

ϵ(p) =
p2

2m
− ϵF =

(p− pF )2
2m

+ vF (p− pF ), (C.1)

where pF is the Fermi momentum, vF = pF /m is the Fermi velocity and ϵF = p2F /2m is
the Fermi energy. The Fermi momentum is determined by an external chemical potential µ
through the condition ϵF = µ, or ϵ(pF ) = 0. The ground state of the systems consists of a
compact set of symmetrically-distributed occupied levels up to the Fermi surface, which is
composed of two disconnected points at ±pF .

To construct an effective low-energy theory we focus on the sector spanned by states
sufficiently close to the Fermi points, for which we can neglect band curvature effects and
write the energy as

ϵ(p) ≃ vF (|p| − pF ). (C.2)

We thus identify two types of modes, some living around momentum pF (right-movers) and
some others around −pF (left-movers). These two branches can be treated as two separate
types of fermions, whose dispersion relation is simplified to a purely linear form. This leads
to the Luttinger liquid model. To formalize this construction, let us consider the fermionic
field operator

ψ(x) =
1√
L

X

p

cpe
ipx, (C.3)
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Figure 4: The spectrum of left- and right-movers in the Tomonaga-Luttinger model.
The slope of the dispersion relation is ±vF and remains constant at all momenta. In
the ground state, all states up to the Fermi energy are filled (black dots), extending to
arbitrarily negative values. Cyclic conditions on size L quantize the momenta, leading
to a uniform spacing of 2⇡/L between adjacent momentum values. Negative energies are
located in the shaded region.

The ground state |0iTL of (15) is thus a Dirac sea of left and right movers built on the
vacuum |0i of  R,L operators, and is defined by the relations6

|0iTL =
Y

k<kF ,σ

 †
Rkσ

Y

k>−kF ,σ

 †
Lkσ|0i,

 Rkσ|0iTL = 0, k > kF ,  Lkσ|0iTL = 0, k < −kF . (16)

This ground state has infinite energy. To make sense of this, we therefore will use the
normal-ordered Hamiltonian

HTL =
X

a=R,L

X

σ

1

L

X

k

vF (sak − kF ) : †
akσ akσ :

=

Z L

0
dx vF

X

a,σ

: †
aσ(x)[−isa@x − kF ] aσ(x) : (17)

(in which : ... : represents normal ordering with respect to |0iTL), which has zero ground
state energy.

2.3 Excited states of the noninteracting TL model

Excited states are built by adding particles above or punching holes below the Fermi
surface. We define the notations

kRnσ = kF − k0
Rσ +

2⇡

L
n, kLnσ = −kF + k0

Lσ −
2⇡

L
n (18)

5Note that Haldane’s conventions in [4] switch left and right; the ones chosen here lead to true right-
and left-movers when solving the equations of motion (this point is commonly made in the literature).

6In these products, one should specify precisely in which order the products are taken to avoid potential
sign ambiguities. The results we present later are all convention-independent, so the reader is free to adopt
his/her own.
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vacuum |0i of  R,L operators, and is defined by the relations6

|0iTL =
Y

k<kF ,σ

 †
Rkσ

Y

k>−kF ,σ

 †
Lkσ|0i,

 Rkσ|0iTL = 0, k > kF ,  Lkσ|0iTL = 0, k < −kF . (16)

This ground state has infinite energy. To make sense of this, we therefore will use the
normal-ordered Hamiltonian

HTL =
X

a=R,L

X

σ

1

L

X

k

vF (sak − kF ) : †
akσ akσ :

=

Z L

0
dx vF

X

a,σ

: †
aσ(x)[−isa@x − kF ] aσ(x) : (17)

(in which : ... : represents normal ordering with respect to |0iTL), which has zero ground
state energy.

2.3 Excited states of the noninteracting TL model

Excited states are built by adding particles above or punching holes below the Fermi
surface. We define the notations

kRnσ = kF − k0
Rσ +

2⇡

L
n, kLnσ = −kF + k0

Lσ −
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L
n (18)

5Note that Haldane’s conventions in [4] switch left and right; the ones chosen here lead to true right-
and left-movers when solving the equations of motion (this point is commonly made in the literature).

6In these products, one should specify precisely in which order the products are taken to avoid potential
sign ambiguities. The results we present later are all convention-independent, so the reader is free to adopt
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Figure C.1: The spectrum of left- and right-movers in the Luttinger model. The slope of the
dispersion relation is ±vF and remains constant at all momenta. The ground
state is obtained by filling the right-moving states with negative momentum
and filling the left-moving states with positive momentum.

where the destruction operator cp is related to the Fourier component ψp by cp = ψp/
√
L.

These operators satisfy the canonical anticommutation relations

cp, c
†
p′ = δp,p′ , cp, cp′ = 0, (C.4a)

ψ(x), ψ†(x′) = δ(x′ − x), ψ(x), ψ(x′) = 0. (C.4b)

In Eq. (C.3), only the Fourier components close to ±pF describe low-energy states. This
suggests that we restrict the summation to momentum modes in a neighborhood of ±pF
introducing a momentum cutoff Λ, so that

ψ(x) ≃ 1√
L

X

−Λ<p−pF<Λ

cpe
ipx +

1√
L

X

−Λ<p+pF<Λ

cpe
ipx

=
1√
L

X

−Λ<p<Λ

h
cR,pe

i(p+pF )x + cL,pe
i(p−pF )x

i

= eipF xψR(x) + e−ipF xψL(x), (C.5)

where we have defined cR,p = cp+pF , cL,p = cp−pF and the right- and left-moving fields

ψr(x) =
1√
L

X

−Λ<p<Λ

cr,pe
ipx, r = R,L, (C.6)

splitting off the rapidly oscillating pieces e±ipF x. These new operators satisfy the canonical
anticommutation relations

cr,p, c
†
r′,p′ = δr,r′δp,p′ , cr,p, cr′,p′ = 0, (C.7a)

ψr(x), ψ
†
r′(x

′) = δr,r′δ(x
′ − x), ψr(x), ψr′(x

′) = 0, (C.7b)

with the convention that r = +1 for r = R and r = −1 for r = L when used in mathematical
expressions. The free-electron Hamiltonian then becomes

H0 =
X

p

ϵ(p)c†pcp ≃
X

−Λ<p<Λ

vF p c†R,pcR,p − c
†
L,pcL,p . (C.8)

We can formally remove the momentum cutoff Λ, extending the energy spectrum of Lut-
tinger model to ±∞. The ground state | 0 ⟩ of the Hamiltonian (C.8) is then a Fermi sea
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of right- and left-movers built on the vacuum | vac ⟩ of the cr,p operators, and is defined by
the relations

| 0 ⟩ =
Y

p<0

c†R,p
Y

p>0

c†L,p| vac ⟩,

cR,p| 0 ⟩ = 0, p > 0, cL,p| 0 ⟩ = 0, p < 0. (C.9)

The removal of the cutoff comes at the cost of having an infinite number of occupied states
and thus an infinite ground state energy. To make sense of this, we define the Hamiltonian
via normal ordering1,

H0 =
X

p

vF p : c†R,pcR,p : − : c†L,pcL,p :

= −ivF
Z
dx
h
: ψ†

R(x)∂xψR(x) : − : ψ†
L(x)∂xψL(x) :

i
, (C.10)

where : · · · : represents normal ordering with respect to the ground state | 0 ⟩, so that the
ground state energy is zero.

The densities of right- and left-movers are

ρr(x) = ψ†
r(x)ψr(x) =

1

L

X

p

ρr(p) e
ipx, (C.11)

where the Fourier component ρr(p) is

ρr(p) =

Z
dxψ†

r(x)ψr(x) e
−ipx =

X

k

c†r,kcr,k+p. (C.12)

The number operators are therefore

Nr =
X

k

c†r,kcr,k = ρr(p)
p=0

(C.13)

and since ρ(x) is real, ρ†r(p) = ρr(−p). Let us now look at the commutator of the density
operators. Using the canonical anticommutation relations (C.7a),

ρr(p), ρ
†
r(p

′) =
X

k1,k2

c†r,k1cr,k1+p, c
†
r,k2

cr,k2−p′

=
X

k1,k2

c†r,k1cr,k2−p′δk1+p,k2 − c
†
r,k2

cr,k1+pδk1,k2−p′

=
X

k2

c†r,k2−pcr,k2−p′ − c
†
r,k2

cr,k2+p−p′ . (C.14)

Naively one would perform a change of variables in the second term of Eq. (C.14) and find
that the commutator is zero. However, because of the infinite number of occupied states,
the bare density operators contain infinity and Eq. (C.14) is in fact the subtraction of two

1In a normal ordered product, the destruction operators (with respect to the vacuum | 0 ⟩) are put on
the right and creation operators on the left. For two operators A and B that are linear combinations of
creation and destruction operators, normal ordering the operators is equivalent to subtracting the average
value in the vacuum,

: AB : = AB − ⟨ 0 |AB | 0 ⟩.
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such infinities. We can only make a change of variable in the normal ordered densities,
obtaining

ρr(p), ρ
†
r(p

′) =
X

k2

: c†r,k2−pcr,k2−p′ : − : c†r,k2cr,k2+p−p′ :

+
X

k2

⟨ 0 | c†r,k2−pcr,k2−p′ | 0 ⟩ − ⟨ 0 | c
†
r,k2

cr,k2+p−p′ | 0 ⟩

= δp,p′
X

k2

⟨ 0 | c†r,k2−pcr,k2−p | 0 ⟩ − ⟨ 0 | c
†
r,k2

cr,k2 | 0 ⟩ . (C.15)

⟨ 0 | c†r,kcr,k | 0 ⟩ is equal to one if the state with momentum k is occupied and zero otherwise.
Depending on whether we are considering right- or left-movers, we have

⟨ 0 | c†r,kcr,k | 0 ⟩ = θ(−rk) =
(
1 for rk ≤ 0,

0 for rk > 0.
(C.16)

The momentum k2 is quantized as k2 = 2πn/L for integer n (taking, for instance, periodic
boundary conditions), therefore

P
k2
[θ(rp− rk2)− θ(−rk2)] = rpL/2π, which leads to

ρr(p), ρ
†
r′(p

′) = δr,r′δp,p′
rpL

2π
. (C.17)

This fundamental relation, together with ρR(p > 0)| 0 ⟩ = 0, ρL(p < 0)| 0 ⟩ = 0, shows that
we can define canonical bosonic destruction and creation and operators according to

bp =
2π

L|p|

1
2 X

r

θ(rp)ρr(p), b†p =
2π

L|p|

1
2 X

r

θ(rp)ρ†r(p), p ̸= 0. (C.18)

All fermionic operators can be expressed in the boson basis, which is proved to be
complete (Giamarchi, 2003). Consider first the Hamiltonian. Using the fermionic anticom-
mutation relations (C.7a) (assuming, for instance, that p > 0),

[bp, H0] =
2π

L|p|

1
2 X

k

vFk
h
ρR(p), c

†
R,kcR,k

i

=
2π

L|p|

1
2 X

k,k′

vFk
h
c†R,k′cR,k′+p, c

†
R,kcR,k

i

= vF p
2π

L|p|

1
2 X

k

c†R,kcR,k+p = vF p bp. (C.19)

Since the basis generated by the bp operators is complete, this results defines completely
the Hamiltonian in the boson basis. From the bosonic commutation relations it follows that
the operator which satisfies Eq. (C.19) is

H0 ≃
X

p ̸=0

vF |p|b†pbp (C.20)

where ≃ means up to factors commuting with bp. This shows that the energy of the free
fermions, that is normally quadratic in fermion operators, can also be expressed by (C.20),
which is quartic in fermion operators and quadratic in boson operators. This remarkable
property is the main interest of bosonization, because any interaction term, which is quartic
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in fermion operators, will also be quadratic in boson operators. Thus solving the interacting
problem is not more complicated than obtaining the free Hamiltonian.

The field operators can be determined by the same method. Since
h
ρ†r(p), ψr(x)

i
=

1√
L

X

k,k′

eikx
h
c†r,k′cr,k′−p, cr,k

i
= −eipxψr(x), (C.21)

by using the fact that if c = [A,B] commutes with A and B, [A, eλB] = λc eλB, we get

ψr(x) = ηre
P

p(
2π
rpL

)eipxρr(p). (C.22)

Here ηr are fermionic operators such that they commute with the boson operators and η†r
adds one fermion of species r. They are known as Klein factors. In Eq. (C.22), the operator
ηr suppresses a charge uniformly, while the factors in the exponential (which conserve the
number of fermions of each species) ensure that the charge will be moved, that is, added
at some points in space and removed at some others, to ensure that the charge is only
destroyed at point x.

Rather than working directly in terms of the boson operators, it is convenient to intro-
duce the real fields

ϕ(x), θ(x) = ∓(NR ±NL)
πx

L
∓ iπ

L

X

p ̸=0

1

p
e−α|p|/2−ipx ρ†R(p)± ρ

†
L(p) . (C.23)

Using these fields (or the boson operators) the exact expressions of the fermionic field
operator and the Hamiltonian are

ψr(x) =
ηr√
2πα

e−irπx/Lei[θ(x)−rϕ(x)], (C.24)

H0 =
X

p ̸=0

vF |p|b†pbp +
πvF
L

(N2
R +N2

L). (C.25)

Here α ∼ 1/Λ is the regularizing cutoff that prevents the momentum from becoming too
large. Strictly speaking, one should take the limit α→ 0. Using Eq. (C.18), the fields ϕ(x),
θ(x) can be rewritten in terms of the boson operators as

ϕ(x) = −(NR +NL)
πx

L
− iπ

L

X

p ̸=0

L|p|
2π

1
2 1

p
e−α|p|/2−ipx(b†p + b−p),

θ(x) = (NR −NL)
πx

L
+
iπ

L

X

p ̸=0

L|p|
2π

1
2 1

|p|e
−α|p|/2−ipx(b†p − b−p).

(C.26)

Hereafter we shall take the limit L→∞. In this limit we easily get from Eq. (C.26)

[ϕ(x), θ(x′)] =
iπ

2
sgn(x′ − x), [ϕ(x), ∂xθ(x

′)] = iπδ(x′ − x). (C.27)

This shows that the conjugate momentum Π(x) to the field ϕ(x) is Π(x) = ∂xθ(x)/π. From
Eq. (C.23) we get

∂xϕ(x) = −π [ρR(x) + ρL(x)] , ∂xθ(x) = π [ρR(x)− ρL(x)] . (C.28)

These can be inverted to write the densities as

ρR(x) = −
1

2π
∂x[ϕ(x)− θ(x)], ρL(x) = −

1

2π
∂x[ϕ(x) + θ(x)]. (C.29)
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Figure C.2: Diagrams representing g4 and g2 processes. A full line represents a right-moving

fermion, a dashed line represents a left-moving fermion.

Using Eq. (C.18), the Hamiltonian can be rewritten as H0 = 2πvF
R
dx (ρ2R(x) + ρ2L(x)).

Using Eq. (C.29) this becomes

H0 =
vF
2π

Z
dx (∂xθ(x))

2 + (∂xϕ(x))
2 . (C.30)

Since we have now a mapping between fermions and bosons, we can look at the effect of
interactions. The interaction is of the form Hint =

R
dxV (x− x′)ρ(x)ρ(x′). Let us consider

for instance a contact interaction, that is V (x− x′) = gδ(x− x′). For spinless fermions we
only have two types of low-energy processes (Fig. C.2):

(i) The ‘g4 process’, in which we scatter right-movers (left-movers) producing right-
movers (left-movers),

H
(g4)
int =

g4
2

Z
dx : ρR(x) :: ρR(x) : or

g4
2

Z
dx : ρL(x) :: ρL(x) : . (C.31)

(ii) The ‘g2 process’, in which we scatter a right- and a left-mover producing a right-
and a left-mover,

H
(g2)
int = g2

Z
dx : ρR(x) :: ρL(x) : . (C.32)

The sum of these processes gives

Hint = H
(g4)
int +H

(g2)
int =

1

(2π)2

Z
dx (g4 − g2)(∂xθ(x))2 + (g4 + g2)(∂xϕ(x))

2 (C.33)

and the Luttinger liquid Hamiltonian

HLL = H0 +Hint =
u

2π

Z
dx K(∂xθ(x))

2 +
1

K
(∂xϕ(x))

2 , (C.34)

where u (the renormalized velocity) and K (the dimensionless Luttinger parameter) are
given by

u = vF

s
1 +

g4
2πvF

2

− g2
2πvF

2

, K =

s
1 + g4

2πvF
− g2

2πvF

1 + g4
2πvF

+ g2
2πvF

≤ 1. (C.35)

Thus we see that the Hamiltonian remains quadratic even in the presence of interactions.
The physics of such an interacting system is thus described by free bosonic excitations.
As mentioned before, this is one of the main interests of the bosonization method. The
net effect of the interactions amounts to a modification of the velocity and of the relative
weights of the (∂xθ)

2 and (∂xϕ)
2 terms in the Hamiltonian. Notice that a g4 process affects

only the velocity.
The parameter u/K is related to the compressibility κS of the system, which is

κS = − 1

L

∂L

∂P
=

1

ϱ2
∂ϱ

∂µ
, (C.36)
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where ϱ = mn is the mass density. A uniform chemical potential adds to the Hamiltonian
the term

−µ
Z
dx ρ(x), (C.37)

where ρ(x) = ψ†(x)ψ(x) = ρR(x)+ρL(x)+e−2ipF xψ†
R(x)ψL(x)+ h.c.. The rapidly oscillating

factors e±2ipF x vanish upon integration, thus in Eq. (C.37) we can safely take

ρ(x) = ρR(x) + ρL(x) = −
1

π
∂xϕ(x). (C.38)

The mass density is then simply

ϱ =
m

L

Z
dx ⟨ρ(x)⟩ = −m

π
⟨∂xϕ(x0)⟩, (C.39)

since the average is independent of the point x0. In the bosonic representation, Eq. (C.37)
becomes

µ

π

Z
dx ∂xϕ(x). (C.40)

One can absorb this term in the Hamiltonian (C.34) by shifting the field ϕ as

ϕshift(x) = ϕ(x) + µ
K

u
x, (C.41)

and therefore the compressibility is

κS =
1

ϱ2
∂ϱ

∂µ
=
m

ϱ2
K

uπ
. (C.42)

C.2 Bosonization with band curvature

We now go beyond the Luttinger liquid, and consider the additional term in the Hamiltonian
coming from band curvature, i.e. from the quadratic component of the spectrum (C.1),

Hbc =
X

p

p2

2m
: c†R,pcR,p : + : c†L,pcL,p :

= − 1

2m

Z
dx
h
: ψ†

R(x)∂
2
xψR(x) : + : ψ†

L(x)∂
2
xψL(x) :

i
. (C.43)

We derive the bosonized version of a general band curvature term following Pereira et al.
(2007). Consider the operator

Pr(x, ϵ) ≡ ψ†
r x+

ϵ

2
ψr x− ϵ

2
=

∞X

j=0

1

j!

ϵ

2

j
∂jxψ

†
r(x)

∞X

k=0

1

k!
− ϵ
2

k
∂kxψr(x)

=
∞X

n=0

− ϵ
2

n
ψ†
r(x)∂

n
xψr(x)

nX

m=0

1

m!(n−m)!
+ · · ·

=
∞X

n=0

(−1)n
n!

ϵnψ†
r(x)∂

n
xψr(x) + · · · (C.44)

where · · · is a total derivative. According to Eq. (C.24), ψr(x) ∼ (2πϵ)−1/2ei(θ(x)−rϕ(x)),
therefore the operator Pr(x, ϵ) is also equal to

Pr(x, ϵ) =
1

2πϵ
e−i[θ(x+ϵ/2)−rϕ(x+ϵ/2)]ei[θ(x−ϵ/2)−rϕ(x−ϵ/2)]. (C.45)
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We can write the product of two exponentials in Eq. (C.45) as a single exponential by using
the Baker-Campbell-Hausdorff formula, eAeB = eA+B+[A,B]/2. According to Eq. (C.27),
[−iθ(x+ ϵ

2)+irϕ(x+
ϵ
2), iθ(x− ϵ

2)−irϕ(x− ϵ
2)] = riπ, hence in our case e[A,B]/2 = eriπ/2 = ri.

Introducing the field
φr(x) ≡ −θ(x) + rϕ(x), (C.46)

we can then rewrite Eq. (C.45) as

Pr(x, ϵ) = −
r

2πiϵ
ei[φr(x+ϵ/2)−φr(x−ϵ/2)]

= − r

2πiϵ

∞X

ℓ=0

iℓ

ℓ!
2
X

j=1,3,...

ϵ

2

j ∂jxφr(x)

j!

ℓ

= − r

2πiϵ

∞X

ℓ=0

(2i)ℓ

ℓ!

′X

{mj}

ℓ!Q′
jmj !

ϵ

2

P′
j jmj Y

j=1,3,...

∂jxφr(x)

j!

mj

(C.47)

with j = 1, 3, . . . and
P

j=1,3,...mj = ℓ, having used in the last line the multinomial theorem.
From (C.44) and the coefficient of the ϵn term in Eq. (C.47), we have

ψ†
r(x)∂

n
xψr(x) =

r(−1)n+1n!

2n+12πi

′X

{mj}

(2i)
P′

j mj

Q′
jmj !

Y

j=1,3,...

∂jxφr(x)

j!

mj

, (C.48)

where the mj ’s obey the constraint
P

j=1,3,... jmj = n+1. In particular, for n = 2 the sum
contains only two terms, namely m1 = 3, m3 = 0 and m1 = 0, m3 = 1, which give

ψ†
r(x)∂

2
xψr(x) =

r

6π
(∂xφr(x))

3 − r

24π
∂3xφr(x). (C.49)

The last term is a total derivative and can be omitted from the Hamiltonian. With Eqs.
(C.46) and (C.49), the bosonized version of the Hamiltonian (C.43) is then

Hbc = −
1

6πm

Z
dx
h
3(∂xθ(x))

2∂xϕ(x) + (∂xϕ(x))
3
i
. (C.50)

Thus we see that as soon as the band curvature terms are taken into account, an exact
diagonalization of the Hamiltonian HLL + Hbc in terms of the fields θ and ϕ is no longer
possible, as the interacting fermion system is mapped to an interacting boson system. The
terms in Hbc correspond in fact to three-boson interaction vertices.

A very effective way to treat this problem is to move to a basis of fermionic quasiparticles
(Rozhkov, 2005; Imambekov et al., 2012). To illustrate the origin of the fermionic quasipar-
ticle representation of the Luttinger model, let us first consider just HLL. Performing the
Bogoliubov transformation

θ̃(x) =
√
K θ(x), ϕ̃(x) =

1√
K
ϕ(x), (C.51)

we can reabsorb the Luttinger parameter K, so that HLL in the new variables θ̃ and ϕ̃ is
indistinguishable from the bosonized version of the Hamiltonian of free fermions with linear
spectrum and Fermi velocity u. The densities of such right- and left-moving quasiparticles
are

ρ̃R,L(x) = −
1

2π
∂x(ϕ̃∓ θ̃) = (1− δ+)ρR,L + δ−ρL,R, (C.52)

where the phase shifts δ+, δ− are given by

δ+ = 1− 1

2
√
K
−
√
K

2
, δ− =

1

2
√
K
−
√
K

2
. (C.53)
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We define the right- and left-moving fermionic quasiparticles by applying the bosonization
identity (C.24) on the rescaled bosonic fields, obtaining

ψ̃r(x) ∼ exp
n
i
h
θ̃(x)− rϕ̃(x)

io
= exp{iΦr(x)}ψr(x), (C.54)

where
ΦR,L(x) = ± 2π

Z x

−∞
dy [δ±ρ̃R(y) + δ∓ρ̃L(y)] . (C.55)

In terms of quasiparticles, HLL is then

HLL = −iu
Z
dx
h
: ψ̃†

R(x)∂xψ̃R(x) : − : ψ̃†
L(x)∂xψ̃L(x) :

i
. (C.56)

The quadratic spectrum of the physical fermions, whose bosonized version gives Hbc,
leads to additional terms in the fermion quasiparticle Hamiltonian (Rozhkov, 2005, 2006).
Most importantly, there is a band curvature term

H̃bc = −
1

2m∗

Z
dx
h
: ψ̃†

R(x)∂
2
xψ̃R(x) : + : ψ̃†

L(x)∂
2
xψ̃L(x) :

i
. (C.57)

The effective mass m∗ is related to the Luttinger parameters by the phenomenological
expression

1

m∗ =
u

K

∂

∂µ
u
√
K , (C.58)

where µ is the chemical potential (Pereira et al., 2007; Imambekov et al., 2012)2. From Eq.
(C.42) for the compressibility we then have

∂n

∂µ
=
K

uπ
, (C.59)

which allows us to rewrite the effective mass in the form

1

m∗ =
1

π

∂

∂n
u
√
K . (C.60)

In addition, the quasiparticles are interacting through

H̃int = ig̃

Z
dx
h
: ρR(x) :: ψ̃

†
L(x)
←→
∂x ψ̃L(x) : − : ρL(x) :: ψ̃

†
R(x)
←→
∂x ψ̃R(x) :

i
, (C.61)

where f
←→
∂x g = f∂xg − (∂xf)g. However, since it involves particles on opposite branches,

at low energy this additional term is rather harmless. In the scattering between two quasi-
particles with momenta p + pF and −pF , H̃int in momentum space is proportional to p,
therefore for |p| ≪ pF this interaction term produces only a small additional phase shift
of order |p|/pF ≪ 1. We conclude that even in presence of band curvature of the physical
fermions, near the Fermi points the quasi particles are essentially free, with the spectrum

ϵ̃(p) = u(p− pF ) +
(p− pF )2

2m∗ . (C.62)

2The fact that Eq. (C.58) coincides with the exact expression of the effective mass of the Lieb-Liniger
model, derived from the Bethe Ansatz in Appendix A, is highly non-trivial; see the discussion in the main
text, Section 4.3.2.

116



Appendix D

Ratios of matrix elements

Given the Bethe state | {λ}N ⟩, let us now consider a different Bethe state | {λ′}N ⟩, obtained
from the former by changing some quantum numbers. We are interested in the ratio

ρ′(0)
ρ(0)

=
⟨ {µ}N | ρ̂(0) | {λ′}N ⟩
⟨ {µ}N | ρ̂(0) | {λ}N ⟩

, (D.1)

where it is understood that the Bethe states are normalized. According to Eq. (5.29), in
the large c limit this is given by

ρ′(0)
ρ(0)

=
P ′

P
N

Q
j>k |λ′jk|Q

j,k(µj − λ′k)

Q
j,k(µj − λk)Q
j>k |λjk|

. (D.2)

The change in rapidities to order 1/L can be written as

λ′j = λj +
dj
L
, (D.3)

where the displacements dj are determined by taking the difference of the Bethe equations
for ({I ′}N , {λ′}N ) and ({I}N , {λ}N ). In particular, according to Eq. (5.23),

dj = 2π(I ′j − Ij)−
2N

c

2π

L
(I ′j − Ij)−

Pex

N
+O(L−2, c−2), (D.4)

where Pex = P{λ′} − P{λ}. Substituting Eq. (D.3) into Eq. (D.2) and expanding up to the
order 1/L, we obtain1

ρ′(0)
ρ(0)

≃ 1 +
Pex

P
N

1 +
1

L

X

j>k

djk
λjk

c

2P
X

j /∈{h}
dj

−1

. (D.5)

Now let {a} be the set of indices j corresponding to the quantum numbers such that
I ′j−Ij ̸= 0, i.e. the quantum numbers by which the states {λ} and {λ′} differ (assuming that

1We use the fact that P ′/P = (1 + Pex/P),

ρ′(0)

ρ(0)
≃ 1 +

Pex

P

N

1 +
1

L

X
j>k

djk
λjk

1− 1

L

X
j,k

dk
µj − λk

−1

,

and that in the large c limit, according to Eq. (5.31),X
j,k

dk
µj − λk

=
X

j /∈{h}

dj
µj − λj

+
X

j∈{h}

dj
µj − λj

+
X
j ̸=k

dk
µj − λk

= − cL

2P
X

j /∈{h}

dj +O(1).

117



we keep unchanged the indices of the quantum numbers that remain occupied). Exploiting
Eq. (D.4) we then obtain2

ρ′(0)
ρ(0)

≃ 1 +
Pex

P
N P
πc

P
j /∈{h}
j∈{a}

(I ′j − Ij) + (N − n)Pex

πc

−1

1 +
2π

L

P
j ̸=k
j∈{a}

I ′j − Ij
λjk

. (D.6)

As an illustration, let us consider the simplest case where the set {I ′} differs from {I} by
only one element. Then I ′j − Ij = ∆aδja and Pex = 2π∆a/L. We have to distinguish two
cases: (i) a ∈ {h}, i.e. the quantum number by which {λ} and {λ′} differ belongs to the
set of quantum numbers by which {λ} and {µ} differ; (ii) a /∈ {h}. Eq. (D.6) gives

(i)
ρ′(0)
ρ(0) I′j−Ij=∆aδja

≃ 1 +
2π∆a

LP
N LP

(N − n)2π∆a
1 +

2π∆a

L

X

k ̸=a

1

λak
(D.7a)

(ii)
ρ′(0)
ρ(0) I′j−Ij=∆aδja

≃ 1 +
2π∆a

LP
N P
πc∆a

1 +
2π∆a

L

X

k ̸=a

1

λak
(D.7b)

At arbitrary interaction strength, things are more complicated. The ratio (D.1) is

ρ′(0)
ρ(0)

=
∥{λ}N∥
∥{λ′}N∥

P ′

P
Y

j

V ′
j
+ − V ′

j
−

V +
j − V −

j

×
Y

j,k

(λ′jk + ic)(µj − λk)
(µj − λ′k)(λjk + ic)

V +
p − V −

p

V ′
p
+ − V ′

p
−

detN (δjk + U ′
jk(λ

′
p))

detN (δjk + Ujk(λp))
. (D.8)

Expanding rapidity differences up to order 1/L as before, we have

K ′
jk = Kjk +

1

L
δKjk, V ′

j
±
= V ±

j −
1

L
δV ±

j ,
µm − λ′j
λ′mj

=
µm − λj
λmj

+
1

L
δBmj , (D.9)

where

δKjk = −4c
λjkdjk

(λ2jk + c2)2
, (D.10)

δV ±
j =

X

m

1

λmj ± ic
µm − λj ± ic
λmj ± ic

dmj + dj
Y

l ̸=m

µl − λj ± ic
λlj ± ic

, (D.11)

δBmj = −
1

λmj

µm − λj
λmj

dmj + dj . (D.12)

This gives us

U ′
jk(λ

′
p) = Ujk(λp) +

1

L
δUjk(λp), (D.13)

2We have X
j /∈{h}

dj = (N − n)
2Pex

c
+

X
j /∈{h}
j∈{a}

2π(I ′j − Ij) 1− 2N

cL
+O(L−2, c−2)

and therefore
c

2P
X

j /∈{h}

dj

−1

≃ P
πc

P
j /∈{h}
j∈{a}

(I ′j − Ij) + (N − n)
Pex

πc

−1

.

Moreover, X
j>k

dj − dk
λjk

= 2π 1− 2N

cL

P
j ̸=k

j∈{a}

I ′j − Ij

λjk
.
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where

δUjk(λp) =
i(µj − λj)
V +
j − V −

j

Y

m ̸=j

µm − λj
λmj

(δKjk − δKpk)

+
X

m ̸=j
δBmj

Y

l ̸=m

µl − λj
λlj

(Kjk −Kpk)

+
i

V +
j − V −

j

µj − λj
V +
j − V −

j

(δV +
j − δV −

j )− dj
Y

m ̸=j

µm − λj
λmj

(Kjk −Kpk).

(D.14)

The most challenging term to compute is the ratio of determinants

det(1+ U ′)
det(1+ U)

= det 1+ L−1δU(1+ U)−1 . (D.15)

In general, the determinant of the sum of two N ×N matrices A and B can be written as

det(A+B) =
X

PL,PC

det(A+B)PLPC
(D.16)

(Korepin et al., 1993). Here PL is a partition of the rows of A + B into two subsets, rows
of type A and rows of type B, and PC is a similar partition of the columns of A + B into
columns of type A and columns of type B. The partitions PL and PC are independent,
except for the condition that the number nA of rows of type A is equal to the number of
columns of type A. The same is true for B, and we denote the number of rows and columns
of type B by nB (nA + nB = N). Given PL and PC , the matrix (A + B)PLPC

is obtained
from A+B as follows. For each matrix element (A+B)jk, if row j and column k are both
of type A (B) we replace (A+B)jk by Ajk (Bjk), whereas if row j is of type A and column
k is of type B, or vice versa, we replace (A+B)jk by 0.

Now let us consider det(A+B)PLPC
. We can rearrange the positions of the rows in such

a way to move all the A rows to the top and all the B rows to the bottom. The parity of
this permutation will be denoted by [PL]. In a similar way we can change the order of the
columns, moving all the A columns at the left and all B columns to the right. The parity of
this permutation will be denoted by [PC ] . After these permutations of rows and columns,
det(A + B)PLPC

will acquire a factor (−1)[PL]+[PC ], and the matrix (A + B)PLPC
will be

block diagonal,
APLPC

0
0 BPLPC

. (D.17)

The matrix APLPC
has dimension nA × nA and can be obtained from A by removing all B

rows and B columns according to the partitions PL and PC . Similarly, the matrix BPLPC

has dimension nB×nB and can be obtained from B by removing all A rows and A columns.
The determinant of the matrix (D.17) is equal to the product of detAPLPC

and detBPLPC
,

thus we can rewrite Eq. (D.16) in the form

det(A+B) =
X

PL,PC

(−1)[PL]+[PC ] detAPLPC
detBPLPC

. (D.18)

We now apply this formula to rewrite the right-hand side of Eq. (D.15). In this case
A = 1 and B = L−1M , where M = δU(1+ U)−1. We notice that det1PLPC

is either zero
(if some columns or rows are zero) or one (if 1PLPC

is still an identity matrix), thus we have

det(1+ L−1M) =

′X

PL,PC

(−1)[PL]+[PC ] 1

LnM
detMPLPC

, (D.19)
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where the prime indicates that the sum is restricted to partitions such that det1PLPC
= 1.

At leading order we keep just the terms up to order 1/L, which corresponds to nM = 1 and
n1 = N − 1. For these values of nM and n1, det1PLPC

is zero unless the index of the only
M row is equal to the index of the only M column. In this case [PL] = [PC ], which implies
that (−1)[PL]+[PC ] = 1, and MPLPC

is obtained from M by removing all elements except
one along the diagonal. We conclude that

det(1+ L−1M) = 1 +
1

L

X

i

Mii +O(1/L2). (D.20)

We have

Mii =
X

j

δUij(1+ U)−1
ji =

1

det(1+ U)

X

j

(−1)i+jδUij det(1+ U)i,j , (D.21)

where det(1+ U)i,j is the (i, j) minor of 1+ U , and therefore

det(1+ U ′)
det(1+ U)

= 1 +
1

L det(1+ U)

X

i,j

(−1)i+jδUij det(1+ U)i,j . (D.22)
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