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Summary

Recognition of the credibility crisis shed light on proposals to alleviate its impact. One

of these proposals was multiverse analysis (Steegen et al., 2016). The main idea of

this analysis is to consider all plausible choices in the flow of research to assess the

robustness and informativeness of the results. Implementing this idea is particularly

beneficial in meta-analytical studies. Not only do these studies usually have a high

impact on literature, but they also involve making multiple decisions that are usually

taken arbitrarily. However, many researchers still struggle to handle and communicate

numerous results of this approach and consider multiverse results to be challenging and

overwhelming.

The present study aims to address this challenge by introducing an exploratory frame-

work to assist researchers in evaluating and communicating the result of multiverse

meta-analysis using tabular and graphical representations. Furthermore, we will high-

light the contribution of each arbitrary decision to the variability of results.

The first chapter will discuss the role of science as well as the consequences and reasons

for the current credibility crisis. It also covers some of the remedies to alleviate the

impact of this crisis. The second chapter will focus on the multiverse analysis. It will

introduce this analysis along with similar proposals, and it will introduce other contexts

that can benefit from the multiverse approach. Chapter three will be dedicated to

introducing the meta-analysis with a focus on arbitrary choices that are involved in the

flow of the meta-analytical research. In particular, we will discuss choices concerning
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the effect size, meta-analytical model, heterogeneity, and bias control. In Chapter

Four, we will introduce our exploratory framework, which will be further explained

by implementing it on a real dataset in Chapter Five. Finally, we will conclude by

recognizing the benefits and limitations of this framework in Chapter Six.

This thesis was written in R markdown.



Chapter 1

Credibility Crisis

What is the role of science? We should be clear about what is expected of science in

general before starting to tackle the problems circulating scientific research. According

to Gibbons (1999), the role of science is to transparently produce reliable knowledge.

If we accept this statement as a general role of science, it is evident that trust plays an

important part in the fulfillment of this role. Despite the notion that public trust in

science remained stable over time (Scheufele, 2013), science has been facing challenges

as a result of overlooking this trust (Rutjens et al., 2018).

Credibility crisis is a general term referring to a lack of confidence in results drawn by

research, especially in the fields of social and biomedical sciences (Gall et al., 2017).

This distrust is fueled by many evidence of the lack of replicability of results obtained

by many research studies (Bettis, 2012; Ioannidis, 2012; Open Science Collaboration,

2015). If continued, the consequences of this increasing mistrust can be unbearable. It

can result in endangering people’s well-being, increasing anti-science movements (e.g.,

Ioannidis, 2017), and retracting funds. As no one can become an expert in all fields of

science (Anvari & Lakens, 2018), protecting trust should be the primary responsibility

of everyone working in this field.

As also mentioned before, replicability plays an important role in building confidence
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Chapter 1 - Credibility Crisis 4

and credibility for science (Hendriks et al., 2020; National Academies of Sciences et

al., 2019). However, it is vital to distinguish the difference between replicability and

reproducibility in science first. These two terms refer to fundamental characteristics

of science (Patil et al., 2016). Unfortunately, many scientists use these words inter-

changeably, yet, it is useful and essential to know the difference. Replicability refers

to ” re-performing the experiment and collecting new data”, whereas reproducibility

refers to ” re-performing the same analysis with the same code using a different ana-

lyst” (Patil et al., 2016). Given this definition, reproducibility is directly connected to

transparency, and it needs the original author to transparently report the entire process

of analysis including data, code, and analysis plan (National Academies of Sciences et

al., 2019; Stevens, 2017). Replicability is also related to transparency, but the extent

to which it is related varied according to different kinds of replicability. The logic of

direct replicability is to repeat the method of the original study as precisely as possible

to get consistent estimates of the original study (Chambers, 2017). As it is evident,

this kind of replication requires a transparent and adequate report of statistical and

methodological details (Derksen & Morawski, 2022). On the other hand, conceptual

replicability refers to replicating the theory of the original study using different com-

parable operationalizations, variables, and experimental designs (Derksen & Morawski,

2022).

It is believed that conceptual replication is specifically important in the field of psychol-

ogy, as many psychological phenomena are sensitive to context and as a result, cannot

be replicated directly (Derksen & Morawski, 2022). However, according to Chambers

(2017) relying on conceptual replication is not without challenges. Firstly, the extent

to which the methods are comparable in the original and the replicated study is a mat-

ter of controversy. Secondly, whether the results reported by both studies are in fact

supporting the same phenomenon is not always clear; And lastly, with conceptual repli-

cation, there is always room for confirmation bias, as the original author can always
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blame different methods for the different conclusion drawn by the replication study

(Chambers, 2017).

In this chapter, we will review some of the potential reasons for mistrust and credibility

crisis and discuss some possible remedies to retrieve the credibility of science. In the

end, we will conclude with an overview of the goals of the present study.

1.1 Possible reasons for credibility crisis

Several flawed practices attribute to ruining the trust and credibility of science. Not

having comprehensive knowledge about these threats will result in continual repetition

of these actions and undermining of the scientific conclusions. These practices include

bending the data to produce publishable outcomes, misusing statistical tools and failing

to bring justification when necessary, and using invalid measurements. In this section,

we will discuss each of these contributing factors separately.

1.1.1 Questionable research practices

For more than 60 years, the scientific community has been aware of questionable re-

search practices (QRPs) (Banks et al., 2016). Unfortunately for science, only in the last

three years, the prevalence of these practices was as high as 17.5%, with more than 50%

of participant researchers engaging frequently in at least one QRPs (Gopalakrishna et

al., 2022). According to Banks et al. (2016), questionable research practice is defined

as “design, analytic, or reporting practices that have been questioned because of the

potential for the practice to be employed with the purpose of presenting biased evidence

in favor of an assertion” (p. 3). The incentive of engaging in QRPs for many scientists

is to increase the chance of their papers getting published (Chambers, 2017).

Not only using these practices is unethical and misleading, but also they have a dam-

aging influence on public trust, as they contribute to the irreplicability of science
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(Gopalakrishna et al., 2022). Questionable research practices can adopt different forms:

lack of transparency, presenting incomplete evidence, and intentional misrepresentation

of data (Flake & Fried, 2020). Considering the hypothetico-deductive model, QRMs

can happen during the collecting, analyzing, and interpreting of data. In any case, in

the end, they contribute to research bias (Chambers, 2017).

P-hacking or “selective reporting” is one of the most famous questionable research

practices. It is defined as manipulating data and/or statistical analysis to include only

those resulting in statistically significant outcomes (Head et al., 2015; Raj et al., 2017).

As it is apparent, p-hacking has a close relationship with the null hypothesis significant

testing (NHST) (Chambers, 2017). According to NHST, the p-value is the probability of

observing the obtained data or more extreme data if the null hypothesis is true (Lakens,

2021). In order to make inferential decisions, the obtained p-value is compared with

a predefined α value, to either reject or not reject the null hypothesis (Chambers,

2017). Unfortunately, as many researchers, as well as journals, have a predilection

for statistically significant results, many get involved in p-hacking to obtain significant

results. The prevalence of p-hacking in some fields, like psychology is so high that it

can be seen as a norm (Chambers, 2017).

P-hacking has several forms: optional stopping, choosing to include specific data points

among many obtained data, including or excluding outliers and/or covariates post-

analyses, changing in the treatment groups post-analyses, and stopping data exploration

after yielding statistically significant results (Head et al., 2015).

When any of the aforementioned forms of p-hacking found their way into the published

literature, the impact will be substantial and persistent. These misconducted papers

will contribute to overestimating the true effect size, as well as inspiring other fruitless

research programs and spoiling public funds (Head et al., 2015). Regrettably, even when

replicating the study (if there would be any) provides proof for misleading results, the

replication study would never get as enough attention as the previous one (Chambers,
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2017; Head et al., 2015).

HARKing (Hypothesizing After Results are Known) is another widespread QRP. This

form of academic deception refers to when the author changes the initial hypothesis after

analyzing data (Kerr, 1998). This changes include but are not limited to reversing

the direction of the hypothesis(Chambers, 2017), retrieving the previously proposed

hypothesis, and not presenting the non-favorable a priori hypothesis which is supported

by the data (Lishner, 2021). As publishing the hypothesis is rarely done in advance,

altering hypothesis can be done without being noticed (Chambers, 2017). However,

some evidence can trace this action; among those are too convenient qualifiers, too-

good-to-be-true theory, and poorly fitted design (see Kerr, 1998). In any case, the

prevalence of HARKing can go as high as 90% although the self-admission rate is much

lower (Chambers, 2017; Murphy & Aguinis, 2019).

HARKing has negative impacts on different aspects of science. First of all, it betrays

the ethical principle of honesty in science and risks the trustworthiness of science by

an extension (Chambers, 2017). From a theoretical perspective, HARKing can spread

the trend of unfalsifiable and/or unnecessary complex theoretical explanations (Lish-

ner, 2021). Additionally, it misleads the researchers to over-rely on nonindependent

explanations (Chambers, 2017; Lishner, 2021). Lastly, by increasing inaccurate and

mismatched illustrations of the scientific process, HARKing will jeopardize the integrity

of scientific methodology (Lishner, 2021).

The reasons behind HARKing can be classified into two main clusters. Firstly, many

scientific authors have a biased predisposition toward the scientific approach. Not only

do they account for less value in exploratory research, they nearly always find con-

firmation as more valuable and instructive (Kerr, 1998). Secondly, HARKed research

reports are contributing to a hypothetical picture of a “good story” in science. They

provide an illusion that all activities and tests done by the researcher were purposeful

and justified and would come to a “happy ending” (Kerr, 1998).
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The last QRP we will describe is cherry-picking. In the field of science, cherry-picking

refers to the selective report of findings that have the strongest possible support for

the hypothesis (Murphy & Aguinis, 2019). In the most common form of this prac-

tice, researchers go through the data and pick only significant outcomes and overlook

insignificant ones as if they had not been studied (Andrade, 2021). This usually hap-

pens because the researcher completes the analysis with an inadequate number of data

(Morse, 2010). Another form of cherry-picking happens when the researcher only con-

siders and cites those papers that favor their argument (Andrade, 2021). In both cases,

cherry-picking represents the selective attention of the author which is drawn by con-

firmation bias (Elston, 2021).

As mentioned before, cherry-picking is a way to find support for the researchers’ prior

beliefs. Of course, when authors make a mistake in their prior beliefs, faulty results will

find their way into the literature (Morse, 2010). According to Murphy & Aguinis (2019),

cherry-picking will always produce biased results, however, they believed it would not

generally contribute to publication bias. On the other hand, Mayo-Wilson et al. (2017)

reported that the bias made by this practice would substantially interfere with the

significance and magnitude of meta-analytic results (Mayo-Wilson et al., 2017). On the

whole, cherry-picking can misguide many other scientists in their further research and

interventions.

The domain of questionable research practices is vast. We did not cover data fabri-

cation in this section as its damaging influence is evident even for the general public.

Any intentional or accidental involvement in such practices will attribute to the credi-

bility crisis and violation of the code of conduct in research practices. Comprehensive

knowledge of different forms and the impact of such practices will reduce engagement

in them and hopefully, would mitigate their effects on scientific literature.
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1.1.2 Questionable research design

The proposed name of “questionable research design” refers to overlooking important

details during the research design that can contribute to irreplicability and unfalsifi-

ability. Long before making inferences about the data and engaging in any form of

questionable research practices, researchers make decisions, or in some cases do not

make certain necessary decisions, about the design and analysis of their study. These

decisions not only fuels the transparency problems in research practice but reduce the

dignity and reliability of their analysis. In this section, we will review some of these

practices.

Although the Neyman-Pearson approach to hypothesis testing is one of the most dom-

inant approaches in science, many researchers seem to have misunderstood the fun-

damental details of this approach. Among all aspects of NHST, probably the most

misunderstood one is the concept of the p-value (Chambers, 2017). However, a step

before misinterpretation of p-values is deciding on α and β values. We might assume

that when most researchers choose the universal values of α = 0.05 and β = 0.20, we

can rely on their decision, which in the eyes of a mature scientist, is not the case (Maier

& Lakens, 2022). The idea of universal α value neither was supported by Fisher nor

Neyman and Pearson (Maier & Lakens, 2022). On the contrary, they emphasized the

researchers’ role in minimizing and controlling the risk of error (Maier & Lakens, 2022).

However, a misunderstanding from Fisher’s note led to the conventional value of 0.05

for the alpha value (see Maier & Lakens, 2022). Later, based on this conventional value

for α, Cohen (1988) proposed his preferable value for beta, β = 0.20, only “when the

investigator has no other basis for setting the desired power value” (p. 56).

The universal use of these conventions has been criticized for a long time (Maier &

Lakens, 2022). The problems with these universal values are that they will reduce the

efficiency of our decision making and they can increase the probability of committing
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an error in some cases (Maier & Lakens, 2022). To tackle these problems, Benjamin et

al. (2018) proposed to reduce the alpha level to α = 0.005 in descriptive research in

certain fields, so by instantly lowering the probability of committing a type 1 error, the

replicability will improve. As this way would increase the probability of a false negative,

Benjamin et al. (2018) suggested increasing the sample size to keep the power constant.

However, this solution is not without critics. Lakens, Adolfi, et al. (2018) argued that

by putting another universal constant value for alpha, we are not solving the problem.

As long as p-hacking is confounding the result of the studies, we will not solve the

problem of replicability only by lowering the alpha level (Lakens, Adolfi, et al., 2018).

However, we should note that p-hacking would be a much easier job when the alpha

level is 0.05 compared to the proposed level (Ruiter, 2019).

Another way to tackle the aforementioned problems is to justify alpha and beta values

(Lakens, Adolfi, et al., 2018). Two practical ways to do so are to balance or minimize

the cost of type 1 and type 2 error rates, and the second is to lower the alpha level as a

function of sample size (Maier & Lakens, 2022). In cases where none of the error types

are significantly more costly, we can design the study in a way to have the minimum

Weighted Combined Error rate (Maier & Lakens, 2022). Through this approach, by

considering essential factors of hypothesis testing, such as sample size and prior belief,

we can choose a more optimal level of significance (Kim & Choi, 2021). There is only

one alpha level that can minimize the weighted combined error rate given a specific

sample size and effect size (Figure 1.1). Therefore, by sticking to α = 0.05, we only

increase the probability of committing an error.

The second practical way to justify the alpha level is mostly used to tackle the problem

of Lindley’s Paradox. According to Lindley’s paradox, when we have high sample

sizes (a.k.a. high statistical power) the probability of observing some p-values below

0.05 is higher when the null hypothesis is true (Maier & Lakens, 2022). The idea of

this approach is to decrease the alpha value in a way that the Bayes factor (p(data|H1)
p(data|H0))



Chapter 1 - Credibility Crisis 11

Figure 1.1: Weighted combined error rate for an independent t test with different sample sizes for all
possible alpha values. Adapted from Justify your alpha: A primer on two practical approaches by M.
Maier and D. Lakens, 2022, Advances in Methods and Practices in Psychological Science, 5 (2), P. 4

would be more than 1 (e.g., BF>3); by doing so, we would have stronger evidence that

the significant data is not a case of Lindley’s paradox (see Maier & Lakens, 2022).

Although most aforementioned approaches were more focused on changing the alpha

value and Bartoš & Maier (2022) also argue it is more efficient to change the alpha

level to change the statistical power, we cannot overlook the problems caused by low

statistical power. Many researchers have already uncovered the low statistical power of

psychological findings (Bartlett & Charles, 2022; Chambers, 2017). This means that

studies are searching for smaller effect sizes than the ability of their design (Bartlett &

Charles, 2022). In other words, by underpowered studies, true effects cannot be found

often (Nuijten, 2019), and as it is not the case in the literature, we can see how low-

powered studies can affect the reliability of science (Chambers, 2017). Furthermore,

this lack of sensitivity to detect the true effect can delay theory generation for a long

time and make researchers wrongly abandon the correct hypothesis (Chambers, 2017).

One way to mitigate this problem is to recruit enough participants for the study; this

process is called “power analysis” (Bartlett & Charles, 2022). This approach is not the
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only way to justify the sample size (see Lakens, 2022), but it is a way to avoid low

statistical power.

Another practice that is threatening the credibility of results drawn by research is the

failure to determine the Smallest Effect Size of Interest (SESOI). Statistical signifi-

cance does not give us any information about the practicality of the result, yet we can

draw such information from the effect size (Greenland et al., 2016). Using effect sizes

has become an important indicator of planning and interpreting studies, especially in

psychological science (Riesthuis et al., 2022). However, the tools to interpret the mean-

ingfulness of the effect sizes seem to be scarce (Anvari & Lakens, 2021). One of these

tools is to compare the obtained result to the SESOI. There are three ways to decide on

the smallest effect size of interest: a) theoretical relevance, b) cost-benefit analysis, and

c) the researcher’s personal choice (Lakens, 2014; Lakens, Scheel, et al., 2018). In any

case, the value of SESOI is independent of the research result and should be decided

before looking at the data (Lakens, Scheel, et al., 2018). Determining SESOI can im-

prove the credibility of research to a reasonable extent. The most important benefit of

SESOI in my view is that it provides the possibility to design falsifiable studies (Anvari

& Lakens, 2021), which is a fundamental characteristic of replicability. Moreover, it can

help researchers to choose sample size in a way to have high power to detect meaningful

effects (Anvari & Lakens, 2021; Lakens, 2022). Additionally, it will help researchers to

decide the absence of large enough (meaningful) effects by using Equivalence testing

(Anvari & Lakens, 2021), and as a result, prevent further spending funds on dead-end

topics.

Like QRPs, the different forms of questionable research designs are broad. As it was

evident from this section, many of these design choices are interconnected and will

influence one another. Scientific research is not a roll of dice; it is essential to design

the study in a way that would be the most informative, regardless of the result.
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1.1.3 Validation Crisis

Defining and measuring constructs is an underlying aspect of science (Flake & Fried,

2020). However, this fundamental practice has been overlooked especially in the field of

social science (Schimmack, 2021). As most constructs in this field cannot be observed

directly (Flake & Fried, 2020), the chance of discrepancy among scholars about how to

define and measure these constructs is high. For example, some scholars define inter-

net addiction as an impulse control disorder, while others classify it as a behavioural

addiction, and even some use a combination of these two definitions (Abendroth et al.,

2020). In another example, anhedonia is sometimes assessed as a neurological dysfunc-

tion associated with schizophrenia and is sometimes considered a premorbid personality

trait that predisposed patients to the development of schizophrenia spectrum disorders

(Winer et al., 2019). But how can we measure a construct irrespective of its different

conceptualizations? Even a noted construct such as depression still suffers from validity

concerns about its definition and measurement (Flake & Fried, 2020; Fried & Flake,

2018). This is a problem that neither comprehensive design nor statistical tests can

solve; this is why it is important to pay special attention to the validity.

Overall, there are of four types of validity. Internal validity refers to the degree to

which we can draw causality from a study; External validity addresses the generaliz-

ability of the results drawn from the study; Statistical validity captures whether the

data supports the conclusion or not; and construct validity concerns the operational-

ization of the constructs (Moring, 2017). Each type of validity can be threatened by

measurement. For instance, if necessary information regarding the operationalization

is missing, construct validity is threatened, or the absence of information regarding

whether the measure is sample- or population-specific can endanger external validity

(Flake & Fried, 2020). The term validation crisis refers to the widespread use of ques-

tionable measurement practices (QMPs). According to Flake & Fried (2020), QMP is
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defined as any decisions researchers make that increase uncertainty about the validity

of measures, and in general, the validity of the final claim.

Unfortunately, many psychologists are satisfied with reliability as the sufficient criterion

of validity or fail to report validity as they know it is embarrassingly low in the field

(Schimmack, 2021). Therefore, it is essential to consider the validation crisis seriously,

as without valid measures, significant and replicable results will be uninformative or

even wrong (Schimmack, 2021). One way to make sure measurement leads to more

robust insight is to compare the results of different scales of the same construct (Fried

& Flake, 2018). The idea of this approach is as different measures can lead to differ-

ent conclusions by comparing the results drawn from each scale, we can mitigate the

results. However, this approach leaves room for questionable research practices such as

p-hacking (Fried & Flake, 2018).

As another approach, Flake & Fried (2020) suggested researchers transparently justify

the use of a certain measure. To do so, they proposed a set of questions (Figure 1.2)

about the validity of the study and encouraged researchers to use these questions as a

guide when they are designing a study (Flake & Fried, 2020). These questions can also

enable reviewers, editors, and consumers of research to detect QMPs and have a more

informed evaluation of the research (Flake & Fried, 2020).

On the other hand, Schimmack (2021) suggested the only way to study validity (specif-

ically construct validity) is by quantifying it and using casual modeling with SEM.

He emphasized that validity cannot be dichotomized, rather it is a dynamic process

through which the variance of validity can change as more information becomes avail-

able (Schimmack, 2021). However, this approach is not without limitations; some areas

of psychology lack the necessary theoretical background and therefore, do not provide

enough information for structural equation modeling (Schimmack, 2021); It also does

not provide justification for the cut-off point to reject the validity of the measurement.

In general, it is important to consider the overlooked impact of the credibility crisis.
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Figure 1.2: Proposed questiones to enhance transparency of reporting measurment practices Adapted
from Measurement schmeasurement: Questionable measurement practices and how to avoid them by
J. Flake and E. Fried, 2020, Advances in Methods and Practices in Psychological Science, 3 (4), P. 459

Psychologists have procrastinated to address this problem for so long, and this field

needs more research to find more practical ways to mitigate the effects of this practice.

1.2 Possible remedies for credibility crisis

In previous sections, we discussed the negative impacts of the credibility crisis and the

practices contributing to it. In this section, we will focus on more practical ways to

prevent the impact of these practices on scientific literature and public trust.

One of the celebrated remedies for the credibility crisis is the “Open science” move-

ment. Open science is an umbrella term referring to a variety of practices and princi-

ples to ensure transparency, credibility, reproducibility, and accessibility (Kathawalla

et al., 2021). Transparency can cover different aspects; free online access to articles

through open-access publishing, providing access to data, codes, and methods, provid-

ing incentives to disclose more of the results, and making the peer review process more

transparent (Elliott, 2022). Transparency can also take different degrees. Conceptually,

the degree to which aspects of a project can be disclosed depends on the purpose of
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transparency and the needs of the audience (Elliott, 2022). For example, if the primary

purpose of transparency is to enable others to reproduce data, then the audience for

it would be other scholars, and they need all the information including codes and data

to reproduce the results. Although transparency increases the probability of reliabil-

ity and reproducibility and helps to accelerate scientific innovation, it can also give

information to those who want to harass scientists (Elliott, 2022). These harassments

varies from complaints to researchers’ universities to threats of violence (Lewandowsky

& Bishop, 2016). We should notice that all legitimate tools can be abused; however,

by extending protective actions and raising awareness about these harassments, we can

hope to alleviate their damage to the lowest degree (see Lewandowsky & Bishop, 2016).

One of the tools that can satisfy some aspects of transparency is preregistration. Pre-

registration refers to a dated document containing research questions, the hypotheses,

the method, and the analysis plan that is published before data collection (Kathawalla

et al., 2021). The idea is that preregistration stops intentional or unintentional deci-

sions that can affect the outcome (M. Bakker et al., 2020). Preregistration also enables

researchers to receive feedback about their design and as a result, prevents impractical

outcomes drawn specially by expensive studies that are unlikely to replicate (Elliott,

2022). Additionally, it leads to improvement in study design in a way that by looking

at the checklist, researchers will be reminded of some details that otherwise have been

overlooked (Lakens, 2019). Preregistration also helps others to evaluate the extent to

which a prediction can be falsified (Lakens, 2019). However, it is important to mention

that preregistration itself does not increase the value of the study compared to a non-

preregistered one (Lakens, 2019), and also one template of preregistration does not work

for all kinds of research (Miguel et al., 2014). Preregistration also has received some crit-

icism. Some scholars argue about the role of preregistration in suffocating exploratory

research and creativity (Miguel et al., 2014). Nevertheless, the aim of preregistration is

to make sure the exploratory analysis is not going to be portrayed as formal hypothesis-
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testing, and by no means this practice would damage exploratory findings (Miguel et

al., 2014). From another perspective, Van Rooij (2019) mentioned that focusing on pre-

registration prevents addressing the deeper problem of theory development. I do not

see how registration can prevent theory development, as this “theory crisis” has roots

in the validity crisis and weak evidence (Eronen & Bringmann, 2021). Theory crisis

in psychology has many contributing factors that are not in the scope of the current

study; however, redirecting attention from one crisis toward another does not seem to

be reasonable. Furthermore, Szollosi et al. (2020) raise concerns that poor theories can

also be preregistered and how post hoc inferences are overlooked just because they were

not thought of before preregistration. As we mentioned earlier, preregistration itself

does not imply that a study is well-done or has a good theory. Moreover, registration,

in my view, does not prevent post hoc inference, it simply differentiates the tests that

have been decided before data collection and looking at the data.

The Open Science Framework (OSF) is one of the tools to enhance transparency during

different steps of the research lifecycle (Foster & Deardorff, 2017). The main function of

OSF is to make and develop projects, which can vary from a particular paper to the work

of the entire lab (Foster & Deardorff, 2017). This framework facilitates collaboration

and also has a feature to make the entire projects, or some aspects of them, publicly

available (Foster & Deardorff, 2017). OSF also offers different preregistration formats,

that once get registered, cannot be edited or deleted (Foster & Deardorff, 2017). Even

if you withdraw a project, a record of the registered project still remains (Foster &

Deardorff, 2017). We are not implying that OSF is the best tool for transparency;

however, it helps researchers to perform many open science practices and does not

involve learning many interfaces (Kathawalla et al., 2021).

As we mentioned in the previous section, many questionable practices are performed

to increase the chance of publication. The registered report (RR) is an approach to

specifically address this issue for hypothesis-driven studies. The idea of RR is that
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the study proposal gets peer reviewed and accepted before the actual study is done

(Chambers & Tzavella, 2022). By doing so, the blind focus on the results of the study

would shift toward question, theory, and methods (Chambers & Tzavella, 2022). In

this approach, peer review is divided into two stages (Figure 1.3). In the first stage,

authors write in detail the introduction, methods, and analysis plans and submit it

for peer review; the final outcome for favourably assessed proposals is “in principle

acceptance” (IPA), which means the journal guarantees to publish the final paper if

the authors follow their peer-reviewed protocol (Chambers & Tzavella, 2022). After

the research is done, the authors add results and discussion sections to the previously

approved protocol and submit it again, so reviewers can check whether the protocol

was followed and whether the evidence justified the conclusion (Chambers & Tzavella,

2022). Although currently, more than 300 journals offer RR, we should remember that

registered reports were introduced in 2012; therefore, we cannot say with confidence that

this practice reduces bias and improve reliability, and of course, there are many aspects

of this approach yet to be developed (Chambers & Tzavella, 2022). Nevertheless, there

is evidence for signs of bias control, study quality, computational reproducibility, and

citation influence (see Chambers & Tzavella, 2022). Changing the mindset about the

significant result is a must, and we still have a long way to reach there. But surely RR

is a practical tool to train researchers and journals to change their view about worthy

results.

Alongside being more transparent, researchers should be encouraged to engage more in

replication. One study is barely enough to jump to a conclusion. It is by replication

that we can proceed toward increasing knowledge and generating a scientific law (Cham-

bers, 2017) instead of sticking to this “vast graveyard of undead theories” (Derksen &

Morawski, 2022). One way to incentivize researchers to perform replication studies

is that journals guarantee publication of the well-done replications (Chambers, 2017).

Another proposal is that journals would be obligated to publish direct replications of
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Figure 1.3: The process of RR Adapted from The past, present and future of registered reports by C.
Chambers and L. Tzavella, 2022, Nature Human Behaviour, 6(1), P. 30

any original findings (Chambers, 2017). The role of journals in normalizing replication

is undeniable (Chambers, 2017). Unfortunately, still journals are not prone enough to

publish replication studies (Martin & Clarke, 2017). Moreover, certain restrictions of

space even in online journals are preventing authors to put sufficient information about

the methodology and statistical analysis of the study, which is essential for replication

(Chambers, 2017). Therefore, certain changes in policies should be implemented.

In the previous section, we also refer to how different decisions can contribute to the

credibility crisis. Generally, these choices are referred to as the researcher’s degree of

freedom which we will address in more detail in section 2.1. There are several approaches

to mitigate the impact of these choices on the result of the study. Among those are the

multi-analyst approach and the multiverse analysis. The former is based on the idea

that different scholars take different decisions (Aczel et al., 2021). To have an informed

idea of how the results are influenced by these decisions, one should employ several
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analysts from different labs to independently run analyses on the same data set (Aczel

et al., 2021). The idea is that by evaluating several independent analysis options, we

can systematically assess whether conclusions are dependent on the researcher’s degree

of freedom (Aczel et al., 2021). The latter follows this mindset that we should increase

transparency to the fullest and consider all plausible choices when we are assessing

their impact on the final results (Steegen et al., 2016). In the next chapter, we discuss

this viewpoint in more detail.

1.3 Aims of the current study

In this chapter, we discussed the importance of transparency and its role in the credibil-

ity crisis. There is usually great flexibility in analytical choices and data preprocessing

which is partly due to imprecise theory and hypotheses (Hoffmann et al., 2021). These

multiplicities would endanger the credibility of science by increasing the chance of non-

replicability (Hoffmann et al., 2021). One of the aforementioned approaches to tackle

this problem is to consider all arbitrary yet plausible decisions at each level of the

research process, which is termed the multiverse analysis (Steegen et al., 2016). Multi-

verse analysis benefits the credibility of science by transparently depicting how results

are dependent on decisions. One ground to plant the idea of the multiverse is in meta-

analysis. By combining single studies, meta-analysis enables us to estimate a parameter

more accurately and with sufficient power (Maxwell et al., 2008). However, it requires

certain decisions which would potentially affect the final outcome of the meta-analysis,

such as choice of the meta-analytic model, inclusion and exclusion of potential out-

lier studies, and imputation of statistical information that often are not reported in

the original studies but is needed to model the observed data (Voracek et al., 2019).

Therefore, combining these two ideas would benefit the audience to have an informed

understanding of the heterogeneity of the results based on the combinations of options,
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with the ultimate goal to deeply evaluate the robustness (or fragility) of research find-

ings. One challenge in combining these ideas is that there is no specific framework to

present the outcome of multiverse meta-analysis. In this study, we aim to propose an

exploratory framework to present and depict the result of multiverse meta-analysis in a

way to ease the interpretation of the research findings. In addition, we would highlight

the influence of each decision on this heterogeneity.
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Multiverse Analysis

2.1 What is multiverse analysis?

As we mentioned in the previous chapter, choices made by the researcher can contribute

to the credibility crisis. Empirical research requires scholars to make certain decisions.

However, these choices, especially choices concerning methodology, are often made ran-

domly and with no justification (Wicherts et al., 2016). Simmons et al. (2011) termed

these decisions as the Researcher Degree of Freedom (RDF). Generally, the researcher

degree of freedom is believed to have a negative implication (Gelman & Loken, 2013).

The reason is that it is believed that researchers take these decisions deliberately to

increase the probability of having significant results (which usually are false positives)

or to inflate effect sizes (Wicherts et al., 2016). This definition of researcher degree of

freedom implies that researchers continuously get involved with questionable research

practices to get the most desirable outcome from a data set (Gelman & Loken, 2013).

This may be the case for some researchers, as we mentioned in the previous chapter,

however, it is not the whole truth. Those who do not engage in multiple different anal-

yses are still subjected to problems of RDFs (Gelman & Loken, 2013). In this study,

by using the term researcher degrees of freedom we mean consciously or unconsciously

22



Chapter 2 - Multiverse Analysis 23

choosing one option among multiplicities at any level of study that can potentially affect

the results of the study. Given this definition, all aforementioned questionable practices

as well as common data processing and analysis decisions can fall in the category of

researcher degrees of freedom.

As we mentioned, the researcher degree of freedom has the potential to affect the out-

come. Therefore, with each decision, researchers make a turn in the maze of possibilities

and face another crossroad in that maze. Gelman & Loken (2013) term this process

as the garden of forking paths. Figure 2.1 shows a simple case where at each level of

study, researchers have two options. Sometimes, no matter which choice they make,

all paths lead to the same conclusion. This may be the case where there are large

real differences, small measurement errors, and low variation (Gelman & Loken, 2013).

However, these prerequisites are hard to find in a field like psychology. Expectedly, we

can see that sometimes different paths reach different conclusions (Fig. 2.1). In other

words, by choosing one path (the thick black line), we only reach one conclusion that

might not even be the most probable one.

Figure 2.1: The garden of forking paths by B. Aczel et al., 2021, eLife, 10, P. 3

It is evident how this practice can attribute to the credibility crisis. There is already

some evidence in the literature directing toward the problem of different and some-
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times opposite conclusions which is derived from taking specific decisions (Aczel et al.,

2021; Gelman & Loken, 2013; Modecki et al., 2020). Arbitrary choices in statistical

analysis and model choice such as repeating measures ANOVA vs. using linear mixed

models, assuming normality, and choosing between parametric and non-parametric ap-

proaches can affect the result of the study (Steegen et al., 2016). In one of the most

cited examples, Silberzahn et al. (2018) gave the same data set to 21 research teams to

independently check whether football referees are more likely to give red card to dark-

skin-toned players, which resulted in 29 different analyses with 21 unique combinations

of covariates. Not only the effect size estimates were highly dispersed, but 31% of teams

also obtained a null effect, which in two cases was even numerically negative. This case

perfectly shows the effect of choosing different analyses on the obtained results, where

neither the prior belief of the researcher nor the researcher’s level of expertise could

explain the variation (Silberzahn et al., 2018). As we mentioned before, RDFs do not

limit to statistical analysis, but they also involve data processing. Preparing data for

analysis is not a passive act, rather converting raw data to a form suitable for analysis

can be considered as a data construction (Steegen et al., 2016). In this process, schol-

ars engage in many RDFs, such as deciding on the categorization and dichotomization

of variables, combining variables, and exclusion of data (Steegen et al., 2016). We

already know that by dichotomizing a quantitative measure, we lose information and

misestimate the effect sizes (MacCallum et al., 2002). However, different kinds of di-

chotomization of categorical variables also affect the results. In their paper, Steegen

et al. (2016) showed a case where using a different dichotomizing method for fertility

and relationship status affected the interaction effect of relationship status on the re-

lationship between fertility and religiosity. This is evident that choosing only one path

may be deceiving (Heyman & Vanpaemel, 2022), but the question is how can we draw

an informed conclusion if the results of our study are so dependent on the decisions we

made?
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Steegen et al. (2016) proposed the multiverse analysis to answer this problem. They

argued that for each study we have a multiverse of data sets, statistical analyses, and

models, as well as a multiverse of outcomes. By choosing one data set or analysis and

ignoring the other possible and yet reasonable options, our results are in danger of being

fragile with no way to evaluate the robustness of our findings (Steegen et al., 2016).

As a result, in the absence of a precise and complete theory, which clarifies why one

option is better than the others, they proposed to analyze all reasonable combinations

of choices we have in the garden of forking paths (Steegen et al., 2016). In the complete

format of the multiverse analysis, one crosses the multiverse of data processing with

the multiverse of analytical decisions to consider all possible combinations (Steegen et

al., 2016).

The multiverse analysis is a method to consider all plausible

options in different levels of the study (e.g., data processing or

statistical analysis) to evaluate the robustness of the results.

It is evident that multiverse analysis requires great effort and time to handle a multiverse

of sets. To facilitate this hustle, some R packages have been proposed (e.g. Masur &

Scharkow, 2020; Sarma et al., 2021). However, no matter how we run the multiverse

analysis, we will end up having a lot of results, which need to be managed and depicted.

Steegen et al. (2016) used several histograms and matrixes to show multiple p-values

drawn from multiverse analysis. In another study, Modecki et al. (2020) used panels

of the scatter plots to depict p-values and effect sizes for predictions of parenting by

smartphone usage variables. They also used bar plots to show moderator effects, and

they ran a meta-analytic sensitivity check to realize which model attributed the most

variation in effect size (Modecki et al., 2020). Lately, a programming tool called Boba

(Figure 2.2) has been proposed to facilitate conducting and visualizing the multiverse

to better assess the result of all paths (Liu et al., 2021; Liu, 2022). One can use the

method they consider the best as long as their choice transparently shows all results of
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the analysis.

Figure 2.2: Conducting and visualizing multiverse analysis with Boba by Y. Liu et al., 2021, IEEE
Transactions on Visualization and Computer Graphics, 27(2), P. 1753

Many researchers proposed ideas similar to the multiverse analysis. Young & Holsteen

(2017) by proposing a multi-model approach focused on the role of model assumption

on the results. Researchers must take necessary choices on model assumptions to use

a certain model for concluding the result. However, only under two conditions, one

point estimates would be enough for covering the multiverse of estimates (Young &

Holsteen, 2017). The first condition is that the researcher knows the true model and

overlooks other models because of their inaccuracy and misleading potential. The

second one is when the researcher is confident that all plausible models yield similar

conclusions (Young & Holsteen, 2017). It is evident that none of the assumptions

can be met. Therefore, to understand the robustness of the result, they proposed to

model the distribution of possible estimates across all possible combination of the model

assumption and check how each model component influence the coefficient of interest

(see Young & Holsteen, 2017). An important drawback of this approach is that, unlike

traditional model averaging, this approach does not weigh models differently according

to their fit, and this can result in an overestimation of the uncertainty drawn by model

choice (Slez, 2019).
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As another approach, Simonsohn et al. (2020) emphasized that when one chooses only

one analytic option in the garden of forking paths, the standard error cannot reflect the

error caused by researcher degrees of freedom. Therefore, by proposing the specification

curve analysis, they aimed to minimize the effect of these decisions that are not driven

by theory or prior beliefs (Simonsohn et al., 2020). The idea of specification curve

analysis is quite simple; if there are several reasonable analyses to test the research

question, and all are statistically valid and are not redundant with other analyses, we

should run them all, summarize them in a curve plot (Figure 2.3), and evaluate the

result across all of them (Simonsohn et al., 2020). This approach is the first attempt

to draw inferential conclusions from previously exploratory multiverse results (Girardi

et al., 2022) as it enables researchers to compare the result of the multiverse with a

null distribution made by bootstrapping or permutations (Srivastava, 2018). However,

it is not without limitations. Some analyses in certain cases may be superior to other

theoretically justified and valid options. However, specification curve analysis cannot

weigh them differently (Simonsohn et al., 2020). Additionally, it does not allow testing

all possible specifications (Rauvola & Rudolph, 2023; Simonsohn et al., 2020), as well

as it can only be run on simple cases related to the linear model (Girardi et al., 2022).

The last proposal we cover here is the multi-analyst approach. This approach was pro-

posed more than a century ago, however, its use has not been widespread among many

scientists (Aczel et al., 2021). The idea of this approach is that instead of exhaustively

evaluating all sensible analyses, we can check the robustness of the result by checking

the analyses of several analysts (Aczel et al., 2021). As in the aforementioned example,

independent analysts choose different specifications and analyses, and then, it would

be evident how much the conclusions are dependent on the analytical paths they have

chosen (Aczel et al., 2021; Silberzahn et al., 2018). One limitation of this approach

is that when the research question is not precise enough, which unfortunately is the

case in many social science studies, using this approach leads to an overestimation of
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Figure 2.3: Specification curve plot by N. Ballou and A. Van Rooij, 2021, R. Soc. Open Sci., 8, 12

the variability of the results (Auspurg & Brüderl, 2021). It is also not clear how the

number of analysts should be justified; and how the final report should be written in

case of disagreement among analysts (Auspurg & Brüderl, 2021).

Multiverse analysis has several advantages. This analysis improves transparency to

a considerable extent (Steegen et al., 2016). In the previous chapter, we discussed

the benefits of transparency and its role to improve the credibility crisis. However,

multiverse analysis goes one step further than simple preregistration (Steegen et al.,

2016). Multiverse analysis not only reveals and stops questionable practices but also

shows how the results of a study are changing as a function of decisions (Pipal et al.,

2022). Some might raise the issue that multiverse analysis can itself provide a tool

for those who want to engage in questionable research practices (Akker et al., 2021;

Masur & Scharkow, 2020). Although this is a genuine concern, we should remind that

most innovations have the potential to be used for harmful goals. Additionally, if the

study is preregistered, then one cannot use multiverse analysis as a way for p-hacking
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or cherry-picking. Although preregistering the multiverse is not as straightforward as

a normal analysis, it is not impossible. In this link (https://osf.io/mcs8r), you can

find an example of preregistration done for multiverse analysis (Wessel et al., 2020).

As it is shown, the researcher should include all information about the number of

tests, the number of data sets, how to define the outliers, etc. Another important

benefit of multiverse analysis is that it can be used in several contexts. Multiverse

analysis can be used with both frequentist and Bayesian frameworks (Dragicevic et al.,

2019; Haaf et al., 2020; Liu, 2022). It can also be applied in the context of meta-

analysis (Voracek et al., 2019). The idea of multiverse analysis can also be combined

with explorable explanations which culminate in reporting multiverse in a way that

reader can dynamically move through the alternative analysis options (Dragicevic et

al., 2019). Its characteristics also make multiverse analysis a perfect candidate for

students’ research projects (Heyman & Vanpaemel, 2022). Not only it addresses the

serious problem of lack of evidence for the robustness/fragility of results in the literature,

but it also helps students to practice multiple statistical analyses, and it saves them

time in gathering data (Heyman & Vanpaemel, 2022).

Despite all benefits, we should not forget about the disadvantages of this approach.

Multiverse analysis is highly context-specific (Steegen et al., 2016). Alternative op-

tions vary considerably depending on operationalization (Hanel & Zarzeczna, 2022),

measurement (Harder, 2020), research question (Auspurg & Brüderl, 2021; Steegen et

al., 2016), and researchers who are performing the study (Steegen et al., 2016). This

subjectivity can affect the replicability of multiverse analysis negatively. Moreover, al-

though multiverse analysis has the advantage of considering all plausible ways, it does

not weigh these options differently based on theory. Steegen et al. (2016) response to

this problem was to use the knowledge from theory post-hoc to interpret the results.

This response did not convince me as properly formalized theory is like having a wider

path in the garden of forking paths compared to the narrow alternatives. However,
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it does not apply one should be substituted over the other (Krypotos et al., 2022).

In addition, while in theory, as we mentioned before, the most comprehensive way to

do multiverse analysis is to consider the multiverse of data processing and multiverse

of analytical decisions at the same time, in practice only one is possible (Hoogeveen

et al., 2022). This is because of restrictions in both interpretability and practicality

(Hoogeveen et al., 2022). Furthermore, few available references are guiding how to

perform multiverse analysis (Rijnhart et al., 2021). This can explain why the num-

ber of studies using multiverse analysis is still low (Rijnhart et al., 2021). Adding to

that, those who are using multiverse analysis mostly stuck to descriptive reports rather

than inferential conclusions (Girardi et al., 2022). This may be due to the scarcity of

approaches to make inferential decisions from multiverse analysis. We mentioned spec-

ification curve analysis as the first effort to draw inferential conclusions before, and we

stated its drawbacks. Recently, Girardi et al. (2022) have proposed the Post-selection

Inference approach to Multiverse Analysis (PIMA), which is much more flexible and

can be used for a wide variety of models. This proposal may encourage researchers

to use multiverse analysis more, yet, as it is particularly a new approach, evidence to

explore its practicality should yet be collected.

2.2 Adaptation of the multiverse

The idea of multiverse analysis has become popular among researchers in the past few

years (Hanel & Zarzeczna, 2022). However, some scholars noticed that multiverse anal-

ysis has the potential to get implemented in different contexts. In this section, we will

discuss three of these new proposals: multiverse operationalizations, multiverse

of methods, and multiverse meta-analysis.

Most examples we covered so far focused on different decisions researchers take after

data collection. In other words, multiverse analysis has been mostly done on only
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one set of raw data (Harder, 2020). However, decisions during operationalization and

measurement that happens before data collection can also impact the result of the study

(Hanel & Zarzeczna, 2022; Harder, 2020). Different scales used to operationalize the

variables can affect the criterion validity and the result of the study (Hanel & Zarzeczna,

2022). In one example, the result of the longer scale for the need for cognition (NfC)

was twice as much correlated to reliance on policy information than the shorter version

(B. N. Bakker & Lelkes, 2018). Additionally, the MARP team (2022) showed different

operationalizations can affect the outcome of the study. Although they did not find

the impact as large as the effect of analytical decisions (Hoogeveen et al., 2022), it

is important to notice decisions at the measurement level potentially can change the

outcome of the study. The idea of multiverse operationalizations is to consider every

possible way of operationalizing the construct and compute the results across all of them

(Hanel & Zarzeczna, 2022). In their study, Hanel & Zarzeczna (2022) documented how

using fewer items in defining a construct culminates in a wider spread of findings.

Although these results are enlightening, Hanel and Zarzeczna did not take into account

the effect of using different scales. Although we expect using different measurements

can contribute to the dispersion of results, there is considerable difficulty in studying

this effect. As we mentioned in the previous chapter, psychology is indeed suffering

from the validity crisis, and assessing the impact of equally valid measures on the result

of a study may not yet be achievable.

As another expansion proposal, Harder (2020) tried to direct our attention toward the

impact of using only one raw data set on the multiverse of results. She stated that

the lack of clarity can be expanded to how to implement measurement as well as the

participants of the study, and as a result, considering only one set of raw data will not

give us the whole image of the multiverse. In doing so, she proposed the multiverse of

methods in which she considered the multiverse as all studies on the same phenomenon

that are varying on data-collection methods (Harder, 2020). The shooting bias example
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can perfectly depict the idea of this proposal. In these sets of studies, researchers want

to depict the racial bias in the decisions of police officers on whether to shoot a suspect

(Correll et al., 2014). One task to measure such bias is called the first-person-shooter

task (FPST), which presents several pictures of either dark-skin-tone or light-skin-tone

males carrying a gun or a harmless object, and participants should choose between

pressing a key labeled “shoot” or the other key labeled “don’t shoot” (Correll et al.,

2014). However, different analytical and methodological decisions potentially have an

effect on altering the results drawn from such studies. These studies have two outcome

variables, errors and reaction time, yet, there is no general agreement in choosing which

variable to measure this bias (Harder, 2020). The second variation is how to analyze

the error data, as the number of observations and their reliability can affect the overall

error rate (Harder, 2020). Another variation refers to the pool of stimuli in the study.

White targets may be less muscular or have other traits to be perceived as less threat-

ening, which some studies do not take into account (Harder, 2020). Another source of

difference is that these studies present a different number of targets to participants and

allow participants to have a varied time limit to press the button at each trial (Harder,

2020). Although traditional multiverse analysis only considers analytical decisions in

this example, Harder (2020) showed that methodological decisions play the role of mod-

erators in the study. This idea opens the door for further exploration and adaptation

of the multiverse idea, however, it also faces some limitations. The multiverse of meth-

ods is bounded by published literature (Harder, 2020). This can cause two problems;

first, one does not have a clear image of all possible combinations of methodological

decisions because of the few numbers of studies and/or publication bias (See Section

3.5). Second, in some cases, the results from the at-hand multiverse of studies may be

missing as a result of convergence issues (Harder, 2020). Additionally, the multiverse

of methods is subjected to a hidden variation in data sets that cannot be controlled,

such as the effect of the lab of origin on the data (Harder, 2020). In any case, the idea
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of the multiverse of methods can broaden our perception of how the results are under

the influence of the decisions taken by the researcher.

Another ground to expand the idea of the multiverse is in meta-analysis. Meta-analysis

is a tool to systematically review individual studies while giving weight to each study

based on prespecified mathematical criteria (Borenstein et al., 2009). Despite many

benefits of meta-analysis, it involves several degrees of freedom (Voracek et al., 2019),

such as inclusion criteria for studies, meta-analytic modeling, and imputation of relevant

statistical quantities that may be missing in some of the considered studies. If we do

not take the ambiguity of these necessary decisions into account, the result of the meta-

analysis might mislead us. Therefore it is the perfect ground to plant the multiverse

idea. Voracek et al. (2019) adopt specification curve and multiverse approaches into

meta-analysis and introduced the term multiverse meta-analysis. The role of multiverse

meta-analysis is to contain all theoretically and conceptually justified meta-analyses

that can be conducted on a research question (Plessen et al., 2022; Voracek et al.,

2019). Voracek et al. (2019) then proposed to test the results using the inferential

statistical test from specification curve analysis and display them graphically using a

mixture of proposals from multiverse and specification curve analyses. This proposal

is not the only one for doing the multiverse meta-analysis. As drawing inferences from

the multiverse is still a matter of controversy, one may want to increase transparency

by descriptively checking how much meta-analytic results vary if they choose different

paths (e.g. Donnelly et al., 2019). In the next chapter, we will discuss meta-analysis

in more detail, and explain different compulsory decisions that should be taken while

doing a meta-analysis.
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Meta-Analysis

“. . . [in the meta-analysis context,] a researcher can never be sure what the

true underlying model (fixed-effect or random-effects) is for the sample effect

sizes collected from many studies; as a result, one can never be certain which

(fixed-effect or random-effects) is the model consistent with the nature of the

sample data.”

— Cai & Fan, 2020, p. 13

3.1 Introduction to Meta-Analysis

The number of published studies has increased exponentially in the past decades (Harrer

et al., 2021). Although this trend may be exciting for many, there is a concern about the

stable and perpetuated fallacies that are re-accruing in generations of studies (Harrer

et al., 2021). This problem could not be tackled by narrative reviews which used to

be the only option for summarizing and synthesizing the results of the pile of studies,

as it neither offers any uniform criteria for assessing the studies nor was its results

useful once more evidence was at hand (Borenstein et al., 2009). This need was met

by introducing systematic reviews. This method was developed to not only synthesize

the results of a great number of studies but also to generate robust results that are as

34
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unbiased as possible (Mallett et al., 2012). Systematic reviews can be performed on both

quantitative and qualitative studies, as long as the reviewer follows the predetermined

and transparent rules of the systematic reviews (Harrer et al., 2021). However, when

the aim of the systematic review is to integrate the quantitative outcomes of studies

into one numerical estimate, it is called meta-analysis (Harrer et al., 2021).

Meta-analysis has gained more popularity over the past few years in social, behavioral,

and health sciences (Cai & Fan, 2020). Scientific journals are often more prone to pub-

lish meta-analyses and these studies are often more cited (Harrer et al., 2021; Polanin et

al., 2020). Therefore, it is essential for meta-analyses to be as high-quality as possible.

Before performing any meta-analysis, it is important to ask when is it logical to perform

a meta-analysis and what studies should be included in the analysis (Borenstein et al.,

2009). These are valid questions as many single studies on similar research question

are different from one another in various ways. As we highlighted before, single studies

barely have sufficient power to estimate the statistical parameters of the population

(Maxwell et al., 2008); However, combining studies without justification would proba-

bly culminate in meaningless results (Borenstein et al., 2009). To understand whether

studies are similar enough to be compared quantitatively, we should consider the ques-

tion we want to answer (Borenstein et al., 2009). If our question is to check the efficacy

of a certain drug to reduce symptoms of ADHD in children aged 8-15 years old, we

cannot add studies performed on other age groups. In addition, we need to choose

studies that have designs to assess this efficacy more precisely. Sometimes theoretically

we need to use experimental studies, but those at hand are poorly done, and as a result,

they will not be the best candidates to run a meta-analysis on.

Meta-analysis has faced considerable criticism over the years, and some are still difficult

to deal with. Many meta-analyses, especially in the field of psychology, cannot be repro-

duced (Lakens et al., 2017). Although reviewers are improving in reporting transpar-

ently, many have neglected to report some methodological elements, such as necessary
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information on estimating the effect size and enough information about studies involved

in the meta-analysis (Polanin et al., 2020). In order to improve the reproducibility of

the meta-analysis, one can take several practical steps, like pre-registering the meta-

analysis, disclosing all meta-analytic data, and adhering to reporting results according

to standards such as PRISMA (see Lakens et al., 2016). Another criticism is referred

to as garbage in, garbage out. Based on this criticism, when we include studies that

are biased or low-quality, the resulting meta-analysis is equally flawed (Harrer et al.,

2021). As meta-analytic studies have more impact on the literature, doing such biased

meta-analyses would do more harm. Another common criticism is that meta-analysts

combine different kinds of studies in a single analysis, which is referred to as the mix-

ing apples and oranges (Borenstein et al., 2009). Although meta-analysis can calculate

numerical estimates regardless of the studies involved in the review, the estimate will

be meaningless if studies do not share the necessary characteristics to answer a certain

research question (Harrer et al., 2021). It is important to note that when meta-analysis

is to be performed on literature, studies are inevitably different from one another, and

it is the reviewer’s task to decide how similar they should be (Borenstein et al., 2009).

Therefore, this problem highly depends on the question the researcher tries to answer

(Harrer et al., 2021). In any case, meta-analysis can investigate the impact of these

differences on the outcome if it is required (Borenstein et al., 2009). Lastly, performing

a meta-analysis of the literature is inevitably biased. We discussed the intolerance of

journals against null results (more generally, unsatisfactory results) in chapter 1, and

we will look at this phenomenon in more detail in the subsequent section on publica-

tion bias (see section 3.5). This selective bias results in what is called the file-drawer

problem, where researchers would not/could not publish their “disappointing” results.

As published results always have more chance to be involved in the review (Borenstein

et al., 2009), meta-analysis reflects this biased view of the literature and misestimates

the effect size in the end (Borenstein et al., 2009; Ter Schure & Grünwald, 2019).
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On the other hand, the advantages of a well-performed meta-analysis will surpass its

disadvantages. As meta-analysis combines several studies, hence a greater sample size,

it has more power and accuracy to study an effect (Crocetti, 2016; Maxwell et al.,

2008). Additionally, not only it can address theoretical research questions but also

can investigate methodological issues such as the reliability of an instrument (Crocetti,

2016). Meta-analysis also differentiates the studies in the pool by giving weight to

them (Borenstein et al., 2009). These weights can represent specific goals, such as

minimizing the variance or reflecting the range of effect sizes (Borenstein et al., 2009).

Another advantage of this method over other reviews is that it takes into account the

dispersion in the results and explains the emerged patterns between studies (Borenstein

et al., 2009). Moreover, some questionable research practices (e.g., p-hacking) are less

prevalent in the meta-analysis (Voracek et al., 2019). Lastly, meta-analysis can adopt

the Bayesian approach (Sutton & Abrams, 2001). Using a Bayesian framework in

meta-analysis allows accounting for all parameter uncertainty and extension of models

to adjust more complex scenarios (Sutton & Abrams, 2001).

Before moving further in this chapter, it is necessary to also have an overview of how

to visualize the result of a meta-analysis. The forest plot is a common and quick way

to understand the result of a meta-analysis and learn which studies are included in it.

As you can see in figure 3.1, a forest plot consists of three main parts. On the left,

all studies included in the meta-analysis are specified. The summary of their results is

depicted by a square in the central section within its bounds of confidence. The size

of the square is an indicator of how much weight has been given to that study in the

meta-analysis. On the right side of the figure, the numerical values of the results are

presented in their specified column. The last row, which usually is divided by a line

from the rest of the rows, dedicates to the synthesized result of the meta-analysis. It is

presented graphically in form of a diamond. The center of the diamond represents the

pooled effect size, and the two tails represent the confidence interval around that effect
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size.

Figure 3.1: Forest plot by S. Benavides-Varela et al., 2020, Computers and Education, 157, p.8.

In the rest of this chapter, we will discuss some of the most important aspects of the

meta-analysis, as the reviewer’s decision on each of them can serve as a researcher

degree of freedom and make a turn in the garden of forking paths.

3.2 Effect Size

Effect size is exactly the information the researchers want to reflect in their study

(Lakens, 2014). In the context of meta-analysis, effect size plays a crucial role to the

extent to be considered “the unit of currency” (Borenstein et al., 2009). Regardless

of its importance, many scholars have controversy in how to define this statistic (see

Kelley & Preacher, 2012). The definition we use here is “a quantitative reflection of the

magnitude of some phenomenon that is used for the purpose of addressing a question

of interest” (Kelley & Preacher, 2012, p. 140). This definition is useful as it covers
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both frequentist and Bayesian frameworks as well as different kinds of studies, be they

experimental, correlational, or epidemiological. Effect sizes can be generally categorized

into two groups, standardized and unstandardized. Standardized effect size is a scaled

measure that has taken into account the variability of the sample or population of

interest (Baguley, 2009). On the other hand, the unstandardized effect has the same

unit as the measurement and is affected by the variability of the sample (Baguley, 2009).

In some fields, such as psychology, it is more common to use standardized measures

for effect size, especially for meta-analysis. The reason is that usually studies use

different instruments to measure the same phenomenon (such as different psychological

tests), therefore, the comparison of these scales would not be meaningful when we use

unstandardized effects (Borenstein et al., 2009). In any case, regardless of the type,

effect size usually comes within the bounds of the confidence interval, representing the

precision of each study in estimating this value (Borenstein et al., 2009).

To summarize the effect sizes of several studies in a meta-analysis, one should consider

several criteria. Firstly, the effect sizes of different studies should comparably measure

the same thing and has the same meaning across all studies; Secondly, one should be

able to estimate the effect size based on the reported information to have a similar

metric of effect size for all of them; In addition, effect sizes should be reliable in terms

of having a known distribution so one can compute variance and confidence interval

of them, and not leading to error or bias. Lastly, the chosen effect size should be

interpretable for our specific research question (Borenstein et al., 2009; Harrer et al.,

2021).

One of the most commonly used forms of effect size is based on means. Among those

Cohen’s d is of great importance as it is one of the most popular effect sizes in meta-

analytic investigations (McGrath & Meyer, 2006). Under the assumptions of normality

and homogeneity of variance, it captures the mean difference between two groups,

which is standardized by within-group pooled standard deviation (Cohen, 1988). The
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standardized mean difference for a sample is computed as follows:

d = m̄1 − m̄2

SDpooled

(3.1)

where m̄1 and m̄2 represent the mean of two groups, and SDpooled represents pooled

standard deviation which equals to:

SDpooled =
√

(n1 − 1)SD1 − (n2 − 1)SD2

n1 + n2 − 2 (3.2)

where n1 and n2 indicate sample sizes for each group, and SD1 and SD2 refer to

standard deviation of respected groups.

One reason that might contribute to the popularity of Cohen’s d is that benchmarks for

interpretation of this effect size are widely accepted (McGrath & Meyer, 2006). Cohen

(1988) proposed d = .2, d = .5, and d = .8 as small, medium, and large effect sizes

respectively in the field of social sciences. Based on his proposal, the effect size of d = .3

shows differences that are difficult to detect (e.g., height difference of 15- and 16-year-

old girls). Expectedly, the effect size of d = .8 refers to completely obvious differences,

such as height difference between 13- and 18- year-old girls. The medium effect of d = .5

though was defined as “large enough to be visible to the naked eye” (p.26). Although

he emphasized ‘the terms “small,” “medium,” and “large” are relative, not only to each

other, but to the area of behavioral science or even more particularly to the specific

content and research method being employed in any given investigation’ (Cohen, 1988,

p. 25), these benchmarks were adopted as heuristics in different fields. It also seems to

encourage the heuristic of dismissing “small” effects as unimportant although they can

matter under some conditions in fields like psychology (Anvari et al., 2022). Therefore,

it is important to consider these heuristics before using the benchmarks to interpret

this effect size.

However, Cohen’s d does not seem to be the best choice when we are faced with more
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complex designs such as pretest-posttest-control (PPC) design. PPC is among the most

common designs to evaluate the efficacy of programs, such as evaluating an intervention

(Morris, 2008). This design is beneficial as it can control for pre-existing differences

between treatment and control groups (Morris, 2008). Without a specific method to

compute the effect size for this design, one should either use several t-tests, mixed

effect analysis, or analysis of covariance (Morris, 2008). However, the question of the

precision of these methods was a matter of controversy among scholars. As a result,

Morris (2008) suggested dppc2 among other effect size indexes as it comparatively is

more favourable in terms of precision, robustness to the heterogeneity of variance, and

control for bias. We also use this effect size for the real study application of this study

(see chapter 5). Assuming the population variances are homogeneous, dppc2 is computed

as follows:

dppc2 = Cp[ (Mpost,T − Mpre,C) − (Mpost,C − Mpre,T )
SDpooled,pre

] (3.3)

where Mpre,T and Mpost,T are pre and post mean scores for the treatment group and

Mpre,T and Mpost,T represent pre and post mean scores for the control group. SDpooled,pre

is the pooled standard deviation of the pretest, which only considers pretest standard

deviations and sample sizes (nT and nC) of both the experimental and control groups,

SDpooled,pre =

√√√√(nT − 1)SD2
pre,T + (nC − 1)SD2

pre,C

nT + nC − 2 (3.4)

and Cp is bias adjustment which is computed as

Cp = 1 − 3
4(nT + nC − 2) − 1 (3.5)

In PPC design, considering the correlation between pre- and post-test scores is of great

importance as it affects the precision of the estimate (Morris, 2008). Equation (3.6)

represent the role of this correlation in computing the variance of the dppc2:
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σ2(dppc2) = 2(c2
p)(1 − ρ)(nT + nC

nT nC

)(nT + nC − 2
nT + nC − 4)(1 + ∆2

2(1 − ρ)(nT +nC

nT nC
)) − ∆2 (3.6)

where ∆ is the population effect size, and ρ indicates pre-post test correlation. As it is

evident, a lower correlation allows greater variance in the distribution which results in

lower assigned weight to the study and more conservative results (Benavides-Varela et

al., 2020).

Unfortunately, many researchers do not report ρ in their papers, and the meta-reviewer

would be left to guess the pre-post test correlation. This would open multiple paths in

the garden of forking paths, as there might be several plausible values for the correlation.

Of course, if the data for each study is publicly available, the meta-analyst can compute

the correlation. However, it is barely the case. As an example, in a recent meta-

analysis performed by Benavides-Varela et al. (2020), non of the included studies made

their data available, and only one them reported the correlation, which left the meta-

reviewers to explore different plausible values for the correlation.

Choosing the proper effect size is one of the most crucial steps in performing a meta-

analysis, and it is important to choose the most precise and the most informative one for

the study. As effect size estimates based on binary data and correlations were beyond

the scope of the present study, we did not cover them in this section. More information

can be found in Borenstein et al. (2009).

3.3 Fixed-Effect vs. Random-Effects Models

Another important decision in performing meta-analysis is choosing a suitable meta-

analytical statistical model for the review. Among these models, the fixed-effect model

and random-effects model are used more frequently (Borenstein et al., 2009). In this

section, we will discuss each model and compare their effects on the result of the meta-
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analysis.

Fixed-effect model (FE) is based on the assumption that there is one true effect size

estimate for the population (Borenstein et al., 2009). This means the observed effect of

a single study is part of a distribution with a mean θ representing the true effect. The

higher the sampling error, the further the observed effect size (Tn) is from the true value

(Figure 3.2). Based on this model, if each study had an infinite number of participants,

all presented the same effect size estimates (θ).

Figure 3.2: The distribution of sampling error in fixed-effect model. Reprinted from Meta-Research:
Methods and Protocols (p.45), by S. Kanters, 2022, Humana, New York.

On the contrary, the random-effects model (RE) assumes that the true effects can vary

from one study to the other as there is heterogeneity among studies (Borenstein et al.,

2009). For example, the efficacy of a treatment may change based on participants’ age

or gender, or there may be covariates in each study that we did not control for, but they

are contributing to the variance. According to this model, if all single studies have an

infinite sample size, the effect estimates for all studies would form a normal distribution

(Figure 3.3), with the mean of µ representing the average effect (the black triangular)

among all possible effect sizes.

As these models have different assumptions, choosing between them can potentially

affect the results of the meta-analysis (Dettori et al., 2022), so how we should decide
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Figure 3.3: Within- and between-study variance in random-effects model. Reprinted from Introduction
to Meta-Analysis (p.72), by M. Borenstein et al., 2009, John Wiley and Sons.

which model to use? Many believe the random-effects model is a more appropriate

choice (Cai & Fan, 2020; Spineli & Pandis, 2020). This is because the results when

using such a model can potentially be generalized to a wider population as this model

accounts for between studies diversity as well (Spineli & Pandis, 2020). Moreover, it

presents similar results to the FE model in the case of homogeneity among studies

(Spineli & Pandis, 2020). However, this viewpoint may lead to overlooking the benefits

of FE when it can be used. As we mentioned earlier, meta-analysis can weight single

studies according to their precision. This weight is assigned based on the inverse overall

variance of each study (i.e., 1/VYi
). Because of the basic assumption in the FE model,

all variances come from within each study, whereas variance in the RE model, has two

contributors (Dettori et al., 2022). As a result, less precise studies get more weight

when one uses the random-effects model. Furthermore, if the population effect size is

a single value rather than a variety, the FE model can control the Type 1 error rate

better (Cai & Fan, 2020). Additionally, when there are few studies involved in the

meta-analysis, the effect size estimate of RE can be misleading. As we do not have an
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accurate estimate of between-studies variance, the summary effect presented by RE can

be far off, however, FE can summarize the effects without making inferences about the

wider population (Borenstein et al., 2009).

Referring again to the quote at the beginning of this chapter, there is no way to make

a certain decision on the underlying model. This choice can always bring some levels

of degree of freedom, and it is best to be transparent about the reason behind choosing

one analytical model over the others.

3.4 Heterogeniety

As we mentioned at the beginning of this chapter, meta-analysis is not only a tool to

summarize the result but also to investigate the patterns among effects. We also saw

how this heterogeneity among studies plays a key role in choosing the meta-analytical

model. In this section, we will explain this phenomenon in more detail and discuss how

to measure it.

By definition, heterogeneity is variation in the true effect sizes (Borenstein et al., 2009;

Higgins, 2008). It can be depicted graphically or can be calculated statistically. Sub-

jectively, one can estimate whether there is variation in true effect size just by looking

at the forest plot. As You can see in figure 3.4, B shows narrower confidence intervals

for each study than A, indicating they are more accurate. As these accurate studies

do not overlap much, there is a higher chance that studies involved in B are truly

heterogeneous and do not share a common effect.

However, to objectively assess heterogeneity in meta-analysis, we need to use statistics

that are sensitive to heterogeneity and not to the overall variability (Borenstein et

al., 2009). Several significance tests have been proposed in the literature to test the

presence of heterogeneity (Viechtbauer, 2007). Among them, the Q test is one of the

most commonly used ones. Q statistic is a standardized measure computed by summing



Chapter 3 - Meta-Analysis 46

Figure 3.4: Visual representation of heterogeneity. Reprinted from Introduction to Meta-Analysis
(p.108), by M. Borenstein et al., 2009, John Wiley and Sons.

the squared deviation of each study’s estimate of effect size (Yi) from the summary effect

size (M) while weighting the contribution of each study (Equation (3.7)). Then, by

comparing it to the expected value of dispersion when all variability is due to sampling

error (degrees of freedom (df )), one can test whether the presence of homogeneity can be

statistically rejected (see Borenstein et al., 2009). Reporting it in a confidence interval

is also beneficial as it not only shows the precision of the estimate but also gives all

information about the significance test (Viechtbauer, 2007).

Q =
k∑

i=1
Wi(Yi − M)2 (3.7)

Although reporting Q is common in many meta-analyses, we should note that like

other significance tests, we should consider some facts about it. Firstly, this test can

reject the presence of homogeneity, but it can never be evidence to accept it (Baker

et al., 2009; Borenstein et al., 2009). It can also be subjected to Type 1 and Type

2 error rates, especially, in case few studies are involved in the meta-analysis and/or

high within-study variation (Baker et al., 2009; Borenstein et al., 2009). Moreover, this

test can never give information on the magnitude of the heterogeneity and only gives

information on its presence (Borenstein et al., 2009).

Another way to quantify heterogeneity in meta-analysis is to estimate τ 2. τ 2 refers to

the variance of true effect size, and ideally, it is the value that one adds to within-study
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variability to compute total variance under the assumption of random-effects model

(Borenstein et al., 2009). However, as we never know the exact value of τ 2, we can only

estimate it from the observed variability (Borenstein et al., 2009). This parameter and

its standard deviation (τ) are in the same metric (one in squared) as effect size. This

indicates that one cannot compare these values from different meta-analyses that use

different effect size indexes (Borenstein et al., 2009; Huedo-Medina et al., 2006). In

addition, we have to take into account that any decision based on τ 2 is subjected to the

amount of error we committed in estimating the effect size and the true heterogeneity

(Borenstein et al., 2009). Therefore, it is also helpful to report these parameters in a

confidence interval to show our precision.

To overcome the shortcomings of previous methods, another statistic was introduced.

I2 aims to measure the true extent of heterogeneity by reflecting the proportion of

true difference from the observed variation (Borenstein et al., 2009; Huedo-Medina et

al., 2006). In other words, it reflects how much the confidence intervals of the effect

size estimates from different studies overlap one another. Therefore, it is free from

the estimation and distribution of the true effect size (Borenstein et al., 2009). This

statistic can range from 0% representing all variation is caused by sampling error to

100% representing all variation can be explained by true heterogeneity (Huedo-Medina

et al., 2006). To facilitate the interpretation of I2, three benchmarks were proposed,

I2 = 20, I2 = 50, and I2 = 75 representing low, medium, and high heterogeneity,

respectively (Huedo-Medina et al., 2006). Although τ 2 and I2 are closely related, τ 2

has the advantage of not being dependent on the number of studies and their precision,

while I2 tends to 100% solely because studies have larger sample sizes (Rücker et al.,

2008). On the other hand, I2 has the advantage of being comparable between different

meta-analyses as well as being easier to interpret than τ 2 (Harrer et al., 2021; Huedo-

Medina et al., 2006).

As we mentioned, each of these methods to detect and measure the magnitude of
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heterogeneity has advantages and disadvantages, and using one over the other may

result in losing information and misinterpretation of heterogeneity. Although some

believe that very high heterogeneity can mean that the studies has nothing in common,

therefore, the meta-analysis result would be meaningless (Harrer et al., 2021), others

believe that there is no “acceptable” degree of heterogeneity to perform a meta-analysis,

and one can accept any degree as long as the eligibility criteria are reasonable and the

data would be correct (Higgins, 2008). Certainly, a strong theory can explain the high

heterogeneity among studies, however, in absence of a comprehensive theory, we should

make sure high heterogeneity is not a case of the apples and oranges.

3.5 Publication Bias

In previous chapters, we discussed a phenomenon that the probability of getting pub-

lished is affected by the results of the study. It is evident that it will culminate in

omitting some evidence from the future meta-analysis selectively (Harrer et al., 2021).

Earlier in this chapter, we briefly discussed the file-drawer problem, which is usually

used synonymously with publication bias, and explained how meta-analytical results

will be distorted by the input. This section will be dedicated to detecting, assessing, and

correcting this phenomenon as it has a huge impact on the validity of the meta-analysis.

Publication bias theoretically refers to “a tendency toward preparation, submission, and

publication of research findings based on the nature and direction of the research results”

(Dickersin, 2005, p. 13). The concerns about this issue are raised as meta-analyses gain

popularity in policy settings (Dickersin, 2005). To depict the severity of the impact of

publication bias, imagine implying a certain intervention based on positive outcomes of

a meta-analysis of published studies while more unpublished studies present a neutral or

negative impact of the same intervention. Not only this would put the lives of patients

in danger, but it could also redirect funds from other interventions that may potentially
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improve the condition of those in need.

However, we should note that it is not the only bias a meta-reviewer faces. Even when

negative or non-significant results do get published, they are less likely to be cited and,

therefore, harder to be detected, which is referred to as citation bias (Harrer et al., 2021).

In another case, called time-lag bias, studies with faviourable results get published faster

(Harrer et al., 2021). Many faviourable studies are also published in more than one

journal to expand the impact of the findings, which is called duplicate publication bias

(Fairfield et al., 2017). There is also language bias which refers to overlooking studies

that are not in English, the dominant language of publication. This bias can have a

more severe impact when the results of studies with two different languages present a

contradiction (Harrer et al., 2021). Another source of bias is questionable practices that

we covered in Chapter 1 which may hide or alter the results of the study and create

distortion in the results of the meta-analysis.

One way to detect publication bias in meta-analysis is by funnel plot. The funnel plot

is a simple scatter plot that compares the estimated effect size and the precision of

each study (Sterne et al., 2005). As we expect, effect size estimates from studies with

higher sample sizes are closer to the population effect size. As a result, when we plot all

studies on a certain subject based on their precision and effect size estimates we would

get a symmetrical funnel-shaped plot (Sterne et al., 2005). Unfortunately, it is not the

case in most fields’ literature. In figure 3.5, we can see how publication bias removes

part of the funnel and creates an asymmetric plot.

Just by looking at the funnel plot, one can have a subjective understanding of the

presence of publication bias. There are also quantitative ways (e.g., Egger’s test) to

measure how much asymmetry is statistically significant (Borenstein et al., 2009), how-

ever, they are beyond the scope of the current study. It is also worth mentioning that

publication bias is not the only contributor to asymmetry in the funnel plot. All four

aforementioned biases can also make the funnel plot asymmetrical. True heterogeneity
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Figure 3.5: Hypothetical example of funnel plot: (a) symmetrical plot in absence of bias (open circles
represent not significant findings); (b) asymmetrical plot in presence of publication bias. Reprinted
from Publication Bias in Meta-Analysis (p.76), by J. A. C. Sterne et al., 2005, in In Publication Bias
in Meta-Analysis (eds H.R. Rothstein et al.), John Wiley and Sons.

(section 3.4) can also change the symmetrical funnel shape of the plot. Moreover, fraud,

inadequate analysis, and poor methodological design of the studies can also contribute

to asymmetry in the funnel plot (Sterne et al., 2005). Therefore, it is important to

consider all contributing factors before using the subsequent methods.

The impact of publication bias on the result of the meta-analysis can be addressed to

some extent by some approaches. One common way to correct the bias in meta-analysis

is a method called trim and fill. The trim and fill method involves a funnel plot to

detect publication bias, and then it removes some studies from the asymmetric plot

(trimming) until the plot would not be statistically asymmetric. Then, it fills the deleted

observations on the opposite side they were initially (Carter et al., 2019). Although

this method can correct bias in some cases, there is multiple evidence suggesting that

it does not completely correct misestimation of the effect (Carter et al., 2019; Haaf,

2020).

Another approach is to use a group of meta-regression methods. The precision-effect

test (PET) is a method that assumes a linear relationship between the effect size and

standard error and tries to fit them into a linear regression model (Haaf, 2020). How-

ever, when the true effect size is not zero, or there would be a non-linear relationship
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between effect size and standard error this test does not perform as accurately (Carter

et al., 2019; Haaf, 2020). As an alternative, one can use the precision-effect estimate

with standard error (PEESE) method. This approach which is closely related to the

previous one assumes a quadratic relationship between effect size and standard error

(Haaf, 2020). The logic behind this method is that when there is a true effect, low-

powered studies only get published when they overestimate the effect; thus, publication

bias is stronger when the standard error is larger (Carter et al., 2019). Simulations

also depicted that this method outperforms the other one when there is a true effect

(Carter et al., 2019; Haaf, 2020). As a result, it is recommended to use a mixture of

these methods called PET-PEESE (Figure 3.6). If the PET estimate is statistically

significant, it is recommended to use PEESE and reverse (Carter et al., 2019; Haaf,

2020). Although many simulations showed that the performance of PET-PEESE was

promising, it seemed to have a poor performance when there is high heterogeneity and

when there are only a few low-sample-sized studies available for meta-analysis (Carter

et al., 2019).

There are other approaches to address publication bias, which we did not cover in this

section. However, it is important to note each method has different advantages and

disadvantages, and ways to compare these methods also have certain drawbacks (Haaf,

2020). One way to immune the estimate of the meta-analysis from publication bias

is to perform many-labs studies (Haaf, 2020). Based on this approach, an identical

procedure is followed by several research teams, and a meta-analysis is performed to

summarize the results of all of them (Ebersole et al., 2016). This method can also work

as a reference point to compare the results of bias-corrected meta-analyses on a similar

topic to check which method performs better than the others (Haaf, 2020). In the end,

we should accept that no matter which correction approach we choose, we can never

free the result of a meta-analysis of the literature from bias.

From choosing which studies to include in the meta-analysis to choosing the effect size



Chapter 3 - Meta-Analysis 52

Figure 3.6: PET-PEESE anlysis. As the PET analysis is significant, PEESE should be used. You can
see both are underestimating the true effect (red line) but PEESE has more accurate estimate than
PET in this case. By J. Haaf, 2020, PsyArXiv [Preprint], p.9.

index, managing the correlations, handling the heterogeneity, choosing meta-analytical

models, and the method to correct the publication bias, a researcher faces options that

can affect the result of the meta-analysis. Although they are necessary decisions to take,

one should be aware of their impact. As we discussed in the previous chapter, multiverse

meta-analysis can present a solution. However, even considering few researcher degrees

of freedom will culminate in an explosion of results for the multiverse. Therefore,

a framework to have an informed interpretation of the overwhelmingly large results

of multiverse meta-analysis is necessary. In subsequent chapter, we will discuss our

proposed framework and implement it on a real case study in chapter 5.



Chapter 4

Proposed Framework

In this chapter, we will discuss different aspects of our proposal on how to summarize

the result of a multiverse meta-analysis through tabular and graphical representations

alongside assessing the impact of different choices on the final results. Our proposed

framework consists of three main facets, summary tables, graphical representations,

and analysis of variance, which will be discussed in more detail in this chapter.

4.1 Summary Tables

The first step in all meta-analyses, including multiverse meta-analyses, should be to

present some essential information about the included studies. This step not only

serves the purpose of transparency but also helps the audience to better understand the

multiversal approach that will be implemented. This table should involve information

such as the number of outcomes and measurements used in each study, the number

of participants in control and experimental groups, and effect sizes and standard error

reported by each study.

Moreover, we need to present a table to numerically show the meta-analytical results for

each combination in the multiverse of choices. This information can easily be extracted

from the multiverse matrix. In the multiverse matrix, each row represents a combination
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of choices and the result of the meta-analysis performed using those combinations. This

table involves information on the estimated effect within its confidence bounds for each

meta-analysis, along with the estimated error and τ 2 estimation for those meta-analyses

that used the random-effects model.

Finally, we propose to present a table with relevant descriptive statistical indices (i.e.,

minimum, maximum, quartiles, median, mean, and standard deviation) to summarize

the distribution of all estimated effects sizes calculated in the multiverse meta-analysis.

4.2 Graphical representations

Visualization is a key way to interpret and communicate the result of analysis (Allen

et al., 2021). Therefore, it is crucial to use plots that are informative and yet not too

complex to understand.

We propose to use the raincloud plot to show the overall distribution of effect sizes

according to the plausible choices used in the multiverse (e.g., the distribution of effect

sizes according to the meta-analytic model, the distribution of effect sizes according to

the meta-analytic model and the imputed pre-post test correlation, . . . ).

Raincloud plot is a form of visual representation that in many ways exceeds its prede-

cessors like barplot, dot plot, or even the most recent violin plot (Allen et al., 2021). A

raincloud plot consists of a split-half of a violin (as the original violin plot duplicates

information by mirroring the other half), raw data points, and a boxplot to visualize

the quartiles of the distribution (Allen et al., 2021). In Figure 4.1, you can see an

example of a raincloud plot.

Raincloud plots will also be applied to show the overall distribution of the standard

errors of the estimated effect sizes conditional on the plausible choices. In case of

random-effects models, a scaterplot of τ 2 estimates will be presented as well.

Finally, a bar graph will be used to highlight the contribution of each plausible choice
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Figure 4.1: An example of a raincloud plot. Reprinted from Raincloud plots: a multi-platform tool
for robust data visualization [version 2; peer review: 2 approved], by M. Allen et al., 2021, Wellcome
Open Research, 4(61), p.5.

in explaining the variability of the effect sizes obtained in the multiverse analysis (see

also next section).

4.3 Analysis of Variance

When factors with two or more levels are involved in the study, a researcher usually

is interested to check whether membership in each level of the variable explains the

variation in the outcome of the study. The analysis of variance (ANOVA) is a common

and popular way to check for such contributions. The idea of multiverse analysis is

to consider several levels for each variable; Therefore, using ANOVA is justified and

informative.

To run the analysis of variance, we propose to simulate data based on the estimated

effect and standard error of each meta-analysis to reproduce the sampling distribution

of each combination. In this way, we simulate true population-level estimates for each

combination, and thus, we make a more robust conclusion from ANOVA. Moreover,
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we propose to use contrast coding instead of dummy coding for levels of each factor to

have subtle and independent comparisons between multiple levels of factors.

Specifically, we propose to report eta-squared, η2, (a measure of effect size) for each

variable involved in the analysis of variance (see Richardson, 2011). η2 measures the

proportion of variation in the outcome variable (in this case, the simulation based

on estimated effects) that is associated with being assigned to different levels of a

categorical variable (Richardson, 2011). Using this statistic, we can realize how much

each variable explains the overall variance in the outcome.

In the next chapter, we will run a multiverse meta-analysis on a real dataset and

implement this framework on the results.



Chapter 5

Case Study

In this chapter, we first discuss the data frame we used and later discuss the result of

implementing our framework on this dataset.

5.1 Dataset

For our study, we used data from a meta-analysis performed by Daros et al. (2021),

which was accessible from the OSF repository for the study (https://osf.io/56fvu). This

meta-analysis aims to investigate whether improvements in emotion regulation (ER)

skills and emotion dysregulation are associated with improvements in anxiety and de-

pression symptoms in psychological treatment targeting the latter two for patients aged

14-24. They included 88 peer-reviewed studies that were written in English, reporting

90 randomized control trials (RCT) that measured depression and/or anxiety and emo-

tion regulation as an outcome for meta-analysis. They also separately analyzed 55

non-RCT studies that met the inclusion criteria and used them for comparative anal-

ysis with the primary findings of the meta-analysis. The results of the multivariate

random-effects meta-analysis showed that psychological treatment alleviated anxiety,

depression, disengagement ER skills and emotion dysregulation and elevated engage-

ment ER skills.
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Although they did not explicitly mention the effect size measure they used for their

analysis, trying the Morris formula drew close results to the reported effect sizes, sug-

gesting they probably calculated dppc2 with Hedges’ correction for each study. However,

the magnitude of the pre-post test correlation they used was not clear. It was also

not clear what correlation they used to aggregate the different measurements of the

same construct. The only correlation they reported was ρ = 0.70 for correlation among

variables.

Although nearly all studies included in this meta-analysis were randomized control

trials, not all of them had similar designs. Some of the studies had two experimental

groups and one control group or two control groups and one experimental group, and

in one case, there was no control group. For the current study, we excluded the study

without a control group and another study whose sample size was not reported in

the dataset. Additionally, we almost randomly chose one treatment/control group in

cases with more than one as using one group for two comparisons adds another level of

dependency to the design. Of course, it is necessary to have a justification rather than a

random choice for excluding information from the dataset; however, our study aims to

illustrate a methodological approach and not to investigate a psychological construct;

thus, we decided on random selection.

Moreover, the original meta-analysis was a multivariate meta-analysis studying 5 con-

structs. In our study, we only focused on depression (one of the main constructs in

the original study). The reason for this choice was to decrease complexity by removing

one source of dependency between statistical units and remaining committed to the

educational purpose of this project.

In the current study, we consider plausible options for three arbitrary choices. First

one is pre-post test correlation. This correlation is needed to compute variance which

is needed for weighting the included studies. The second one is the correlation between

multiple measurements of the same construct. This correlation is needed to aggregate
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results from several measurement methods into one and having one outcome for each

study (see below). The last arbitrary choice is related to the meta-analytical model.

As mentioned in Chapter 3, meta-analytical models are frameworks to combine and

analyze the results of multiple studies.

5.2 Implementing the Framework

All statistical analyses and data manipulation on this section were performed using

the R programming language (version 4.2.2), with the following packages: metafor

(Viechtbauer, 2010) was used to conduct meta-analyses, and ggplot2 (Wickham, 2016)

and ggrain (Judd, 2023) were used for visualization.

As we mentioned in the previous chapter, the first step in our framework is to present

an overview of essential information about the dataset we are working with.

Table 5.1: Summary of studies included in the multiverse meta-

analysis

study comparisonN1.N2 measure N1 N2 yi std_err vi

Ahmad 2020 FullMBCT-Control PHQ-9 39 38 0.479 0.229 0.052

Araya 2013 CBT-Control BDI-II 1219 1289 0.039 0.040 0.002

Auslander 2017 CBT-Control CDI 17 10 0.103 0.387 0.150

Baert 2010-Study1 ABM-control BDI-II 25 23 -0.494 0.289 0.083

Bentley 2018 Workshop-AO DASS-D 68 70 0.338 0.171 0.029

Biggam 2002 PST-control HADS-D 23 23 0.711 0.299 0.089

Bluth 2016 MCBT-control SMFQ-dep 16 18 0.515 0.341 0.116

Burckhardt 2018 DBT-control CES-D 50 46 0.234 0.203 0.041

Chambers 2015 MBCT+TAU-TAU CES-D 20 21 0.313 0.308 0.095

Chambers 2015 MBCT+TAU-TAU HAMD 20 21 0.430 0.310 0.096

Clore 2006 FluencyT-TRec BDI-II 15 15 0.324 0.358 0.128
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Table 5.1: Summary of studies included in the multiverse meta-

analysis (continued)

study comparisonN1.N2 measure N1 N2 yi std_err vi

DamaioNeto 2020 M-psyched DASS-D 70 71 0.213 0.168 0.028

Delgado-Pastor 2015 MInteroG-Control BDI 15 14 0.992 0.384 0.147

Delgado 2010 MSBR-Relax BDI 15 17 0.169 0.346 0.120

Dereix-Calonge 2019 ACT-WL DASS-D 43 42 0.823 0.224 0.050

DeVoogd 2016a DPT-DPplacebo CDI 128 48 0.003 0.169 0.028

DeVoogd 2016b EWM-placebo CDI 129 39 0.189 0.182 0.033

DeVoogd 2017 Pic-control CDI 44 39 0.248 0.219 0.048

DeVoogd 2018 CBMi-placebo CDI 134 39 0.039 0.181 0.033

Diaz-Gonzalez 2018 MSBR+TAU-TAU SCL-anx 41 39 0.257 0.222 0.049

Donaldson 2005 CBTER-support CES-D 15 16 0.255 0.352 0.124

Dowling 2019 CBTER-control DASS-d 245 250 0.010 0.090 0.008

Dvorakova 2017 MSBR-WL phq9 55 54 0.445 0.193 0.037

El Morr 2020 Mindful-WL PHQ9 79 80 0.439 0.160 0.026

Eskin 2008 PST-WL BDI 27 19 1.125 0.317 0.100

Falsafi 2016 MindSC-Control BDI 21 23 0.851 0.310 0.096

Gouda 2016 MSBR-WL HADS-dep 15 14 -0.287 0.363 0.132

Griffiths 2019 MBT-tau RCADS-dep 22 26 0.041 0.285 0.081

Gross 2018 ACT-PST(cbt) CCAPS-dep 11 11 0.022 0.410 0.168

Gu 2018 MBCT-WL BDI 28 26 0.758 0.278 0.077

Hamdan-Mansour 2009 CBT-AO BDI 44 40 1.433 0.243 0.059

Haukass 2018 ATT-MSC PHQ9 40 41 0.022 0.220 0.048

Hetrick 2017 iCBT-TAU CDRS 26 24 0.230 0.280 0.078

Hetrick 2017 iCBT-TAU RADS 26 24 0.196 0.279 0.078

Hoorelbeke 2015 CCT-visST BDI 25 22 0.065 0.288 0.083

Horowitz 2007 CB-Control CDI 112 169 0.203 0.122 0.015
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Table 5.1: Summary of studies included in the multiverse meta-

analysis (continued)

study comparisonN1.N2 measure N1 N2 yi std_err vi

Horowitz 2007 CB-Control CES-D 112 169 0.142 0.122 0.015

Idsoe 2019 CBT-TAU CES-D 133 95 0.330 0.135 0.018

Keng 2019 Mindfulness-control DASS-dep 28 29 0.172 0.262 0.069

Ko 2018 MedComp-group CES-D 18 16 0.248 0.337 0.113

Kowalenko 2005 CBT-AO CDI 41 41 0.371 0.221 0.049

Kuosmanen 2017 SPARX-Control SMFQ 30 36 -0.102 0.244 0.060

Levin 2014 webACT-WL DASS-dep 37 39 0.231 0.228 0.052

Levin 2017 webACT-WL CCAPS-dep 40 39 0.183 0.223 0.050

Levin 2020 Mindapp-control CCAPS-dep 10 13 0.945 0.429 0.184

Lindqvist 2020 psydyn-control MADRS 38 38 0.694 0.234 0.055

Livheim 2015-s1 ACT-tau RADS-depression 32 26 0.512 0.265 0.070

Livheim 2015-s2 ACT-tau DASS-dep 15 17 -0.081 0.345 0.119

Maestas 2012 AMTtrad-control BDI 67 68 0.041 0.171 0.029

McIndoo 2016 BehAct-WL BDI-ii 16 14 0.764 0.369 0.137

McIndoo 2016 BehAct-WL HRSD 16 14 1.207 0.389 0.151

Mogoase 2013 ConcreteT-wl BDI 20 21 0.161 0.307 0.094

Mokrue 2013 CBTskills-WL BDI 54 30 1.261 0.246 0.060

Morris 2015 CBT(CR)-writing CES-D 84 82 0.137 0.155 0.024

Muto 2011 ACTwb-WL DASS-d 35 35 0.209 0.237 0.056

Nguyen-Feng 2015 SM- WL DASS-d 329 171 -0.140 0.094 0.009

Oldenzki 2020 Mind(hyp)-WL PDP-dep 14 16 1.169 0.387 0.150

Puskar 2003 TKC-control RADS 46 43 0.457 0.213 0.045

Rasanen 2016 iACT-control BDI 33 35 0.829 0.250 0.063

Rasanen 2016 iACT-control DASS-dep 33 35 0.831 0.250 0.063

Reddy 2013 CBT-waitlist QIDS 35 35 0.021 0.236 0.056
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Table 5.1: Summary of studies included in the multiverse meta-

analysis (continued)

study comparisonN1.N2 measure N1 N2 yi std_err vi

Richards 2016 iCBT-WL BDI-ii 70 67 0.415 0.172 0.030

Rizzo 2018 DS-knowledge BDI 59 50 0.197 0.191 0.037

Rudd 1996 CBTint-TAU BDI 143 121 0.276 0.124 0.015

Sheffield 2006 combined-control CDI 112 149 0.002 0.125 0.016

Sheffield 2006 combined-control CES-D 112 149 0.149 0.125 0.016

Shomaker 2017 gMindful-cCBT CES-D 17 16 0.793 0.354 0.125

Singhal 2018 CBTskill-psyed CDI 65 55 3.087 0.270 0.073

Singhal 2018 CBTskill-psyed CES-D 65 55 2.422 0.240 0.058

Slee 2008a CBT-TAU BDI 42 48 0.923 0.220 0.049

Slee 2008b CBT-TAU BDI-II 40 42 0.340 0.220 0.049

Song 2015 MSBR-WL DASS-d 21 23 0.654 0.304 0.093

Stasiak 2012 cCBT-control CDRS 17 17 0.769 0.348 0.121

Stasiak 2012 cCBT-control RADS-2 17 17 0.832 0.350 0.122

Teng 2019 ABM-WL BDI 30 22 0.120 0.277 0.077

Topper 2017 gRFCBT-wWL BDI 82 85 0.644 0.158 0.025

Uliazsek 2016 DBT-PPT SCL-90-dep 27 27 0.604 0.274 0.075

Vrijsen 2018-s1 CBM-placebo BDI-II 51 50 0.161 0.198 0.039

Vrijsen 2018-s2 CBM-placebo BDI-ii 46 54 0.052 0.199 0.040

Wimmer 2019 MSBR-passive HADS-dep 51 38 0.405 0.215 0.046

Yang 2015 ABM-AO BDIii 27 23 1.146 0.302 0.091

Yang 2016 ABM-placebo CES-D 23 22 0.095 0.293 0.086

Yang 2016 ABM-placebo HAMD 23 22 0.514 0.298 0.089

Yusoff 2015 workshop-control BDI 88 83 0.295 0.153 0.023

Zemestani 2015 MCT-Control BDI 15 15 5.273 0.768 0.590
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Zhang 2019 gMSBR-wl BDI 28 28 0.617 0.270 0.073

Table 5.1 shows that some studies used more than one measurement method to as-

sess depression. Using different measurements adds another level of dependency as

each measurement method is assessing the same construct from the same participants.

Therefore, it is essential to address this dependency by aggregating the results of dif-

ferent measurement methods to have one outcome for each study in the meta-analysis.

According to Borenstein et al. (2009), in order to aggregate the results from two mea-

surement methods into one outcome, we should consider the correlation between the

different methods. In practice, one should look at the literature to assess the correlation

between them. However, we used different plausible correlations to depict the impact

of this decision when it is taken arbitrarily. In the end, we had three sources of possi-

bilities for our multiverse analysis, the correlation between pre-post test (rmorris), the

aggregation correlation between different measurement methods (ragg), and different

meta-analytical models. As mentioned in Section 2.1, the mission of multiverse analysis

is to consider different plausible choices rather than exploring all. Thus, we decided

to use a reasonable range of 0.6 to 0.8 for pre-post test correlation, and 0.4 to 0.8 for

aggregation correlation with 0.05 increment for both choices. Using the metafor pack-

age (Viechtbauer, 2010), we performed a meta-analysis for all plausible combinations

and stored the results in a matrix. Table 5.2 presents the first 8 rows of our multiverse

matrix. The complete version of this table is available in Appendix.

The τ 2 row for the fixed-effect model is empty as this model assumes 0 heterogeneity by

definition. As it is visible from this table, there is a big difference between the calculated

effect size for fixed and random effects models while keeping other variables constant.

Whereas the estimates are closer to one another when keeping the meta-analytical model

the same. This difference between the numerical magnitude of the calculated effect size

by the two models for the entire matrix is visible from the descriptive information
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Table 5.2: The multiverse matrix

rmorris ragg model term estimate std.error statistic p.value conf.low conf.high
0.6 0.40 fit fixed dppc2 0.238 0.018 13.061 <0.001 0.202 0.274
0.6 0.40 fit fixed τ2 0.000
0.6 0.40 fit random dppc2 0.418 0.056 7.483 <0.001 0.308 0.527
0.6 0.40 fit random τ2 0.188 0.039
0.6 0.45 fit fixed dppc2 0.237 0.018 12.987 <0.001 0.202 0.273
0.6 0.45 fit fixed τ2 0.000
0.6 0.45 fit random dppc2 0.417 0.056 7.495 <0.001 0.308 0.526
0.6 0.45 fit random τ2 0.186 0.038

Note:
’dppc2’ and ’τ2’ are overall estimates for any single meta-analysis.

Table 5.3: Descriptive statistics for estimated effect size calculated by the multiverse meta-analysis.
n mean sd median min max range se Q1 Q3

Fixed-
effect

45 0.228 0.006 0.229 0.216 0.238 0.022 0.001 0.223 0.233

Random-
effect

45 0.416 0.002 0.417 0.411 0.420 0.009 0.000 0.415 0.418

presented in Table 5.3.

We can also depict this information by using the raincloud plot. Figure 5.1 shows the

difference between the effect size estimates based on different choices for the model and

pre-post correlation.

As it is visible, while there is no remarkable difference in estimated effect size using

different pre-post test correlations, there is a considerable difference in calculated overall

dppc2 when we choose different models. The same pattern also appears when we plot

the effect size based on the meta-analytical model and aggregation correlation (Figure

5.2), as well as when we plot the estimated the standard errors for effect sizes based on

these decisions (Figure 5.3).

Focusing only on the random-effects model, it is also interesting to explore the impact

of different correlation choices on the estimation τ 2. Figure 5.4 depicts this impact.

Although we can see choosing a lower correlation for aggregation can culminate in a

higher estimate of τ 2, it does not seem to be remarkable. Similarly, this estimate is not
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Figure 5.1: The raincloud plot of the overall dppc2 calculated by multiverse meta-analysis according to
the meta-analytical model and the correlation between pre-post test. Note that the axes do not start
from zero.

Figure 5.2: The raincloud plot of the overall dppc2 calculated by multiverse meta-analysis according to
the meta-analytical model and aggregation correlation. Note that the axes do not start from zero.
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Figure 5.3: A. The raincloud plot of the standard error estimates calculated by multiverse meta-
analysis according to the meta-analytical model and pre-post test correlation. B. Similar plot based
on the meta-analytical model and aggregation correlation. Note that the axes do not start from zero.

Figure 5.4: The difference between τ2 estimates for random-effects model according to different choices
for the correlation between pre-post test and aggregation correlation. Note that the x asix does not
start from zero.
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considerably different for choosing different pre-post test correlations.

For the analysis of variance, we used a large simulated dataset. We drawn 10000

data from normal distribution for each combination where the mean is equal to the

calculated effect size and SD equals to estimated standard error. Given the large

number of simulated data (ntotal = 900000), we were interested only on the effect size

(η2). Table 5.4 shows the results of the analysis of variance. In line with the results of

previous tables and figures, the meta-analytical model explains the largest variance in

our dataset (η2 = .804).

Table 5.4: The results of the Analysis of Variance for the arbitury decisions

Df Sum Sq Mean Sq F value Pr(>F) η2

rmorris 4 4.872 1.218 742.677 <0.001 0.004

ragg 8 3.275 0.409 249.597 <0.001 0.002

model 1 8024.844 8024.844 4893021.219 <0.001 0.804

Residuals 899986 1476.030 0.002

Note:

Total R-squared = 0.81

This results are also graphically depicted by Figure 5.5

5.3 Discussion

In this chapter, we applied our framework on a real dataset. Aligning with the findings

of the original study, we found consistent positive effects of different interventions (i.e.,

CBT, mindfulness, acceptance/ER-based (e.g., DBT), and other therapeutic orienta-

tions such as family therapy) on depression across all our estimates.

Regarding the multiverse of choices, the results indicated that the choice of the meta-

analytical model has the greatest impact on the results of this particular case, while

the rest contributed negligibly to the variability of the outcomes. This means that
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Figure 5.5: Visualization of explained variance based of sources of variability.

choosing different pre-post test correlation and aggregation correlation will not remark-

ably change the calculated effect size. Therefore, while the choice remains in the range

of plausible options, no matter what correlations we choose, our results remain ro-

bust. However, making an arbitrary selection of the meta-analytical model can lead

to misestimated results. Although it is not common to choose a fixed-effect model for

a meta-analysis with so many studies like this one, adopting both models serves the

educational purpose of this research. Moreover, for many meta-analyses, especially in

the field of psychology, the model choice remains an arbitrary decision due to the few

numbers of studies involved.

All in all, these results demonstrate the importance of adopting a multiverse approach

for meta-analyses to have more robust and informative results.
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Conclusions

Psychology is currently facing a significant credibility crisis, and restoring trust in the

field requires a commitment to openness and transparency. Multiverse analysis provides

a valuable approach to enhance transparency by considering all plausible choices that a

researcher could take. Given the impact of meta-analytical studies and the great number

of arbitrary decisions involved in them, they particularly benefit from an approach that

ensures the robustness of their results. Therefore, adopting the multiverse framework

is well justified for meta-analyses.

In this regard, the present study aimed to propose a framework to summarize the

overwhelmingly large results of a multiverse meta-analysis. In addition, we sought to

investigate the impact of different choices on the variability of the results calculated by

the meta-analysis.

While our proposed framework is a significant step forward, we acknowledge that it has

certain limitations that need further attention and refinement.

First, our framework does not address other researchers’ degrees of freedom associated

with meta-analysis. Other levels of dependency are involved with more complex meta-

analytical designs, such as handling different variables in multivariate meta-analysis

or tackling moderators in meta-regression. Another uninvestigated degree of freedom
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is regarding the bias correction method. Although bias correction is crucial to have

accurate and reliable results in a meta-analysis, our framework did not explore it.

Moreover, although addressing influential studies is part of the usual flow of meta-

analysis, our frameworks did not consider it. Examining the effect of considering/not

considering the influential studies on the result of multiverse meta-analysis will improve

the robustness and informativeness of the results.

Second, this study did not explore outlier detection in relation to the combinations

involved in the multiverse. In theory, it is plausible that certain combinations would

yield effect sizes that are extremely different from others. Presenting this information

provides valuable insights into the robustness and reliability of calculated effect sizes

across different combinations.

Lastly, our framework lacks the elements necessary for the Bayesian approach to multi-

verse meta-analysis and exclusively considered the frequentist viewpoint. Although this

material did not claim to cover both frequentist and Bayesian approaches, the absence

of one restricts the comprehensiveness of the current proposal.

The proposed framework provides a transparent approach for presenting and exploring

the impact of various choices on the result of the meta-analysis. It also offers a more

informative understanding of the robustness and uncertainty of the results and thus

improves the credibility and replicability of the meta-analytic research. It is hoped that

this framework encourages other researchers to adopt a multiverse approach to further

their confidence in the result of the meta-analysis, and improves the communication of

the tremendous number of results in such studies.
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Appendix

The multiverse matrix

rmorris ragg model term estimate std.error statistic p.value conf.low conf.high

0.60 0.40 fit fixed dppc2 0.24 0.02 13.06 <0.001 0.20 0.27
0.60 0.40 fit fixed τ 2 0.00
0.60 0.40 fit random dppc2 0.42 0.06 7.48 <0.001 0.31 0.53
0.60 0.40 fit random τ 2 0.19 0.04
0.60 0.45 fit fixed dppc2 0.24 0.02 12.99 <0.001 0.20 0.27
0.60 0.45 fit fixed τ 2 0.00
0.60 0.45 fit random dppc2 0.42 0.06 7.50 <0.001 0.31 0.53
0.60 0.45 fit random τ 2 0.19 0.04
0.60 0.50 fit fixed dppc2 0.24 0.02 12.92 <0.001 0.20 0.27
0.60 0.50 fit fixed τ 2 0.00
0.60 0.50 fit random dppc2 0.42 0.06 7.51 <0.001 0.31 0.53
0.60 0.50 fit random τ 2 0.18 0.04
0.60 0.55 fit fixed dppc2 0.24 0.02 12.85 <0.001 0.20 0.27
0.60 0.55 fit fixed τ 2 0.00
0.60 0.55 fit random dppc2 0.42 0.06 7.52 <0.001 0.31 0.52
0.60 0.55 fit random τ 2 0.18 0.04
0.60 0.60 fit fixed dppc2 0.24 0.02 12.79 <0.001 0.20 0.27
0.60 0.60 fit fixed τ 2 0.00
0.60 0.60 fit random dppc2 0.42 0.06 7.54 <0.001 0.31 0.52
0.60 0.60 fit random τ 2 0.18 0.04
0.60 0.65 fit fixed dppc2 0.23 0.02 12.73 <0.001 0.20 0.27
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The multiverse matrix (continued)

rmorris ragg model term estimate std.error statistic p.value conf.low conf.high

0.60 0.65 fit fixed τ 2 0.00
0.60 0.65 fit random dppc2 0.41 0.05 7.56 <0.001 0.31 0.52
0.60 0.65 fit random τ 2 0.18 0.04
0.60 0.70 fit fixed dppc2 0.23 0.02 12.67 <0.001 0.20 0.27
0.60 0.70 fit fixed τ 2 0.00
0.60 0.70 fit random dppc2 0.41 0.05 7.58 <0.001 0.31 0.52
0.60 0.70 fit random τ 2 0.18 0.04
0.60 0.75 fit fixed dppc2 0.23 0.02 12.62 <0.001 0.20 0.27
0.60 0.75 fit fixed τ 2 0.00
0.60 0.75 fit random dppc2 0.41 0.05 7.61 <0.001 0.31 0.52
0.60 0.75 fit random τ 2 0.17 0.04
0.60 0.80 fit fixed dppc2 0.23 0.02 12.56 <0.001 0.20 0.27
0.60 0.80 fit fixed τ 2 0.00
0.60 0.80 fit random dppc2 0.41 0.05 7.65 <0.001 0.31 0.52
0.60 0.80 fit random τ 2 0.17 0.04
0.65 0.40 fit fixed dppc2 0.24 0.02 13.76 <0.001 0.20 0.27
0.65 0.40 fit fixed τ 2 0.00
0.65 0.40 fit random dppc2 0.42 0.06 7.52 <0.001 0.31 0.53
0.65 0.40 fit random τ 2 0.19 0.04
0.65 0.45 fit fixed dppc2 0.23 0.02 13.68 <0.001 0.20 0.27
0.65 0.45 fit fixed τ 2 0.00
0.65 0.45 fit random dppc2 0.42 0.06 7.53 <0.001 0.31 0.53
0.65 0.45 fit random τ 2 0.19 0.04
0.65 0.50 fit fixed dppc2 0.23 0.02 13.61 <0.001 0.20 0.27
0.65 0.50 fit fixed τ 2 0.00
0.65 0.50 fit random dppc2 0.42 0.06 7.54 <0.001 0.31 0.53
0.65 0.50 fit random τ 2 0.19 0.04
0.65 0.55 fit fixed dppc2 0.23 0.02 13.54 <0.001 0.20 0.27
0.65 0.55 fit fixed τ 2 0.00
0.65 0.55 fit random dppc2 0.42 0.06 7.56 <0.001 0.31 0.52
0.65 0.55 fit random τ 2 0.19 0.04
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The multiverse matrix (continued)

rmorris ragg model term estimate std.error statistic p.value conf.low conf.high

0.65 0.60 fit fixed dppc2 0.23 0.02 13.48 <0.001 0.20 0.27
0.65 0.60 fit fixed τ 2 0.00
0.65 0.60 fit random dppc2 0.42 0.05 7.57 <0.001 0.31 0.52
0.65 0.60 fit random τ 2 0.18 0.04
0.65 0.65 fit fixed dppc2 0.23 0.02 13.42 <0.001 0.20 0.27
0.65 0.65 fit fixed τ 2 0.00
0.65 0.65 fit random dppc2 0.42 0.05 7.59 <0.001 0.31 0.52
0.65 0.65 fit random τ 2 0.18 0.04
0.65 0.70 fit fixed dppc2 0.23 0.02 13.36 <0.001 0.20 0.26
0.65 0.70 fit fixed τ 2 0.00
0.65 0.70 fit random dppc2 0.41 0.05 7.61 <0.001 0.31 0.52
0.65 0.70 fit random τ 2 0.18 0.04
0.65 0.75 fit fixed dppc2 0.23 0.02 13.30 <0.001 0.20 0.26
0.65 0.75 fit fixed τ 2 0.00
0.65 0.75 fit random dppc2 0.41 0.05 7.64 <0.001 0.31 0.52
0.65 0.75 fit random τ 2 0.18 0.04
0.65 0.80 fit fixed dppc2 0.23 0.02 13.24 <0.001 0.20 0.26
0.65 0.80 fit fixed τ 2 0.00
0.65 0.80 fit random dppc2 0.41 0.05 7.68 <0.001 0.31 0.52
0.65 0.80 fit random τ 2 0.17 0.04
0.70 0.40 fit fixed dppc2 0.23 0.02 14.60 <0.001 0.20 0.26
0.70 0.40 fit fixed τ 2 0.00
0.70 0.40 fit random dppc2 0.42 0.06 7.55 <0.001 0.31 0.53
0.70 0.40 fit random τ 2 0.20 0.04
0.70 0.45 fit fixed dppc2 0.23 0.02 14.52 <0.001 0.20 0.26
0.70 0.45 fit fixed τ 2 0.00
0.70 0.45 fit random dppc2 0.42 0.06 7.56 <0.001 0.31 0.53
0.70 0.45 fit random τ 2 0.19 0.04
0.70 0.50 fit fixed dppc2 0.23 0.02 14.45 <0.001 0.20 0.26
0.70 0.50 fit fixed τ 2 0.00
0.70 0.50 fit random dppc2 0.42 0.06 7.57 <0.001 0.31 0.53
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The multiverse matrix (continued)

rmorris ragg model term estimate std.error statistic p.value conf.low conf.high

0.70 0.50 fit random τ 2 0.19 0.04
0.70 0.55 fit fixed dppc2 0.23 0.02 14.38 <0.001 0.20 0.26
0.70 0.55 fit fixed τ 2 0.00
0.70 0.55 fit random dppc2 0.42 0.06 7.59 <0.001 0.31 0.53
0.70 0.55 fit random τ 2 0.19 0.04
0.70 0.60 fit fixed dppc2 0.23 0.02 14.31 <0.001 0.20 0.26
0.70 0.60 fit fixed τ 2 0.00
0.70 0.60 fit random dppc2 0.42 0.05 7.61 <0.001 0.31 0.52
0.70 0.60 fit random τ 2 0.19 0.04
0.70 0.65 fit fixed dppc2 0.23 0.02 14.25 <0.001 0.20 0.26
0.70 0.65 fit fixed τ 2 0.00
0.70 0.65 fit random dppc2 0.42 0.05 7.62 <0.001 0.31 0.52
0.70 0.65 fit random τ 2 0.19 0.04
0.70 0.70 fit fixed dppc2 0.23 0.02 14.18 <0.001 0.20 0.26
0.70 0.70 fit fixed τ 2 0.00
0.70 0.70 fit random dppc2 0.42 0.05 7.65 <0.001 0.31 0.52
0.70 0.70 fit random τ 2 0.18 0.04
0.70 0.75 fit fixed dppc2 0.23 0.02 14.12 <0.001 0.20 0.26
0.70 0.75 fit fixed τ 2 0.00
0.70 0.75 fit random dppc2 0.41 0.05 7.68 <0.001 0.31 0.52
0.70 0.75 fit random τ 2 0.18 0.04
0.70 0.80 fit fixed dppc2 0.23 0.02 14.06 <0.001 0.19 0.26
0.70 0.80 fit fixed τ 2 0.00
0.70 0.80 fit random dppc2 0.41 0.05 7.72 <0.001 0.31 0.52
0.70 0.80 fit random τ 2 0.18 0.04
0.75 0.40 fit fixed dppc2 0.23 0.01 15.63 <0.001 0.20 0.26
0.75 0.40 fit fixed τ 2 0.00
0.75 0.40 fit random dppc2 0.42 0.06 7.58 <0.001 0.31 0.53
0.75 0.40 fit random τ 2 0.20 0.04
0.75 0.45 fit fixed dppc2 0.23 0.01 15.55 <0.001 0.20 0.25
0.75 0.45 fit fixed τ 2 0.00
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The multiverse matrix (continued)

rmorris ragg model term estimate std.error statistic p.value conf.low conf.high

0.75 0.45 fit random dppc2 0.42 0.06 7.59 <0.001 0.31 0.53
0.75 0.45 fit random τ 2 0.20 0.04
0.75 0.50 fit fixed dppc2 0.23 0.01 15.48 <0.001 0.20 0.25
0.75 0.50 fit fixed τ 2 0.00
0.75 0.50 fit random dppc2 0.42 0.06 7.60 <0.001 0.31 0.53
0.75 0.50 fit random τ 2 0.20 0.04
0.75 0.55 fit fixed dppc2 0.22 0.01 15.41 <0.001 0.20 0.25
0.75 0.55 fit fixed τ 2 0.00
0.75 0.55 fit random dppc2 0.42 0.05 7.62 <0.001 0.31 0.53
0.75 0.55 fit random τ 2 0.20 0.04
0.75 0.60 fit fixed dppc2 0.22 0.01 15.34 <0.001 0.20 0.25
0.75 0.60 fit fixed τ 2 0.00
0.75 0.60 fit random dppc2 0.42 0.05 7.64 <0.001 0.31 0.52
0.75 0.60 fit random τ 2 0.19 0.04
0.75 0.65 fit fixed dppc2 0.22 0.01 15.27 <0.001 0.19 0.25
0.75 0.65 fit fixed τ 2 0.00
0.75 0.65 fit random dppc2 0.42 0.05 7.66 <0.001 0.31 0.52
0.75 0.65 fit random τ 2 0.19 0.04
0.75 0.70 fit fixed dppc2 0.22 0.01 15.21 <0.001 0.19 0.25
0.75 0.70 fit fixed τ 2 0.00
0.75 0.70 fit random dppc2 0.42 0.05 7.68 <0.001 0.31 0.52
0.75 0.70 fit random τ 2 0.19 0.04
0.75 0.75 fit fixed dppc2 0.22 0.01 15.15 <0.001 0.19 0.25
0.75 0.75 fit fixed τ 2 0.00
0.75 0.75 fit random dppc2 0.41 0.05 7.71 <0.001 0.31 0.52
0.75 0.75 fit random τ 2 0.19 0.04
0.75 0.80 fit fixed dppc2 0.22 0.01 15.08 <0.001 0.19 0.25
0.75 0.80 fit fixed τ 2 0.00
0.75 0.80 fit random dppc2 0.41 0.05 7.75 <0.001 0.31 0.52
0.75 0.80 fit random τ 2 0.18 0.04
0.80 0.40 fit fixed dppc2 0.22 0.01 16.97 <0.001 0.20 0.25
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The multiverse matrix (continued)

rmorris ragg model term estimate std.error statistic p.value conf.low conf.high

0.80 0.40 fit fixed τ 2 0.00
0.80 0.40 fit random dppc2 0.42 0.06 7.61 <0.001 0.31 0.53
0.80 0.40 fit random τ 2 0.21 0.04
0.80 0.45 fit fixed dppc2 0.22 0.01 16.89 <0.001 0.19 0.25
0.80 0.45 fit fixed τ 2 0.00
0.80 0.45 fit random dppc2 0.42 0.06 7.62 <0.001 0.31 0.53
0.80 0.45 fit random τ 2 0.20 0.04
0.80 0.50 fit fixed dppc2 0.22 0.01 16.81 <0.001 0.19 0.25
0.80 0.50 fit fixed τ 2 0.00
0.80 0.50 fit random dppc2 0.42 0.05 7.63 <0.001 0.31 0.53
0.80 0.50 fit random τ 2 0.20 0.04
0.80 0.55 fit fixed dppc2 0.22 0.01 16.73 <0.001 0.19 0.24
0.80 0.55 fit fixed τ 2 0.00
0.80 0.55 fit random dppc2 0.42 0.05 7.65 <0.001 0.31 0.53
0.80 0.55 fit random τ 2 0.20 0.04
0.80 0.60 fit fixed dppc2 0.22 0.01 16.66 <0.001 0.19 0.24
0.80 0.60 fit fixed τ 2 0.00
0.80 0.60 fit random dppc2 0.42 0.05 7.67 <0.001 0.31 0.53
0.80 0.60 fit random τ 2 0.20 0.04
0.80 0.65 fit fixed dppc2 0.22 0.01 16.59 <0.001 0.19 0.24
0.80 0.65 fit fixed τ 2 0.00
0.80 0.65 fit random dppc2 0.42 0.05 7.68 <0.001 0.31 0.52
0.80 0.65 fit random τ 2 0.20 0.04
0.80 0.70 fit fixed dppc2 0.22 0.01 16.53 <0.001 0.19 0.24
0.80 0.70 fit fixed τ 2 0.00
0.80 0.70 fit random dppc2 0.42 0.05 7.71 <0.001 0.31 0.52
0.80 0.70 fit random τ 2 0.19 0.04
0.80 0.75 fit fixed dppc2 0.22 0.01 16.46 <0.001 0.19 0.24
0.80 0.75 fit fixed τ 2 0.00
0.80 0.75 fit random dppc2 0.42 0.05 7.74 <0.001 0.31 0.52
0.80 0.75 fit random τ 2 0.19 0.04
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The multiverse matrix (continued)

rmorris ragg model term estimate std.error statistic p.value conf.low conf.high

0.80 0.80 fit fixed dppc2 0.22 0.01 16.39 <0.001 0.19 0.24
0.80 0.80 fit fixed τ 2 0.00
0.80 0.80 fit random dppc2 0.41 0.05 7.78 <0.001 0.31 0.52
0.80 0.80 fit random τ 2 0.19 0.04
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