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Abstract

The purpose of this thesis is to explore how integrating Blockchain (BC) technology with

Federated Learning (FL) can improve the security and reliability of standard FL systems.

To achieve this, the principles of FL and BC are first reviewed. Next, various Blockchain

Enabled Federated Learning (BCFL) architectures are theoretically examined, weighing their

strengths and weaknesses. Finally, a straightforward implementation of one of the discussed

architectures is conducted to assess its efficiency and efficacy. The simulation highlights that

while the computational overhead associated with BC technology is significant, it does not

affect the model’s quality. Despite this overhead, the integrity added to FL by BC makes it a

promising solution for securing decentralized and distributed machine learning systems.

Lo scopo di questa tesi è studiare come integrare la tecnologia Blockchain (BC) con il

Federated Learning (FL) possa migliorare la sicurezza e l’affidabilità dei sistemi FL standard.

Per raggiungere questo obiettivo, vengono prima esaminati i principi di FL e BC. Succes-

sivamente, varie architetture di Blockchain-Enabled Federated Learning (BCFL) vengono

esaminate teoricamente, valutandone i punti di forza e debolezze. Infine, viene condotta

un’implementazione di una delle architetture discusse per valutarne l’efficienza e l’efficacia.

La simulazione evidenzia che mentre il sovraccarico computazionale associato alla tecnologia

BC è notevole, non ha effetto sulla qualità del modello. Nonostante questo sovraccarico,

l’integrità aggiunta al FL dalla BC la rende una soluzione promettente per la sicurezza di

sistemi di apprendimento automatico decentralizzati e distribuiti.
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Chapter 1

Introduction

1.1 Federated Learning

In today’s world, personal devices such as smartphones generate and store vast amounts of data.

This data is vital in improving user experience by powering intelligent applications. However,

the private nature of the data raises security concerns when stored remotely. Federated Learning

(FL) was introduced to address these concerns.

1.1.1 Principles

Federated learning is a machine learning technique that sees a federation of users who collec-

tively solve a training task coordinated by a server. Each client has its dataset, which is never

uploaded but used to train a local model and compute an upgrade, which will be sent to the

server. FL trains models using non-IID datasets that vary significantly in size depending on the

device characteristics and usage.

In this thesis, we consider the Federated Averaging (FedAvg) algorithm, which utilizes

stochastic gradient descent (SGD) [2]. The traditional FL approach involves client selection,

local model training using predefined algorithms such as SGD, and aggregation of updates by

the server. While this approach is computationally efficient, it requires multiple rounds of com-

munication and several users to train effective models.
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Figure 1.1: FedAvg algorithm.[2]

Figure 1.2: Standard FL architecture [4].
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1.1.2 Advantages and challenges

This federated approach offers several advantages, including:

• Safe data transfer: The central server does not store any raw data, minimizing the potential

for data breaches and reducing concerns for the service provider.

• Communications efficiency: Users only need to send upgrades, which reduces communi-

cation costs.

However, this approach also presents several challenges, such as:

• Single point of failure: If the aggregator fails, the entire system could be compromised

due to a malicious attack or connection issues.

• Lack of incentives: Users are typically assumed to contribute their computational power

without payment, which could result in participants providing unreliable data or dropping

out of the system entirely, compromising the overall model quality.

• Lack of validity checks: There is no built-in mechanism to prevent clients from poisoning

the shared model, either with malicious updates or by editing the parameters.

• User unreliability: Each participating device is inherently unreliable due to potential net-

work issues or device power autonomy.

These deficiencies make FL not as efficient and reliable as desired.

1.2 Blockchain

1.2.1 Principles

Blockchain (BC) was released as the underlying technology for Bitcoin 1.0 in 2008 [1]. As

suggested by its name, BC is made of a succession of virtually appended blocks.

Each block is built from the following components:

• Hash of the previous block header, responsible for the virtual link between the blocks.

The hash can be obtained using secure hashing functions such as SHA256.

• Timestamp, measured in seconds since the initial time.

• Difficulty value, which represents the current hashing target. This is updated depending

on the network’s overall power to ensure a steady production of new blocks.
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• Nonce, the result of the proof-of-work (POW).

• Block body, containing the transaction data.

A particular block in the chain, called the genesis block, contains information such as the

protocols and incentives system.

Some nodes in the network are called miners, whose role is to add each new block to the

distributed database. To create a new block, miners must find a nonce that, hashed with the

current block’s content, gives a result with some leading zeros, defined by the difficulty value.

After a block has been created, the nodes will verify all the transactions in the block and add

it to their database.

Figure 1.3: Blockchain structure [4].

From the perspective of permission, BC can be defined as:

• Public, when it allows everyone access. These are decentralized since they require no

protection from outside attacks.

• Private, when only a selected group of people have access. These are centralized since

the organization that owns them dictates who has access and writing permission.

• Consortium, which is a hybrid of the other two. These are partially decentralized, with

the consensus mechanism managed by a set of assigned nodes.

Regardless of the type of BC, their workflow is the same.
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1.2.2 Security Properties

While BC comes with a built-in incentive mechanism, the dedicated security properties are the

focus of this thesis. The main features can be detailed as follows [4]:

• Authentication: This comes from the built-in verification mechanisms.

• Traceability: All transaction information is stored in a block, which is added to the shared

ledger.

• High availability: Devices can join and participate whenever.

• Decentralization: The involvement of a central entity is minimal, if not unnecessary, de-

pending on the type of BC.

• Persistence: All transaction data is validated and stored in a public ledger. While it is

possible to falsify it, it is not feasible due to the built-in mechanisms.

To better understand the persistence property, let us imagine a malicious user who decides to

modify the data contained in block X. By doing this, the block’s hash would change, meaning

that the previous hash recorded in block X+1 would be inconsistent. This change would be

promptly detected once the verification process is triggered to add a new block. To make this

kind of attack work, the malicious user would need to recompute the nonce of block X and

update the previous hash stored in block X+1, which would change that block’s hash, and so on.

This means that the attacker would need to update and recompute data for every block after X,

which would require a lot of computational power.

This issue is known as the fifty-one percent power attack. The implications of this attack

go beyond altering transaction data. By acquiring control over the network, malicious users

can double spend, withhold blocks, and overall impede normal functions. Specific consensus

mechanisms are needed to prevent the attack, although the details of this go beyond the scope

of this work.
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Chapter 2

Blockchain-Enabled Federated Learning

As previously discussed, traditional FL does not function as efficiently and reliably as desired:

a potential solution is to combine FL with BC. This chapter outlines several possible BCFL

architectures, discussing their strengths and weaknesses.

2.1 Integration of Blockchain and Federated Learning

BCFL architectures can vary depending on the type of blockchain used and how the coupling

happens.

First, let us discuss architectures depending on the BC type [3] :

• Public chain: This type of blockchain system allows all clients and miners to engage

freely, resulting in more potential participants and transparency. To ensure the quality of

the model, this system requires validation protocols to prevent any malicious upgrades

from being aggregated.

• Private chain: This type of blockchain system allows access only to selected clients based

on various factors such as computational resources, past performance, and overall relia-

bility.

Furthermore, the possible couplings are [5]:

1. Fully coupled BCFL: In this model, the clients of FL are also miners in the BC network.

Therefore, they provide computational power to train local models, but they also need to

mine blocks. It is a fully decentralized approach since the blockchain can be the aggre-

gator. When the global model needs to be updated, a group of users can participate in the

aggregation process.
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Figure 2.1: Fully coupled BCFL architecture [5].

2. Flexibly coupled BCFL: In this instance, the BC and FL systems are separate networks.

The clients only train the local model and compute upgrades, while miners in the BC net-

work aggregate and mine new blocks. An entity is needed to coordinate the two networks.

Figure 2.2: Flexibly coupled BCFL architecture [5].

3. Loosely coupled BCFL: In this case, the BC network verifies model updates and keeps

track of user reputations. It is a standard FL architecture with reputation and verification

features.
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Figure 2.3: Loosely coupled BCFL architecture [5].

Organizations can choose the most appropriate architecture based on their requirements and

available resources. For example, public blockchain is optimal if an organization aims to attract

as many participants as possible.

2.2 Advantages and challenges

After considering different architectures, it is clear that none offer a solution to all the prob-

lems previously listed for FL. Therefore, there is no perfect solution. Let us now discuss the

advantages and disadvantages of each possible listed solution:

1. Public blockchain: Allowing anyone to access the network ensures the wide availability

of participants, who bring training data and computational power. Furthermore, it allows

for full transparency. The downside is that specific validation protocols are needed to

mitigate issues related to malicious updates. Moreover, with many potential miners, the
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value of the mining difficulty must be increased to ensure steady production of blocks,

causing significant consumption of computing resources.

2. Private blockchain: Since only a selected group of users can participate, the need for

specific validity and consensus mechanisms is reduced, meaning lighter protocols can

be deployed, saving resources. However, this type of system can suffer from a lack of

participants and training data.

3. Fully coupled BCFL: This architecture lacks central authority, making it safe from single-

point failure. Furthermore, since the transaction data is distributed, should any device

disconnect, nothing will be lost, meaning the network is not sensible to each user’s un-

reliability. Nevertheless, the fact that users not only train the local model but also mine

blocks add significant computational overhead to the system. This is because the ex-

pected users of FL are smartphones and other personal devices, which do not hold much

computing power, making complex computing tasks such as proof of work prohibitive.

4. Flexibly coupled BCFL: Since users are no longer expected to mine blocks, allowing

miners to complete the task, the computational overhead mentioned in the third point is

significantly reduced. This architecture needs a central entity to coordinate, making it

vulnerable to single-point failure. Furthermore, latency issues may arise between the two

networks.

5. Loosely coupled BCFL: In this case, the BC is only used for validity checks and user repu-

tationmanagement, meaning that FL still relies on a central server. Therefore, single-point

failure and secure storage of the global model are not solved. Furthermore, maintaining

the two systems separately results in inefficient utilization of resources.

To summarize, when designing a BCFL system, it is crucial to determine the appropriate

type of blockchain and architecture to use. This decision should be based on the specific goals

and requirements of the system, as well as the expected number of users and their roles.

The third and fourth architectures use the blockchain as a storage for the global model. The

model parameters are stored as transaction data, which provides a significant advantage over

traditional FL since the BC records the parameters as learning progresses. Additionally, the

parameters are easily accessible to all users in the network. Moreover, the BC can be utilized to

manage user reputation, prevent single-point failure, and attract more participants, all of which

areweaknesses that were previously highlightedwhen discussing traditional FL. However, using

a BC entails significant computation overheads, which increases the overall cost of training

models, particularly in the third architecture.
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Chapter 3

Implementation

3.1 Description of the environment and tools used

The goal of the simulation is to explore the interaction between the BC and FL, showing some

of the features previously discussed. The project operates entirely in a local environment and

consists of four classes:

• Block, which handles each block and its mining.

• Blockchain, which handles the virtual links between blocks. Moreover, it manages the

verification of the blocks to be added.

• User, detailing personal datasets and training the local model.

• Federated Learning, performing one round of client selection and aggregation of the up-

dates.

The simulation also includes a ”main” file that employs the implemented classes to train the

global model over several rounds and a ”.env” file to store environment variables.

Python was used to develop this project due to its widespread support for scientific comput-

ing and machine learning libraries. The libraries used are:

1. Numpy 1.26.2: For efficient array and matrix computation, fundamental to the operations

of our algorithms.

2. Scikit-learn 1.3.2: In particular, the SGDRegressor module, to leverage its capabilities in

regression analysis with stochastic gradient descent.

3. Python-dotenv: Used for managing environment variables.
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4. Hashlib: Integral to our Blockchain implementation, providing secure hashing functions

necessary for block creation and validation.

5. Matplotlib 3.8.0: For visualizing data and model performance.

The personal computing environment has the following hardware and software specifica-

tions:

• Hardware:

– CPU: 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz

– GPU: Nvidia RTX 3050, 4GB GDDR6. Though available, it was not utilized for

computations.

– RAM: 16GB DDR4 3200MHz

– Storage: 512GB SSD

• Software:

– Operating System: Windows 11 Home

– Python Version: 3.11

– Library Versions: Listed above, important for ensuring reproducibility and consis-

tency in project execution.

– Development Tools: The code was primarily developed using Pycharm 2023.2.5.

– Conda: Deployed for environment and dependency management.

3.2 Overview of the Blockchain Implementation

Our blockchain implementation consists of a sequence of blocks, each containing the fields

discussed in Chapter 1. The transaction data field is used to store the model’s parameters. The

BC implementation employs two classes: Block and Blockchain, which will be detailed below.

First of all, let us discuss the Block class. When first created, each block has nonce set to zero,

and the hash is calculated accordingly using the ”calculate hash” method. If the nonce value

changes, the hash will not be automatically calculated. Therefore, whoever completes the POW

will also need to recalculate it.

def _ _ i n i t _ _ ( s e l f , index , t imes tamp ,

da t a , p r e v i o u s _ h a s h ) :

s e l f . i ndex = index
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s e l f . t imes t amp = t imes t amp

s e l f . d a t a = d a t a

s e l f . p r ev i ou sHash = p r e v i o u s _ h a s h

s e l f . nonce = 0

s e l f . hash = s e l f . c a l c u l a t e _ h a s h ( )

def c a l c u l a t e _ h a s h ( s e l f ) :

h a s h _ o b j e c t = h a s h l i b . sha256 ( )

# Conver t each s t r i n g t o base64 b e f o r e hash ing

h a s h _ o b j e c t . upda t e ( base64 . b64encode (

s t r ( s e l f . i ndex ) . encode ( ) ) )

h a s h _ o b j e c t . upda t e ( base64 . b64encode (

s t r ( s e l f . t imes t amp ) . encode ( ) ) )

h a s h _ o b j e c t . upda t e ( base64 . b64encode (

s t r ( s e l f . d a t a ) . encode ( ) ) )

h a s h _ o b j e c t . upda t e ( base64 . b64encode (

s t r ( s e l f . p r ev i ou sHash ) . encode ( ) ) )

h a s h _ o b j e c t . upda t e ( base64 . b64encode (

s t r ( s e l f . nonce ) . encode ( ) ) )

c a l c u l a t e d _ h a s h = h a s h _ o b j e c t . h e x d i g e s t ( )

re turn c a l c u l a t e d _ h a s h

The POW method computes the block’s nonce depending on the given difficulty value.

Moreover, it returns the total time spent to complete the task, which will be used for perfor-

mance analysis.

def proo f_o f_work ( s e l f , d i f f i c u l t y ) :

s t a r t = t ime . t ime ( )

whi le s e l f . hash [ : d i f f i c u l t y ] != ”0” * d i f f i c u l t y :

s e l f . nonce += 1

s e l f . hash = s e l f . c a l c u l a t e _ h a s h ( )

end = t ime . t ime ( )

re turn end − s t a r t

At last, there are two more methods: one for printing the block, which can be useful for

testing, and one to obtain the data stored by the block.

def p r i n t _ b l o c k ( s e l f ) :
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pr in t ( ” Block ” + s t r ( s e l f . i ndex ) + ” : ” )

pr in t ( ” Timestamp : ” + s t r ( s e l f . t imes t amp ) )

pr in t ( ” Data : ” + s t r ( s e l f . d a t a ) )

pr in t ( ”Nonce : ” + s t r ( s e l f . nonce ) )

pr in t ( ”Hash : ” + s t r ( s e l f . hash ) )

pr in t ( ” P r e v i o u s hash : ” + s t r ( s e l f . p r ev i ou sHash ) )

pr in t ( )

def g e t _ d a t a ( s e l f ) :

re turn s e l f . d a t a

As for the BC, when first created it only contains the genesis block, which is obtained by

calling the relevant method.

def _ _ i n i t _ _ ( s e l f , t imes tamp , da t a , d i f f i c u l t y ) :

s e l f . d i f f i c u l t y = d i f f i c u l t y

s e l f . c h a i n = [ ]

s e l f . c r e a t e _ g e n e s i s _ b l o c k ( t imes tamp , d a t a )

def c r e a t e _ g e n e s i s _ b l o c k ( s e l f , t imes tamp , d a t a ) :

s e l f . c h a i n = np . a r r a y (

[ Block ( 0 , t imes tamp , da t a , ”0” ) ] )

s e l f . c h a i n [ 0 ] . p roo f_o f_work ( s e l f . d i f f i c u l t y )

New blocks can be added to the BC by calling the ”add block” method, which follows these

steps:

1. Block creation.

2. Block mining.

3. Chain validation. The new block gets added only if the check succeeds.

def add_b lock ( s e l f , t ime , d a t a ) :

new_block = Block ( s e l f . g e t _ c h a i n _ l e n g t h ( ) , t ime ,

da t a , s e l f . g e t _ l a t e s t _ b l o c k ( ) . hash )

r un_ t ime = new_block . p roo f_o f_work ( s e l f . d i f f i c u l t y )

i f s e l f . i s _ c h a i n _ v a l i d ( ) :

s e l f . c h a i n = np . append ( s e l f . cha in , new_block )

re turn r un_ t ime
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The chain gets validated through the relevant method, which checks the consistency of each

block’s hash, and the correspondence between each block’s previous hash parameter and the

previous block. If either of those were to fail, a message would be printed.

def i s _ c h a i n _ v a l i d ( s e l f ) :

f o r i in range ( 1 , s e l f . g e t _ c h a i n _ l e n g t h ( ) ) :

c u r r e n t _ b l o c k = s e l f . c h a i n [ i ]

p r e v i o u s _ b l o c k = s e l f . c h a i n [ i − 1 ]

c a l c _ c u r r e n t _ h a s h = c u r r e n t _ b l o c k . c a l c u l a t e _ h a s h ( )

i f c u r r e n t _ b l o c k . hash != c a l c _ c u r r e n t _ h a s h :

pr in t ( ” I n v a l i d hash f o r b l ock ” + s t r ( i ) )

re turn Fa l s e

i f c u r r e n t _ b l o c k . p r ev i ou sHash != p r e v i o u s _ b l o c k .

hash :

pr in t ( ” I n v a l i d p r e v i o u s hash f o r b lock ” + s t r (

i ) )

re turn Fa l s e

re turn True

At last, twomoremethods return the latest block in the chain and the chain’s length, respectively.

def g e t _ l a t e s t _ b l o c k ( s e l f ) :

re turn s e l f . c h a i n [ s e l f . g e t _ c h a i n _ l e n g t h ( ) − 1 ]

def g e t _ c h a i n _ l e n g t h ( s e l f ) :

re turn l en ( s e l f . c h a i n )

Before discussing the FL implementation, it is necessary to understand some of the relevant

features of the implemented BC. Firstly, the proof of work method is called when a block is

created. However, it does not identify who is involved in completing the task. In real-life sce-

narios, multiple miners compete to complete the task and receive rewards according to their con-

tribution. For simplicity, this implementation does not handle the interaction between miners.

Instead, it allows what could be pictured as one miner to complete the entire process. Moreover,

the chain validation method scans the entire chain linearly, verifying every transaction. This

was done for simplicity, as in a realistic BC, transaction data is distributed among the nodes in

the network and not stored in a central array like in this implementation. Furthermore, if the

chain isn’t validated a message is printed, but no action is taken. At last, the implementation

does not deploy a method for dynamically updating the difficulty value, making it a constant.

This is not the case in a realistic BC, where the difficulty gets updated to ensure steady block

production. Overall, these simplifications were made to shift the focus of the work towards the
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interaction between BC and FL rather than on the specifics of BC. Nonetheless, these issues

need to be addressed to deploy a realistic implementation.

3.3 Overview of the Federated Learning Implementation

First of all, let us discuss the implementation of the User class. Each user object contains three

fields: a unique identifier, the dataset, and the local model.

def _ _ i n i t _ _ ( s e l f , id , d a t a s e t ) :

s e l f . d a t a s e t = d a t a s e t

s e l f . id = id

s e l f . l o c a l _mode l = SGDRegressor ( )

The training method handles the training of the local model, performing a partial fit over the

available dataset.

def t r a i n ( s e l f ) :

l o c a l _ e p o c h s = u s e r _ d a t a s e t _ s i z e / / 2

f o r i in range ( l o c a l _ e p o c h s ) :

s e l f . l o c a l _mode l . p a r t i a l _ f i t ( s e l f . d a t a s e t [ : , 0 ] .

r e s h a p e ( −1 , 1 ) , s e l f . d a t a s e t [ : , 1 ] . r a v e l ( ) )

At last, there is a method to obtain the local model’s parameters.

def g e t _ p a r ame t e r s ( s e l f ) :

re turn s e l f . l o c a l _mode l . coef_ , s e l f . l o c a l _mode l .

i n t e r c e p t _

Let us proceed to the Federated Learning class, which includes two methods: standard FL

and BCFL. For now, we will only discuss the standard one. The method follows these steps:

1. User selection: Performed at random.

2. Local model training.

3. Update generation.

def f e d e r a t e d _ l e a r n i n g ( g loba l_mode l , u s e r s ) :

l a b e l s = np . a r ange ( l en ( u s e r s ) )

# t r a i n model w i t h m u s e r s p a r t i c i p a t i n g over each epoch

m = np . random . r a n d i n t ( 2 , l en ( u s e r s ) )
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u s e r s _ t o _ p a r t i c i p a t e = np . random . c ho i c e ( l a b e l s , m, r e p l a c e =

F a l s e )

# Crea t e a r r a y s t o s t o r e t h e sum o f t h e p r e d i c t i o n s o f each

User , shaped l i k e t h e g l o b a l model

p r e d i c t _ a = 0 . 0

p r e d i c t _ b = 0 . 0

# t r a i n each User

f o r j in u s e r s _ t o _ p a r t i c i p a t e :

u s e r s [ j ] . t r a i n ( )

# Add t h e d i f f e r e n c e be tween t h e l o c a l model and t h e

g l o b a l model t o t h e p r e d i c t i o n

p r e d i c t _ a += u s e r s [ j ] . l o c a l _mode l . coe f_ − g loba l _mode l .

coe f_

p r e d i c t _ b += u s e r s [ j ] . l o c a l _mode l . i n t e r c e p t _ −

g loba l _mode l . i n t e r c e p t _

re turn p r e d i c t _ a / m, p r e d i c t _ b / m

3.4 Interaction between Blockchain and Federated Learning

Structures

The architecture used in this simulation is flexibly coupled BCFL (figure 2.2). We will assume,

for simplicity, that:

• Users are selected to ensure their reliability, where a user is considered reliable if they

provide truthful data and will not disconnect during model training.

• The size of users’ datasets is the same.

• The BC is private, which allows us to control who has access to the network. This en-

ables us to prevent malicious entities from accessing. Moreover, it allows user selection

depending on computational power, which helps prevent the fifty-one percent power at-

tack, making the network secure without requiring other consensus mechanisms.

The simulation runs, as previously stated, on a fully local environment and makes use of the

following environment variables:
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• Epochs: Representing the number of BCFL rounds that will be performed.

• User dataset size.

• Max number of users.

The BCFL method executes one round of FL, following the steps:

1. Retrieval of the global model parameters, which are stored in the latest block.

2. Model training, by calling the standard FL method.

3. Aggregation: Performed by the entity coordinating the two networks. In this case, who-

ever is running the simulation acts as the coordinator.

4. Addition of the new block to the BC.

def b l o c k _ c h a i n _ f e d e r a t e d _ l e a r n i n g ( b l o ck_cha i n , u s e r s ) :

params = b l o c k_ ch a i n . g e t _ l a t e s t _ b l o c k ( ) . g e t _ d a t a ( )

g l oba l _mode l = SGDRegressor ( )

g l oba l _mode l . coe f_ = params [ 0 ]

g l oba l _mode l . i n t e r c e p t _ = params [ 1 ]

coe f_upda t e , i n t e r c e p t _ u p d a t e = f e d e r a t e d _ l e a r n i n g (

g loba l_mode l , u s e r s )

runTime = b l o c k_ ch a i n . add_b lock ( t ime . t ime ( ) ,

[ g l oba l _mode l . coe f_ +

coe f_upda t e ,

g l oba l _mode l . i n t e r c e p t _

+ i n t e r c e p t _ u p d a t e ] )

re turn b lock_cha i n , runTime

The simulation starts automatically by running the ”main” function. The process involves

the following steps:

1. BC creation and initialization: The genesis block contains an array of zeros as data. This

is an arbitrary choice and could have been set to any value.

2. User generation: The details of this will be explained later.

3. Model training.

Furthermore, as training proceeds computational times are recorded. These will be used for

performance analysis.
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i f __name__ == ' __main__ ' :

# c r e a t e b l o c k c h a i n

b l o c k_ ch a i n = BlockChain ( t ime . t ime ( ) , np . a r r a y ( [ 0 . 0 , 0 . 0 ] ) )

u s e r s , a , b = g e n e r a t e _ u s e r s ( )

s t a r t = t ime . t ime ( )

t o t a l _ pow_ t ime = 0

# per form f e d e r a t e d l e a r n i n g

f o r c u r r e n t _ e p o c h in range ( epochs ) :

b l o ck_cha i n , pow_time = b l o c k _ c h a i n _ f e d e r a t e d _ l e a r n i n g (

b l o ck_cha i n , u s e r s )

t o t a l _ pow_ t ime += pow_time

end = t ime . t ime ( )

pr in t ( ”Time t a k en : ” + s t r ( round ( end − s t a r t , 2 ) ) + ”

seconds ” )

pr in t ( ”Time t a k en f o r p r oo f o f work : ” + s t r ( round (

t o t a l _pow_ t ime , 2 ) ) + ” seconds ” )

pr in t ( ” P roo f o f work ove rhead : ” + s t r ( round ( t o t a l _ pow_ t ime

/ ( end − s t a r t ) , 2 ) * 100) + ”%\n” )

The user generation step is performed by using another available method, which:

1. Selects the number of users to participate.

2. Generates the goal parameters.

3. Generates a dataset.

4. Creates and stores an array of users, splitting the dataset among them.

5. Returns the goal parameters and an array containing all the users.

def g e n e r a t e _ u s e r s ( ) :

# Genera te an ar ray o f u s e r s o f random s i z e n

n = np . random . r a n d i n t ( 1 , max_number_of_users )

# g en e r a t e random a and b , y = a*x + b

a = np . random . rand ( )
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b = np . random . rand ( )

# g en e r a t e a d a t a s e t t o be s p l i t among u s e r s

x = np . random . rand ( u s e r _ d a t a s e t _ s i z e * n , 1 )

y = a * x + b + np . random . normal ( 0 , 0 . 1 , ( u s e r _ d a t a s e t _ s i z e

* n , 1 ) )

d a t a s e t = np . s t a c k ( ( x , y ) , a x i s =1)

u s e r s = [ ]

f o r i in range ( n ) :

u s e r s = np . append ( u s e r s , User ( i , d a t a s e t [ i *
u s e r _ d a t a s e t _ s i z e : ( i + 1 ) * u s e r _ d a t a s e t _ s i z e ] ) )

re turn u s e r s , a , b

At last, there is a method that can be used to attempt to attack the BC, intending to test the

BC’s immutability property. After a block has been modified the change will be detected by the

validation method, which will be called when attempting to add a new block.

def a t t a c k _ b l o c k c h a i n ( b l o ck_cha i n , i ndex ) :

pr in t ( ”Do you wish t o a t t a c k t h e b l o c k c h a i n ? ( y / n ) ” )

i f input ( ) == ' y ' :

b l o c k_ ch a i n . c h a i n [ i ndex ] . d a t a = np . a r r a y ( [ −100 , −100])

pr in t ( ”Do you a l s o wish t o re −compute t h e nonce o f t h e

b lock ? ( y / n ) ” )

i f input ( ) == ' y ' :

b l o c k_ ch a i n . c h a i n [ i ndex ] . hash = b l o c k_ ch a i n . c h a i n [

i ndex ] . c a l c u l a t e _ h a s h ( )

b l o c k_ ch a i n . c h a i n [ i ndex ] . p roo f_o f_work ( b l o c k_ ch a i n .

d i f f i c u l t y )

pr in t ( ” In t h i s c a s e t h e change w i l l be d e t e c t e d

when check i ng t h e nex t b l ock ( ” + s t r ( i ndex + 1)

+ ” ) ” )

e l s e :

pr in t ( ”Wi thou t re − c a l c u l a t i n g t h e nonce t h e change

w i l l be d e t e c t e d when check i ng t h e hacked b lock

i t s e l f . ” )

pr in t ( ” Block ” + s t r ( i ndex ) + ” has been a t t a c k e d ” )

re turn b l o c k_ ch a i n
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Chapter 4

Results

To ensure that the results presented in this chapter are reproducible, we used the following values

to create the graphs:

epochs =40

u s e r _ d a t a s e t _ s i z e =10

max_number_of_users =100

The dataset used in our simulations was created by considering the linear relationship y =

ax + b, where ”a” and ”b” were generated at random. To make the dataset more realistic,

normal distributed noise was added. The features were generated using a uniform distribution,

and their corresponding targets were calculated using the linear relationship, resulting in a linear

regression problem.

As for preprocessing, we stacked the features and targets together to form a unified dataset,

which is later split equally among the users. Since the dataset was specifically generated, no

further preprocessing was required.

At last, before moving on to the results, let us review the meaning of the difficulty value in

this context. The difficulty value indicates the number of leading zeros each block’s hash must

have once POW is completed. Increasing the difficulty makes finding a suitable nonce a more

lengthy task.

The exploration of BCFL through our implementation sheds light on several aspects previ-

ously discussed. One of themost striking observations is the POW’s impact on total computation

time, which we found to increase exponentially with the difficulty level, as shown in Figure 4.1a.

Meanwhile, the computation time associated with standard FL remains relatively constant. This

distinction highlights how the mining process introduces a significant overhead as the difficulty

increases, as shown in Figure 4.1b.

This increase in runtime does not impact the model’s quality. This is evidenced when evalu-

ating itsMean Statistical Error (MSE) across varying difficulty levels. Plot 4.2a reveals a consis-
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(a) POW time.

(b) POW overhead.

Figure 4.1: Effect of POW over runtime.
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tent start and progression across the models, regardless of the difficulty level; the differentiating

factor lies solely in the time taken to achieve the result. Furthermore, plot 4.2b underlines the

weight this added computation time has on the process: the network with difficulty equal to four

takes significantly longer to complete the same task.

Beyond the additional computation time, Blockchain brings Federated Learning some in-

dispensable attributes. Within our implementation, the most significant is immutability –

Blockchain acts as an immutable record of the model’s progression over time. To verify the

property, we employed the ”attack blockchain” method. In the following example, we tried to

alter the content of the fifth block while also recomputing its nonce and hash accordingly. Upon

attempting to add a new block, the validation process verifies the consistency of the entire BC.

As expected, no issue arises when checking the hacked block since all its data is technically

correct. The problem is detected when checking block number six: its previous hash parameter

does not correspond to the one stored in block five, letting the network know there has been an

attack.

Attacking block 5
Block before attack:
Block 5:
Timestamp: 1708452872.5109034
Data: [0.29934605], [0.53717539]
Nonce: 13
Hash:

00ba02d9cef36402982bdfa6fc6593bf8f790a40fe0b058160eedf74de1e468e
Previous hash:

00ee705f42ad04f7bcd95367a6cc0ac4f52de06ac5b6cf0d740784126102854d

Block after attack:
Block 5:
Timestamp: 1708452872.5109034
Data: [-100], [-100]
Nonce: 801
Hash:

00e11037e002b3b8b4a9f67b32d2da688ff3e7fc126340f95a657c7438820b3b
Previous hash:

00ee705f42ad04f7bcd95367a6cc0ac4f52de06ac5b6cf0d740784126102854d

Invalid previous hash for block 6
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(a) Plot of the MSE over difficulty one and two.

(b) Plot of the MSE over difficulty up to four.

Figure 4.2: MSE plots.
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Block 6:
Timestamp: 1708452872.5459032
Data: [0.32329815], [0.57810183]
Nonce: 159
Hash:

005a4fdfab0b5ce0e5eb501d1cb4139a9a8df9dd9d65fd306813b4be1e122049
Previous hash:

00ba02d9cef36402982bdfa6fc6593bf8f790a40fe0b058160eedf74de1e468e

This immutable record fortifies the overall system against manipulative attempts, thus en-

suring data integrity within the FL paradigm.

In summary, this simulation reveals that while undoubtedly integrating BC into FL adds

significant computational overheads, it does not detract from the model’s quality. Moreover,

BC introduces FL to an invaluable layer of security, protecting the model’s parameters from

manipulation.
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Chapter 5

Conclusions

This thesis has explored the integration of Blockchain technology with Federated Learning,

highlighting the potential to enhance the security and decentralization of machine learning mod-

els. Through the simplified yet comprehensive implementation of both systems, we have demon-

strated the effectiveness of their interaction. Moreover, the trade-off between the cost to com-

plete the Proof of Work and the potential brought by Blockchain was highlighted.

For future research, it is imperative to explore strategies to ensure the reliability of users.

Furthermore, deploying the simulation outside of a local environment would allow further in-

sight into the potential communication delays and issues between the two systems.
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