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Introduction

The discovery and the first theories of liquid crystals came out at the beginning
of the last century, however they became materials of growing importance from
the 60s. For these last 60 years, the research regarding liquid crystals required
both science and technology to work together, especially with the advent of
liquid crystals displays.

Nowadays researchers are looking for new applications of liquid crystals knowl-
edge to new materials and biological structures. Particularly, interest has
grown for chiral liquid crystals, also known as cholesteric liquid crystals. The
presence of chirality has always fascinated scientists, since understanding and
controlling chirality brings many challenges and has many implications as
shown in [1].

In this work, we address theoretically the effects of confinement on chiral liquid
crystals. Recent experimental works on cholesteric droplets based on amyloid
fibrils [2] found that these droplets undergo three different phase transitions
at growing volumes, changing their shape. These four phases are called: ho-
mogenous, bipolar, uniaxial cholesteric and onion.

The complete phenomenology has, to date, not yet been described or predicted
from a theoretical perspective in a unique model. Simple scaling arguments
based on bulk terms of the Frank-Oseen (FO) energy-density functional have
been derived by Van Der Shoot [3] and Mezzenga [2] only for the first three
phases, namely: homogeneous, bipolar and cholesteric. To rationalize the full
spectrum a more thorough analysis is needed. In this work, we will address
the issue by means of a variational approach, with particular focus on under-
standing how confinement affects the various terms of the FO functional, for
both bulk and surface terms.

In Chapter 1, we briefly review the phenomenology and properties of liquid
crystals, including birefringence, with a short introduction of Jones matrices.
In Chapter 2 the experimental system is present, with a focus on the experi-
mental data that is used to develop the theory. The classical continuum theory
of liquid crystal is reviewed in Chapter 3, where a functional for bulk liquid
crystals is introduced. The case of free boundary is discussed in Chapter 4,
where the full free energy functional is showed. In the following chapters three
models are presented to rationalize the system of Chapter 2. The first model
(Chapter 5) is able to describe only part of the tactoids, namely the homoge-
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nous to bipolar transition. The second model (Chapter 6) is introduced as a
tool to better understand the effect of cholesteric liquid crystals under confine-
ment. The last model, in Chapter 7, is able to describe the full phenomenology
showed in Chapter 2, although with some inaccuracies. In the last Chapter,
conclusions are drawn and possible future developments are discussed.
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1. Liquid Crystals

In this chapter we briefly introduce liquid crystals, following [4] and [5]. We
shortly introduce their phenomenology and properties, with a focus on their
birefringency. The last paragraphs describe how to simulate the outcome of
polarized optical microscopy on liquid crystals, using Jones calculus.

1.1 Liquid crystals

The term liquid crystal (LC) refers to an intermediate state of matter, often
referred as a mesomorphic phase, that is in between solid crystals and liquid
fluids. One of the differences between fluids and crystals lies in the positional
order: while in crystals the molecules are located in a periodic lattice, in fluids
there is no long-range order. Liquid crystals have an anisotropic order, that
means long-range order in only some of the degrees of freedom. This usually
reflects a marked shape anisotropy at the molecular level. If we introduce
another degree of freedom other than the position, the first candidate is going
to be the average direction of the molecule. Long-range order of the direction
gives the so called nematic phase, while a two-dimensional order gives the
smectic phase. These categories were introduced by Friedel in 1922 [6], however
in this manuscript we are not going to deal with smectic phases. Detailed
informations about smectic phases can be found in [4] or [5].

Most of liquid crystals are usually organic substances composed of rod-like
molecules, that exhibit liquid crystals phases in two ways: by changing the
temperature or by changing the concentration. The former are usually referred
as thermotropic liquid crystals while the latter are referred as lyotropic.

1.2 Nematics

As mentioned above, nematic liquid crystals usually are made of rod-like
molecules, with a typical lenght a ∼ 1 nm, usually endowed with a head-
to-tail symmetry. The most typical molecules that form nematic phases are
PAA and MBBA (Figure 1.1).
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4 CHAPTER 1. LIQUID CRYSTALS

a)

b)
Figure 1.1: (a) The PAA molecule is a rigid rod of lenght 2 nm and width 0.5 nm; (b) The MBBA molecule,
of similar dimensions.

In the absence of external fields or orienting interactions, the molecules of
a nematic liquid crystal acquire a natural orientation, in which their axes
are nearly parallel. This natural orientation is usually represented as a unit
vector n. Every direction has the same probability to be chosen as a natural
orientation. This symmetry is usually reflected in the macroscopic properties of
the material, while it is assumed that there is a complete rotational symmetry
around n.

n

However the vector n should be interpreted as the average orientation of the
molecules, not the real direction they lie parallel to. Sometimes the vector n
is also called orientation or director. The vector n may also not be constant
throughout the medium,

When the orientational order is completely lost, no direction is privileged and
the substance becomes isotropic. For termotropics liquid crystals it happens at
a precise temperature, called clearing temperature. Analogously, for lyotropics
liquid crystals the order is lost at a precise concentration. The temperature
ranges for the appearance of a nematic phase are 21◦C to 41◦ C for PAA, and
118◦C to 135◦C for MBBA [4].

1.3 Cholesterics

A different kind of nematic liquid crystals are the cholesterics liquid crystals,
or also chiral nematics.

Differently from nematics, in the cholesteric bulk phase the vector n is not
constant in space. Molecules belonging to the same plane tend to arrange
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themselves parallel to each other, but their vector n rotates as one progresses
along the axis orthogonal to the plane. To be more specific, given a (x, y, z)
reference system where the z-direction is parallel to the cholesteric axis, we
have

nx = cos(q∞z + φ0),
ny = sin(q∞z + φ0), (1.1)
nz = 0.

where the scalar q∞ is called the natural twist and φ0 is a phase angle, which
depends only on the choice of the reference system. Often the twist is repre-
sented as a length, called natural pitch

p∞ = 2π
q∞

(1.2)

Due to the head-to-tail symmetry, the structure is periodic along z with a
periodicity given by p∞/2. A typical value of p∞ is in the order of micrometers,
much larger than the dimension of the molecules. Both the sign of q∞ and its
magnitude are important. The sign distinguishes left-handed and right-handed
cholesteric, while the magnitude gives the size of the pitch, which is strongly
dependent on concentration, temperature, pressure and other variables, see [4]
for details.

p∞/2

Cholesteric molecules are often helical springs with right or left handedness.
Therefore they are not invariant under parity transformations.

1.4 Optical properties of liquid crystals

Liquid crystals constituents are usually strongly anisotropic molecules, thus
in their ordered phase, they show optical activity, the most notable example
being provided by birefringence [7].
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While in optically isotropic materials polarized light can travel without any
change of its polarization state, in liquid crystals this is not true anymore since
they are optically uniaxial materials, whose optic axis may vary in space. In
a uniaxial material there exist two indexes of refraction ne, no called respec-
tively extraordinary and ordinary indexes. Other optical principles will not
be recalled here, an introduction to birefringent materials can be found in [8].
In [9] the authors report that for PAA we have

no = 1.565, ne = 1.829; (1.3)

and for MBBA
no = 1.54, ne = 1.75, (1.4)

at the wavelength of visible light. In [7] it is is shown that other molecules,
which display liquid crystal phases, have closer indexes of refraction with ne−
no ∼ 10−1 − 10−4. For instance, carbon-nanotubes in nematic phase have a
difference in the indexes of refraction of 0.6 · 10−4 [3].

One of the typical effects given by the birefringency of nematic liquid crystals
are the so called Schlieren’s pattern, as the one in Figure 1.2.

Figure 1.2: Schlieren’s texture, taken from [10].

1.5 Jones matrices

In this section we want to briefly describe the Jones calculus, developed by R.
C. Jones in [11], used to describe polarized light and the effect that optically
active material has on it. A more in-depth discussion can be found in [12].
In a Cartesian space xyz, a polarized plan wave propagating along z can be
described as an oscillating vector, with components

Ex = E0x cos
(
ω
(
t− z

c

)
+ δx

)
(1.5)

Ey = E0y sin
(
ω
(
t− z

c

)
+ δy

)
(1.6)
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where E0x,0y are the amplitudes, ω the angular frequency, c the speed of light,
and δx,y the phases. If we define ∆ := δy − δx we can write a two-dimensional
vector E, such that

E =
(
E0x
E0ye

i∆

)
exp i

(
ω
(
t− z

c

)
+ δx

)
(1.7)

where Ex = Re(E · ex) and Ey = Re(E · ey). The vector E, is referred as a
Maxwell column. If ∆ = 0 the light is linearly polarized, if ∆ = π/2 the light
is circularly polarized, otherwise the light will be elliptically polarized.

The intensity of the light, given the corresponding Maxwell column, is given
by the square of complex norm of E:

I = E∗ · E = E2
0x + E2

0y (1.8)

In case of a normalized Maxwell column, i. e. I = 1, we can represent it as
follows

E =
(

cos(φ)
sin(φ)ei∆

)
(1.9)

The idea behind Jones calculus is that any type of device that acts on polarized
light, from polaroid sheets to rotators and pass-planes, can be represented as
a 2 × 2 complex matrix J . This matrix acts on a Maxwell column E1, which
represents the ingoing light, and returns another Maxwell column E2, the
outgoing light. In symbols it can be written as

E2 = JE1 (1.10)

By using the associative property of matrices, the effect of multiple devices
can be obtained by multiplying, in the correct order, the matrices of the single
devices.

E3 = J2E2 = J2J1E1 = JE1 (1.11)
where J = J2J1.

Liquid crystals act as linear retarders, in case of the fast axis directed along
the x-axis we get

J =
(

1 0
0 e−iΛ

)
(1.12)

where Λ = 2πL
λ

(ne−no), λ the wavelength of the light, and L the depth of the
liquid crystal sample. Let R be the rotation matrix of angle φ, in the xy-plane

R(φ) =
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
(1.13)

If n is orthogonal to the direction of the light, that is n is on the xy-plane,
then for every angle φ that n forms with the x axis, we can write:

J(φ) = R(−φ)JR(φ) (1.14)

.
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1.6 Extended Jones matrix

Since the liquid crystals director is not always constrained on a two-dimensional
plane, the Jones matrix method described above is not enough. In the case
of liquid crystals, where ne ≈ no, it is possible to extend the Jones matrix
calculus to oblique incidence. The proof and an application to liquid crystals
display can be found in [13]. Let θ be the angle of incidence between n and
the direction of light. We define

neff := ne√
n2
o + (n2

e − no)2 cos2 θ
(1.15)

and
Λ = 2πL

λ
no. (1.16)

The extended Jones’ matrix is

J = R(−φ)
(
eiΛneff 0

0 eiΛ

)
R(φ) (1.17)

where φ is the angle between the x axis and the projection of n on the xy-plane.

1.7 Polarized light microscopy simulations

Polarized light microscopy is an optical microscopy technique involving polar-
ized light and used to study birefringent samples. The functioning principle
will be recalled here shortly, for more details see [14]. The microscope is
equipped with two polarizers, the first called polarizer (P) and the second an-
alyzer (A), orthogonal to the first. The image is formed by interaction of the
light polarized by P with a birefringent sample. When the light of the image
passes through the analyzer, the background light is cut out. The resulting
image shows only the interaction between the sample and the polarized light.

Using the mathematical method of Jones matrices we want to be able to sim-
ulate the result of polarized light microscopy on a sample of given n and given
shape. For a constant nematic field n, neff and φ that define (1.17) are con-
stant through the sample and an analytical result can be found. The Jones’
matrix of the device can be written as

J = JAJsampleJP (1.18)

where JA, JP are the matrices of the polarizer and analyzer, while Jsample is
the Jones matrix of the whole sample.

In case of a non constant nematic field n, we use numerical simulations to
compute the result. In a Cartesian frame x, y, z, where the light travels along
z, and the polarizers are parallel to the xy-plane, we discretize the sample in
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rectangular cells of step ds much smaller than the length of the sample. We
associate to each cell x, y, z a Jones matrix Jx,y,z. If the light travels parallel
to the z-axis, for each row of cells x, y we compute the effect that the row has
on the light.

Jx,y = JA

L/ds∏
i=0

Jx,y,z+i ds

 JP (1.19)

The next step is to compute the intensity Ix,y of the light for each row of cells
x, y. By setting the ingoing light intensity to 1, after the first polarizer P , Ix,y
gives the transmission intensity of the pixel located at x, y, after the analyzer.

In Figure 1.3 and Figure 1.4 we report two examples, where the direction of
the polarizer (P) and the analyser (A) are shown by arrows. The colorscale
is set so that white means maximal intensity and black zero intensity, with a
blue scale in between.

Figure 1.3: Simulation of the bulk cholesteric nematic field, equation (1.1)

Figure 1.4: Simulation of another nematic field
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2. The Experimental System

In this chapter we introduce and describe the experimental system and we are
going to study the results reported come from [2] and [15].

2.1 The system

In [2] and [15] the authors analysed the liquid-crystalline behaviour of amyloid
fibrils generated from β-lactoglobulin, dispersed in water solution. The amy-
loid fibrils considered in [2] and [15] are rod-like particles of width 4 nm and
length 400 nm, much bigger than the classical PAA and MBBA liquid crystals,
introduced in Chapter 1.

It has been shown that, there is a concentration at which the cholesteric bulk
phase separates from the isotropic bulk phase [2]. When a solution of water
and amyloid fibrils is brought to a certain critical concentration, birefringent
domains start to nucleate and grow, eventually leading to a bulk anisotropic
phase. These domains of nematic or cholesteric solution are surrounded by
isotropic fluid. They are often called tactoids and were observed for nematic
liquid crystal already in [16] and [17]. In the present context, the most impor-
tant effect that was shown is the formation of four different droplet shapes,
which were characterized by cross-polarized microscopy.

At increasing droplet volume, the first phase that appears is the so called
homogeneous tactoid. In Figure 2.1 we see an example of it, the uniform

Figure 2.1: Homogeneous tactoid seen through a cross-polarized microscopy.

colour representing an homogeneous nematic field. The name derives from
the constant nematic field measured on the inside. From this droplet, we can

11



12 CHAPTER 2. THE EXPERIMENTAL SYSTEM

measure the aspect ratio, defined as the ratio between the major and the minor
axis, and the tip angle.

a) b)
Figure 2.2: Cross-polarized microscopy images of the bipolar droplet in case of polarizers at 45◦ from the
major axis (a), and aligned with the axis (b).

The second droplet is called bipolar tactoid. Similarly to the homogeneous
case, we can measure the aspect ratio and the tip angle. Nevertheless, a bipolar
droplet shows a characteristic dark cross when the polarizers are aligned with
the axes of the tactoid (Figure 2.2). In this case, the nematic field is directed
from one pole to the other. The homogeneous and bipolar droplets are typical
of nematic liquid crystals. Their shape is symmetrical around their major axis
and its often referred to as spindle-like. A theoretical analysis of these droplets
and the transition between the two can be found in [3] and [18].

The third shape that appears is called uniaxial cholesteric droplet, shown in
Figure 2.3(a). From this droplet we are able to measure the aspect ratio and the

a) b)
Figure 2.3: Cross-polarized microscopy images of the cholesteric droplet (a), and of the onion droplet (b).

pitch of the cholesteric phase, that is twice the distance between consecutive
light bands. In [2] the authors analysed the shape of these droplets and found
out that they are prolate ellipsoids with the birefringent bands parallel to the
major axis, i.e. the cholesteric axis runs parallel to a minor axis.

The last shape is called onion, shown in Figure 2.3(b). As for the cholesteric,
we can measure the pitch and the aspect ratio of these droplets. The onion
tactoids have also been observed in [19].
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2.2 Experimental data

In Figure 2.4, we report the aspect ratio and the family of the tactoids as a
function of their volume, as obtained by the experiments performed in [15].

Figure 2.4: Plot of the Aspect ratio α as a function of the volume V .

It can be observed that, with increasing volume, the various shapes appear
and the aspect ratio of the droplets decreases.

Figure 2.5 shows the relationship between the tip angle Θ and the aspect
ratio for bipolar droplets. In the figure can be seen that as the aspect ratio

Figure 2.5: Plot of the tip angle Θ (in degrees) as a function of the aspect ratio α, for bipolar droplets .

decreases the tip angle increases, therefore the bipolar droplets tend to become
more spherical, i.e. α = 1 and Θ = 180◦, as the volume decreases.

Figure 2.6 shows the pitch, measured as twice the band-to-band distance, as
a function of volume for cholesterics and onions.
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Figure 2.6: Plot of the pitch p as a function of the volume V .

From the graph, it is clear that in cholesteric tactoids the pitch decreases with
the droplet volume. In contrast, the periodicity is stable for the onion droplets
and has value equal to the natural pitch of p∞ = 15µm, measured in the bulk
cholesteric phase. For further details of the measurements see [15].

A complete theoretical model of the system is still missing. In the following
work, our aim is to present some physical models that are able to describe the
features displayed by these droplets.

The theoretical framework used will be presented in the following chapters. We
will tackle the issue by a variational approach, i.e. by postulating a reasonable
analytic formula for the nematic field of the case at hand and minimizing the
free energy by suitably tuning the parameters of the model. As building blocks
we will employ the Frank-Oseen free energy [20], paired with an anisotropic
surface tension [21].



3. The Bulk energy

In this chapter we introduce the classical theory of liquid crystals, based on
the works of Oseen [22], Zocher [23] and Frank [20].

3.1 Preliminaries

We assume that the region occupied by the liquid crystal is a regular 3-
dimensional region B.

We will call ∂B the boundary of B, and assume it has a finite surface area,
where ν will be the unit normal to the surface.

The orientation of the director field is given by the map:

n : B → S2 (3.1)

where S2 =
{
v ∈ R3 : v · v = 1

}
.

The functional for the bulk free energy FB is assumed to depend only on n
and its first derivatives

FB(n) =
∫
B

f(n,∇n)dV, (3.2)

where f : B → R is the free-energy density. f must obey some physical re-
quirements, arising from the symmetry properties of the liquid crystal, namely:

• Frame invariance

• Evenness

• Material symmetry

• Positive definiteness

3.1.1 Frame invariance

The energy density, being a scalar physical quantity, must be the same in two
different frames, rigid or deformable.

15



16 CHAPTER 3. THE BULK ENERGY

Let p ∈ B, we identify a frame with origin on p with (e1, e2, e3) and a second
one with (e′1, e′2, e′3). Let Q be a linear map from R3 → R3. Since the vector n
is in the submanifold S2 ⊂ R3, the only linear maps Q : S2 → S2 are given by

Q ∈ O(3) =
{
Q : QTQ = I

}
, (3.3)

or the subset

SO(3) =
{
Q : QTQ = I ∧ det(Q) = 1

}
⊂ O(3). (3.4)

We limit the discussion to SO(3), the case of O(3) will be dealt with in the
next paragraph. Let Q ∈ SO(3) such that :

ei = Qe′i (3.5)

The components of n in the two frames are

ni = n · ei n′i = n · e′i. (3.6)

Through (3.5), we can relate n′i to ni

n′i = n · e′i = n ·QT ei = Qn · ei = Qijnj, (3.7)

and arrive to
n′ = Qn. (3.8)

From differential geometry we know that

∇′ = Q∇, (3.9)

where ∇ and ∇′ are the derivative operators in the reference frames identified
by e and e′, respectively. It is easy to show that

∇′n′ = Q∇(Qn) = Q∇nQT (3.10)

The assumption of frame invariance implies for the free energy density that

f(Qn,Q∇nQT ) = f(n,∇n) (3.11)

for every p ∈ B, n ∈ S2 and Q ∈ SO(3).

3.1.2 Evenness

Generally, it is assumed that for both nematics and cholesterics one cannot
distinguish the head from the tail. Thus, n and −n must be indistinguishable,
implying that the energy density must not be affected by a change of sign of
n:

f(n,∇n) = f(−n,−∇n) (3.12)
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3.1.3 Material Symmetry

In the previous paragraph, we restricted the class of maps Q : S2 → S2 to
SO(3), however the most general case is given by O(3). The difference lies in
reflections. Condition (3.11) applies to both nematic and cholesterics, however
under reflections nematic and cholesterics behave differently: these are called
material symmetries [24]. While nematic liquid crystals remain alike after a
reflection, cholesterics suffer a change in chirality. This means that a reflection
may change the energy density of cholesteric liquid crystals.

To be more precise, let p ∈ B and υ ∈ S2. We can write the reflection across
the plane orthogonal to υ [25] as

R(υ) = I− 2υυT (3.13)

where I is the identity and υυT the matrix whose ij element is υiυj. The
tensor R(υ) is obviously symmetric and such that R(υ)2 = I, i.e. R belongs
to O(3). The determinant of R is −1, since the eigenvalues are 1, 1 and −1.
Therefore, it doesn’t belong to SO(3). However −R belongs to SO(3), since
det(−R) = (−1)3 det(R) = 1. Now, let us apply R to the nematic field:

n′ = Rn ∇′n′ = R∇nR (3.14)
For a nematic field, f must be invariant under this transformation, thus

f(n′,∇′n′) = f(n,∇n) (3.15)

which reduces to

f(Rn,R∇nR) = f(n,∇n) (3.16)

We can write equation (3.16) such that

f((−R)(−n), (−R)∇n(−R)) = f(−n,∇n) (3.17)

by equation (3.11) and −R ∈ SO(3). In contrast, for cholesterics f(−n,∇n) 6=
f(n,∇n). Therefore the material symmetries can be summarized as follows

f(Qn,Q∇nQT ) = f(n,∇n) (3.18)

where

Q ∈

O(3) for nematics,
SO(3) for cholesterics.

(3.19)

3.1.4 Positive definiteness

The free energy of a system is defined within an addictive constant. On the
other hand, when no external forces or boundary conditions (e.g. anchoring)
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affect the liquid crystal, it relaxes to the natural state. We define this natural
orientation n as the nematic field such that f(n,∇n) = 0.

Therefore we require f to reach its minimum in case of a natural orientation.
This means that for a general vector field n

f(n,∇n) ≥ 0. (3.20)

3.2 Frank’s formula

In this section, following [24], we want to determine the formula for the bulk
energy of nematic and cholesteric liquid crystals, mainly developed by Frank
in [20].

The simplest scalar function depending on a vector n and quadratically on a
tensor N [24], is the following

f(n,N) = f0(n) + f1(n) ·N +N · f2(n)N (3.21)

where f0 is a scalar function of n, f1 is a tensor depending on n, and f2 is a
symmetric second order tensor depending on n.

We are interested in the case where N = ∇n. We will assume that distortions
are large compared to the typical length scale, given by the molecular length
a

‖∇n‖ � a−1 (3.22)

therefore we can neglect higher orders terms in N .

Equation (3.21) can be rewritten as follows:
Theorem 3.1. Let n be a unitary vector field defined as above, and f of the
form (3.21) obeying the physical requirements of frame invariance, evenness,
material symmetry and positive definiteness f can be rewritten as

fB(n,∇n) =K1(∇ · n)2 +K2(n · ∇ × n− q∞)2+

+K3(n×∇× n)2 +K24

(
tr
(
(∇n)2

)
− (∇ · n)2

)
(3.23)

where Ki (i = 1, 2, 3, 24) and q∞ are scalars. K1, K2 and K3 are called splay,
twist and bend moduli,respectively, while K24 will be called saddle-splay mod-
ulus, and finally q∞ is called natural twist.

Before proving the theorem above, we introduce some useful vector identities.
Lemma 3.2. Each antisymmetric matrix A, i.e. satisfying A = −AT , can be
written in the form

Aij = akεijk (3.24)

where a is called axial vector of A.
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For the proof see [25].

Let ∇v be the derivative of a vector field v, then the axial vector of the
antisymmetric part of ∇v is called the curl of v, and it is written as

∇× v (3.25)

Lemma 3.3. Let n be unity a vector field. On the domain of n the following
identities hold:

1. (∇n)Tn = 0;

2. (∇n)n = (∇× n)× n;

3. (∇× n)2 = (n · ∇ × n)2 + (∇× n× n)2;

4. ∇n · ∇n = tr
(
(∇n)2

)
+ (∇× n)2.

Proof. (1) Since n is a unitary vector field n · n = 1. Applying ∇ we get

(∇n)Tn = 1
2∇(n · n) = ∇(1) = 0. (3.26)

(2) Adding and subtracting (∇n)T we get

(∇n) = 1
2
(
(∇n) + (∇n)T

)
+ 1

2
(
(∇n)− (∇n)T

)
=: S +W (3.27)

Where S is symmetric and W antisymmetric. Applying both S and W to n
and using identity 1 we get

Sn = Wn, (3.28)

therefore
(∇n)n = Sn+Wn = 2Wn. (3.29)

Since the axial vector of W is by definition ∇× n, this means that

(∇n)n = ∇× n× n (3.30)

(3) Let a and b ∈ R3, then

‖a‖2‖b‖2 = (a · b)2 +‖a× b‖2 . (3.31)

From ‖a× b‖2 =‖a‖2‖b‖2 − (a · b)2, substituing a = ∇× n and b = n we get

‖∇ × n‖2‖n‖2 = (∇× n · n)2 +‖∇ × n× n‖2 . (3.32)

The identity follows from ‖n‖ = 1.

(4) To prove the fourth identity, first we take the trace of the square of (3.27)

tr
(
(∇n)2

)
= trS2 + tr(SW +WS) + trW 2; (3.33)
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since WS + SW is antisymmetric1, it is traceless and the previous reduces to

tr
(
(∇n)2

)
= tr(S2) + tr(W 2). (3.34)

Taking the scalar product of (3.27) with itself, gives

(∇n)(∇n) = S · S + 2S ·W +W ·W, (3.35)

The three addenda are respectively S · S = S · ST = tr(S2), S ·W = 0, and
W ·W = −W ·W T = −tr(W 2). It is easy to see that

2W ·W = (∇× n)2. (3.36)

Substituting (3.33) into (3.35), and using (3.36) we arrive at

(∇n)(∇n) = tr
(
(∇n)2

)
+ (∇× n)2. (3.37)

The frame invariance gives this result
Lemma 3.4. The function (3.21) obeys

f(Qn,QNQT ) = f(n,N), (3.38)

for every Q ∈ O(3), if and only if,

f(n,N) = α0 + α1P (n) ·N + α2W (n) ·N+
+ β1(W (n) ·N)2 + β2(P (n) ·N)2 + β3(P (n) ·N)(W (n) ·N)+
+ β4N ·N + β5P (n)N · (N)P (n) (3.39)

where αi (i = 0, 1, 2) and βi (i = 1, . . . , 5) are scalars. While

P (n)ij = δij − ninj (3.40)
M(n)ik = εijknj (3.41)

Proof. The proof can be found in [24], it is strictly technical and involves using
the properties of O(3).

To prove theorem 3.1 we evaluate (3.39) for N = ∇n.

Proof of theorem 3.1. Recalling the definition of P (n), taking the scalar prod-
uct with ∇n and using identity 1 . we get

P (n) · (∇n) = tr(∇n) + n · (∇n)Tn = tr(∇n) = ∇ · n, (3.42)

where tr(∇n) is by definition the divergence of n.
1Taking the transpose proves the statement.
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Taking the scalar product of M(n) with (∇n), we have

M(n) · (∇n) = M(n) ·W = n · ∇n, (3.43)

since M(n) is the antisymmetric tensor with n as axial vector.

The last piece missing is given by

P (n)∇n · ∇nP (n) = ∇n · ∇n− (∇nn)2 = tr∇n2 + (n · ∇n)2, (3.44)

from identities 2 , 3 and 4 . Substituting into (3.21) and setting

β1 =: K24 −K2, β2 =: K1 −K24, (3.45)
β4 =: K3, β5 =: K24 −K3. (3.46)

f(n,∇n) takes the form

f(n,∇n) =α0 + (α2 + β3n · ∇ × n)(∇ · n) + α3(n · ∇ × n)+
K1(∇ · n)2 +K2(n · ∇ × n)2 +K3(n×∇× n)2+
K24

(
tr∇n2 − (∇ · n)2

)
(3.47)

From the evenness property we know that

f(−n,−∇n) = f(n,∇n) (3.48)

therefore α2 = 0 = β3.

In the case of nematics,

f(−n,∇n) = f(n,∇n) (3.49)

holds true, therefore α3 = 0, and from the positive definiteness α0 = 0, since
the natural orientation is a constant field (∇n = 0).

For cholesterics instead, the natural orientation is given by (1.1). The only
non-zero term is (nc · ∇ × nc) = q∞. From the positive definiteness we get

f(nc,∇nc) = α0 + α3q∞ +K2q
2
∞ = 0, (3.50)

therefore
−α3 = α0

q∞
+K2q∞ (3.51)

setting α0 = K2q
2
∞, f takes the same form for both nematics and cholesterics,

where nematics are a special case of cholesterics with q∞ = 0.

3.2.1 Second-order energies

In 1971 Nehring and Saupe [26] allowed the free energy density to depend up
to the second derivatives of n. By imposing the same requirements to get to
the Frank’s energy, only one additional term comes out, equipped with the
elastic modulus K13:

f13 := K13∇ ·
(
(∇ · n)n

)
, (3.52)

K13 is sometimes called splay-bend elastic modulus.
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3.2.2 Null Lagrangians

The reader may wonder why the divergence terms in (3.23) are not summed
together. The reason is that

tr(∇n)2 − (∇ · n)2 (3.53)

is a null lagrangian. A null lagrangian is an energy density term that can be
expressed as a divergence, and via Gauss’ Theorem, it can be transformed into
a surface energy density.

Let
m := (∇n)n− (∇ · n)n, (3.54)

By taking the divergence of m we get

∇ ·m = tr(∇n)2 − (∇ · n)2 + nj
(
∇i∇jn

i −∇j∇in
i
)

(3.55)

that is clearly our saddle-splay energy since the derivatives commute. There-
fore via Gauss theorem, ∫

B

∇ ·mdV =
∫
∂B

m · νdS (3.56)

Both K24 and K13 can be expressed as integrals over the surface of B. They do
not enter the bulk free energy, however they contribute to equilibrium solutions
through the boundary conditions at the surface.

3.2.3 The theoretician’s energy

Assuming K1 = K2 = K3 = K24 = K and K13 = 0, and q∞ = 0 we get the so
called one-constant approximation, or theoretician’s energy, and (3.23) takes
the form

fF (n,∇n) = K(∇n) · (∇n). (3.57)
Equation (3.37) and identity 3. from lemma 3.3 are enough to prove the state-
ment.

3.3 Frank’s constants

Since the derivatives of n have a dimension of the inverse of a length, the
coefficients Ki have the dimension of an energy over a length, that is a force.
A typical energy value for liquid crystal is given by kBTc ≈ 4 ·10−21 where Tc is
the clearing temperature, while the typical distance is given by the molecular
scale a ≈ 10−9m, therefore a typical value of K is

K ∼ kBTc
a
≈ 10−11N (3.58)
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For thermotropic liquid crystals the constants depend on the temperature T .
The first experimental data came from Zvetkov in 1937 [27], which measured
for MBBA at T = 125oC

K1 = 2.3 · 10−11N K2 = 1.5 · 10−11N K3 = 4.8 · 10−11N (3.59)

In most cases the twist constant K2 is the smallest one. In De Gennes [4] the
values of the elastic constants can be found for PAA and MBBA at various
temperatures. Very little is known about K24 since until very recently no
experiment was arranged to measure it, see [28], while nothing is known about
K13.

We want to interpret each elastic modulus. Following [20] we produce four
different director fields and calculate the free energy density f . The elastic
constants appear independently of each other, except for K24.

3.3.1 Splay modulus

Let B be parametrized by cylindrical coordinates (r, θ, φ). Let ns = er (Fig-
ure 3.1(a)) be the nematic field. Therefore the derivative of the field is

∇ · ns = 1
r

∇× ns = 0 (3.60)

Therefore, for a nematic liquid crystal (q∞ = 0), the energy density is

f(ns,∇ns) = K1
1
r2 . (3.61)

Except for the line where r = 0, the energy density for this field depends only
on K1.

This is a case of a line defect, where the energy diverges in any neighbourhood
containing the z-axis. In cylindrical coordinates, it is sufficient to integrate
around a cylinder aligned with the z-axis.

FB(ns) = K1

∫ 1
r2 r drdθdz = K1

∫ 1
r
drdθdz (3.62)

in this case the integral clearly diverges for r → 0.

3.3.2 Bend modulus

Keeping the same coordinate system of the example before, we define the
nematic field (Figure 3.1(b))

nb := eθ (3.63)
In this case the divergence is null, while the curl

∇× nb = 1
r2 ez (3.64)
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a) b)
Figure 3.1: (a) Vector plot of ns, at z = 0;(b) Vector plot of nb, at z = 0.

Therefore, the energy density is

f(nb,∇nb) = K3
1
r2 . (3.65)

As before, around the z-axis the energy density of nb depends only on K3.

These two fields, ns and nb both display infinite energy defects in a cylinder
around z. If K1 = K3 then they have the same energy density.

3.3.3 Twist modulus

Let B be parametrized with Cartesian coordinates (x1, x2, x3), and have the
following nematic field, dependent on q and φ:

nt = cos(qx3 + ϕ)e1 + sin(qx3 + ϕ)e2 (3.66)

The energy density becomes for nematics

f(n,∇n) = K2q
2. (3.67)

The free energy depends only on K2, and increases quadratically with q, which
is often referred as twist.

In case of cholesterics the twist density becomes

f(n,∇n) = K2(q − q∞)2 (3.68)

whose minimum is at q = q∞. This represents a natural equilibrium state for
a cholesteric in absence of boundary conditions.
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a) b)
Figure 3.2: (a) Vector plot of nt, at z = 0;(b) Vector plot of nφ, at z = 0.

3.3.4 Saddle-splay Modulus

To provide an interpretation of the Saddle-splay modulus, suppose that B is
parametrized by Cartesian coordinates (x, y, z). Then we take the function

φ(x, y, z) := z − xy (3.69)

and use its unit gradient as nematic vector field (Figure 3.2(b)),

nφ := ∇φ
‖∇φ‖

= (−y,−x, 1)√
1 + x2 + y2 . (3.70)

We calculate the energy terms

∇ · n = 2xy
(1 + x2 + y2)3/2 (3.71)

∇× n = (y2 − x2,−x, y)
(1 + x2 + y2)3/2 (3.72)

tr(∇n)2 = 2x2y2

(x2 + y2 + 1)3 +
2
(
x2 + 1

) (
y2 + 1

)
(x2 + y2 + 1)3 (3.73)

In a ε-neighbourhood of the origin the energy density can be expressed as

fφ = 2K24 +O(ε) (3.74)

Therefore in a neighbourhood of the origin nφ is a saddle-splay field.
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4. Drops

In this chapter, we discuss the free-boundary problems for liquid crystals. We
introduce the anisotropic surface tension and discuss the equilibrium shapes of
a drop surrounded by isotropic fluid, which leads to the Wulff’s construction,
presented in the last paragraph.

4.1 Surface free energy

Liquid crystals are incompressible fluids, therefore even though the shape may
not be prescribed, its volume is fixed∫

B

dV = V (4.1)

In our analysis, the droplet is surrounded by isotropic fluid, and it is well
known that the free energy associated with the surface, called isotropic surface
tension, is proportional to the area and to a positive constant γ depending on
the nature and temperature of the fluids in contact.

However, the isotropic surface tension is not enough to describe the whole
surface energy. Liquid crystals are anisotropic, therefore as suggested by Oseen
[29] it should have a more general formulation depending on the direction of the
nematic field n and the normal to the surface, ν. The more general functional
that can be written is

FS(B, n) = γ
∫
∂B

fS(n, v)da (4.2)

often called anisotropic surface tension. Since fS has to be frame invariant,
and both n and v are unit vectors, fS can only take the form (see [30] for a
rigorous proof)

fS(n, v) = fS(|n · v|). (4.3)
The dot product is the cosine of the angle between them, therefore

fS(n, v) = fS(cos θ). (4.4)

The next question to answer is the form of fS, we set

fS(cos θ) = 1 + ω cos2 θ. (4.5)

27
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where ω > −1. This formula was introduced by Rapini and Papoular [21] and
has been confirmed by several experiments, for example see [31].

For ω = 0 we get the isotropic surface tension, for −1 < ω < 0 we get a
favoured homeotropic alignment, while for ω > 0 we get a favoured tangential
alignment.

The bulk term of the free energy of a drop is given by the Frank-Oseen energy

FB(B, n) =
∫
B

fB(n,∇n)dV (4.6)

Then we can write the total energy of a drop of nematic liquid crystals sur-
rounded by an isotropic fluid as

F (B, n) = FB(B, n) + FS(B, n) (4.7)

where the anistropic tension is given by (4.5). A configuration of the drop,
that is the couple (B, n), is said to be a stable equilibrium configuration if F
is minimized by the configuration.

Let us define a change of variables in B, such that

y = x

V 1/3 (4.8)

where V is the volume of B. The volume of B′ = y(B) is 1. On B′ we define:

n′(y) = n(xV 1/3) ∇n′(y) = V 1/3∇n(V 1/3x) (4.9)

Therefore is it easy to see that F can be written in the form

F = V 1/3FB(B′, n′) + V 2/3FS(B′, n′) (4.10)

In the limit where V tends to 0, the drop is small and the bulk energy term
prevails.

Therefore, for V → 0, F can be approximated as

F = V 1/3FB(B′, n′) (4.11)

In case of nematics, F is minimized by the natural configuration given by a
constant field n = ne.

What does it mean that the drop is small in physical terms? Let ` be the ratio

` := FB(B′, n′)
FS(B′, n′) . (4.12)

A rough estimate of ` can be given by the single constant approximation where

` := K

γ
. (4.13)
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For volumes smaller than `3, the approximation of equation (4.11) holds.

For example, data from Langevin [32] (MBBA at T = 25◦C) give ` ∼ 10−10m,
therefore any possible drop has to be considered large, independently of their
actual size. While in [2], the ratio K/γ has been measured to be ` ∼ 5µm,
therefore any droplet of volume V < (5µm)3 can be considered small.

When V 1/3 < ` the equilibrium shape of the droplet is obtained by minimizing
FS with n = ne.

FS = γ
∫
∂B

fS(ν · ne)dS (4.14)

with the constraint
∫
B dV = V .

This problem was solved with a construction first considered by Wulff in 1901,
which will be examined in the following section.

4.2 Wulff’s construction

In 1901 Wulff [33], studying the growth of crystals, developed the following
model. Let us consider the functional given by:

F [B] := γ
∫
∂B

(
1 + ω(ν · n)2

)
da (4.15)

where B is such that
∫
B dV = V , ν is the unit normal to the surface and n is a

constant vector. The set B minimizing (4.15) results from the so called Wulff’s
construction. Wulff conjectured that is unique; a more general and in-depth
discussion can be found in [34].

In the following, it will be assumed that the liquid crystal is nematic (q∞ =
0). We will use cylindrical coordinates (ρ, θ, z) with the z-axis fixed along n,
n = ez. In addition, we will suppose that B has a cylindrical symmetry around
ez, so the surface can be parametrized by the curve ρ(z). The symmetry for
reflections in the plane z = 0 implies dρ

dz
(0) = 0. To simplify the notation we

define υ := dρ
dz
,thus the infinitesimal area becomes da =

√
1 + υ2dz, and the

scalar product (ν · n) = −υ/
√

1 + υ2.

As boundary conditions we impose ρ(0) = r and ρ(±R) = 0, where r and R
are constrained so that the volume of the region is V .

Equation (4.15) becomes

F (ρ, υ) = 2πγ
R∫
−R

ρ(1 + ω
υ2

1 + υ2

)√
1 + υ2

 dz, (4.16)

where the constants outside the integral can be dropped, since we are interested
in the minimum.
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a) b) c) d)
Figure 4.1: Various shapes of the Wulff drop for ω = −0.5, 0, 0.5, 3 respectively, the arrow represents the
direction of the director field.

Using the Lagrangian multipliers we can impose the constraint on the volume

F̃ (ρ, υ) =
R∫
−R

ρ(1 + ω
υ2

1 + υ2

)√
1 + υ2 − λ

(
1
2ρ

2 − V

2R

) dz (4.17)

Instead of solving the Euler-Lagrange equations, we apply the Beltrami iden-
tity, which ensures that the quantity L − υ ∂L

∂υ
is a constant, where L is the

integrand of equation (4.17). We getλV2R +
ρ
(
1− υ2(ω − 1)

)
(υ2 + 1)3/2 − λρ2

2

 = C, (4.18)

Since ρ(±R) = 0, C = V λ
2R and we get the following function as a first integral

H(ρ, υ) = ρ

1− υ2(ω − 1)
(υ2 + 1)3/2 − λρ

2

 (4.19)

in our case, since ρ(±R) = 0, the orbit on the phase space (ρ, υ) lies on the
implicit curve H(ρ, υ) = 0. This gives

ρ(υ) = 2
λ
· 1− υ2(ω − 1)

(υ2 + 1)3/2 (4.20)

We know that ρ(z = 0) = r and υ(z = 0) = 0, thus we have ρ(υ = 0) = r:

ρ(υ = 0) = 2
λ

= r. (4.21)

This gives
ρ(υ) = r

1− υ2(ω − 1)
(υ2 + 1)3/2 . (4.22)

Solving for ρ = 0 we get the value of υ at z = ±R, that is

υ(±R) = ∓ 1√
ω − 1

. (4.23)

Therefore if ω > 1 the droplet will have a tip angle Θ, with sin Θ/2 = 1/
√
ω.

If ω ≤ 1, ρ(υ) (given by (4.22)) goes to zero only in the limit υ → ∞. If υ
goes to infinity, the droplet is smooth since the tip angle is Θ = 180◦.
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From
dz

dυ
= dz

dρ

dρ

dυ
(4.24)

with (4.22) and the definition of υ we get

dz

dυ
= −r 1

υ

3υ
(
1− υ2(ω − 1)

)
(υ2 + 1)5/2 + 2υ(ω − 1)

(υ2 + 1)3/2

 (4.25)

Integrating both sides, with the condition z(υ = 0) = 0, we arrive at

z(υ) = −
rυ
(
υ2(ω + 1) + 2ω + 1

)
(υ2 + 1)3/2 (4.26)

This last step, together with (4.22), gives us a parametrization of the surface
of the droplet through υ. The possible shapes of the droplet for various ω are
plotted in Figure 4.1.

Since we know that υ is bounded by (4.23), z(υ(±R)) = ±R. If ω > 1 then
we can compute the aspect ratio α substituting (4.23) into (4.22) for z = R:

α := R

r
= 2
√
ω (4.27)

If ω ≤ 1, υ goes from −∞ to +∞, and the aspect ratio is obtained by consid-
ering the limiting case υ →∞ in (4.22):

α := R

r
= ω + 1 (4.28)

The aspect ratio is a continuous function of ω (Figure 4.2):

α(ω) =
2
√
ω ω > 1

1 + ω ω ≤ 1
(4.29)

Figure 4.2: Aspect ratio and tip angle in function of the anchoring strenght ω.

It is important to notice that the droplet will be oblate (α < 1) only in case of
homeotropic anchoring ω < 0. Moreover, the aspect ratio and the tip angle are



32 CHAPTER 4. DROPS

not dependent on the size of the droplet, but only on the anchoring strength
ω.

From (4.22) and (4.26) it is possible to calculate the volume of the droplet. A
solid of revolution has a volume of

V = π

R∫
R

ρ2(z)dz = π
∫
ρ2(z(υ))dz

dυ
dυ (4.30)

which becomes

V = r3


32
105π(1/

√
ω + 7

√
ω) ω > 1

4
105π(ω3 − 7ω2 + 35ω + 35) −1 ≤ ω ≤ 1

(4.31)

We can also compute the value of the free energy from (4.16):

F (ω, r) = γr2


32
35π(1/

√
ω + 7

√
ω) ω > 1

4π
(

1
35ω((ω − 7)ω + 35) + 1

)
−1 ≤ ω ≤ 1

(4.32)

The volume is the variable we are interested in, the next step is solving for r
and substituting in (4.32).

F (ω, V ) = γV 2/3


2 62/3

(
π
35(7
√
ω + 1/

√
ω
)
)1/3 ω > 1

62/3
(
π
35ω((ω − 7)ω + 35) + 1

)1/3
−1 ≤ ω ≤ 1

(4.33)

Figure 4.3: Plot of F in function of ω (solid), expansion around ω =∞ (dashed).

By expanding (4.33) in series around ω = +∞ we get

F (ω, V ) = γV 2/3 2 62/3
(
π

5

)1/3
ω1/6 +O

(
ω5/6

)
(4.34)

at ω = 2 there is only a 1% error between the exact formula and the limit.

Given equations (4.22) and (4.26), we can take the limit ω → ∞, taking into
account that also υ ∈ [−1/

√
ω − 1, 1/

√
ω − 1], we get

ρ(υ) = r(1− υ2) z(υ) = −2rv
√
w (4.35)



4.3. THE ELLIPTIC LEMON COORDINATES 33

4.3 The elliptic lemon coordinates

In this section we introduce the elliptic lemon, which can be seen as an exten-
sion of the lemon coordinates [35]. The coordinates are the following

x = R

e
√

1− c2
(sin v − c) cosu

y = R

e
√

1− c2
(sin v − c) sin u (4.36)

z = R√
1− c2

cos v

where R and e > 0 are parameters, while 0 ≤ c ≤ 1, arcsin(c) ≤ v ≤ π −
arcsin(c), and 0 ≤ u < 2π are the coordinates. The angle φ gives the angle
between the x axis and the projection of the position vector on the xy-plane.
Taking advantage of the revolution symmetry around the z axis, in Figure 4.4
are plotted various curves at fixed v(solid) and fixed c (dashed). The foci of
the coordinates are located at z = ±R.

Figure 4.4: Coordinates curves for v (solid) and c (dashed).

By fixing c = c0 we obtain a two-dimensional revolution surface parametrized
by φ and v, with two important features: The major axis has length corre-
sponding to R, while the minor axis r is

r = R

e

√
1− c0

1 + c0
. (4.37)

Thus, we can compute the aspect ratio of the shape

α = R

r
= e

√
1 + c0

1− c0
(4.38)
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The surface has a tip angle Θ given by

cos(Θ/2) = c0 (4.39)

This implies that through e and c0 we are able to modify the aspect ratio and
the tip angle independently.

The special cases are given by c = 0, where the surface is an ellipsoid of aspect
ratio α = e; and e = 1, where the surface is given by the intersection of two
circles.

The surface can also be expressed in implicit form as follows

z2 = R2 − 2c eR ρ√
1− c2

− e2ρ2 (4.40)

or

ρ = R

e
√

1− c2

√1− (1− c2) z
2

R2 − c

 (4.41)

where ρ =
√
x2 + y2.

We can compute the volume by integrating the surface and we get

V =
2πR3

(
c2 − 6carccos(c)√

1−c2 + 2
)

3 (1− c2) e2 (4.42)

which can be inverted to get the major axis R as a function of the volume

R = 3

√√√√ 3V (1− c2) e2

2π
(
c2 − 6carccos(c)√

1−c2 + 2
) . (4.43)

Figure 4.5: The revolution surface (solid), seen as an intersection of two ellipses (dashed).

The three-dimensional surface can be seen as the intersection of two ellipses of
aspect ratio e, and small radii rell := R/

√
1− c2 separated by a distance rell c.
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If we take the elliptic-lemon surface and impose the constraints

α = 2
√
ω sin Θ/2 = ω−1/2, (4.44)

we get

c =
√
ω − 1
ω

e = 2(ω −
√
ω
√
ω − 1) (4.45)

in this case, ρ(z) is given by

ρ(z) =
√

4r2ω2 − z2 − 2r
√

(ω − 1)ω (4.46)

where r := R/2
√
ω, is the minor axis. Given ρ(z), we can compute υ := dρ

dz

and invert it to express ρ and z as a function of υ. The result is

ρ(υ) = −2r
(√

(ω − 1)ω − ω√
v2 + 1

)
z(υ) = − 2 r v ω√

v2 + 1
(4.47)

Expanding in series for ω = +∞ we get

ρ(υ) = r(1− υ2) z(υ) = −2rv
√
w (4.48)

that is exactly the same result as (4.35). Therefore the shape given by the
Wullf’s construnction for ω → +∞ is the intersection of two ellipses. This
approximation is sufficiently good for ω > 1.8.
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5. Bipolar droplets

In this chapter we introduce one model to explain the first transition, namely
the one between homogeneous and bipolar droplets. This transition has been
explained by Williams in [18] and clarified by Prinsen and Van Der Schoot
in [3] and [36]. In the following, we expand the model developed by Prinsen
and Van Der Schoot in [36], adapting it to the shape described in the previous
chapter.

5.1 The shape of the droplet

We use the elliptic lemon coordinates (Section 4.3) to parametrize the shape
of our droplet. We have the surface parametrized by υ and u with R, c, e as
constants. These parameters allow us to change the volume, the aspect ratio
and the tip angle independently. The main difference with the work done
in [36] is in the parameter e. In that case aspect ratio and tip angle were
constrained, since e = 1. The addition of this last parameter allow us to
increase the degrees of freedom of the surface.

Figure 5.1: Example of the three-dimensional droplet for e = 1.5 and c0 = 0.3.

37
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We are interested not only on the surface, but also on the volume bounded by
it. The coordinates in equation (4.36) can also be used to this aim, by fixing
the minimum value for c to c0, and including c in the coordinates, i.e. (c,υ,u).
For c0 = 0 we get a sphere (or ellipsoid); by shifting the minimum value to c0,
we can get a solid with a fixed tip angle (cos Θ/2 = c0). In this case c0, e and
R are the constants that define the shape of the droplet.

5.2 The director field

From the work of Van Der Schoot and Prinsen [36], we know that the nematic
field of a bipolar droplet is always tangent to its surface and joining one pole
to the other. On the inside, the lines of the nematic field also join one pole
with the other, as shown in Figure 5.2. In the coordinates above, the nematic

Figure 5.2: Section of the bipolar droplet (solid) with the nematic field lines (dashed).

field is given by eυ, the unit vector tangent to the coordinate curve of υ. The
next step is to build a nematic field dependent on a parameter that allows us
to pass continuously from a bipolar to a homogeneous nematic field. We define
a second set of coordinates given by the elliptic lemon coordinates, expanding
the z coordinate by a factor β ≥ 1:

x = R

e
√

1− c′2
(sin v′ − c′) cosu′

y = R

e
√

1− c′2
(sin v′ − c′) sin u′ (5.1)

z = βR√
1− c′2

cos v′

where R and e are the same as above. In Figure 5.3 are shown the droplet
(solid) and the shape given by (5.1)(dashed) for different values of β.

In Figure 5.4 we plot the nematic field n = eυ′ , given by the unit vector tangent
to the coordinate curves of υ′.



5.2. THE DIRECTOR FIELD 39

a) b) c)
Figure 5.3: Section of the bipolar droplet (solid), and shape of the expanded coordinates (dashed) for
β = 1.1(a), 1.3(b), 3(c).

a) b) c)
Figure 5.4: Bipolar droplet (solid), trajectories of n (dashed) with β = 1(a), 1.3(b), 10(c).

In the case β = 1, we get the same result of Figure 5.2, while for β > 1 the
poles of the vector field are located outside the droplet and at β = ∞ we get
a homogeneous vector field.

With this construction, through the parameter β we are able to change the
nematic field from bipolar to homogeneous.

The next step is to compute the Frank-Oseen energy. The bulk energy densities
depend on the following terms, expressed in the (c′, υ′, u′) coordinates:

∇ · n =
2
√

1− c′2e
(
1− β2e2

)
sin(2υ′)

R
(
β2e2 + (1− β2e2) cos(2υ′) + 1

)3/2 (5.2)

‖∇ × n× n‖2 =
8β2

(
1− c′2

)
e4

R2 (β2e2 + (1− β2e2) cos(2υ′) + 1
)3 (5.3)

∇× n · n = 0 (5.4)
Leaving out the saddle-splay term, the total free energy is

F =
∫
B

K1(∇ · n)2 +K3‖∇ × n× n‖2 dV + γ
∫
∂B

1 + ω(n · ν)2dS (5.5)

Since we want to minimize F at constant volume, we can employ equation
(4.43), thus we can rewrite the three terms as follows

K1

∫
B

(∇ · n)2dV =: K1V
1/3Y (5.6)

K3

∫
B

‖∇ × n× n‖2 dV =: K3V
1/3B (5.7)
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γ
∫
∂B

dS =: γV 2/3S (5.8)

γω
∫
∂B

(n · ν)2dS =: γωV 2/3A (5.9)

where Y,B, S,A are the integrals independent of V . Let κ := K1/K3, we can
write

F = K3V
1/3(B + κY ) + γV 2/3(S + ωA) (5.10)

To carry out the minimization we compute the various integrals B, Y, S and
A numerically for various β, c0 and e. Minimizing F at a constant volume is
equivalent to minimizing F̃ defined as

F̃ = (B + κY ) + λ(S + ωA) (5.11)

at constant λ, where λ := γV 1/3

K3
.

From [2] and [15], we set κ = 1 and ω = 2, and proceed to numerically minimize
F̃ . We compute the energy terms for various configurations given by e, c0 and
β and weight them with λ, where λ goes from 10−3 to 103. Instead of c0 and
e consider for representation the aspect ratio α and tip angle Θ (in degrees),
where

Θ = 360
π

arccos(c0) α = e

√
1 + c0

1− c0
, (5.12)

In Figure 5.5 we plot the values of Θ as a function of α for various λ.

Figure 5.5: Path in the Θ, α space of the minimum of the energy. For ω = 2 and κ = 1. The big black
circle represents the Wulff’s construction.

In Figure 5.6 are shown the behaviour of the three quantities as a function of
λ. Since λ ∝ V 1/3 a small lambda implies a small volume.
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a)

b)

c)
Figure 5.6: Plot of β (a), Θ(b) and α(c) as a function of λ.
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We see that when λ → 0, α and Θ tend to the value given by the Wullf’s
construction, represented as a black dot in Figure 5.5. The numerical analysis
does not converge exactly to the value given by the construction, where for
ω = 2, α ≈ 2.8 and Θ = 90◦. The difference may be due to the fact that the
shape we are using is not exactly the Wullf’s shape, but an approximation for
large ω; moreover, the nematic field is not exactly homogeneous since β = 10.

As the volume increases, when λ ≈ 1 the aspect ratio begins to decrease
monotonically, to finally converge to 1 for large volumes. The same happens
for β, the parameter that modifies the nematic field. Therefore, the poles
of the nematic field get closer to the poles of the droplet. When β = 1 the
nematic field is exactly bipolar.

The behaviour of Θ is not monotonous. It starts from 74◦ and grows. At λ ≈ 1
the value drops quite sharply to 60◦ and then grows monotonically to 180◦.

For large volumes, when λ→ +∞, the shape is a sphere: α = 1 and Θ = 180◦.
The nematic field is perfectly bipolar, in fact β = 1.

5.2.1 Comparison with experimental data

In Figure 5.7, we plot the result of the numerical analysis with the data from
[15].

Figure 5.7: Result of the theory (black) with the data (blue).

While being close to the experimental data, the theory with the given parame-
ters systematically underestimates Θ for any α. We know that the theoretical
curve depends only on the two parameters κ and ω. By numerical inspection,
we see that the theoretical prediction is not affected by the value of κ, while
it depends mainly on ω.

The best fit is given by ω = 1.7. In Figure 5.8 we plotted the result for that
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Figure 5.8: Result of the theory (black) for ω = 1.7, with the data (blue).

value of ω and κ = 1. The analysis done in the previous paragraph remains
the same qualitatively.

Figure 5.9 and Figure 5.10 show the aspect ratio and tip angle as a function
of λ for the theory and from the data.

Figure 5.9: Aspect ratio as function of λ: theory (black) for ω = 1.7, with the data (blue).

The ratio K/λ necessary to compute λ has be choosen to best fit the data. In
this case K/λ = 15µm, larger than the one estimated in [2] by a factor of 15.

In Figure 5.9 the aspect ratio is plotted in function of λ. In both cases, the
aspect ratio decreases with increasing volume, but with different slopes. The
disagreement may be due to errors in the measurements or to an error in the
estimate of the ratio K/γ. By changing that ratio, the data set gets shifted
on the the λ axis but does not change the slope of the set.

In Figure 5.10 the tip angle Θ is plotted per different volumes. For K/γ = 1
and ω = 1.7. The agreement is quite nice, although a slight deviation is visible.
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Figure 5.10: Tip angle as function of λ: theory (black) for ω = 1.7, with the data (blue).



6. Confined twisted field

In this chapter we introduce a first model that takes into account the twist.
This will serve as a blueprint for the next chapter. Here we consider a nematic
field with only the twist energy term in the bulk energy.

6.1 The nematic field

In this chapter we want to study the case of a twisted nematic field

n = cos(qx3 + φ)e1 + sin(qx3 + φ)e2 (6.1)

under confinement.

For simplicity, we will consider an elliptic droplet with aspect ratio α, whose
axis is directed along ez. This means that the surface is described by the
equation (Figure 6.1)

x2 + y2 + z2

α2 = r2 (6.2)

where r :=
(

3V
4πα

)1/3
and V is the volume of the ellipsoid, which will be treated

as a constant of the droplet.

a) b)
Figure 6.1: Surface of a prolate ellipsoid with α = 1.5, and of an oblate ellipsoid with α = 0.5.
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6.2 Case 1: Parallel axes

In this case we allineate the cholesteric axis with the revolution axis of the
ellipsoid. the director field is

n = cos(qz + φ)ex + sin(qz + φ)ey (6.3)

Plugging this formula into eq. (3.23), the bulk energy is simply given by

FB = K2(q − q∞)2V (6.4)

as shown in the previous chapter, independent of α and φ.

The surface energy can be computed as follows

FS = γ
∫
∂B

(
1 + ω(n · ν)2

)
dS. (6.5)

By parametrizing the surface as z = ±αr
√

1− ρ2, we get dS = ρ

√
1 +

(
∂z
∂ρ

)2
dρdu,

where x = rρ cos(u) and y = rρ sin(u). The scalar product becomes

(n · ν) =
cos(u) cos(qz + φ)∂z

∂ρ
+ sin(u) sin(qz + φ)∂z

∂ρ√
1 +

(
∂z
∂ρ

)2
(6.6)

We can split the two contributes of (6.5) as

FS = V 2/3γ(S + ωA), (6.7)

the isotropic surface tension is

S = 2
(

3
4πα

)2/3 1∫
0

dρ

2π∫
0

duρ2

√
(α2 − 1) ρ2 + 1

1− ρ2 (6.8)

where the 2 comes from the fact that the integration is the same if carried out
on the upper (z > 0) and lower (z < 0) half of the ellipsoid. Performing the
integration, we obtain

S = 2π
(

3
4πα

)2/3


α2 log

(√
1−α2+1
α

)
√

1− α2
+ 1

 . (6.9)

The anisotropic part has the form

A = A+ + A−, (6.10)

where

A± =
(

3
4πα

)2/3 1∫
0

dρ

2π∫
0

du
α2ρ3 cos2

(
φ− u± αq

√
1− ρ2

)
√

1− ρ2
√

(α2 − 1) ρ2 + 1
(6.11)
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with + and - indicating the upper and lower half of the ellipsoid, respectively.
In both cases, integrating over u from 0 to 2π gives

A± =
(

3
4πα

)2/3 1∫
0

dρ
α2ρ3π

√
1− ρ2

√
(α2 − 1) ρ2 + 1

(6.12)

The dependence on φ, q and z disappears, therefore A+ = A− and A = 2A±.
Integrating on ρ we get

A = 2π
(

3
4πα

)2/3
α2

4 ·

(
2− α2

)
log

(
−α2+2

√
1−α2+2

α2

)
− 2
√

1− α2

(1− α2)3/2 (6.13)

Equation (6.9) and (6.13) are plotted in Figure 6.2.

a) b)
Figure 6.2: (a) Plot of S(α) and (b) plot of A(α).

The surface energy
FS = γV 2/3 (S + ωA) (6.14)

does not depend on q or the phase φ. Therefore, the value of q is obtained by
minimizing (6.4), i.e. q = q∞, while the aspect ratio is given by minimizing
FS. In Figure 6.3(a) FS is plotted for various ω.

The α∗ minimizing of FS depends only on ω, and is shown in Figure 6.3(b).
The favoured shape for positive anchoring strength is given by oblate ellipsoids.

a) b)
Figure 6.3: (a) Plot of S + ωA for ω = 1 (solid), 3(dashed) and 10(dot-dashed); (b) Plot of α∗(ω)

Therefore, this simple model gives a constant natural twist q∞ for every vol-
ume, with an aspect ratio only dependent on ω. The favourite shape is an
oblate ellipsoid.
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From the jones matrix calculus we can simulate the cross-polarized microscope
with the parameters above and get the image reported in Figure 6.4.

Figure 6.4: Simulation for α = 0.5.

6.3 Case 2: Perpendicular axes

In this case we align the cholesteric axis perpendicularly to the revolution axis
of the ellipsoid. Therefore we have

n = cos(qx+ φ)ez + sin(qx+ φ)ey (6.15)

As in the previous case, the bulk energy remains (6.4) and FS = V 2/3γ(S+ωA),
with S as before. We want to compute the anchoring energy

A = A+ + A−, (6.16)

also in this case A+ = A−, that is A = 2A±:

A = 2
(

3
4πα

)2/3 1∫
0

dρ

2π∫
0

du ρ
α2ρ2 sin(u)2 sin2(φ+ qrρ cos(u)) + (1− ρ2) cos2(φ+ qrρ cos(u))

√
1− ρ2

√
(α2 − 1) ρ2 + 1

.

(6.17)

It depends on q, r and α. We can rescale q as q̃ = qV 1/3 and r̃ = r/V 1/3 =(
3

4πα

)1/3
, so that the integral does not depend on V . The results for different

values of α and φ are shown in Figure 6.5.

The resulting shape of A is Bessel-like, see Figure 6.6 . In the case of α > 1
and φ < π

4 , q̃ = 0 is a minimum, while is a maximum for φ > π
4 . Its global

minimum (maximum) value is reached at φ = 0 (φ = π/2). The reverse is
valid for α < 1 where the minimum (maximum) is attained at φ = π

2 (φ = 0).
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a)

φ = π/2

φ = π/3

φ = π/6

φ = 0
b)

φ = π/2

φ = π/3

φ = π/6

φ = 0

Figure 6.5: Plot of A for α = 1.5(a) and α = 0.5(b) for various values of φ = 0, π/6, π/3, π/2.

a) b)

α = 0.5

α = 3

Figure 6.6: a) Plot of A for α = 3, φ = 0; (b) Plot of A for α = 3(φ = 0), α = 0.5(φ = π/2), and α = 1
(dashed).

For any φ, A converges for q̃ → ±∞ to a value depending solely on α. Since
we are interested in finding the minima, we will assume φ = π/2 when α < 1
and φ = 0 when α > 1.

For each α we can compute the value of A at q̃ = 0 and at q̃ = ±∞:

A0 :=
(
π

2

)1/3
(

3
α

)2/3


1

1−α2 + α2 tan−1(√α2−1)
(α2−1)3/2 α ≥ 1

α2
(√

α2−1+(α2−2) tan−1(√α2−1)
)

2(α2−1)3/2 α < 1.
(6.18)

A∞ := π

2

(
3

4πα

)2/3
α2 − 2
α2 − 1 +

α4atan
(√

α2 − 1
)

(α2 − 1)3/2

 (6.19)

and plot the functions in Figure 6.7. From the graph we can see how the
anchoring is minimized when the adimensional twist is zero, q̃ = 0. Therefore
the anchoring prefers an untwisted regime, where qV 1/3 → 0, rather than a
fully twisted one.
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Figure 6.7: Plot of A0(α) (solid), A∞ (dashed).

Contrary to the parallel case, here we can distinguish two different behaviours.
The two limiting behaviors correspond to q̃∞ → 0 and the second when q̃∞ →
∞. Indeed, the choice of the minimizing twist lies mainly on the bulk term,
as its parabolic form diverges for values too far from q∞, while in contrast A
is always finite (see Figure 6.6).

If q̃∞ → 0, the anchoring strength does not depend on q. The twist term is
minimized by the bulk energy, thus q = q∞ and A tends to A0. The total
energy, in this case, has the form

F = γV 2/3(S + ωA0) (6.20)

It depends only on α, and it is plotted in Figure 6.8(a).

a) b)
Figure 6.8: When q̃∞ → 0: Plot of F for ω = 1 (solid) and ω = 2 (dashed) (b); Plot of α∗.

We can minimize with respect to α and get the α∗ that minimizes FS for each
ω (Figure 6.8(b)). In this case the prolate ellipsoid is favoured.

For q = q∞, q̃∞ → 0 implies that the radius of the droplet is much smaller than
the natural pitch. This means that the droplet can be interpreted as being in
the homogeneous case, where the nematic field is constant everywhere inside
it. We can visualize the result in Figure 6.9.

If q̃∞ →∞, then A tends to A∞. As before the twist is minimized by q = q∞
and F has the form

F = γV 2/3(S + ωA∞) (6.21)
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Figure 6.9: Simulation for α = 2 and q∞V 1/3 → 0.

The free energy depends only on α, and is plotted in Figure 6.10(a).

We can minimize respect to α and get the α∗ in Figure 6.10(b).

a) b)
Figure 6.10: For q̃∞ →∞: Plot of FS for ω = 1, 2 and 5 (a); Plot of α∗ (b).

Also in this case the prolate ellipsoid is favoured, while the pitch is minimized
at its natural value. This case can be considered as the cholesteric phase,
where birefringent bands form on the droplet, as shown in Figure 6.11.

Figure 6.11: Simulation for α = 2 and q∞V 1/3 →∞.
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By comparing the aspect ratio of the two cases plotted in Figure 6.8(b) and
Figure 6.10(b), one can see that the equilibrium aspect ratio is larger for the
homogenous phase than for the cholesteric phase. This simple model gives a
transition between two different aspect ratios, depending on the volume.

When q̃∞ ∼ 1, the anchoring energy couples the aspect ratio α and the twist
q. The total energy is

F = K2V (q − q∞)2 + V 2/3γ
(
S(α) + ωA(α, qV 1/3)

)
(6.22)

For simplicity, we limit the model to the case where α > 1 is a constant. Thus,
we can drop the surface term from (6.22) to obtain

F = K2V (q − q∞)2 + V 2/3γωA(qV 1/3) (6.23)

which can be rescaled as

F̃ = λV 1/3(q − q∞)2 + A(qV 1/3) (6.24)

where λ := K2
γω

. The bulk term is a parabola centered in q∞, while A is a
Bessel-like function as diplayed above. By fixing λ = 1 and q∞ = 0.25 and by

a) b)

c) d)
Figure 6.12: Plot of A(qV 1/3) (green) and V 1/3(q − q∞)2 (dashed blue) and their sum (orange) as a
function of q for V = 1(a), 100(b), 1 000(c), 10 000(d).

changing the volume, we plot the various results in Figure 6.12. In the first
plot (a), at a very small volume the energy has a minimum for q = q∞. As the
volume increases, the overall shape of A contracts proportionally to V 1/3 and
begins to shift the minimum towards a smaller q, i.e. a longer pitch p > p∞.
For even larger volumes the anchoring reaches the plateau given by A∞, and
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the parabola of the twist energy shrinks and brings the twist to its natural
value q∞.

To get an estimate of the transition volume, guided by (6.12)(c), we see that at
the transition, the difference between the minimum (A0) and the plateau value
(A∞) for the anchoring energy is roughly equal to the energy of the untwisted
(q = 0) cholesteric, namely

V 2/3γω(A∞ − A0) = V K2q
2
∞ (6.25)

by letting ∆ := A∞ − A0 we get the transition volume from the homogenous
to the cholesteric phase:

Vh→c =
(
γω∆
K2q2

∞

)3

(6.26)

The quantity ∆ is in of the order of the unity for α > 1, as shown in Figure 6.13.

Figure 6.13: Plot of ∆ = A∞ −A0.

The model presented above displays two different phases that we called homo-
geneous and cholesterics. The phase change is driven by the volume, where
we observe a change in aspect ratio. The critical volume for the transition has
been estimated to be as in equation (6.26).

If we compare the two cases, the parallel axes case and the perperdicular axes
case, when V 1/3q → 0, the bulk energy is always minimized, while FS depends
solely on α as shown in Figure 6.14(a). The energy value for the prolate in
the perpendicular axis is lower, thus for small volumes this configuration is
preferred.

a) b)
Figure 6.14: Plot of FS for the perpendicular axis case (dashed) the parallel axis case (solid), when ω = 2
as a function of α.
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When V 1/3q → ∞, the bulk energy is also minimized and in this case FS is
shown in Figure 6.14(b). The energy value for the oblate in the parallel axis
case is lower, thus for larger volumes this configuration is preferred.

As explained in Chapter 2, the shape of the cholesterics droplets has been
shown to be a prolate ellipsoid, thus this model is not able to predict the
correct shape of the observed droplets.

In the following chapter we expand these models, in attempt to get the whole
phenomenology in a unified model.



7. Cholesterics and onions

In this chapter we introduce a model capable of describing the whole phe-
nomenology of the droplets described in chapter 2.

7.1 Oblate spheroidal coordinates

At first, we introduce the oblate spheroidal coordinates, from [37].

x = βστ

y = β
√

1 + σ2
√

1− τ 2 cosu (7.1)
z = β

√
1 + σ2

√
1− τ 2 sin u

where σ ∈ R, 0 ≤ τ ≤ 1 and 0 ≤ u < 2π, while β > 0 is a parameter. If we
look at the the coordinate curves in the plane x, y, we obtain the coordinate
curves shown Figure 7.1, where the foci of the dashed ellipses are located at
(0,±β).

x

y

Figure 7.1: Coordinates curves for τ (solid) and σ (dashed). The 3D view is given by a revolution around
the x-axis.

55
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We define the following quantities to simplify the notation:

S1 :=
√

1− τ 2, S2 :=
√
σ2 + τ 2, S3 :=

√
1 + σ2 (7.2)

The metric induced by the coordinates is diagonal:

g =

 h2
σ 0 0

0 h2
u 0

0 0 h2
τ

 (7.3)

where hσ = β S2
S3
, hu = βS1S3 and hτ = β S2

S1
. As a consequence the three unit

vectors eσ, eu, eτ form an orthonormal basis.

7.2 The nematic field

The nematic field introduced here is parametrized by spheroidal coordinates.
We suppose that in the disk y2 + z2 < β2 at x = 0 the nematic field is directed
along the z-axis, that is n = ez, see Figure 7.2(a), or in the new coordinates

n1 = cos(u)eu − sin(u)eτ (7.4)

while we define n2 = − sin(u)eu− cos(u)eτ as the vector perpendicular to n1.

a) b)
Figure 7.2: (a) Nematic field inside the disk y2 + z2 < β2 at x = 0. (b) The cholesterics axis (solid) with
the nematic field (arrows) for β = 1 at y = 0.

We want to use the coordinate curves of σ as the axes for our model. Therefore
by Levi-Civita parallel transport, we transport n1 and n2, along the coordinate
curves of σ. Since the coordinates are orthonormal and the parallel transport
is a linear map, when applied on n1 and n2 along a coordinate curve gives
back, respectively, n1 and n2. The nematic field is built by implementing an
helix between n1 and n2 depending on βσ, such that for x = 0 (i.e. σ = 0), we
get n = n1. So we obtain

n = cos(qβσ)n1 + sin(qβσ)n2 (7.5)
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which becomes
n = cos(qβσ + u)eu − sin(qβσ + u)eσ (7.6)

where q is the wave number of the helix.

7.3 The parameter β

Before discussing the energy given by the nematic field we analyse the be-
haviour for different values of β.

The coordinates (7.1) can be inverted to express σ, τ and u as a function of
x, y, z and β. If we take the limit for β →∞ we obtain

σ = x/β τ = 1 u = arctan 2(y, x) (7.7)

which substituted into (7.6) gives

n = cos(qx)ez + sin(qx)ey. (7.8)

Therefore the nematic field becomes a cholesteric with the axis given by ex,
and twist given by q. In Figure 7.3(a) the cholesteric axes are plotted.

In the limit β → 0, σ becomes

σ = sgn(x)
√
x2 + y2 + z2

β
(7.9)

and the nematic field has the axes divergent from the origin, which is better
express in spherical coordinates (r, θ, φ) aligned with the x-axes:

n = cos(qr)eu + sin(qr)eθ. (7.10)

the result is also shown in Figure 7.3(c).

7.4 The Frank-Oseen energy

Given the nematic field as in equation (7.6) we compute the various terms of
the Frank-Oseen energy.

∇ · n = sin(qβσ + u)
βS1

τ
(
σ2 + 2τ 2 − 1

)
S3

2
− 1
S3

 (7.11)

(∇× n)σ = cos(βqσ + u)
β

(τS3 − S2)
S1S2S3

(7.12)

(∇× n)u = sin(βqσ + u)
β

σS3

S3
2

+ q cos(βqσ + u)S3

S2
(7.13)

(∇× n)τ = cos(βqσ + u)
β

σ

S2S3
− q sin(βqσ + u)S3

S2
(7.14)
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a) b)

c)
Figure 7.3: Cholesterics axes plotted for different values of β : (a) = 100, (b) = 1, (c) = 0.01. As a reference,
a circle of unitary radius is plotted.

∇× n · n = q
S3

S2
+ sin(2(βqσ + u))

β

σS2
1

2S3S3
2

(7.15)

‖∇ × n× n‖2 = 1
β2

(
S2

1S3 − 2τS2

S2
1S

2
2S3

+ σ2(S2
2 + S2

3 − S2
1 cos(2(βqσ + u)))2

4S6
2S

2
3

)
(7.16)

We want to adimensionalize the previous quantities, to decrease the number
of variables. Since the former have to be integrated on a set of fixed volume
V , we use V 1/3 as length to rescale the coordinates. The length scale of the
spheroidal coordinates is given by β therefore it becomes

β → βV 1/3 (7.17)

another length scale is given by the pitch of the nematic field, through q = 2π/p

p→ p V 1/3 ⇒ q → q/ V 1/3 (7.18)

From the energy densities showed in the previous section, we get that the bend
and splay characteristic length is given by β, while the twist scales both with
q and β.

7.5 The droplet shape

In the following we will integrate the Frank-Oseen energy in an ellipsoid, with
its axis directed along ez, with aspect ratio α and volume V . Since the volume
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is simply given by
V = 4

3παr
3 (7.19)

where r is the radius, we get that the domain of integration can be expressed
as follows

x2 + y2 + z2

α2 ≤ r2 =
(

3
4πα

)2/3

V 2/3 (7.20)

therefore by scaling the coordinates by a factor V 1/3, x→ xV 1/3 we get

x2 + y2 + z2

α2 ≤
(

3
4πα

)2/3

(7.21)

which is independent of the volume V .

7.6 Twist energy

For cholesterics we know that the twist energy density f2 is given by

f2 = (∇× n · n− q∞)2 (7.22)

that can be expanded into three terms

f2 = (∇× n · n)2 − 2q∞ (∇× n · n) + q2
∞; (7.23)

As shown in (7.15), the ∇ × n · n has two parts, one scaling with q and one
with 1/β. We define t11 := S3/S2 and t10 := sin(2(βqσ+u))σS2

1/2S3S
3
2 so that

(7.15) = qt11 + t10/β, and (7.23) becomes

f2 = q2t22 + q

β
t21 + 1

β2 t20 − 2q∞
(
q t11 + 1

β
t10

)
+ q2

∞ (7.24)

where t22 := t211, t21 := 2t11t10 and t20 := t210. Integrating f2 over the ellipse of
(7.21) we get

F2 =
∫
f2 dV = q2T22 + q

β
T21 + 1

β2T20 − 2q∞
(
q T11 + 1

β
T10

)
+ q2

∞ (7.25)

where the uppercase Tij is the integral over the volume of the respective tij
and depends on q, β and α.

Since the volume of integration is set to be 1, we can go back to q → V −1/3q
to get the energy for each V , while we keep β adimensional.

F2 = V
∫
f2 dV = q2V T22+V 2/3 q

β
T21+V

1/3

β2 T20−2q∞
(
q T11V + 1

β
T10V

2/3
)

+q2
∞V

(7.26)
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We can regroup the terms depending on V to obtain

F2 = V (q2T22 − 2q∞qT11 + q2
∞) + V 2/3

β
(qT21 − 2q∞T10) + V 1/3

β2 T20 (7.27)

Looking closely at t10, we notice that its dependence on u is only in the form

t10 ∝ sin(2u+ ...) (7.28)

If we parametrize the domain of integration, the ellipsoid, with cylindrical
coordinates around the x axis,

x = x

y = ρ cosu (7.29)
z = ρ sin u

the domain of integration for u will be of the form [π/2 − δ, π/2 + δ] and
[−π/2 + δ,−π/2− δ], where δ depends only on x and ρ. Therefore the integral
on these domains of (7.28) is zero, and T10 = 0.

The same can be done for T21 since t11 does not depend on u, and both terms
for symmetry are zero. The twist energy has the form

F2 = K2V (q2T22 − 2q∞qT11 + q2
∞) +K2

V 1/3

β2 T20 (7.30)

7.7 Bulk energy

Both bend and splay energy density depend on the product qβ and are inversely
proportional to β2. Let F1 be the splay energy and F3 the bend energy. We
define Y and B to simplify the notation as the quantities satisfying

F1 := K1
V 1/3

β2 Y (7.31)

F3 := K2
V 1/3

β2 B (7.32)

so together with (7.30) we get

FB
K2

= V 1/3

β2 (κ1Y + κ3B + T20) + V (q2T22 − 2q∞qT11 + q2
∞) (7.33)

where κ1 := K1/K2 and κ3 := K3/K2.
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7.8 Total energy

The surface energy term is given by

FS = γ
∫

1 + ω(n · ν)2 dS. (7.34)

Changing coordinates such that β → βV 1/3 we get

FS = γV 2/3 (S + ωA) (7.35)

where S is the surface of the ellipsoid and depends solely on α, while A is
the anchoring term and depends on α, β and qV 1/3. By putting everything
together we get

F = K2V (q2T22−2q∞qT11+q2
∞)+γV 2/3 (S + ωA)+K2

V 1/3

β2 (κ1Y + κ3B + T20)
(7.36)

7.9 Numerical analysis

In order to minimize the energy (7.36), we need to set the values of the various
parameter. In [15] and [2], they were estimated as:

K2 = 0.3 · 10−5µN κ1 = 3 κ3 = 3
γ = 0.6 · 10−6Nm−1 ω = 2 (7.37)
q∞ = 0.4µm−1 p∞ = 15µm

However to better fit the data, both κ1,3 and γ have been adapted by a factor
2, that is

γ = 1.2 · 10−6Nm−1 κ1 = κ3 = 6 (7.38)

The comparison with the experimental data will be discussed in the last sec-
tion. We use q, β and α as the parameters to minimize the free energy, while
we change the volume from V = 10 (µm)3 to V = 106 (µm)3. We span β from
0.05 to 2 with steps of 0.05 and q from 0 to 40 with steps of 0.1. The last
parameter is α and it goes from 0.75 to 3.0 with steps of 0.25. Each integral is
calculated with a step of 0.004, in an ellipse of volume 1, and finally rescaled
by V .

In Figure 7.4 we show the plot of the parameters that minimize F , to improve
the readability we divide β by the major axis of the ellipsoid that is β̃ =

β(
3α2
4π

)1/3 , so that when β = 1 we know that the foci of the director field lie

on the vertices of the ellipsoid, for β̃ > 1 they are outside and for β̃ < 1 they
are inside; on the other hand, instead of the twist number q, we plot the pitch
p = 2π/q, that is a length, in micrometers.
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(µm)3

˜

(µm)3

(µm)

(µm)3

Figure 7.4: From top to bottom: Plot of the aspect ratio, plot of the parameter β̃ and plot of the pitch as
a function of the volume V .
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Figure 7.5: Jones’ matrices simulation for V = 100, α = 2.7, β = 2, and schematic of the director field

When the volume is very small, V < 300(µm)3, the aspect ratio is quite high
(α = 2.7) , β is higher than 1 and decreasing with volume, the pitch is bigger
than the size of the droplet, i.e. the nematic field is basically untwisted.

Therefore, for small volumes we obtain homogeneous droplets, as can be seen
from the Jones matrix simulation in Figure 7.5.

As soon as the volume increases, β gets closer to one, and also the aspect
ratio α decreases. This regime corresponds to the continuous transition from
a homogeneous droplet, β � 1, to a bipolar one, β ∼ 1. This transition has
been better explained by [36], and in the previous chapter. As soon as the
volume reaches a value of 1000(µm)3 the typical signs of the bipolar droplets
appear,as shown in Figure 7.6.

Figure 7.6: Jones matrices simulation for V = 1000, α = 2.5, β = 1.2. At two different angles of the
polarizers.

In this model the shape is an ellipsoid with only α as a degree of freedom.
Since this transition is mainly led by the anchoring energy, and the anchoring is
strongly dependent on the shape of the droplet, the results for the homogeneous
to bipolar droplet show some noise due to numerical imprecision.
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When the volume reaches∼ 3000µm3, the pitch goes from increasing to sharply
decreasing. We are in the region where V 1/3 is in the same order of magnitude
of the pitch. From V > 3000µm3 we observe a constant aspect ratio α = 1.15
and a slowly decreasing β.

Figure 7.7: Schematics of the nematic field in case of a bipolar droplet β = 1.5 and α = 2.5, and for a
cholesteric one β = 1.2, α = 1.15.

We are in the regime of the cholesterics droplets. The higher the volume, the
more bands we can see. The distance between bands is fixed at p = 17µm, but
different from the value of the natural pitch p∞ = 15µm. The Jones’ matrices
simulation are shown in Figure 7.8.

Differently from what is observed experimentally, here we see a constant pitch
for increasing volume. This could be due to the shape of the droplet, since the
anchoring strength is still important at these volumes. Increasing the degrees
of freedom of the shape of the droplet may be a lead for further analysis.

As the volume of the particle is allowed to grow even further, V > 3 · 105µm3,
we see a sharp transition where β drops to zero, p = p∞ = 15µm and α = 1.
This is the last transition observed experimentally. What the model predicts
is the cholesteric to onion transition. We see that the pitch goes to its natural
value, and the shape becomes a perfect sphere α = 1. The value of β = 0.05 is
the lowest value that it can assume numerically. Therefore it is legit to think
that β may indeed tend to 0.

7.10 The onions

In the following we analyse each term in equation (7.36). The term T22 depends
only on β and α. In the limit β → ∞ and β → 0, T22 tends to 1. For
intermediate β, it presents a maximum depending on α.

Also T11 depends only on β and α, from Figure 7.11(b) we get the same
behaviour as T22.
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Figure 7.8: Jones’ matrices simulation for α = 1.15, β = 1.2 and V = 104, 5 · 104, 105, 3 · 105.

Figure 7.9: Schematics of the nematic field in case of β = 0.05, α = 1 and q = q∞.

From these two terms we can obtain the minimum q that minimizes the first
term in (7.27). It corresponds to the minimum in case of V →∞.

dF2

dq
!= 0⇒ q = T11

T22
q∞, (7.39)

or also
p = T22

T11
p∞. (7.40)
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Figure 7.10: Jones’ matrixes simulation for α = 1., β = 0.05 and V = 3 · 105, 106.

a) b)
Figure 7.11: Plot of T22(a) and T11(b) versus β for α = 1(solid), 1.5 (dashed), 2 (dotted).

The ratio T11/T22 is plotted in Figure 7.12(a).

a) b)
Figure 7.12: Plot of T22/T11(a) and F2 at q = T11/T22(b) versus β for α = 1(solid), 1.5 (dashed), 2
(dotted).

Calculating the energy at q = T11
T22
q∞ we get

F2 = V q2
∞

(
1− T11

T22

)
, (7.41)
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therefore in the limit V →∞, from Figure 7.12(b) we get that either β →∞
or β → 0. We notice that is true for every value of α considered.

Next we analyze the second term given by

γV 2/3 (S + ωA) . (7.42)

The anchoring depends only on the product βqV 1/3. When the twist is mini-
mized, q = q∞, and β = 0 or β =∞. In the case β = 0, the anchoring depends
on α as in Figure 7.13(a). In case of β → ∞, from the previous chapter, we

a) b)
Figure 7.13: (a) Plot of A for β = 0 against α; (b) Plot of A for β → ∞ against α for βq∞V 1/3 → 0
(solid) and βq∞V 1/3 →∞ (dashed).

have basically two possible regimes βq∞V 1/3 → 0, in Figure 7.13(b, solid), and
βq∞V

1/3 →∞ , in Figure 7.13(b, dashed). We know that S depends only on
α and it reaches its minimum at α = 1, therefore it is easy to see that in case
of V 1/3 →∞, we have

β = 0, q = q∞, α = 1. (7.43)

for whatever values of the parameters Ki, γ, ω(> 0).

However, when β → 0 the V 1/3 term tends to infinity. In Figure 7.14 we plot
the remaining three terms for α = 1. They are

1
β2 (K1Y +K3B +K2T20) (7.44)

In the plot in Figure 7.14 we can see the behaviour of the three integrals,
namely: B/β2 (bend), Y/β2 (splay) and T20/β

2 (twist), expressed as a function
of β. From the plot we see that the diverging term is given by the bend energy.
Once we set α = 1, to determine the equilibrium parameter of the onion we
basically need three terms

V K2Tq
2
∞ + V 2/3γωA+ V 1/3K3

B

β2 (7.45)

where T := (1− T11
T22

), as in equation (7.41).

By summing the above energies with the coefficients in (7.37) we get the be-
haviour for different volumes, shown in Figure 7.16.
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Figure 7.14: Plot of the V 1/3 terms: bend (solid), splay (dashed) and twist(dotted).

a) b)

c)
Figure 7.15: a)Plot of the anchoring energy A for α = 0, as a function of β, for q∞V 1/3 → ∞. (b) Plot
of the twist term T . (c) Plot of the bend term B/β2.

Figure 7.16: Equation (7.45) for two different volumes V = 104 and 106.

The graphs show that the bend and the twist terms contribute to get the
equilibrium value for β, while the anchoring decides whether we are in the
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cholesteric regime β > 1 or in the onion phase β → 0. These plots only
show qualitatively the transition between cholesteric and onion phase. In the
following section we tackle the issue by a scaling approach.

7.11 A scaling approach

Guided by the previous section, we want to get a scaling relationship for the
cholesterics-onion transition.

Looking at Figure 7.17 we know that β sets the scale of the inner core of the
onion droplet, where basically the helixes (represented in dashed lines) of the
cholesterics are untwisted. The outer shell of the onion contributes to the

β

V 1/3

Figure 7.17: Schematics of a onion droplet, where the major radius scales with V 1/3 the inner radius scales
with β. The cholesterics axes are drawn with a dashed line.

energy through the bend energy, whose energy density scales with 1/r2 that
averaged on the shell gives:

〈
1
r2

〉
=
∫ V 1/3

β
r2

r2drdθdφ

V − β3 ∼ V 1/3 − β
V − β3 . (7.46)

Therefore the bend energy scales as

K3(V − β3)
〈

1
r2

〉
= K3(V 1/3 − β) (7.47)
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The inner core has an energy corresponding to the untwisted cholesterics is
proportional to K2

Vcore
p2
∞

. As the volume of the core is proportional β3, we can
write

F ∼ K3(V 1/3 − β) +K2
β3

p2
∞

(7.48)

minimizing the former with respect to β we get

β ∼
√
K3

K2
p∞ = √κ3p∞ (7.49)

Therefore the nucleus of the onion droplet has a radius that scales with p∞.
Putting back β into (7.48) we get

Fonion ∼ K3
√
κ3p∞ (7.50)

since at the minimum both terms have roughly the same intensity (V 1/3−p∞) ∼
p∞.

A more general result can be obtained by considering an ellipse of aspect ratio
α. In this case we set r and R as the minor and major axes, respectively, such
that R/r = α and V = αr3. Following [3], the bending energy density scales
as (r/R2)2. The average of that quantity on the outer shell becomes〈

r2

R4

〉
=
〈

1
α4r2

〉
= 1
α3

∫ (V/α)1/3

β drdθdφ

V − αβ3 = 1
α3

(V/α)1/3 − β
V − αβ3 (7.51)

In this case we have to consider the surface energy FS. While we do not con-
sider anchoring, under the hypothesis that the director field is always tangent
to the surface.

A good approximation for the surface of an ellipsoid of aspect ratio α and
volume V is

S ∼ V 2/3


(
1 + 2α1.6

)1/1.6

α2/3

 (7.52)

The total energy has the form

F = K

(
V
α

)1/3
− β

α3 +K
αβ3

p2
∞

+ γV 2/3


(
1 + 2α1.6

)1/1.6

α2/3

 . (7.53)

Minimizing with respect to β we obtain

β ∼ p∞
α2 , (7.54)

and by the same argument as before we can simplify F as

F ∝ K
p∞
α5 + γV 2/3


(
1 + 2α1.6

)1/1.6

α2/3

 . (7.55)
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For large volumes V �
(
Kp∞
γ

)3/2
the surface term prevails. As expected

α→ 1, and we get the results obtained in (7.50).

To get the transition from the uniaxial cholesteric, we want to compare this
energy with the anchoring energy of the cholesterics droplet:

Fchol ∼ γωV 2/3 (7.56)

If we set them equal we get the critical volume

Vc→o ∼
(
K3
√
κ3p∞
γω

)3/2

(7.57)

or in case of single constant approximation where κ3 = 1 and K3 = K we get

Vc→o ∼
(
Kp∞
γω

)3/2

(7.58)

From equation (7.49) we expect β to be constant in the onion regime, while
for adimensional β → βV 1/3,

β ∼
√
κ3

p∞
V 1/3 . (7.59)

decreases with V −1/3. In our case where κ3 = 6 and V ∼ 106, gives β ∼ 0.3.
In the numerical model described above, we get a value of β = 0.05, which is
6 times lower than the the value expected with the scaling approach.

From [15], the radius of the onion’s core was measured to be β = p∞/2 =
7.5µm, and constant with volume. Therefore the scaling correctly predicts the
behaviour.

The numerical model correctly predicts the transition volume but is not suf-
ficient to describe the core. This may be due to the integration precision,
because the closer β gets to zero, the less precision is used to integrate the
core.

β

Figure 7.18: Magnification of the cholesteric axes in the neighbourhood of β.
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The last reason could be that in the model the bending contributes also in the
region inside the core, see Figure 7.18. On the other hand, in the scaling that
part of the sphere is considered without bend and untwisted (q = 0).

7.12 Comparison with experimental data

In this section, we compare the results obtained with the numerical analysis,
with the data from [15].

Figure 7.19: Measured aspect ratio plotted with theorical prediction.

In the graph in Figure 7.19, we see that the model successfully predicts the as-
pect ratio with a good approximation. For homogeneous and bipolar droplets,
the aspect ratio is a continuously decreasing function of the volume, while the
model predicts a stepwise behavior. In the cholesteric phase we get a slight
lower aspect ratio α = 1.15 than the measured α = 1.3.

The transitions volumes are in good agreement with experiments, once pa-
rameters such as the ratio κ3 and γ are suitably modified starting from the
measured ones [2] to better fit these values.

The second set of data, shown in Figure 7.20, is given by the pitch of cholesteric
and onion droplets.

The model completely misses to predict the correct value of the pitch, for
cholesterics. While the pitch in the data decreases from almost 2p∞ to p∞,
from the theory we get only a +15% increase.

In the cholesteric phase, as shown in Chapter 6, the major contribution to the
free energy is given by anchoring. The anchoring energy depends on the angle
between the nematic field and the normal to the surface, therefore contrary to
the bulk energy, the shape of the surface influences strongly this term. The
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Figure 7.20: Measured pitch plotted with theorical prediction.

approximation, used to model the surface, is an ellipse with α, the aspect
ratio, as the unique degree of freedom. For example, extending the analysis
to a shape given by the elliptic lemon surface Chapter 4 is expected to have a
strong impact on the results.



74 CHAPTER 7. CHOLESTERICS AND ONIONS



8. Conclusion and future per-
spectives

In this work, we addressed theoretically the effects of confinement on chiral
liquid crystals. The theoretical models developed are based on the experimen-
tal works [2] and [15] of cholesteric droplets based on amyloid fibrils. The
system, described in Chapter 2, shows four different phases for the droplets
called, respectively: homogeneous, bipolar, cholesteric and onion.

The first model, presented in Chapter 5, focuses on the transition between the
first two phases: the homogeneous to bipolar transition. It is able to fit the
experimental data and through it we estimate a value of ω = 1.7, very close to
the previous estimate (in [2]) of ω = 2. The model gives an estimate of the ratio
between the bend elastic constant and the surface tension of K3/γ = 1µm.

The second model, Chapter 6, was used to study the effects of boundary on
a pure twisted director field, and served as a basis to build the third model
in Chapter 7. The last model captures the full spectrum of droplets found by
experiments. With good approximation, the model reproduces both the aspect
ratio and the transition volumes. This last model gives an estimate of ω = 2
and of K3/γ = 15µm. Lastly, in Chapter 7, we introduced a scaling law for
the last transition: from cholesteric to onion droplets.

There is an important difference between the two estimates ofK3/γ = 1µm and
K3/γ = 15µm. The first comes from the homogeneous and bipolar droplets, in
the hypothesis that there is no twist. The second estimate is given by adjusting
the transition volumes. The transition volumes also depend on K2 and q∞,
which are not included in the bipolar model. Thus, an error on the estimate
of K2 and q∞ could propagate into the estimate of K3/γ.

The result of this work shows that this model can be the basis for further
study. As already proposed, may be worth including the tip angle together
with the aspect ratio as parameters for the shape of the droplet. Further-
more, the saddle-splay term, which in our analysis has never been considered,
could be included into the energy terms. This however introduces a further
complication, as the value of K24 is not known.

Finally, we note that the present approach is very general. The model was used
to rationalize data from an experimental system of amyloid fibrils. Indeed, the
properties of the system are brought into the theory only through the elastic
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moduli, surface tension and natural pitch. Therefore, the model could be used
for any other system of chiral liquid crystal, such as nanocellulose [38], by
suitably modifying those quantities.
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