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ABSTRACT 

Background

Over the last  decades, the traditional view of the brain as a stimulus-response 

machine has been replaced by a new perspective that reconceptualizes bottom-up 

and top-down interactions. The brain is no longer considered only as a reflexive 

sensory-motor analyzer but also as a generator of predictive models, optimized 

during  resting  state  endogenous  activity  to  anticipate  and  interact  with  the 

environment more effectively. Notably, characteristics of spontaneous brain activity 

can predict eye movement dynamics during unconstrained viewing, reflecting an 

integration of top-down and bottom-up processing with endogenous dynamics, thus 

emphasizing  the  role  of  visual  exploration  as  a  window  into  the  cognitive-

behavioral functional organization of the brain.

Aim of the study

The aim of the present thesis is to replicate and validate the generalizability of  

previous findings shedding light on the link between oculomotor dynamics and 

endogenous brain processes. Specifically, a previous study (Zangrossi et al., 2021) 

found a low dimensionality of spatiotemporal dynamics of eye movements and 

identified distinct visual explorative phenotypes guiding spontaneous oculomotor 

dynamics both in free-viewing and resting state. Another study (Celli et al., 2022) 

utilized  high-density  EEG  recordings  to  study  the  brain  correlates  of  visual 

exploration phenotypes that were previously highlighted. This study suggested that 

the viewing styles were related to different patterns of spontaneous brain activity in 

resting-state. This thesis seeks to replicate and validate all these results on a new 

sample, exploring the connection between eye movement dynamics, memory recall 

of visual stimuli, intrinsic brain activity and, moreover, to identify distinct patterns 

in eye movement and hdEEG data for potential clinical applications.

Materials and methods

A total number of N = 64 healthy participants were simultaneously measured for eye 

movement dynamics and oscillatory brain activity using a state-of-the-art static 
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infrared eye tracker and a 256-channel electroencephalograph, respectively, in order 

to highlight the role of spontaneous brain activity in determining distinct visual 

exploratory phenotypes. For the purpose of the study, have been considered the data 

recorded during a resting state phase, in which subjects were asked to gaze quietly at 

a blank grey screen for 5 minutes, and during a 10 minutes unconstrained free-

viewing of 90 real-world scenes. 

Results

Analyzing  eye  tracking  data  from  the  free-viewing  phase  (of  62  out  of  64 

participants), we found that three principal components (PCs) accounted for 60.2% 

of the variability in oculomotor movements.  Based on the PC1 values, mostly 

loaded  on  fixations’  features,  we  identified  two  distinct  clusters  of  visual 

exploratory styles:  Static Viewers, characterized by longer fixation durations and 

viewing times but fewer fixations and gaze shifts,  and  Dynamic Viewers,  with 

opposite traits. This two-group classification supports the hypothesis that intrinsic 

factors drive visual exploratory behavior. We then computed eyes-open resting EEG 

data (of 58 of the 62 participants whose eye movements were computed) employing 

a  nonparametric  permutation  technique  with  cluster  correction,  which  showed 

directions in the correlations between PC1 values and frequency band averaged 

powers consistent with a previous study (Celli et al., 2022).

Conclusions

Our replication study results confirm the possibility to cluster subjects explorative 

phenotype according to  their  oculomotor  dynamics  features  and their  intrinsic 

oscillatory  brain  activity.  This  complex  spontaneous  behavior  depend  on  the 

interplay between top-down and bottom-up processing with endogenous activity. 

We propose that oculomotor dynamics and oscillatory correlates can be employed 

as a window to enlarge our knowledge concerning the innovative inside-out brain 

perspective and that subject profiling may have potential implications on early-

diagnostic methodologies.
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SOMMARIO 

Background

Nel  corso  delle  scorse  decadi,  la  prospettiva  classica  che  da  sempre  inquadra 

l’encefalo  in  una  dimensione  di  causale  meccanicismo  stimolo-risposta,  ha 

progressivamente lasciato spazio ad una visione che riconcettualizza le interazioni 

tra dinamiche bottom-up e top-down. L’encefalo non è più considerato solo come 

mero  analizzatore  sensori-motorio,  ma  anche  come  un  generatore  di  modelli 

predittivi,  i  quali,  ottimizzati  durante gli  stati  di  quiete mediante le  dinamiche 

dell’attività neurale spontanea in assenza di input da elaborare, agiscono in modo 

anticipatorio nei confronti delle condizioni ambientali circostanti interagendovi in 

maniera più efficace. La caratterizzazione di questa attività neurale endogena può 

predire  le  dinamiche  dei  movimenti  oculari  durante  l’esplorazione  visiva  non 

condizionata, riflettendo l’interazione di processi top-down e bottom-up, interazioni 

funzionali su cui si basa l’organizzazione cognitivo-comportamentale cerebrale.

Scopo dello studio

Questa  tesi  si  propone  di  replicare  e  validare  risultati  sperimentali  pregressi 

riguardanti  una  connessione  tra  dinamiche  oculomotorie  e  processi  cerebrali 

endogeni.  Nello  specifico,  uno  studio  precedente  (Zangrossi  et  al.,  2021)  ha 

riscontrato una bassa dimensionalità dei pattern spaziotemporali dei movimenti 

oculari e parallelamente ha identificato differenti fenotipi di esplorazione visiva, 

caratterizzanti i movimenti oculari spontanei sia in condizioni di libera esplorazione 

visiva che di stato di quiete senza stimoli visivi. Un ulteriore ricerca (Celli et al., 

2022), impiegando registrazioni EEG, ha studiato le correlate neurali dei fenotipi 

esplorativi visivi riscontrati nel lavoro precedente. Ciò suggerisce come gli stili 

esplorativi siano legati a distinti pattern di attività neurale a riposo. Replicazione e 

validazione vengono condotte su un diverso campione, esplorando le connessioni 

funzionali tra le dinamiche oculomotorie, il richiamo mnemonico di stimoli visivi, 

l’attività cerebrale spontanea, aprendo a potenziali applicazioni cliniche.
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Materiali e metodi

Un campione di N=64 soggetti sani si è prestato a concomitante registrazione di 

movimenti oculari e correlate EEG, tramite un eye tracker statico ad infrarossi e 

elettroencefalografo  a  256  canali,  al  fine  di  evidenziare  il  ruolo  dell'attività 

cerebrale spontanea nel determinare distinti fenotipi esplorativi visivi. Sono stati 

considerati i dati registrati durante una fase di stato di quiete, in cui ai soggetti è 

stato chiesto di osservare uno schermo grigio per 5 minuti, e durante una fase di 

visione libera non vincolata di 10 minuti di 90 immagini di ambienti reali.

Risultati

Procedendo con l’analisi dei dati di eye tracking della fase di visione non vincolata 

(di 62 dei 64 partecipanti) si è verificata la possibilità di descrivere impiegando tre 

componenti principali (PCs) il 60,2% della varianza nelle dinamiche oculomotorie. 

Basandosi  sui  valori  di  PC1,  ponderata  sulle  caratteristiche  delle  fissazioni, 

abbiamo identificato due distinti  cluster di stili  esplorativi:  Osservatori Statici, 

caratterizzati da tempi di fissazione e di visione maggiori ma un minor numero di 

fissazioni  e  spostamenti  dello  sguardo,  ed  Osservatori  Dinamici,  con  pattern 

opposti.  Questa  suddivisione  supporta  l'ipotesi  che  fattori  intrinseci  guidino  il 

comportamento esplorativo visivo. Successivamente, sono stati  calcolato i dati 

EEG a occhi aperti a riposo (di 58 dei 62 partecipanti di cui erano stati calcolati i  

movimenti oculari) utilizzando una tecnica di permutazione non parametrica con 

correzione per cluster, che ha mostrato direzioni nelle correlazioni tra i valori del 

PC1 e le bande di frequenza coerenti con uno studio precedente (Celli et al., 2022).

Conclusioni

I  risultati  della  replicazione confermano la  possibilità  di  classificare  i  fenotipi 

esplorativi  dei  soggetti  basandosi  sulle  caratteristiche  della  loro  dinamica 

oculomotoria  e  sull'attività  cerebrale  oscillatoria  spontanea,  trattandosi  di  un 

complesso comportamento spontaneo risultato dell'interazione tra processi  top-

down e  bottom-up con  l'attività  endogena.  Proponiamo  che  la  dinamica 

oculomotoria e i correlati oscillatori possano servire come strumento per ampliare la 

nostra comprensione della innovativa prospettiva del cervello  inside-out e che il 

profiling dei soggetti possa avere potenziali implicazioni in diagnostica precoce.
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INTRODUCTION 

1. SPONTANEOUS  ACTIVITY,  TOP-DOWN DYNAMICS  AND 

GENERATIVE MODELS IN THE PREDICTIVE BRAIN 

1.1.  Historical assessment of the issue

During the late 19th and early 20th centuries, alongside pioneering studies in brain 

physiology and cytoarchitecture by Cajal, Brodmann, Wernicke, Golgi and many 

others, yet an issue regarding a dichotomy in brain functionality was brought up by 

some neuroscientists. William James, already in 1890, stated “Whilst part of what  

we perceive comes through our senses from the object before us, another part, and  

it may be the larger part, always comes out of our own head”1,2. This quote reflected 

an early debate present at the time, with one perspective, influenced by Sir Charles 

Sherrington,  viewing  the  brain  as  primarily  reflexive,  driven  by  contingents 

requests of the enviroment1,3, while another, promoted by Sherrington's disciple T. 

Graham Brown, argued for its intrinsic operativity in interpreting, responding and 

predicting  environmental  demands1,4.  This  debate  laid  the  groundwork  for 

understanding the brain's complex relationship between external inputs and internal 

processes.

Traditionally,  scientists  have  explored  the  brain's  function  by  analyzing  its 

responses to controlled stimuli at the level of single neurons, cortical circuits, or 

larger systems.5,6. Most of the experimental settings were typically based on an 

action-reaction logic,  a  causal  mechanicism that  could explain the majority  of 

physiological  and  pathophysiological  dynamics  across  various  systems  in  the 

human  or  experimental  animal  body  and  also  gradually  expanded  the 

understanding of the brain, with many decades of excellent animal and human 

neuroscience research that revealed robust and often predictable patterns (of single 

neuron and neural population) responses to external stimuli7. However, although 

functional in handling a set of initial information, this approach has produced, 

beyond  a  decent  understanding  of  basic  dynamics,  a  broad  dimensionality 

concerning higher level brain-wide activity, resulting in a confusion in the overall 

comprehension of the  file rouge in cerebral functional dynamics. The notion of 

causality is, indeed, especially problematic concerning self-organized systems with 
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enhancing-suppressing feedback loops, like the brain: events don't have a single 

cause but instead emerge from the interaction of various elements8.

The urging need for a better understanding of brain organization pairs with the 

innovative scenarios in neurological disease treatment that this kind of knowledge 

would inspire, especially in a future prospective of personalized medicine. The 

uniqueness  of  human  behavior  translates,  in  fact,  from  the  healthy  to  the 

pathological brain dynamics. To fully comprehend and treat the latter, we must not 

remain limited by an incomplete understanding of the former. That’s why the brain 

has often been referred to as one of the final frontiers for science and medicine7.

1.2. Top-down dynamics and the Brain from Inside-out

Relying  solely  on  the  traditional  outside-in approach7 (which  reflects  mostly 

bottom-up processing  dynamics),  characterized  by  information  processing  that 

moves in a single direction from sensory input through perceptual analysis to motor 

output,  without  incorporating  feedback  information  flowing  backwards  from 

“higher” to “lower” centers7,9, may not be enough to clarify how the brain processes 

information  that  result  in  meaningful  behaviors.  This  latter  aspect  is  pivotal 

considering the brain, a sophisticated evolutionary tool whose ultimate goal is to 

predict  the  outcome  of  any  interaction  of  the  body  with  the  surrounding 

environment, in order to survive and adapt, thus, ultimately, regulating “actions”1,10

 

Over time, increasing significance has been attributed to the alignment of bottom-up

 processing with  top-down processing. The latter can be defined as a stream of 

information from “higher”  to  “lower”  centers  which conveys  knowledge from 

previous experiences rather than sensory stimulation9. This shift ultimately gave 

rise  to  a  new  perspective:  the  inside-out  view, which  states  that  the  brain 

functionally engages a preexisting, self-organizing, and self-perpetuating set of 

neural elements7. The interactions among these elements are constrained by the 

biophysical properties of cells and networks within the brain7. According to the 

inside-out view, “actions” should also include the outcomes of neural processing 

(for instance, providing a “second opinion” in order to validate the meaning and 

significance  of  sensory  signals8).  that  do  not  involve  overt (observable  and 
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measurable behaviors that involve physical movements or verbal responses, which 

can be directly monitored and analyzed in a research or clinical setting, see 3.1) acts, 

such as a thought or a recalled memory7

György Buzsaki explains this concept in terms of a relationship between a blank 

state and preconfigured brain models8. In the empiricist  outside-in model, brain 

starts out as a tabula rasa onto which new information is cumulatively written; thus, 

expanding  brain  circuits  through  juxtaposition  and  superposition,  in  order  to 

accommodate the amount of newly learned knowledge8. The contrasting inside-out

 model views the brain as a dictionary supplied with preexisting internal dynamics 

and syntactical rules (brain rhythms might provide a framework for neural syntax), 

which are initially filled with non-sense neuronal words; these have the potential to 

gain significance through exploratory actions8.  The brain's  distinct  components 

(such as firing rates, synaptic connection strengths, and the magnitude of collective 

behavior of neurons) lead to a range of distributions, whose two extremes offer 

complementary  advantages:  the  "good-enough  brain” can  generalize  and  act 

quickly, and the  "precision brain” is slow but meticulous, providing necessary 

details in many situations7,8.

Consequently, within preconfigured brain models conceptions, greater significance 

is  assigned to  spontaneous  brain  activity,  which has  been instead traditionally 

perceived  only  as  stochastic  noise,  modeled  as  random  fluctuations  able  to 

conditionate thresholds for postsynaptic firing, thus affecting the transmission of 

information within and/or between cortical circuits6. Those fluctuations were firstly 

recognized and characterized by the early EEG recordings by Berger in 192911. 

Regarding the issue, he once stated “mental work, as I explained elsewhere, adds  

only a small increment to the cortical work which is going on continuously and not 

only in the waking state”12 highlighting the spatiotemporal  significance of this 

intrinsic  ongoing  cortical  activity  compared  to  task-evoked  signals.  This 

perspective persisted until early spontaneous fMRI studies, almost sixty years later, 

changed a bit the perspective: “noise” BOLD signals were proved to exhibit striking 

patterns  of  spatiotemporal  coherence  with  sensorimotor  regions,  revealing 

organized patterns of activity that  occurred in the absence of any  overt motor 

activity12.
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It is now evident that intrinsic brain activity plays a central role according to these 

new theories of brain functioning. Thus, endogenous activity is progressively being 

viewed as an essential element for understanding top-down dynamics, rather than 

stochastic noise. Resting state activity can be seen as a facilitator of task-related 

activity modulating priors (see 1.5).

In the next paragraphs it will be discussed how cortical activity patterns extend 

beyond  mere  sensory-motor  analysis  and  how  resting-state  activity  optimizes 

subsequent task-engaging interactions with the surrounding environment. This will 

be explored from the  inside-out perspective of  top-down dynamic processing as 

previously discussed. Next, visual exploration dynamics and their EEG features 

will serve as a prime example of top-down and bottom-up interactions, supporting 

the experimental assessment presented in this work (chapters 3 and 4).

1.3. Spontaneous brain activity: a Restless Brain

When the brain receives no sensory stimuli nor is engaged in task-related activities, 

still it is constantly active: spontaneous brain activity (also defined as endogenous 

or intrinsic) consists of sophisticated dynamical patterns of activity that emerge 

spontaneously across cortical and subcortical structures12–14. At the level of large 

scale systems, these patterns are systematically organized in a series of functional 

networks that maintain at all times a high level of coherence15. This activity, once 

referred  to  as  “noise”,  is  correlated  in  space  and  time;  furthermore  it  can  be 

composed of  lower  or  higher  frequency activity,  each hypothesized to  have a 

different meaning possibly related to priors13.  

Resting-state activity (RSA) consists of a concept, even if physiologically almost 

defined  (see  1.4),  difficult  to  completely  frame16.  First  of  all,  it  has  to  be 

distinguished  from  the  “arousal  baseline”,  the  continuously  ongoing 

intero-/exteroceptive  input  integration from the  body and environment17.  RSA, 

operatively, reported as a “property of the brain state that exists before a stimulation 

of  interest”18,  anti-correlated  with  task-engagement  (as  further  explained  in 

paragraph 3.2.3), was initially only thought to be characterizing of the Default 
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Mode  Network  (DMN,  Figure  1),  which  is  otherwise  still  considered  as  the 

hierarchical apex of the so called Resting State Networks (RSNs, see 1.5). 

Figure 1: Default Mode Network (RSN18) maps, dorsal view. In green the white matter map while grey matter 

map in red, composite map displayed in the middle. Within-related cortical regions: ventromedial prefrontal  

cortex  (VMPFC);  dorsomedial  prefrontal  cortex  (DMPFC);  sub-/pre-/supra-genual  parts  of  the  anterior  

cingulate cortex (ACC); posterior cingulate cortex (PCC);, medial superior frontal gyrus (mSFg); Middle  

temporal gyrus (MTg); Superior frontal gyrus (SFg) and precuneus (all anterior and posterior cortical midline  

areas; some overlap with other networks) ). Additionally, certain regions adjacent to the midline, such as the  

lateral parietal cortex and hippocampus, are also highlighted 16,19 The main white matter tracts highlighted:  

Arcuate fasciculus, posterior segment (AF-P); Second branch of the superior longitudinal fasciculus. The 

cerebellum is visible through the glass-brain effect19. 

Imaging and electrophysiological studies, indeed, proved that high RSA may be 

also observed in sensory cortices, prefrontal cortex, motor cortex, insula, visual 

cortex; even subcortical regions are characterized by this activity, such as thalamus, 

hypothalamus  (suprachiasmatic  nucleus),  the  ventral  tegmental  area  and 

hippocampus (see Figures 4 and then paragraph 3.1.2)16.  Consequently it is evident 

that a widespread sustained brain activity (brain-wide RSNs) like this must mean 

something, beyond randomly occurring firing aimed at modulating post-synaptic 

treshold as traditionally perceived. Finally, these predictive and proactive dynamics 

occur constantly, during any given disengaged moment, in order to prepare and 

optimize brain dynamics for future interactions13. In the next paragraphs will be 

exposed some innovative research lines, in order to clarify all the implications of 

resting state activity.

1.3.1. Infra-slow activity and energy budget

The brain is never truly physiologically at rest, as evidenced by continuous intrinsic 

activity and consistently high energy consumption, which shows minimal variance 

between the resting state (behavioral state marked by peaceful relaxation, typically 

with eyes closed but sometimes with eyes open, with or without visual fixation1) 

and periods of task-engagments1,13. 
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A series of experimental assessments over the years showed that the infra-slow 

activity band activity (ISA, defined as in between 0,01-0,1Hz interval) and infra-

slow fluctuations (ISFs) are central in the spontaneous activity dynamics spread 

brain-wide  across  resting-state  networks  (RNSs).  These  intrinsic  dynamics, 

mediated by ISA and ISFs, have been shown, using different techniques such as 

resting state BOLD-fMRI, to be independent phenomena and not a mere low-

frequency analog of  faster  neural  activity20.  Whole  cortex calcium/hemoglobin 

imaging in mice, showed stereotypical state-dependent ISA trajectories, different 

from paths  of  higher  frequency  activity;  consistently  with  mice  laminar  local 

electrophysiology  which  showed  that  ISA crosses  distinct  cortical  layers  and 

exhibits distinctive cross-laminar temporal dynamics, which differ from the higher-

frequency  local  field  potential  activity20.  Moreover  ISFs  observed  in 

electrophysiological recordings, fMRI- BOLD signals, neuronal activity levels and 

behavioral  time  series,  probably  represent  a  unified  phenomenon:  overarching 

network of interacting and transiently oscillatory ISAs. This activity appears to play 

a dual role in concurrently active neuronal clusters, regulating both their within-

integration and the between-dissociation21.

Figure 2: Brain energy budget. (a) Adult human brain lateral and medial surfaces aerobic glycolysis map,  il

lustrating the significantly changes in levels of aerobic glycolysis vary significantly throughout the brain22. The 

olor bar represents a glycolytic  index,  providing a quantitative measure of  glycolysis 23.  (b) Overview of  

glycolysis  in  neural  tissue,  with  biosynthesis/neuroprotection  elements  (grey)  and  energy  generation  

components (blue) highlighted in two colored boxes. Astrocyte-derived lactate (generating a reverse Warburg  
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effect) serves as a substrate for energy production through oxidative phosphorylation, while, altering neuronal 

redox  potential  (defined  as  redox  switch)  redirects  glycolysis  towards  biosynthesis  and  neuroprotection.  

Finally, astrocytes release ATP alongside lactate, suggesting potential regulation of neuronal activation states  

via K-ATP channels22. Those are the basis of the symbiotic relationship between astrocytes and neurons22,23.

The brain, although being only 2% of the body weight, consumes up to 50% of the 

energy  during  development  and  then,  in  an  adult,  approximately  20% of  the 

organism's energy overall (as seen in Figure 2): this energy budged is partially 

devolved  (25-40%)  to  housekeeping  functions  (gene  expression  and  protein 

synthesis,  lipid  turnover,  microtubule  remodeling  and  so  on)  but  mostly  to 

electrochemical  signaling  (60-75%)  with  spikes  accounting  for  10%  of  this 

allocated budget (metabolically expensive, they occur only in subsets of neurons 

firing simultaneously, from 1 to 10%) and with infra-slow intrinsic activity (ISA and 

ISF) which is the most energetically demanding dynamic process12,13. In summary, 

most energy is, indeed, spent on resting potentials and sub-treshold activities, not 

spikes.

So, as just discussed, brain is never truly physiologically at rest and most of its 

energetical budget is aimed to sustain intrinsic activity, recorded both as ISA and 

ISFs, which stands as an independent phenomena from spikes and task-engaged 

activity. These findings support a fundamental (although yet only partially known) 

functional  role  of  RSA,  considering  the  metabolic  relevance  that  has  been 

highlighted with different techniques and studies. Interestingly, what these research 

lines proved is consistent with Berger’s statement referring to his EEG recordings in 

1929  as  discussed  in  the  previous  chapter,  both  from  a  physiological  and  a 

metabolic points of view. 

1.3.2. Level  of  similarity  between  anatomical  structure  and  functional 

connectivity 

Studies  of  the  human  brain  conducted  with  fMRI  BOLD  imaging  revealed 

remarkable patterns of spatial and temporal coherence of intrinsic activity (mostly 

infra-slow activity as discussed in the previous paragraph) first of all within known 

networks12.  The  functional  connectivity  involved,  emerges  as  structured  linear 

fluctuations  around  a  stable  low  firing  activity  state  close  to  destabilization, 
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according  to  computational  modeling  of  fMRI  data,  closely  linked  to  (and 

constrained by) the underlying anatomical connectivity24.

Figure 3: Framework to study the link between neuroanatomical connectivity data (DSI and tractography  

after averaging across subjects)  and observed functional connectivity (measured employing fMRI BOLD 

activity). Parcellation provides a connectivity matrix C linking the N cortical areas with clear anatomical  

landmarks; Using this connectivity matrix C, a neurodynamical model was created based on a set of coupled  

stochastic differential equations. The model's spatiotemporal patterns were then validated by comparing them  

with those observed in empirical functional data24. 

These findings concerning widespread infra-slow activity, no longer characterized 

as noise, have over the years led to the description of a dual nature within known 

networks  depending  on  task  engagement  or  disengagement.  Furthermore, 

researchers  have defined functional  connectivity  correlations  between different 

areas regardless of their task engagement activity during disengaged states. These 

correlations act  as a  priors for future task engagement,  differing based on the 

cognitive state. Networks of spontaneous activity correlation are known as Resting 

State Networks (RSNs),  which are defined as:  “brain regions that  activate or  

deactivate together during spontaneous brain activity at rest and are jointly active  

during behavioral tasks. The equivalence rest-task is not complete as most tasks  

involve the recombination of resting state networks”13. 
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They  show,  indeed,  a  close  relationship  with  the  underlying  anatomical 

connectivity; however, their spatial distribution is also influenced by previous task 

engagements13,15.  This  functional  modulation  may  facilitate  the  retention  of 

previous information and may impact future task-dependent networks recruitment, 

thereby influencing behavioral outputs15. Importantly, these networks need to be 

differentially considered across distinct levels of consciousness12: during sleep or 

anesthesia,  their  functional  connectivity  closely  reflects  the  anatomical 

connectivity, but in the awake state a differential gap between the two connectivities 

has been observed (although the absence of monosynaptic connections between 

certain  areas,  which  do  not  preclude  multisynaptic  functional  connectivity 

systems25)  that  pairs  with  the  theory of  enrichment  that  arousal  and cognition 

produce to the static anatomical architecture, which furthermore changes due to 

eventual task-engagment13.

Regarding spatial  architectural distribution of areas recruited within RSNs, the 

influence of previous task engagements is something consistent both with the notion 

of RSNs serving as spatial priors themselves and with the fact that their topography 

is  shaped by the  history  of  regional  coactivation throughout  development  and 

experience6,26.  RSNs  activity  represent  in  fact  both  spatial (connections  that 

synchronizing  during  task  performance,  maintain  a  high  coherence  level  even 

during rest6,26) and temporal (slow spontaneous fluctuations regulate the excitability 

of cortical circuitries during task performance, acting as rhythmic streams that 

shape differential excitability states6,27) priors for task-evoked activity6. 

RSNs  functional  connectivity  relies  on  coherently  low-frequency  oscillating 

neuronal groups, whose rhythmic excitability fluctuations produce temporal input-

and output-windows for communication, which are “accessible” in variable ways 

across different consciousness levels28. Nodes in these networks act as flexible hubs, 

adapting connectivity patterns to task demands, and also exhibit broadly distributed 

across-network connectivity, suggesting involvement in large-scale brain activity 

coordination29.  Will  be  then  discussed  the  importance  of  covariance  through 

learning,  development  and  different  conditions,  and  moreover  how  all  these 

implications affect strength of coherence between nodes within systems12 (ensured 
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by  beta  band  frequency  oscillations,  see  chapter  4) which  modulate  the 

effectiveness of spatial and temporal priors for brain engaged state.

1.3.3. Intrinsic brain activity and subject phenotypes

RSNs can be evaluated concerning different cognitive states through life stages of 

the animal (development, age, learning, behavioral state, health and disease; see 

next  paragraph)  or  between  different  individuals,  employing  a  between 

differentiation  according  to  endogenous  activity  dynamics  themselves.  For 

instance, they can be implemented as a feature for subjects’ profiling: individual 

differential coherence within RSNs functional organization has been verified and 

stated  by  numerous  studies13.  Utilizing  “Human  Connectome  Project”  fMRI 

dataset, connectivity profiling (e.g. subjects identification within a group) proved 

successful regardless of the engaged or disengaged state scan session, suggesting 

the intrinsic nature of the profiles themselves30. 

Interestingly, frontoparietal networks emerged as the most distinguishing between 

individuals, through positive and negative (e.g. correlation and anti-correlation) 

feature models analysis30. Finally, those same networks, the most distinguishing, 

were also the most behavioral predictive30, estimating individual predisposition to 

new behaviors too13.

Significantly, Dorsal Attention Network (DAN) belongs within those frontoparietal 

networks and is part of the RSNs; therefore, it also has a fundamental role both in 

attention and eye movements dynamics31 acting,  for example,  as a preparatory 

coordinator of oculomotor dynamics toward the salient stimulus, inducing a shift of 

attention in the same direction (see further, chapter 2). It is closely linked to the aim 

of this thesis’ study, which is to identify visual explorative dynamics phenotypes 

(consistently with the functional connectivity profiling) and to relate them not only 

to  eye-tracking  features  but  also  to  spontaneous  EEG features.  Moreover  this 

profiling was conducted utilizing data both from resting-state and free-viewing (see 

Experimental settings, chapter 6) recordings, according to the intrinsic nature of the 

issue, regardless of task-engaging or not.32,33.

1.3.4. Spontaneous  activity  patterns  and  their  covariance  in  clinical 

conditions or physiological learning and behavioral state
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Spontaneous activity patterns covariance changes in relation to development, age, 

learning and diseases12,13. Studying resting state functional connectivity of DMN, 

for  example,  was  shown deviation  in  children  connectivity  compared to  adult 

architecture34. Across various ages, default-networks become more integrated via 

myelin sheath maturation and a process of “integration trough synchronization” 

which occurs because of complex spatiotemporal synchronous activity over time 

with and without changes in synaptic strengths34,35 (see also 4.2.6).

These findings are supported also by studies on resting EEG, which indicate that 

signal coherence within the alpha rhythm between posterior and anterior electrodes 

rises with age36; alpha rhythm is neurophysiologically pivotal studying resting state 

intrinsic  activity  and,  as  in  the  study  of  this  project,  also  relates  with  visual 

explorative dynamics. 

On the other hand DMN has also been extensively studied relatively to its changes 

in aging people. This is consistent with role of experience (cumulative learning26 

over lifespan) and spontaneous activity itself, which shapes functional activity over 

years12. After sixth decade, considering healthy individuals, regression of the young 

adult  pattern  is  often  evident  either  in  DMN  as  other  networks  functional 

connectivity37; this process is quickened and amplified, for example, by amyloid 

plaque deposition, which early affects DMN and its integration with other networks 

in  the  physiopathology  of  Alzheimer  Disease  (causing  prominent  atrophy  and 

metabolic  disruption  in  posterior  cortical  regions  such  as  posterior  cingulate, 

retrosplenial, and lateral parietal cortex, consistently with those in medial temporal 

regions38). That’s in line with the innovative upcoming use of eye-tracking as a tool 

to be implemented in early diagnostic processes of Alzheimer Disease: DMN and 

other  resting  networks  interaction  drive,  as  said  before  many  rest  and  task 

dynamics, one of them is visual exploration. In particular limbic structures, which 

are considered the first targets of amyloid deposition and are involved in visual 

processes besides of memory functioning (see Discussion, chapter 10).

Networks strength and integrity relates to behavioral performance15. Apart from the 

well-studied molecular and functional abnormalities in Alzheimer's Disease, many 

other conditions have been investigated. The involvement of intrinsic functional 
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connectivity  alterations  has  been  proven13,  particularly  concerning  motor  and 

attentional  impairments  (such  as  in  acute  conditions  like  stroke)39,  as  well  as 

cognitive  and  behavioral  impairments  (such  as  dementia,  schizophrenia,  and 

others).  Furthermore,  that’s  deeply  related  with  role  of  priors which  is  of 

increasingly interest: excessively strong  priors could be etiologically related to 

depression, obsessive-compulsive disorder or schizophrenia reflecting abnormally 

low  sensitivity  to  low-level  stimuli  and  predictions,  while  excessively 

simplification of priors may also be an explanation concerning loss of memory or 

semantic information in neurodegeneration, trauma, and stroke13. 

1.4. Similarity between task-evoked and spontaneous brain activity

The interaction between task-evoked and spontaneous activity  is  bidirectional: 

visually evoked responses, for example, reverberate through spontaneous activity40

, while spontaneous activity itself accounts for the variability in stimulus-evoked 

responses13.  Voltage-sensitive  dye  imaging  in  rat  visual  cortex  showed 

reverberation of spatiotemporal activity pattern resembling evoked response, as 

spontaneous waves, following repetitive presentation of a given visual stimulus40. 

This  phenomena  goes  on  for  several  minutes  in  absence  of  any  other  visual 

stimulation40. Functional connectivity strengthens observed across tasks, closely 

resembles  those  observed  during  rest,  representing  intrinsic  architecture  of 

functional brain organization41. 

A fundamental requirement for perception and cognition is the capacity of neural 

circuits to maintain the representation of a sensory event for a certain duration 

following  its  occurrence13,40.  Dan  et  al  observed:  “Such  wave-mediated 

reverberation could contribute to short-term memory and help to consolidate the  

transient  effects  of  recent  sensory  experience  into  long-lasting  cortical  

modifications”40. 

Almost 60 years apart, this concept closely pairs with Hebbian plasticity which 

postulated that sustained reverberating activity within cells clusters could generate 

consolidation of short-term memory and, lasting enough (via cell “growth process”) 

enabling  long  term  memory42.  His  innovative  concepts  were  inspired  by  the 
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foundational work of Cajal, a pioneer cytoarchitectural scientist, considered one of 

the fathers of modern neuroscience, who postulated about the necessity of structural 

changes to maintain memory traces formed during learning43. Moreover, at the same 

time it anticipated the idea of long-term potentiation firstly postulated by Bliss and 

Lömo in 197344. Defined the influence of task-engaged activity on modulating (not 

only cytoarchitecturally and anatomically, but in modern era we know that also and 

foremost that functional connectivity is the one shaped) intrinsic brain activity and 

their mutual centrality discussing significance of priors and generative models. 

In 1996 real-time optical imaging was used to study the cat visual cortex, while 

electrophysiological techniques simultaneously recorded local field potentials and 

single  neuron  discharges:  evoked  activity  appeared  deterministic  and  its  large 

variability could be explained by the intrinsic ongoing activity. A linear summation 

of both could predict single trials evoked response45. Interestingly, this is not only a 

neocortex-related phenomena: both human neuroimaging and single cell rodent 

recordings  showed  that  following  firing  activation  of  place  cells  along  space 

trajectory,  neural  activity  of  sequential  replays  could  be  determined (not  only 

summarizing visual experience, but mostly generalizable abstract representations) 

which occur during non-REM (NREM) sleep and wakeful rest13. These replays 

spontaneously reorganize experience based on learned structure and are factorized, 

allowing fast structural generalization46; these sequences involve high-frequency 

ripples (up to 120-150Hz) and are temporally coordinated with infra-slow intrinsic 

activity13,46. At rest, hippocampal-entorhinal system and neocortex spontaneously 

are  strongly  interconnected  (underlying  also  the  evolutional  conservational 

development  regarding endogenous  brain  activity)  and their  communication  is 

based on real and fictive spatial trajectories, decoupled from current sensory inputs
47.

This is a good example of the wide-brain dynamics of spontaneous neural activity, 

but the hippocampus also serves as a model of consistent predictability within 

generative models. Preplays of future firing sequences consists of intrinsic ripple 

dynamics of the place cells themselves, temporally coherent with the sequences of 

novel spatial experience, which occur during rest or slow-wave sleep: this arranges 
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functional cellular clusters in temporal sequences to support the encoding of a novel 

experience that might occur, or is expected to occur, in the future 48.

Figure 4: Schematic illustration of internally generated hippocampal sequence, example of spontaneous  

brain activity. Each depicted with a different color, seven place cells of the hippocampus spatiotemporal  

sequence of spikes, any with place field located in different sections of the maze (central part of the figure),  

visible within the hippocampal theta rhythm during navigation. Same- or reverse-ordered sequential activity,  

can be decoded during animal sleep or awake rest  before ("preplays") and after ("replays") navigation,  

respectively, often embedded sharp-wave ripple (SWR) complexes. 

According to the evidences exposed in this and the previous paragraphs, stimuli 

processing accounts only for a part of task-evoked brain activity, while a larger 

portion can be attributed to intrinsic activity (both in whole-brain networks and 

single regions) occurring immediately before the onset of stimuli themselves13. 

From  that  prospective,  the  dichotomy  between  task-evoked  and  spontaneous 

activity partially loses its meanings and can be misleading: spontaneous activity at 

rest  may reflect  the  top-down dynamics  of  generative  models  which  can  also 

produce spontaneous dynamics immediately before and during task-engagement: 

these create the context for stimulus processing12,13. Moreover, slightly differences 

occur relating to the role of generative models during task performance, which 

prepare to process specific stimuli and upcoming actions, and their role at rest which 

is  to  arrange  a  wider  range  of  responses  in  future  behaviors,  in  a  context 

independent way13. This is consistent with the experimental settings that studied 

hippocampus and all the previous research lines concerning intrinsic brain activity 

exposed. 

1.5. Generative models, priors and the Predictive Brain 

When referring to generative models, we talk about AI generative neural networks 

(composed of  neuron-like  units)  which can construct  sophisticated,  distributed 
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representations  of  the  data  by  identifying  statistical  patterns  entirely  through 

unsupervised  methods13,49.  These  models  are  essential  to  move  forward  from 

different levels of statistical limitations, from Bayes’s theorem (which quantifies the 

probability  of  an  event,  considering  prior  knowledge  of  conditions  potentially 

associated to the event itself50) driven approaches, to more effective AI neuron-like 

modelling. They gradually replaced the backpropagation learning procedure, whose 

layered  networks,  although  able  to  computationally  accommodate  and  learn 

multiple layers of representation from sensori stimuli, needed trained labeled data51

. 

Using  multilayer  neural  networks  that  contain  both  bottom-up “recognition” 

connections and  top-down “generative” connections52 it is possible to overcome 

those limitations and switch to generative learning, whose aim is “to model the joint 

distribution of all  the variables in the model,  thus including also the observed 

variables”53. In other words, the top-down connections are able to produce (instead 

of  classifying  it,  as  neural  network  models  are  classically  trained  to)  fictive 

(sensory) data, generating a whole distribution of data-vectors: these will interact 

with  bottom-up recognition  connection,  that  can  approximate  the  inference52, 

helping to solve uncertainty13. 

These advanced neuron-like network, which contemplate either feedforward and 

feedback connections, have been implemented in studying both physiologically 

cognitive-behavior dynamics and pathological conditions etiologically caused by 

an impairment between top-down and bottom-up dynamics53, such as positive visual 

symptoms in  many psychiatric  and neurologic  conditions  such as  narcolepsy–

cataplexy  syndrome,  peduncular  hallucinosis,  treated  idiopathic  Parkinson’s 

disease,  Lewy  body  dementia  without  treatment,  Charles  Bonnet  syndrome, 

schizophrenia,  hallucinogen-induced  states  and  epilepsy.  Any  of  these  visual 

hallucination (potentially or strictly) related conditions, is etiologically caused by a 

perturbation of a wide-brain diffused activity (either involving also brainstem and 

basal ganglia or only cortical sites), that explains the production of similar, complex 

mental phenomena54. Thus, they can be studied inducing noise and unbalancing top-

down and  bottom-up integration  mechanisms  in  these  generative  neuron-like 

networks models53.
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Charles Bonnet syndrome, in particular, has been taken as a paradigm to relate with 

in order to understand the role of generative models in visual cortex regions and 

their capability to synthetize (in absence of visual stimuli) rich and solid visual 

representations.  This leads,  in cortically-blind patients,  to produce vivid visual 

hallucinations of objects, people, and whole scenes55. The case of an impressionist 

painter, described by Oliver Sacks, became famous: he was still able to paint until  

progressively losing the memory of color, started to produce only black and white 

canvases56. 

Statistical inference is the key to comprehend perception, action selection, and 

learning from a generative modeling prospective; that’s appliable either to task-

engagement and resting state spontaneous dynamics13, coherently to what has been 

said in the previous paragraph concerning their fictive conceptual distinction from 

an  inside-out prospective. Furthermore, as already approached earlier,  top-down 

dynamics are triggered by internal or external inputs, and can be maintained for long 

periods13. They modulate, for example, visual attention and perception, preparing 

brain to process upcoming stimuli and actions during task engagement maximizing 

accuracy of explanations (as fitting data in the IA modelling) through preparatory 

signals which encode context-specific task related information (encoding location, 

features and decision for expected stimuli in visual cortex for example) sacrificing 

part of the adaptability to unexpected stimuli. In resting state periods, they modulate 

instead  (consistently  with  a  less  important  role  of  accuracy)  the  formation  of 

generic priors, whose role is to maximize the entropy of explanations, amplifying 

adaptability to unexpected stimuli, but also respecting the imperative of minimizing 

model  complexity  (which  affects  also  the  microscopical  aspects,  reflecting  to 

synaptic pruning) in order to do not overfit13.

During  resting  periods,  offline  intervals  without  bottom-up stimulation,  priors 

encoded at high hierarchical levels are propagated to lower level coherently with 

top-down dynamics, but cannot be corrected due to the absence of stimuli13. They 

recirculates  as  generic  priors  for  representation and  for  spatio-temporal 

connectivity patterns13 which compose a flexible, yet stable functional structure32. 
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The former (generic priors for representation) consists of information-compressed 

low  dimensional  representations  of  perceptual,  cognitive  or  motor  patterns 

abstracted away from the stimuli  or the task that  shaped them52.  They build a 

representation of the statistical dimensions of the body in the world and can be 

recycled,  after  optimizations,  during  future  interactions.  They  are  generic, 

portraying  pattern  generally  functionally  connected  during  natural  behavior, 

evading from sensory-specific or motor-specific classification. In absence of data, 

they maximize the entropy of explanations as generative models privilege to remain 

flexible13. The latter (generic priors for connectivity patterns) consist of intrinsic 

brain  network  functioning,  mediated  by  predictive  generative  models,  as  low 

dimensional spatiotemporal scaffolds that can be combined to form task-specific 

activity  patterns13.  These  are  high-hierarchical  level  activity  follows  spatial 

gradients trough cortex, but its timescale gradients topographically mirrored in 

striatum, thalamus, and cerebellum57.  Priors are tuned in to both temporal  and 

spatial statistics of the environment. 

Spatial  connectivity priors,  for example,  are evident with fMRI signals during 

visuospatial  attention  task  where  (beside  a  general  within-networks  functional 

connectivity conserved) Dorsal Attention Network induces  a top-down directed 

functional  connectivity  modulation  to  Visual  Occipital  Regions,  in  order  to 

selectively direct visual exploration toward expected relevant stimuli and away 

from  irrelevant  ones6.  While  those  attention-induced  functional  connectivity 

changes occurs within visual regions, DAN functional activity do not change that 

much, remaining similar to resting state one6,41. Similarly, hub regions such as the 

ones within DAN conserve their functional connectivity; that stability embodies 

temporal connectivity priors, which at rest produce alpha and beta limited power 

oscillatory  frequencies,  recorded by MEG,  synchronizing  with  occipital  visual 

regions.  In  task-engagement  alpha  activity  decreases,  and  so  does  beta  band 

fluctuations but only in visual regions, remaining stable within DAN connectivity 

(see 4.2.3). That’s true thought naturalistic visual explorative tasks, according to the 

predictivity of priors which make the brain able to minimally change hub functional 

connectivity transitioning from rest to task, but changes when visual task provide 

scrambled  visual  stimuli:  bottom-up stimuli  overstep  top-down regulation  and 
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predictive assessments has to change interacting with unexpected new stimuli to 

processate them, thought variability in frequency and electrical activity58.

Even without any bottom-up component, another activity that occurs in the restless 

brain, during offline activity is the optimization of generative models for future 

interactions13. This happens trough synaptic pruning within circuits that code for the 

parameters that are unnecessary to the accuracy, paring with the target of reducing 

complexity,  which  is  useful  also  from  a  metabolic  parsimony  point  of  view. 

Secondly, trough production of fictive data that, as real ones, are compared to 

generative priors and optimize them. That’s just what happens in replays from 

memory  not  only  in  hippocampal-neocortex  interactions,  but  also  in  other 

subcortical or cortical structures, such as visual cortex13. Computational analysis of 

fMRI  studies  showed  both  presence  of  memory-mediated  replays  but  also 

immediately  after  task  disengagements,  replays  not  mediated  by  memory  but 

spontaneously occurring; the target is to utilize as much disengaged time as possible 

in order to realize at its best refinements of predictive brain dynamics59.

This brain dynamics repertoire of functional organization, comprehends spatially 

coherent  rhythmic  variations  in  cortical  excitability  coordinating  ongoing 

functional activity: low frequency transition to prepare generic priors and reduce 

complexity of brain generative models, with distributed high-frequency ripple to 

update fictive data.12,13 Functioning predominantly at a non-conscious level, brain 

strives  to  identify  predictable  patterns  from  limited  information  and  executes 

structured responses, all while maintaining the capacity to pause, adapt, and acquire 

new  knowledge12.  During  ongoing  spontaneous  activity  appears  the  low 

dimensionality of predictive brain, which always prepares for future interactions; 

this concept perfectly aligns with a quote of György Buzsáki who stated in 2006 “Br

ains are foretelling devices and their predictive powers emerge from the various  

rhythms they perpetually generate”60.
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2. VISUAL EXPLORATION

2.1. Introduction

The evolutionary development of human brain dynamics has been significantly 

influenced by the fundamental importance of vision and visual perception. Up to 

40-50% of neurons are involved in processing visual information. 

Our “visual brain” fluidly orchestrates visual behavior61 trough complex dynamics 

involving, as discussed, both a bottom-up visual information guidance (saliency and 

semantic) and a  top-down regulation which involves the interactions of multiple 

cognitive processes33. According to a generative models perspective (see paragraph 

1.5),  several  compelling  reasons  suggest  that  our  visual  systems  may  be 

conceptualized as a  multilayer generative model.  In this  assessment,  top-down 

connections may be employed to generate low-level features of images from high-

level representations, while bottom-up connections can be utilized to infer the high-

level representations which are responsible for generating the observed set of low-

level features52.

Figure 5 (a),(b),(c) and Figure 6: Comparison between modern adaptations of pioneering studies by Hubel  

and Wiesel62,63 on classical neurophysiological visual perception (brain as a sensory-motor analyzer, with  

cortical firing occurring proportionally to bottom-up stimuli characterization) and modern visual perception  

modeling using generative models.  (5,a) Orientation selectivity and mechanisms: a primary visual cortex  

(V1) neuron in response to segment orientation selectively fires when the latter matches the orientation of its  

receptive field62,64 (5,b) Characteristic response of LGN and V1 cells: simple cell in V1 (can be formed by the 

connections of the outputs of concentric LGN cells with neighboring receptive fields) is either activated or  

suppressed by an edge aligned with its preferred orientation (5,c) V1 features representation: simple cells  

organized in orientation columns, which combine with ocular dominance columns to form a cortical module.  
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Within those module, cells have similar receptive fields (location sensitivity), although distinct input sources  

(right  or left  eye) and sensitivity  to orientation,  color,  and size of  the object  (saliency).  Then there are  

feedforward projections to secondary visual cortices. (6) DBM for visual perception modeling. A biologically-

inspired  algorithm  incorporates  local  spatial  correlations  in  images  through  contrast  normalization,  

simulating early visual processing in the retina and thalamus. Subsequently, generative learning begins with  

natural image patches, involving the first hidden layer (V1), which learns basic visual features to form a  

foundational dictionary describing the statistical distribution of pixel intensities in natural scenes. Training a  

second hidden layer (V2/V4) introduces specific learning of letters, where neurons combine V1 features to  

represent fragments and complete shapes of letters. A linear read-out layer (OTS), trained on high-level  

internal representations, decodes distinct letter categories53.

Vivid visual imagery, dreaming, or thinking through visual scene to solve a problem 

which is not directly in front of us, are all suggestion of the capability of visual 

system  to  perform  top-down generation.  In  a  disengaged  introspective  state, 

moreover, it is like as “all the neural machinery for sensory processing is available  

for thought […] which often involves writing in a purely top-down mode on the  

active blackboards of low level areas” as argues Mumford explaining the process of 

creating mental images52,65. 

Consequently  oculomotor  system,  considering  both  topographical  aspects  and 

spatiotemporal dynamics of visual exploration, mirrors the interaction between all 

of  these  intrinsic  dynamics  so  that  naturalistic  eye  movements  are  partially 

independent from the visual content33.  Moreover,  differences in eye movement 

dynamics  signify  distinct  individual  exploratory  styles  when  freely  observing 

naturalistic  visual  stimuli;  that  variability  also  relates  to  stable  individual 

differences at the EEG oscillatory activity recording at rest, intrinsic predictive 

signature of the explorative style itself 32.  

To fully grasp the complexity discussed in previous and current chapters, which lays 

the foundation for the experimental assessment of this work, it's crucial to begin by 

examining oculomotor  dynamics and thoroughly analyzing the anatomical  and 

functional structures involved. Eye movements are essentially the brain interface to 

actively explore the surrounding world trough sight; they are directed by a relatively 

simple motor system that coordinates the movements of 12 evolutionarily preserved 

muscles64 whose “ancient and original function was not really to move the eye, but  

rather to hold it still with respect to the environment” as Walls stated in 196266,67. 
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Control of the gaze, in fact, primarily, aims to precisely regulate the position of the 

fovea (although less than 1% of the visual field and less than 1 mm in diameter, it’s 

the region of the retina of most vision acuity, in which rod receptors are absent and 

cones are most densely packed) so that objects images persists stabilized onto it64. 

Furthermore,  to avoid vision blurring,  the  “strategy of  saccades and fixation” 

(utilizing information acquired during stable fixations, and employing saccades to 

rapidly shift the direction of gaze) has to be coherent with receptor acceptance angle 

response time, which in humans is about one degree per second (the smaller the 

receptor acceptance angle, the better the eye resolution, the greater the need for 

precise stabilization)67. That’s why, even looking to a stationary target, eyes never 

stop moving, in a continuous pursuit of the perfect foveal fixation, because of the 

small receptors’ acceptance angle.

2.2. Types of eye movements

After Raymond Dodge in 1902,  who established the first  classification of  eye 

movements68 capable of centering and reasonably stabilizing object images onto the 

fovea, many others have been presenting over time new classifications, and still 

some more are being introduced. The most widely adopted is the one proposed by 

D.  A.  Robinson  in  1981,  which  distinguishes:  Vestibule-ocular  reflex  (VOR), 

Optokinetic reflex (OKR), Smooth pursuit, Saccades, and Vergence69.

These are the primary, but not exclusive, eye movements. Considering the issue 

from a wider prospective and referring it to the “strategy of saccades and fixation” 

many movements, some within the previous classification (VOR, OKR) but also 

some others (fixational visual movements), as it will be exposed, can be included 

into the fixational  movements class (see 2.2.2).67 Foremost,  both saccades and 

fixational  movements  are  definable  as  conjugate  gaze  movements (also  called 

version movements) , although opposite because the first one function is of gaze-

shifting and  the  second  ones  of  gaze-holding movements70.  Smooth  pursuit  is 

partially a class on its own within conjugate gaze movement, because it is a gaze-

shifting movement so strictly related to saccades (positional errors that occur during 

pursuit are mainly corrected by saccades, which rapidly realign the object’s image 

on the fovea but also allow future changes to be taken into account) that some author 
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consider them as an effective component of smooth pursuit movement71. On the 

other  hand,  smooth  pursuit  can  be  considered  itself  as  a  component  of  some 

fixational movements such as OKR and VOR, comparable to their slow phase67. 

Finally, vergence movements (convergence and divergence) are, on the other hand,  

dysconjugate gaze movements; they also have both gaze-holding and gaze-shifting 

properties70. 

2.2.1. Saccades

Looking at a human face image and superimposing eye movements recordings, it 

became clear since early Yarbus72 experiments, how fixations spend time focusing 

on important features (eyes and mouth looking at a face, for instance; see Figure 7  

below)72, while less time is spent over intermediate positions. Gaze rapidly shifts 

toward expected relevant stimuli locations pointing there the fovea and allowing 

through fixations time to gather useful visual information concerning regions of 

interest and contours13,64,67. 
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does not have time to influence these movements once they begin70. Peak velocity is 

determined only by the amplitude (linear relationship67) of the saccades and can 

reach 900°/s 64, while amplitude, mostly < 15° 73, can reach 20° as maximal range64

.  The  relationship  between  duration,  peak  velocity,  and  magnitude  of  human 

saccades is defined as “main sequence” (an astronomical term referred to the bond 

between brightness and temperature of a star) which illustrates the nonlinear nature 

of the saccadic system74. All those properties, allow to scan the environment (a 

sequence of saccades is the “scanpath”) or read (task that, until E.Landott studies in 

1890, was considered to be a smooth movement);  they differentially articulate 

depending on whether  saccades are  voluntary (top-down goal  directed),  where 

amplitude and direction can be modified differentially from speed (which can be 

reduced by fatigue, drugs, or pathological states), or reflexive, induced by bottom-

up visual stimuli that attract the eyes regardless of their significance for the subject
64,67. A voluntary saccade is characterized by longer latency than reflexive ones, as 

they  involve  the  activation  of  complex  cognitive  functions  such  as  attention, 

working  memory  and  decisional  making.  Latency  is  defined  either  as  the 

intersaccadic interval in a scanpath or the time of the exposition of stimuli and the 

reaction, an inter-trial time. On average, saccade latency ranges from 200 to 250 ms
67. Latency is additionally impacted by environmental variables such as brightness 

and object distance, as well as the presence of distractors that impede movement 

planning67. 

When the position of a distractor is near the target, it doesn't influence latency but 

does  so  with  saccade's  landing  position,  so  the  saccade  lands  at  intermediate 

position between the two objects: that’s called “global effect” and occurs in a wide 

range of stimuli, such as when a distractor has an opposite contrast polarity to the 

object, or when two similar targets are presented side by side75. 

In a disengaged state, saccades also represent intrinsic predictive brain activity of 

generative models’  priors during offline periods. For instance, saccades are the 

main rapid  eye movement  that  occurs  during REM sleep,  strongly relating to 

memory consolidation and to low-amplitude brain waves cortex activity76.

Moreover, in more naturalistic dynamical settings where both the observer and the 

environment are in motion, and other objects within the surrounding environment 
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are also moving, saccades do not occur in isolation. Instead, they must coordinate 

with  other  ocular  movements  to  maintain  visual  stability  and direct  the  fovea 

towards regions of interest67. To land to the position of a target further than 5°, a 

slight head rotation and a VOR coordinated interaction is necessary; referring both 

to VOR and OKR, saccades occur determining their fast phase. Furthermore, also 

during smooth pursuit eye movements, often saccadic intrusions happen. All eye 

movements are integrated in order to achieve visually qualitative inputs to optimize 

processing by the visual system. 

2.2.2. Vestibulo-ocular reflex (VOR) and Optokinetic reflex (OKR)

The Vestibulo-ocular reflex (VOR) stabilizes gaze and maintains clear vision while 

the head is in motion, particularly during locomotive dynamics70. It consists of two 

components. Rotational VOR compensates for head rotation and receives its input 

predominantly from the semicircular canals, whose endolymph moves within due to 

inertia, generating stimuli via vestibular hair cells projections. Translational VOR 

compensates for linear head movement; vertical and horizontal linear acceleration 

are encoded respectively by utricle and saccule maculae due to depolarization of 

hairy cells within of otolith organs64. 

These eye movements occur toward the opposite direction of the head movements, 

arising from connections between vestibular  nuclei  neurons and the abducens, 

oculomotor, and trochlear nuclei neurons: this maintains ocular orientation and gaze 

stability in time and space64,67. The fixational stabilization of the image onto the 

retina consists of a slow phase, proportional to head velocity, which constitutes the 

actual reflex, and an integrated corrective saccade aimed at repositioning gaze due 

to the smaller range of eye movement compared to the head's67. 

Optokinetic movements, on the other hand, hold images stationary during sustained 

or slow head movements: VORs are although imperfect, poorly able to compensate 

sustained motion at constant speed during translation or constant angular velocity 

during  rotation,  and  insensible  to  very  slow rotations  or  low-amplitude  linear 

accelerations64.  As  the  labyrinthine  signal  declines  or  fails  to  activate,  while 

watching as stationary viewer to a moving object, visually mediated eye movements 

supplement  or  take  over  thought  the  optokinetic  reflex  (OKR) also  known as 

optokinetic nystagmus (OKN). Consistently with the VOR, the OKR is composed 
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of  a  slow  phase represented  by  smooth  pursuit  movements  and  a  fast  phase 

consisting of saccades64,70.

2.2.3. Microscopic fixational movements 

During  fixations  or  periods  of  rest,  eyes  are  never  completely  still;  they 

continuously  generate  microscopic  fixational  eye  movements  that  are  highly 

integrated and include microsaccades, drifts and tremors. Those are essential in 

order to prevent image from fading: due to energy parsimony, sensitive neuronal 

adaptation causes  perceptual  vanishing.  Primate  oculomotor  system found this 

evolutionary system to be advantaged in in the wild compared to other animals, like 

frogs, whose neuron also adapt and are blind to static objects67.Other than this, they 

participate  in  gathering object  contours  information and contribute  to  enhance 

visual perception converting spatial information into spatiotemporal ones67.

- Microsaccades (or fixational saccades): once considered as a nervous tic, 

nowadays they have a well established importance, and perceived to share a 

large amount of properties with saccades67. They are binocular, conjugate 

movements that follow  the “main sequence” just as saccades (with a linear 

relation  between  peak  velocity  and  amplitude),  and  can  be  reduced 

intentionally or during specific tasks reflecting shifts in covert attention67. 

Interestingly, innovative results strengthen even more the relationship with 

saccades: rates and amplitudes of microsaccades decrease prior to the onset 

of a saccade77 and both during fixation and free-viewing/visual search tasks, 

the intersaccadic intervals remain consistent across all combinations in pairs 

of saccades and microsaccades78. Finally, microsaccades in the horizontal 

components are more dominant, at short time scales, than in the vertical 

direction in fixational eye movements; at long time scale (see further 4.1.3) 

both  horizontal  and  vertical  components  are  less  affected  by  the 

microsaccades79.

- Drifts: slow, wandering movements that occur surrounded by the rapid, 

linear microsaccades67.

- Tremors: smallest type of fixational movements, so that its tiny but really 

fast  oscillatory  motion  (about  90  Hz)  is  as  broad as  the  width  of  one 

photoreceptor. They are superimposed to drift67.
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2.2.4. Smooth pursuit

Smooth pursuit may be the ocular movement where balance between top-down and 

bottom-up component is  most impaired: often coordinated with saccades (with 

which composes the ocular pursuit) it is driven by the selection of an object image 

in the scene or in the environment,  which it  tracked and held onto the fovea. 

Because of the strong influence of top-down dynamics, there’s also anticipation on 

predictable movements of the object67. In particular, in first place it’s the visual 

feedback of the object that mostly guide the pursuit, but central mechanisms quickly 

take over: the aim is to calibrate eye speed to the one of the object and maintaining, 

through this smooth motion, visual acuity by holding image to the fovea. Saccadic 

movements allow realignment of the image in case of drop out that part of the retina 

of the selected visual stimulus64,67.

2.2.5. Vergence movements

Deconjugated gaze movements which occur in order to maintain the image of the 

object  focalized onto the fovea bilaterally,  regardless of  the target  movements 

toward to (convergence, rotation of the eyes each in the direction of the other one) or 

away from the observer, avoiding diplopia and enhancing depth and tridimensional 

sight64. 

This type of movement occurs transversal to the plane of the eyeball either in medial 

or temporal direction; consistently vergence movements are a function of  the level 

of  tonic  contraction  of  the  two pairs  horizontal  rectus  (see  next  paragraph)64. 

Convergence is also coordinated with ciliary reflex (accommodation): at any given 

time, when we focus to close objects, rear environment appears blurred. Coherently 

when we focus on far objects, closer ones appear blurred. Accommodation, by 

mediating changes through radius of the lens due to ciliary muscle contractions, 

aligns with convergence to maintain, especially acting when the objects gets closer 

(and the range of medial movements toward one another of the eyes is at its plateau) 

focus of its image on both retinas64. 

2.3. Oculomotor plant, extraocular muscles and cranial nerves

Binocular vison allows stereopsis as well as depth perception, each contribute to 

three-dimensional perception of a scene. Thus, coordinating extraocular muscle 
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system, the acuity of that scene can be preserved focalizing regions of interests onto 

the fovea64,67. 

Eye movements are, indeed, simply rotations of the eyeball in the orbit, through 

version or vergence movements, that can be following a horizontal axis to generate 

vertical  movements  (elevation or  upward  rotation;  depression or  downward 

rotation) and following a vertical axis to generate horizontal movements (abduction

 and  adduction)  changing line of sight redirecting the fovea64.  Or they can be 

torsional movements (intorsion or rotation of the top of the cornea toward the nose; 

extorsion or rotation away from the nose) which rotate the eye around the line of 

sight  while  preserving  where  it’s  looking.  These  are  also  the  three  degree  of 

freedom of eye rotation64,80. 

The Listing's Law and Donders' Law govern the three-dimensional orientation of 

the eye and its axes of rotation, indicating that for any gaze direction, the eye 

assumes only one unique orientation70,80. The former states that, given a fixed head 

position called primary position (a reference eye position that differs from the 

clinical  primary  position,  which  indicates  a  straight  gaze  position  that 

approximately aligns with the center of the range of ocular movement) from which 

all other eye positions can be can be achieved through a single rotation around an 

axis within Listing’s plane, a plane orthogonal to the line of sight when in primary 

position (see further, Figure 10)80. Although Listing’s law quantitatively defines a 

specific torsional angle for each gaze direction, it’s broaden up by Donder’s law 

which states that regardless of how the eye moves to that particular gaze direction, 

the torsional position remains constant70,80. This is because each combination of 

horizontal and vertical eye positions corresponds uniquely to a single torsional 

position70,80. Another expansion of the Listing’s law is the Listing half-angle rule, 

that widens the same occurrences to the eye movements from any position. Finally, 

Listing's law applies during fixation, saccades, smooth pursuit, and vergence, but 

not during sleep and the vestibulo-ocular reflex. This suggests that it is actively 

enforced by a neural mechanism67,80.

These intricate movements are accomplished through the coordinated action of six 

extraocular  muscles  per  eye.  Their  geometric  arrangement,  combined with the 
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various orbital positions of the eyeball, governs motor control, which is regulated 

by three cranial nerves64. Each eye is equipped with:

- Four  rectus  muscles:  medial  and  lateral  for  adduction and  abduction, 

inferior and superior for depression, elevation, intorsion and extorsion. All 

of them share a common origin at the annulus of Zinn, at the apex of the 

orbit, and they have different insertion at the cardinal points of the eyeball,  

each contacting surface of the sclera anterior to the center of the eye81. 

Inferior and superior recti are also addressed to as cyclovertical muscles, 

because they produce both vertical and torsional eye rotation64;

- Two oblique muscles: both insert to the sclera posterior to the center, so that 

superior oblique muscle can depress the eye and the inferior oblique muscle 

can elevate the eye. The inferior oblique muscle originates from the medial 

wall of the orbit, while the tendon of the superior oblique muscle passes 

through a trochlea before inserting to the globe (this arrangement effectively 

positions its origin on the anteromedial wall of the orbit)81. In primary gaze 

position the acute angle between eyeball orientation and the orbit axis, so 

that the eyes are in a basal mild adduced position, makes the oblique muscles 

the ones charged with vertical movements duty. When the eyeball is in a 

more abducted position, cyclovertical muscles are the ones involved in those 

movements; all  intermediate positions need to be regulated by effective 

coordination between superior and inferior recti and obliques64,70. 

Figure 9: Extraocular muscles. lateral view of the left eve with the orbital wall cut away (1) and superior view 

of the left eye with the root of the orbit and the levator muscle cut away(2)64.
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These muscles are directed by three cranial nerves, which functionally concert each 

muscle with its antagonist in the same orbit and pair them with the contralateral 

muscles that move the opposite eye in the same direction64. Those nerves are: 

- The oculomotor nerve (cranial nerve III) innervates medial, inferior, and 

superior  recti  other  than  the  inferior  oblique.  Also  some  autonomic 

parasympathetic  fibers  compose  this  nerve,  which  regulate  pupilar 

sphincteric  muscle  and  ciliary  muscle;  moreover  motor  fiber  are  also 

dedicated to the elevator of upper eyelid. Its nucleus lies in the midbrain at 

the  level  of  both  the  mesencephalic  reticular  formation  and  superior 

colliculus64,81;

- The trochlear nerve (cranial nerve IV) innervates superior oblique muscle, 

and its nucleus lies in the contralateral midbrain, caudal to the third nucleus, 

at the level of the inferior colliculus64,81;

- The abducens nerve (cranial nerve VI) innervates lateral rectus. Its nucleus 

lies  in  the  pons,  in  the  floor  of  fourth  ventriculus,  at  the  level  of  the 

paramedian pontine reticular formation (PPRF)64,81.

Figure 10: Phase-tonic motoneuron activity and eye rotational axis. (a) Schematic illustrating the phasic-

tonic motoneuron discharge: the phasic component facilitates quick eye movements, meanwhile the tonic  

component stabilizes the eye position just reached against elastic restoring forces. Thus motoneurons must  

generate a burst-tonic signal to adjust and maintain eye position at a new steady-state level (top traces); on the 

contrary, if a motoneuron discharge only include a burst without a tonic signal, eye positioning won’t be  

stabilized (bottom traces)67,82.  (b) The axis of rotation of the eye according to Listing's law. Those are (as  

defined by the angular velocity) neither head-fixed nor eye-fixed, but rotate in the same direction of gaze  

through the half of the gaze angle (𝜽/2; half-angle rule) 67,82.

Considering single oculomotor neuron recording (as just exposed in figure 10) to 

enhance a saccade and so to move the eye to a target and to keep it there, the motor 
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signal must include both a position component (to counter the elastic force of orbital 

tissue  which tends  to  restore  a  central  position of  the  eyeball)  and a  velocity 

component (to overcome orbital  viscosity that  opposes to quick movements)64. 

When a saccades is launched, neuron firing rate rises quickly (“saccadic pulse”) 

with a frequency (firing rate bursts can reach frequencies as high as 500 spikes/s67) 

that determines the speed of the gaze-shifting movement and an amplitude that 

codes for  the amplitude of  the motion.  Then activity  returns  to  tonic,  but  the 

difference  between  tonic  activity  before  and  after  the  saccades  is  defined  as 

“saccadic step”64.

Moreover, extrinsic ocular muscles fibers, both in global and orbital layer which 

insert respectively to the sclera and to fibrotic pulleys around recti, are anatomically 

differentiated in twitch (single-nerved fibers that respond quickly to burst of firing 

with jerk contraction) and non-twitch (multiply-innervated, fatigue-resistant muscle 

fibers  that  respond  to  tonic  stimuli).  Actually,  two  sets  of  motoneurons  are 

subclustered in all three brainstem nuclei of oculomotor, trochlear and abducens 

nerves: the subset for twitch fibers which is central and more peripheral subset for 

non-twitch fibres67. 

Figure 11: Brainstem and extraocular muscle fibers innervation. (a) Schematic illustration of the brainstem

. Excitatory burst neurons (EBNs) for horizontal saccades lie in the paramedian pontine reticular formation  

(PPRF); for vertical and torsional saccadic movements lie in the rostral interstitial nucleus of the medial  

longitudinal fasciculus (riMLF). Oculor motoneurons lie in the abducens nucleus (ABN: VI). the oculomotor  

nucleus  (OMN; Ill)  and the  trochlear  nucleus  (IV).  INC: interstitial  nucleus  of  Cajal;  (NRTP):  nucleus  

reticularis tegmentis pontis; nucleus prepositus hypoglossi (nPH); vestibular nucleus(VN)67. (b) Schematic  

illustration of muscle fibers innervations. Twitch fibers receive innervations from large motoneurons while  

small motoneurons 8tendo to lie peripheral) project to non-twitch fibers. Large motoneurons receive premotor  
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signals  from the  saccadic  burst  generator  (SBN)  whereas  small  motoneurons  receive  innervations  from  

premotor sources involved in executing slow eye movements (e.g. VN, NPH and supraoculomotor nucleus  

(SOA)) 67.

According to “dual motor control hypothesis” subsets of large motoneurons that 

regulate  twitch  fibers  should  be  the  only  one  involved in  saccades  and VOR 

pathways, and more in general highly implicated in eye movements where saccadic 

shift are very often part of, or coordinated to, other type of movements. On the other 

hand, subsets of small motoneurons that regulates non-twitch fibers should be more 

involved in a proprioceptive system (where sensory afferences are transmitted by 

via trigeminal nerve and spinal trigeminal nucleus) therefore stabilizing fixational 

movements and alignment of the eyes67,83.

2.4. Brainstem, superior colliculus,  cerebellum, basal ganglia and cortical 

regions. Many actors orchestrate oculomotor networks

Brainstem is the frontier where coordinated broken up instructions to oculomotor 

muscles are generated, in order to execute the inputs resulting from the integration 

between superior colliculus, basal ganglia, thalamus and cortical areas70.  Superior 

colliculus is a major visuomotor and multimodal integration site, the last hub where 

instructions for movements are represented on a spatial retinotopic map84, and acts 

regulating saccades and fixations,  integrating cortical  with basal  ganglia’s  and 

retinoic  inputs.  Several  cerebellum regions  (vestibular  cerebellum,  oculomotor 

regions of vermis, flocculus and paraflocculus, hemispheric parts of the cerebellum, 

involving parts of Crus I, II, and the simple lobule) are highly integrated in any type 

of ocular movement. Finally, numerous cortical areas, interact constantly in order to 

integrate and coordinate all the subsets of eye movements: VOR, OKR, saccades, 

smooth  pursuit,  fixational  movements  and  vergence  movements  can  not  be 

considered as segregated worlds but as an integrated continuum that constantly 

reflects internal environment dynamics and allows visual perceptive congnitve-

behavioural interaction with the surrounding environment.

In the next paragraph peculiar functional relationships and integration between 

these  different  anatomical  structures  will  be  highlighted  in  order  to  lie  the 
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groundwork for the visual explorative dynamics features considered in the two 

experimental settings of studies behind the replication (see chapters 3 and 4).

2.4.1. Saccades and fixations strategy

To generate a saccade, a “pulse signal” rises from high frequency firing excitatory 

burst  neurons (EBNs) located in the rostral  portion of the paramedian pontine 

reticular formation (PPRF) and within rostral  interstitial  nucleus of the medial 

longitudinal fasciculus (riMLF) that lies in the mesencephalic reticular formation 

(MRF).  PPRF  burst  neurons  drive  horizontal  saccades  regulating  ipsilateral 

abducens nucleus and contralateral oculomotor nucleus via medial longitudinal 

fasciculus  (MLF);  MRF  burst  neurons  drive  vertical  saccades  regulating 

oculomotor and trochlear nuclei, bilaterally coordinated via posterior commissure 

after vertical and torsional neural integration are performed in the nearby interstitial 

nucleus  of  Cajal  (INC)64,67,70.  Moreover,  both  system  contemplate  the  role  of 

inhibitory burst neurons (IBNs), whose firing is essential in order to coordinate 

motoneurons within the system silencing antagonist motoneurons. EBNs and IBNs, 

are commonly referred to as saccadic burst neurons (SBNs), which burst 10-20ms 

prior to a saccade onset with a duration of firing that relates to the amplitude of the 

saccade itself; on the other hand they are silent during steady gaze, smooth pursuit, 

slow vergence, and during the slow phases of vestibular nystagmus. SBNs are 

regulated directly and indirectly (via long-lead burst neurons; LLBNs) by superior 

colliculus  and  caudal  fastigial  nucleus  of  cerebellum (the  oculomotor  vermis, 

through fastigial nucleus, calibrates the bursts to keep saccades accurate). Finally, 

both systems act together in the generation of oblique saccades, which have both 

horizontal and vertical components67.

Figure 12: Schematic diagram of anatomy and physiology of horizontal eye-movements. Frontal eye field  

(FEF); cranial nerve III, oculomotor (CN3); cranial nerve VI, abducens (CN6); left lateral rectus (LLR); left  

medial rectus (LMR); medial longitudinal fasciculus (MLF); paramedian pontine reticular formation (PPRF); 

right lateral rectus (RLR); right medial rectus (RMR)85.
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Receiving only a “pulse signal” eyes would drift back to starting position due to 

elastic  restorative  forces  as  analyzed  in  the  previous  paragraph;  GABAergic 

omnipause neurons (OPNs), which lie in the nucleus of the dorsal raphe at midline, 

are responsible for “steps” enhancing a tonic firing activity which stabilizes gaze to 

the  new position  (where  fixational  visual  input  collection  can  realize).  These 

neurons fires continuously in a tonic way, except when a saccade occurs; they are 

regulated by SBNs themselves (which realize this way an inhibitory feedback) and 

by superior colliculus. Finally, nucleus prepositus hypoglossi (nPH) and in INC also 

participates encoding robust positional signals (lesions of either the nPH or INC 

would result in an inability to hold the eyes at a new position after a saccade)64,67.

Superior  colliculus  (SC)  is  a  fundamental  structure  of  interest  concerning 

“saccades and fixation strategy”:  visual  stimuli  responding builds  up neurons 

activity, gradually increasing until being strong enough to induce burst neurons 

activity, which lie in the intermediate and deep layer; they fire high-frequency 

efferent signals to PPRF and riMLF to launch saccades84. While superficial layers 

receive inputs directly from retina and from striate cortex, representing the opposite 

visual hemifield, so neurons organize in a retinotopic map, intermediate and deep 

layers are the ones where multimodal integration occurs (employing somatotopic, 

tonotopic, and retinotopic maps) but above all where push-pull integration between 

inhibitory inputs via nigrotectal projections from the substantia nigra pars reticulata 

(SNr) and the excitatory inputs from frontal eye field (FEF) and lateral intra-parietal 

area (LIP) occurs64,84.  FEFs in addition,  excite  caudate nucleus,  which inhibits 

substantia nigra: cumulatively they enhance in both ways positive regulation to 

saccade generator neurons in the superior colliculus64.  

Moreover,  also supplementary eye fields  (SEFs),  dorsolateral  prefrontal  cortex 

(DLPFC) and anterior  cingulate cortex (ACC) project  to intermediate superior 

colliculus layer67; interestingly, the majority of connections within the networks, 

that see SC as multimodal behavioral hub, are directly or indirectly derived from 

cortical regions, which is consistent with the  inside-out brain view. Finally, SC 

superior  layer’s  projections  to  intermediate  layers  are  a  crucial  hub  for  the 

interaction between sensory (bottom-up) and goal-related (top-down) processes: 

neurons  within  this  layer  show  correlate  firing  both  with  exogenous  and 
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endogenous shifts of visuospatial attention, where visuomotor neurons in the SCi 

show enhanced activity during an endogenous shift of attention into their response 

fields,  even  in  the  absence  of  a  visual  stimulus67,86.  Additionally,  apart  from 

visuospatial attention, the superior and intermediate layers are intricately linked 

through target  selection,  exemplifying a combined representation of  bottom-up 

salience and top-down relevance. This discrimination process integrates projections 

from V4, IPS, and FEF/SEFs67.

On the other hand, eye movements can occur independently of visual stimulation; 

despite this integration, the majority of projections from the superficial layer do not 

connect directly with the intermediate layer. Instead, they are directed towards the 

pulvinar and lateral posterior nuclei of the thalamus, which then project to cortical 

regions that send projections back to the SC, at the intermediate layer. So SC is part 

of cortical-thalamic oculomotor loops, to which basal ganglia also participates as 

seen before, where higher elaboration occur instead of immediate sensory-motor 

integration64. 

Thalamus serves as the gateway to the cerebral cortex. Pathways passing through 

the central and posterior thalamus are implicated in directing visuospatial attention, 

which in turn guides eye movements. It receives input from various brain regions 

such as the brainstem, basal ganglia, and cerebellum, and sends output to cortical 

areas involved in eye movement, including the FEF, SEF, and DLPFC 67.

Rostral (retrolateral) SC neurons, have been defined as fixational neurons because 

of their tonic firing during periods of active fixation that persists without a visual 

stimulus and before small saccades to contralateral visual field; moreover they are 

also implicated in generating microsaccades coherently with fixational dynamics 

exposed before. They receive inputs from the fovea and the foveal representation in 

primary visual cortex (V1); they also inhibit movements-related neurons of the 

caudal part and also project to nucleus of dorsal raphe, where they inhibits saccadic 

shifts exiting OPNs64,67. 

38



Figure 13: Brain cortical areas, thalamic and superior colliculus top-down and bottom-up integration.  (a)  

Schematic outline of the pathways for pursuit and saccadic eye movements on a lateral view of the monkey  

brain. Not all relevant areas are depicted (e.g., ascending pathways are omitted), and arrows do not always  

correspond to direct  anatomical  connections.  Caudate nucleus (CN);  Frontal  eye field (FEF);  Lateral  

intraparietal area (LIP) ; Middle temporal area (MT);  Medial superior temporal area (MST); Brain stem  

premotor nuclei (PMN: PPRF, riMLF, cMRF); Precerebellar pontine nuclei (PON); Superior colliculus (SC:  

intermediate and deep layers);  supplementary eye field (SEF);  Substantia nigra pars reticulate (SNr );  

Oculomotor vermis (Verm: cerebellum, lobules VI and VII); Vestibular nuclei (VN); Ventral paraflocculus  

(VPF: cerebellum)87. (b) Dominant extrinsic and intrinsic circuitry of the primate SC. Shading from light to  

dark represents the gradual shift from bottom-up to top-down processes respectively. Other than the areas  

previously highlighted: Dorsal lateral prefrontal cortex (DLPFC); Primary visual cortex (V1); Medial dorsal  

nucleus of the thalamus (MD); Lateral geniculate nucleus (LGN); Brainstem omnipause neuron region (OPN);  

Superior colliculus superficial layers (SCs); Superior colliculus intermediate layers (SCi)67. (c) Transverse  

view of the SC. The progression from top to bottom represents a shift from mostly bottom-up towards increasing 

top-down processes67.

Partial  segregation between SC superficial  (which receives  most  of  the global 

luminance inputs from retina) and intermediate layers is also proven with single cell 

recordings, that show how variances in luminance conditionate pupil diameter, but 

not saccadic dynamics88. On the other hand, non-luminance-mediated changes in 

pupil  diameter  correlate  with  cortical  (especially  with  ACC  and  PCC)  and 

subcortical neuronal activity: effects that can be described in terms of activation of 

norepinephrine-containing neurons in the brainstem nucleus locus coeruleus (LC) 

which interacts mostly with SC intermediate layer and Edinger-Westphal nucleus 

relating  parasympathetic-sympathetic  balanced  tone  (reflected  trough  pupil 

diameter) with eye movements and fixations89. 

Moreover,  LC norepinephrine-mediated  projections  are  widely  diffused  to  the 

brainstem,  cerebellum,  diencephalon,  and  neocortex90.  LC-NE  tonic  activity 
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enables transitions between behavioral states (increasing from low levels at sleep, to 

moderate levels in focused task, filtering out irrelevant stimuli, to high levels when 

exploring  surrounding  environment  with  uncertainty) .  Brief  phasic  firing  it’s, 

instead, related to target selection. A decrease in tonic activity from exploratory to 

task-focusing, participates in inducing a reflected deactivation in right-hemisphere 

temporal parietal junction (rTPJ) and so ventral attention network (VAN), which is 

on the contrary activated and timed also from LC/NE system phasic activity other 

than high tonic firing in redirecting attention (which has so also an autonomic 

integration,  and  interacts  with  modulation  of  pupil  diameter)  to  unattended 

behaviorally relevant stimuli (see also 3.2.3).

Pupil  diameter  tone  fluctuations  occur  during  fixations  not  only  consequently 

luminance changes, but also reflecting arousal, attention92, cognitive effort, during 

explore-exploit trade-off, surprise, salience, decision biases; coherently they do not 

only  occur  concerning  contrast-based  saliency  during  eye  movements89–91.  So, 

changes in  pupil  diameter  are  just  another  reporter  of  the integration between 

cortical and subcortical areas (mediated especially with reciprocal cortex - LC 

connections)  which  reflects  endogenous  implications  on  ocular  dynamics, 

mirroring integrations between top-down dynamics, and the bottom-up processing 

that, with different magnitudes, always occurs when talking about oculomotor and 

visuospatial related dynamics89.

In the upcoming chapter, we will delve into the intricacies of these highly integrated 

dynamics, which manifest through saccades, fixational movements, pupil diameter 

variations, and other features. Specifically, we will focus on cortical-subcortical 

top-down integrations  and  its  blending  with  bottom-up stimuli  processing, 

consolidating and organizing the information already presented in Chapter 1. We 

will  explore  how  the  low-dimensionality  of  visual  exploration  spatiotemporal 

dynamics, driven by intrinsic factors that correlates with various EEG features (also 

discussed in Chapter 4).
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3. LOW DIMENSIONALITY OF VISUAL EXPLORATION DYNAMICS 

AND THE PREDICTIVE BRAIN

3.1. Predictive brain as a theory to fill gap of unexplained variance in eye 

movements dynamics 

Collecting information from chapters 1 and 2, it becomes clear how complex and 

structured  is  our  Restless  and  Predictive  Visual  Brain.  An  open  issue  in 

neuroscience  is  what  can  explain  variance  within  eye  movements  dynamics, 

explored as a gateway to infer about visuospatial attention dynamics. 

Generally speaking, an attention mechanism refers to a neural system capable of 

dynamically select or modulate information processing, typically in response to task 

demands or guided by learned cues and instructions. Essentially, it enables flexible 

control over the flow of information, guiding it  from the environment through 

various  stage  of  neural  processing67.  The  organism  is  capable  of  selectively 

engaging  (or  disengaging)  these  mechanisms  for  specific  stimuli  by  adjusting 

motor-control signals for the sensory organs, a process known as overt attention67. 

This ability allows for dynamic selection of where to focus the high-resolution 

circuits of the visual system via oculomotor dynamics and head movements, to 

highlight  stimuli  recognized  trough  mechanisms  that  do  not  involve  explicit 

involvement of sensory organs: covert attention67. 

Figure 14: General schematic framework for models of covert and over attention. Grey-colored parts refer to  

the covert  attentional ground, around which the white parts  representing overt  attentional dynamics are  

integrated 67. 

Many explanations over the years tried to address the relationship between overt 

(eye movements) and covert attention. Models attempted to depict feature maps in a 

purely  bottom-up saliency-mediated  manner  (basing  on  the  hypothesis  that 
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attention, and hence gaze, is drawn to image features that perceptually stand out in 

some way from the other image features67) leading to the creation of a "saliency 

map" that systematically encoded the local prominence across the entire visual field 

and had no need for any type of top-down integration, so that only low-level features 

of  objects  organized in  multiscale  structured the map drove eye movements93. 

Moreover this topographical approach, led to infer conceptions concerning how fast 

stimulus-driven  saliency  should  have  a  much  prevalent  role  in  driving  overt 

attentional  selection  than  top-down directed  mechanism under  natural  viewing 

conditions94. Many other models have been raised, basing on the core concept that 

revolves around the brain using the present image (or a broader set of images) to 

formulate a statistical model of local image attributes, with saliency depending on 

how different these local image features are compared to the statistical model67,95.

Saliency refers  to the “sensory distinctiveness and behavioral  relevance of  an  

object relative to other objects”96 and it is still fundamental, along with semantic 

(defined  as  the  “intrinsic  value  dimensions  within  the  objects  comprising  the  

scene”, which are weighted differently in the image in term of saliency relating to  

those semantic categories, that predict gaze steps”97,98), in constituting bottom-up 

processing driven component. But, as extensively discussed in Chapter 1, top-down

 driven component is of increasingly interest: recent theories and computational 

models focus on the importance of both sensory stimuli and cognitive processes in 

guiding overt attention and so naturalistic eye movements behavior33. Moreover, 

overt visual  attention  probably  has  its  origins  in  covert attention:  these  two 

processes operate closely interconnected and, indeed, the same cortical areas are 

consistently implicated in those processes, both at cellular and network level31 (see 

also paragraph 3.2.3)

Finally,  another concept brought up by those new perspectives is  the fact  that 

individuals’ eye-movement behavior profiles can be studied using some metrics (up 

to six: fixation rate, duration, and size; saccade amplitude; micro-saccade rate and 

amplitude)  which  highlight  stable  idiosyncrasies  trough  different  task  in 

oculomotor dynamics99.  Individual  profiling,  as  already discussed in paragraph 

1.3.3 is closely related also to spontaneous brain activity, and coherently to that,  

during free viewing and resting state, EEG recordings (see chapter 4) are able to 

show  characterizations  of  subjects  relating  intrinsic  brain  activity  and  ocular 
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movements dynamics32. Considering the relationship between endogenous activity 

and predictive brain modeling, that’s a reason why brain predictiveness may be a 

theory  supposed  to  fill  the  gap  of  unexplained  variance  in  eye  movements 

dynamics, and so to relate to the intertwined relationship between covert and over at

tention dynamics as their interaction occurs within resting state-task dynamics.

Before delving into these speculations, it  is necessary, however, to explore the 

anatomical and functional cortical areas and their highly integrated networks that 

correlate with eye movements, attentional and cognitive dynamics, memory recall 

of  visual  stimuli  and how these  act  synergistically  in  determining oculomotor 

dynamics behavior.

3.2. Cortical networks for eye movements and visuospatial attention

Many cortical areas participate to pre-saccadic, saccadic and post-saccadic activity; 

their networks are highly overlapped with the attentional systems, thus underling a 

dynamic interaction between oculomotor-attentional and visual areas.

3.2.1. Posterior parietal cortex

The intraparietal sulcus, IPS (whose middle third is the human homologue of the 

monkey lateral intraparietal area or LIP100) of the posterior parietal cortex (PPC), 

which is part of Brodmann’s area 7, plays a role in saccade target representation 

regarding  contralateral  visual  field  and  provides  guidance  signals  related  to 

saliency, target value and timing, interacting also with sensory working memory64,67

. IPS, although not being as directly involved in the production of saccades as 

compared to the FEFs and SC, forms representations of potential saccade targets. 

Referring to studies in monkeys connectivity, the antero-dorsal region of LIP (dLIP) 

is  primarily  recruited  during  visual  fixation  and  visually-guided  saccades, 

exhibiting connections mostly to temporal cortex visual areas, with a role in visual 

processing62.  The  posterior-ventral  region  of  LIP (LIPv)  is  more  involved  in 

regulating saccadic eye movements and has strong reciprocal connections with FEF 

and SC (both with SC intermediate and superficial layers, as directed connections or 

via pulvinar; see also back to paragraph 2.4.1) being active during both visually- 

and memory-guided saccades62. In addition, magnitude of pre-saccade activity in 

IPS shows visual dependence and is significantly reduced when saccades are made 
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in the absence of a visual stimulus, although it does not contain neurons directly 

controlling saccade enhancing67,101. 

Finally, IPS participates alongside with FEF, to guarantee working memory trough 

delay  periods  until  next  saccade,  where  persistent  activity  (vawe-mediated 

reverberation  that  contribute  to  shot-memory  and  contributes  in  consolidating 

transition to long-term memory40) also when object has vanished, is fundamental in 

providing memory-mediated saccade orienteering67,101,102. 

Lesions of a monkey PPC, and consequentially LIP, increase the latency and reduce 

accuracy of saccades; moreover it produces selective neglect of the contralateral 

hemifield64,70.

3.2.2. Frontal cortex

Regarding eye movements, there seems to be a continuum ranging from the frontal 

eye  fields  (FEFs),  which  directly  initiate  saccades  concerning  contralateral 

hemifield, to other regions such as the supplementary eye field (SEFs), prefrontal 

cortex (PFC), anterior cingulate cortex (ACC), and pre-supplementary motor area 

(pre-SMA), that  facilitate flexible and adaptable control  of eye movements by 

modulating activity in the oculomotor system, based also on cognitive processes67. 

FEF is considerate the main cortical  eye field,  whose firing is  related to both 

saccades  (contralaterally)  and  smooth  pursuit  (ipsilaterally)67.  It  counts  three 

different types of neurons:  visual neurons that fire responding to visual stimuli 

(almost  half  of  them  even  more  vigorously  to  the  saccades  target  stimuli), 

movement-related neurons which fire before and during saccades to their movement 

fields (exhibiting firing only before behaviorally relevant saccades, deferring from 

SC ones  which  fire  prior  to  any  saccade)  and  visuomovement  neurons which 

discharge most strongly before visually guided saccades64,70.

FEF  exhibits  reciprocal  connections  with  the  occipital,  temporal,  and  parietal 

cortex, as well as neighboring and contralateral regions of the prefrontal cortex. 

Other  fundamental  reciprocal  projections  are  stipulated  with  intermediate  and 

superficial  layers  of  SC,  manly  ipsilaterally  but  also  contralaterally  (and  also 
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indirectly  mediated  by  basal  ganglia  pathways).  Additional  inputs  come  from 

substantia nigra pars compacta and posterior portion of the dentate nucleus through 

the  mediodorsal  nucleus  of  the  thalamus;  it  sends  projections  to  caudate  and 

putamen, other than PPRF and MRF (although not to SBNs but only to premotor 

and intermediate neurons)67. 

Both FEF and IPS, in particular, contain areas with retinotopically organized maps 

of  contralateral  space,  making  them candidate  for  the  maintenance  of  spatial 

priority maps for  covert spatial attention, saccade planning, and visual working 

memory103,104.  A  multitude  of  studies  showed  highly  integrated  functional-

anatomical organization within frontal cortex, sustaining the fact that other than 

direct control on saccades generation (trough SC regulation) that coordinate them 

also to other eye and head movements producing complex overt attention orienting 

responses,  it  participates  alongside  with  the  other  frontal  cortical  areas,  to  a 

multitude  of  cognitive  functions,  including  target  selection,  spatial  working 

memory, arbitrary stimulus-response mapping, response suppression, and reward67. 

First of all, within these regions, the SEF (dorsomedial to FEF, within Brodmann’s 

area 6) has the property of evoking fixed-vectors saccades trough firing of its 

neurons105 such as the FEF, but its activity is more related to the encode of visual 

space in “head centered” coordinates: continuedly microstimulating FEF neuron 

produces a series of saccades meanwhile doing the same to SEF, the eye persist in 

the gaze position reached at the beginning of the stimulation67,106. There are neurons 

sending saccade-related signals (underlying gaze-shifting) and some other carrying 

fixational signals (underlying gaze-holding)105. Moreover, if a neuronal in left SEF 

normally fires before a saccadic movement rightward, firing will be also observed 

before a leftward eye movement if it has been coded to occur in the right side of the 

target64.  Integrated  with  all  the  other  frontal  cortex  structures  activity,  SEF is 

engaged in executive control, especially in control of eye movements based on 

cognitive dynamics67. 

PFC is a highly interconnected hub which shares reciprocal projections with higher 

order visual, auditory, somatosensory, and polysensory areas; it also projects to all 

motor areas, to SC and to pontine nuclei. Its role is to modulate saccadic movements 
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and to perform cognitive control of  overt attention mainly through visuospatial 

working memory, response suppression and flexible control67. ACC, which lies at 

the  medial  wall  of  the  cerebral  hemispheres  surrounding  the  corpus  callosum 

(Brodmann’s areas 24 and 32), is highly interconnected with PFC and its purpose 

regarding eye movements could be to signal the mismatch between intended and 

executed eye movements, or to monitor for conflicts arising from incompatible 

oculomotor commands solving conflicts by engaging other cortical regions67. PFC 

(in particular its dorsolateral component) and ACC top-down regulations have been 

studied with fMRI while subjects were performing Stroop color-word task, which is 

a complex of task where interference and conflict are the foundation and also has 

been used in  the  study exposed by this  thesis  (see  Methods,  chapter  7).  PFC 

(DLPFC) showed enhanced activation during the cognitive-controlled preparatory 

periods, not relating to behavioral responses, while ACC showed more activation 

during responding phase analyzing eventual behavioral conflicts67,107. Single cell-

recording showed that ACC have higher task selectivity after task switch and that 

this decreases during task block, compared to PFC selectivity that stayed stable; 

ACC cells get recruited also in task maintenance when cognitive effort required 

increases, participating at the top-down integration with PFC108.

3.2.3. Attention and saccades: shared networks for overt and covert attention

 

Already in 1876 David Ferrier stated: “Among the reactions excited by electrisation 

of the anterior of motor part of the hemispheres, is one of a special character, which  

results from stimulation of in the monkey […] The head and eyes are directed to the 

opposite side and at the same time pupils dilate widely […] the attitude is also one 

of excited attention or surprise” underling the multiple nature of some areas related 

to eye movements in the frontal cortex, although just discovered, also concerning 

cognitive domains.

In everyday life in order to coordinate visual, oculomotor and attentional signals 

covert attentional shift and  overt saccadic movements are highly integrated31. In 

many studies, using single-cell recordings in cortical (FEF, SEF, DLPC, PPC) and 

subcortical areas (caudate, pulvinar and superior colliculus) during guided saccadic 

eye movements, responses to visual stimuli have been shown to be modulated also 
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from the behavioral relevance of the stimuli79. So those cells showed to be recruited 

both in oculomotor and attentional processing31,86. Moreover, consistent results have 

been showed in neuroimaging studies during  covert attention shift to peripheral 

stimuli,  discrimination  tasks  or  looking  at  (overt)  peripheral  stimuli  during 

oculomotor localization task31.

Considering the analysis of a peripheral visual location, this can be driven in two 

ways: either by orienting gaze (by making a foveating saccade) or by covertly 

shifting attention to that peripheral location without making an eye movement86. 

Studying fMRI and surface-based representations of brain activity while subjects 

were involved in  two task design to  accomplish the two ways of  analyzing a 

peripheral visual location: all  the areas considered by the single cell recording 

showed to be overlapped trough both oculomotor task and attentional  task31,86. 

Functional anatomy appears to be shared also when the two processes are not 

conducted at  the same time (two different task showed overlapping in frontal, 

parietal and temporal areas)31. Moreover, single-cell recordings in SC showed that 

in the intermediate layer, the  visuomotor neurons (as said before, employed in 

saccades preparation) showed to be active also in covert shift of attention other than 

covert86, consistently with the top-down regulation of this common dorsal network 

which coordinates also sub-cortical structures that functionally belong to it31.

Figure 15: Dorsal Attention Network (RSN13) maps, dorsal view. White matter map in green, grey matter map 

in red. Union of the two maps in the middle. Arcuate fasciculus, posterior segment (AF-P), Frontal Aslant Tract 

(FAT), Intraparietal sulcus and superior parietal lobule (IPs/SPL), Middle part of the corpus callosum (Middle 

CC), Middle temporal gyrus (MTg), Posterior part of the corpus callosum (Posterior CC), PrCg Precentral  

gyrus (PrCg), Precentral sulcus (Precentral s), Superior frontal gyrus (SFg), Second branch of the Superior  

Longitudinal Fasciculus (SLF2); Supramarginal gyrus (SMs). Frontal eye field is at the intersection of the  

middle frontal gyrus with the precentral gyrus. The insula and cerebellum are visible through the glass-brain  

effect19. 
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This common network, the dorsal attention network (DAN), is a widely distributed 

system dynamically anticorrelated to DMN109 (see Figure 16) in fMRI recordings 

during performance of novel,  attention-demanding, non-self-referential  tasks in 

which the DMN areas (MPF, medial pre-frontal cortex; PCC; LP, lateral parietal 

cortex; cerebellar tonsils) decreases its activity while the DAN related areas (mIPS; 

precuneus; superior parietal lobule, SPL; FEF; SEF; DLPFC; MT, middle temporal 

region. In addition to those grey matter areas, recent studies allowed also to define 

for the first time its white matter projections, as in the Figure 1519) showed it 

increased101,109. Other  areas  activated by demanding cognitive tasks  are  dorsal-

lateral and ventral-prefrontal regions, insula, and SMA22,109. Moreover, neither of 

those networks appeared to  be highly-related with primary sensory and motor 

cortical areas, which are the direct interfaces to the surrounding world: data have 

been found trough different resting states (such as fixation, eyes closed, and eyes 

open) demonstrating that results could not be attributed to the demand of a low-level 

task (such as a fixation), eye movements, or the presence or absence of visual input
22,109. This is consistent in showing how infra-slow intrinsic activity of those high-

hierarchical networks through all brain states, in which they have high within-

correlation, low between-correlation and the absence of preferential mild dynamic 

correlation with sensory-motor areas109.

Figure 16: Anticorrelation between DAN and DMN, measured with fMRI. (a) Intrinsic correlations between 

a seed region (ROI) in the PCC and all other voxels (positively or negatively correlated to the seed region) ;  

single subject, resting fixation. The time course shows relative fluctuations of a seed region (PCC, yellow), of a 

region positively correlated in the MPF (orange), and of a region negatively correlated in the IPS (blue)109. (b)

 A map of the static (time-averaged) temporal correlation of the BOLD signal between ROI in medial parietal  

cortex (black arrowhead), and the rest of the cortex over many minutes. Central in the composite image the  

BOLD-fMRI signal time curse fluctuations of the DMN and DAN. The surrounding maps represent the main  

patterns of dynamic connectivity across brain areas, identified by a sliding window analysis, and the projection 
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on the cortical surface of the first eigenvector, across different cognitive resting states. Time-course fluctuation 

(frequency 0.1 Hz)13.

DAN regions are engaged in governing visually- and memory-guided saccades, 

with an almost complete overlap of visuospatial attention and eye movement related 

activations31,96; this involvement facilitates the voluntary allocation of attention to 

specific locations or features, based on task relevance or sensory value, through top-

down guidance104.  These  cortical  regions  exhibit  predominantly  symmetrical 

organization, with each hemisphere primarily representing the contralateral side of 

space9,96. 

Figure 17: DAN, a common network for attention and eye movements, integrated via rTPJ regulation with  

VAN. (a) 3D single subject surface reconstruction and flattened cortical map of the Right Hemisphere.  

Showed in red the areas recruited in a shifting attention task, in green the ones recruited in the eye movments  

task and in yellow the overlaps between the two. The inset highlights the precentral region that includes the  

frontal eye field (FEF)31.  (b) Regions exhibiting sustained activity in visual-search task,  including DAN 

regions such as IPS and FEF (depicted in red/orange in the surface-rendered brain); additionally, areas in the  

anterior insula and anterior cingulate, which are part of a proposed task-control network, also show activity.  

These regions send top-down signals (arrows) to the VAN areas, determinning sustained deactivations during  

search (blue/green in surface-rendered brain), restricting its input to task-relevant objects90.

This  network,  or  at  least  its  grey  matter  areas,  although  containing  all  these 

physiological signals is not the one often damaged when suffering of neglect (which 

causes egocentric spatial bias other than arousal and vigilance affections)96. Perhaps 

a right-lateralized ventral frontoparietal system (ventral attention network, VAN) is 

the one frequently affected (or the fibers affected are the white matter ones which 
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connect  DAN  to  VAN19,96).  VAN  comprehends  right  temporoparietal  junction 

(rTPJ),  right  inferior  parietal  lobule/superior  temporal  gyrus  (IPL/STG),  right 

ventral  frontal  cortex  (VFC)  which  are  involved  in  detecting  unattended  or 

unexpected  stimuli  and  triggering  shifts  of  attention,  in  particular  briefly 

interrupting rTPJ-IPS projections (VAN-DAN white  matter  interactions19)9,96,104. 

Dynamically, these systems interact during different brain states: at rest, each one is 

relatively  distinct  and  exhibits  high  within-network  correlation,  while  during 

attentional  focus,  VAN is  suppressed (rTPJ activity in particular  is  reduced or 

suppressed during focused attention) to prevent reorienting to distracting events 

(VAN is more engaged in stimuli-driven attentional dynamics, detecting salient and 

behaviorally relevant stimuli in the environment, especially when unexpected, only 

when informative even if they are not much distinctive)90.

Finally, relating to visuospatial attentional and eye movements systems and to what 

has  been exposed in  chapter  1  relatively  to  RSNs,  it  is  important  to  evaluate 

temporal dynamic whitin- and between-correlation of DAN and VIS. The latter is 

identified as a functional network where activity occurs bilaterally in intermediate 

visual  hierarchy regions such as  ventral  (V4-V8),  dorsal  (V3a-V7) and lateral 

occipital cortex or MT (the latter, as seen before, recruited also among task-positive 

networks overlapping with DAN109) but also trough primary visual occipital cortex 

(V1–V3)6.

Figure 18: Spatial priors seen as of functional connectivity summary analyses. Main resting-state (upper and 

lower  left)  and  significant  state  (upper  and  lower  right)  task-induced  modulations6.  The  functional  and 

directional functional connections within the dorsal attention network (blue) are not significantly different  

during fixation or a demanding visuospatial attention task. In contrast, connections within the visual system  

(pink), or between visual and dorsal attention networks (green) are modified110.
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During the transition from a wakefulness rest to a visuospatial attentional task 

(either focusing on a stream of visual stimuli or shifting attention to competing) it 

occurs  a  decrease in  correlation within the visual  network,  while  higher-order 

resting  connectivity  in  the  DAN  remains  relatively  stable  during  attention6, 

suggesting the role of intrinsic activity as a preparatory spatiotemporal  prior13. 

Moreover,  an  increase  in  temporal  correlation  occurs,  between  frontoparietal 

regions of the DAN and visual regions bilaterally, indicating a strong  top-down 

influence, especially from prefrontal (FEF) to posterior parietal (IPS/SPL) areas and 

both prefrontal–parietal  areas to visual  regions bilaterally,  especially V3a–V76. 

These  functional  interactions  were  accompanied  by  a  decoupling  of  temporal 

correlation of  previous resting state,  particularly between hemispheres,  and an 

increase in directed interactions within hemispheres between visual areas, which 

appeared  to  be  more  segregated6.  Moreover,  these  modulations  in  functional 

connectivity were proved to be behaviorally significant, correlating with enhanced 

task accuracy6.

Activity in DAN regions IPS and FEF, produce a disruptive effect on bilateral 

synchronization of α-rhythms in visual occipital regions, with a stronger top-down 

coupling with DAN influence6,110. Accordingly, decrements of temporal correlation 

within visual cortex during visuospatial attention match the desynchronization of α-

rhythms  observed  during  spatial  attention,  anticipation,  or  visual  processing; 

desynchronization and formation of cluster of visual processing in the VIS areas, 

consistently with top-down influence of DAN6,110 (see chapter 4). These phenomena 

have  been  interpreted  differently:  DAN  within-functional  connections  relative 

stability underlies pre-engagement (even during rest) schemes, which act in order to 

anticipate  an  attentional  state,  potentially  serving  as  a  prior for  incoming 

information6,13. All those features posit for the centrality of this network, far away 

from the influence of sensory stimuli. In contrast, the ongoing resting activity in the 

visual cortex is seen as a state of idleness that needs to be interrupted for active 

vision to occur6. 

Defined deeply all those complex interactions that occurs during different brain 

states such as trough visuospatial attention and eye movements dynamics, it’s time 
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to delve into experimental assessment that explore even further their relationship 

with intrinsic activity.

3.3. Subjects  clustering,  explorative  styles,  phenotypes  of  human  visual 

exploration

In order to understand naturalistic  eye movements behavior,  it  is  important  to 

consider its spatiotemporal dynamics, whose feature may be employed to explore, 

according  to  what  has  been  presented  in  the  previous  paragraph,  interaction 

between RSNs, priors and individual characterization concerning cognitive style, 

genetics and personality traits33,112–114. 

Previous  studies  employing  recordings  of  multiple  features  of  saccades,  anti-

saccades and smooth pursuit eye movements over 1000 healthy young adults ocular 

movement recordings proved the reliability over time in individual differences in 

10% of the subjects (stableness across second session 18,8 days later). All measures 

displayed  variability  among  individuals:  most  of  them  exhibited  2  or  3  fold 

differences between participants, while some showed a variance greater than 10-

fold  differences114.  Although  characterization  trough  different  sets  of  eye 

movements, sex, personality and cognitive traits outline an oculomotor signature, it 

is not possible yet to completely categorize an individual by his/her loadings on a 

small number of factors114. At the same time, it is evident how across time and 

different  tasks,  features  as  precision/duration  of  fixations  or  their  scanpath 

dynamics are pretty much defining the individuals as a fingerprint114. 

Another  study  found  reliable  associations  trough  42  participants  between  eye 

movements dynamics and prediction of characterization of personality traits112: in 

particular reliable relations with four of the Big Five personality traits (neuroticism, 

extraversion, agreeableness, conscientiousness). Personality traits characterize an 

individual’s patterns of behavior, thinking, and feeling; people with similar traits 

tend to move their eyes in similar ways112. 

Genetic factors play a significant role in shaping eye movement features, impacting 

both the overall inclination towards visual exploration of scene contents and the 
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specific spatiotemporal sequences of fixations when observing complex social and 

non-social  scenes113.  Above  all,  genetics  highly  influence  both  complex social 

visual engagement (fixations toward eyes and mouth of the face in the images) in 

healthy and autistic infants115, such as complex non-social visual scenes content.

Collecting these information and all the others exposed trough chapters until now, 

Zangrossi  et.  al  designed  an  experiment  in  order  to  analyze  spatiotemporal 

characteristics of eye movements dynamics in a cohort of 114 healthy individuals 

satisfying inclusion criteria, while they were asked to observe various real-world 

scenes, and to compare the recordings to the ones of blank screen viewing (lacking 

of any visual stimuli)33. This was aimed at quantifying the role of endogenous and 

stimulus-driven parameters, indagating first of all, the amount of dimensionality in 

visual explorative features recorded across many subject and many scenes (see 3.3.1 

and 3.3.2). Secondly, whether saliency and semantic (bottom-up) or power law 

distribution of gaze steps (measure of intrinsic  top-down dynamics) drive visual 

exploration spatiotemporal dynamics (see 3.3.4). Lastly, to compare measurements 

of spatiotemporal eye movement parameters in the absence of visual stimuli and 

during visual exploration (see 3.3.5)33. 

3.3.1. Low dimensionality in eye movements dynamics

As already exposed,  a  few studies  focused on the  idiosyncratic  nature  of  eye 

movements behavioral  profiles  and the low dimensionality of  eye movements, 

studying them from a spatiotemporal perspective116–118. Some of them concentrated 

on the consistent individual differences in fixation duration and saccade amplitude 

across tasks116–118; in addition Andrews and Coppola in 1999 suggested also that 

visual behavior consistency is in some degree linked to the attentional and cognitive 

demands of the tasks, showing that saccade amplitude and fixation duration were 

consistent  across  active–active  and  passive–passive  task  pairs,  but  not  across 

passive–active pairs116. Some others, pushed the issue forward, such as Poynter et. al 

in 2013 who enlarged with their findings the range of features showing reliability 

across tasks, not only in fixational duration and saccade amplitude but also in 

fixations rate and several measures of micro-saccadic movements99. Furthermore, 

they observed that correlations between different metrics were associated to a single 

factor,  therefore  underling strongly a  low dimensionality  of  visual  exploration 

dynamics99. They speculated that the link between macro and micro eye movement 
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behavior may in some way be tied to individual differences (evidenced by clustering 

subjects in two groups with opposite visual exploration dynamics, but within-group 

correlations brought together proportionally to scores related to attention) in visual 

attentional  strategy  and  that  the  operational  effectiveness  of  the  attentional 

apparatus (comparing eye-tracking recordings to questionnaires related to attention, 

AD and ADHD features)99.

Consistently,  Zangrossi  et  al.  observed  that  eye  movement  spatiotemporal 

parameters across subjects and participant were strongly correlated and that 60% of 

their variance could be explained by three components33. Moreover they clustered 

two types of observers, characterized by different eye movements dynamics and 

whose assignment to one cluster or the other, had more than 90% of accuracy, being 

stable  across  different  sets  of  images33.  To  do  that,  in  first  place,  a  principal 

component analysis (PCA) was run on the scaled and mean-centered complete set 

of  features  derived  from  the  gaze  data  collected  with  an  eye-tracker,  during 

participants real-world scenes unconstrained exploration33. A PCA is an exploratory 

statistical technique that enables to reduce the dimensionality of a large dataset (as 

in this case), by creating new uncorrelated variables that increase interpretability; at 

the  same  time  it  minimizes  information  loss  preserving  as  much  statistical 

information (variability) as possible119. 

Figure 19: Correlation matrix of spatiotemporal features and principal components (PCs). The Scree Plot  

shows the amount of variance each one of the PCs explains. The correlation (Pearson’s r) between features,  

ordered according to their loadings in the first three PCs, is shown in the matrix on the right. The Y-axis labels 
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color indicates the PCs with the highest loading for the corresponding feature; the ones written in bold are  

those with loadings major than 0,2 33.

The novel variables (components) created were named PCn:  three components 

accounted for roughly 60% of the total variance within the dataset33.  The first 

component (PC1), which accounted for 30.5% of variance, was mainly loaded on 

features directly describing fixation duration33.  Time spent during fixation was 

anticorrelated with pupil diameter33, accordingly to the interactions between ACC, 

VAN, SC and LC modulating NE tone trough fluctuate releasing that increases 

during fixation in non-luminance constrictions, detected by pupillometer recordings 

of monkeys and human beings88,90,91,120 (as exposed in 2.4.1). The second component 

(PC2), which accounted for 16.4% of variance, was loaded on gaze steps (see 2.3 for 

saccadic step) direction and exploration time; the third one (PC3), which accounted 

for 12.1% of variance, was charged on gaze step length33. 

3.3.2. Subjects visual explorative phenotypes clustering

Considering distribution of observers across those three components, was applied 

preliminarily  a  Silhouette  method,  a  robust  tool  for  assessing  the  quality  of 

clustering solutions121: computing for each data point the average distance to all 

other points in the same cluster and then the average distance to all points in the 

nearest neighboring cluster121,122. Through this computational dynamic, each cluster 

happen  to  be  represented  by  a  so-called  silhouette,  based  on  the  comparison 

between its tightness (average intra-cluster distance) and separation (average inter-

cluster distance)121,122. Those operations, enable to evaluate clustering validity by 

analyzing the average silhouette width and so they might be also employed to select 

an  “appropriate”  number  of  clusters  in  a  pure  data-driven  manner121,122.  Then, 

considering the distribution of observers across those three components (PC1, PC2 

and PC3), a k-means cluster analysis, (the principal clustering analysis used among 

multimodal biomedical data123) splitting the sample into two groups (k=2), was 

performed and best separation was obtained along PC1 loadings33. 

Subjects with high PC1 values, referred to as  “Static Viewers”, showed longer 

fixation time, longer spontaneous viewing time, smaller mean pupil diameter and a 

lower  fixation  rate  (less  frequent  but  longer  fixations)33.  Moreover,  they’re 

characterized by an average of higher amplitude and more numerous gaze steps, as 
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long as more gaze flips (a gaze flip is a double saccadic step with in between a shift 

of direction) and a distribution of gaze steps more similar to a power law (see 3.3.3)
33.  On the other hand, subjects with low PC1 values, referred to as  “Dynamic 

Viewers”, showed opposite features such as more fixations and at an higher rate, 

wider mean pupil diameter and a distribution of gaze steps less similar to a power 

law33.

Figure 20: Subjects’ clustering and PCs. (a) Three-dimensional space, defined by the first three PCs, clusters’  

projection. (b) Two-dimensional PC scores relationships: PC1 values are those best describing the two clusters. 

(c) Examples of Static (blue dots) and Dynamic (red dots) Viewers oculomotor dynamics patterns (each dot  

represents gaze position sampled at a timepoint) 33.

Trough chapters 2 and 3, has been widely exposed how “saccades and fixation  

strategy” at neural level is related to a complex interconnection between cortical 

and subcortical functional networks33,67. In particular, DAN and VAN control the 

interactions  between  focal  processing  (focused  attention)  and  attentional 

shifts/reorienting to other locations9,33,90. Moreover, considering that fixations is the 

time when foveation of the image (in a dynamical stability, as seen relatively to 

fixational movements) allows visual processing, the engagement of Static Viewers 

in  longer  fixations  suggests  deeper  single  processing  of  each  one  of  the 

quantitatively fewer stimuli33.  Conversely,  Dynamic Viewers tend to scan more 

rapidly and superficially, shifting across multiple visual scene items33. Finally, as 

neuro-behavioral  tests  proved  (e.g.  Stroop  color-world,  see  paragraph  4.3), 

regarding the ability to inhibit automatic responses,  Dynamic Viewers tend to be 

more impulsive than Static Viewers33.
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To confirm this assumptions a PCA was ran concerning any subject recording after 

splitting images (odd vs even), and both image-category computation showed a high 

degree of similarity with PC133. The latter’s scores, alongside with PC2 and PC3 

values (which explained of course a lower similarity amount), again in order to test 

the robustness of the assumptions, was used to reconstruct the original features of 

the matrix and then pattern of the two explorative styles:  again, the degree of 

similarity was very high33. Finally, comparing PC1 scores from category-specific 

images (indoor, outdoor natural, outdoor manmade, scenes with humans, scenes 

without humans) by applying PC1 loadings calculated on all images, showed a 

regularity  in  high  or  low correlations  independently  from the  type  of  images 

analyzed, trough any subject26.

So intrinsic brain activity drives visual exploration, which can be explained by a low 

dimensionality of feature in its dynamics; consistently, any subject expresses a 

idiosyncratic visual explorative style116, whose dynamics are relatively independent 

of image content33.

3.3.3. Power law in neuroscience 

A power law is a functional relationship between two quantities, where one quantity 

changes as a power of another. Mathematically, it can be expressed as: 

P(s)∝ s𝛼

It states that probability P of an event size s is proportional to s to the power of a 

constant 𝛼, the power law exponent124.  In a power law distribution, the frequency of 

an event (or the occurrence of a value) is inversely proportional to its size or 

magnitude, raised to a power. This means that small events or values are much more 

common than large ones, following a scale-free pattern. It is also characterized by a 

heavy tail, meaning that there are a few extreme events or values that occur much 

more frequently than would be expected in a normal distribution (concept used to 

describe multiple natural and social phenomena: size of earthquakes, distribution of 

wealth and also neural dynamics)124.  

Neural  systems'  adherence  to  power  laws  is  believed  to  mirror  intrinsic 

neurobiological  limitations  imposed  by  anatomical  connectivity  and  neural 
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dynamics.  These  constraints,  influenced  by  the  slowest  temporal  factors,  then 

permeate through subsequent neurocognitive and motor processes at increasingly 

faster rates114. Each constraint level influences and shapes the following one, setting 

up the system so that only relevant information needs to be further processed, in a 

“cascading” manner33,125.  Cascades refers to the hierarchical organization where 

progressive clustering occurs nested at any time into each other; importantly these 

properties are indicative of non-linear correlations across space or time125. 

Power laws describe the foundation of brain function at any level, shaping a fractal 

system: they have been found ubiquitously in the temporal organization of channel 

openings, single spikes and complex firing rates, as well as in the local amplitude 

signals  of  fMRI,  EEG  and  MEG  recordings124.  These  observations  reflect  a 

functional linking of cortical areas, sustained by neuronal avalanches (cascades of 

activity across many spatiotemporal scales126) produced by transient functional cell 

assemblies124. 

Moreover, behavioral performance fluctuations, such as eye movements, also may 

follow a power law and tend to correlate with slow and fast neuronal activity 

(correlated  across  individuals  during  both  task-engagement  and  rest;  see  also 

chapter 4). Static Viewers exhibited small extent and a relatively small amount of 

long-range gaze movements; conversely, Dynamic Viewers achieved a more even 

distribution of both short and long gaze steps33.

3.3.4. Relative  influence  of  sensory  variables  on  saccades  and  fixations 

distribution

To determine the relative importance of stimuli-driven components in predicting 

eye movement dynamics, four nested linear regression models where built  and 

compared by means of likelihood ratio in order to weight any component added. 

PC1 scores were constantly used as a dependent variable, alongside to a different 

combination of other factors: SAL, SEM, ShEN, and KSD 33. 

SAL represented the mean of local sensory saliency values across fixations, while 

SEM was based on semantic maps obtained by a convolutional neural network93. 

ShEN  reflected  the  interaction  between  gaze  transition  entropy  (GTE)  and 
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stationary gaze entropy (SGE); these two measures of entropy  are fundamental 

considered its role in influencing gaze spatiotemporal dynamics concerning the 

optimal integration between top-down and bottom-up dynamics127. Finally, KSD or 

Kolmogorov−Smirnov distance, measures the discrepancy between the individual 

distribution of gaze steps and a power-law distribution (two cumulative distribution 

functions)33. KSD proved to be the most significant factor in explaining variance, 

and was proved to be reliable and robust  across different range of values and 

excluding potential biases related to eye-tracker spatial resolution; on the other hand 

SAL and SEM were not significant in explaining spatiotemporal patterns during 

free viewing33. Running linear regression also with PC2 and PC3 as dependent 

variables, was showed again a non-significant contribution of SAL and SEM factors
33.

In  conclusion,  the  analysis  of  free-viewing  eye  movements  spatiotemporal 

dynamics revealed a low dimensionality with three components (PC1, PC2, PC3) 

explaining 60% of the variance33. These components, in particular PC1, enabled the 

clustering of  subjects  into  Static and  Dynamic Viewers groups with over 90% 

accuracy, independently of saliency and semantic values, highlighting the role of 

intrinsic factors in visual exploration33. These factors (KSD primary), explained 

around 20% of the variance in spatiotemporal oculomotor dynamics, capturing the 

levels of similarity between eye gaze step length distribution and a power law 33. 

Conversely, for the topography of fixational patterns, mixed effects models showed 

that saliency and semantics maps accurately predicted eye movement behavior 

during free viewing, with a smaller role for intrinsic factors (KSD maps). Bottom-up

 components thus play a pivotal role in shaping the topography of oculomotor 

behavior in absence of any visual task engagement, with gaze directed to salient and 

semantic areas of the visual stimulation33

3.3.5. Blank screen vs unconstrained free-viewing

According to the pivotal role of intrinsic brain activity in behavioral dynamics 

exposed  thus  far  and  demonstrated  through  this  experiment  concerning  eye-

movements dynamics, the hypothesis was that these intrinsic features, so influential 

that they could delineate visual exploratory phenotypes, would have been impactful 

even  more  during  observation  of  a  blank  screen33.  This  would  strengthen  the 
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assumption  of  relative  independence  from  visual  stimuli  in  spatiotemporal 

dynamics of visual exploration, especially in an “extreme” scenario such as this 

one, intrinsically lacking in visual stimulation33.

To test the hypothesis, the same PCA pipeline was applied to the analysis of eye 

movements recordings during the first phase of the session (so that subjects saw the 

images for the first time only later), when participants were asked to look at a grey 

screen with a cross in the middle (14 subjects maintained a steady fixation, so were 

excluded due to lack of variability,  thus the subsequent analysis included only 

n=100  subjects  vs  n=114  analyzed  in  free-viewing  recordings  computation)33. 

Again, three components (confirming low dimensionality) described a consistent 

amount of the variability, almost 50%, but they were loaded on different features 

order  than  the  components  on  free  viewing.  Intuitively,  aside  from  the 

conceptualization  concerning  different  influences  of  bottom-up and  top-down 

dynamics, visual exploration occurs differently when an individual is freely looking 

at images or is viewing a grey blank screen; consistently feature analysis lie on 

different perspectives33. PC1 accounted for the 23.4% of variance and was mostly 

loaded  on  the  number  of  steps,  number  of  flips,  and  steps’ length  variability 

(features related to PC2 and PC3 during free-viewing); PC2 explained the 19% of 

variance and was mainly loaded on pupil diameter and steps’ length; PC3 accounted 

for the 8.4% of variance and was mainly loaded on fixations duration (feature manly 

included in PC1 during free-viewings recordings)33. Running a linear regression 

model between PCn of the blank screen viewing as dependent variables and the 

ones of the free-viewing as predictors, was shown how, for example, PC3 during 

image viewing significantly predicted PC1 during blank screen viewing (t = 2.98, p 

= 0.004)33.

Then was performed a statistical analysis technique that combines a Random Forest 

Algorithm (a machine learning algorithm used for classification and regression of 

multivariate analysis, based on a set of decision trees composing the forest, each of 

which trained on a random subset of the training data and provides a prediction; 

combination of all predictions able to obtain an accurate and robust result128) and 

cross-validation (used to evaluate the model's performance, by using subsets of 

dataset both as trainer and tester) in order to evaluate the accuracy, which was 
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showed to be 79%, of the blank screen viewing features in predicting explorative 

phenotype  of  the  subject  accuracy33.  This  suggests  that  oculomotor  properties 

shown during resting-state were consistent with those highlighted during image 

viewing.

Moreover, the stability of clustering derived by both free-viewing and blank screen 

viewing  was  compared  showing  68%  of  coherence  in  classifying  individual 

explorative styles as part of the same group33. Analysis of the between-subjects 

correlation matrix, during both image exploration and blank screen viewing, reveal 

that individuals tend to exhibit significantly higher correlation with members of 

their own cluster (within) compared to members of the other cluster (between)33. In 

addition, both in free-viewing and blank screen-viewing, mean correlations within 

Static viewers cluster were stronger than the ones in Dynamic viewers; the similarity 

between groups had a well conserved structure from one recording phase to another
33.

Figure 21: Subjects similarity in image-viewing and blank screen viewing. Boxplots showing the comparison 

between the mean correlation within each group and between groups. STA: within-group correlation in Static  

Viewers (n = 42); DYN: within-group correlation in Dynamic Viewers; STA-DYN: between-groups correlation.  

This study marks the inaugural large-scale investigation in which spontaneous eye 

movement dynamics are compared with those observed during the exploration of 

numerous real-world visual scenes. Additionally, it stands as a pioneering effort to 

demonstrate that features of resting eye movements can be utilized to categorize 

distinct  styles  of  visual  exploration  (whose  stronger  predictor  is  the  level  of 

similarity between the spatiotemporal distribution of gaze step and a power-law). 

This suggests the existence of constrains within neuroanatomical configurations, 

cell-level and network connectivity functional dynamics, which shape behavioral 

features  such  as  visual  exploration.  Moreover,  many  studies  showed  that, 
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consequently,  visual  exploration  recordings  may  represent  a  early  marker  of 

neurodegenerative processes (see Discussion, chapter 10).
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4. BRAIN ACTIVITY SIGNATURE OF EXPLORATIVE STATES

4.1. Electroencephalography

Examining the temporal dynamics of the brain's ongoing rhythmic activities offers a 

significant opportunity to delve into how prediction could be implemented. As 

pointed  out  in  chapter  1,  since  the  introduction  of  electroencephalography  in 

humans in 1929 by Berger, endogenous activity was noted11. 

EEG is widely used to address issues concerning RSA, mostly because of its high 

temporal resolution, which is much higher than fMRI’s one. EEG can record brain 

activity with a millisecond precision, allowing the study of rapidly occurring brain 

processes such as sensory stimuli responses or fluctuations in brain activity during 

cognitive  processing.  Moreover,  compared  to  MRI  machines,  it  is  more  cost-

effective in terms of initial cost and maintenance, and its devices are more compact 

and portable. On the other hand, EEG also has limitations such as lower spatial 

resolution compared to fMRI and susceptibility to conductivity and movement-

related artifacts from body or facial muscles (electromyogenic influences)129.

Neighboring frequency bands within a given neuronal network typically correlate 

with distinct brain states and engage in competitive dynamics. Conversely, multiple 

rhythms can concurrently manifest within the same or disparate neural structures, 

enabling interplay and mutual modulation130. The human EEG detects a multitude of 

simultaneous frequencies, exhibiting a distinctive power law spectral distribution: 

as  the  logarithm  of  frequency  increases,  the  logarithmic  power  of  the  EEG 

decreases approximately linearly131. The power density of the local field potential 

inversely  correlates  with  frequency (1/f),  indicating  that  disturbances  at  lower 

frequencies can initiate a chain reaction of energy dissipation at higher frequencies. 

Furthermore, slow oscillations across a broad spectrum govern faster local activities
130.

4.2. EEG features predicting visual exploratory phenotypes

Zangrossi et.  al showed how eye movements spatiotemporal dynamics are low 

dimensional (three components accounted for roughly 60% of variability during 

unconstrained natural-images  viewing and for  almost  50% during resting-state 
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blank screen viewing) and driven mostly by intrinsic factors according to the inside-

out brain  perspective  (“where”  subjects  look,  determined  by  saliency  and 

semantics, was strongly less predictive than the level of concordance to a power-law 

of the distribution of gaze step that refers to “when” and “how” subjects look32)33. 

Moreover, it proved how intrinsic features of resting eye movements can be utilized 

to categorize distinct styles of visual exploration33.

Celli et al., one year later, recruited n=40 subjects from the previous sample, who 

showed extreme positive (Static) or negative (Dynamic) loadings on the PC1 score; 

they were asked to undergo high-density electroencephalographic recording during 

eyes-open and eyes-closed resting state settings, in the absence of any task32. Static  

Viewers, showed longer fixation time and spontaneous viewing time, smaller mean 

pupil diameter, a lower fixation rate (less frequent but longer fixations), an average 

of higher amplitude and more numerous gaze steps, as long as more gaze flips, and a 

distribution  of  gaze  steps  more  similar  to  a  power  law33.  On  the  other  hand, 

Dynamic Viewers showed opposite features such as more fixations, at an higher rate, 

wider mean pupil diameter and a distribution of gaze steps less similar to a power 

law33. In order to highlight the hypothesized link between intrinsic brain activity 

(representative of cognitive providing of spatiotemporal patterns of activity during 

behavioral tasks) and oculomotor behavior, speculating that differences in visual 

explorative styles might be implied by stable individual variations of intrinsic EEG 

oscillatory activity, three EEG metrics were employed being well representative of 

behavior  and  being  thought  to  be  able  to  describe  a  trait-like  constraints  of 

exploratory eye movement dynamic features32: resting-state frequency power (see 

4.2.1),  individual  alpha-frequency  (IAF,  see  4.2.3)  and  long-range  temporal 

correlations (LRTCs, see 4.2.5).

4.2.1. Resting state frequency power

This metric is believed to indicate the baseline level of cortical activation. Trough 

EEG recordings of parieto-occipital electrodes (VIS), some researches showed that 

greater  resting  alpha-to-beta  power  might  mirror  wider  attention  during  a 

subsequent attentional task; consistently, greater attentiveness at rest would predict 

subsequent narrowed attentional breadth132. Therefore, higher alpha power at rest, 

would  forecast  broader  attentional  breadth,  while  increased  beta  power  would 
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indicate  narrowed  attentional  breadth132.  Furthermore,  resting  alpha  and  beta 

powers, but also the predominance of alpha relative to beta, have been shown to be 

predictive of performance on temporal attentional tasks133. 

Two resting-state EEG sessions were conducted by Celli et al., lasting ten minutes 

each: one with eyes open (participants were asked to look at a fixation cross for the 

whole duration) and one with their eyes closed (participants were asked to keep the 

eyes  shut  for  the  whole  duration)32.  In  the  eyes-open  condition, significant 

differences between groups were observed in the alpha, beta, and gamma bands 

(p<0,05), while in the eyes closed condition, only the beta band showed significant 

differences32.  Overall,  Static  Viewers oscillation  profile  exhibited  higher  alpha 

power and lower gamma power in occipital electrodes, while revealing lower beta 

power in frontal electrodes; on the other hand, Dynamic Viewers profiling showed 

lower overall alpha power but higher beta and gamma power32. 

Figure 22: Spectral analysis results. Eyes-open condition (N=40 subjects) for alpha (7.5–12 Hz), beta (12.5–

32 Hz) and gamma (32.5–45 Hz) relative power spectral analysis and t-value maps for the cluster-based  

permutation analysis, which provided in all three cases significant results (black dots) with cluster alpha at p < 

0.01 (two-tailed) and alpha p < 0.05 (two-tailed)32. The right panel shows the Spearman’s rank correlation  

between PC1 and averaged power in the significant cluster of electrodes (with Spearman’s r, p-value and 95% 

CI) 32. 
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Mutual relationship between alpha and gamma bands (which can also be addressed 

to in terms of interplay between activatory and inhibitory frequencies) that reflect 

also an index of internally/externally directionality of attention is reflected trough 

subjects clustering32. Static Viewers, showed higher mean alpha power and would, 

coherently being characterized by intense external stimuli inhibition, according to a 

baseline  cortical  activation  shifted  towards  internal  processing32.  Contrarily, 

Dynamic Viewers would present attention more directed up to external stimuli, 

according to lower alpha inhibition, and a concomitantly resting profile closer to 

that seen during stimulus processing and selective attention to stimuli32. Finally, 

frontal beta band power appeared to be lower in Static than Dynamic Viewers, both 

during eyes-closed and eyes-open. Considering  the role of beta band rhythms in 

coupling a dynamic core of hubs and preserving status quo of central stations of 

functional  connectivity  during  rest  but  also  during  natural  visual  exploration 

(scenario statistically close to spatiotemporal priors for external visual stimuli), 

recordings suggest that Static Viewers might maintain at rest sensorimotor cortical 

areas in heightened reactivity state32,110. 

Figure 23: Spectral analysis results. Eyes-closed condition (N=40 subjects) for alpha (7.5–12 Hz), beta (12.5–

32 Hz) and gamma (32.5–45 Hz) relative power spectral analysis and t-value maps for the cluster-based  

permutation analysis, which provided in all three cases significant results (black dots) with cluster alpha at p < 

0.01 (two-tailed) and alpha p < 0.05 (two-tailed)32. The right panel shows the Spearman’s rank correlation  

between PC1 and averaged power in the significant cluster of electrodes (with Spearman’s r, p-value and 95% 

CI) 32. 
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Statistically, PC1 resulted (both computing EEG recordings data overall all subjects 

or when the two phenotypes cluster were considered as separated) to be positively 

correlated with alpha power, and negatively with beta and gamma frequencies32,33.

4.2.2.  Alpha frequency band

Classically, since late sixties, alpha power has always been associated, in terms of 

cognition, with an “idling state” (cortical areas not processing sensory information 

or  motor  output134)  recorded  manly  over  occipitoparietal  cortex  electrodes, 

especially during relaxed alert states electrodes in subject with eye closed125,127. 

Moreover, it has been showed to be also an important functional rhythm across 

sensorimotor cortex when limbs are at rest (there called  𝜇 rhythm, 11-12 Hz sub-

band),  auditory  cortex  and  association  cortices129,131,135.  Magnitude  of  alpha 

amplitude in eyes closed resting condition, predicts a greater or lower level of brain 

activation when suppressed (simultaneously occurs an increase in the amplitude of 

FDG-PET signal136)  during  visual  exploration  and  cognitive  processing;  inter-

individual differences in amplitude and level of suppression, relate to IAF137 (see 

4.2.3)  but  also to endophenotypes of  visual  exploration (as seen in 4.2.1)  and 

cognitive performances129,138.

Over years, following the so called “neural efficiency hypothesis”139 (which states 

that effective cognition is not a function of “how hard” the brain works but rather of 

how efficiently it works129, so that good performance may be achieved with less 

contingent cortical activation139) alpha upper band frequency started to be seen as an 

index of top-down processing, by growing signal-to-noise ratio within the cortex, 

thus inhibiting non-essential or conflicting processes129 which in turn may reflect 

facilitation  on  task  performance140.  Consistently,  the  “inhibition–timing 

hypothesis” clears how, although mirroring anyway a state of information process, 

ERD  (event-related  desynchronization,  the  classically  known  occipital  alpha 

suppression  when  transitioning  from  eye  closed  idling  state  to  an  eyes-open 

explorative one, also referred to as “Berger effect”137, or when increasing cognitive 

load129) reaches its maximum when task-related processes occur and reflects a low 

processing selectivity, in other words a state of high overall excitability140. It differs 

from  ERS  (event-related  synchronization,  elicited  for  instance  when  subjects 
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withhold or control the execution of a response) which characterizes sites that 

probably are under, or exert, inhibitory top-down control140. The latter is a highly 

selective process because inhibition helps to establish a highly selective activation 

pattern: it is a timing mechanism, an inhibitory filter that enables to achieve an high 

signal-to-noise ratio by allowing only (comparatively) a small number of cells to 

process information selectively, and by silencing the majority of other cells140.

In  line  with  this  interpretation  findings  suggest  that  alpha  activity  increases, 

(especially  in  parieto-occipital  sulcus)  with load retention in  working memory 

dynamics, while disengagement or inhibition, of non-essential visual dorsal stream 

processes  occurs  in  order  to  devote  structures  for  working  memory 

maintenance.129,141. Moreover, the higher the frequency of cyclical oscillations in the 

alpha rhythm the greater the capacity and speed of working memory129,142.Alpha 

oscillations are also related to top-down processes in the complex sensory-semantic 

long term memory system: when a task requires specific cognitive operations with 

memorized data (such as retention, inhibition of retrieval, or manipulation through 

transformation) alpha synchronizes over respective brain areas140,129..

Finally, alpha band activity has been associated to the “gating hypotesis” according 

to which functional connectivity may be shaped by inhibitory gating: pulse alpha 

band oscillatory inhibition reduces the processing capability of a certain cortical 

area (irrelevant to those specific task-engagement processes) and routes information 

to task related cortical areas.143. So alpha increase has been suggested to either 

reflect active processing related to memory maintenance or inhibition of regions not 

required for the task.

4.2.3. Individual alpha frequency

From a purely physiological standpoint, alpha frequency band recordings led over 

the years to the determination of more than 20 arbitrary frequency boundaries129. 

This variability depends on the interaction of genetically determined (it is now 

evident that alpha peak frequency reflects inter-individual genetic influences as 

polymorphisms144) multiple signaling pathways at all levels129: Ca2+T-channels144, 

metabotropic receptors GABA-B145, metabotropic glutamate receptors (mGluRs) 145

, synapsin and the amount of vesicles exocytosis depending on regulation on action 
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potentials by those previous genes129,146, COMT gene locus polymorphisms147 and 

many other factors regulating cellular growth148, energy homeostasis149and protein 

trasduction129,148,150. Calcium channels (thalamic relay cells with high density of Ca2

+T-channels which have a pacemaker role producing a temporary depolarization at 

approximately  10  Hz  rate144)  and  metabotropic  receptors,  modulate  thalamo-

cortico-thalamic network action potentials which then  affect the activity of all the 

other  factors  pointed  out  before129,151.  In  addition,  also  non-genetic  mediated 

phenomena explain variability of alpha band width,  such as the level of brain 

activation state and efficiency of cognitive performance152,153, which also changes 

according to age (from 3 to 20 years especially) and through learning129. 

This huge amount of variability of alpha frequency band thresholds (whitin- and 

between-variability154) in frequency, amplitude, duration, and recurrence155 led over 

the years to the evaluation of different strategies in order to distinguish between 

individually  based  lower  and  upper  frequency  boundaries  of  the  alpha  band 

(Individual alpha frequency, IAF)129. Some authors consider it as the peak frequency
156, which is also the approach followed by Celli et. al, defining it as the highest 

absolute value in the 7–13 Hz range on the average spectrum across occipital 

electrodes (both automatically detected and visually checked) in the eye closed 

recordings32,154. The IAF of the human EEG reflects systemic properties of the brain, 

is highly heritable, and relates to cognitive functioning154.

As already addressed exposing the “inhibition-timing hypothesis”140 (as seen in 

4.2.2), IAF has an established relationship with inhibition and processing rapidity 

(according also to the lower rhythms modulation operated to gamma frequencies 

activity157). Dynamic Viewers displayed higher IAF (while presenting lower alpha 

power  amplitude)  than  Static  Viewers32,  consistently  to  their  faster  saccades 

dynamics and shorter fixation time33. IAFs, in fact, have been proved by some 

studies to be inversely related to the amplitude of the alpha-rhythm at rest, but at the 

same time being a predictor of the alpha rhythm amplitude during stimulation158. 

Moreover,  it  has been showed to be related to the amplitude of visual evoked 

potential (VEP) and, finally, to the hemodynamic oxygenation response to visual 

stimulation  (relationship  between  IAF and  neuro-vascular  responses  originates 

from the size of the network recruited for visual processing)158. High IAF, such as in 
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Dynamic Viewers, predicts a low alpha amplitude at rest, a small VEP amplitude and 

a small oxygenation response32,158.

Figure 24: Individual alpha frequency results. (a) Boxplot concerning individual alpha frequency values in  

the two identified groups: (Static n = 19),  median = 9.5 Hz; Dynamic (n = 21) median = 10.5 Hz.  (b) 

Spearman’s rank correlation between PC1 and Individual Alpha Frequency values.

Finally, referring also to the “gating hypothesis” an higher IAF in Dynamic Viewers

 relates with stronger intracortical inhibition (quicker fixations disengagement) and 

highly  specialized  activation  patterns  eventually  resulting  in  faster  task 

performance (reflected also by a higher number of fixations overall, consistently 

with  the  negative  correlation  between  PC1,  loaded  on  fixation  duration  and 

IAF)32,33,143. Dynamic Viewers should be also quicker in attentional tasks and visual 

processing32.

4.2.4. Beta and gamma frequency bands

Classically described as the inhibitory rhythm of the motor cortex32, sensorimotor 

beta band frequency (15-30Hz) undergoes ERD during movement preparation and 

execution and then, before returning to a resting state, exceeds the pre-movements 

level with an ERS, or a post-movement beta rebound (PMBR)159,160.  The latter, 

PMBR, occurs around 300 ms after movement is done and persist up to several 

minutes bilaterally (but especially contralaterally)161. The further, ERS, may also be 

enhanced once top-down directed attentional or cognitive processes occur, when 

subject is asked to observe or imagine a movement160,162. Both represent a state of 

motor cortical inhibition mediated by GABA receptors, but also, in a modern view, 

participate to hub status quo, based on evidence of increasing beta synchronization 

during tasks in which a setting is maintained over time32,163.
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Neuronal  synchronization in  the gamma band (30–100 Hz) accompanied by a 

decrease in alpha band activity reflects active processing in the engaged brain 

regions.  Accurate  identification  of  the  true  gamma  oscillations  requires  the 

application  of  appropriate  statistical  analyses,  and  additional  experiments  to 

differentiate between power increases (caused by those specific band oscillations) 

and those, on the other hand, arising from increased spiking activity157. Studying the 

brain as a network involves exploration of the cross-frequency interactions between 

gamma and alpha activity (see 4.2.6)143. Gamma-band rhythmogenesis, which is 

usually brief, relies instead on coordinated interplay of excitation and inhibition, 

realized by reciprocal  interaction between pyramidal  neurons and interneurons 

(which depend upon the interactions of GABA-A and AMPA receptors with the 

pyramidal cell membranes time constant164), typically occurs with single-neuron 

firing. Cell assemblies, on the other hand, can act coordinately in order to promote a 

collecting firing, which can also discharge postsynaptic neuron in the critical time 

window of the spike-timing-dependent plasticity157,165. 

4.2.5. Long - range temporal correlations

This EEG metric measures the temporal structure of oscillations and relates it with 

the concept of neuronal criticality of operating brain, trough avalanches organized 

as  a  fractal  system,  affecting  cognitive,  perceptual  and,  of  course,  behavioral 

processes32,166.  Previous  studies  already  proved  how  significant  are  temporal 

correlations between alpha, mu and beta fluctuations, which reverberate at least for 

a couple of hundreds of second during resting states (both with eyes open and eyes 

closed assessments); then a decay of correlation characterized by power-law scaling 

properties occurs, differentially connotated, according to the band considered, due 

to their distinct functional foundation155. 

Although  neuronal  avalanches  appear  as  a  distinct  phenomenon from LRTCs, 

involving much shorter spatial dimension and time scales (10−3- 10−1 vs. 100-103 s, 

respectively), their power-law exponents of size and lifetime distributions have 

been  showed  to  be  strongly  correlated  to  LRTCs’ ones166.  Probably,  neuronal 

avalanches and oscillations demonstrating LRTCs emerge simultaneously in near-

critical brain states, indicating the propagation of neuronal activity across extensive 

spatial and temporal scales166. The metastability of critical systems optimizes their 
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computational power, dynamic range and storage capacity. Fractal self-similarity 

and  power-law  (or  inverse)  scaling  behavior  features,  are  typical  of  systems 

displaying “avalanche dynamics” which operate within a critical or self-organized 

critical state166–168.

A detrended fluctuation analysis (DFA) was performed by Celli et al, extracting a 

scale-free exponent in order to depict temporal structure of the signal in terms of 

statistical properties across scales (as self-similarity32, which was expected to be 

highly invariant across subjects155) and long memory32,169.  Assessing the rate at 

which fluctuations grow as a function of the scale, by estimating root mean squared 

errors at different scales and their relationship with window log, DFA exponents 

were determined32.  According to other studies, DFA can be also used in order to 

study fixational eye movements at different timescales, once operated the removal 

of micro-saccades (which were not considered by Zangrossi et al. and Celli et. al 

studies) that impact manly horizontal movements at short time scales (see 2.2.3), 

while at long time correlations vertical and horizontal eye movements behavior 

crossover and scaling exponents become similar79. Scaling exponent is, indeed, a 

stationary and significant characteristic of eye movements dynamics79. 

This study by Celli  et al.  is the first to run DFA for eye movements temporal  

correlations, according to the hypothesis that also the eye movement time series 

could  show  fractal  properties32,170.  So  DFA was  ran  both  for  the  brain-data 

(corresponding to the alpha band filtered EEG signal) and for the behavioral-data 

(which are the fixation timeseries); correlation between exponents (of the temporal 

structure of alpha rhythm and of the temporal structure of eye movements) were 

established, and their value resulted to be comprehended within the 0,5 – 1 interval 

(where exponent of 0.5 stands for uncorrelated signal, and an exponent of 1 for 

strong long-range temporal correlations)32.

All DFA exponents extracted from the eye movements time series, as expected, 

were proved to be within the range 0.5–1, demonstrating long memory and LRTCs 

for  that  behavioral-data  signal32.  Moreover,  DFA exponents,  representing  the 

temporal structure of fixations, were supposed to be strongly related with PC1 

which is, indeed, a static feature of fixation timings: Spearman’s rank correlation (r
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 = 0.465, p = 0.002) confirmed the hypothetical relation, according to the fact that, 

above all, the two (DFA exponents and PC1 values) are, from different perspectives, 

measurements of the same phenomenon32.

Finally, exploring the association between mean of brain and behavioral exponents 

across subjects, a positive correlation (Spearman’s rank correlation, r = 0.40, p = 

0.009) emerged during eyes-open recordings trough alpha band32.  In particular, 

computing Spearman’s correlation by using nonparametric permutation and cluster 

correction, n=30 electrodes (in the occipital area) showed significantly positive 

correlation;  their  DFA exponents  positively  correlated  with  behavioral  DFA 

exponents, but it is important to underlie that alpha DFA exponents were highly 

different between Static and Dynamic Viewers32. Moreover, the correlation between 

behavioral DFA exponents and alpha band DFA exponents appeared to be absent in 

the eyes-closed recordings32.

Power-law form LRTCs are thought to reflect structural and functional intrinsic 

systems  constrains,  that  determine  recursive  regularities  in  brain  signals  and 

behavioral  data32.  Static  viewers showed  stronger  LRTCs  both  in  brain-data 

timeseries (the occipital alpha band) and in eye movements timeseries, mirroring 

higher  self-affinity  (consistently  with  cluster  dynamics  of  emphasized  internal 

processing), complexity and maintenance of signals memory over time32. On the 

other  hand,  Dynamic Viewers showed LRTCs (behavioral  and brain sequences 

closer  to  white  noise,  with  DFA exponents  proximal  to  0,5)  exhibiting  a  less 

complex signal, a partial lack of temporal structure over time and a resemblance to 

random processes32.

4.2.6. Alpha band and the interplay with other frequencies  trough visual 

explorative dynamics

Although  being  neuronal  oscillatory  coupling  often  studied  within  specific 

frequency  bands,  different  oscillatory  classes  present  different  levels  of  brain 

integration: synchronization of multiple bands encodes complex temporal patterns 

and  optimizes  synaptic  reinforcements  or weakenings130.  Spatiotemporal 

modulation of  information processing,  is  dependent  upon ongoing oscillations, 

which affect local electrical fields and intrinsic excitability of neuronal populations. 

Tonic shifts in the power of brain rhythms, particularly alpha and gamma bands 
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(with  beta  band perpetrating  status  quo of  networks  hub163),  often  accompany 

changes of neural response amplitude, attentional state and perceptual/cognitive 

performance171. 

Alpha band oscillations, as addressed before, function as a mechanisms through 

which cognitive control networks implement top-down modulatory effects on both 

local and distributed information processing131.  For instance, DAN activity and 

focal  alpha  (focal  disinhibition)  desynchronization  reflect  top-down driven 

dynamics for selective attention, gating irrelevant sensory processing to enhance 

local  activity  and  information  processing131.  Consistently,  (in  line  with  what 

exposed in 3.2.3), when experiencing task-engagement or memory-retention task 

(especially  in  a  sensory-dependent  assessment)  alpha  power  increases  in  right 

parietal cortex (rTPJ, part of VAN90) which is progressively inhibited proportionally 

to the strength of task-focused attention or task shielding, avoiding attentional shifts 

to task-irrelevant stimuli, thus favoring attention focusing during top-down goal-

driven tasks172. This is not just a matter of directionality of attention, external or 

internal, in fact the magnitude of alpha power activity may be conceived as a valid 

indicator  of  ongoing  cognitive  processes172.  This  dynamic  occurs  even  when 

performing mental imagination tasks, creative cognition/ideas formation; those are 

all  situations  that  involve,  also,  an  interplay  between  DAN and  the  generally 

defined control networks, such as intrinsic stimuli-independent resting networks 

such as the DMN172,173.

The cross-frequency coupling of gamma and other rhythms, within the same and 

different brain regions, forms a multiscale timing mechanism157.  Modulation of 

gamma  rhythms  by  slower  oscillations  occurs,  for  instance,  with  theta  band 

frequency  (4-8  Hz):  variations  of  the  magnitude  of  theta-gamma coupling,  in 

multiple hippocampal cortical areas, occur proportionally to working memory load. 

Those phenomena have been addressed to as “theta phase precession”, which is also 

conceptually  consistent  with  the  preplay/replay  theories,   asalready  argued  in 

chapter  1  concerning  hippocampal  activity  174,175.  Moreover  gamma activity  is 

regulated  by  interactions  with  alpha,  delta  (0,5-4Hz),  slow,  and  infra-slow 

(broadening what has been exposed in chapter 1) bands freqeuncies157.
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During an auditory task, gamma power synchronization in the frontal and temporal 

lobes, predominantly occurs through phase-locking with theta oscillations; in visual 

tasks, phase modulation over occipital areas is, instead, primarily driven by the 

alpha rhythm157,176. Regarding to visuospatial attentional dynamics (expanding what 

already exposed in paragraph 3.2.3 and previous chapters) in a disengaged resting 

state VIS areas synchronize to a common alpha idling rhythm in large bilateral 

spatiotemporal  clusters,  which  must  desynchronize  (in  particular  between 

hemispheres)  consistently  with  the  intra-hemispheric  top-down directional 

influences from DAN regions, developing small local clusters which enable visual 

processing6.  During  a  visuospatial  attentional  task,  top-down dynamics  occur 

profoundly  modulating  in  strength  and  directionality  (but  not  topography)  the 

connections between dFEF or pIPS and intermediate areas in the visual hierarchy, 

V3a–V7  and  MT,  via  superior  longitudinal  fasciculus  (although  connections 

between FEF and IPS, within DAN, lie on the same white matter tracts of the 

superior longitudinal fasciculus, they’re not affected at all)6. These mechanisms 

have  been  proved  also  by  BOLD-fMRI  recordings  and  transcranial  magnetic 

stimulation  over  frontoparietal  regions  (IPS  and  FEF):  both  reflect  alpha 

desynchronization in occipitoparietal cortex while the allocation of visuospatial 

attention  verifies6,177.  These  mechanisms  (such  as  the  decrease  of  temporal 

correlations within visual  cortex,  aligning with the desynchronization of  alpha 

rhythms observed during anticipation,  spatial  attention,  or  visual  processing178) 

favor  the  occurrence  of  gamma  power  oscillations,  so  that  alpha  frequency, 

enhanced  manly  by  the  FEF  (right  in  particular)  effectively  routes  cortical 

information  flow by  modulating  gamma-band  activity6,179.  This  gamma power 

supports perception by synchronizing the processing and trafficking of information 

within and across  areas  of  visual  cortex;  furthermore,  over  time,  research has 

revealed that the characteristics of induced gamma activity are determined by low-

level  stimulus  attributes  (contrast,  color,  suppression  of  surround  phenomena, 

characteristics of image stimuli; any of this concurs in shaping amplitude but also 

peak frequency of local gamma band activity)180. 

Some studies demonstrated also that the spontaneous power of neural oscillations 

significantly impacts visual perception, leading to threshold for stimuli, which are 

intermittently  detected  or  missed  depending  on  the  phase  (accounting  for  a 
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minimum of 16% variability in performance) of previous of spontaneous brain 

oscillations171 (major effects of prestimulus phase have been often found to be 

centered around 10 Hz in the alpha band,181 while some other studies found it around 

7 Hz, at the crossover between theta and alpha bands frequencies171). The issue can 

be seen as the spike timing that may be “clocked” by the phase of prestimulus 

ongoing alpha activity in visual cortex, as analyzing V1 area182.

Once again, taken together these finding (which are also closely related to behavior) 

support the strong interaction theory between bottom-up and top-down processing, 

which also reflects trough oscillations interplay among multiple bands frequency. 

DAN within-network functional connectivity stability might reflect his role as a 

prior for incoming information, tuned even at rest in order to anticipate attention 

clues, far away from the influence of sensory stimuli6. Beta band, finally, has a role 

in providing this stability and, consequently, the stability of predictive priors. 

First  of  all,  while  alpha  oscillation  activity  (as  just  argued)  generated  by 

infragranular  deep  cortical  layers  in  FEF/IPS  phasically  regulates  top-down 

modulation182 of superficial VIS cortical layers gamma activity183 (which carries 

feedforward signals) as well as spiking activity evoked by visual stimuli182, frontal 

feedback control is employed through synchronization of oscillation in the lower 

alpha and beta (8 –20 Hz) frequency ranges179. While information about stimulus 

features are carried by gamma oscillations, which determine temporal windows for 

synaptic  plasticity  proportionally  to  their  cycle  length130,  beta  synchronization 

carries feedback signals which influence the functional activation of relevant cell 

assemblies (with no circuitry structural change enhanced) mediating the functional 

coupling of neurons and regions over much longer distances, where high gamma 

frequency promotes local processing110,184. Refining concepts of paragraphs 1.5: 

during  development,  repeated  exposure  to  sensory  or  motor  signals  enhance 

reverberation in the post-stimulus period and imprint traces in the spontaneous 

activity (according also to Hebbian plasticity, see 1.542), so that metrics describing 

sensory external environment and biomechanical body properties, shape networks 

topography and dynamics110,185. Gamma frequencies are thought to encode for quick 

environmental  changes  and  error  predictions,  while  beta  coupling  fluctuations 

should slowly enhance weighted integration of incoming information and  prior 
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inferences, computing the slower temporal structure of somatosensory events and 

the  outputs  obtained  by  the  interactions  between  predictive  models  and 

environmental engagement. Those development-shaped internal models, stable yet 

still malleable in adults (an efficient brain is one that can employ predictions but  

monitoring  for  errors  during  the  interactions  with  the  occurrences  in  the 

surrounding world, adjusting its models when necessary), act as spatiotemporal 

priors which allow the brain to exploit stored knowledge in order to predictively 

anticipate  the  statistically  most  likely  outcome  of  the  upcoming  stimuli  and 

movements (balancing specificity and entropy of explanations)110.  Spontaneous 

activity  determine  biased  (optimized)  recruitment  of  the  task-driven  patterns, 

forming spatiotemporal scaffolding of brain possible responses: this translates to a 

low  dimensionality  of  cognitive  and  behavioral  (just  as  in  visual  explorative 

dynamics33) dynamics across task and across individuals. At the same time this 

justifies  the  similarity  between  task-engaged  and  resting  state  functional 

connectivity13,110.

Secondly, just as alpha band activity, beta band oscillations operate a  top-down 

modulation  linked  to  different  cognitive  functions  (such  as  visual  attention, 

perception,  emotion,  working  memory),  operating  that  selection  bias  in  task-

networks  recruitment,  in  order  to  predictively  preserve  computed  expectations 

about the sensory environment and the internal models of body representations, or 

to plan subsequent exploratory eye movements dynamics in case of unexpected 

interactions outputs110. To do that, beta band synchronizations act enabling long-

range within-/between-networks (such as PCC of DAN with DMN186 or IPS of 

DAN with SMA of SMN187) coupling, creating dynamic interconnections within 

hubs (hence creating a “dynamic core”, by overlapping functional hubs with “rich-

club” regions of structural connectivity) and thus generating highly efficient brain 

states. Beta band oscillations dynamics account for over the 70% of the efficiency 

peaks (configuration where nodes of networks can easily connect with other nodes), 

optimizing communications among distinct functional domains110,187.

So beta band activity stands as a neuronal correlate of cognitive synergies (by joint 

fluctuations of the  core network hubs in the beta band) enhancing information 

transmission to  top-down bias of the functional coupling between other network 

regions,  applying  predictive  prior-mediate  previsions  about  task-responses110. 

77



Coherently, when experiencing both naturalistic visual exploration and scrambled 

movie visualization, alpha band spatiotemporal activity, compared to rest, decreases 

within the visual system, but also between VIS and DAN interactions110, as exposed 

before6; beta band activity, instead, decreases only in the second scenario, which 

doesn’t fit with the idea of temporal priors coding during natural vision purpose of 

those joint fluctuations between dynamic hub regions of association cortexes110. 

Beta rhythms are indeed pivotal in maintaining the “dynamic core” composed of 

central  hubs regions,  acting in the maintenance of the current sensorimotor or 

cognitive  state,  thus  maintaining  cognitive  and  behavioral  priors  (temporal 

connectivity priors13) for real-world events interactions; all of that, while preserving 

stability, yet flexibility of upgrades, of the status quo of central cortical areas as a 

pivot  around  which  brain  activity  realizes  itself,  practicing  the  highest  global 

efficiency possible110,163. 

After addressing all these theoretical issues, the significance of observers style 

profiling by Celli et al. may be more clear in broadening the findings concerning 

behavioral and intrinsic activity fingerprints by the Zangrossi et al. (see 3.4) study. 

Static  Viewers,  showed higher  mean alpha power and would coherently being 

characterized by intense external stimuli inhibition, according to a baseline cortical 

activation shifted towards internal processing32. Contrarily, Dynamic Viewers would 

present attention more directed up to external stimuli, according to lower alpha 

inhibition, and a concomitantly resting profile closer to that seen during stimulus 

processing and selective attention to stimuli32.  Finally, frontal beta band power 

appeared to be lower in Static than Dynamic Viewers, both during eyes-closed and 

eyes-open  recordings,  suggesting  that  Static  Viewers might  maintain  at  rest 

sensorimotor cortical areas in heightened reactivity state32,110. 

4.3. Eyes as a window to the soul

William Shakespeare once stated “the eyes are the window to your soul”. Indirectly 

relating to this idea, over the years many research lines investigated relationship 

between  eye  movements  and  cognitive  processing  or  personality  traits.  Also 

Zangrossi  et  al.  addressed  these  issues,  by  examining  whether  eye  movement 
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spatiotemporal  features  described  by  PC1  scores  were  related  to  individual 

characteristics,  such  as  cognitive  scores  (inhibition,  visuospatial  and  verbal 

memory)  and  personality  traits  (Big  Five  scores:  agreeableness/antagonism, 

neuroticism,  conscientiousness/undirectedness,  extraversion,  openness  to 

experience188) administering multiple standardized tests, focusing on visuospatial  

long-term/working  memory and  executive  functions (inhibition/impulsivity) 

following studies that correlated these two models to visual behavior33. 

Recent studies concerning visuospatial memory proposed that eye movements do 

not only mirror the retrieved content, but the facilitatory influence of gaze position 

on  visuospatial  episodic  remembering  (which  is  considered  to  depend  on  the 

interaction between retrieval cues and stored memory traces), particularly affecting 

memory for the spatial relationship between objects and balancing it with encoding, 

increases the likelihood of successful episodic recalling189. Moreover, some other 

studies  have  demonstrated  the  comparability  between  eye  movements  when 

inspecting a scene (or hearing a scene description) and when visualizing it from 

memory190. Another research has shown that oculomotor events during recall are not 

merely reinstatements of those produced during encoding; additionally, when gaze 

dynamics are restricted, scene recollection is altered and impaired, regardless of the 

encoding modality191. 

Concerning executive functions, on the other hand, impulsivity may be defined as 

“acting without forethought” and it stand opposite to inhibition192. Anticipatory eye 

movements, which reflect the functioning of anatomical loops between the frontal 

cortex and basal ganglia, via the thalamus (corticalstriatal frontal loops), reflect 

brain  dynamics  related  to  the  “forethought”192.  Contrarily  to  the  general 

understanding of  ‘impulsivity’ (related to  faster  responses),  affecting cognitive 

processing of information needed to anticipate future events, it results in delayed 

and slowed eye movements: higher scores of impulsivity in healthy subjects showed 

to be related to smaller anticipatory saccades, longer smooth pursuit latencies and 

lower  anticipatory  pursuit  velocities192.  The  information  extracted  from  this 

questionnaire can be seen as complementary to those taken from the Stroop Test, 

thus, taken together, they allow to investigate impulsivity both from cognitive and 

behavioural points of view.
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First  of  all,  Zangrossi  et  al.  administered  a  Depression  Anxiety  Stress  Scale 

(DASS), an 42-item self-report measure (which may be employed also as the 21-

item test version) of anxiety, depression and stress with impressive psychometric 

properties193,  which  was  employed  in  order  to  remove  from  computation 

participants with high levels of anxiety, depression, and/or stress to prevent biased 

eye movement data33. Other studies findings, in fact, point out for example in the 

case of anxiety impairs processing efficiency (response times and mental effort 

increased  )  and  top-down attentional  control  across  different  task  constraints, 

influencing search strategies194.

Then,  forward and backward versions of  the Digit  and Corsi  span tasks were 

administered33: they’re frequently used to assess verbal and visuospatial short-term 

memory, which are affected by age and literacy195. In particular: forward versions 

primarily evaluate working memory functioning exploring phonological loops for 

verbal  data  and  visuospatial  draft  for  visuospatial  data,  backward  versions  to 

primarily address central  executive resources33,195.  The Rey-Osterrieth Complex 

Figure (ROCF), a psychological test used to evaluate visuospatial abilities, memory, 

attention, planning, and executive functions, was administered, but only the delayed 

recall  task version was considered196.  This decision was made because healthy 

participants achieved excessively high scores when asked to reproduce the figure 

immediately. In this setting, the initial copy serves solely as a mnemonic imprint, 

which is then recalled ten minutes later33,196,197.  Finally, a brief version of the Stroop 

Test was performed, which addresses executive functions such as cognitive control, 

attention,  and  processing  speed,  but  also  is  considered  as  a  metric  for 

impulsivity33,198. The shortened version typically includes fewer items and can be 

administered more quickly, making it practical for use in clinical and experimental 

settings199. Furthermore, impulsivity in complex behaviors has been assessed by 

means of the behavioral inhibition system (BIS) and a behavioral activation system 

(BAS)200.

After  the recording and the testing,  subject  were asked by Zangrossi  et  al.  to 

complete the form Neo Five Factors Inventory (NEO-FFI)33: big five personality 

factors were proved by many studies to be related to multiple oculomotor features 
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such as fixation patterns (for example openness was related to longer fixations), 

number, duration, and positioning time33,201.  Trough machine learning approach 

applied  to  recordings  during  everyday  task,  studies  proved  the  possibility  to 

delineate consistently and accurately personality traits, as level of one or more of the 

Big Five; moreover was also showed to be possible automated analysis of a large set 

of eye movement characteristics, ranking them by their importance for personality 

trait prediction112.

 Lastly, were also examined the relationship with demographic information (age, 

sex, and education)33. Despite common fixational patterns to the most informative 

regions of a scene (locations with people) and of a person (face, in particular the 

region around the eyes),  studies proved that,  on average, women exhibit  more 

exploratory behaviors, making more fixations (shorter but more frequent than men) 

particularly on non-face locations and a more spread out fixation distribution202. 

Beside these pure behavioral differences, the lower, central, and left subfields of the 

human retina are thicker in men than in women202,203. This anatomical difference 

means that when women fixate slightly below a target, the light hits a thinner part of 

the fovea, leading to eye movements that are systematically lower at the most 

informative locations202,203. This phenomenon is heightened under threat conditions 

due to estrogen's influence on the D2 receptor, which moderates eye movements 

and emotional salience of danger202,204. Furthermore, visual behavior in extroverts is 

likely to increase the probability of forming different interpretations and seeking 

different  visual  information192.  Conversely,  individuals  with  a  high 

conscientiousness trait are highly organized and focused, and their information-

gathering strategies are less influenced by their interpretations192. Differences in two 

impulsivity sub-dimensions (premeditation and perseverance) may also explain part 

of the variation in fixation distributions between men and women192. Premeditative 

individuals, who value information highly, tend to make more fixations on the eye 

regions of faces, while perseverant individuals (mostly women) are inclined to 

continue gathering visual information from new locations, resulting in wide, high-

entropy distributions192.

Overall, significant relationship were observed on age (t = 2.66, p = 0.009),  and 

impulsivity  (i.e.,  Stroop  test  score;  t=  −2.36,  p  =  0.021);  reliable  was  the 
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significancy trend for the NEO-FFI factor (out of the big five) “openness” (t = 1.93,  

p  =  0.057)33.  Specifically,  Dynamic  Viewers were  younger,  showed  higher 

impulsivity (lower inhibition of automatic responses at Stroop test), and a non-

significant tendency for being less open33. Celli et. al then proved with occipital 

power results that  Static Viewers are profiled with a cortical inhibition/internal 

processing-biased  baseline  cortical  activation,  while  Dynamic  Viewers are 

characterized by a profile biased toward cortical excitation and external processing
32. 

These findings compose a cognitive profiling of these two phenotypes of subjects, 

with  Static Observers showing a slightly stronger visual working memory, and 

Dynamic  Observers a  weaker  inhibition  to  salient  but  irrelevant  stimuli32,33. 

Furthermore, this aligns with the perspective that cognitive processing is interactive 

and broadly distributed across anatomical scales. Looking behavior emerges from 

cognitive  processes  that  span  various  scales  of  space  and  time  (rather  than  a 

componential assembly line) as the summation of independent contributions from 

separate components205.
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EXPERIMENTAL STUDY

5. AIM 

Many research lines over the last decades provided new perspectives: the brain can 

be no more addressed to only as a reflexive sensory-motor analyzer but has to be 

reconceptualized as a generator of predictive models. These models, optimized 

during resting-state endogenous activity, act in order to anticipate and interact with 

the environment more effectively. Characteristics of spontaneous brain activity can 

predict  eye  movement  dynamics  during  unconstrained  viewing,  reflecting  an 

integration of top-down and bottom-up processing with endogenous dynamics, thus 

highlighting a novel role of visual exploration as a window into the cognitive-

behavioral functional organization of the brain.

Laid this groundwork, the scope of this study was to replicate two previous ones: 

“Visual exploration dynamics are low-dimensional and driven by intrinsic factors” 

(Zangrossi  et  al.,  2021) and “One-year-later  spontaneous EEG features predict 

visual exploratory human phenotypes” (Celli et al., 2022). The findings discussed in 

these  papers  suggested  the  intrinsic  nature  of  visual  exploration,  its  low 

dimensionality,  and  introduced  new characterizations  of  many  subjects'  visual 

explorative style fingerprints, employing eye-tracking and high-density EEG data 

analysis.  Indeed,  individuals  were  shown  to  be  clusterable  into  two  main 

explorative  phenotypes,  Static and  Dynamic  Viewers,  primarily  according  to 

fixational and saccadic spatiotemporal features. These features were shown to be 

manly  independent  from  the  bottom-up processing  of  surrounding  visual 

stimulation, trough unconstrained viewing and even more trough resting state eye 

tracking recordings were stimuli were almost absent at all. The intrinsic delineation 

of  the  visual  exploration  phenotypes  previously  highlighted  indicated  the 

opportunity to investigate brain dynamics trough high density EEG recordings of 

the neuronal dynamics underlined, proving distinctive fingerprints of the subjects 

from the two clusters relating to three different EEG metrics, enabling to infer the 

possibility to accurately profile those subjects based on their endogenous cognitive-

behavioral standpoints.
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The replication aimed to validate these results on a new sample, exploring the 

connection between eye movement dynamics, memory recall of visual stimuli, and 

intrinsic brain dynamics measured through the simultaneously eye-tracking and 

EEG recording. In particular, we aimed to strengthen and generalize the findings of 

the  previous  studies  on  a  wider  sample,  with  contemporary  recordings,  and 

collecting data to delve further in the characterization of the two visual explorative 

phenotypes.

In this framework, the specific objectives were:

- To  replicate  the  previous  results  highlighting  a  low-dimensionality  of 

oculomotor dynamics and the relative independence of  these PCs from 

saliency  and  semantics  of  visual  stimulation,  being  driven  mainly  by 

intrinsic features.

- To reproduce the profiling of subjects’ explorative style.

- To evaluate the relationship between oculomotor phenotypes and resting-

state brain functioning through hdEEG recordings.

Additionally, the study aimed to examine the relationship between eye movements 

and brain activity, and to identify distinct patterns in eye tracking and hdEEG data 

for potential clinical applications.
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6. EXPERIMENTAL SETTINGS

6.1. Selection of the subjects: inclusion and exclusion criteria 

Healthy participants (n=64 satisfying inclusion criteria; 31 male and 33 female) 

have been recruited among students (age range: 18 - 35; mean = 23,57, SD = 2,901) 

of the University of Padua (years of education: mean = 16,93, SD = 1,751) to ensure 

consistency with Zangrossi et al. (2021)33. All of them were Italian except for a girl 

from Kirghizstan (who didn’t undergo cognitive neuropsychological test: most of 

them are spoken language-based), had normal or corrected-to-normal vision (n = 31 

had vision defects and wore glasses; n = 25 suffering from myopia and/or n = 12 of 

astigmatism), 53 of them right-handed. 

The  project  was  funded  by  a  BIAL  foundation  grant,  so  they  have  been 

compensated 20 euros for the participation; moreover, the data collection for this 

experiment is part of a larger project funded by that grant, and the thesis focuses 

only on a subset of the collected data (resting state and unconstrained free-viewing 

data, see further at Recording Phases, paragraph 6.4.4). The use of human subjects 

was previously approved by the Ethical Committee of the University of Padova. 

All participants signed an informed consent form and completed an anamnestic 

questionnaire in order to confirm the absence of absolute exclusion criteria, before 

the experimental session. The absolute exclusion criteria were as follows:

- The  presence  of  any  moderate  and/or  severe  chronic  (e.g.,  epilepsy, 

neurodegenerative disorders, psychiatric conditions, brain tumor) or acute 

(e.g., recent traumatic brain injury, stroke) neurological condition; 

- The  presence  of  any  moderate  and/or  severe  ophthalmic  disease  (e.g., 

glaucoma, color blindness);

- The  assumption  of  any  neuroleptic  medication  (e.g.  antipsychotic), 

anxiolytic,  or  any  other  drug  that  could  affect  CNS  due  to  primary 

pharmacodynamic mechanisms or side effects, including both depressants 

and stimulants;

- The presence of any dermatologic condition of the scalp (e.g. dermatitis, 

psoriasis) could interfere with recording or cause pain or discomfort.
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Clinically, 11 participants reported suffering from headaches and 4 from migraines. 

Four of them experienced head trauma in their life, and 6 underwent a prior clinical 

EEG recording. Consistent with the exclusion criteria, no subject reported previous 

blackouts, seizures, strokes, brain surgeries, or brain tumors.

Furthermore, participants were instructed to avoid consuming coffee for at least an 

hour and a half prior to the session (although 7 of them reported the assumption 

within that amount of time) and to ensure they had an appropriate amount of sleep 

the night before, defined as at least 6 to 8 hours (mean = 7,33 , SD = 1,234). No face 

makeup was allowed, nor recently applied hair dye.

6.2. Eye-Tracker: machine, calibration, validation, data collection

Eye-movements data have been acquired by means of a state-of-the-art eye-tracking 

system (Eyelink 1000 plus desktop mount, SR Research) at a sampling rate ranging 

from 1000 to 2000 Hz (frames per second)206. 

Figure 25: Eye tracker machinery: its structure and functioning. (a) Parts of the EyeLink 1000 Plus Desktop 

Mount207. (b) The relative difference in location of the pupil center (red lines indicating the distance between  

pupil center and corneal reflection center) and corneal reflection (white dots) allows for deduction of the gaze 

direction208.

The tool employs a single high-speed camera capturing up to 2000 images of both 

eyes per second. The other primary component of an eye tracker is the infrared (IR) 

emitters (illuminator)206. The IR light source ensures accurate measurement of gaze 

direction by clearly delineating the pupil and detecting reflections from the cornea. 

The eye tracker's functionality relies on tracking the positions of the pupil center 

and the corneal reflection to determine eye position and head orientation206. The IR 
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source is aimed at the cornea, and the camera captures the corneal reflections. 

EyeLink systems determine the participant's gaze location on the screen within 3 

milliseconds of capturing the eye image, utilizing image processing algorithms to 

identify key points: the pupil center and the corneal reflection center206. 

Participants have been sitting on a chair in front of a PC screen with their head 

stabilized with the using of a chinrest, inside a Faraday cage. This settle was adopted 

in order to favor the ease and comfort of participants, isolate them from as many 

sensorial stimuli as possible (light and sounds mostly) and setting them free from 

any kinds of external constrictions. The images presented were subtend 27.1° × 

20.5° (width × height) degrees of visual angle on a screen subtending 31.6° × 23.9°. 

Figure 26: Camera setup screen desktop mount, binocular recording207.

Prior to the data acquisition, participants were asked to perform series of fixations in 

order  to  acquire  data  for  the  calibration  and  validation  procedures,  aimed  at 

improving tracking accuracy. The quality of calibration is crucial in determining the 

reliability  of  the  dataset,  acting  as  a  first-level  quality  check;  values  in  the 

calibration phase are then considered when computing data. In fact, calibration 

affects the accuracy of gaze calculation, and to be performed at its finest, have to be 
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selected optimal focus and optimal thresholds for pupil and corneal reflections, for 

both eyes when accomplishing a binocular recording (see Figure 27, below).

Figure 27: Modifiable parameters and calibration. (a) Focusing the desktop mount camera. (b) Pupil and 

Corneal reflection thresholds and bias values. (c) Calibration grid. (d) Corneal reflection207.

  

6.3. EEG recording: machine, data collection

Figure 28: 256-channel Hydrocel Geodesic Sensor Net.  (a) Net sizing and sensor layout. (b) 256-channel  

machinery components (c) Sensor cut-away view210.
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Prior to every testing phase, impedances were measured and adjusted to be kept 

below 50 kΩ. All electrodes were referenced online to the electrode placed over the 

vertex (Cz in the 10/20 international system) . EEG data have been then digitized 

with a sampling rate of 500 Hz. The recording took place in a sound/electric-

shielded Faraday recording cage in  order  to  reduce electromagnetic  noise  and 

stimulus interaction with subject brain activity212.

6.4. Recording setting and phases

Each participant was received at VIMM (Veneto Institute of Molecular Medicine, 

Padova, Italy) division PNC (Padova Neuroscience Center) and escorted to the 

hdEEG facility room. 

6.4.1. EEG setup

Upon arrival, head circumference was measured to any participant in order to select 

the appropriate size of the hdEEG cap; once chosen, the latter was submerged for 10 

minutes in an electrolytic water solution containing potassium chloride, KCl, (in 

order to amplify conductance of the electrodes, any of them provided of a little 

sponge, then soaked in the electrolytic solution) and shampoo. HydroCel Saline 

KCl electrolyte solution was made according to EGI instructions. 

Figure 29: Skull landmarks for EEG positioning210.

While waiting for the preparation time to expire, each subject signed an informed 

consent form, completed an anamnestic questionnaire, filled out a reimbursement 

form, and had their ID card registered. Subsequently, each participant underwent 

another  head  measurement,  this  time  to  determine  the  intersection  between  a 
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sagittal  plane fronto-occipital  diameter (nasion-inion) and the coronal diameter 

between the  preauricular points  (as seen in Figure 29). That point served as a 

landmark to locate Cz (vertex) during the positioning of the hdEEG cap. Finally, we 

ensured that all the electrodes adhered to the scalp skin by removing any interposed 

hair.

The participant was then led into the Faraday recording cage, and the hdEEG was 

connected to the Net amplifier. Subsequently, the impedance of each electrode was 

assessed and verified utilizing a software on the host PC outside the cage; additional 

electrolytic solution was applied where needed to maintain impedances below the 

50 kΩ threshold. By wetting the sponge placed between the electrode and the scalp 

skin, it was possible to modify the conductance to cope with that treshold, selected 

in order the maximize the quality of the recording. 

From the host PC, we, the examiners, could evaluate the signal prior to recording 

and identify any issues related to potential noise, such as movement and movement-

related  artifacts  from  body  or  facial  muscles  (electromyogenic  influences). 

Consequently, we could instruct the participant to prevent these solvable artifacts 

from affecting the recording. We could also address positioning problems, including 

those affecting eye tracking settings, or solve eventual excessive tension (due to 

incorrect positioning) in the cables connecting the cap to the amplifier, which could 

induce wide oscillations, infra-slow activity, that were later cleaned up in the EEG 

data  pre-processing  phase  if  not  solvable  immediately.  Furthermore,  we could 

detect the presence of sweat, which, due to its electrolytic properties, could alter the 

characteristics of the conducted electric signal.

6.4.2. Eye tracker setup

Positioned their head on the chinrest, any participant had to undergo calibration and 

validation procedures of the eye tracking system, due to contain the error of the 

recording under 1,00° for both eyes.

First of all, had to be adjusted from the host PC screen pupil and corneal reflection 

(CR) detection thresholds; then multiple other options could possibly be customized 

such as  tracking mode,  sample  rate,  threshold  coloring,  aligning eye  window, 

illuminator power etc. Some patients had to wear glasses for optimal acuity: this 
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sometimes interfered with the detection of a stable corneal reflection, particularly 

when the lenses had a thick anti-reflection coating or were progressive lenses. 

Nonetheless, glasses were preferred over contact lenses because the machine could 

not accurately determine the position of the corneal reflection with contact lenses, 

which lie directly on the eyeball, unlike the glass lenses that are positioned at a  

distance from the cornea. The recording was binocular at  all  times, except for 

sporadic cases where the characteristics of the participant's  eyeglasses made it 

impossible to capture both eyes simultaneously.

The eye-tracker requires information on the participants’ points of fixation on the 

display, calibration is the necessary preliminary step that allows to compute the 

correspondence between the pupil position in the camera image and gaze position 

on the Display PC Screen. We progressively one by one displayed 13 targets at fixed 

locations, and the participant had to fixate them; we manually approved the pupil-

CR position for each dot when satisficed by the position and then the gaze positions 

were computed. Graphically, the result was hopefully a regular square shape, that 

meant the pursuit correspondence between targets on the screen and gaze position 

was accurately acquired: the eventual level of discrepancy from that shape would 

underlie the severity of the poor calibration occurring. 

After  completing  this,  subjects  were  once  again  asked to  fixate  at  the  proper 

moment, to the dots displayed, this time in order to validate the calibration: another 

fixation, with an error of less than 1.00° for both eyes, confirmed the previously 

established correspondence between the pupil position in the camera image and the 

gaze position on the display. Once validation was confirmed, participants were 

instructed to maintain steady their  position until  the end of the first  phase,  to 

preserve all the procedures realized until that moment.

Subsequently to the end of any recording phase, the process involving EEG and eye-

tracker setup had to be repeated. This allowed the subject to relax for a few minutes 

but especially it served to maximize recording quality for subsequent session.
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6.4.3. Images presented

The  stimuli  proposed  to  the  participants  were  n=90  images  taken  from  the 

Places365 dataset, a scenes dataset designed to train artificial systems for image 

recognition, and selected among those used in a previous paper (Zangrossi et al.,  

2021)33,213. The dataset's images were organized into three hierarchical levels. At 

Level 1, the most general, images were classified into three categories: indoor, 

outdoor man-made, and outdoor natural. In Level 2, each Level 1 category was 

further divided into four to six subcategories. For example, the "indoor" category at 

Level 1 included subcategories such as "shopping and dining" and "home or hotel"

 at Level 2. Finally, Level 3 comprised 365 specific categories that described the 

exact type of scene, such as art gallery, bakery shop, etc213.

In the previous research, the initial selection of 185 Level 1 images was based on 

size. Then the images selection was refined through an overlap-based process, 

superimposing saliency and semantic maps33. An additional selection process was 

conducted differentially to the previous pool in order to establish the database for 

the present study: 90 level 1 images were chosen from the previous study pool, 

based on the variance observed among participants explorative dynamics. Each one 

of the 185 images was treated as a distinct feature, with selection criteria focusing 

on those exhibiting the lowest similarity and highest variance compared to subjects' 

fixations and saccades. This approach aimed at facilitate the emergence of top-down

 spontaneous explorative dynamics in the second experiment while minimizing the 

influence of stimuli relevance driven bottom-up processes. Given the absence of 

goal-driven tasks in the two phases (REST1 and FREE) considered by this study, 

decisions regarding the saliency and semantics of the images made them have a 

comparatively lesser impact on shaping the explorative style, thereby enabling the 

study of endogenous spontaneous bioprint.
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6.4.4. Recording Phases

Once all set and done, we started the session, articulated in different phases:

Figure 30: Resting state setup: subjects were asked to look at a grey screen for 5 minutes, while relaxing and  

not focusing on particular thoughts. The assessment aims at indagate a disengaged cognitive state.

Figure 31: Free-viewing setup: subjects were asked to look at 90 real-word scenes in sequence, each followed 

by an ITI. The assessment aims at indagate the unconstrained naturalistic visual explorative behavior.

3. FORC (Forced-viewing):  participants  were  asked  to  fixate  specific 

elements  of  the  scenes  (whose  locations  and  movements  reflected  the 
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Figure 32: Forced-viewing setup: subjects were asked to look at 90 images where a portion was on focus,  

according to their previous fixation pattern in the free-viewing phase. The assessment aims at indagate a  

constrained visual explorative behavior

4. REST2 (Resting-state 2): participants were presented with the same grey 

screen adopted in the first phase (same setting of the REST1).

For the purpose of the present study, only phases 1 (REST1) and 2 (FREE) data 

have been considered.

Exclusion  criteria  concerning  the  eye-tracking  recording  data  comprised  the 

following: individuals with excessive data loss, defined as items with more than 

50% missing data and subjects with more than 50% of items with more than 50% 

missing data113 (n=1). Further, another subject was excluded due to a mild cognitive 

deficit,  which appeared clear  during the recording and was then stated by the 

participant herself (n=1). Regarding EEG data, this latter subject was excluded, but 

apart from this, all other data were eligible for the study's aims. Problems and 

artifacts  that  could  not  be  resolved  on-site  were  addressed  during  data  pre-

processing.

Overall 62 out 64 participant recording data have been considered eligible to be 

included in the final sample for data processing and statistical analysis.
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6.5. Cognitive and behavioral tests

Subsequent  to  Eye-tracking  and  hdEEG recording,  participants  were  asked  to 

undergo  a  battery  of  neuropsychological  tests  aimed  at  evaluating  a  range  of 

cognitive domains. Models computing tests scores and PCs have been computed in 

order to further characterize subjects’ traits, allowing correlation with some of the 

behavioral dynamics indirectly assessed by the experiment, thus strengthen and 

broadening profiling features.

The following tests can be administered to patients with neurological or psychiatric 

conditions  resulting  in  cognitive-behavioral  impairments  or,  as  we  did  in  this 

experimental  design  (with  appropriate  adjustments  and  considerations  in 

administration  and  scoring,  such  as  considering  only  delayed  recall  of 

Rey−Osterrieth Complex Figure) to healthy participants:

1. Barigazzi’s  prose  memory  test:  neuropsychological  assessment  tool 

designed to evaluate verbal memory and reproduction of verbal information, 

providing insights into memory function and potential memory impairments
214. Normally, it involves participants listening to a prose passage and then 

recalling it, both immediately and after a delay214. In our assessment, with a 

sample of healthy subjects, only the delayed recall was administered and 

errors  regarding  principal  events,  secondary  events  and  details  were 

evaluated.

2. Rey−Osterrieth Complex Figure (ROCF): neuropsychological test used to 

evaluate visuospatial abilities, memory, attention, planning, and executive 

functions. It involves the subject copying a complex geometric figure, both 

immediately  (copy  phase)  and  after  a  delay  (recall  phase)193.  Standard 

version valuation is stratified as follows: A precise copy made quickly (<3) 

suggests normal processing, while a correct but slow copy may indicate 

perception  or  execution  issues.  A slow,  poor  copy  can  suggest  mental 

disability or dementia193,194. Here considering only health participants, only 

recall  phase  have been considered194,  10 minutes  after  the  copy phase, 

consistently with Zangrossi et. al. 31

3. Forward  and  Backwards  Digit  Span: neuropsychological  test  aimed  at 

measure  working  memory  and  attention,  assessing  the  capacity  to 

temporarily store and manipulate information195. The examiner recites aloud 
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a numerical sequence at a rate of one digit per second, and candidates have 

to repeat the sequences; up to two attempts are allowed for sequences of 

each length. Subsequently, candidates must repeat the digit sequences in 

reverse order, again with up to two attempts permitted for each length195. 

Results refer to Verbal IQ and the Full Scale IQ, referring to all Wechsler’s 

intelligence scales, both Wechsler Adult Intelligence Scale (WAIS) and the 

Wechsler  Intelligence  Scale  for  Children  (WISC),  together  with  the 

Wechsler Memory Scale215. Weinberg et al. in 1972 discovered that patients 

with right hemisphere damage had difficulty with the backward digit span 

task but not the forward task. They proposed that the backward task involves 

mentally  scanning a  visual  image (visuospatial  processing)  of  the  digit 

sequence, a process impaired by visual neglect, typically seen as left-sided 

neglect in these patients216

4. Forward and Backwards Corsi’s test: visuospatial memory span test that 

assesses  how  much  visuospatial  information  can  be  held  in  recent  or 

working memory217. Using a board with nine numbered cubes (arranged 

asymmetrically), the examiner touches the cubes in increasing sequence 

lengths, which the subject must then replicate217. The test score depends on 

the longest sequence correctly reproduced, indicating the subject's memory 

span. Studies show no gender differences in adults and the elderly, but male 

university students often perform better in spatial tasks217.

5. Stroop  Color-Word  Test:  neuropsychological  assessment  that  measures 

primarily the ability to inhibit cognitive interference, where processing one 

feature  of  a  stimulus  interferes  with  another195,199.It  evaluates  executive 

functions like cognitive control, attention, and processing speed, and is also 

a metric for impulsivity195,199. The shortened version is quicker to administer, 

making it practical for clinical and experimental settings. Success involves 

inhibiting  automatic  reading  responses199.  This  test  is  widely  used  for 

diagnosing ADHD, schizophrenia and assessing brain injury patient218.
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METHODS AND EXPERIMENTAL RESULTS 

7. EYE MOVEMENTS’DATA 

In this phase of data analysis we considered recordings’ data collected during the 

FREE phase, when subjects were asked to look freely at 90 real-world scenes, 

exposed for 5000 ms each, with an inter-trial interval (ITI) of 1500 ms. During these 

total 10 minutes, hdEEG and eye-tracking data were recorded. 

Gaze movements data are here considered and analyzed in order to reproduce on a 

different sample, and with a different eye tracker (a state-of-the-art Eyelink 1000 

plus, SR Research, eye-tracker) the findings from the previous study by Zangrossi 

et. al. concerning low dimensionality of eye movements, which appeared to be 

driven mostly by intrinsic factors, partially independent from bottom-up stimuli31. 

These  data  allowed  to  profile  subjects  according  to  their  endogenous  visual 

explorative phenotype features, clustering them consequentially into two distinct 

groups31.  The reliability of  these findings will  be examinated in the following 

paragraphs, confirming with this replication the generalizability of those results. 

7.1. Eye movements features extraction

After completing the recording phases, we began the statistical analysis of the raw 

eye movement data a with minimal pre-processing, including only gaze samples 

where both eyes had the highest validity value: a validity code of 0, indicating that 

the eyes were found and the tracking quality was optimal throughout the whole 

recording duration. Next, we extracted a comprehensive set of features that encoded 

the multiple characteristics of eye movements, in order to accurately describe visual 

behaviors: a set of 49 features was extracted for each subject (see below, Table I) for 

capturing the spatiotemporal dynamics of eye movements and fixations, rather than 

their spatial distribution.

Three main sources of information were considered:

- Fixations:  identified  employing  a  velocity-based  threshold  algorithm 

(detection threshold lambda = 15), which is the most popular, adequate and 

robust algorithm design for saccade detection33,219. Although the lack of a 

gold standard saccade recognition method, this algorithm is utilized by the 
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majority of studies whose dataset is based on static infrared eye-tracking 

systems, as in the case of this experimental assessment219. Trough previous 

chapters, the importance of  saccades-fixations strategy has been widely 

exposed from a mere oculomotor perspective; moreover, from a cognitive 

standpoint, fixations represent information processing, and their duration is 

linked to the depth of the cognitive engagement of the subject performing 

them220. 

- Pupil diameter: as seen in paragraph 2.4.1, non-luminance-mediated (as in 

this experimental assessment, where the recordings have been conducted in 

an almost  dark room) changes in pupil  diameter  correlate  with cortical 

(especially with ACC and PCC) and subcortical neuronal activity (LC, for 

example). Those are involved in a broad variety of cognitive processes such 

as arousal, attention92, cognitive load and effort  221, salience and decision 

biases89–91.

- Gaze steps: computed from the raw gaze data as the Euclidean pixel distance 

between two consecutive  gaze  positions  (avoiding distinctions  between 

saccades and microsaccades, both thought to be controlled by the same 

neuronal mechanisms)205,222.

 

Features Code Description

N of steps n_jumps Number of gaze steps

Length of Steps (M) dist_mean Mean of gaze steps length

Length of Steps (SD) dist_sd Standard deviation of the gaze steps length

Length of Steps (MAX) dist_max Maximum gaze steps length

Length of Steps 25% (M) dist_mean25_1
Mean of the gaze steps length in the first quarter visual 
exploration

Length of Steps 25% (SD) dist_sd25_1
Standard deviation of gaze steps length in the first 
quarter visual exploration

Length of Steps 25% (MAX) dist_max25_1
Maximum gaze steps length in the first quarter visual 
exploration

Length of Steps 25-50% (M) dist_mean25_2
Mean of the gaze steps length in the second quarter 
visual exploration

Length of Steps 25-50% (SD) dist_sd25_2
Standard deviation of gaze steps length in the second 
quarter visual exploration

Length of Steps 25-50% (MAX) dist_max25_2
Maximum gaze steps length in the second quarter visual 
exploration

Length of Steps 50-75% (M) dist_mean25_3
Mean of the gaze steps length in the third quarter visual 
exploration

Length of Steps 50-75% (SD) dist_sd25_3
Standard deviation of gaze steps length in the third 
quarter visual exploration

Length of Steps 50-75% (MAX) dist_max25_3
Maximum gaze steps length in the third quarter visual 
exploration

Length of Steps 75-100% (M) dist_mean25_4
Maximum gaze steps length in the last quarter visual 
exploration

Length of Steps 75-100% (SD) dist_sd25_4
Standard deviation of gaze steps length in the last 
quarter visual exploration

Length of Steps 75-100% (MAX) dist_max25_4 Maximum gaze steps length in the last quarter of visual 
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exploration

N of Fixations fix_n Number of fixations

Fixation Rate (per second) fix_rate Number of fixations per second on average

Total Fixation Duration fix_time_tot Global time spent in fixations

Fixation Duration (M) fix_mean
Mean fixations’ duration (i.e., mean interval between 
consecutive saccades)

Fixation Duration (SD) fix_sd Standard deviation of fixations’ duration

Fixation Duration (MIN) fix_min Minimum fixation duration

Fixation Duration (MAX) fix_max Maximum fixation duration

Fixation Duration 25% (M) fix_mean25_1 Mean duration of the first 25% of fixations timeseries

Fixation Duration 25% (SD) fix_sd25_1
Standard deviation of fixations duration in the first 
quarter visual exploration

Fixation Duration 25% (MIN) fix_min25_1
Minimum fixation duration in the first quarter visual 
exploration

Fixation Duration 25% (MAX) fix_max25_1
Maximum fixation duration in the first quarter visual 
exploration

Fixation Duration 25-50% (M) fix_mean25_2 Mean duration of the fixations from 25% to 50%

Fixation Duration 25-50% (SD) fix_sd25_2
Standard deviation of fixations duration in the second 
quarter of visual exploration

Fixation Duration 25-50% (MIN) fix_min25_2
Minimum fixation duration in the second quarter visual 
exploration

Fixation Duration 25-50% (MAX) fix_max25_2
Maximum fixation duration in the second quarter visual 
exploration

Fixation Duration 50-75% (M) fix_mean25_3
Mean fixations duration in the third quarter of visual 
exploration

Fixation Duration 50-75% (SD) fix_sd25_3
Standard deviation of fixations duration in the third 
quarter visual exploration

Fixation Duration 50-75% (MIN) fix_min25_3
Minimum fixation duration in the third quarter visual 
exploration

Fixation Duration 50-75%(MAX) fix_max25_3
Maximum fixation duration in the third quarter visual 
exploration

Fixation Duration 75-100%(M) fix_mean25_4
Mean fixation duration in the last quarter of the visual 
exploration

Fixation Duration 75-100% (SD) fix_sd25_4
Standard deviation of fixations duration in the last 
quarter visual exploration

Fixation Duration 75-100% (MIN) fix_min25_4
Minimum fixation duration in the last quarter of visual 
exploration

Fixation Duration 75-100% (MAX) fix_max25_4
Maximum fixation duration in the last quarter visual 
exploration

Pupil Diameter Left (M) pd_sx_mean Mean of left pupil diameter (in mm)

Pupil Diameter Left (SD) pd_sx_sd Standard deviation of left pupil diameter (in mm)

Pupil Diameter Left (MIN) pd_sx_min Minimum of left pupil diameter (in mm)

Pupil Diameter Left (MAX) pd_sx_max Maximum of left pupil diameter (in mm)

Pupil Diameter Right (M) pd_dx_mean Mean of right pupil diameter (in mm)

Pupil Diameter Right (SD) pd_dx_sd Standard deviation of right pupil diameter (in mm)

Pupil Diameter Right (MIN) pd_dx_min Minimum of right pupil diameter (in mm)

Pupil Diameter Right (MAX) pd_dx_max Maximum of right pupil diameter (in mm)

N of flips on X-axis flipX_n Number of flips (i.e., change of direction) on X-axis

N of flips on Y-axis flipY_n Number of flips (i.e., change of direction) on Y-axis

Table I: Eye movements’ features, corresponding statistical analysis code, and description . Differing from 

Zangrossi et al33., exploration time was not considered as a main source of information, reducing the number of 

features considered from 58 to 49.
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7.2.  Eye-movements data reduction

Concerning the unconstrained free-viewing (FREE) dataset, a features correlation 

matrix  (62  participants  x  49  features)  was  obtained,  and  then  a  principal 

components analysis (PCA) was ran in order to reduce it to some fewer meaningful 

components.

As already pointed out in paragraph 3.3.1, PCA is a statistical technique used to 

simplify a dataset by reducing its dimensions, while retaining most of the original 

variability in the dataset119. It does this by transforming the original variables into a 

new set  of  uncorrelated  variables,  referred  to  as  principal  components  (PCs), 

operating this way a data compression but also a noise reduction, by focusing on the 

components accounting for the highest variance223. Moreover, it allows to simplify 

data  dimensionality  to  two  or  three  dimensions  for  easier  visualization and 

interpretation223.  Finally,  often  PCA is  employed  as  a  pre-processing  step  in 

machine learning to improve model performance and reduce computational cost 

burden33,224. 

Once operated a standardization of the dataset (especially being the variables on 

different scales) features are computed on a covariance matrix, in order to define 

how  those  variables  are  related  to  each  other223.  Next,  the  eigenvalues are 

calculated, which are scalar that computationally, for a given square matrix, result in 

the same effect as applying the matrix transformation to a specific vector, called the 

eigenvector,  when multiplied by it119,225.  These values are indexes that serve as 

indicators of how effectively a component summarizes the data, determining the 

magnitude  of  a  new  feature  “space”:  the  amount  of  variance  each  principal 

component captures223. Eigenvectors (in other words, PCs) on the other hand, are 

non-zero vectors that, when the matrix is applied to them, change only in magnitude 

(and occasionally in direction if the eigenvalue is negative) but often not in direction
119,225. Indeed, PCA is understandable as an adaptive data analysis technique that 

involves solving an eigenvalue/eigenvector problem to reduce the dimensionality of 

the data112.

In addition to the raw standardized data loadings (the scaled and mean-centered full 

set of features extracted from the gaze data acquired during the exploration of 
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images33), PCA loadings have been also “rotated” by applying an oblique rotation 

(Promax). This consists of a statistical technique employed in factor analysis to 

further explore the underlying relationships between variables33,226,227 (both loadings 

are reported by the data in Table II below). This technique enables factors to exhibit 

correlations with each other,  facilitating interpretation and incorporating factor 

correlations212,213. By allowing those correlation, it often provides a more accurate 

and meaningful representation of the underlying structure of the data212,213. 

Features Raw PCA loadings Rotated PCA  loadings

PC1 PC2 PC3 PC1 PC2 PC3

n_jumps 0.221 0.089 -0.09 0.246 0.026 -0.06

dist_mean 0.115 -0.237 0.006 0.026 -0.258 -0.069

dist_sd 0.092 -0.287 0.091 -0.022 -0.315 -0.003

dist_max 0.029 -0.148 0.098 -0.034 -0.167 0.047

dist_mean25_1 0.116 -0.207 0.06 0.031 -0.243 -0.008

dist_sd25_1 0.096 -0.248 0.064 -0.003 -0.274 -0.017

dist_max25_1 0.078 -0.191 -0.007 0.008 -0.2 -0.067

dist_mean25_2 0.113 -0.23 0.03 0.023 -0.255 -0.043

dist_sd25_2 0.092 -0.255 0.086 -0.01 -0.285 0.002

dist_max25_2 0.086 -0.136 0.049 0.028 -0.165 0.004

dist_mean25_3 0.109 -0.235 -0.019 0.023 -0.248 -0.092

dist_sd25_3 0.091 -0.264 0.099 -0.015 -0.295 0.011

dist_max25_3 0.024 -0.176 0.11 -0.05 -0.194 0.051

dist_mean25_4 0.099 -0.227 -0.05 0.02 -0.23 -0.119

dist_sd25_4 0.06 -0.264 0.078 -0.043 -0.28 -0.008

dist_max25_4 0.024 -0.129 0.12 -0.034 -0.154 0.074

fix_n 0.213 0.096 -0.108 0.243 0.039 -0.075

fix_rate 0.213 0.096 -0.108 0.243 0.039 -0.075

fix_time_tot -0.09 0.066 -0.217 -0.039 0.14 -0.185

fix_mean -0.243 -0.042 -0.021 -0.239 0.049 -0.031

fix_sd -0.235 -0.094 -0.001 -0.251 -0.005 -0.028

fix_min -0.058 0.066 0.012 -0.033 0.077 0.033

fix_max -0.18 -0.128 -0.015 -0.21 -0.052 -0.053

fix_mean25_1 -0.209 -0.042 -0.033 -0.206 0.04 -0.043

fix_sd25_1 -0.204 -0.044 -0.056 -0.2 0.042 -0.065

fix_min25_1 -0.034 0.099 -0.132 0.016 0.132 -0.095

fix_max25_1 -0.164 -0.039 -0.064 -0.16 0.035 -0.071

fix_mean25_2 -0.233 -0.048 -0.016 -0.232 0.039 -0.029

fix_sd25_2 -0.218 -0.106 0.004 -0.24 -0.023 -0.027

fix_min25_2 -0.032 0.074 -0.015 -0.003 0.082 0.009

fix_max25_2 -0.169 -0.144 0.004 -0.208 -0.075 -0.039

fix_mean25_3 -0.234 -0.043 -0.007 -0.232 0.042 -0.018
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fix_sd25_3 -0.217 -0.09 0.002 -0.234 -0.009 -0.024

fix_min25_3 -0.042 0.109 -0.04 0.002 0.123 -0.003

fix_max25_3 -0.183 -0.121 0.016 -0.214 -0.051 -0.021

fix_mean25_4 -0.218 -0.025 -0.024 -0.21 0.057 -0.028

fix_sd25_4 -0.202 -0.066 0.01 -0.212 0.007 -0.009

fix_min25_4 -0.013 0.038 -0.08 0.01 0.057 -0.065

fix_max25_4 -0.17 -0.085 -0.001 -0.188 -0.019 -0.026

pd_sx_mean 0.001 -0.112 -0.384 0.004 -0.016 -0.4

pd_sx_sd -0.007 -0.121 -0.372 -0.008 -0.024 -0.392

pd_sx_min -0.028 0.06 -0.166 0.013 0.102 -0.139

pd_sx_max 0.01 -0.101 -0.36 0.013 -0.014 -0.375

pd_dx_mean 0.008 -0.129 -0.377 0.004 -0.036 -0.4

pd_dx_sd 0 -0.145 -0.357 -0.012 -0.051 -0.385

pd_dx_min -0.062 0.042 -0.06 -0.037 0.073 -0.044

pd_dx_max 0.033 -0.119 -0.238 0.015 -0.066 -0.264

flipX_n 0.199 0.062 -0.144 0.222 0.021 -0.12

Table II: Principal component analysis raw and rotated loadings. 

The eigenvectors are subsequently arranged in descending order, sorted depending 

on  their  corresponding  eigenvalues223.  According  to  the  Keiser  rule227,228,  only 

components  with  eigenvalues greater  than  1  are  considered  (consistently  with 

Zangrossi et al.) 31. A value of 1, indeed, implies that the factor carries the same 

amount of information as a single variable229, so only factors explaining a wider 

amount  of  variability  are  eligible  to  be taken into account.  The first  principal 

component is the direction that maximizes explanation of the variance in the data, 

the second principal component is orthogonal to the first and captures the next 

highest variance, and so on229. By selecting the first n principal components (PCn, 

with  n as a number lower in value than the original number of variables), PCA 

reduces the dimensionality of the data while preserving as much variability as 

possible119.

As can be seen in the Scree Plot (a line plot of the principal components in an 

analysis,  the  eigenvalues of  factors223)  of  Figure  33  below,  three  principal 

components (PC1, PC2, and PC3, whose relatively explained variance can also be 

appreciated in figure 34(a), the correlation matrix) have been found to be able to 

globally explain 60,2% of eye movement dynamics of the 62 observers recruited, 

who performed the unconstrained free-viewing task. 
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Figure 33: Scree plot showing the variance explained by different PCs. To be further selected, a component  

had to account for a percentage of the variance of at least 10%33: PC1 (30,7%), PC2 (19,2%) and PC3 (10,2%), 

satisfying this criteria. Graphically, according to some researchers, the correct number of components is the  

one appearing prior to the “elbow”229 on the line pot, as in this case.

This low dimensionality is extremely consistent with the findings of Zangrossi et al. 

where a three latent variable model, as well, accounted for the 60% of variance of 

visual exploratory eye movement dynamics trough the unconstrained free-viewing 

task underwent by the subjects, as already exposed in 3.3.1. 

In particular, as can be seen in the matrix in Figure 34(a) below, in the sample of this 

replication, the first component (PC1) accounts for 30,7% of variance and is loaded 

mostly on features describing fixations duration statistics, consistently with the first 

component of the previous study, which represented the 31,1% of variance and was 

mainly charged with feature describing time spent during fixations33. The second 

component  (PC2),  explaining  for  19,2% of  variance,  is  essentially  loaded  on 

features concerning statistics of gaze step length; differentially the second novel 

variable in the previous study was mainly charged with exploration time, number of 

steps and number of flips, thus represented for 16,5% of variance33. The third one 

(PC3), accounts for 10,3% of variance, and is primarily loaded on pupil diameter 

width statistics features; in the previous study third component explained 12,2% of 

variance and was charged on gaze steps’ length statistics33 (as is PC2 in this study).
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Figure 34: Comparison between Correlation Matrixes from the present study (a) and from Zangrossi et al. (b 

– already presented as Figure 19 in paragraph 3.3.1) The matrixes shows correlations (Pearson’s r) between  

features, which are ordered according to their loadings in the first three PCs. The color of Y-axis labels  
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indicates the PC with the highest loading for the corresponding feature. The aim of this comparison is to show 

the striking consistency of the replication study (a) with the original (b – already presented as Figure 19 in  

paragraph 3.3.1): both display a low dimensionality of spatiotemporal visual explorative dynamics, a coherent  

number of novel variables (3), each accounting for a comparable amount of variance. Referring to the present 

study, PC1 accounts for 30.7% of the variance and is mainly loaded on fixation duration features, similar to the 

PC1 of the previous study (which explained 31,1% of the variance). PC2 explains 19.2% of the variance, relates 

to gaze steps’ length features, whereas the PC2 of the previous study focused mostly on exploration time features 

and number of gaze steps and flips (explained 16,5% of the variance). PC3 accounts for 10.3% of the variance,  

focusing mainly on pupil diameter, while the PC3 of the previous study linked it to gaze steps’ length statistics  

(accounted for 12,2% of variance).

Specifically, all three components are loaded differentially concerning their features 

also from a single feature value standpoint (figure 35, below). 34 out of the 49 initial 

features survived the loading threshold of 0,2 in absolute value (Figure 36, below), 

suggesting a substantial role for components’ definition.

Figure 35; Figure 36: Features correlation values within first three PCs: line plot and table. (35)The Line 

Plot represent absolute loadings value of features loaded on the three major components PC1, PC2 and PC3:  

here only strong and mild positively correlated feature for each component have been reported. More in detail, 

the  (36) features value table shows positive and negative correlation values, of all the features taken into  

account, for each component loading, 

In line with the previous experiment of Zangrossi et al. we proved once again, on a 

different  sample  and  with  slightly  different  (although  conceptually  identical) 

experimental design, that a relatively low number of dimensions enables to explain 
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a  great  amount  of  variability  concerning  of  eye  movements  dynamics  (e.g., 

amplitude, velocity), fixational spatiotemporal properties (e.g., duration, rate), and 

pupil parameters across numerous subjects and many visual scenes. This part of the 

replication,  accomplishing  the  results  exposed  trough  paragraphs  7.1  and  7.2, 

enabled  us  to  speculate  once  again  concerning  low  dimensionality  of  eye 

movements  dynamics,  supporting  the  research  lines  which  posit  that  eye 

movements and fixations patterns across subjects can be explained with a few 

components, relatively independent of stimulus content and mostly driven by a 

visual  explorative  phenotype  which  may  be  endogenous,  identitarian  and  a 

reflection of spontaneous brain activity, so propelled by intrinsic factors.

7.3. Detection of clusters in visual behavior and their interpretation

A broad dimensionality of exploratory visual behavior would correlate with distinct 

eye movements dynamics across different subjects or would be more dependent on 

the images’ features that would this way drive different eye movement patterns (or 

both). On the other hand, as sustained by this study, the low dimensionality (as in 

this case) of visual explorative dynamics, may stand for the possibility to explain 

visual behavior of various subjects across different images as a reflection of top-

down  endogenous dynamics, partially independent from  bottom-up salience and 

semantics visual stimulation. Consequently, we then investigated whether distinct 

spatiotemporal  visual  behaviors  could  be  summarized  by  the  means  of  two 

phenotypical groups’ characteristics, in order to replicate the results of Zangrossi et 

al., and reproduce the clustering they identified, splitting the participants’ sample 

between Static Viewers and Dynamic Viewers33 (see 3.3.2).

In line with that previous study, a k-means cluster analysis, splitting the sample into 

two groups (k=2), was performed and best separation was obtained along both PC1 

and PC2 loadings  (see  Figure  37,  below).  K-means  clustering  method can  be 

employed in order to enable the partitioning of n objects, each having measurements 

concerning  p variables,  into  k classes230;  often,  as in this case with PCA, it  is 

performed following the application a priori of a data reduction techniques119,230. 

The K-means algorithm aiming to split a set of data points into k clusters, each data 

point is then relocated into the cluster with the closest mean230. Therefore, each 

group is indeed identified by a centroid or mean point230. The algorithm initially 
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creates k partitions and assigns the input points to each partition; then it calculates 

the  centroid  of  each  group.  Those  processes  are  subsequently  reproduced, 

constructing new partitions  by assigning each input  point  to  the  group whose 

centroid is the closest and recalculating the centroids for the new groups 230. In this 

way, finally, it creates the most appropriate separations of the dataset into a number 

of clusters.

The reliability of the two-cluster solution was evaluated by comparing multiple 

clustering outcomes, obtained obviously from k-means cluster analysis, but also by 

different hierarchical clustering algorithms. Several distance metrics and different k 

values  have  been  employed  in  order  to  compare  the  wider  range  of  possible 

computational processing and thus elect the most robust clustering solutions. The 

similarity  between  those  solutions  was  quantified  applying  the  Jaccard  index 

(which,  considering  two  sets  of  data,  measures  their  similarity/dissimilarity 

analyzing which members are shared or distinct; it is computed dividing the size of 

the intersection by the size of the union of two clusters231) which indicated that the 

two-cluster solution (k=2), was the most consistent across different methods. 

Figure 37 : The cluster plot. It shows the distribution of the participants between the two groups concerning the 

best separation obtained, along both PC1 dimensionality (Dim1, 30,7% of variance accounted) and PC2  
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(Dim2,  19,2% of  variance  accounted)  loadings.  “Cluster  1”  describes  Static  Viewers  (n=12)  principal  

components values, “Cluster 2” describes Dynamic Viewers (n=50) principal components values.

In the previous study by Zangrossi et. al, Static Viewers (subjects with high PC1 

values) showed longer fixation time, longer spontaneous viewing time, smaller 

mean pupil diameter and a lower fixation rate (less frequent but longer fixations)33;

 they were characterized by an average of higher amplitude and more numerous 

gaze steps, just as more gaze and a distribution of gaze steps more similar to a power 

law (see 3.3.3)33. On the other hand,  Dynamic Viewers  (subjects with low PC1 

values) showed opposite features such as more numerous fixations, performed at a 

higher rate, wider mean pupil diameter and a distribution of gaze steps less similar 

to a power law33.

In line with Zangrossi et al.'s findings, the sample can once again be divided into 

those  two  groups  of  observers,  demonstrating  through  our  experiment  the 

possibility of profiling subjects according to their visual explorative behavior. On 

the other hand, in this experimental assessment, observers with high PC1 scores 

(principal  component  mainly loaded on features  describing fixations'  time and 

dynamics, consistent with PC1 from the previous study, see paragraph 3.3) are now 

identified as  Dynamic Viewers.  This occurs because, unlike the previous study, 

some features that were positively correlated in the previous assessment are here 

correlated with PC1, but expressing a negative value in this assessment, making 

subjects with high values Dynamic explorers, contrary to what took place in the 

other  study.  In  the  computational  assessment  of  PCA,  the  algorithm assign  a 

numerical  value  that,  regardless  of  its  positive  or  negative  sign,  describes  the 

correlation between the feature and the  eigenvector.  In other words,  while the 

positive/negative  sign  of  a  number  is  not  important,  it  is  the  absolute  value 

(especially if greater than 0.2) and the type of feature considered that are crucial in 

describing  the  correlation.  For  simplicity,  hereby we refer  to  “positively”  and 

“negatively” correlated referred to the sign of the value describing the strength of 

the correlation of that feature concerning the PC considered, and not to a statistical 

significance of the bond of between the feature and the principal component. All the 

features further nominated are significantly related to the PC considered. 
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Dynamic Viewers are characterized by (positively correlated), for example, a high 

number of  fixations (fix_n feature),  a  high number of  fixations per  second on 

average (fix_rate feature),  a  high number of  gaze steps (n_jumps feature)  and 

coherently an high number of gaze flips on both axis (flipX_n and flipY_n features)

.  Conversely,  they are  negatively  correlated with  features  that  were  positively 

correlated with PC1 values in the previous study, such as mean fixation duration (fix

_mean feature), standard deviation of fixation duration (fix_sd feature), maximum 

fixation duration (fix_max feature), and other various statistical metrics (such as 

mean, maximum, and standard deviation) of most quartiles of fixation time features. 

These  latter  features,  negatively  correlated  with  positive  values  of  PC1,  thus 

indicating  a  negative  relationship  when  considering  Dynamic  Viewers' visual 

behavior. Those features are indeed positively correlated with low values of PC1 

scores: this occurs when considering Static Viewers phenotype, which is profiled by 

the meanings of those features.

Moreover, although Dynamic Viewers cluster has a more homogeneous distribution 

concerning PC2 values,  Static Viewers are typified by slightly positive values of 

PC2 scores,  consistently to the fact  that  those principal  component  values are 

negatively correlated with features related to the statistics metrics (mean, maximum 

and standard deviation) of gaze steps length. 

Figure 38: Subjects’ clustering and PCs. (a) Three-dimensional space, defined by the first three PCs, clusters’  

projection. (b) Two-dimensional PC scores relationships: PC1 values are once again those best describing the 

two clusters. (c) Examples of Static (blue dots) and Dynamic (red dots) Viewers oculomotor dynamics patterns 

(each dot represents gaze position sampled at a timepoint).
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In summary, despite the opposite relations of PC1 values compared to the previous 

study, Static Viewers were found once again to be characterized by longer fixation 

durations and longer viewing times, but by a lower number of fixations, a lower 

fixation rate, fewer gaze steps, and flips. Additionally, considering PC2 values, they 

are characterized by a lower mean length of gaze steps.  Conversely,  Dynamic 

Viewers were shown to be characterized by opposite features. These results are 

consistent with the findings of Zangrossi et al., and the replication can be considered 

achieved: once again findings suggest that, considering that fixations is the time 

when foveation of the image (in a dynamical stability, as seen relatively to fixational 

movements) allows visual processing, the engagement of Static Viewers in longer 

fixations  suggests  deeper  processing  of  fewer  stimuli33.  Conversely,  Dynamic 

Viewers tend to scan more rapidly and superficially across multiple items in a visual 

scene33. 
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8. EEG DATA

In this section of data analysis we focused on the data collected during the REST1 

phase, where participants were instructed to gaze quietly at a blank grey screen for 5 

minutes. Our objective was to replicate the findings of Celli et al. regarding resting 

state brain activity, in a eyes-open condition32. Additionally, we aimed to support, 

from a frequency analysis perspective, the characterization of subjects within the 

Static and Dynamic viewer clusters (identified by Zangrossi et al. based on their 

oculomotor features33).

We verified, in the previous chapter, the robustness of those results on a new sample 

proving  the  replicability  of  Zangrossi  et.  al.  findings  (on  a  distinct  cohort  of 

participants, employing a distinct eye-tracker and slightly different task conditions) 

concerning  low  dimensionality  of  oculomotor  behavior,  which  appear  to  be 

partially independent by stimuli and mostly driven by intrinsic factors: those factors 

allowed us to split participant, once again, into two clusters of observers based on 

their eye movements features. In this section, we aim to prove the link highlighted 

by Celli et. al. findings (with a shorter resting state recording and slightly different 

conditions) between those intrinsic factors (drivers of eye movements dynamics) 

and  the possibility to verify an oscillatory brain activity fingerprint of participants’ 

endogenous neural dynamics, sustaining the possibility of subjects profiling in the 

two clusters identified, Dynamic and Static viewers.

8.1. EEG pre-processing

Pre-processing of EEG data was structured employing MATLAB (The MathWorks, 

Inc) scripts based on functions from the EEGLAB toolbox, an open source software 

developed to allow processing of single-trial and/or averaged EEG data collections 

of any number of channels232. First of all, data have been band-pass filtered with cut-

off frequencies defining a 0,75 – 80 Hz interval, different to the one defined by Celli 

et al. in the previous study, in order to optimize pre-processing dynamics depending 

on the characteristics of the present dataset analyzed. In particular, the four filters 

employed were also different: 

- High-pass filter with 0,75 Hz cut-off to sort out lower frequencies. 
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- Two Notch band-pass filters which sorted out frequencies within 49 – 51 Hz 

and 99 – 101Hz intervals respectively. They were utilized in order to delete 

frequencies ranges that could have been contaminated by alternate  current 

frequency peaks.

- Low-pass filter with 80 Hz cut-off to sort out higher frequencies.

The rationale of operating this frequency (or temporal) filtering, which consists of 

an attenuation of signal components bands, is to reduce noise in the recordings data, 

preserving  the  signal  of  interest  and  increasing,  consequently,  signal-to-noise 

ratio233. Although pivotal, frequency filtering criteria have to be carefully selected 

because they cannot separate signal from noise in the same band (considering that 

sometimes noise and signal of interest are separated, but mostly overlapped) but 

either they delete or attenuate anything in the targeted band, causing by the way 

changes in local temporal signal. 

Automated detection of noisy and/or non-reliable channels was then conducted but 

also was followed by confirmation through visual inspection, each aimed to remove 

inadequate signal, in order to isolate actual brain signal from noise. The selection 

processes  relied  on  five  criteria,  with  thresholds  determined  by  a  preliminary 

dataset examination to optimize detection:

A. Flat signal (in other words, with no detected signal) for more than 5 

consecutive seconds. This one is the only absolute criteria.

B. Standard  deviation  greater  than  3  for  the  spectral  test 

(index_SPECTRUM),  which  help  identify  and  remove  artifacts  by 

analyzing power spectrum shape of the EEG data.

C. Standard deviation bigger than 5 for the probability test (index_PROB). 

This test helps in detecting segments of the data that exhibit improbable 

values or patterns that deviate significantly from what is expected based 

on the rest of the dataset.

D. Standard deviation greater than 5 for the kurtosis test (index_KURTOSIS

). Kurtosis test is a statistical technique employed in order to identify 

significant deviations from the normal distribution in EEG data234. Being 

EEG signals essentially a reflection of non-stationary process, kurtosis 
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values indicate the presence of improbable signal features, enabling to 

filter them out from the actual signal. Strongly positive values, when the 

distribution  is  peaky  (for  instance  during  a  transient  strong  muscle 

activity)  or  negative  ones  when reflecting alternate  current  or  direct 

current artifacts234,235.

E. Raw channel signal amplitude, absolute value greater than 650.

Channels selected by the criterium A, the only absolute, or at least two between B,  

C, D or E criteria, were interpolated using spherical splines230, to estimate average 

surface reference potential, allowing a better evaluation of the potentials relative to 

infinity than the discrete average computed over superior scalp electrodes, and 

showing greater accuracy in density mapping236,237.

8.1.1.  Independent Component Analysis

Once, then, re-referenced the EEG data to the average of all electrodes, independent 

component analysis (ICA) was employed to definitely remove ocular, muscular and 

movement  artefacts.  In  particular,  a  FastICA package238 enabled  the  use  of  a 

deflation-based fast fixed-point ICA algorithm with the hyperbolic tangent as a cost 

function.  ICA identifies  a  coordinate  system where  the  data  projections  have 

minimal temporal overlap and to do so its mathematical foundation is to minimize 

mutual information among the data or to maximize their joint entropy232. ICA can be 

considered an alternative method to PCA: the latter, when applied to temporal 

domain, aims to ensure that each PC explains as much of the uncorrelated variability 

with previously determined components as possible, while ICA focuses on finding 

maximally independent sources (ICs)232.

Adjacent  EEG scalp electrode channels  are highly correlated and they capture 

signals from multiple sources, both biological and non-biological. ICA has proven 

effective in isolating the distinct source generator processes that underlie these 

recordings239. Independent components (ICs) were classified as “primarily brain-

related”  or  “non-brain-related”,  specifically  into  seven  classes,  employing  the 

ICLabel toolbox:

- Brain ICs: for the first category, containing activity believed to originate 

from locally synchronous activity in one or two well-connected cortical 
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patches, which are typically small and produce smoothly varying dipolar 

projections to the scalp. They usually display power spectral densities where 

frequency and power are inversely related239.

- Muscle ICs: electromyographic signals characterized by broadband activity 

at high frequencies (above 20–30 Hz) derived from many motor unit action 

potentials during muscle contractions or periods of static tension239. Often 

they can appear as dipolar, but being their source located outside of the skull, 

their pattern is more localized and recognizable than brain signal239.

- Eye ICs: activity induced by an electrical dipole (positive pole at the cornea, 

negative at the retina) consequent to the high metabolic rate of the retina240.

 Frontal scalp projections of this standing dipole change according to the 

type of eye movement: clear quick shifts for blinks and sustained “square” 

shifts for vertical or horizontal movements239. 

- Heart  ICs:  rare  electrocardiographic  signal  projected  to  the  scalp  (if 

electrode  is  situated  for  example  over  a  superficial  artery,  closely 

approximates a diagonal linear gradient from left-posterior to right-anterior) 

recognizable  by  the  clear  QRS-complexes  waveform  in  their  time 

series239,240.

- Channel Noise ICs: portion of the recorded signal, statistically independent 

from those of other channels; can be caused by high impedances or physical 

movements of the electrodes, and typically indicates poor signal quality or 

significant artifacts affecting individual channels239. 

- Line  noise  ICs:  influence  of  line  current  noise,  depending  on  poorly 

grounded EEG amplifiers for example, identifiable as high concentration of 

power at either 50 Hz or 60 Hz239.

-  Other ICs: non-explicit category which accounts for ICs that fit none of the 

previous ones. Mostly it concerns ICs containing indeterminate noise or ICs 

containing multiple signals that ICA decomposition could not separate well
239.

All the ICs classified as Brain ICs or Other ICs (but with Brain as second highest  

probability) were kept. 
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8.1.2. Artefact Subspace Reconstruction

In  order  to  remove  any  possible  residual  artefact,  the  Artefact  Subspace 

Reconstruction (ASR) was employed in our pipeline: it consists of an adaptive 

spatial filtering approach where the artefacts characterized by an high variance 

(muscle and motion signals for instance in our pre-processing) are identified and 

adaptively removed using reference data which are free from any type of artefacts, 

and so “clean”241. Although typically applied after the high-pass temporal filter, we 

decided to implement it downstream in the pipeline, consistently with Celli et al., 

allowing us to concentrate its processing efforts and effectively clean any persistent 

post-ICA artefacts33,241. 

Figure 39: The ASR method. Artifacts with high variance (compared to a reference dataset or window) are  

detected and dynamically eliminated from the dataset through a sequence of linear subspace projections.

Data segments were detected as noisy employing a 1 s sliding-window PCA. If PCs 

exceeded 35 standard deviations from the “cleanest” dataset portions, a mixing 

matrix  computed from the latter,  was utilized to  substitute  the artifactual  data 

identified.

8.2. Spectral analysis

The power spectral density was computed applying a Welch’s overlapped segment 

averaging estimator  (which employs a  fast  Fourier  transformation,  considering 

mean values across time windows), in order to obtain in a 1-80 Hz frequency range, 

a frequency resolution of 0.5 Hz232. Every channel had its spectral density extracted, 

computed and then converted from dB to μV²/Hz. To normalize each spectrum to 
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the relative frequency power, it was finally divided by the total power obtained 

through trapezoidal integration of the entire spectrum.

Figure 39: Example of a spectrum. The spectral analysis represent all subjects’ EEG channels spectrum, in a 0 

to 80 Hz interval, obtained  by running the spectopo() function on EEGLAB, with a frequency resolution of 0,5  

Hz. Note the sorted out frequencies within the 49 – 51 Hz interval consequently to the Notch band-pass filter  

feature.

8.3. Statistical analysis (spectral analysis)

Referring to the eyes-open condition only,  we employed the Fieldtrip toolbox, 

which  enables  to  perform structured  analyses  of  large  MEG,  EEG,  and  other 

electrophysiological datasets using the MATLAB command line and scripting242, to 

operate a nonparametric permutation technique with cluster correction243. 

Firstly, an average of frequency power into five bands was ran. Those, listed in 

descending order of frequency, are: gamma (32,5 - 45 Hz), beta (12,5 - 32 Hz), alpha 

(7,5 - 12 Hz), theta (3,5 - 7 Hz) and delta (1 - 3 Hz) bands. The frequency power for 

each  band  was  averaged  across  all  256  electrodes,  obtaining  distinct  global 

frequency powers, which were then compared to the PC1 values across the 58 

subjects considered: we aimed at testing statistical correlations between distinct 

power bands and PC1 in a continuous fashion. Only 58 out of the 62 participants 

whose oculomotor dynamics were analyzed, were considered here, as 4 recordings 
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were eliminated due to poor data quality or  incomplete registration caused by 

technical issues.

Nonparametric permutation approach is often employed in MEG or EEG statistical 

data analysis, as in this case, because of the multiple comparisons problem: due to 

the  extremely  large  number  of  (sensor,  time)-pairs,  the  multiple  statistical 

comparisons (usually a number of the order of several thousands) operated, make it 

impossible to handle with classical procedures, the so called family-wise error rate 

(FWER), which consists of the probability of incorrectly inferring that there may be 

differences between the experimental conditions at one or more (sensor, time)-pairs
243.  In other words,  there's  an increased risk of  obtaining false positives when 

conducting statistical tests on a large number of data such as EEG signals from 

many electrodes recorded over time244,245. Nonparametric permutation with cluster 

correction addresses this issue by identifying clusters of contiguous data points 

showing significant differences between experimental conditions: thus it evaluates 

those entire cluster dimensions, in terms of (frequency, time)-samples on the basis 

of spectral and temporal adjacency, rather than individual data points as (sensor, 

time)-pairs243. 

Specifically,  we chose to ran as appropriate  statistical  test,  a  Spearman’s rank 

correlation coefficients, computed in each electrode between the distinct frequency 

bands  and  eye-tracking  PC1  values.  The  null  hypothesis  was  tested  by  the 

nonparametric permutation approach with cluster correction. We computed 1000 

resamples with two-sided 95% confidence intervals, corresponding to an alpha level 

of 0,05. In detail, cluster correction method aimed at creating the maximum cluster 

size possible, and employed a nonparametric two-tailed cluster threshold set to 

0,05. Clustering of channels was completely data-driven: the function employed, 

highlighted the contiguous electrodes (data points) showing a level of correlation 

with the variable exceeding that predefined significance threshold. Dimension (i.e., 

number of electrodes) of clusters, as it can be seen in Figure 41 below, was different 

according to the frequency band. Finally, Spearman’s rank correlation is computed 

between frequency bands power exponents and PC1 exponents only for the cluster 

of electrodes identified in the previous step.
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Figure 41: Comparison between the eyes-open resting state spectral analysis results from the present study  

(a) and from Celli et al. (b –  already presented as Figure 22 in paragraph 4.2.1) to highlight the remarkable 

consistency of the results. (a) Group scalp maps in eyes open condition for alpha (7.5–12 Hz), beta (12.5–32  

Hz) and gamma (32.5–45 Hz) relative power and t-value maps for the cluster-based permutation analysis with 

cluster correction operated as a continuous analysis (differentially to b where t-maps are obtained by a  

comparative analysis), following the reversal of PC1 values for qualitative consistency with the previous study's  

graphical representation. Significant results for the high-frequency bands beta (p = 0,01; number of electrodes 

= 35) and gamma (p = 0,002; number of electrodes = 159) after cluster correction, while alpha band results  
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were showed to be non significant (p = 0,051; number of electrodes = 14) after cluster correction. Black dots  

index significance with cluster alpha at p < 0.05 (two-tailed) and alpha p < 0.05 (two-tailed), while red dots  

index non-significance(N=58 subjects, continuous correlation analysis). The right panel shows Spearman’s  

rank correlation coefficients, which are computed in each electrode between frequency power in each band and 

PC1 values. Null hypothesis testing is conducted by using the nonparametric permutation approach with  

cluster correctio with cluster alpha at p < 0.05 (two-tailed) and alpha p < 0.05 (two-tailed)(N=58 subjects,  

continuous correlation analysis).  Relative  power spectral  analysis  qualitatively  relate  to  the ones of  the  

previous  study  and  so  have  been  referred  to  extreme PC1 values  subjects  representing  for  each  visual  

explorative style. (N = 20).(b –  already presented as Figure 22 in paragraph 4.2.1). Group scalp maps in eyes 

open condition for alpha (7.5–12 Hz), beta (12.5–32 Hz) and gamma (32.5–45 Hz) relative power and t-value  

maps (where the comparison yielded significant results) for the cluster-based permutation analysis. Black dots  

index significance with cluster alpha at p < 0.01 (two-tailed) and alpha p < 0.05 (two-tailed). The right panel  

shows the Spearman’s rank correlation between PC1 and averaged power in the significant cluster of electrodes  

(with Spearman’s r, p-value and 95% CI). (N = 40, subjects with the highest 20 and lower 20 PC1 values,  

analyzing the extreme representations of the explorative styles).

The statistical assessment of the frequency bands averaged powers in the present 

study,  although  differentially  designed  according  to  the  distinct  experimental 

assessment (e.g. 10 minutes vs 5 minutes) and to the different sample dimension 

(e.g.  120 vs  58),  confirmed and strengthened the results  of  Celli  et.  al.32 (see 

paragraph 4.2.1) in the eyes-open resting state condition (see Figure 41(b) or 22). 

In this study, referring to the t-value maps, we evaluated the correlation between 

power bands and PC1 values across all 58 subjects, while in the previous study only 

40 subjects (that showed extreme PC1 values a year before in the study of Zangrossi 

et  al.32)  were  recruited.  Consequentially  this  time  we  conducted  a  continuous 

correlation analysis, which comprehended both extreme and mild values correlation 

with  PC1  scores,  evaluating  all  the  variations  within  the  continuum  in 

characterizing subjects as belonging to one or the other exploratory styles; in the 

previous study the spectral statistical analysis have been conducted on data relating 

only to strongly characterized explorative styles. Above all these differences, we 

confirmed the clustering of electrodes which topographically, considering all the 

three averaged power bands, are extremely consistent with the ones highlighted by 

the previous study. This result is extremely robust and relevant, especially given that 

the analysis was conducted without any "prior knowledge” of the topography of the 

t-test results from the previous study. By using two different statistical tests, each 

appropriate to the computational approach, the dimensions and characteristics of the 

respective samples, we obtained two results that are remarkably consistent in terms 
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of t-values. In addition, we performed a Spearman’s rank correlation, which has a 

qualitatively  informative  scope,  consistently  with  the  previous  study,  between 

significant clusters and PC1 values.

In the beta  band (12,5–32 Hz) averaged power,  the cluster  based permutation 

revealed a significant negative correlation between PC1 and beta power in a frontal 

cluster  of  electrodes  (p  =  0,01;  number  of  electrodes  =  35);  computing  the 

Spearman’s rank correlation between electrodes in the significant cluster of the 

global beta power and PC1 values, can be confirmed a negative correlation (r = 

−0,327, p = 0,0125). In the gamma band power (32,5–45 Hz) the cluster based 

permutation revealed a significant negative correlation with PC1 in a cluster of 

electrodes  in  occipito-parietal  but  also  frontal  areas  (p  =  0,002;  number  of 

electrodes = 159); Spearman’s rank correlation, also, reported a negative correlation 

in the significant cluster between global gamma power and PC1 (r = −0,380, p = 

0,0034). All those values and topographical features are significant and consistent 

with the ones of the previous study, highlighting how subjects with a lower fixation 

duration  and  an  higher  fixations  rate,  as  in  Dynamic  Viewers,  tend  to  be 

characterized by higher beta and gamma band power activity.

An occipital cluster of electrodes in the alpha band (7,5–12,5 Hz) averaged power, 

although characterized by non significant values of correlation with PC1 (p = 0,051; 

number of electrodes = 14) at the cluster based permutation and cluster correction 

(probably due to reduced sample dimensions), show a trend comparable to ones of 

the previous study in terms of positioning but above all in terms of direction of 

correlation with PC1 values. That trend, consistently to the one of the previous 

study, is to be progressively increased in a almost linear relation with the rising of  

PC1 values (again, following the reversal of the PC1 values obtained through eye 

movements analysis, to be qualitative consistent with the previous study). This is 

confirmed also by the Spearman’s rank correlation between global alpha power in 

the cluster, although non significant, and the PC1 values (r = 0,2859, p = 0,0299).

In summary, for the significant clusters in the beta and gamma averaged powers, as 

well as for the trend highlighted by the identified alpha averaged power cluster, a 

directional relationship is confirmed between increasing PC1 values for the latter 
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and  decreasing  PC1 values  for  the  formers.  Once  again,  subjects  with  longer 

fixations time and lower fixations rate, pivotal loadings in the PC1 (again, here 

considered with opposite values than the ones obtained in the PCA previously 

performed for observers profiling trough oculomotor features, to be graphically and 

statistically coherent with Celli et al.32), identified as characterized by a mild or 

progressively stronger Static Viewing fashion, appear to be characterized by higher 

(progressively increasing according to greater PC1 values) occipital alpha band 

power. Conversely, subjects with progressively shorter fixations time and higher 

fixation rate, referred to as Dynamic Viewers, exhibit progressively higher frontal 

beta power and occipito-parieto-frontal gamma power, in line with their lower alpha 

occipital power (see low-high frequency bands interplay described in paragraph 

4.2.6). In addition, topographically, clusters identified by Celli et al32. in subjects 

with extreme PC1 values, are remarkably coherent in terms of spatial distribution 

with the ones highlighted in the present assessment.

Finally,  the topoplots,  presented here  for  illustrative purposes only,  have been 

computed following the same approach as Celli et al32: 20 subjects (10 for the Static

 and 10 for the  Dynamic Viewers groups) recordings were selected due to their 

extreme PC1 values, which strongly represented the typical profiling features, and 

their spectral analysis were topographically plotted. Visually we can appreciate, in 

particular, the higher alpha power and lower gamma power in the occipital spectrum 

in the Static Viewers, and coherently a higher beta frontal power Dynamic Viewers 

such as an higher global gamma band power.  These graphics,  in other words, 

although non significant from a mere statistical standpoint, qualitatively strengthen 

the  representation  of  the  explorative  phenotypes  already  individuated,  by 

amplifying its results, as it is based only on subjects with extreme PC1 values. Once 

again, these findings are extremely consistent with the ones of Celli et al, whose 

entire analysis was performed on extreme PC1 values’ subjects.

8.3. Visual  explorative  phenotypes:  a  brief  results’  review  of  both  eye 

tracking and EEG data analysis

In summary, computing eye tracking data from the FREE phase of 62 healthy 

subjects we observed a low dimensionality of oculomotor dynamics, with three PCs 
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accounting  for  the  60,2% of  the  variability  in  oculomotor  movements  across 

subjects  and  scenes.  The  spatiotemporal  features  loaded  on  the  PCs  were 

substantially independent from saliency and semantics of the images presented, 

accounting for the rising role (conceptualized trough research lines) of top-down 

intrinsic dynamics in driving “when” and “how” ocular movements are performed, 

interacting with  bottom-up stimulation processing which in a unconstrained free 

viewing task, still predict “where” fixations will occur. Moreover, based mainly on 

PC1 values, we were able to split the sample into two clusters, identified by distinct 

visual explorative styles, according to the hypothesis that intrinsic factors could 

drive visual explorative behavior. A two groups solution proved to be the most 

reliable and, proceeding in confirming and strengthen Zangrossi et. al results32, we 

profiled subjects into Static Viewers (longer fixation duration, longer viewing times, 

but a lower number of fixations, a lower fixation rate, fewer gaze steps and flips)  

and  Dynamic Viewers (with opposite features)  based on the features describing 

their visual explorative style fingerprints, and in particular relating to their PC1 

values (and PC2 values to a lower extent).

Then, we analyzed REST1 hdEEG data of 58 out of 62 healthy subjects, employing 

a nonparametric permutation technique with cluster correction on these eyes-open 

resting  EEG  data  (previously  pre-processed):  by  the  means  of  cluster  based 

permutation correlations between PC1 and cluster of electrodes in the alpha, beta 

and gamma bands averaged powers, have been highlighted and two out of three 

clusters were significant after cluster correction. Concerning the significant clusters 

in the beta and gamma averaged powers, as well as for the trend highlighted by the 

identified alpha averaged power cluster,  a directional relationship is confirmed 

between increasing PC1 values for the latter and decreasing PC1 values for the 

formers.

Spearman’s rank correlation between electrodes in the significant clusters of the 

beta and gamma bands and the PC1 values sustained those results, by exhibiting 

values of r = −0,327, p = 0,0125 for the beta band and values of r = −0,380, p = 

0,0034 for the gamma band. Although cluster correction proved a non significance 

relationship with cluster alpha band electrodes, the Spearman’s rank correlation 

values (r = 0,2859, p = 0,0299) were, once again, consistent with the correlation 
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direction between bands and PC1 values, confirming the profiling results exposed 

just before. Finally, also topoplots (ran on 20 equally divided between the groups 

subjects, representing for each of them the extremely strongly defined phenotypes) 

although  being  pure  qualitatively  descriptive,  highlighted  the  means  of  this 

characterization. 

Observers explore a visual scene with different eye movement exploration styles, 

and these styles relate to intrinsic properties of EEG brain signals. Baseline intrinsic 

brain activity influences cortical circuitries during visual exploration. Altogether 

these replication results are remarkably consistent with Zangrossi et al. e Celli et al. 

findings,  confirming  the  characterization  of  explorative  styles  and  the 

generalizability of those results. 
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9. SAMPLE DEMOGRAPHIC AND NEUROPSYCOLOGICAL TESTS

Once collected all recording phases, 55 out of the 64 subjects were asked to undergo 

a battery of standardized neuropsychological tests in order to address some of the 

cognitive domains, such as246,247: 

- Learning and Memory:  processes  related  to  the  encoding,  storage,  and 

retrieval of information; it includes short-term memory, working memory, 

procedural memory, semantic memory, visuospatial memory and long-term 

memory246,247. In these assessment, mostly prose memory, verbal memory 

and visuospatial memory have been investigated.

- Language: it includes all aspects of language function, receptive language, 

expressive  language,  verbal  memory  including  speaking,  reading  and 

writing246,247. Receptive language and verbal memory were the ones mostly 

investigated by the test administered.

- Complex Attention: refers to the ability to focus, sustain, and shift attention 

as needed, including aspects like selective attention, sustained attention, and 

divided attention246,247. The tests proposed investigated mostly selective and 

sustained attention skills.

- Executive function: involves higher-order cognitive processes that regulate, 

control,  and  manage  other  cognitive  processes,  including  for  example 

inhibitory control, cognitive flexibility, and decision-making246,247. Primarily 

inhibitory control and cognitive flexibility have been exanimated in this 

section.

- Visuospatial  Skills:  the  ability  to  understand  and  remember  the  spatial 

relationships  among  objects246,247.  It  includes  visual  perception,  spatial 

orientation, and the ability to manipulate visual and spatial information 

As already exposed in the introduction section,  the close relationship between 

cortical-subcortical oculomotor control and visuospatial-attentive areas lead us to 

investigate deeply mnemonic and visuospatial domains in order to assess (although 

adjusted for  age,  sex,  education,  language and culture;  all  the  participant  that 

underwent  tests,  n  =  55,  were  Italian)  cognitive  status  of  the  sample  of  the 
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participants. The results presented below are qualitative and descriptive, with no 

significant differences observed between the clusters.

Category Measurements' topic Variable
Sample (n=55) 

Mean (SD)

Demographi
c

 

Age 23,570 (2,902)

Sex 26 F; 29 M

Years of education 16,930 (1,751)

Cognitive

Prose Memory

Barigazzi Prose - secondary events 30,26 (9,841)

Barigazzi Prose - principal events 7,981 (2,603)

Barigazzi Prose -details 4,130 (1,805)

Barigazzi Prose - total 42,370 (1,280)

Woking Memory
Digit Span Forward 6,436 (1,198)

Digit Span Backward 5,545 (1,051)

Visuospatial memory

Corsi Forward 6,722 (1,204)

Corsi Backward 6,130 (1,150)

Rey-Osterrieth Figure – Recall 39,370 (8,956)

Impulsivity

Stroop Test Words – time (s) 11,514 (2,366)

Stroop Test Words – errors 0,036 (0,189)

Stroop Test Colors – time (s) 14,100 (2,372)

Stroop Test Colors – errors 0,273 (0,449)

Stroop Test Color - Word - time 
(s)

21,750 (4,674)

Stroop Test Color - Word - errors 0,436 (0,688)

Stroop Test Interference - time (s) 8,780 (3,821)

Stroop Test Interference – errors 0,282 (0,692)

Table  III:  Demographic  characterization of  the  sample  (n=55  subjects,  26  F  and  29  M);  Cognitive  

Measurements investigated by different parameters of tests scores. Brief summary of the principal statistical  

metrics (mean and standard deviation).

Table IV: Extended summary of neuropsychological tests scores, complete sample. In particular, last columns 

show mean and standard deviation concerning the two subsets, of Dynamic and Static viewers.
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To evaluate verbal memory and reproduction of verbal information, the Barigazzi’s  

Prose Memory test was employed: normally it involves the participants listening to 

a prose passage and then recalling it, both immediately and after a delay214. In our 

assessment,  with  a  sample  of  healthy  subjects,  only  the  delayed  recall  was 

administered and errors regarding principal events, secondary events and details 

were evaluated, alongside to the total scores. 

Figure 42: Barigazzi Prose Memory test plotting. (a) Principal events score, secondary events score, details  

score histograms with kernel density curve superimposed. (b) Total score complete sample  histogram with 

kernel density curve superimposed.; total score sorted by cluster boxplot. 

The Rey−Osterrieth Complex Figure (ROCF), employed to evaluate visuospatial 

abilities, memory, attention, planning, and executive functions, involves the subject 

copying a complex geometric figure, both immediately (copy phase) and after a 

delay (recall phase)193. Here, again, considering only health participants, the recall 

phase (10 minutes later than the copy phase) was the only one considered194. 

Figure 43: Rey - Osterrieth Complex Figure scores. Complete sample histogram with kernel density curve  

superimposed; boxplot sorted by Cluster. 
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The same cognitive  domains  were  assessed  also  employing  the  Forward  and 

Backwards  Corsi’s  tests,  which  are,  again,  visuospatial  memory  tests  able  to 

evaluate how much visuospatial  information can be held in recent  or  working 

memory217. Using a board with nine numbered cubes (arranged asymmetrically), the 

examiner touches the cubes in increasing sequence lengths, which the subject must 

Figure 44: Corsi Test Backward and Forward scores. (a) Corsi Test Forward and Corsi Test Backward scores 

histograms with kernel density curve superimposed. (b) Corsi Test Backward and Forward sorted by Cluster.

In order to examine working memory and attention capabilities, Forward and 

Backwards Digit Span tests have been proposed to the participants; they assess, in 

particular, the capacity to temporarily store and manipulate information. Examiner 

verbally articulates a numerical sequence at a pace of one digit per second and 

candidates are required to repeat aloud those sequences of digits; up to two trials are 

allowed for sequences of each length.

Figure  45:  Digit  Span Backward  and Forward  scores.  (a)  Digit  Span Forward  and  Backward  scores  

histograms with kernel density curve superimposed. (b) Digit Span Backward and Forward sorted by Cluster.
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Finally, the Stroop Color-Word Test was employed,  to measure primarily the ability 

to inhibit cognitive interference, where the processing of one stimulus interferes 

with another one195,199.It evaluates executive functions such as cognitive control, 

attention,  and  processing  speed,  and  it  is  furthermore  a  reliable  metric  for 

impulsivity195,199. 

 

curve superimposed; boxplot sorted by Cluster.  (b)  Stroop Interference Time histogram with kernel density  

curve superimposed; boxplot sorted by Cluster. 
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DISCUSSION,  FUTURE  PERSPECTIVES  AND 

CONCLUSIONS

10. STUDY RESULTS AND RATIONALE

10.1. Study  results’ discussion:  both  oculomotor  and  oscillatory  activity 

fingerprints

In the present study we measured simultaneously in 64 healthy participants eye 

movements  dynamics  and  oscillatory  brain  activity,  employing  respectively  a 

infrared  state-of-the-art  static  eye  tracker  and  a  256  channels 

electroencephalograph, in order to highlight the role of spontaneous brain activity in 

determining distinct visual exploratory phenotypes. Our purpose was to replicate, 

on a new sample and with slightly different experimental settings, two previous 

studies  of  Zangrossi  et.33 al  and  Celli  et  al.32 We  aimed  at  proving  the 

generalizability of their findings concerning the role of endogenous activity in 

shaping subjects explorative styles and, consequently, the possibility of clustering 

the participants in two distinct groups of observers, each with different oculomotor 

dynamics and brain resting state activity fingerprints.

First of all we computed the eye tracking data (62 participants’ data out of the 64 of 

the original sample were qualitatively considerable) obtained with an unconstrained 

free  viewing  task,  where  subjects  were  asked  to  explore  without  any  type  of 

limitation a set of 90 real images for a total of a 10 minutes session. Consistently  

with the previous experiment of Zangrossi et. al.33, we ran a principal component 

analysis  (PCA)  to  reduce  dimensionality  of  the  numerous  features  (related  to 

fixations, gaze steps and pupil diameter width) extracted and to test whether a low 

or  high  dimensionality  model  was  the  one  able  to  describe  explorative  style 

dynamics. A three novel feature model (low dimensional) describes 60,2% of the 

variability in visual exploration dynamics; PC1 in particular, mainly loaded on 

features describing fixations duration statistics, described the 30,7% of variability.

The  low  dimensionality  of  visual  explorative  dynamics,  may  stand  for  the 

possibility to explain visual behavior of various subjects across different images as 

a reflection of top-down endogenous dynamics, partially independent from bottom-
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up stimulation. Critically, PC1 scores were not explained by features associated 

with saliency or  semantic  weights  of  the objects  part  of  the scenes presented, 

deposing for a pivotal role of intrinsic factors in driving oculomotor dynamics. The 

spatiotemporal features loaded on the PCs were substantially independent from 

saliency and semantics of the images presented,  accounting for the rising role 

(conceptualized  trough  researches)  of  top-down intrinsic  dynamics  in  driving 

“when” and “how” ocular movements are performed, interacting with bottom-up 

stimulation  which  in  a  unconstrained  free  viewing  task,  still  predict  “where” 

fixations will occur.

Consequently,  we  then  investigated  whether  distinct  spatiotemporal  visual 

behaviors  could  be  summarized  by  the  means  of  two  phenotypical  groups’ 

characteristics, in order to replicate the results of Zangrossi et al.32: we identified 

that  a  two-group  solution  (k=2) was  the  most  effective  and  so  spitted  the 

participants’ sample into Static Viewers and Dynamic Viewers groups based on the 

features describing their visual explorative style fingerprints and so according to 

their distribution foremost in relation to the features values loaded on PC1 (and to a 

lesser extent with the ones of PC2). In particular, subjects with low PC1 values, 

exhibiting longer fixations duration, longer viewing times, but a lower number of 

fixations, a lower fixation rate, fewer gaze steps and flips, were profiled in the Static  

Viewers cluster. Conversely Dynamic Viewers were identified by opposite features 

and so by high PC1 values. 

The engagement of Static Viewers in longer fixations suggests that they perform a 

deeper processing of fewer stimuli, exploring images for a longer time; conversely, 

Dynamic Viewers tend to scan more rapidly and superficially, according to their 

higher fixational rate, across multiple items in a visual scene. Moreover,  Static  

Viewers showed a distribution of gaze steps closer to a power law distribution, 

higher mean amplitude and more numerous gaze steps and flips, other than a smaller 

pupil diameter mean width. Dynamic Viewers showed higher pupil diameter mean 

width and a distribution of gaze steps less similar to a power law. These results 

confirm and strengthen the findings proposed by Zangrossi et. al33.
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Based on the theory that spontaneous brain activity plays a fundamental role in 

cognition, providing spatiotemporal and connectivity priors (acting as a generative 

model of spatiotemporal patterns of activity) then employed during behavioral tasks
6, we tested the hypothetical relationship of these two visual explorative behaviors 

with intrinsic brain dynamics, measuring EEG oscillations at rest (58 participants’ 

data  out  of  the  62  that  underwent  oculomotor  dynamics  processing,  were 

qualitatively eligible to be taken into account) .

We show that eye movements dynamics have robust neural activity correlations in 

spontaneous  eyes-open  resting  EEG  oscillations, by  conducting  a  continuous 

correlation analysis between power bands and PC1 values across the 58 subjects 

considered. This computation process comprehended both extreme and mild values 

of  eye  movements’ dynamics  correlation  with  PC1  scores,  evaluating  all  the 

variations within the continuum in characterizing subjects as belonging to one or the 

other exploratory styles. We analyzed, employing a nonparametric permutation 

technique with cluster correction, the pre-processed EEG data: cluster of electrodes 

maps relating to the alpha (7,5−12,5 Hz), beta (12,5–32 Hz) and gamma (32,5–45 

Hz) bands averaged powers, have been highlighted and two out of three clusters 

were significant  after  cluster  correction.  The alpha band,  which displayed non 

significant (p = 0,051) correlation, exhibited anyway a direction correlational trend 

consistent with the previous study by Celli et al.

That previous study proved that the EEG analysis could further characterize the 

visual  explorative  phenotypes  identified  a  year  earlier:  Static  Viewers showed 

higher  alpha  power  and  lower  gamma  power  in  occipital  electrodes,  while 

exhibiting lower beta power in frontal electrodes. In contrast,  Dynamic Viewers’ 

oscillation profiling displayed lower global alpha power and higher high-frequency 

power (beta and gamma). In our replication, occipital alpha band power increased 

proportionally  to  the  rising  of  PC1  values:  after  reversal  of  PC1  values  for 

consistency with the previous by Celli et al, the rising of PC1 values relates to a 

progressively growing Static explorative fashion, with higher fixational time that 

correlates  woth  higher  alpha  power.  Higher  fixation  rate,  here  relating  to 

progressively lower PC1 values would relate with greater high-frequency global 

powers, relating more to a Dynamic viewing fashion. 
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Spearman’s rank correlation between electrodes in the significant clusters of the 

beta and gamma bands global averaged powers and the PC1 values; although cluster 

correction proved a non significance relationship with cluster alpha band electrodes, 

the  Spearman’s  rank  correlation  values  were,  once  again,  consistent  with  the 

correlation  direction  between  bands  and  PC1 values,  confirming  the  profiling 

results  exposed just  before.  Finally,  also topoplots  (ran on 20 equally divided 

between the groups subjects, representing for each of them the extremely strongly 

defined phenotypes) although being pure qualitatively descriptive, highlighted the 

means of this characterization.

10.2. Discussion: the pivotal role of endogenous factors

Over the years, intrinsic brain activity has been a topic of increasing interest across 

many research lines,  according to its pivotal functional role in the progressive 

reconceptualization of the brain functioning, which is seen no longer as a mere 

reflective  sensory-motor  analyzer  but,  from  an  inside-out perspective8,  as  a 

producer of generative models. The resting brain functions as a vast simulator of 

scenarios, assigning different relative weights to functional patterns, depending on 

the context,  ranging from the maximization of the entropy of explanations and, on 

the other hand, to the maximization of the accuracy of explanations (to fit data). 

Although often explored on behalf of resting state activity recordings, as we did 

partially also in our experimental assessment, the brain is effectively restless: from 

a metabolic point of view most of its energy is spent on resting potentials and sub-

treshold activities, not spikes. Moreover, intrinsic activity, as showed by Deco et al.
24, has a functional anatomy emerging from structurally and dynamically shaped 

slow linear  fluctuations,  whose  constraints  lean  on  the  underlying  anatomical 

connectivity. Areas of related coherent spontaneous activity have been described as 

resting state networks, RSNs (many of them have been identified, in terms of both 

grey  matter  and  white  matter  mapping19),  which  act  as  spatiotemporal  priors 

(maintaining an high level of coherence of activation topography at rest and during 

tasks,  but  also  acting  as  rhythmic  streams  that  shape  differential  excitability 

states6,27) for task-evoked activity6. Finally, this spontaneous activity is coherent at 

134



single-cell,  cortical  and  subcortical  levels,  and  changes  during  development, 

learning, health and disease6. 

Figure 46: Priors and the Predictive Brain; An example of spontaneous vs task Brain activity concerning  

visuospatial attentive networks. (a) Brain generative models continuously integrate the statistical history of co-

activatory patterns from past experiences. When at rest, the brain recreates those patterns to optimize its  

generative model, like compressing data, and prepares general spatiotemporal frameworks for future tasks. (b)

 Dorsal and Ventral Attention Networks cortical areas activity in a comparison between task-evoked activity  

and resting state intrinsic activity.

The idea is that during our lives, genetics shapes preconfigured wide networks of 

connections,  which  immediately  exhibit  (even  at  the  beginning  of  the  central 

nervous system development, when the baby lies in the mother's womb) some 

patterns of intrinsic oscillatory activity, which appear to be chaotic in first place but 

already starts to orchestrate the anatomical connections integration. When born, and 

during  years  of  development  and  learning,  interacting  with  the  surrounding 

environments,  intrinsic  activity  drives  neuroplasticity,  by  conditioning  both 

synaptic pruning and connections strengthening. This aims at increasingly refining 

the capability of interacting with the environment and the information that typically 

characterizes our experiences, guaranteeing the best possible task engagements 

outcomes (according to the “good enough brain”, see chapter 1). 

Whenever  the  brain  is  in  a  disengaged  state,  spontaneous  activity  can, 

(conceptually) oscillating between maximizing the entropy of explanations and 

maximizing  the  accuracy  of  explanations  required  in  tasks,  shape  and/or 

reconfigure spatiotemporal  priors in a continuous development that takes place 

during growth, learning, and life overall. This makes each of us the most adapted 

human  being  possible  to  predictively  interact  with  everything  concerning  us, 
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integrating  external  and  internal  projections  of  the  environment.  All  these 

mechanisms shape our cognitive-behavioral dynamics (trough health and disease), 

and being our brain strongly oriented towards visual perceptual processing, on 

which many brain patterns converge directly or indirectly reflecting in the interplay 

of  cover-overt attentional dynamics and oculomotor dynamics, eyes movements 

are, indeed, a behavioral window (that our study employed as a standpoint to look 

out from) to the cognitive constraints that modulate our way of behaviorally relate 

with the internal and external environments. In addition, all these elements should 

theoretically  allow,  as  we  investigated,  the  profiling  of  different  cognitive-

behavioral phenotypes of single individuals and clusters of individuals.

Characteristics of spontaneous brain activity can, indeed, predict single subject 

profiling30 and  cognitive-behavioral  interactions,  such  as  the  eye  movements 

dynamics during unconstrained viewing, reflecting an integration of top-down and 

bottom-up processing with the endogenous dynamics, thus emphasizing the role of 

visual  exploration  as  a  window  into  the  cognitive-behavioral  functional 

organization of the brain. Zangrossi et al. findings highlighted the importance of 

endogenous  factors  concerning  visual  explorative  behavior33:  the  components 

mainly describing spatiotemporal eye movements features, which are consistent 

during both unconstrained viewing and resting state recordings, are independent of 

the image content33. Coherently saliency and semantics have a very low influence in 

explaining their variability (determining, when available, eventually, only “where” 

topographically  direct  fixations)33.  This  implies  that  resting  dynamics  have  an 

influence on “how” and “when” we move our eyes during visual exploration: stable 

components  are  active  both  in  blank  screen  and  free  viewing  exploration, 

consistently with the idea that spontaneous neural dynamics act as spatiotemporal p

riors, predicting  task-evoked  activity  and  so  potentially  revealing  stable  and 

biologically determined behavioral fingerprints in the observers33. This enables also 

the clustering of participant into the two groups, of Dynamic and Static Viewers, 

whit an accuracy of assignment over 90% across different images, depending on 

their distinct viewing style, concerning the rate and duration of fixations, pupil 

diameter, amplitude and number of gaze steps, and number of gaze flips33. 
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Already Poynter et al. revealed the possibility, employing eye-tracker recordings in 

a  sample  of  40  participants,  of  evaluating  a  low dimensionality  in  the  visual 

explorative dynamics, particularly with regard to the duration and rate of fixations, 

putatively relating the oculomotor behavior to attentional dynamics99. Interestingly, 

those same features have been two of the main loadings in the PC1s of subsequent 

studies such as the one conducted by Zangrossi et al.33 and the present study, each 

conducted on a bigger sample.

As extensively pointed out in chapter 3, we refer to the “strategy of saccades and  

fixations” because of the multiple level interplay between cortical areas (such as the 

ones of DAN31 and VAN90, see paragraph 3.2.3) and subcortical hubs (such as the 

brainstem where attentive-oculomotor signals are deconstructed and actuated, the 

superior colliculus which is the last/first hub of multimodal integration between 

top-down and  bottom-up dynamics,  but  also  the  oculomotor  cerebellum,  the 

thalamus and  the basal ganglia). Many research lines suggests, coherently, that 

fixations  and  saccades,  main  components  of  eye  movements  dynamics,  are 

interdependent  processes  across  time  scales,  as  exemplified  by  unimodal 

distributions of gaze-step sizes which are characterized by power-law scaling102. At 

cortical level DAN and VAN closely regulate the interplay between reorienting 

covert-overt attention  to  novel  locations  processing  and  the  control  of  focal 

processing90; visual processing occurs, indeed, during fixations, and is no surprise 

that DAN and VIS (see 3.2.3) areas are so highly interconnected6.

Covariance of fixation duration and gaze step distribution, according to cortical 

areas interplay, can be appreciated observing the different spatiotemporal patterns 

of the clusters: Static Viewers, whose exhibition of longer fixation time may imply 

more-in-depth processing of fewer stimuli, and Dynamic Viewers, who may scan 

more rapidly, and more superficially, to more items in a visual scene.

In our framework we verified once again how eye movement features during free 

visual exploration appear to be correlated across subjects and allow the clustering of 

people in two phenotypes groups, according to their intrinsic style of exploration. 

Approaching the issue from a predictive brain perspective, we operated also resting 

state EEG recordings in order to highlight the existence of neurological constraints, 
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either structural and functional, that may drive visual exploration behavior and 

predict individual differences, depending on the interplay between top-down and 

bottom-up processing with endogenous activity determined priors, as pointed out 

before.

A brain state can be described as a set of oscillatory waves, conceptualized as 

recurring  and  sequential  patterns  of  propagating  brain  activity248.During 

wakefulness rest,  the restless brain,  indeed, instead of globally stabilizing at  a 

homogenous baseline level, exhibits activity fluctuations (with distinct oscillatory 

EEG  signatures)  within  and  between  different  areas,  composing  a  picture  of 

intertwined yet dissociable dynamic brain processes249.  In summary, the brains, 

quoting  György  Buzsáki  are  now conceived  as  “foretelling  devices  and  their 

predictive powers emerge from the various rhythms they perpetually generate”60.

The interplay between different resting state power reflect the baseline level of 

cortical  activation  which  depends  upon  ongoing  oscillations,  that  affect  local 

electrical fields and intrinsic excitability of neuronal populations. Tonic shifts in the 

power of brain rhythms, particularly alpha and gamma bands (with beta band power 

perpetrating the status quo of networks hub166), often accompany changes of neural 

response  amplitude,  attentional  state  and  perceptual/cognitive  performance170, 

which reverberate  through behavioral  dynamics170.  Different  oscillatory classes 

present  distinct  levels  of  brain  integration:  synchronization  of  multiple  bands 

encodes  complex  temporal  patterns  and  optimizes  synaptic  reinforcements  or 

weakenings130

Alpha power is no more perceived as only the reflection of an idling state, but the 

evidences accumulated over the years demonstrate how it may reflect first of all  

inhibitory dynamics (such as “inattention” at rest249 or trough visual areas in eyes-

closed conditions or in absence of salient visual stimuli) not only directed to non-

essential  or  conflicting processes129,  following the  so  called “neural  efficiency  

hypothesis”139 (see 4.2.2) but also exhibiting an inhibitory top-down control140 on 

both  local  and  distributed  information  processing131,  enabling  both  the  gating 

(reducing the processing capability of a certain cortical area and routes information 

to task related cortical areas143: “gating hypothesis”)  and the timing (by applying an 
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inhibitory filter that enables to achieve an high signal-to-noise ratio by allowing 

only a small number of cells to process information selectively and by silencing the 

majority of other cells140: “inhibition–timing hypothesis”). Moreover the magnitude 

of local alpha predicts a greater or lower level of brain activation when suppressed, 

as an updating mechanism for processing incoming signals: for example when, by 

top-down regulation from FEF and IPS, VIS within network areas desynchronize in 

localized cluster to enable visual processing coordinated to attentive-oculomotor 

dynamics, clocking the higher frequency subsequent activity and enhancing an 

efficient and precise neuronal recruitment of cells which are in an appropriate state 

for  perceptive  mechanism,  consequently  to  the  previous  alpha synchronization 

magnitude at rest. These mechanisms (such as the decrease of temporal correlations 

within visual cortex, aligning with the desynchronization of alpha rhythms observed 

during anticipation, spatial attention, or visual processing178) favor the occurrence of 

gamma power oscillations, so that alpha frequency, enhanced manly by the FEF 

(right  in  particular)  effectively routes  cortical  information flow by modulating 

gamma-band activity6,179 

Gamma power, is indeed, deeply dependent by a cross-frequency coupling with 

other rhythms, reflecting in a multiscale timing mechanism157, as in this case with 

the alpha band. Another important example is the one of “theta phase precession” 

(see paragraph 4.2.4), consistent with the preplays/replays theories (see paragraph 

1.4). Moreover it also exhibit a functional interplay with delta (0,5-4Hz), slow, and 

infra-slow bands frequencies157. Importantly, also an higher-frequency functional 

interplay  is  fundamental  concerning  the  priors theory  discussed  before:  while 

information about stimulus features are carried by gamma oscillations, determining 

temporal windows for synaptic plasticity, proportionally to their cycle length130, 

beta  synchronization  carries  feedback  signals  which  influence  the  functional 

coupling of neurons and regions over much longer distances, whereas high gamma 

frequency promotes  local  processing110,184.  Refining concepts  of  paragraph 1.5: 

during  development,  repeated  exposure  to  sensory  or  motor  signals  enhance 

reverberation in the post-stimulus period and imprint traces in the spontaneous 

activity (according also to Hebbian plasticity, see 1.342), so that metrics, describing 

sensory external environment and biomechanical body properties, shape networks 

topography and dynamics110,185. Gamma frequencies are thought to encode for quick 
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environmental  changes  and  error  predictions,  while  beta  coupling  fluctuations 

should slowly enhance weighted integration of incoming information and  prior 

inferences, computing the slower temporal structure of somatosensory events and 

the  outputs  obtained  by  the  interactions  between  predictive  models  and 

environmental engagement. Those development-shaped internal models, stable yet 

still malleable in adults (an efficient brain is one that can employ predictions but  

monitoring  for  errors  during  the  interactions  with  the  occurrences  in  the 

surrounding world, adjusting its models when necessary), act as spatiotemporal 

priors which allow the brain to exploit stored knowledge in order to predictively 

anticipate  the  statistically  most  likely  outcome  of  the  upcoming  stimuli  and 

movements (balancing specificity and entropy of explanations)110.  Spontaneous 

activity  determine  biased  (optimized)  recruitment  of  the  task-driven  patterns, 

forming spatiotemporal scaffolding of brain possible responses: this translates to a 

low  dimensionality  of  cognitive  and  behavioral  (just  as  in  visual  explorative 

dynamics33) dynamics across task and across individuals. At the same time this 

justifies  the  similarity  between  task-engaged  and  resting  state  functional 

connectivity13,110.

On  the  other  hand,  the  alpha-gamma  interplay  is  also  tought  to  reflect  the 

directionality of attention, whether directed towards internal or external processing. 

DAN activity and focal alpha desynchronization (focal disinhibition) reflect top-

down driven dynamics for selective attention, gating irrelevant sensory processing 

to  enhance  local  activity  and  information  processing131.  Consistently,  when 

experiencing task-engagement or memory-retention task (especially in a sensory-

dependent assessment) alpha power increases in right parietal cortex (rTPJ, part of 

VAN90)  which is  progressively inhibited proportionally to the strength of task-

focused attention or task shielding, avoiding attentional shifts to task-irrelevant 

stimuli, thus favoring attention focusing during top-down goal-driven tasks172. 

Neuronal synchronization in the gamma band, accompanied by a decrease in alpha 

band activity reflect active processing in the engaged brain regions. Decreasing of 

alpha rhythms may linked to a more externally directed attention, while higher 

alpha global power might indicate a higher inhibitory baseline of interaction with 

external stimuli and so more focusing on internal processing. This aligns with 
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findings concerning Static Viewers oscillatory profile and also with their viewing 

behavior,  characterized by longer fixation and more in-depth visual information 

processing of a fewer number of stimuli. According also to the efficiency, timing and 

gating hypothesis concerning alpha power functionality, their higher alpha activity 

baseline can be conceived as a specific reflection of cognitive preparatory activity to 

their remarkable deeper processing behavior. On the other hand, Dynamic Viewers,

 exhibiting higher global high-frequency baseline level, would be characterized by a 

resting  state  profile  more  similar  to  a  task-engaged  state  (either  on  stimulus 

processing or performing of selective attention). The increase on the global level of 

gamma-to-alpha power (with a baseline level of more desynchronized global alpha 

power), consists of an intrinsic different balancing of cross-frequency interplay, 

which reflects: lower inhibition towards external stimuli, a more reactive state in 

interacting with surrounding environment and a greater focus on those external 

stimuli, in order to ensure a better preparatory state for that remarkable higher 

engagement  rate  with  more  stimuli  out  of  the  number  of  stimuli  presented, 

compared to Static Viewers.

Those  concept  fit  with  the  findings  of  different  balancing  of  parieto-occipital 

regions gamma-to-alpha ratio, but also with the fact that Dynamic Viewers exhibit 

diffusely  a  global  higher  gamma  power  (occipital-parieto-fontal  significative 

clusters of electrodes).  Overall  then the occipital  power results,  align with the 

cognitive profiles of the two types of subjects (see 4.3), with  Static Observers 

showing a  slightly stronger  visual  working memory,  and dynamic observers  a 

weaker inhibition to salient but irrelevant stimuli.

Moreover,  Dynamic  Viewers would  exhibit  also  higher  frontal  beta  power:  as 

addressed before, beta rhythms represent the status quo/maintenance of a specific 

task  or  motor  set  and  this  can  be  empirically  appreciated  by  observing 

synchronization during tasks in which a set is maintained over time (e.g., a working 

memory task). Beta band oscillations are no more conceived only as the inhibitory 

frequency of sensorimotor cortex, but also as a rhythm which operate a top-down 

modulation  linked  to  different  cognitive  functions  (such  as  visual  attention, 

perception, emotion, working memory), managing, alongside to alpha power, that 

selection  bias  in  task-networks  recruitment,  in  order  to  predictively  preserve 
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computed expectations about the sensory environment and the internal models of 

body representations, or to plan subsequent movements (and also exploratory eye 

movements) dynamics in case of unexpected interactions outputs110. To do that, beta 

band synchronizations act enabling long-range within-/between-networks (such as 

PCC of DAN with DMN regions186 or IPS of DAN with SMA of SMN187) creating 

dynamic interconnections within hubs, hence creating a “dynamic core” and thus 

generating highly efficient brain states. 

Beta band is, indeed, pivotal in maintaining the current sensorimotor or cognitive 

state, thus cognitive and behavioral priors (temporal connectivity priors13) for real-

world events interactions; all of that, while preserving stability, yet flexibility of 

upgrades, of the status quo of cortical areas as a pivot around which brain activity 

realizes  itself,  practicing the  highest  global  efficiency possible110,163.  From this 

standpoint,  consistently,  Dynamics  Viewers exhibiting  that  type  of  beta  power 

pattern appear to be more reactive toward rest-task transitions and adaptations of 

prior predictive models to task performance. On the other hand,  Static Viewers, 

exhibiting lower beta frontal power, might maintain at rest a more reactive motor 

cortex, with a lower beta rhythm to overcome and initiate motor activities. This 

preparation  for  coordinated  movements  with  fixations  and  in-depth  visual 

processing might leave more space for synchronous movements while performing 

concentration and stimuli  processing,  and to react  to the possible outcomes of 

processing with subsequent actions.

To  conclude  the  discussion,  our  replication  study  consisting  of  concomitantly 

recordings of both eye movement and EEG features of healthy subjects, both high 

temporal resolution methodics, led us to a novel experimental setting on a new 

sample, that confirmed and strengthened the generalizability of the previous results 

of the two separate (although conducted on the same sample) studies by Zangrossi 

et al.33 and by Celli et al.  32. We demonstrated that a complex behavior like the 

oculomotor  dynamics  of  visual  exploration  can  be  summarized  with  a  few 

components loaded on features across many subjects and pictures. This is in line 

with  a  growing  behavioral  literature  branch  concerning  the  covariance  across 

subjects, which is progressively proving that many apparently complex behavior 

underlie a low dimensionality: complex hand movements250, human city navigation 
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in cities (with a returners/explores consequent phenotypes characterizations)251, and 

variability in reward inhibition252 that may be underpinned by the result of integrate 

cognitive-behavioral interplay depending on  top-down/bottom-up dynamics with 

intrinsic brain activity.  At the same time, growing research evidences highlight the 

low dimensionality of coding through correlated neuronal activity across many 

neurons in studies concerning face perception253 and exploratory face movements254

 and hand movements255. 

According to the research lines that highlight the role of intrinsic brain activity in 

shaping connectivity and spatiotemporal priors, as well as to those supporting the 

spatiotemporal low dimensionality of cognitive-behavioral processes as a reflection 

of  top-down and  bottom-up dynamics interplay with endogenous brain activity 

itself, we defined a method to push forward our understanding of brain oscillatory 

rhythms and oculomotor dynamics both as functional fingerprints of distinct visual 

explorative styles. The reliability of those results enabled us to operate a clustering 

of the healthy observers, defining their explorative style as  Static or  Dynamic. 

Those  styles  classification  appear  to  be  stable  across  subjects,  as  well  across 

experimental setups, enabling to operate a profiling of individual eye movement 

features  and  brain  oscillatory  powers  correlates  at  rest,  as  an  intrinsic 

characterizations of the subjects investigated. Surprisingly resting oscillatory brain 

activity was extremely consistent with the results of Celli et. al, both in terms of 

significative  electrodes  clusters  (or  trend  of  significance)  and  foremost  of 

directionality of the correlations between distinct power bands and PC1 loaded on 

the  main  oculomotor  features.  These  results  led  us  to  speculate  about  future 

perspective  and  possibility  to  push  even  more  further  our  comprehension  of 

spatiotemporal  endogenous  brain  dynamics  and  cognitive-behavioral 

characterization  of  the  uniqueness  human  brain  functional  dynamics  and 

phenotypes. 

10.3. Strengths and limitations of the present experimental setting

Regarding  the  present  study’s  limitations,  although  employing  an  eye  tracker 

system with a  sampling rate from 1000 to 2000 Hz (frames per second)206 we did 

not considered for the purpose of this study the dynamics of microsaccades, which 
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are an important mechanism of fixation and are underlined by the same mechanisms 

of the saccades and fixation strategy. They might be considered in some of the 

following publications which will might take into account also the data from the 

FORC and REST2 phases that were not computed for the purpose of the present 

study.  We tried also, in first place, to design visual exploration recordings in order 

to pursuit the best natural conditions possible (other than presenting  natural visual 

scenes) such as without the use of a chin-rest support and employing algorithms for 

head movements correction, or wearable eye-trackers. We then went back to a 

setting consistent with the one of the previous experiment of Zangrossi et al. in 

order  to  maximize  the  value  of  this  replication  study but  also  to  solve  many 

recordings problems that occurred (without the use of the chin-rest in particular) to 

pursuit the best quality of the recordings data.

In order to strengthen the results of the previous studies form Zangrossi et al., this 

time we designed a setting with longer blank screen viewing period, of 5 minutes 

compared to the 30 seconds (prior to the onset of the first image) of those former 

research fashion. This way ruled out the potential degree of expectation that may be 

present in the past studies and might influenced the results. On the other hand, we 

examinated a shorter eyes-open resting state session compared to the one of Celli et. 

al (10 minutes). By the way, the results of the present study have been extremely 

consistent with the previous ones, independently of resting state duration, shedding 

light on the fact  that  those different recording conditions did not preclude the 

possibility  to  capture  the  oculomotor  and  oscillatory  brain  fingerprints  of  the 

observers. This time the design implemented only the possibility to push the survey 

further, both quantitatively and qualitatively; for instance, this time we have been 

able  to  detect  slower  fluctuations  of  eye  movement  patterns,  as  well  as  non-

luminance mediated pupillary responses, related to vigilance fluctuations, and relate 

them to intrinsic activity. 

Still, abstracting from our design, we have to relate with the general problem (which 

can't  be  completely  solved  but  only  managed)  of  operationally  define  what  a 

“resting state” is and to precisely defining its functional characteristics. We tried, 

anyway to respect the setting standardized by the literature and to create the most 

coherent and effective environment on which base our setting. Quoting Laufs et al. 
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“By  definition,  instructions  beyond  ‘‘lie  still  and  stay  awake’’ are  precluded  

because they would induce specific brain states instead of rest. The precise mental  

processes (and their timing) during rest hence remain essentially uncontrolled, and 

this is probably the main limitation to the utility of this condition as a baseline or  

control.” 

Moreover,  our findings may partially reflect  differences in overall  arousal  and 

motivation between groups: theoretically each individual would be characterized by 

his or her own baseline arousal level and low-arousal subjects would show an 

increased low-high global power ratio256,  higher eyes-closed resting state alpha 

power and lower alpha reactivity when transitioning from eyes shut to open125,257. In 

our setting we considered only a eyes-open resting state phase, partially solving 

those problems; however, this experiment was not designed to test deeply the level 

of arousal, which was only considered by computational pipelines.

In addition, the simultaneously recording of both eye tracking and EEG data, solve 

the objection presented to Celli et al. whether the distinction between Static and 

Dynamic Viewers might be considered stable after one year since the eye tracker 

recordings, although being demonstrated widely in literature the stableness over 

time of PCs scores loaded on those and similar features114,258–261. Whit our design we 

overcome this potential limitation and show that we are not documenting  brain 

correlates of a “state” recorded a year earlier but “trait”, stable at least as long of our 

investigations concerning reliabilities across subjects, across images and items and 

across a range of brain states from rest to unconstrained or constrained settings.

Finally,  operating a continuous correlation analysis,  which comprehended both 

extreme and mild values correlation with PC1 scores, we were able to evaluate all  

the variations within the continuum in characterizing subjects as belonging to one or 

the other exploratory styles. That approach strengthen even more the consistency 

and generalizability of the results compared to the one of the previous study, which 

were conducted on extreme phenotypes and computed a comparative analysis.

145



146



11. FUTURE PERSPECTIVES AND CLINICAL APPLICATIONS

A final aspect that has to be taken into account, is the potential for applications in a 

clinical population. Many authors have shown over time the association between 

some  specific  patterns  of  eye-movements  dynamics  and  neurodegenerative 

conditions. Most of the studies, by the way, employed non-natural recordings, based 

on specific laboratory tasks (such as anti-saccades tasks), or investigations while 

reading.

The neural pathways and brain regions involved in eye movements during ocular 

fixation and gaze control  can be abnormal in presence of a neurodegenerative 

disorder. Careful clinical examinations of oculomotor dynamics in patients with 

those conditions is pivotal for neurological and cognitive-behavioral assessment. 

Laboratory recordings, although often being not employed in a diagnostic phase, 

might  provide  reliable  information  concerning  disease  severity  and  eventual 

progressions or regressions262.

Concerning  Alzheimer  Disease  patients,  for  instance,  hypometric  saccades 

constitute an aspect of their oculomotor pattern that has been widely confirmed in 

the literature.  Etiopathogenetically  early amyloid deposition and tau pathology 

occur in the SC and in some of the principal cortical areas of the DAN, such as FEF 

and IPS; alteration in the interplay DMN-DAN, deficient motor signals converging 

from those  DAN and  other  areas,  all  converging  to  SC  (given  its  functional 

positioning as a hub of intersection) and finally distorted signals projected to the 

brainstem burst neurons, determine all together pathological saccadic dynamics 

already  in  early  stages  of  the  pathology  (often  already  in  mild  cognitive 

impairments stages,  an early state of pre-dementia decline in cognitive abilities 

which anticipates the neurodegenerative drift towards various types of dementia, 

including AD). 

To cite some of the pivotal research lines, already in 1986 Fletcher et al. proved that 

AD patients performed hypometric saccades that resulted in fewer accurate gaze 

dynamics than normal subjects263. Later, Fernández et al. showed that AD patients 

displayed  a  reduced  size  of  outgoing  saccades  when  compared  with  healthy 

controls, by employing a reading task. Recently, some research lines pointed to the 

147



possibility  of  employing  eye  tracking  methodologies  as  tool  to  perform early 

diagnosis:  Fraser  et  al.  presented  a  machine  learning  analysis  of  oculomotor 

features data for the detection of mild cognitive impairments, with two trials where 

patients  were  asked  to  read  aloud  or  read  in  silence,  employing  for  the  data 

recordings the same eye-tracker as we did264,265. Also Biondi et al. developed a deep 

learning model able to discriminate during reading tasks the oculomotor dynamics 

of healthy subjects and neurodegenerative patients266.  Deep Learning approach, 

being specifically focused in identifying patterns and extracting rich features, has 

been proven to be reliably suited to this application264,266. However, its requirement 

for large amounts of tagged data has also highlighted its limitations266. Eye-tracker 

based tools may be a  sensitive and promising methodology to employ in early 

cognitive  diagnostics;  moreover  their  implementation  in  wearable  and  mobile 

devices (such as smartphones, computer and tablet cameras), which would provide 

high-frequency longitudinal data collection concerning gaze patterns and pupillary 

reflexes,  might  be  useful  to  properly  study neurodegenerative  diseases  and to 

address diagnosis and monitoring needs.

Alterations in intrinsic eye movement patterns may potentially serve as an early 

biomarker for neurodegeneration, which may be extremely important considering 

the fact that now some drugs are capable to slow the degenerative process down, in 

some cases almost halting its progression. If such device could be implemented 

early in the diagnostic process improving its potential,  the use of those drugs could 

ideally ensure an increase in life expectancy for these patients, who are facing a 

serious, irreversible condition, capable of causing an absolute cognitive decline 

bordering on the loss of self.

Moreover, in those AD patients, a more constrained system generates shorter gaze 

shifts, and oculomotor dynamics appear to be more similar to a power-law scaling 

behavior,  pairing  with  the  worsening  of  cognitive  performance. This  complex 

cognitive-behavioral perspective opens to the implementation of resting-state EEG 

recordings as a diagnostic or prognostic tool alongside of eye-tracking recordings, 

as in our framework.
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Moretti et al. designed a EEG study to study the relationship between individual 

frequencies  and relative  power  bands  according to  the  role  of  the  cholinergic 

system, cortico-cortical connections, and sub-cortical white matter networks. They 

studied normal elderly subjects, patients affected by mild Alzheimer disease and 

vascular  dementia  patients,  (all  selected  by  comparable  Mini  Mental  State 

Evaluation scores) showing the possibility of discriminating between mild AD from 

VaD  and  healthy  old  participants267.  In  addition,  Montez  et  al.  showed  that, 

according to the fundamental role of amplitude modulation of neuronal oscillation 

in  determine  cognitive  performance,  indices  of  amplitude  dynamics  may 

implemented  as  biomarkers  of  early-stage  Alzheimer  disease268.  Their  EEG 

recordings proved a strongly reduced incidence of alpha-band oscillation bursts 

over temporo-parietal regions and weaker autocorrelations on long time scales; 

meanwhile, enhanced theta oscillations in medial prefrontal cortex are thought to 

reflect a compensatory mechanism.

Taken together, all those findings provide some favorable evidences regarding the 

existence of both oculomotor and EEG oscillatory early biomarkers. Our study 

implements  these  same  tools  on  healthy  participants  to  successfully  highlight 

cognitive-behavioral  visual  exploratory  phenotypes.  A  reasonable  future 

perspective might involve the extension of these profiling methods to MCI or AD 

patients, detecting by a simultaneously recording some integrated signatures of 

early neurodegeneration. Ideally, these investigations should be conducted on a 

sample  of  individuals  who  previously  underwent  longitudinal  recordings 

employing sensitive wearable eye-tracking tools. These tools, associated with deep 

learning computational processes, may identify certain types of visual exploratory 

phenotypes, even at the cost of high false positives (in order to increase the prior 

probability), which may enable to direct the potential patients to undergo an early 

simultaneous  resting-state  EEG  and  eye-tracking  recordings.  In  an  optic  of 

personalized preventive medicine, studies as the present one, which are conducted 

in almost natural conditions of visual exploration, provide innovative knowledge 

and deeper comprehension of those cognitive-behavioral assessments and may be 

the  key  for  future  assessments  implementations  for  early-diagnostics  and 

monitoring in clinical populations.
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12. CONCLUSIONS

Our replication study results are remarkably consistent with Zangrossi et al. e Celli 

et al. findings, confirming the low dimensionality of a complex behavior such as 

oculomotor spatiotemporal dynamics (“when” and “how” ocular movements are 

performed), which emerge from the interplay between  top-down and  bottom-up 

processing with endogenous activity. Thus we corroborated the possibility to cluster 

subjects’ explorative phenotype according to their eye movements features and their 

intrinsic oscillatory brain activity. 

We profiled subjects into two clusters:  Static Viewers (longer fixation duration, 

longer viewing times, but a lower number of fixations, a lower fixation rate, fewer 

gaze steps and flips) and  Dynamic Viewers (with opposite traits), based on the 

features  describing their  visual  explorative  style  fingerprints,  and in  particular 

relating to their PC1 values (and PC2 values to a lower extent). Then, we analyzed 

hdEEG by the means of cluster based permutation correlations between PC1 and 

cluster of electrodes in the alpha, beta and gamma bands averaged powers, which 

highlighted that two out of three clusters were significant after cluster correction 

and that the directionality of the relations was consistent with the previous study.

Observers explore a visual scene with different eye movement exploration styles, 

and these styles relate to intrinsic properties of EEG brain signals. Baseline intrinsic 

brain activity influences cortical circuitries during visual exploration.

We propose that these profiling methodologies can be employed as a window to 

enlarge our knowledge concerning the innovative inside-out brain perspective, but 

also  may  have  potential  implications  as  an  early-diagnostic  biomarker  of 

neurodegeneration, within the context of personalized medicine, in relation to the 

eye movements alterations which usually occur at the impairment onset. Moreover, 

research lines over the last decades concerning the rising role of spontaneous brain 

activity may be pivotal to advance our knowledge concerning chronic neurological 

disorders.
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Figure 11: Brainstem and extraocular muscle fibers innervation.

Adapted from “Liversedge SP, Gilchrist ID, Everling S. The Oxford Handbook of  

Eye Movements. Oxford university press; 2011”

Figure  12:  Schematic  diagram of  anatomy and  physiology  of  horizontal  eye-

movements.

Adapted from “Virgo JD, Plant GT. Internuclear ophthalmoplegia. Pract Neurol. 

2017;17(2):149-153. doi:10.1136/practneurol-2016-001428”
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Figure 13: Brain cortical areas, thalamic and superior colliculus  top-down and 

bottom-up integration.

Adapted  from “Krauzlis  RJ.  The  Control  of  Voluntary  Eye  Movements:  New 

Perspectives.  The  Neuroscientist.  2005;11(2):124-137. 

doi:10.1177/1073858404271196”  and “Liversedge SP, Gilchrist ID, Everling S. 

The Oxford Handbook of Eye Movements. Oxford university press; 2011”

Figure 14: General schematic framework for models of covert and over attention.

Adapted from “Liversedge SP, Gilchrist ID, Everling S. The Oxford Handbook of  

Eye Movements. Oxford university press; 2011”

Figure 15: Dorsal Attention Network (RSN13) maps, dorsal view.

Adapted from “Nozais V, Forkel SJ, Petit L, et al. Atlasing white matter and grey 

matter joint contributions to resting-state networks in the human brain. Commun 

Biol. 2023;6(1):726. doi:10.1038/s42003-023-05107-3”

Figure 16: Anticorrelation between DAN and DMN, measured with fMRI.

Adapted from “Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, 

Raichle  ME.  The  human  brain  is  intrinsically  organized  into  dynamic, 

anticorrelated functional networks. Proc Natl Acad Sci. 2005;102(27):9673-9678. 

doi:10.1073/pnas.0504136102” and “Pezzulo G, Zorzi M, Corbetta M. The secret 

life  of  predictive  brains:  what’s  spontaneous  activity  for?  Trends  Cogn  Sci. 

2021;25(9):730-743. doi:10.1016/j.tics.2021.05.007”

Figure 17: DAN, a common network for attention and eye movements, integrated 

via rTPJ regulation with VAN.

Adapted from “Corbetta M, Akbudak E, Conturo TE, et al. A Common Network of 

Functional Areas for Attention and Eye Movements. Neuron. 1998;21(4):761-773. 

doi:10.1016/S0896-6273(00)80593-0” and “Corbetta M, Patel G, Shulman GL. The 

Reorienting System of the Human Brain: From Environment to Theory of Mind. 

Neuron. 2008;58(3):306-324. doi:10.1016/j.neuron.2008.04.017”

Figure 18: Summary of instantaneous functional connectivity (IFC) and directed 

functional connectivity (DFC) analyses.
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Adapted from “ Spadone S, Della Penna S, Sestieri C, et al. Dynamic reorganization 

of human resting-state networks during visuospatial attention. Proc Natl Acad Sci. 2

015;112(26):8112-8117. doi:10.1073/pnas.1415439112”

Figure 19: Correlation matrix of spatiotemporal features and principal components 

(PCs).

Adapted  from “Zangrossi  A,  Cona  G,  Celli  M,  Zorzi  M,  Corbetta  M.  Visual 

exploration dynamics are low-dimensional and driven by intrinsic factors. Commun 

Biol. 2021;4(1):1100. doi:10.1038/s42003-021-02608-x”

Figure 20: Subjects’ clustering and PCs.

Adapted  from “Zangrossi  A,  Cona  G,  Celli  M,  Zorzi  M,  Corbetta  M.  Visual 

exploration dynamics are low-dimensional and driven by intrinsic factors. Commun 

Biol. 2021;4(1):1100. doi:10.1038/s42003-021-02608-x”

Figure 21: Subjects similarity in image-viewing and blank screen viewing.

Adapted  from “Zangrossi  A,  Cona  G,  Celli  M,  Zorzi  M,  Corbetta  M.  Visual 

exploration dynamics are low-dimensional and driven by intrinsic factors. Commun 

Biol. 2021;4(1):1100. doi:10.1038/s42003-021-02608-x”

Figure 22: Spectral analysis results (Eyes-open condition)

Adapted from “Celli M, Mazzonetto I, Zangrossi A, Bertoldo A, Cona G, Corbetta 

M. One-year-later  spontaneous EEG features predict  visual  exploratory human 

phenotypes. Commun Biol. 2022;5(1):1361. doi:10.1038/s42003-022-04294-9”

Figure 23: Spectral analysis results (Eyes-closed condition)

Adapted from “Celli M, Mazzonetto I, Zangrossi A, Bertoldo A, Cona G, Corbetta 

M. One-year-later  spontaneous EEG features predict  visual  exploratory human 

phenotypes. Commun Biol. 2022;5(1):1361. doi:10.1038/s42003-022-04294-9”

Figure 24: Individual alpha frequency results.

Adapted from “Celli M, Mazzonetto I, Zangrossi A, Bertoldo A, Cona G, Corbetta 

M. One-year-later  spontaneous EEG features predict  visual  exploratory human 

phenotypes. Commun Biol. 2022;5(1):1361. doi:10.1038/s42003-022-04294-9”
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Figure 25: Eye tracker machinery: its structure and functioning.

Adapted  from  “EyeLink®  1000  Plus  User  Manual. 

https://www.hse.ru/mirror/pubs/share/560338728.pdf”  and  “imotions.com. 

https://imotions.com/blog/learning/best-practice/eye-tracking-work/”

Figure 26: Camera setup screen desktop mount, binocular recording.

Adapted  from  “EyeLink®  1000  Plus  User  Manual. 

https://www.hse.ru/mirror/pubs/share/560338728.pdf”

Figure 27: Modifiable parameters and calibration.

Adapted  from  “EyeLink®  1000  Plus  User  Manual. 

https://www.hse.ru/mirror/pubs/share/560338728.pdf”

Figure 28: 256-channel Hydrocel Geodesic Sensor Net.

Adapted  from  “Geodesic  Sensor  Net  Technical  Manual. 

https://www.documents.philips.com/assets/20180705/6f388e7ade4d41e38ad5a91

401755b6f.pdf”

Figure 29: Skull landmarks for EEG positioning.

Adapted  from  “Geodesic  Sensor  Net  Technical  Manual. 

https://www.documents.philips.com/assets/20180705/6f388e7ade4d41e38ad5a91

401755b6f.pdf”

Figure 30: Resting state setup.

Figure 31: Free-viewing setup.

Figure 32: Forced-viewing setup.

Figure 33: Scree plot showing the variance explained by different PCs.

Figure 34: Comparison between Correlation Matrixes from the present study (a) 

and from Zangrossi et al. (b)
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(b) Adapted from “Zangrossi A, Cona G, Celli M, Zorzi M, Corbetta M. Visual 

exploration dynamics are low-dimensional and driven by intrinsic factors. Commun 

Biol. 2021;4(1):1100. doi:10.1038/s42003-021-02608-x”

Figures 35 and 36: Features correlation values within first three PCs: line plot and 

table.

Figure 37: The cluster plot.

Figure 38: Subjects’ clustering and PCs.

Figure 39: The ASR method.

Figure 40: Example of a spectrum.

Figure 41: Comparison between the eyes-open resting state spectral analysis results 

from the present study (a) and from Celli et al. (b)

(b) Adapted from “Celli  M, Mazzonetto I,  Zangrossi  A,  Bertoldo A, Cona G, 

Corbetta M. One-year-later spontaneous EEG features predict visual exploratory 

human  phenotypes.  Commun  Biol.  2022;5(1):1361.  doi:10.1038/s42003-022-

04294-9”

Figure 42: Barigazzi Prose Memory test plotting.

Figure 43: Rey-Osterrieth Complex Figure scores plotting

Figure 44: Corsi Test Backward and Forward scores plotting.

Figure 45: Digit Span Backward and Forward scores plotting.

Figure 46: Stroop Interference Errors and Time plotting.

Figure 47: Priors and the Predictive Brain; An example of spontaneous vs task 

Brain activity concerning visuospatial attentive networks. Adapted from “Pezzulo 
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G, Zorzi M, Corbetta M. The secret life of predictive brains: what’s spontaneous 

activity  for?  Trends  Cogn  Sci.  2021;25(9):730-743. 

doi:10.1016/j.tics.2021.05.007”

2. Tables 

Table I: Eye movements’ features,  corresponding statistical analysis code, and 

description.

Table II: Principal component analysis raw and rotated loadings.

Table III: Demographic characterization of the sample; Cognitive Measurements 

investigated by different parameters of tests scores.

Table IV: Extended summary of neuropsychological tests scores.
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