
Master Thesis in Computer Engineering

Analysis and evaluation of exploratory search
workflows on Wikidata

Candidate Supervisor

Gianmarco Prando Prof. Gianmaria Silvello
Student ID 2019170 University of Padova

Co-supervisor

Prof. Matteo Lissandrini
Aalborg University

Academic Year
2021/2022

Graduation Date
05/12/2022





To my grandparents
and family





Abstract

With the evolution of the Web there are more and more people using it as
a landmark to search for information and learn new things. Open Knowledge
Bases, therefore, have become the cornerstone of everyday web use and conse-
quently a very interesting subject to study and to introduce into degree courses
in order to bring students closer to this topic. Database 2 course, held in the
academic year 2021/2022, part of the Web Information and Data Engineering
curricula of the Computer Engineering Master Degree, presented this topic to
students for the first time. A large part of the course was dedicated to let students
put their effort to investigate the world of the Semantic Web and the Knowledge
Bases doing projects on them. In particular, one of the project, required to do ex-
ploratory search on Wikidata, one of the biggest Open Knowledge Base,through
some workflows. This thesis gather the entire work did by the students and
starting from this, create a model that allows a statistical analysis of the different
processes that led the students to complete their project. Finally, create reference
workflows to evaluate those made by students.





Contents

List of Figures ix

List of Tables xi

List of Algorithms xiii

List of Code Snippets xv

List of Acronyms xvii

1 Introduction 1

2 Background 3
2.1 Resource Description Framework (RDF) . . . . . . . . . . . . . . . 5
2.2 Exploratory Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Wikidata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Item’s Structure . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Wikidata RDF Graph . . . . . . . . . . . . . . . . . . . . . . 11

3 Technologies 13
3.1 SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 SPARQL Constructs . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Pattern Matching . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Virtuoso Universal Server . . . . . . . . . . . . . . . . . . . . . . . 16

4 Project and Data 17
4.1 Project Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Available Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



CONTENTS

5 Data Processing 23
5.1 Path collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Information Collection . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1 Dictionary Translation . . . . . . . . . . . . . . . . . . . . . 24
5.2.2 Tasks Collection . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.3 Query Collection . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.4 Query Keywords Analysis . . . . . . . . . . . . . . . . . . . 29

5.3 Representation of the Information . . . . . . . . . . . . . . . . . . 30
5.4 Keywords Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Ground Truth 37
6.1 Creation of Ground Truths . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Storage Model of Ground Truths . . . . . . . . . . . . . . . . . . . 39

6.2.1 Single Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.2 Referred Types . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.3 Set Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Storing Process of Ground Truths . . . . . . . . . . . . . . . . . . . 46

7 Evaluation and Analysis 49
7.1 Workflows Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Workflows Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3 Evaluation and Analysis Merge . . . . . . . . . . . . . . . . . . . . 56

8 Statistics 61

9 Conclusions and Future Works 69

References 73

viii



List of Figures

2.1 Friendship graph example . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Triple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Graph examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Turtle serialization example . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Example layout at the beginning . . . . . . . . . . . . . . . . . . . 9
2.6 Wikidata Item’s Structure . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Example of the python cell which contains the title and the as-
signment for the workflow . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Directory tree example of how the workflows has been stored . . 24
5.2 Example of a python cell which contains a query . . . . . . . . . . 26

6.1 Example of the requirements of the Directors workflow . . . . . . 38
6.2 Examples of single type objects in the JSON ground truth’s file . . 42
6.3 Example of referred type object in the JSON ground truth’s file . . 43
6.4 Example of different type of values in a referred object’s task of

the JSON ground truth’s file . . . . . . . . . . . . . . . . . . . . . . 44
6.5 Example of set type object in the JSON ground truth’s file . . . . . 45

7.1 Example of a json file stored . . . . . . . . . . . . . . . . . . . . . . 60

8.1 Numbers of queries wrote by students grouped by macro topic . 61
8.2 Comparison on the total number of queries by topic . . . . . . . . 62
8.3 Comparison on the total number of queries by topic normalized

on the number of students worked on the topic . . . . . . . . . . . 63

ix





List of Tables

4.1 Available workflows for each topic . . . . . . . . . . . . . . . . . . 22

8.1 Keyword usage out of a total of 4186 queries . . . . . . . . . . . . 64
8.2 Keywords usage for each macro topic . . . . . . . . . . . . . . . . 68

xi





List of Algorithms

1 Student to Topic Algorithm . . . . . . . . . . . . . . . . . . . . . . 25
2 Solid Population Algorithm . . . . . . . . . . . . . . . . . . . . . . 32
3 Sum Query Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 34
4 Evaluation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5 Referred Type Check Algorithm . . . . . . . . . . . . . . . . . . . . 52
6 Keyword Analysis Algorithm . . . . . . . . . . . . . . . . . . . . . 55
7 Complete Analysis and Evaluation Algorithm . . . . . . . . . . . 58

xiii





List of Code Snippets

3.1 SPARQL query example . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1 Python functions to run the SPARQL queries . . . . . . . . . . . . 18
5.1 Python functions to extract the queries from the notebooks . . . . 27
5.2 Sum Bitmaps functions . . . . . . . . . . . . . . . . . . . . . . . . . 33

xv





List of Acronyms

CSV Comma-separated values

DBMS Database Management System

RDF Resource Description Framework

W3C World Wide Web Consortium

URI Uniform Resource Identifier

BGP Basic Graph Pattern

GGP Group Graph Pattern

SQL Structured Query Language

RDBMS Relational Database Management System

xvii





1
Introduction

Since its inception, the Web has been a useful tool. Today, its use is so
heterogeneous that one can save simple files, stay up-to-date with current topics
and even meet people. Years ago people used to learn word and things using
their own printed dictionary, or through a local encyclopedia. Given that many
dictionaries and encyclopedias move online becoming public knowledge, people
started to use them as an everyday activity. Given the huge amount of data and
the fact that being in the public domain several people can add and modify
them, it was necessary to introduce new standards to handle those resources.

This new concept of open knowledge in the Web has become a field of
study for many researchers of many Universities. Since this topic has been of
interest for several years now, we must start educating students to bring them
closer to this evolution of the way data is handled on the Web, teaching them
new standards and technologies. During the last year, the Master Degree in
Computer Engineering at the University of Padua changed, becoming more
structured and providing different study paths. Curricula were introduced
according to the macro subject covered throughout the degree course. One of
these curricula is Web Information and Data Engineering, which focuses on
web applications, search engines and databases. In particular there are two
database courses: the first one covers the basics of tabular relational databases
and relational algebra. The second instead, covers topics closer to the present
day, such as the Semantic Web, Open Knowledge Bases and the new standards
used to manage and share data on the Web. Given that the course is one of the
last taught during the master degree, it is assumed that students, at this point

1



in their academic career, have a solid knowledge of programming and relational
databases thus, to make students more enthusiastic about the subject, the idea
was to decrease the theoretical load of the examination by favouring individual
and group projects on the course topics. In particular, the individual project
required studying one of the largest Open Knowledge Bases, Wikidata, only
querying it, creating workflows on different topics. As a result, the work did by
the students during their project, is the subject of this thesis.

Before entering the practical aspect of the thesis, I will present the back-
ground scenario, starting from graph databases, how data are represented in
the Semantic Web and how our Knowledge Base of interest, Wikidata, is com-
posed. I will also show the main concept and usage of SPARQL, the query
language used to query graph databases. Moreover, I will present in detail
the individual project that produced the data for this thesis, which were the
assignments and how workflows are composed and distributed over students.

Then, I proceed showing my work. Starting from the data processing to
collect the workflows information, I will discuss the structure used to handle all
those information and then there are some statistics on that. In addition, I will
show the creation of the reference workflow for each topic, in order to have a well-
done and compact procedure of exploration. Finally, I will present the evaluation
stage, which uses the reference workflows to evaluate other workflows on the
same topic.

2



2
Background

The data accessible from the WEB grow every year and this leads to store
them in the most suitable way, easy to manage and easy to query. Sometimes
it is perfectly known what our database is going to store because we have well
defined entities and relations, thus once the database schema has been defined,
it will rarely be changed. Furthermore, the data are managed by a private
enterprise, so that no person or application outside this specific mini-world can
interact with them. Hence, the proper way to store the data is through a tabular
relational database. This type of database also guarantees perfect consistency of
stored data thanks to numerous constraints that prevent errors when inserting
or updating data. If we try to store data that does not perfectly fulfil each
constraint, the Database Management System (DBMS) responds with an error
and with a simple rollback operation it is possible to return to the previous safe
state. On the other hand, we can have situation where entities and relations
can change over the time and also properties related to the entities can change
due to a frequent evolution of the database schema. Relational database are not
thought for frequent schema evolution: every time we have to drop a column
or remove a relation between tables we must take care about all the constraints
because data must be consistent and when we deal with hundreds of tables drop
a simple column can waste a lot of hours. Furthermore, if we consider highly
connected data, or even worst recursive relations (think about the friendship
relation between people) there is a substantial grows of the time needed to
query because we need to perform joins between tables and if we combine a lot
of data with a lot of joins the result is a lot of time to query the database.

3



Moreover, if the domain of the data is no longer a mini-world but the data
are public knowledge where each person and application can access and modify
them, things become even worse with tabular relational databases. This is the
case of Linked Open Data on the Semantic Web. The goal of the Semantic Web is
to make Internet data machine-readable and a Web of data consists of data linked
together so that they can be found, browsed, crawled and integrated. Linked
Open Data are data available on the web with a machine-readable structure
which use open standards to identify things and are linked to other people’s
data.

This new way of conceiving Web data lead to think to another way to store
and represent data. When we have to deal with massive quantity and highly
connected data the best way to represent them is through a graph, where the
nodes are the objects and the edges are the relations between the objects. The
information of the entities can be stored as properties of the nodes. One of the
best examples of usage of the graph databases is a graph of friendships.

Let consider the example in Figure 2.1: the goal is to find all the friends of
Jack. If we are using a graph database, we just need to find the node representing
Jack and look at all outgoing arcs labeled Friend. The objects pointed by the arcs
are all the friends of Jack.

Figure 2.1: Friendship graph example

Of course graph databases are not the substitutes of the tabular relational

4



CHAPTER 2. BACKGROUND

databases but they are a useful alternative with highly connected open data and
object oriented data.

2.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a standard introduced by
World Wide Web Consortium (W3C) [1] as a data model for representing inter-
connected data on the web. Linked Open Data are represented on the web using
RDF statements (also called triples) hence, RDF is the standard for making state-
ments about resources, which can be objects, documents, people or concepts. A
collection of RDF statements about related entities can be used to construct an
RDF graph that shows how those entities are related. Each triple consists of a
subject, a predicate and an object and Figure 2.2 shows graphically how an RDF
triple is composed.

Figure 2.2: Triple example

The data on the Semantic Web are uniquely identified through the use of
Uniform Resource Identifier (URI)s. Given that RDF is the standard to represents
Linked Open Data on the Web, URIs are usually used in RDF statements. A URI
is a unique sequence of characters that identifies a logical or physical resource
used by web technologies. URIs may be used to identify anything, including
real-world objects, concepts, or information resources. The subject of a triple
may be an URI or a blank node, that represents an anonymous resource for which
no URI or literal is provided. The predicate is an URI which also indicates a
resource, representing a relationship between the subject and the object. The
object may be an URI, blank node or a string literal. The literals can be of two
type:

• plain literal is a string that may be combined with a language tag

• typed literal is a string combined with a datatype URI

In the simple graph example showed in Figure 2.1, it is possible to identify
the set of nodes (people) that always play the role of subject or object and the set

5



2.1. RESOURCE DESCRIPTION FRAMEWORK (RDF)

of directed edges (the friend relation) that play the role of predicate. To describe
this graph in RDF format we need to write an RDF triple for each relation. For
example one triple of the graph is Annie (subject) - friend (predicate) - Sam
(object).

RDF can be stored in several ways, but the most popular are:

• Turtle [2]: a compact, human-friendly format

• N-Triples [3]: a very simple, line-based format that is not as compact as
Turtle

• RDF/XML [4]: an XML-based syntax that was the first standard format for
serializing RDF

(a) URIs example (b) Curie URIs example

Figure 2.3: Graph examples

Even if RDF/XML was the first syntax introduce by W3C other RDF seri-
alizations are now preferred. Turtle allows an RDF graph to be written in a
compact and natural text form, with abbreviations for common usage patterns
and datatypes. In order to understand Turtle syntax, before entering the details,
other components must be defined: Curie notation and namespaces. Curie no-
tation is an extension mechanism based on the concept of scoping where names
are created within a unique scope, and that scope’s collection is managed by the
group that defines it. It is comprised of two components, a prefix and a reference
separated by the colon character. A namespace is a set of names that are used to
identify and refer to objects of various kinds. They ensures that all of a given set
of objects have unique names so that they can be easily identified. Namespaces
and Curie notation are used to represent URIs in a compact manner.

6



CHAPTER 2. BACKGROUND

Graphs in Figure 2.3 show both the ways of representing URIs. On the
left (Figure 2.3a) each elements of the triples is represented with its com-
plete URI. In the example, it is possible to identify two namespaces, that are
https://www.dbpedia.org/page/ and https://schema.org/. Hence, these
namespaces can be used in a Curie notation defining the prefixes dbpedia: and
schema:. The example on the right (Figure 2.3b) shows the same graph using
the Curie representation of the URIs.

The graph in Figure 2.3b can be easily translated in Turtle syntax, given that
Turtle uses the Curie notation. Each Turtle file begins with a preamble where
prefixes are defined. Then, it proceeds triple by triple, separating them by the
final period. Figure 2.4 shows the translation of the graph in Figure 2.3b.

Figure 2.4: Turtle serialization example

2.2 Exploratory Search

Exploratory search is a specialization of information exploration which rep-
resents the activities carried out by searchers who are: [5]

• unfamiliar with the domain of their goal (i.e. need to learn about the topic
in order to understand how to achieve their goal) or

• unsure about the ways to achieve their goals (either the technology or the
process) or

• unsure about their goals

Gary Marchionini, in the paper “Exploratory search: from finding to under-
standing” of the 2006 [6], depicts the activity of exploratory search as the union
of two other activities: learn that includes knowledge acquisition, comprehen-
sion/interpretation, comparison, aggregation/integration and investigate that

7



2.3. WIKIDATA

includes accretion, analysis, exclusion/negation, synthesis, evaluation, discov-
ery, planning/forecasting and transformation. He also wrote that, since a lot of
materials are available online, search to learn became very important. Learning
searches are activities that usually require several iterations and return objects
that must be understand, interpreted and processed. These objects can be het-
erogeneous and the user needs to spend time to compare and evaluate the
information that had been retrieved. These tasks that user performs, define
what exploratory search is: look for information, comprehend it, analyzed and
evaluate the information. After this cycle of operation, the knowledge of the
user increase.

Exploratory search over graph databases is in fact a way to investigate and
learn. Find information in a graph requires many iterations because users
usually start from a node of the graph to explore and investigate the graph and
they cannot expect that what they are looking for is immediately connected to the
starting node. In fact, for each iteration of the search, after doing the query, users
must understand the result set of the answer, analyze all the objects in the sets
and try to plan the next query according to their evaluation and intuition. This
is the aim of the exploratory search: acquire knowledge, comprehend concepts,
interpret ideas and compare and aggregate data.

Knowledge graphs are the best way to learn through exploratory search. A
knowledge graph is a graph of data intended to accumulate and convey knowledge
of the real world, whose nodes represent entities of interest and whose edges represent
potentially different relations between these entities. Open knowledge graphs are
published online, making their content accessible for the public good. Some of
the best known are DBpedia [7] and Wikidata [8].

2.3 Wikidata

One of the biggest knowledge graph is Wikidata, hosted by the Wikimedia
Foundation. Wikidata is an open knowledge base and everyone can interact
with it.

2.3.1 History

The Wikimedia Foundation, Inc. is an American nonprofit organization
headquartered in San Francisco, California [9]. The Wikimedia Foundation was

8



CHAPTER 2. BACKGROUND

established in 2003 in St. Petersburg, Florida, by Jimmy Wales as a nonprofit way
to fund Wikipedia. Their mission is to "empower and engage people around the
world to collect and develop educational content under a free license or in the
public domain, and to disseminate it effectively and globally." [10]

Wikidata was launched on 29 October 2012 and at this time the items that
could be created were very basic (an example of the page layout of this initial
phase is showed in Figure 2.5). The information of an item were:

• label, a name or title for the item
• aliases, alternative terms for the label of the item
• description

• links to articles about the topic in all the various language (also called
interwiki links)

Figure 2.5: Example layout at the beginning

On 4 February 2013, statements were introduced to Wikidata entries. This
was a big upgrade because until this time the items inside Wikidata did not
contain a lot of information. Properties on items helped to enrich them with
more useful content. The possible values for properties were initially limited
to two data types (items and images on Wikimedia Commons), with more data
types (such as coordinates and dates) to follow later.

On 7 September 2015, the Wikimedia Foundation announced the release of
the Wikidata Query Service, which lets users run queries on the data contained
in Wikidata.[11] The service uses SPARQL as the query language.

9



2.3. WIKIDATA

The Foundation finances itself mainly through millions of small donations
from Wikipedia readers, collected through email campaigns and annual fundrais-
ing banners placed on Wikipedia.

2.3.2 Item’s Structure

Wikidata is a document-oriented database where each document is an item
which represent any kind of topic, concept or object.

Figure 2.6: Wikidata Item’s Structure

Figure 2.6 describes how an item is structured in Wikidata. It is possible to
distinguish two main parts:

• the first part is mandatory and consists of a unique positive integer number
prefixed by the upper-case letter Q (the QID) related to a label and a
description. The description briefly describes the item and it is often
written in more than one language

• the second part is optional. There can be some aliases that are synonyms
of the label or other way to recognize the label and a list of statements
which are information known about the item

The label of the items does not need to be unique. One possible example
is a singer that produced an album with his own name. In this case the singer
and the album are two different items with the same label. The crucial thing is

10



CHAPTER 2. BACKGROUND

that the description must be different if the label is the same, because the QID is
linked to the combination of label and description.

The statements are a list of key-value pairs which match a property with one
or more entity values. In the example of Figure 2.6, the statement

Douglas Adams was educated at St John’s College 1

is translated in Wikidata with a statement composed of the property educated
at (key) and the object St John’s College (value) of the item Douglas Adams. Prop-
erties in Wikidata are identified by a positive integer number prefixed by the
capital letter P (PID). As the Wikidata items, each property has its own Wiki-
data page with optional label, description, aliases and statements. Properties
may define some rules, namely the data type of the value to avoid basic incon-
sistency (e.g. the value of the property date of birth must be a date) or single
value constraint, since there exist properties that typically have only one value
(e.g. the continent of a country). On the other hand, there exist properties with
more than one value, for example a company can have more than one founder
or in the previous statement example (1) Douglas Adams was educated at two
different colleges/schools. In these cases, qualifiers play a very important role.
They are optional, but when there are several values associated to the same
property, qualifiers provide more information and meaning to the value. The
qualifiers start time and end time in Figure 2.6 associated to the value St John’s
College provide useful temporal information, while the academic degree provide
the type of education Douglas Adams did in that college.

Values can be other Wikidata objects - St John’s College in the example just
made refers to another Wikidata item - or other values such as integers, strings
or dates.

Finally values in the statements may be annotated with some references, that
are resources which contains the information of the statement’s content.

2.3.3 Wikidata RDF Graph

The structure of the Wikidata items described in the Subsection 2.3.2 can be
seen as an RDF graph given that each statements of each item can be translated
into an RDF triple with these simple operations:

• the Wikidata items become the subject of the triple

11



2.3. WIKIDATA

• the properties of the statement become the predicate of the triple

• the values of the properties become the object of the triple

Items and properties are uniquely identified in Wikidata, i.e. they have an
associated URI. There are two standards:

• items’ URI standard is
https://www.wikidata.org/entity/{item-identifier}

where the item-identifier is replaced with the QID of the item. Douglas
Adams’ URI is https://www.wikidata.org/entity/Q42

• properties’ URI standard is

https://www.wikidata.org/prop/direct/{prop-identifier}

where prop-indentifier is the PID of the property. The URI of the property
educated at is https://www.wikidata.org/prop/direct/P69

The object of the triples in RDF can be an URI, that are Wikidata items, or a
literal value that are, as said above, integers, strings or dates.

The first part of the URIs is the namespace (https://www.wikidata.org/
entity/ for the items URI) and it is common between all the Wikidata items.

12

https://www.wikidata.org/entity/{item-identifier}
https://www.wikidata.org/entity/Q42
https://www.wikidata.org/prop/direct/{prop-identifier}
https://www.wikidata.org/prop/direct/P69
https://www.wikidata.org/entity/
https://www.wikidata.org/entity/


3
Technologies

3.1 SPARQL

SPARQL Protocol and RDF Query Language, or simply SPARQL, is a query
language used to retrieve and manipulate data stored in RDF format. It is a
standard introduced by W3C in 2008 and successively updated in 2013 [12] and
it is one of the main technologies of the Semantic Web.

A SPARQL query is composed of:

• optional prefixes

• selection

• pattern matching

• optional aggregation functions, ordering function or limits to the result set

3.1.1 Prefixes

Since entities and predicates in RDF are identified by URIs, namespaces are
used to identify the first part of the URI and to not write the entire namespace ev-
ery time SPARQL uses prefixes that relate a short string to a namespace just like
in the Turtle files so that each URI can be expressed using Curie notation. Con-
sidering the statement of the Subsection 2.3.2 (1), Douglas Adams was educated
at St John’s College, there are three URIs:

13



3.1. SPARQL

• Douglas Adams is http://www.wikidata.org/entity/Q42

• educated at is http://www.wikidata.org/prop/direct/P69

• St John’s College is http://www.wikidata.org/entity/Q691283

It can be possible to define two different prefixes:

• wd: referring to the namespace http://www.wikidata.org/entity/ and
it is meant for items

• wdt: referring to the namespacehttp://www.wikidata.org/prop/direct/
that is used for properties

Using these prefixes the triple can be written as wd:Q42 wdt:P69 wd:Q691283.

3.1.2 SPARQL Constructs

There are several constructs that can be used in SPARQL queries devoted to
different purposes. The keyword SELECT usually anticipates a list of variables
that are served in the result set. Selection can be used with the keywordDISTINCT
if the scope of the query is not to retrieve the same result multiple times. A
variable of the result set can also be an aggregation function, such as COUNT, SUM
or GROUP_CONCAT.
ASK provides only two type of answer, yes or no (or alternatively true/false).

It returns yes (true) if the pattern exists. From the statement translated in the
previous subsection if it were run on Wikidata an ask query that try to match
the pattern wd:Q42 wdt:P69 wd:Q42 the result will return no (false) because this
triple does not exists in Wikidata.
DESCRIBE returns a single result RDF graph containing all RDF data about

resources. The DESCRIBE form takes each of the resources identified in a solution,
together with any resources directly named by IRI, and assembles a single RDF
graph by taking a description which can come from any information available
including the target RDF Dataset. The description is determined by the query
service.

The CONSTRUCT query form returns a single RDF graph specified by a graph
template. The result is an RDF graph formed by taking each query solution in
the solution sequence, substituting for the variables in the graph template, and
combining the triples into a single RDF graph by set union.

14

http://www.wikidata.org/entity/Q42
http://www.wikidata.org/prop/direct/P69
http://www.wikidata.org/entity/Q691283
http://www.wikidata.org/entity/
http://www.wikidata.org/prop/direct/


CHAPTER 3. TECHNOLOGIES

3.1.3 Pattern Matching

The keyword WHERE anticipates a block of triple patterns. Triples inside this
block are in the same form of RDF triples but all the three elements can be a
variable. SPARQL is based on graph pattern matching and the simplest is the
Basic Graph Pattern (BGP). A BGP is a set composed by one or more triple
patterns. More BGPs define a Group Graph Pattern (GGP). Elements in triple
patterns can be URI, literal values or variables. A variable must be prefixed
with the question mark and it can be used one or more time inside the graph
matching. Once a variable is used its value is bound and if the same variable
come afterwards the value bound before will be used. It is important to remark
that SPARQL query engine performs a conjunction between triple patterns. The
code snippet 3.1 shows a SPARQL query example.

1 PREFIX wd:<http://www.wikidata.org/entity/>

2 PREFIX wdt:<http://www.wikidata.org/prop/direct/>

3

4 SELECT DISTINCT ?country

5 WHERE{

6 ?people wdt:P69 wd:Q691283.

7 ?people wdt:P27 ?country.

8 }

Code 3.1: SPARQL query example

In the very beginning of the query there are the two declarations of the
prefixes, as explained in the Subsection 3.1.1. After them there is the SELECT
keyword followed by DISTINCT and one variable: thus it is clear that after the
graph pattern matching the query will return all the distinct elements inside
the set bound in the variable country. The BGP to be matched is composed
of two triple patterns. The subject of the first pattern match is a variable, and
after this first matching it will contain all the subjects of triples which have as
predicate wdt:P69 and wd:Q691283 as object. The second pattern has a new
variable country as object and uses the variable people just bound as subject.
After the match the variable country will contain all the objects of triples which
have as subject one of the element belonging to the set of the people variable
and wdt:P27 as predicate (that is the country of citizenship in Wikidata). More
complex queries are possible, and BGP and GGP can be used also as subquery.

After the pattern matching it is possible to group variables and use ag-
gregation functions on them, order the results according to both ascending or

15



3.2. VIRTUOSO UNIVERSAL SERVER

descending order and limit the result to maximum number of elements in the
result.

3.2 Virtuoso Universal Server

OpenLink Virtuoso [13] is a cross platform Universal Server that implements
Web, File, and Database server functionality as a single server solution. It in-
cludes support for almost all the main standards of the Web and Data Access
such as XML, XPATH, ODBC and many others. Virtuoso currently supports all
the main Operating systems, that are Windows, Linux and MacOS. Virtuoso is
very powerful because with a single connection it is able to connect simultane-
ously different client applications to many different databases and treats them
as it were a single database. Even if Virtuoso supports RDF it is important to
remark that it is based on a Relational Database Management System (RDBMS)
[14] with a column store architecture [15]. This imply that columns of a table are
stored contiguously, hence values of the same column on consecutive rows are
physically adjacent. Since the graph database is stored in a relational database
it is important to define some indexes to speed up the access query time. The
index scheme consists in five indexes, two of them are full indexes while the
other three are partial indexes. Virtuoso favours query where the predicate is
specified in the triple pattern and if the object or the subject are also specified,
the retrieve is very efficiently.

The choice of Virtuoso is also confirmed by a recent paper of the Wikidata
Query Service Search Team [16] because this year they decided to replace the
current Blazegraph backend to a new more efficient one. They analyze more than
20 different backends and they judged them with a score on different criteria. In
the paper they report only the best four and Virtuoso was one of the four with
very high scores on scalability.

16



4
Project and Data

Data for this thesis came from the Database 2 course held in the academic
year 2021/2022 which is part of the Web Information and Data Engineering
curricula of the Computer Engineering Master Degree. The course covered
different topics of the Semantic Web, such as Linked Open Data, RDF, graph
databases, SPARQL and exploratory search. The final grade consisted of the
written examination, two group projects and an individual project. My thesis
investigates the work carried out by the students during their individual project.

4.1 Project Assignment

The aim of the project was to let the students to practice with SPARQL and
the idea was to have them do exploratory search on Wikidata. In order to
do this, professors Gianmaria Silvello and Matteo Lissandrini, prepared some
workflows on different macro-topics. The macro-topics were:

• sport

• movies

• geography

• companies

• books

• politics

17



4.1. PROJECT ASSIGNMENT

Each students had 6 different workflows to complete, one per macro-topic.
The work environment was the Jupyter Lab Web Interface installed in a remote
virtual machine. The workflows were actually python notebooks which had
a specific assignment according to the different macro-topic and the goals of
that workflow. Each workflow has an initial common part which explained the
general instructions about exploratory search on Wikidata and what students
were allowed to do inside the python notebook. Furthermore, there was an
initial python cell which contained the python imports needed, a string named
prefixString and the two functions to run the queries, the first one used for generic
queries and the other one used only for the ask query. The functions are reported
in the code snippet 4.1.

1 from SPARQLWrapper import SPARQLWrapper , JSON

2

3 prefixString = """

4 ##-cda4aeaa8e -##

5 PREFIX wd: <http://www.wikidata.org/entity/>

6 PREFIX wdt: <http://www.wikidata.org/prop/direct/>

7 PREFIX sc: <http://schema.org/>

8 """

9

10 # select and construct queries

11 def run_query(queryString):

12 to_run = prefixString + "\n" + queryString

13 sparql = SPARQLWrapper("http://a256-gc1-02.srv.aau.dk:5820/sparql

")

14 sparql.setTimeout(300)

15 sparql.setReturnFormat(JSON)

16 sparql.setQuery(to_run)

17

18 try :

19 results = sparql.query()

20 json_results = results.convert()

21 if len(json_results[’results’][’bindings’])==0:

22 print("Empty")

23 return 0

24 for bindings in json_results[’results’][’bindings’]:

25 print( [ (var, value[’value’]) for var, value in

bindings.items() ] )

26

27 return len(json_results[’results’][’bindings’])

28

18



CHAPTER 4. PROJECT AND DATA

29 except Exception as e :

30 print("The operation failed", e)

31

32 # Ask queries

33 def run_ask_query(queryString):

34 to_run = prefixString + "\n" + queryString

35

36 sparql = SPARQLWrapper("http://a256-gc1-02.srv.aau.dk:5820/sparql

")

37 sparql.setTimeout(300)

38 sparql.setReturnFormat(JSON)

39 sparql.setQuery(to_run)

40

41 try :

42 return sparql.query().convert()

43 except Exception as e :

44 print("The operation failed", e)

Code 4.1: Python functions to run the SPARQL queries

The prefixString defined two important things:

• prefixes: as explained in the Subsection 3.1.1 the SPARQL query can starts
with some prefixes definition to use later in the query text. Here are
defined all the prefixes needed that are one for the Wikidata entities and
another one for the properties. There is also another last prefix which is
mainly used to get a human-readable name of a property or a entity in
Wikidata. The benefit to have the prefixes here is that students did not
care about prefixes and thus they must concentrated only on the query
text

• notebook code: in the very beginning, before the prefixes definition (line 4
of the code snippet 4.1), there was the python notebook filename, delimited
by two dashes. Practically the students, before to start writing queries,
manually put the notebook filename in this area

The function run_query takes one parameter queryString, that is the query text.
It defines the string to run in the database as a concatenation of the prefixString
and the queryString. Then it creates a SPARQLWrapper object with the URL to
the SPARQL endpoint and it sets a timeout for the query execution, the format of
the response and the string to run as SPARQL query previously defined. Finally
it try to get the response if there are no syntactic errors in the query text or other
type of errors such as timeout expiration, and it prints the results. If there are
any kind of errors it catches the exception and it prints an error message that
describes the error. The run_ask_query basically do the same, the only difference

19



4.1. PROJECT ASSIGNMENT

is the interpretation of the result, since an ask query reply only with True or
False.

After this python cell there is a markdown cell which briefly describes the
macro-topic (e.g. movies) of the workflow and the specific topic of that workflow,
with some indications about what are the exploratory information needed. Then
there is a table containing some useful URIs given for the current workflow.
Some of those URIs are widely used and they were given to all the workflows (one
of the most important is the predicate instance of ), some others are specific for the
workflow and they were usually the starting point of the exploration. Finally,
there are some questions that the students had to answer doing exploratory
search. Figure 4.1 shows an example of a workflow assignment on the macro-
topic Book.

Figure 4.1: Example of the python cell which contains the title and the assign-
ment for the workflow

The are usually five to ten tasks for each workflow, depending on the work-
load of each task. Some tasks required a big exploration of the graph, while
others were simpler. In general the global workload of each workflow was well
balanced.

20



CHAPTER 4. PROJECT AND DATA

4.2 Available Data

The individual project in the academic year 2021/2022 was assigned to 24
students but 3 of them did not even start the project. Professors prepared 24
different workflows totally, 4 for each macro-topic. Hence, there is a redundancy
because the same workflow has been done by 4 to 6 different students. The total
number of completed workflows submitted by the deadline is 126, and the
Table 4.1 shows how they are divided by macro-topic and topic.

One other important available data was the query log, that contains all the
real queries ran by the students. It stored the complete text of the query sent
to virtuoso, including prefixes and the hexadecimal code to identify the origin
of the query. To split the dimension of the documents containing the logs, the
system created one log file per day.

21



4.2. AVAILABLE DATA

Geography Macro Topic
Topic name # workflows
Archaeological Sites 6
European Cathedrals 4
American Architects 5
Place of Birth, Death, and Burial 6

Sport Macro Topic
Topic name # workflows
F1 pilots 6
World Records 4
Olympic 6
FIFA World Cup events 5

Politics Macro Topic
Topic name # workflows
Presidents of countries 6
International Treaties 4
Politicians in E.U. 6
Monarchies 5

Book Macro Topic
Topic name # workflows
Nobel laureates 6
Political Magazines 4
Authors Comparison 6
Author Comparison 5

Companies Macro Topic
Topic name # workflows
IT Companies 6
Business People in Germany 4
Economy of EU States 6
Trademarks across the world 5

Movie Macro Topic
Topic name # workflows
Directors 6
The Batman movies 4
Horror Franchises 6
Tv series 5

Table 4.1: Available workflows for each topic

22



5
Data Processing

An important part of the thesis is dedicated to analyze and do statistics on
the workflows, to understand how students thought and which were the topics
that required more exploration to met the goal of the workflow. In order to do
the final analysis and statistics it is possible to divide the work in some steps,
which are:

• collect the workflows path

• collect the information in the workflows
• create a structure to represent the information

• keywords analysis

5.1 Path collection

Originally workflows were stored in two different server to lighten the load on
them, thus in the very beginning I merged everything in one server. Each student
had a folder named with the following convention: capital letter M followed by
the student ID number. Each folder contained the python notebook files named
with an hexadecimal string of 10 characters. The name of every notebook file
is the 𝑀𝐷5 hash function of the string obtained by the concatenation of the
student ID number and the name of the workflow’s topic. In the end there was a
notebook folder that contained all the student folders (an example of the directory
structure is showed in Figure 5.1).

23



5.2. INFORMATION COLLECTION

notebook
M12345
a1b2c3d4e5.ipnyb
b2c3d4e5f6.ipnyb
...

M67890
e5d4c3b2a1.ipnyb
f6e5d4c3b2.ipnyb
...

...

Figure 5.1: Directory tree example of how the workflows has been stored

In order to collect the file paths there is a function that explores the directory
tree and in the end returns a dictionary which keys are the student IDs and the
values are the lists of the file paths of the python notebooks did by the student.

5.2 Information Collection

The information collection of each workflow consists in three parts:

• read the title and translate the student IDs dictionary to a new topic based
dictionary

• workflow tasks collection

• query collection

5.2.1 Dictionary Translation

The procedure explained in the Section 5.1 groups the file paths by student
IDs but this exploration project operates with topic and macro-topic thus it
is necessary to group all the python notebooks by their topic and also group
each topic by their macro-topic. To produce an algorithm that was as generic
as possible, the idea was to programmatically open each python notebook and
read the cell that contains the title of the workflow, which is a concatenation
between the macro-topic and the topic (an example can be seen in the first line
of the Figure 4.1).

24



CHAPTER 5. DATA PROCESSING

This was possible because the structure of the first part of every workflow
was the same (as it is explained in the Section 4.1) and also because a python
notebook is a JSON file that contains some metadata and an array representing
the notebook cells. Each cell is represented as an array which elements are the
rows of the cell. In order to extract the workflow’s title it is sufficient to read
the first line of the third python cell. The macro-topic is everything before the
first parenthesis while the topic is what is written inside the parenthesis. At this
point the procedure to translate the people based dictionary of the file paths to
a new topic based dictionary is very simple and it is shown in the Algorithm 1.
The algorithm returns a dictionary which keys the macro-topics: the value for
each key is another dictionary which keys are the topics and the values are the
file paths.

Algorithm 1 Student to Topic Algorithm
Require: 𝑝𝑒𝑜𝑝𝑙𝑒𝐷𝑖𝑟 the people based dictionary
Require: 𝑔𝑒𝑡𝑇𝑖𝑡𝑙𝑒𝐹𝑟𝑜𝑚𝑁𝑜𝑡𝑒𝑏𝑜𝑜𝑘( 𝑓 𝑖𝑙𝑒𝑃𝑎𝑡ℎ) a function that given a file path of

a python notebook return the title
Require: 𝑔𝑒𝑡𝑀𝑎𝑐𝑟𝑜𝑇𝑜𝑝𝑖𝑐𝐹𝑟𝑜𝑚𝑇𝑖𝑡𝑙𝑒(𝑡𝑖𝑡 𝑙𝑒) a function that given the workflows

title return the macro topic
Require: 𝑔𝑒𝑡𝑇𝑜𝑝𝑖𝑐𝐹𝑟𝑜𝑚𝑇𝑖𝑡𝑙𝑒(𝑡𝑖𝑡 𝑙𝑒) a function that given the workflows title

return the topic
𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠 ← {}
for 𝑙𝑖𝑠𝑡 in 𝑝𝑒𝑜𝑝𝑙𝑒𝐷𝑖𝑟.𝑘𝑒𝑦𝑠() do

for 𝑓 𝑖𝑙𝑒𝑃𝑎𝑡ℎ in 𝑝𝑒𝑜𝑝𝑙𝑒𝐷𝑖𝑟[𝑙𝑖𝑠𝑡] do
𝑡𝑖𝑡 𝑙𝑒 ← 𝑔𝑒𝑡𝑇𝑖𝑡𝑙𝑒𝐹𝑟𝑜𝑚𝑁𝑜𝑡𝑒𝑏𝑜𝑜𝑘( 𝑓 𝑖𝑙𝑒𝑃𝑎𝑡ℎ)
𝑚𝑎𝑐𝑟𝑜𝑇𝑜𝑝𝑖𝑐 ← 𝑔𝑒𝑡𝑀𝑎𝑐𝑟𝑜𝑇𝑜𝑝𝑖𝑐𝐹𝑟𝑜𝑚𝑇𝑖𝑡𝑙𝑒(𝑡𝑖𝑡 𝑙𝑒)
𝑡𝑜𝑝𝑖𝑐 ← 𝑔𝑒𝑡𝑇𝑜𝑝𝑖𝑐𝐹𝑟𝑜𝑚𝑇𝑖𝑡𝑙𝑒(𝑡𝑖𝑡 𝑙𝑒)
if 𝑚𝑎𝑐𝑟𝑜 − 𝑡𝑜𝑝𝑖𝑐 not in 𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠.𝑘𝑒𝑦𝑠() then

𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠[𝑚𝑎𝑐𝑟𝑜𝑇𝑜𝑝𝑖𝑐] ← {}
end if
if 𝑡𝑜𝑝𝑖𝑐 not in 𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠[𝑚𝑎𝑐𝑟𝑜𝑇𝑜𝑝𝑖𝑐].𝑘𝑒𝑦𝑠() then

𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠[𝑚𝑎𝑐𝑟𝑜𝑇𝑜𝑝𝑖𝑐][𝑡𝑜𝑝𝑖𝑐] ← []
end if
𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠[𝑚𝑎𝑐𝑟𝑜𝑇𝑜𝑝𝑖𝑐][𝑡𝑜𝑝𝑖𝑐].append( 𝑓 𝑖𝑙𝑒𝑃𝑎𝑡ℎ)

end for
end for
return 𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠

25



5.2. INFORMATION COLLECTION

5.2.2 Tasks Collection

Each workflow contains a list of tasks which the student should answer. It is
possible to see an example in the bottom part of the Figure 4.1. As for the title
extraction also this list of tasks can be extract from the python notebook due to
the standardization of this assignment part of the workflow. In particular the
list is always introduced by the sentence “The workload should”, so the algorithm
that extract this list iterates amongst the rows until it will find the row which
contains “The workload should”. The structure of the task row is always a number
then the dot and finally the text of the task, thus it is possible to recognize each
task’s text with the related number that in the end produce a dictionary which
keys the number of the task and the value is the text of the task.

5.2.3 Query Collection

This is the most sophisticated part of the information collection because on
the contrary of the assignment part of the workflow, this one has been written by
students. Anyway students followed a standard when they wrote the notebooks
and they always put one query for each python cell to avoid confusion. This is
intuitive because in general there is the needed to run only one query at a time
when doing Exploratory Search.

Figure 5.2: Example of a python cell which contains a query

The Figure 5.2 depicts an example of a cell which contains a query. Students

26



CHAPTER 5. DATA PROCESSING

used to put a markdown cell before to explain what they are going to search with
the following query and if the query was the first of the current task, they often
put this information emphasizing the fact that they are starting with that specific
task. Immediately after the text of the query, there is the output provided by
the function run_query (explained in the Section 4.1).

In order to extract the queries from the notebook the procedure to open it
is the same explained in the Subsection 5.2.1. At this point iterating through
the code cells it is possible to find the queries, that must be cleaned and stored.
Before to enter the details of the extraction it is important to clarify that an as-
sumption was made: each student wrote the SPARQL queries assigning directly
the string to a variable. They did not perform any concatenation and the string
was usually written in several lines. The function to get the query from the
python cell works as follows:

1. find the line with the command run_query

2. obtain the name of the parameter of the run_query function

3. go back in the iteration of the cell until a variable that match the name of
the parameter is found.

4. from the line where the variable is assigned remove the name of the vari-
able and the symbol “=”

5. verify if the string is in a single line or in multiple lines (in python a single
line string starts and ends with one " character, while a multiple lines
string starts and ends with three ", so it is sufficient to check this condition
to understand the situation) and:

• keep the whole line if there is a single line string, removing the initial
and final " (very uncommon situation) or:

• scan the next lines and concatenate them until the triple " is reached
meaning that the string is finished

Then to distinguish between different tasks it is necessary to have a look at
the markdown cells and check whether the cells starts with the keyword Task
followed by a number. This cell announces the beginning of a new task. Overall,
the query extraction is explained by the 5.1.

1 # return a dictionary of queries

2 def query_extractor(notebook ,goals):

3 #open the notebook

4 data = json.load(open(notebook))

27



5.2. INFORMATION COLLECTION

5 #get the list of the cells

6 df = pd.DataFrame(data[’cells’])

7

8 #skip the assignment cells of the notebook

9 count = False

10

11 #contains a list of lines of code. When the run_query command is

found, go back in that list and find the related query

12 container = []

13 #the actual goal that student is analyzing

14 actual_goal = ""

15 #the dictionary of the queries

16 query_dict = {}

17

18 for row in df.itertuples():

19 if row.cell_type == "markdown":

20 for it in row.source:

21 ## verify if we can start to consider the cells

22 if "useful uri" in str(it).lower():

23 count = True

24 elif count:

25 #looking for a markdown cell that tells me which

task people are doing

26 if "task" in str(it).lower():

27 task_line = str(it).lower()[(str(it).lower().

index("task")+5):]

28 for g in goals:

29 if task_line.startswith(g):

30 #task found

31 actual_goal = g

32 elif row.cell_type == "code":

33 # code cells. Looking for the queries

34 for it in row.source:

35 if not count:

36 continue

37 if "run_query" in str(it).lower():

38 ##run query command --> extract the query

39 param = get_function_parameter(it)

40 query_str = get_query_text(container ,param)

41 #append the string in the list of queries of the

related goal

42 if actual_goal not in query_dict:

43 query_dict[actual_goal] = [query_str]

28



CHAPTER 5. DATA PROCESSING

44 else:

45 query_dict[actual_goal].append(query_str)

46 container = []

47 elif "run_ask_query" in str(it).lower():

48 ##run ask query command --> extract the query

49 param = get_function_parameter(it,True)

50 query_str = get_query_text(container ,param)

51 #append the string in the list of queries of the

related goal

52 if actual_goal not in query_dict:

53 query_dict[actual_goal] = [query_str]

54 else:

55 query_dict[actual_goal].append(query_str)

56 container = []

57 else:

58 container.append(it)

59 ## at the end return the object

60 return query_dict

Code 5.1: Python functions to extract the queries from the notebooks

Basically this function open the notebook and skip the first few cells with
the information of the workflow and the assignments. Then it iterates through
the cells and if the type of the cell is markdown it try to check if it is present the
keyword task: if it is, it gets the number of the task, reading it immediately after
the word task and through an auxiliary variable it keep trace of this number to
use it later as key to store the queries. If the type of the cell is code, it means that
probably there is a query inside and if the keyword run_query or run_ask_query
is found, the function gets the text of the query passing an array of lines and the
name of the parameter. Then it uploads the dictionary of the query appending
the new query to a list stored with key the number of the task. Finally the
function return a dictionary with keys the number of the tasks and values a list
of queries associated to the task.

5.2.4 Query Keywords Analysis

An important part of this work was to fulfill analysis on the SPARQL key-
words usage. The keywords can be grouped in different sets depending on their
meaning and the once analyzed are:

• Type of query: select, ask, describe, construct, nested query

29



5.3. REPRESENTATION OF THE INFORMATION

• Result set restriction/order: distinct, limit, offset, order by

• Filters and set operations: filter, and, union, optional, graph, exists, not
exists, minus

• Aggregation operations: count, max, min, avg, sum, group by, having,
group_concat

In order to check the presence of the keywords in a query there is a function
that parse the text of the query and try to match each keyword: in the end the
function return a bitmap. The ones in the bitmap correspond to presence of that
keyword in the query. The bitmap’s order is decided in the very beginning and
it never change to guarantee consistency.

5.3 Representation of the Information

At this point all the functions to collect and extract the information from the
notebook were designed and it is necessary to store all the information about
the bitmaps in one single structure. The structure that represents everything
can be viewed as a 6-dimensional array with the following meaning:

• the first dimension represents the macro-topic of the workflows, for exam-
ple Sport or Movie

• the second dimension represents the sub topic of the workflows, for ex-
ample the Director Exploratory Search on the movie macro-topic

• the third dimension represents the students

• the fourth dimension represents the goal/task of the topic

• the fifth dimension represents the query

• finally, the sixth dimension is the bitmap of the keywords usage

The shape of this solid is (6, 4, 21, 12, 138, 26), meaning that there are six
macro-topic, at most four sub topic for each macro-topic, at most 21 students, at
most 12 goals/tasks for each workflow, at most 138 queries for each workflow
and 26 elements that are the keywords bitmap. The structure used to store
the solid is a 6-dimensional NumPy [17] array. Before populating the solid,
three maps are needed to relate indexes of the solid with macro-topic, sub-
topic and students. To identify students and macro-topics a single index is
needed, while to identify the sub-topic a pair of indexes is necessary because

30



CHAPTER 5. DATA PROCESSING

a sub-topic uniquely depends from its macro-topic. These maps are stored in
Comma-separated values (CSV) files which are useful later in the Chapter 6.

In order to use this big solid some functions are needed. The functions cover
the following objects:

• MACRO-TOPIC (1st dimension): there are two functions, the first one
given the set of workflows and the specific macro-topic name, it converts
it in a integer index to use in the solid. The second one does the opposite,
given the set of workflows and the index it returns the related macro-topic’s
name

• SUB-TOPIC (2nd dimension): there are three functions, the first one
given the set of workflows and the specific name of the workflow topic, it
converts it in a integer index to use in the solid. The second one does the
opposite, given the set of workflows and the topic’s index it returns the
related topic’s name. The last function given the topic’s name it return its
macro-topic

• STUDENT (3rd dimension): there are two functions, the first one given
the set of workflows, the specific topic name or the related topic index in
the solid and the student ID, it converts it in a integer index to use in the
solid. The second one does the opposite, given the set of workflows, the
topic index or the topic name and the student’s index it returns the related
student’s ID

• GOAL (4th dimension): there are two functions, the first one given the
set of goals and the number of the goal, it converts it in a integer index to
use in the solid. The second one does the opposite, given the set of goals
and the index it returns the related goal’s number

• QUERY (5th dimension): the function is thought to return the textual
query given the workflow index, the student index, the goal index and the
index of the query in the solid

The population of the solid is shown in the Algorithm 2 and it works by
iteration through the dimension of the solid. It starts from the macro-topic and
the topic and with the utility functions it retrieves both the indexes given the
macro-topic’s name and the topic’s name. In addition, it computes the goals of
the current topic before to iterate through the students. The students iteration
starts getting the corresponding index of the student and the dictionary with all
the queries text where the keys correspond to the goals of the topic. At this stage
for each key (goal) in the dictionary it gets the index and it scans the related list
of queries keeping a progressive index, that starts from zero, to use it as index
for the query in the solid. Lastly, it creates the bitmaps of the SPARQL keywords
and it adds it to the solid.

31



5.3. REPRESENTATION OF THE INFORMATION

Algorithm 2 Solid Population Algorithm
Require: 𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠 dictionary, returned by the Algorithm 1
Require: 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐵𝑦𝑀𝑎𝑐𝑟𝑜𝑇𝑜𝑝𝑖𝑐(𝑚𝑎𝑐𝑟𝑜) function to convert the macro-topic

string into the index
Require: 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐵𝑦𝑇𝑜𝑝𝑖𝑐(𝑡𝑜𝑝𝑖𝑐) function to convert the topic’s string to the

index
Require: 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐵𝑦𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑠𝑡𝑢𝑑𝑒𝑛𝑡) function to convert the student’s ID to

the index
Require: 𝑔𝑒𝑡𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝐼𝑑( 𝑓 𝑖𝑙𝑒𝑝𝑎𝑡ℎ) function to retrieve the student’s ID from the

filepath of the notebook’s workflow
Require: 𝑓 𝑖𝑛𝑑𝑊𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠𝐺𝑜𝑎𝑙(𝑛𝑏) function that given a workflow’s notebook

return its goals
Require: 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐵𝑦𝐺𝑜𝑎𝑙(𝑔𝑜𝑎𝑙𝑠, 𝑑) function to convert the goal’s number to

the index
Require: 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑄𝑢𝑒𝑟𝑦(𝑞) function that check the SPARQL keywords in the

query’s text and return the correspondent bitmap
𝑠𝑜𝑙𝑖𝑑← 𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑜𝑙𝑖𝑑()
for 𝑚𝑎𝑐𝑟𝑜 in 𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠.𝑘𝑒𝑦𝑠() do

for 𝑡𝑜𝑝𝑖𝑐 in 𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠[𝑚𝑎𝑐𝑟𝑜].𝑘𝑒𝑦𝑠() do
𝑖𝑛𝑑𝑒𝑥𝑀𝑎𝑐𝑟𝑜 ← 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐵𝑦𝑀𝑎𝑐𝑟𝑜𝑇𝑜𝑝𝑖𝑐(𝑚𝑎𝑐𝑟𝑜)
𝑖𝑛𝑑𝑒𝑥𝑇𝑜𝑝𝑖𝑐 ← 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐵𝑦𝑆𝑢𝑏𝑇𝑜𝑝𝑖𝑐(𝑡𝑜𝑝𝑖𝑐)
𝑔𝑜𝑎𝑙𝑠 ← 𝑓 𝑖𝑛𝑑𝑊𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝐺𝑜𝑎𝑙𝑠(𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠[𝑚𝑎𝑐𝑟𝑜][𝑡𝑜𝑝𝑖𝑐][0])
for 𝑛𝑏 in 𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠[𝑚𝑎𝑐𝑟𝑜][𝑡𝑜𝑝𝑖𝑐] do

𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑢𝑑← 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐵𝑦𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑔𝑒𝑡𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝐼𝑑(𝑛𝑏))
𝑞𝑢𝑒𝑟𝑖𝑒𝑠 ← 𝑞𝑢𝑒𝑟𝑦𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟(𝑛𝑏, 𝑔𝑜𝑎𝑙𝑠)
for 𝑑 in 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 do

𝑖𝑛𝑑𝑒𝑥𝐺𝑜𝑎𝑙 ← 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐵𝑦𝐺𝑜𝑎𝑙(𝑔𝑜𝑎𝑙𝑠, 𝑑)
𝑖𝑛𝑑𝑒𝑥 ← 0
for 𝑞 in 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦[𝑑] do

𝑠𝑜𝑙𝑖𝑑[𝑖𝑛𝑑𝑒𝑥𝑀𝑎𝑐𝑟𝑜, 𝑖𝑛𝑑𝑒𝑥𝑊𝑜𝑟𝑘, 𝑖𝑛𝑑𝑒𝑥𝑆𝑡𝑢𝑑, 𝑖𝑛𝑑𝑒𝑥𝐺𝑜𝑎𝑙, 𝑖𝑛𝑑𝑒𝑥] ←
𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑄𝑢𝑒𝑟𝑦(𝑞)
𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 + 1

end for
end for

end for
end for

end for
return 𝑠𝑜𝑙𝑖𝑑

32



CHAPTER 5. DATA PROCESSING

5.4 Keywords Analysis

As a result of this population function, it is possible - accessing the solid with
the right indexes of the macro-topic, topic, student, goal and query - to obtain
the bitmap with the information about the keywords used in that specific query.
To analyze the solid and run statistics on it, it is necessary to find a way to use
the keywords bitmaps. Since each bitmap correspond to one query wrote by one
student in a specific goal of a topic, some consideration can be made, assuming
that there is a specific function that sums the different bitmaps:

• by fixing the macro topic, the sum of the bitmaps produces a new bitmap
with the keyword information of all the queries written by all the students
who have done a workflow on a topic of that macro topic

• by fixing the topic, the sum of the bitmaps produces a new bitmap with
the keyword information of all the queries written by all the students who
have done a workflow on a specific topic

• by fixing the student, the sum of the bitmaps produces a new bitmap with
the keyword information of all the queries written by that student in all
his workflows, regardless the topic

• by fixing the topic and the student, the sum of the bitmaps produces a
new bitmap with the keyword information of all the queries written by
that student in the workflow corresponding to the topic

• by fixing the topic and the goal of the topic, the sum of the bitmaps
produces a new bitmap with the keyword information of all the queries
of that specific goal written by all the students who have done a workflow
on a specific topic

• by fixing the topic, the student and the goal, the sum of the bitmaps
produces a new bitmap with the keyword information of all the queries of
that specific goal written by that student in the workflow corresponding
to the topic

Since the solid is a NumPy array, there are some utility functions provided
by NumPy to sum arrays, and I wrote two functions, reported in the code
snippet 5.2, which helped me.

1 #function to sum the bitmaps in the provided solid

2 def sum_bitmaps(matrix):

3 while matrix.ndim > 1:

4 matrix = np.sum(matrix,axis = 0)

5 return matrix

6

33



5.4. KEYWORDS ANALYSIS

7 #return the number of queries done in the solid provided in input

8 def sum_query(sub):

9 if sub.ndim > 2:

10 return sum(sum_query(sub[i]) for i in range(sub.shape[0]))

11 else:

12 return sum([1 if (np.sum(sub[x],axis = 0))>0 else 0 for x in

range(sub.shape[0])])

Code 5.2: Sum Bitmaps functions

The first function takes as input an 𝑛-dimensional NumPy matrix and, if
the matrix has more than one dimension, using NumPy’s sum function the
procedure compresses the matrix by one dimension. Eventually, the function
returns a one-dimensional matrix that is the result of summing all the bitmaps
of the 𝑛-dimensional matrix passed as a parameter to the function.

Algorithm 3 Sum Query Algorithm
It returns the number of queries done in the provided solid

Require: 𝑠𝑢𝑏 the solid pass as parameter
if 𝑠𝑢𝑏.𝑛𝑑𝑖𝑚 > 2 then

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
for 𝑖 in 𝑟𝑎𝑛𝑔𝑒(𝑠𝑢𝑏.𝑠ℎ𝑎𝑝𝑒[0]) do

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 𝑠𝑢𝑚𝑄𝑢𝑒𝑟𝑦(𝑠𝑢𝑏[𝑖])
end for
return 𝑐𝑜𝑢𝑛𝑡𝑒𝑟

else
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
for 𝑥 in 𝑟𝑎𝑛𝑔𝑒(𝑠𝑢𝑏.𝑠ℎ𝑎𝑝𝑒[0]) do

sub[x] at this point is a bitmap
if 𝑠𝑢𝑚(𝑠𝑢𝑏[𝑥]) > 0 then

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
end if

end for
return 𝑐𝑜𝑢𝑛𝑡𝑒𝑟

end if

The second function, like the first, also needs the 𝑛-dimensional matrix as
a parameter. It is more sophisticated because it has to manage empty bitmaps
and it is recursive. Let explain in details how it works:

• base case: if the dimension of the solid pass as parameter is less or equal
than 2 then the function consider the size of the first dimension and iterates
over it. With this dimension the solid is basically a list of bitmaps, so the
function iterates over them and for each bitmap it checks if it contains at

34



CHAPTER 5. DATA PROCESSING

least one non-zero value. Since a SPARQL query must contains at least
one of the keywords described in Subsection 5.2.4 thus a valid bitmap for
a query must contains at least one non-zero value. Hence, at each iteration
it increases a counter only if the bitmap has a non-zero value, and in the
end return this counter that corresponds to the number of queries.

• recursive case: if the dimension of the solid pass as parameter is more
than 2 the recursion is needed. In this case the the function breaks down
the solid calling the sum_query function for each sub matrix of (𝑛 − 1)-
dimension and in the end it returns the sum of all the values returned by
the recursive calls

Given that python combined with NumPy allows to do complex operations
in a very compact way, I report in more detail how the sum_query function works
in Algorithm 3.

35





6
Ground Truth

The second part of the thesis is devoted to the ground truth’s creation. In
our domain of interest, we have 24 different topics each with specific tasks that
together form a workflow. Hence the goal was to create a ground truth for
each workflow. Since this process requires a lot of effort, for the purpose of the
thesis I narrowed the domain of interest only to the Movies macro-topic. To
recapitulate, the Movies macro-topic has four different topics, that are:

• Directors exploratory search, six students worked on it

• The Batman movies exploratory search, four students worked on it

• Horror Franchises exploratory search, five students worked on it

• Tv Series exploratory search, six students worked on it

6.1 Creation of Ground Truths

Recalling that also the ground truth must be a valid workflow, meaning
that it complies with the basic rule that prohibits to use objects or predicates of
Wikidata if they are not discover before through the exploration or if they are not
provided by the authors of the workflow as a starting point for the exploration.

It is important to distinguish between three different types of tasks require-
ments in the workflows and I will use as example the requirements of the
Directors exploratory search in Figure 6.1:

37



6.1. CREATION OF GROUND TRUTHS

Figure 6.1: Example of the requirements of the Directors workflow

• BGP task: this type of task is very deterministic, meaning that there is a
well defined answer for it. An example is the first one in Figure 6.1 which
requires to identify the BGP for films. To answer this task correctly it is
sufficient and necessary to write a query which returns in the result set
the URI which represents the node film on Wikidata

• deterministic task: this type of task is also well define in terms of values
to return, but they cover different kinds of requirements, for example the
task 6 in Figure 6.1 requires to find the budget of the movies directed
by Tarantino and Allen separately, pick the maximum value for the two
directors and compare the value, hence the requirement is clear and also
the answer. Furthermore the task 7 requires to compare the two directors
in terms of Academy Awards won: it is therefore possible to find for
each director the number of Academy Awards he won and compare the
numbers

• generic/exploratory task: this type of task is not well defined as the other
two types. An example is the task 5 in the Figure 6.1 which requires to
explore the two directors and return some numerical comparisons. Al-
though there are examples of comparison that a student can use as inspi-
ration there is no guarantee that everyone will perform this task in the
same way, hence the results of these tasks can be very different among
students

After this clarification let’s explain the ground truth creation process. Firstly,
not to waste too much time creating my own workflow for each topic, I started
reading and analyzing the notebooks of the students who worked on the topic.
In this first phase it is possible to understand the domain of the topic, which are
the main entities involved in the exploration and how they are related. Then

38



CHAPTER 6. GROUND TRUTH

I proceeded writing the ground truth task by task. The goal of this job was
to produce a well done workflow with possibly the shortest way to provide
the true answer to the tasks. BGPs task are the easiest because almost all the
students found them, although in very different way. The job here was to found
the exploration which provided the smallest result set, thus the precision in the
answer is bigger. Then, the queries which did not lead to new useful discovery
of entities or predicates were removed from the notebook. Also for deterministic
tasks the procedure was the same: starting from the work of the other students I
tried to understand which were the ones who provided the most complete result
set. In order to verify that, I benefited from the use of the Wikidata website and
also web searching to cross checking what I found in our Wikidata snapshot.
This led me to realise that our Wikidata snapshot lacked a lot of data that would
provide an immediate response to the activities. Some students have put a lot
of effort and they tried different ways to provide a good answer anyway. This
often paid off big time because the missing data were some predicates so it
was possible to getting around the problem and follow another route while on
other occasions there were missing entities and in this situation nothing could
be solved. The generic tasks were the most difficult because there was no exact
solution. As I stated before, students faced this type of tasks in various ways
providing very different results. For these type of tasks the only thing I could
do was to analyze everything and report in the ground truth the two or three
more interesting queries. Also in this cases I used the online Wikidata and the
web searching.

The essential thing to keep in mind is that Wikidata is constantly being
updated, so it is possible that data may not have been captured in our original
snapshot or may have been added or updated after the time of the snapshot.

6.2 Storage Model of Ground Truths

Once the ground truths were created the results needed to be stored, in order
to compare them with the students’ workflows. This feature is very important
and we will discuss about it later in Chapter 7.

In order to find the best structure to store the results the following consider-
ations must be made:

• the results must be accessible and easy to read by another program

39



6.2. STORAGE MODEL OF GROUND TRUTHS

• the results must be separated somehow by their specific task, in order to
associate a result to a specific task

• there must be a distinction between the type of the tasks in order to accu-
rately assess student performances

After analysing the different possibilities, the choice was to use a JSON file.
The JSON file associated to a ground truth has a description object, which is a
string, that contains the title (topic) of the ground truth. Then, there is a complex
object called results which contains all the information about the ground truth’s
results task by task. This object is a dictionary and each descendant object is
identified with a key, that is the number of the task. Each task object contains
three mandatory information which are:

• type: this element is related to the type of the task and it can be single,
referred or set

• check: this element provide the type of the check that it must be done at
the evaluation stage. I will go deeper afterwards

• values: this is the element that contains the results of the ground truth for
the current task and it is always an array of other elements

The values array can contains several type of objects which can be Wikidata
objects or predicates or simple literals like dates and numbers. Whenever I refer
to a Wikidata object or predicate I am always referring to its URI because it
is the only way to identify it, nevertheless every Wikidata object or predicate
reported in the JSON file as solution of its task is always composed by its URI
and its label that I will call name. The label of the objects is surely useful to the
human understanding, but it is also useful at the evaluation stage, given that
some students did not always report the URI of the objects but only their label.
The more frequent shapes of the elements in this array of values are:

• Wikidata objects: they are elements composed by two fields, the URI and
the related name (label)

• literal values: they are elements composed by the single field value

• literal values associated to Wikidata objects: they are elements composed
by one literal stored in the field value which refers to a specific object.
Hence these elements will also contain a field refers_to that usually is an
URI which represents a Wikidata object and the field refers_to_name that is
the Wikidata label associated to the URI in the refers_to field

40



CHAPTER 6. GROUND TRUTH

• Wikidata objects associated to other Wikidata objects: they are elements
composed by four fields: the URI and the related name (label) which
refers to a specific object stored in the field refers_to. It also contains the
refers_to_name for the textual representation of the referring object

The check field contains the information about the name of the field to check
in each element of the values array. I have already presented the main types of
the objects that the values array may contains and basically there are Wikidata
elements or literals, so the check is usually performed against the URI when we
are facing Wikidata objects or the value fields when they are literals. However,
there are situation when the check field may contains more than one value hence
the check field is an array. This situation often occurs when there are literals
or Wikidata objects associated to others Wikidata objects because sometimes
students did not used to return both the URI and the label in the result set but
they only returned the labels without their URIs.

Lastly the type field provide information about the type of the task but to
be more precise it contains useful information on the shape of the objects in the
values array. I already stated that it can assume three different values and for a
better understanding I will explain in detail the different situations.

6.2.1 Single Types

This value is usually used when the tasks require to find a BGP. In the
Section 6.1 when I presented the BGP tasks I stated that a correct answer must
contain the URI which represents the required element. Hence, the type of
elements in the values array of these tasks are always Wikidata objects and the
pivotal part is their URIs but for the sake of clarity I had always added also the
associated label. In fact the check field in the BGP tasks will always contain only
the value uri meaning that the valuable information for this task is the URI of the
objects contained in the values array. There may occur situation when there are
more than one valid URI that correctly answer the BGP tasks. To face these rare
situations I added an optional field in the task JSON object called any_all which
can assume only two values, any or all. The role of this variable is to define what
a result set should contain in order to be correct. If the value of this variable
is all it means that the task required to find all the elements contained in the
values array thus to be correct a result set must provide all those elements. On
the other hand, if the value of this variable is any it is sufficient that the result
set contains only one of the elements listed in the values array.

41



6.2. STORAGE MODEL OF GROUND TRUTHS

(a) Single type object with “all” con-
straint (b) Single type object with “any” con-

straint

Figure 6.2: Examples of single type objects in the JSON ground truth’s file

Figure 6.2 shows two examples of these single type objects stored in the JSON
ground truth’s file. On the left, in the Figure 6.2a, there is the example when the
any_all field is set to all. For this task the requirement was to find the BGP for
film: the values array in fact contains the element with both the URI and label
which represent a film in Wikidata. Since this type of task required a BGP the
elements field to check is the uri that correspond to the value of the check’s field.
As mentioned before the JSON file contains also a description which reports the
topic’s name of this ground truth.

On the right, in Figure 6.2b, there is the opposite situation when the any_all
field is set to any and the requirement was to find the BGP for directors. Since this
workflow investigated movies there are two classes of Wikidata that represents
directors. The more general is the director while the more precise in the movies
context is the film director. Since both entities are correct for the meaning of this
workflow, an answer will be considered valid if the result set provides at least
one of these two classes. In fact the values array contains two elements that
represent exactly the film director and the director.

6.2.2 Referred Types

These type of tasks are very frequent for those which required to find some-
thing associated to other values and the elements inside the values array are
usually literals or Wikidata objects associated to another Wikidata object. The
value of the type field is referred.

Figure 6.3 shows an example of this element’s structure in the ground truth’s
file. In this workflow the exploratory scenario was to investigate horror movies
and franchises and in particular they wanted to compare the Halloween franchise

42



CHAPTER 6. GROUND TRUTH

Figure 6.3: Example of referred type object in the JSON ground truth’s file

with the Friday the 13th. There were given the URIs of two movies, one for each
franchises, as a starting point for the exploration. This task required to find who
was the most famous actress (or actor) on Halloween and Friday the 13th (the
movies initially given) at the time of the release. Hence, it was expected that
students provided a result set consisting of two rows with two objects each: the
movie and the most famous actor who acted on that movie at the time of the
release. Indeed, in the values array we can see two objects: the first one contains
the URI and the label of Donald Pleasence who refers to the Halloween movie,
while the second one contains the URI and the label of Betsy Palmer who refers
to the Friday the 13th movie.

Since this type of task requires two checks to state the correctness for each
element of the answer, there is another check field for each element in the values
array. This was added to allow the containment of different types of values
associated to Wikidata objects and the Figure 6.4 clearly shows this situation.
We are talking about the same workflow on the Horror Franchises exploratory
search and the mentioned task required firstly to find the entire list of the movies

43



6.2. STORAGE MODEL OF GROUND TRUTHS

of both the Halloween and Friday the 13th franchises, and eventually to return
for each of those film the director and the year of publication. Thus the expected
format of the result set was a list of elements which were supposed to contain
the movie, the director and the year of publication. This type of requirement is
slightly more sophisticated to handle because there are several elements that can
be literals (the year of publication) or Wikidata objects (the director) associated
to the main Wikidata object. To solve this specific problem, a special object could
have been created that contained these two pieces of information, but it would
have been very difficult to handle at the evaluation stage. There was therefore a
need to organise everything as general as possible.

Figure 6.4: Example of different type of values in a referred object’s task of the
JSON ground truth’s file

To achieve this, when there is a referred type task object, each element inside
the values array must contain:

• refers_to and refers_to_name fields which represent the referring Wiki-
data object

44



CHAPTER 6. GROUND TRUTH

• check field which basically specifies the type of the reference object as
this field can usually be an array whose elements are uri and name for the
Wikidata objects, or the string value for the literals

• the couple uri and name fields if there is a Wikidata object, or the value
field if there is a literal

Furthermore, there is another essential parameter: the elements_per _tuple.
Given the need to unbundle complex result sets in single pieces, in this example
we had separated the year from the director, one must somehow know the
number of associated objects to the referred Wikidata object. Hence, I added
this field to keep this information and use it at the evaluation stage.

6.2.3 Set Types

Finally there are the tasks where the result set is not well defined because
the requirement is more general and the results can differs one from another or
the result set comprises many elements thus it is not possible to use the single
type described in the Subsection 6.2.1.

Figure 6.5: Example of set type object in the JSON ground truth’s file

The example shown in Figure 6.5 refers to the workflow about television se-
ries. The scenario was to explore the television series “How I met your mother”,

45



6.3. STORING PROCESS OF GROUND TRUTHS

investigate the main aspects and compare it with “The Office”. In particular the
task highlighted in the figure required to find the most present actors, thus the
result set must be a list of actors who acted on “How I met your mother”. The
result here reports the six most famous actors given that the request was vague
on the size of the result set. The meaning of this type of object is to provide
the largest and most accurate set of result that possibly should be a subset of a
result set provided by the students doing this workflow. As for the other types
of object task there is the check field that specifies the field to check in order to
the determine the correctness of the answer.

6.3 Storing Process of Ground Truths

After the detailed illustration of the JSON model containing all ground truth
information of a given topic let’s explain how the storing process works. First of
all this process is not automatic, so there is not a script which read the python
notebook of the ground truth and automatically produce the ground truth JSON
file. This is due to the fact that there are tasks which are not reported in the
JSON file because of their complexity of the result set and their very ambiguous
requirement. For example, a task in the Horror Franchises exploratory search
required to investigate the workers and check any commonalities between the
two movies Halloween and Friday the 13th: the requirement is not precise and
the answers to this task can be very different. Someone could compare the size
of the cast members, someone can check if there are common workers, others
can compare the directors, or the composers, so there is no proper answer to
this task.

The workflow of each ground truth, before the exploration that will provide
the solution to the requirements, begins with some utility functions and some
variable definitions that will help during the storage process. They are:

• find the indexes which identify the current topic. Recalling the index
maps mentioned in Section 5.3, one was devoted to store the index pairs
that identify a topic. The first function reads that table and retrieves the
correct index pair for the current ground truth workflow. These indexes
are needed because the ground truth JSON files are stored in a folder called
result and each ground truth’s file is named workflow_i1_i2 where i1 is the
macro topic index and i2 is the topic index

• define some global constant string variables that are the main keywords
to use in the JSON file

46



CHAPTER 6. GROUND TRUTH

• define the global variable which represents the JSON object

• define the function to add a new task object in the result dictionary

At this point whenever a task needs to be inserted in the JSON ground truth
I manually created that object and I called the function to add the result of the
current task to the global object that will also store it on the disk. Depending on
the type of task, there are different functionalities, but in general, the following
operations are required to add a new task to the ground truth:

• define the type of the task amongst single, referred and set

• create the array of objects to put in the values array

• define the check field according to the type of the task

The function will subsequently create a dictionary object with the input
parameters just described above and put this object in the global JSON under
the key of the current task, also passed as parameter.

47





7
Evaluation and Analysis

Once the ground truths are created and the results are stored, it is possible to
evaluate the student workflows in order to check their results. Evaluation is only
possible for movie-related workflows given that the ground truths were created
only for those topics. The evaluation and keyword analysis are performed in
parallel and produce a single file containing the entire notebook analysis.

7.1 Workflows Evaluation

When a ground truth file exists for a topic, the script evaluates the notebooks
of students who have worked on that topic.

The evaluation, shown in Algorithm 4, requires some functions and objects:

• notebook’s file path

• ground truth’s file path

• a function which, given the student’s results and the ground truth limited
to a specific objective, compares them and verifies whether the student
answered that task correctly

• the functions already described in Chapter 5 which find the goals of work-
flow, collect the queries and run them

First of all the function retrieves the goals of the topic and subsequently
collects the queries of the notebook. Finally it loads the ground truth from the
disk. In order to compare the result of the ground truth with the once provided
by the student, it is necessary to run the student queries. Thus, for each goal

49



7.1. WORKFLOWS EVALUATION

Algorithm 4 Evaluation Algorithm
Require: 𝑛𝑏 a notebook file path
Require: 𝑔𝑡𝑃𝑎𝑡ℎ a ground truth json file path
Require: 𝑣𝑒𝑟𝑖 𝑓 𝑦𝑅𝑒𝑠𝑢𝑙𝑡 a function that given the ground truth and a result set

checks if the result set contains elements that correspond to the ground truth
𝑔𝑜𝑎𝑙𝑠 ← 𝑓 𝑖𝑛𝑑𝑊𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝐺𝑜𝑎𝑙𝑠(𝑛𝑏)
𝑞𝑢𝑒𝑟𝑖𝑒𝑠 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑄𝑢𝑒𝑟𝑖𝑒𝑠(𝑛𝑏, 𝑔𝑜𝑎𝑙𝑠)
𝑔𝑡 ← 𝑜𝑝𝑒𝑛(𝑔𝑡𝑃𝑎𝑡ℎ)
𝑒𝑣𝑎𝑙 ← {}
for 𝑔 in 𝑔𝑜𝑎𝑙𝑠 do

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← []
𝑎𝑐𝑡𝑢𝑎𝑙𝐺𝑡 ← 𝑔𝑡[”𝑟𝑒𝑠𝑢𝑙𝑡𝑠”][𝑔]
𝑖𝑛𝑑𝑒𝑥 ← 0
for 𝑞 in 𝑞𝑢𝑒𝑟𝑖𝑒𝑠[𝑔] do

𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 + 1
𝑥 ← 𝑟𝑢𝑛𝑄𝑢𝑒𝑟𝑦(𝑞)
𝑐ℎ𝑒𝑐𝑘 ← 𝑣𝑒𝑟𝑖 𝑓 𝑦𝑅𝑒𝑠𝑢𝑙𝑡(𝑎𝑐𝑡𝑢𝑎𝑙𝐺𝑡, 𝑥)
if 𝑐ℎ𝑒𝑐𝑘 > 0 then

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛()
𝑟𝑒𝑐𝑎𝑙𝑙 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅𝑒𝑐𝑎𝑙𝑙()
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠.𝑎𝑝𝑝𝑒𝑛𝑑({𝑖𝑛𝑑𝑒𝑥, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙})

end if
end for
if 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 is not empty then

𝑒𝑣𝑎𝑙[𝑔] ← 𝑓 𝑖𝑛𝑑𝐵𝑒𝑠𝑡(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠)
else

𝑒𝑣𝑎𝑙[𝑔] ← {0, 0, 0}
end if

end for
return 𝑒𝑣𝑎𝑙

of the topic, the function initially retrieves the result from the ground truth for
that task and then it starts to execute the student queries. The output of a query
is a list, and each element of the list is another list of 𝑛-tuples depending on
the number of variables included in the selection. An example of a query with
its output is shown in Figure 5.2: the query’s select indicates that there are two
different variables for each result row p and pName. In fact, in the output cell
there are several lists with two tuples each. Then, each tuples represents the
name and the value of a variable. In this example the query returns the URI and
the label of some predicates of the television series “How I met your mother”.
Proceeding with the algorithm, the result set of the query is stored in a variable

50



CHAPTER 7. EVALUATION AND ANALYSIS

which is used in the verifyResult function. This function is devoted to compare
a generic result set with a ground truth result set and it always returns:

• 0 if the result set provided has no correspondence with the ground truth

• positive integer which depends on the number of correspondences be-
tween the result set provided and the ground truth

To count the number of correspondences there are three different algorithm,
one for each type of the task described in Section 6.2. They are slightly different
given the different shape of the objects in the values array which depends from
the task type. Algorithm 5 shows the function to return the number of corre-
spondences for the referred type tasks. The function starts declaring the variable
matches that will count the number of correspondences and eventually be the
returned value of the function. It also defines an empty list called foundEl which
represents the elements already found during the procedure: this list helps to
avoid counting the same element twice. Each element of the result set must be
compared with the ground truth elements. Before comparing it, since the initial
row element of the result set is a list of tuples, where each tuple contains both
the name and the value of the variable, a first cleaning operation is performed
in order to create another list (called elements) which contains only the value of
the variables, given that the name is not essential. Then, for each element in the
ground truth:

• store the value of the fields refers_to and refers_to_name in two variables

• verify the presence of the referred object in the elements list. Since the shape
of the elements in this type of task are Wikidata objects or literal which
refers to another Wikidata object, to provide a valid answer the referred
object must be reported in the result set

• verify the presence of the other object. If this is a Wikidata object, then the
check field in the ground truth is a list which contains the two elements uri
and name. This means that the uri of a Wikidata object or its label must
be in the elements list. Otherwise if it is a literal, the function checks its
presence in the elements list.

• when a new element is found, meaning that both the object and its refer-
ence are in the elements list, the matches counter and the list of elements
found are updated. A tuple with all the information about the object and
its reference is created and it is appended to the list of elements found.
During the subsequent iterations before counting a new match this list
must be checked

51



7.1. WORKFLOWS EVALUATION

Algorithm 5 Referred Type Check Algorithm
Require: 𝑡𝑟𝑢𝑒𝑅𝑒𝑠𝑢𝑙𝑡 a json object represent the task’s ground truth
Require: 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 a query result set

𝑚𝑎𝑡𝑐ℎ𝑒𝑠 ← 0
𝑓 𝑜𝑢𝑛𝑑𝐸𝑙 ← []
𝑚𝑢𝑙𝑡𝑅𝑒𝑠 ← 𝑡𝑟𝑢𝑒𝑅𝑒𝑠𝑢𝑙𝑡[”𝑣𝑎𝑙𝑢𝑒𝑠”]
for 𝑟𝑒𝑠 in 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 do

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ← [𝑡[1] for 𝑡 in 𝑟𝑒𝑠]
for 𝑣𝑎𝑙 in 𝑚𝑢𝑙𝑡𝑅𝑒𝑠 do

𝑟𝑒 𝑓 _𝑢𝑟𝑖 ← 𝑣𝑎𝑙[”𝑟𝑒 𝑓 𝑒𝑟𝑠_𝑡𝑜”]
𝑟𝑒 𝑓 _𝑛𝑎𝑚𝑒 ← 𝑣𝑎𝑙[”𝑟𝑒 𝑓 𝑒𝑟𝑠_𝑡𝑜_𝑛𝑎𝑚𝑒”]
if not (𝑟𝑒 𝑓 _𝑢𝑟𝑖 in 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 or 𝑟𝑒 𝑓 _𝑛𝑎𝑚𝑒 in 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) then

continue
end if
if type(𝑣𝑎𝑙[”𝑐ℎ𝑒𝑐𝑘”]) == list then

𝑡_𝑢 ← [𝑣𝑎𝑙[𝑗] for 𝑗 in 𝑣𝑎𝑙[”𝑐ℎ𝑒𝑐𝑘”]]
𝑡𝑢𝑝𝑙𝑒𝑠 ← [(𝑥, 𝑦) for 𝑥 in 𝑡_𝑢 for 𝑦 in 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠]
for 𝑡 in 𝑡𝑢𝑝𝑙𝑒𝑠 do

𝑡𝑚𝑝 ← (𝑟𝑒 𝑓 _𝑢𝑟𝑖, 𝑟𝑒 𝑓 _𝑛𝑎𝑚𝑒, 𝑡[0], 𝑡[1])
if 𝑡𝑚𝑝 not in 𝑓 𝑜𝑢𝑛𝑑𝐸𝑙 and 𝑡[0] == 𝑡[1] then

𝑚𝑎𝑡𝑐ℎ𝑒𝑠 ← 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 + 1
𝑓 𝑜𝑢𝑛𝑑𝐸𝑙.𝑎𝑝𝑝𝑒𝑛𝑑(𝑡𝑚𝑝)

end if
end for

else
𝑣 ← 𝑣𝑎𝑙[𝑣𝑎𝑙[”𝑐ℎ𝑒𝑐𝑘”]]
𝑡𝑚𝑝 ← (𝑟𝑒 𝑓 _𝑢𝑟𝑖, 𝑟𝑒 𝑓 _𝑛𝑎𝑚𝑒, 𝑣)
if 𝑡𝑚𝑝 not in 𝑓 𝑜𝑢𝑛𝑑𝐸𝑙 and 𝑣 in 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 then

𝑚𝑎𝑡𝑐ℎ𝑒𝑠 ← 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 + 1
𝑓 𝑜𝑢𝑛𝑑𝐸𝑙.𝑎𝑝𝑝𝑒𝑛𝑑(𝑡𝑚𝑝)

end if
end if

end for
end for
return 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

52



CHAPTER 7. EVALUATION AND ANALYSIS

The basic concept is the same for the other two functions, but this is the most
complete because it contains the reference object which is not present in the
others.

After verifying the result of the current query with the ground truth, if the
function returns 0 it means that the query did not contain any useful element.
On the other hand if the function returns a positive integer it must be computed
the precision and the recall of the result, in order to update the evaluation of
the notebook. Since the recall is obtained by dividing the number of relevant
items retrieved over the total number of relevant items, these two values are
respectively the number of matches (returned by the verifyResult function) and
the size of the values array of the current task in the ground truth. There is a
special case when the type of the task is single, because the value of the any_all
field plays a crucial role: if the value is any then the recall will be always 1 if the
matches value returned by the verifyResult function is positive.

The precision is defined as the number of relevant retrieved items, that in
our context is the matches value returned by the verifyResult function divided
by the size of the query result set. Also for the precision there is a special
case that occurs when the type of the task is referred because the value of the
elements_per_tuple field plays a crucial role: since this field defines the number
of elements that are associated to the referred Wikidata object, one assumes
that for each row element in the result set there is the referred object with all
its associated objects. Hence, the standard recall value must be divided by the
value of the elements_per_tuple field, otherwise there will be unfeasible precision
values greater than 1.

Each result set with valuable information, meaning that elements in the result
set are also in the ground truth thus the precision and the recall for this result
set are greater than 0, is considered. In fact in the Algorithm 4 for each goal of
the workflow there is a solutions array that is populated when a query produces
a good result set. The elements in this array are dictionaries which contain the
information about the recall, the precision and the index of the query, useful to
understand after how many queries the student found the result. When all the
queries of the current goal are executed the evaluation object must be updated
and two situations can occur:

• the solutions array is empty, meaning that for the current goal the student
did not provide any query which produced a valuable result set. Hence,
in the evaluation object the precision and the recall for the current task are
both 0

53



7.2. WORKFLOWS ANALYSIS

• the solutions array contains at least one element, meaning that the student
provide some good result set for the current goal. If there are several
elements, the best is chosen according to the largest sum of precision and
recall. If there are solutions with the same sum of precision and recall, it
is chosen the one with the highest recall

7.2 Workflows Analysis

In parallel with the evaluation the script also performs the keyword analysis.
Algorithm 6 shows the procedure that creates an object which represents the
usage of the SPARQL keywords in a notebook. In order to execute this analysis,
some functions and parameters are required:

• notebook’s file path

• workflow ’s topic

• a function (called doStatistics) that accept four optional parameters: the
macro topic, the topic, the student and the goal. This multi-purpose func-
tion allows to cut different portion of the solid that collects the keyword
bitmaps of all the notebooks. If no parameters are used, it sums the
bitmaps of the entire solid. Whenever a parameter is set, the function
delimits the corresponding part of the solid and only sums the bitmaps
in this portion. As a result this function always returns a bitmaps sum
on a specific portion of the solid depending on the parameters. In this
particular stage, we are interested in the usage of the keywords in each
goal of the workflows student, thus the parameters used in the function
are the topic, the student and the goal. The macro topic is automatically
obtained by the topic. The analysis also provide an overall usage of the
keywords and to obtain it, it is sufficient to use the doStatistics function
providing only the topic and student parameters

• a function (called sumQuery) which, given a specific portion of the solid
returns the number of queries. I have already discussed this function in
the Algorithm 3

• the function which finds the workflow goals given a notebook described
in Subsection 5.2.2

• the function devoted to queries collection described in Subsection 5.2.3

• all the utility functions described in Section 5.3 that given the student
number, the topic, the goals returns their indexes in the solid

54



CHAPTER 7. EVALUATION AND ANALYSIS

Algorithm 6 Keyword Analysis Algorithm
Require: 𝑛𝑏 a notebook file path
Require: 𝑡𝑜𝑝𝑖𝑐 of the workflows
Require: 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 array that contains all the SPARQL keywords
Require: 𝑓 𝑖𝑛𝑑𝑊𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝐺𝑜𝑎𝑙𝑠 function
Require: 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑄𝑢𝑒𝑟𝑖𝑒𝑠 function
Require: 𝑑𝑜𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 a function that given the topic, the student and the goal,

sums the keyword bitmaps
Require: 𝑠𝑢𝑚𝑄𝑢𝑒𝑟𝑦 a function that returns the number of queries in a specific

portion of the solid
Require: all the utilities to get the indexes

𝑔𝑜𝑎𝑙𝑠 ← 𝑓 𝑖𝑛𝑑𝑊𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝐺𝑜𝑎𝑙𝑠(𝑛𝑏)
𝑞𝑢𝑒𝑟𝑖𝑒𝑠 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑄𝑢𝑒𝑟𝑖𝑒𝑠(𝑛𝑏, 𝑔𝑜𝑎𝑙𝑠)
𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 ← {}
𝑖𝑀𝑎𝑐𝑟𝑜 ← 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐵𝑦𝑀𝑎𝑐𝑟𝑜𝑇𝑜𝑝𝑖𝑐(𝑔𝑒𝑡𝑀𝑎𝑐𝑟𝑜𝐵𝑦𝑇𝑜𝑝𝑖𝑐(𝑡𝑜𝑝𝑖𝑐))
𝑖𝑇𝑜𝑝𝑖𝑐 ← 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐵𝑦𝑇𝑜𝑝𝑖𝑐(𝑡𝑜𝑝𝑖𝑐)
𝑠𝑡𝑢𝑑← 𝑔𝑒𝑡𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝐼𝑑(𝑛𝑏)
𝑖𝑆𝑡𝑢𝑑← 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐵𝑦𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑠𝑡𝑢𝑑)
𝑔𝑜𝑎𝑙𝑠[””] ← ”𝐸𝑚𝑝𝑡𝑦”
for 𝑔 in 𝑔𝑜𝑎𝑙𝑠 do

𝑖𝐺𝑜𝑎𝑙 ← 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐵𝑦𝐺𝑜𝑎𝑙(𝑔𝑜𝑎𝑙𝑠, 𝑔)
𝑠𝑡𝑎𝑡 ← 𝑑𝑜𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠(𝑡𝑜𝑝𝑖𝑐, 𝑠𝑡𝑢𝑑, 𝑔)
𝑡𝑜𝑡𝑄 ← 𝑠𝑢𝑚𝑄𝑢𝑒𝑟𝑦(𝑠𝑜𝑙𝑖𝑑[𝑖𝑀𝑎𝑐𝑟𝑜, 𝑖𝑇𝑜𝑝𝑖𝑐, 𝑖𝑆𝑡𝑢𝑑, 𝑖𝐺𝑜𝑎𝑙])
𝑔𝑜𝑎𝑙𝑆𝑡𝑎𝑡 ← {”𝑛𝑢𝑚𝑏𝑒𝑟” : 𝑔, ”𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛” : 𝑔𝑜𝑎𝑙𝑠[𝑔], ”𝑞𝑢𝑒𝑟𝑖𝑒𝑠” : 𝑡𝑜𝑡𝑄}
𝑔𝑜𝑎𝑙𝑆𝑡𝑎𝑡[”𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠”] ← {}
for 𝑖 in 𝑟𝑎𝑛𝑔𝑒(𝑙𝑒𝑛(𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠)) do

𝑔𝑜𝑎𝑙𝑆𝑡𝑎𝑡[”𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠”][𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠[𝑖𝑛𝑑𝑒𝑥]] ← 𝑠𝑡𝑎𝑡[𝑖𝑛𝑑𝑒𝑥]
end for
if 𝑔!= "" then

𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠[𝑔] ← 𝑔𝑜𝑎𝑙𝑆𝑡𝑎𝑡
else

𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠[”0”] ← 𝑔𝑜𝑎𝑙𝑆𝑡𝑎𝑡
end if

end for
𝑠𝑡𝑎𝑡 ← 𝑑𝑜𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠(𝑡𝑜𝑝𝑖𝑐, 𝑠𝑡𝑢𝑑)
𝑡𝑜𝑡𝑄 ← 𝑠𝑢𝑚𝑄𝑢𝑒𝑟𝑦(𝑠𝑜𝑙𝑖𝑑[𝑖𝑀𝑎𝑐𝑟𝑜, 𝑖𝑇𝑜𝑝𝑖𝑐, 𝑖𝑆𝑡𝑢𝑑])
𝑔𝑜𝑎𝑙𝑆𝑡𝑎𝑡 ← {”𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛” : ”𝑜𝑣𝑒𝑟𝑎𝑙𝑙”, ”𝑞𝑢𝑒𝑟𝑖𝑒𝑠” : 𝑡𝑜𝑡𝑄, ”𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠” : {}}
for 𝑖 in 𝑟𝑎𝑛𝑔𝑒(𝑙𝑒𝑛(𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠)) do

𝑔𝑜𝑎𝑙𝑆𝑡𝑎𝑡[”𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠”][𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠[𝑖𝑛𝑑𝑒𝑥]] ← 𝑠𝑡𝑎𝑡[𝑖𝑛𝑑𝑒𝑥]
end for
𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠[”𝑜𝑣𝑒𝑟𝑎𝑙𝑙”] ← 𝑔𝑜𝑎𝑙𝑆𝑡𝑎𝑡
𝑔𝑜𝑎𝑙𝑠.𝑝𝑜𝑝(””)
return 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠

55



7.3. EVALUATION AND ANALYSIS MERGE

The procedure starts, finding the goals of the workflow, collecting all the
queries and converting the macro-topic, the topic and the student to the related
indexes. It also declares an empty dictionary called statistics that at the end of
the algorithm will be returned. Then the function analyses each goals of the
workflow as follows:

• it converts the goal to the index

• it calls the doStatistics function to get the keywords usage for the current
goal

• it calls the sumQuery function to get the number of queries of the current
goal

• it creates a dictionary object called goalStat which contains information
about the number of the goal and its textual requirement, the number of
the queries wrote by the student for the goal and a keywords usage dictio-
nary that is populated using the bitmaps sum returned by the doStatistics
function

• it puts the goalStat dictionary in the statistic dictionary using the number
of the goal as key

After having analysed all the goals the function repeats the same routine for
an overall analysis of the notebooks. As before, it calls the doStatistics function
without specifying a goal, so the function will provide the sum of the bitmaps
of the entire student’s notebook. It calls the sumQuery function and it populates
a goalStat dictionary containing the number of the queries, the keywords usage
and as description the string overall.

7.3 Evaluation and Analysis Merge

The parallel processing of the evaluation and the keywords analysis of the
notebooks allows to merge them and store everything in a single file. This final
procedure groups all the functionalities shown, to produce for every student’s
notebook, a file which contains information about the keywords usage and the
evaluation. The result of the Algorithm 7 execution will be a folder containing
as many folders as there are students who have worked on this project. Hence,
the name of each sub-folder corresponds to the student’s identification number
and the student’s folder will contain a json file for each workflow he or she has
worked on. The requirements of the Algorithm 7 are:

56



CHAPTER 7. EVALUATION AND ANALYSIS

• workflows dictionary created by Algorithm 1, which contains the list of the
notebooks file path grouped by their topic and macro topic

• evaluateNotebook function shown in Algorithm 4, which given the ground
truth, the goals of the topic and a notebook, creates an evaluation for each
goal of that notebook

• computeNotebookStats function shown in Algorithm 6, which given the
topic, the goals of the topic and a notebook returns the keywords usage in
the different goals

• all the utility functions described in Section 5.3

• evalDir the path where the produced files will be stored

• resultDir the path where there are stored the ground truth json files

First, the algorithm checks whether the directory provided in the evalDir
variable exists, and if not, creates it. Then it starts iterating topic by topic. As
usually it converts the topic and the macro topic in the correspondent indexes to
use later, and it collects the workflow’s goals. If in the result directory, the one
dedicated to store the ground truth files, exists a file for the current topic, it loads
the file and it stores in a variable the results field. Recalling the model of the
ground truth’s file described in Section 6.2 there are two main fields: description,
that reports the topic of the ground truth, and results which contains all the true
result set goal by goal. At this point for each notebook of the current topic the
procedure is:

• get the student id number

• create the student folder under the evaluation folder it it not exists

• create a dictionary object (called obj) which in the end represents the json
object to store for the current notebook with the main information about
the macro topic, the topic, the student and the notebook file path

• if the ground truth for this topic exists, run the evaluation on the notebook
and store the result in a variable at the moment

• compute the statistics on the keywords usage in the notebook and store
the result in a field called goals of the obj dictionary

• merge the information about the evaluation adding for each goal a field
evaluation

• store the obj dictionary in a json file in the student folder, following the
standard workflow{iMacro}_{iTopic}.json where iMacro is the index of the
macro topic and iTopic is the index of the topic in the solid

57



7.3. EVALUATION AND ANALYSIS MERGE

Algorithm 7 Complete Analysis and Evaluation Algorithm
Require: 𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠 the dictionary which contains all the workflows file path
Require: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑁𝑜𝑡𝑒𝑏𝑜𝑜𝑘 the function shows in the Algorithm 4
Require: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑁𝑜𝑡𝑒𝑏𝑜𝑜𝑘𝑆𝑡𝑎𝑡 the function shows in the Algorithm 6
Require: all the utilities to get the indexes
Require: 𝑒𝑣𝑎𝑙𝐷𝑖𝑟 a path to the directory to store all the results in json files
Require: 𝑟𝑒𝑠𝑢𝑙𝑡𝐷𝑖𝑟 a path to the directory where are stored the ground truth

json files
if 𝑒𝑣𝑎𝑙𝐷𝑖𝑟 not exists then

𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑟(𝑒𝑣𝑎𝑙𝐷𝑖𝑟)
end if
for 𝑚𝑎𝑐𝑟𝑜 in 𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠.𝑘𝑒𝑦𝑠() do

for 𝑡𝑜𝑝𝑖𝑐 in 𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠[𝑚𝑎𝑐𝑟𝑜].𝑘𝑒𝑦𝑠() do
𝑖𝑀𝑎𝑐𝑟𝑜 ← 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐵𝑦𝑀𝑎𝑐𝑟𝑜𝑇𝑜𝑝𝑖𝑐(𝑚𝑎𝑐𝑟𝑜)
𝑖𝑇𝑜𝑝𝑖𝑐 ← 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐵𝑦𝑆𝑢𝑏𝑇𝑜𝑝𝑖𝑐(𝑡𝑜𝑝𝑖𝑐)
𝑔𝑜𝑎𝑙𝑠 ← 𝑓 𝑖𝑛𝑑𝑊𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝐺𝑜𝑎𝑙𝑠(𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠[𝑚𝑎𝑐𝑟𝑜][𝑡𝑜𝑝𝑖𝑐][0])
𝑡𝑟𝑢𝑒𝑅𝑒𝑠𝑢𝑙𝑡 ← {}
𝑤𝑜𝑟𝑘𝑃𝑎𝑡ℎ ← ”𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤” + 𝑖𝑀𝑎𝑐𝑟𝑜 + ”_” + 𝑖𝑇𝑜𝑝𝑖𝑐 + ”. 𝑗𝑠𝑜𝑛”
𝑝𝑎𝑡ℎ ← 𝑟𝑒𝑠𝑢𝑙𝑡𝐷𝑖𝑟 + 𝑤𝑜𝑟𝑘𝑃𝑎𝑡ℎ
if 𝑝𝑎𝑡ℎ exists then

𝑡𝑟𝑢𝑒𝑅𝑒𝑠𝑢𝑙𝑡 ← json.load(open(𝑝𝑎𝑡ℎ))["𝑟𝑒𝑠𝑢𝑙𝑡"]
end if
for 𝑛𝑏 in 𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠[𝑚𝑎𝑐𝑟𝑜][𝑡𝑜𝑝𝑖𝑐] do

𝑠𝑡𝑢𝑑← 𝑔𝑒𝑡𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝐼𝑑(𝑛𝑏)
𝑒𝑣𝑎𝑙𝑆𝑡𝑢𝑑← 𝑒𝑣𝑎𝑙𝐷𝑖𝑟 + 𝑠𝑡𝑢𝑑
if 𝑒𝑣𝑎𝑙𝑆𝑡𝑢𝑑 not exists then

𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑟(𝑒𝑣𝑎𝑙𝑆𝑡𝑢𝑑)
end if
𝑜𝑏 𝑗 ← {”𝑚𝑎𝑐𝑟𝑜” : 𝑚𝑎𝑐𝑟𝑜, ”𝑡𝑜𝑝𝑖𝑐” : 𝑡𝑜𝑝𝑖𝑐, ”𝑠𝑡𝑢𝑑𝑒𝑛𝑡” : 𝑠𝑡𝑢𝑑}
if 𝑡𝑟𝑢𝑒𝑅𝑒𝑠𝑢𝑙𝑡 not empty then

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑁𝑜𝑡𝑒𝑏𝑜𝑜𝑘(𝑛𝑏, 𝑔𝑜𝑎𝑙𝑠, 𝑡𝑟𝑢𝑒𝑅𝑒𝑠𝑢𝑙𝑡)
end if
𝑜𝑏 𝑗[”𝑔𝑜𝑎𝑙𝑠”] ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑁𝑜𝑡𝑒𝑏𝑜𝑜𝑘𝑆𝑡𝑎𝑡𝑠(𝑛𝑏, 𝑔𝑜𝑎𝑙𝑠, 𝑡𝑜𝑝𝑖𝑐)
𝑜𝑏 𝑗[” 𝑓 𝑖𝑙𝑒𝑝𝑎𝑡ℎ”] ← 𝑛𝑏
for 𝑘𝑒𝑦 in 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 do

if 𝑘𝑒𝑦 not in 𝑜𝑏 𝑗[”𝑔𝑜𝑎𝑙𝑠”] then
𝑜𝑏 𝑗[”𝑔𝑜𝑎𝑙𝑠”][𝑘𝑒𝑦] ← {}

end if
𝑜𝑏 𝑗[”𝑔𝑜𝑎𝑙𝑠”][𝑘𝑒𝑦][”𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛”] ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛[𝑘𝑒𝑦]

end for
𝑒𝑣𝑎𝑙𝑆𝑡𝑢𝑑𝑃𝑎𝑡ℎ ← 𝑒𝑣𝑎𝑙𝑆𝑡𝑢𝑑 + 𝑤𝑜𝑟𝑘𝑃𝑎𝑡ℎ
store(𝑜𝑏 𝑗,𝑒𝑣𝑎𝑙𝑆𝑡𝑢𝑑𝑃𝑎𝑡ℎ)

end for
end for

end for

58



CHAPTER 7. EVALUATION AND ANALYSIS

An example of file produced by this algorithm is shown in Figure 7.1. As
stated before there are the macro topic, the topic, the student and the filepath
fields. The goals field is another json object which contains all the goals identified
by their number plus the overall object which is the sum of the keywords statistics
of all the goals. Each goal’s object contains the number, the textual requirement
and the number of queries wrote to solve the current goal. The keywords object
contains the information of the appearances of the keywords in the queries of
the current task. Eventually, the evaluation object shows the student’s best result
for the current goal, compared with the ground truth.

59



7.3. EVALUATION AND ANALYSIS MERGE

Figure 7.1: Example of a json file stored

60



8
Statistics

After collecting all the necessary data, organising them in order to group
them, when necessary, by macro-topic, topic or student and defining the func-
tions to obtain the usage of the keywords in the queries and the two functions to
sum bitmaps and to get the total number of queries given a portion of the solid,
it is possible to do some statistics.

Figure 8.1: Numbers of queries wrote
by students grouped by macro topic

Firstly we consider the statistics
about the macro-topics (Figure 8.1).
As reported in Table 4.1 there are
21 workflows for each macro-topic,
hence they are perfectly balanced. It is
clear that the Geography macro-topic
is the one with the lowest number of
total query. In contrast, movie-related
topics were the ones with the highest
number of queries. This can be the re-
sult of two factors: first the goals of the
Geography-related topics were easier

but since all the workflows were well-balanced (workload meaning) it is likely
that Wikidata treats films in a more complex way.

In Figure 8.2 there are the total number of queries grouped by the different
topics. On the left (Figure 8.2a) there are the topics about Geography, Sport
and Book while on the right (Figure 8.2b) there are the topics about Politics,
Companies and Movies. The red dashed horizontal line indicates the average

61



(a) Number of queries on Geography,
Sport and Book

(b) Number of queries on Politics, Com-
panies and Movies

Figure 8.2: Comparison on the total number of queries by topic

number of queries for each topic, considering the total number of queries wrote
by all the students in all the topics, which are 4861, divided by the number of
the topics, which are 24. It can be clearly seen that all the Geography’s topic
(the four on the left in the Figure 8.2a) are below the average number of queries
while the Movies topic (the four on the right of the Figure 8.2b) are all above
the average except for one, although slightly, with a peak on the Directors topic.
However, the values reported in these plots are the absolute values, considering
the sum of all the queries did by all the students on a specific topic. Recalling
that there are topics that fewer people have worked on, it would be better to
consider a plot where the total number of queries is normalised by the number
of people who worked on the specific topic. For instance, let consider the Movie
macro-topic and look in more detail at the values. The Table 4.1 denotes that
six students worked on Directors topic, four students worked on The Batman’s
topic, six students worked on Horror Franchises topic and five students worked
on Tv Series topic. If we assume all the topics were well workload balanced, then
it makes sense that the number of queries on Directors topic are about 50% more
than the Batman movies topic given that there are two more people worked on
it.

The two plots in Figure 8.3 represent the average number of queries wrote
by topic. For example the total number of queries wrote on the Directors topic
are 331 while the queries on The Batman movies topic are only 193. Given
that six students worked on the Directors the value in the plot of Figure 8.3b is

62



CHAPTER 8. STATISTICS

(a) Normalized number of queries on
Geography, Sport and Book

(b) Normalized number of queries on
Politics, Companies and Movies

Figure 8.3: Comparison on the total number of queries by topic normalized on
the number of students worked on the topic

almost 55 (331 divided by six) while the value of the Batman movies is almost
48 (193 divided by four), since only four people worked on it. This different
point of view shows that there are topics that were apparently “bad”, given the
low number of total queries, that are actually better than many others. One
example is The Batman movies against the Horror Franchises. In the plot of
Figure 8.2b the Horror Franchises was above the average number of queries per
topic while The Batman was below the average. The plot of Figure 8.3b reverses
the situation. The same happens in the Sport macro-topic between the topics
World Records and Olympics.

The other statistic is based on the use of SPARQL keywords, which depending
on the type of topics could be very different. First of all I did a global analysis
of the keywords over all topics and notebooks. The results in Table 8.1 shows
that there is a predominance of the Select keyword with a utilisation of over
99%. Selection is basically always used because the topic requirements were
always to provide answers involving the Wikidata objects provided as a starting
point. In order to do this, students approach was to explore the Wikidata objects
returning their properties which led to new discoveries. A small percentage of
queries used an Ask form to verify if some patterns exists or not, because students
usually did a select on that pattern and checked the results: if the result set was
empty, then it would be the to run an ask query with a negative answer. But if
the result set was not empty, then probably there were something interesting in
that result, because they were doing exploratory search and almost always they

63



wanted to see the the concrete result and not a simple true or false. Ask queries
were also used in some few tasks that required an answer of a comparison (e.g.
Is the maximum budget for a Tarantino’s movie higher of the max budget of an
Allen’s movie?).

Keyword Occurrences Percentage
Select 4841 99.58%
Ask 51 1.04%
Describe 1 0.02%
Construct 1 0.02%
Nested query 416 8.55%
Distinct 3412 70.19%
Limit 2349 48.32%
Offset 0 0.0%
Order by 1863 38.32%
Filter 1487 30.59%
Regex 485 9.97%
And 8 0.16%
Union 259 5.32%
Optional 343 7.05%
Graph 6 0.12%
Exists 171 3.51%
Not exists 137 2.81%
Minus 8 0.16%
Count 1293 26.59%
Max 114 2.34%
Min 138 2.83%
Avg 57 1.17%
Sum 29 0.59%
Group by 1050 21.6%
Having 56 1.15%
Group_concat 201 4.13%

Table 8.1: Keyword usage out of a total of 4186 queries

The second more frequent keyword is the Distinct. It is not uncommon that
queries can produce a result set with some repetitions. Sometimes this is what
we need, some others this is very annoying because it messes up the result. In
these cases, the Distinct keyword is used in the Select to avoid repetition of
rows in the result set. Let’s do a practical example. Consider a film director and
all the film he has directed, we want to find the properties of those films. First
of all we had to bind the director with all his/her movies and then return all the

64



CHAPTER 8. STATISTICS

outgoing edges of those movies. Usually movies has some standard properties
such as the instance of, the title, the genre and many others. If we are only
interest in discovering the different properties of a generic film, returning all
the properties of all the director’s movies will produce a result set with a lot of
duplicates. This can also happen when there are properties with several objects,
for example a person can be educated at different Universities, thus the property
educated at appears at least twice in the result set. Doing exploratory search a
fair number of queries is devoted to understand and discover relations between
objects, hence many times we just want to know if there is a relationship and
how it is called, cardinality is not of interest.

In order of frequency we find the Limit keyword, used in more or less half
of the queries. Limit allows to cut the result to a certain number of rows and it
is very useful when we want to see some instances of a class just as example to
understand which elements are in that class. Sometimes Limit is used when we
know that a result set is not so small, and we hope to find what we are looking
for in the first rows. In particular, Limit was crucial in our behaviour. Given
that there were more students working on the same database, complex queries
with big result sets slows down the performance, thus students were asked to
use the Limit every time they were not sure about the size of the result set.
Furthermore, it is very easy to write a wrong query that will retrieve millions of
rows as result.

Many workflow tasks required aggregation. These tasks are the most in-
teresting because they usually summarise previous findings. The Group By
keyword in fact was used in more than 20% of the queries while the most used
aggregation function is the Count that plays a role also in other situation outside
the Group By operation. Also the Order By is very used, more than one query
over three used it, and this keyword is usually used in the Group By queries,
in order to rearrange the result set and then possibly cut it with a Limit. The
ordering of the output was also used in the queries which retrieve the properties
of the objects in order to search alphabetically.
Filter is the last very used keyword. Its use is necessary to remove data

from the results. A very common example of its utilization regards dates, in
particular when only certain time intervals need to be selected.

After this generic analysis of the whole dataset, it is interesting to look at each
of the macro-topic individually. Firstly, to check the distribution of keywords
and whether their use is balanced between the different macro-topics. Then,

65



to understand what the key differences were between the macro-topics, e.g.
whether some required more aggregation than others. Table 8.2 shows the
keywords usage for each macro-topics, but many underused keywords have
been omitted.

In general, we can see that Select is used in more than 99% of the keywords
for each macro-topic, as already indicated by the overall statistics in Table 8.1.
The tables also show the use of Ask, the second most common SPARQL construct,
which was used most often in the macro topics of Movies, Companies and
Politics. This is probably due to the fact that there were some tasks in the
workflows of these macro topics that required a true/false answer. One of the
examples already used is a task in the Director’s Workflow of the Movie Macro
topic: “Is the maximum budget for a Tarantino’s movie higher of the max budget
of an Allen’s movie?”. Given that six students worked on this workflow, if we
assume that everyone used an Ask query to answer this task, we have already
reached half of the usage of this keyword. Other uses may be other tasks of the
same type or student curiosity.

Another keyword very used and well balanced amongst macro-topics is
Distinct. In each macro topic, the use of this keyword was around 70%, a
reminder that exploratory research requires many queries to understand the
properties of the entities involved and their relationships.

One interest statistics is the usage of Limit. There are macro-topics, such as
Movie and Book, which use this keyword in 40% of their queries, while other
macro-topics, such as Geography and Companies, use this keyword in 55-60%
of their queries. A plausible motivation is that there is more data available for
these macro-topics and therefore larger result sets. Another motivation is that
there are more tasks on these macro-topics workflows which required a cut on
the result set. For example, questions such as “Return the top-10 of...” certainly
require the use of the Limit.

In terms of aggregations, which are certainly the most interesting queries
to write and visualise their results, there is a lot of diversity in the data of the
different macro-topics. The main keyword concerning aggregation is Group By.
Book’s macro-topic is the one with the lowest usage of this keyword, i.e. the
one with the lowest aggregation. Hence, it is clear that for this macro-topic
there were fewer tasks requiring aggregation or it is possible that the entities
involved in this macro-topic are related in a simpler way. On the other hand,
the macro topic Companies is the one with the most aggregations. More than

66



CHAPTER 8. STATISTICS

every third query uses the keyword Group By. This may be due to the complex
relationships between the entities involved in this macro-topics or to the more
complex requirements of the tasks.
Count is very used in the aggregation query as aggregation function. The

other aggregation functions (Max,Min,Sum,Average) in fact are omitted in these
Tables because their low usage is not comparable to Count. Actually, Count is
at least as common as Group By. Although it is used as much as Group By in
Companies, it is used much more in the other macro-topics. This difference
may be due to the fact that in the other macro-topics there was a greater need to
know the count of other things, e.g. the number of properties of certain entities.
Or, in the Companies, the other aggregation functions were also used a lot.

About Order By, it seems that its utilization is proportional to Group By.
In fact, many aggregation queries require sorting by the aggregation function
to get the best results first and eventually truncate the result up to a certain
size. Although this is one of the most common uses, sorting is useful when
searching for the label of a specific property, as entities usually have hundreds
of properties.

Another type of queries proportional to the use of Group By are the nested
query. Even though this is not a SPARQL keyword, we have included it in
the statistics because it is very important to understand when queries become
complex. In fact, the aggregation queries, that are the most useful and interesting
to perform, are also the most complicated, because they usually relate many
entities from different domains. Very often, these queries require aggregation
on a result set that cannot be obtained immediately, but a sub-query is required.

67



Geography Macro Topic
Keyword Absolute Relative
Select 590 99.66%
Ask 3 0.5%
Nested 43 7.26%
Distinct 439 74.15%
Limit 353 59.62%
Order by 207 34.96%
Filter 138 23.31%
Count 195 32.93%
Group by 151 25.5%
TOTAL 592 100%

(a) Geography keywords usage

Sport Macro Topic
Keyword Absolute Relative
Select 879 99.65%
Ask 5 0.56%
Nested 43 4.87%
Distinct 605 68.59%
Limit 419 47.5%
Order by 317 35.94%
Filter 251 28.45%
Count 196 22.22%
Group by 138 15.64%
TOTAL 882 100%

(b) Sport keywords usage
Book Macro Topic

Keyword Absolute Relative
Select 926 99.46%
Ask 7 0.75%
Nested 65 6.98%
Distinct 664 71.32%
Limit 384 41.24%
Order by 259 27.81%
Filter 299 32.11%
Count 168 18.04%
Group by 121 12.99%
TOTAL 931 100%

(c) Book keywords usage

Politics Macro Topic
Keyword Absolute Relative
Select 756 99.6%
Ask 12 1.58%
Nested 69 9.09%
Distinct 521 68.64%
Limit 405 53.35%
Order by 304 40.05%
Filter 242 31.88%
Count 229 30.17%
Group by 169 22.26%
TOTAL 759 100%

(d) Politics keywords usage
Companies Macro Topic

Keyword Absolute Relative
Select 705 99.15%
Ask 12 1.68%
Nested 86 12.09%
Distinct 507 71.3%
Limit 396 55.69%
Order by 371 52.18%
Filter 282 39.66%
Count 262 36.84%
Group by 259 36.42%
TOTAL 711 100%

(e) Companies keywords usage

Movie Macro Topic
Keyword Absolute Relative
Select 985 99.89%
Ask 12 1.21%
Nested 110 11.15%
Distinct 676 68.55%
Limit 392 39.75%
Order by 405 41.07%
Filter 275 27.89%
Count 243 24.64%
Group by 212 21.5%
TOTAL 986 100%

(f) Movie keywords usage

Table 8.2: Keywords usage for each macro topic

68



9
Conclusions and Future Works

The data analysis carried out in this thesis was very stimulating and led me
to develop new skills and new ways of dealing with the data available. The
entire work of this thesis can be summarised in three main points:

• collect the data and analyze the SPARQL keywords usage

• create the ground truths of the Movie-related workflows

• use the ground truths to evaluate the students workflows

Initially, with all the Python notebooks available, I needed to be able to
interact with them and find a way of extracting all the data, and that was my
starting point. Once I realised that it was possible to load the notebooks into
my script as a JSON files, everything was simplified by the great organisation of
these files. The notebook cells became a simple array of values, much easier to
handle.

The next step was to analyse all the queries to find the SPARQL keywords
usage and to find a suitable structure to hold all this data so that it could be
indexed according to the different entities involved: topics and students. I
therefore created a 6-dimensional matrix, where each dimension corresponds to
a specific category. In this way, it is possible to access this structure by selecting
different parts of it as required, and thus generate statistics defined on a precise
subset of the structure. The first part of my thesis relates to these first two phases
and was a completely programming work.

The second main point, concerning the creation of ground truths, was ba-
sically to understand how entities and relationships are organised in Wikidata

69



given a certain workflow. At this stage, I was improving the knowledge I already
had, because I had already done one of the workflows related to the films, and I
was learning new knowledge about the other topics. Then, I focused on creating
well-designed workflows that answered all questions as quickly and accurately
as possible. Ultimately, given the need to use ground truths in the evaluation
phase, I found a way to save their results so that they could be used by a script.
This was perhaps the most challenging part, as the results needed to be stored
in a clear and simple way so that they could be easily used later. It proved to be
very difficult also because many of the tasks required were “exploratory”, i.e.
with open-ended questions with multiple answers.

Finally, the last part of the thesis was dedicated to the integration of the
first two parts. Firstly, a script was created using ground truth files to evaluate
the students’ notebooks. Then, an output object was created containing all the
information available for each notebook, both the use of SPARQL keywords and
the evaluation. Finally this object is stored in a file in the student’s folder. In
the end, each student has a folder containing as many files as the number of
workflows they have completed.

This thesis also analysed the different macro topics and the relationship be-
tween task requests and keyword usage. These analyses showed that, with a
few exceptions, all queries used the Select construct. Furthermore, since Wiki-
data is very large and each entity can generally have hundreds of properties,
the use of Limit was essential to truncate the result sets. Another important
confirmation comes from the extensive use of the Group By keyword and aggre-
gation functions, especially Count, as many tasks require aggregation. The use
of Limit is so common that it was also widely used in Group By queries, along
with sorting, to select and display only the best results.

Ground truths gave me the opportunity to explore Wikidata a lot, as on many
occasions I had to compare the results of our Wikidata snapshot with the results
of the online Wikidata. This made me realise the importance of reifications,
as a lot of information is associated with a time interval. An example of this
situation is shown in Figure 2.6: Douglas Adams was educated at two different
schools, and his Wikidata page contains some qualifiers to add information
about the time interval and the type of school. Many workflow tasks required
examining changes over the years, and this was the most difficult type of task,
as our Wikidata snapshot does not contain any reification.

Evaluation is very useful for checking basic tasks, but when the requirements

70



CHAPTER 9. CONCLUSIONS AND FUTURE WORKS

become more complex, people think differently. Obviously, when the tasks are
general and it is not well defined what the answer should contain, the students
try to do their best by answering according to their own logic. But even with
more specific questions, where the query requires aggregation and a sub-query,
there is always a phase of interpretation by the students and the results could
be very different. For example: find the number of films in which Tarantino has
appeared. One student might think of counting the distinct films and another
might think of counting all the appearances, so that if Tarantino appeared in
the same film as director and actor, that film would be counted twice. This is
a simple example, but in general, with more complex requirements, these are
the difficulties to be faced, and it is hard to evaluate such a workflow using only
ground truth. This is because this kind of work is still exploratory search, and
we must always remember the basics of exploratory search: you do not really
know the domain and the schema, and you are never sure that you have found
all the data and that it is correct. This is the greatest lesson of this thesis.

As far as future work is concerned, in agreement with the professors we plan
to continue this research. In addition, new workflows with new topics were
created in this second year of the Database 2 course. This expands our data
set and allows us to refine the statistics and possibly confirm the conclusions
drawn from this thesis. Looking at the workflow tasks available for the work on
this thesis, we realised that the requirements were too general, so this year we
have modified them to be more precise. This will make it easier to evaluate the
workflows produced by the students against a ground truth. Remembering that
we are always talking about exploratory search, it might seem that the choice to
be so specific reduces the exploratory part of this work. In reality, there is rarely
only one way to achieve a result, and Wikidata is an open knowledge base, so
anyone can edit it. Even if there are standards to follow, one cannot be sure that
people editing Wikidata entities are always using the correct standards. These
errors are easily corrected for all known entities, as many people work on them,
but in some cases the data remains incomplete or wrong.

Exploratory search is a really interesting area of research and, in fact, it is
what we do every day by searching for information we do not know on search
engines. This way of doing it just through querying a knowledge base allows us
to learn a lot and understand the difficulties of managing so much interconnected
data.

71





References

[1] World Wide Web Consortium. Resource Description Framework (RDF) Model
and Syntax Specification. 1999. url: https://www.w3.org/TR/PR-rdf-
syntax/Overview.html.

[2] World Wide Web Consortium. RDF 1.1 Turtle: Terse RDF Triple Language.
2014. url: https://www.w3.org/TR/turtle/#language-features.

[3] World Wide Web Consortium. RDF 1.1 N-Triples: A line-based syntax for an
RDF graph. 2014. url: https://www.w3.org/TR/n-triples/.

[4] World Wide Web Consortium. RDF 1.1 XML Syntax. 2014. url: https:
//www.w3.org/TR/rdf-syntax-grammar/.

[5] Resa A. Roth Ryen W. White. Exploratory Search: Beyond the Query-Response
Paradigm. 2009.

[6] Gary Marchionini. “Exploratory search: from finding to understanding”.
In: Communications of the ACM 49.4 (2006), pp. 41–46.

[7] DBpedia. url: https://www.dbpedia.org.

[8] Welcome to Wikidata. url: https://www.wikidata.org/wiki/Wikidata:
Main_Page.

[9] Wikimedia Foundation Inc. Wikimedia Foundation. url: https : / / en .
wikipedia.org/wiki/Wikimedia_Foundation.

[10] Wikimedia Foundation Inc. Wikimedia Foundation Mission. url: https:
//wikimediafoundation.org/about/mission/.

[11] Wikidata Query Service. url: https://query.wikidata.org.

[12] World Wide Web Consortium. url: https://www.w3.org/TR/2013/REC-
sparql11-overview-20130321/.

[13] OpenLink Software. url: https://virtuoso.openlinksw.com.

73

https://www.w3.org/TR/PR-rdf-syntax/Overview.html
https://www.w3.org/TR/PR-rdf-syntax/Overview.html
https://www.w3.org/TR/turtle/#language-features
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.dbpedia.org
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://en.wikipedia.org/wiki/Wikimedia_Foundation
https://en.wikipedia.org/wiki/Wikimedia_Foundation
https://wikimediafoundation.org/about/mission/
https://wikimediafoundation.org/about/mission/
https://query.wikidata.org
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://virtuoso.openlinksw.com


REFERENCES

[14] OpenLink Software. url: https://docs.openlinksw.com/virtuoso/
logicaldatamodel/.

[15] OpenLink Software. url: https://docs.openlinksw.com/virtuoso/
colstore/.

[16] WDQS Search Team. “WDQS Backend Alternatives”. In: (2022).

[17] NumPy. url: https://numpy.org.

74

https://docs.openlinksw.com/virtuoso/logicaldatamodel/
https://docs.openlinksw.com/virtuoso/logicaldatamodel/
https://docs.openlinksw.com/virtuoso/colstore/
https://docs.openlinksw.com/virtuoso/colstore/
https://numpy.org


Acknowledgments

I would like to express my deepest appreciation to the University of Padova
and all the professors I have met over the years, who have always been well
prepared in their teaching. In particular to the Professors Gianmaria Silvello
and Matteo Lissandrini (Aalborg University), who supervised me in the research
training and in the Master Thesis. They gave me the opportunity to study and
work on a topic of great importance.

I would especially like to thank my family who gave special support to my
career by always believing in me and my academic path when things did not
always go well. I encountered several difficulties but it is thanks to my parents
that I can celebrate this success today. The rest of my family, my aunts, uncles
and grandparents were also important in achieving this goal, reassuring me day
after day about my capabilities and potential to achieve my goals.

75


	List of Figures
	List of Tables
	List of Algorithms
	List of Code Snippets
	List of Acronyms
	Introduction
	Background
	Resource Description Framework (RDF)
	Exploratory Search
	Wikidata
	History
	Item's Structure
	Wikidata RDF Graph


	Technologies
	SPARQL
	Prefixes
	SPARQL Constructs
	Pattern Matching

	Virtuoso Universal Server

	Project and Data
	Project Assignment
	Available Data

	Data Processing
	Path collection
	Information Collection
	Dictionary Translation
	Tasks Collection
	Query Collection
	Query Keywords Analysis

	Representation of the Information
	Keywords Analysis

	Ground Truth
	Creation of Ground Truths
	Storage Model of Ground Truths
	Single Types
	Referred Types
	Set Types

	Storing Process of Ground Truths

	Evaluation and Analysis
	Workflows Evaluation
	Workflows Analysis
	Evaluation and Analysis Merge

	Statistics
	Conclusions and Future Works
	References

