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Introduction

The objective of this project is to evaluate the behavior of likelihood-
based inference in a model for the study of association in contingency tables.

The main disadvantages of the common loglinear models which allow
association in contingency tables are that for ordinal classifications the mod-
els typically ignore ordinality and that for two-way contingency tables they
are saturated. Instead, the presented model, the Linear-by-Linear Associa-
tion model, describes association using just one additional parameter with
respect to the independence model.

In particular, inference on the association parameter of the model is stud-
ied using two different statistics for significance testing. The first statistic is
the usual signed root of the likelihood ratio, whereas the other one is a mod-
ification of the first. Both solutions are implemented by Bellio and Pierce
(2016) in the R likelihoodAsy.

Since we deal with parametric statistical models and to do inference the
likelihood is used, the first chapter presents an introduction to likelihood-
based inference. Then the usual loglinear models used to model contingency
tables are described in the second chapter, followed by the one which deals
with the Linear-by-Linear Association model, in which two examples are
introduced. In the fourth chapter the modification of the signed squared root
of the likelihood ratio is described, as also its application using the R package.

Finally, the last chapter shows some simulations studies obtained both
under association and independence and with several dimensions for the two-
way table. The code used for the simulations, together with the parameters
chosen for the simulation are listed in the Appendix.
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Chapter 1

Likelihood

Fisher in the 1920s introduced inference procedures specificly focused on
dealing with parametric statistical models.

Suppose we have a random variable Y and its observed value y, and that
the probability density function of Y considering y, f(y; θ), is known except
for the value of a real parameter θ. The objective is to make assertions about
the distribution of Y , based on the observed data y.

1.1 Likelihood Function
The likelihood function provides the basis for procedures for point and in-

terval estimate and for significance testing. In addition, thanks to the asymp-
totic theory, distribution problems linked to inference procedures based on
the likelihood function find simple approximate solutions, even with moder-
ate sample sizes.

The likelihood is defined to be a function of θ for y fixed, L : Θ→ R+

L(θ) = f(y; θ), θ ∈ Θ,

and when we want to underline the data dependence, the notation becomes
L(θ; y).

Given the observed data y, θ1 ∈ Θ is more plausible than θ2 ∈ Θ as value
of the parameter of the data-generating model if L(θ1) > L(θ2), and the
two values can be compared through the ratio L(θ1)/L(θ2). Therefore L(θ)
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cannot be considered a density function on Θ. Possible comparisons are the
ones between pairs of parameter values, and concern with the adequacy of
couples of plausible data-generating models. Since the ratio does not change
if both L(θ1) and L(θ2) are multiplied by a constant, factors which do not
depend on θ can be ignored. Hence two likelihood functions which differ only
by multiplicative constants are considered as equivalent.

Often it can be convenient to use the likelihood function on the logarith-
mic scale. We therefore define the log-likelihood function

l(θ) = logL(θ),

with l(θ) = −∞ if L(θ) = 0. The monotonically increasing trasformation is
mathematically convenient and makes it simpler to describe the results. The
camparison between log-likelihood functions is made through the difference,
and if they differ in additive constants they are considered as equivalent.

1.2 Maximum Likelihood

Given the observed data, the maximum likelihood estimate θ̂ ∈ Θ is the
value of θ which maximizes the likelihood function, or equivalently the log-
likelihood, since the idea is that the value of the likelihood function will be
larger for values of θ near the true value of θ, θ0, that is the one corresponding
to the true data-generating model f 0(y), i.e. such that f 0(y) = f(y; θ0).
Hence, we define

θ̂ ∈ Θ : L(θ̂) = sup
θ∈Θ

L(θ).

Generally we cannot say that θ̂ exists and that it is unique. If θ̂ = θ̂(y) exists
and it is unique with probability one, then the random variable θ̂ = θ̂(Y ) is
called maximum likelihood estimator.

Since many properties of interest of an estimator are asymptotic, it is
sufficient for θ̂(y) to exist and to be unique with probability which tends
towards one as n→ +∞ to define the maximum likelihood estimator θ̂(Y ).
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1.3 Regularity Conditions

There are some regularity conditions that have to be satisfied in order
to govern the behavior of the log-likelihood function and its derivatives, in a
mathematically tractable manner. Models which satisfy these conditions are
called regular models. The conditions are

• Θ is an open subset of Rp;

• the log-likelihood is a function differentiable at least three times, with
continuous partial derivatives in Θ;

• the model is identifiable, i.e. different values of θ correspond to different
probability distributions. Formally,

θ1 6= θ2 ⇒ ∃B : P (Y ∈ B; θ1) 6= P (Y ∈ B; θ2);

• the model is correctly specified, i.e. there is a value θ0 ∈ Θ for which
f(y; θ0) = f 0(y);

• the distribution or density functions have the same support, which does
not depend on θ.

More details can be found in the Section 3.2.3 of Azzalini (2001).
Dealing with regular parametric models, θ̂ and the partial derivatives of

the log-likelihood function with respect to the components of θ are useful
quantities for inference.

1.4 Score Function

The vector which contains the first order partial derivatives of the log-
likelihood function

l∗(θ) =

(
∂l(θ)

∂θ1

, ...,
∂l(θ)

∂θp

)
is called score function.
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If the model is regular, the maximum likelihood estimate is the unique
solution of the likelihood equation

l∗(θ) = 0,

which is a system of equations when p > 1. Sometimes it is possible to solve
the equation algebraically, but in general it is solved numerically.

1.5 Information

1.5.1 Observed Information
The matrix p × p which contains the second order partial derivatives of

the log-likelihood function, with changed sign,

j(θ) = −l∗∗(θ) =

[
− ∂

2l(θ)

∂θr∂θs

]
, r, s = 1, ..., p,

is called observed information matrix.
The observed information can be used to evaluate the accuracy in estimat-

ing the true parameter θ0, since the behavior of the log-likelihood function in
a neighbourhood of θ̂ is determined by the second order partial derivatives.

For p = 1 the bigger j(θ̂), the more the likelihood is concentrated around
θ̂, so j(θ̂) is a measure of the information that y provides on θ. It can be seen
as an index of the speed of the fall of the log-likelihood moving away from θ̂,
therefore of the degree of preference that the likelihood assign to θ̂ compared
with other values of θ. When p > 1, it is a positive-definite matrix, and so the
bigger the determinant, the smaller is the region of values of the parameter
having the likelihood of the same order of magnitude of θ̂. In particular, if the
model is regular, the log-likelihood function has approximately a parabolic
shape, especially in the region with high likelihood.

1.5.2 Expected information
The expected information or Fisher information is the expected value of

the observed information

i(θ) = Eθ {j(θ)} =

[
−Eθ

(
∂2l(θ)

∂θr∂θs

)]
, r, s = 1, ..., p.
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1.6 Log-Likelihood Ratio Statistic
In a significance test, we compare the null hypothesis H0 : θ = θ0 with

the alternative hypothesis H1 : θ 6= θ0. A natural choice for such comparison
is to use the log-likelihood ratio statistic

W (θ0) = 2
{
l(θ̂)− l(θ0)

}
.

Using a Taylor expansion, as shown in the Section 3.3 of Pace and Salvan
(2001), l(θ) in a neighbourhood of θ̂ is approximately quadratic

l(θ)
.
= l(θ̂)− 1

2
(θ − θ̂)2j(θ̂).

Hence, l(θ)− l(θ̂) .
= −1

2
(θ− θ̂)2j(θ̂). Since the log-likelihood ratio statistic is

obtained calculating this quantity in θ = θ0 and multiplying it for −2, it is
clear that high values of the statistic indicate that the null hypotesis has to
be rejected.

Sometimes W (θ0) is a monotonically increasing function of a statistic
t(y), whose distribution under the null hypothesis is known, so it is possible
to calculate the exact p-value

Pθ0 {W (θ0;Y ) > W (θ0; y)} = Pθ0 {t(Y ) > t(y)} .

More often, however, it is necessary to use an approximate null distribution.
It can be shown that the asymptotic null distribution of W (θ0) is, under
regularity conditions, chi-squared with p degrees of freedom.

1.7 Signed Root Log-likelihood Ratio Statistic
When p = 1 other types of significance tests can be considered, such as

test for H0 : θ = θ0 versus the one-sided alternative hypothesis H1 : θ > θ0,
or H1 : θ < θ0. In these cases it is natural to use the signed root log-likelihood
ratio statistic

r(θ0) = sgn(θ̂ − θ0)
√
W (θ0),

where sgn is the sign function, whose value is 1 if its argument is positive, -1
if its argument is negative, 0 if its argument is 0.
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As for W (θ0), sometimes r(θ0) is a monotonically increasing function of
a statistic whose distribution under the null hypothesis is known, so it is
possible to calculate the exact p-value. However, usually, it is necessary to
use an approximate null distribution. It is shown that the asymptotic null
distribution of r(θ0) is, under regularity conditions, N(0, 1).

It is clear that in the significance test having bilateral alternative hypoth-
esis r(θ0) and W (θ0) lead to the same results.

1.8 Profile Likelihood
When p > 1 we might be interested in only one component of the param-

eter, or on a subset of the parameter. So the parameter θ, whose dimension
is p, can be seen as partitioned into two components, θ = (τ, ζ). The first one
is the parameter of interest τ , whose dimension is k, with 1 ≤ k < p. The
other one, ζ, which has dimension p− k, is called nuisance parameter, since
it is not of immediate interest.

The profile likelihood for τ is the function

LP (τ) = L(τ, ζ̂τ ),

where ζ̂τ is the maximum likelihood estimate of ζ in the submodel having τ
fixed. Moreover, lP (τ) = logLP (τ) is called profile log-likelihood function.

For the null hypothesis H0 : τ = τ0 it is natural to use the profile log-
likelihood ratio

WP (τ0) = 2
{
l(τ̂ , ζ̂)− l(τ0, ζ̂0)

}
.

The asymptotic null distribution of WP (τ0) is, under regularity conditions,
chi-squared with k degrees of freedom.

For the computation of WP (τ0) it is sufficient to know the maximum like-
lihood estimate and the constrained maximum likelihood estimate calculated
under the null hypothesis H0 : θ ∈ Θ0, where Θ0 ⊂ Θ

WH0
P = 2

{
sup
θ∈Θ

l(θ)− sup
θ∈Θ0

l(θ)

}
.

When k = 1, it might be interesting also to consider significance tests such
as H0 : τ = τ0 versus the one-sided alternative H1 : τ > τ0, or H1 : τ < τ0.
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In these cases we can use the signed root of WP (τ0)

rP (τ0) = sgn(τ̂ − τ0)
√
WP (τ0).

The asymptotic null distribution of rP (τ0) is, under regularity conditions,
N(0, 1).
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Chapter 2

Loglinear Models for Contingency Ta-
bles

2.1 Models for Count Data

There are a lot of applications in which the response variables have counts
as their possible outcomes. Examples are the number of students who studied
in the library of the Department of Statistical Sciences last week, or the
number of ice-creams bought today in a given ice-cream shop of Padova
between 3 p.m. and 4 p.m.

Also the frequencies of a frequency distribution are counts, and occur as
entries in cells of contingency tables that cross-classify categorical variables
such as, citing Agresti (2015), the number of people in a survey who are
female, college educated, and agree that humans are responsible for climate
change. In frequency distributions the total can be fixed or not, and in the
first case the natural statistical model is the multinomial distribution. Never-
theless, since the multinomial model can be obtained by conditioning from a
Poisson model, it is possible to treat in the same way contingency tables gen-
erated with different sampling schemes through the same loglinear Poisson
models.
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2.1.1 Poisson Model
The simplest statistical model for count data without any constraint on

the total is the one in which the response variables, the counts, are realiza-
tions of independent random variables having Poisson distribution.

For counts of events that occur randomly over time or space the Poisson
distribution is often utilized, in particular when outcomes in different time
periods or regions are independent. Also, the Poisson model can be obtained
as limit of the Binomial distribution Bi(m,µ/m), when m→∞ and π = µ/m

is very small.
When there are also concomitant variables, we are interested in models

which explain the dependence of the means µi by means of the values of the
explanatory variables. The null model is the one in which the means µi are
constant.

The Poisson Generalized Linear Model assumes Yi ∼ Poisson(µi) and
g(µi) = ηi = xiβ, where xi is a vector of explanatory variables. The likelihood
function is

l(β) =
n∑
i=1

{yi log(µi)− µi} , (2.1)

with µi = g−1(xiβ). The likelihood equations for β are

l∗ =
n∑
i=1

(yi − µi)xir
µi

∂µi
∂ηi

= 0, r = 1, .., p.

The canonical link for a Poisson generalized linear model is the log link
log(µi) = ηi. The model then is called Poisson loglinear model and implies
Yi ∼ P (eµi), where the means satisfy the exponential relation

µi = exp
{
xTi β

}
.

A 1-unit increase in xir has a multiplicative impact on µi of a factor eβr .
Except for very simple cases, the maximum likelihood estimate is ob-

tained numerically through the Iteratively Reweighted Least Squares algo-
rithm, which is implemented in most statistical softwares. The estimated
covariance matrix of β̂ is

v̂ar(β̂) = (XT ŴX)−1,
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where, with the log link, W is a diagonal matrix with elements µ̂1, · · · , µ̂n.
The deviance of a Poisson generalized linear model is

D(y, µ̂) = 2
n∑
i=1

[
yi log

(
yi
µ̂i

)
− yi + µ̂i

]
.

It can be utilized to test the goodness of fit of the model when the number
n of Poisson observation is fixed and the means µi diverge. This happens,
for instance, in contingency tables having a fixed number of cells and large
sample size.

Also the residuals can provide useful information, underlining the pres-
ence of unusual observation or patterns. Another possible way to judge good-
ness of fit is to compare the sample proportion of {0, 1, 2, ...} observation with
the fitted frequencies

∑n
i=1 Pr(Yi = j; β̂)/n.

2.1.2 Loglinear Models for Contingency Tables
Binomial and multinomial models are often used with categorical response

variables. With multivariate categorical responses they can be applied to each
marginal distribution, or alternatively the multinomial model can be used to
analyze the joint distribution, to investigate if the data present particular
independence, association or interaction schemes.

Generally, inference on the parameters of the multinomial models coin-
cides with inference based on the Poisson models, in particular for inde-
pendent Poisson counts in the cells of a contingency table. The equivalence
occurs because the multinomial model can be obtained from a Poisson model
through conditioning on the sample size, or on the rows or column totals, as
shown in Section 2.1.4.

2.1.3 Sampling Schemes
Counts can be generated from different sampling schemes depending on

the fact that the sample size, or the marginal totals for a variable, are fixed
or not.

If there are no constraints on the totals, a simple model assumes yij
realization of Yij ∼ P (µij), and it is supposed that every yij is independent
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from the other observations. For a two-way table with r rows and c columns,
the likelihood function is

r∏
i=1

c∏
j=1

µ
yij
ij e
−µij

yij!
.

If instead the total count, that is the sample size s =
∑r

i=1

∑c
j=1 yij, is

fixed, then the distribution is a multinomial and the likelihood function is

s!∏
i,j yij!

∏
i,j

π
yij
ij ,

with 0 < πij < 1 and
∑

i,j πij = 1. The parameters πij and the µij are linked
through the relation

πij =
µij∑
i,j µij

.

A contingency table can also be obtained with sampling schemes in which
the row totals - or column totals - are fixed. The statistical model then will be
the product of the multinomial distributions related to each row (or column).

2.1.4 Connection between Multinomial and Poisson distribu-
tions

It is assumed that (y1, ..., yn) are realizations of independent Poisson ran-
dom variables with means (µ1, ..., µn), in particular µi = ex

T
i β in Poisson

models having canonical link. Also the total s =
∑

i yi has a Poisson distri-
bution, with mean µ =

∑
i µi.

Conditioning on s, (Y1, ..., Yn) will have no longer Poisson distribution
because they are no longer independent, since the sample size cannot exceed
s and the value of one influences the possible range for the others.

The conditional probability is

P

{
(Y1 = y1, ..., Yn = yn)|

n∑
j=1

Yj = s

}
=
P (Y1 = y1, ..., Yn = yn)

P (
∑

j Yj = s)

=

∏
i e
−µiµyii /yi!

e−
∑

j µj(
∑

j µj)
s/s!

=
s!∏
i yi!

n∏
i=1

πyii ,

(2.2)

where πi = µi/
∑

j µj. The result is the multinomial distribution character-
ized by sample size s and probabilities πi.
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2.2 Loglinear Models in Two-Way Contingency Ta-
bles

Suppose we have Yij independent counts having Poisson distributions and
means µij satisfying

µij = µφiψj,

with φi > 0, ψj > 0 and
∑

i φi =
∑

j ψj = 1.
Under independence, the mean of the Poisson loglinear model µij has a

loglinear structure
log µij = β0 + βXi + βZj , (2.3)

where βXi and βZj are the effects of the two classification variables X and Z.
Identifiability requires a constraint on

{
βXi
}
and one on

{
βZj
}
.

As shown in (2.2), conditioning on the total s, the cells counts have a
multinomial distribution and probabilities

πij =
µij∑
i,j µij

=
µjh
µ

= φiψj.

Since
∑

i φi =
∑

j ψj = 1, we have φi = πi+ and ψj = π+j. Hence, under
independence, πij = πi+πj+.

Exponentiating the Poisson loglinear model (2.3) and dividing both sides
by µ, the intercept parameter β0 cancels. Therefore, the Poisson model has
1+(r−1)+(c−1) parameters, whereas the multinomial one (r−1)+(c−1).

The model matrix for the Poisson loglinear model contains the values
of the indicator variables for the two categorical variables. For instance, for
r = c = 2 and βX1 = βZ1 = 0, the model is

log µ =


log µ11

log µ12

log µ21

log µ22

 =


1 0 0

1 0 1

1 1 0

1 1 1


 β0

βX2
βZ2

 .
The log-likelihood function of the model is

l(β0, β
X , βZ) =

∑
i

∑
j

yij log µij −
∑
i

∑
j

µij

= β0y++ +
∑
i

βXi yi+ +
∑
j

βZj y+j −
∑
i

∑
j

exp(β0 + βXi + βZj ),
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where y++ =
∑

i,j yij, yi+ =
∑

j yij and y+j =
∑

i yij.
The likelihood equations impose the identity∑

i

yixir =
∑
i

µixir (2.4)

which is satisfied for µ̂++ =
∑

i,j µ̂ij = y++, µ̂i+ =
∑

j µ̂ij = yi+ and µ̂+j =∑
i µ̂ij = y+j. The maximum likelihood estimates then satisfy µ̂ij = yi+y+j/s,

where s = y++.
Conditioning on s and maximizing the log-likelihood of the multinomial

distribution
∑

i

∑
j yij log πij, we obtained the same fit and πij is

πij =
µij∑

i

∑
j µij

=
eβ

X
i +βZ

j∑
i

∑
j e

βX
i +βZ

j

,

so π̂ij is the product of the sample marginal proportion

π̂ij =
yi+
s

y+j

s
.

To test the goodness of fit of the independence model the Pearson statistic
is used

X2 =
∑
i

∑
j

(yij − µ̂ij)2

µ̂ij
.

The null approximate distribution is chi-squared with (r − 1)(c− 1) degrees
of freedom, for both Poisson and multinomial models.

2.3 Likelihood in Loglinear Models
In this paragraph we show the connection between the Poisson likeli-

hood function and the multinomial one, through the comparison of the log-
likelihood functions.

As mentioned above, the Poisson log-likelihood function is

lP (µ) =
∑
i

(yi log µi − µi)

and the multinomial one is

lM(µ) =
∑
i

(yi log πi) =
∑
i

(yi log µi − yi)
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since µi = sπi. Hence the two functions differ by an additive constant under
the condition for which the model includes a constant term so that∑

i µ̂i =
∑

i yi for the identity imposed by the likelihood equations of the
Poisson model (2.4).

Therefore it is possible to estimate loglinear models having multinomial
distribution through the Poisson likelihood function. In fact, the Poisson
loglinear model (2.3) can be written highlighting the parameter γ related to
the constant explanatory variable

log µi = γ + zTi β

where zTi β is the component connected to the other explanatory variables zi,
in which β has one parameter less than usual. So lP (µ) becomes

lP (µ) =
∑
i

yi log µi −
∑
i

µi

=
∑
i

yi(γ + zTi β)−
∑
i

µi

= sγ + (
∑
i

yiz
T
i )β −

∑
i

µi

and given that
∑

i µi = µ++ =
∑

i exp(γ + zTi β) we have log µ++ = γ +

log
{∑

i exp(zTi β)
}
, and πi = µi/

∑r−1
h=1 µh = exp(zTi β)/

∑r−1
h=1 exp(zTh β), lP (µ)

can be split as follows

lP (µ++, β) =

{
(
∑
i

yiz
T
i )β − s log

[∑
i

exp(zTi β)

]}
+ [s log µ++ − µ++]

= lM(β) + [s log µ++ − µ++] .

Since the second term on the right-hand side of the above equation does not
depend on the parameter β, the value β̂ which maximizes lP is the same β̂
which maximizes lM . Also the second order partial derivatives with respect
to β are the same, so also the standard errors will be the same. More details
can be found in the Section 6.4.3 of Azzalini (2001).
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2.4 Loglinear Association Parameters
The association between the two classification variables can be permitted

modifying the loglinear model (2.3) adding the interaction terms

log µij = β0 + βXi + βZj + βXZij . (2.5)

The interaction parameters can be specified so that they equal the cross-
product of the of the indicator variables ofX and Z. After stating appropriate
constraints for identifiability, such as βXZ1j = βXZi1 = 0 for all i and j, the
number of the interaction terms is (r− 1)(c− 1), so (2.5) corresponds to the
saturated model.

Interaction parameters are related to log odds ratios. For instance, for
r = c = 2, the log odds ratio is

log
π11π22

π12π21

= log
µ11µ22

µ12µ21

= log µ11 + log µ22 − log µ12 − log µ21 =

= (β0 + βX1 + βZ1 + βXZ11 ) + (β0 + βX2 + βZ2 + βXZ22 )+

− (β0 + βX1 + βZ2 + βXZ12 )− (β0 + βX2 + βZ1 + βXZ21 )

= βXZ11 + βXZ22 − βXZ12 − βXZ21

Under the identifiability constraints, the log odds ratio simplifies to βXZ22 .



Chapter 3

Loglinear Model of Linear-by-Linear
Association

3.1 Association Models
The main disadvantages of loglinear models that allow association are

that for ordinal classifications the models ignore ordinality and that for two-
way contingency tables they are saturated.

Association models have the advantage that the association is described
by a simple structure, and that the models can be tested.

Here we consider a two-way contingency table in which both variables are
ordinal.

3.2 Bilinear Association Term and Ordinal Trends
The bilinear association model assigns ordered scores to both the row

(u1 ≤ u2 ≤ . . . ≤ ur) and the column categories (v1 ≤ v2 ≤ . . . ≤ vc).
The Linear-by-Linear Association model (L x L) is defined as

log µij = β0 + βXi + βZj + τuivj, (3.1)

with constraints such as βXr = βZc = 0 for identifiability. It is the special case
of the saturated model in which the association term has the form βXZij =
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τuivj. Using just one more parameter than the independence model, this
simple model can describe the association between the variables, while the
general model uses (r − 1)(c− 1) parameters.

When the variables are independent, the model turns into the special
case in which τ = 0. The deviation of µij from the independence patter
is represented by exp(τuivj). In particular τ highlights the direction and
the power of the association, so that when τ > 0 Z tends to increase as
X increases, hence τ underlines the presence of a positive relation between
the variables. When τ < 0, Z tends to decrease as X increases, pointing
out a negative relationship between the two. When there is a positive or a
negative association between the variables, the model fits better than the
independence one.

At a given level of X the deviation of log µij from independence is linear
in the Z scores {vj} and vice versa. This property is the reason of the name
of the model (3.1): Linear-by-Linear Association model. For instance, the
deviation in a fixed column j is a linear function of X, calculated multiplying
τvj for the score of the row.

The model entails that the greatest departures from independence are
in the four corners of the table, and that, under independence, expected
frequencies are larger than expected in cells where X and Z are both high
or both low.

In 2 × 2 tables, the log odds ratio for row categories is

log
µ11µ22

µ12µ21

= τ(u2 − u1)(v2 − v1)

The log odds ratio is stronger as |τ | increases and for pairs of categories that
are farther apart.

3.3 Choice of Scores and the Local Odds Ratios

A disadvantage of the model is that the interpretation of τ depends on
the choice of the scores. When the row scores u2 − u1 = . . . = ur − ur−1 and
the column ones v2 − v1 = . . . = vc − vc−1 are equidistant the interpretation
is simple, and the local odds ratios for adjacent rows and adjacent columns
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have the same value. Duncan and Goodman (1979) called this case uniform
association. For unit-spaced scores the value of the local odds ratio is eτ .

When the classification variables are quantitative and for which values
have been grouped into ordered categories, it is reasonable to choose scores
that approximate distances between the midpoints of categories, so that eτ

represents the odds ratio for unit distances. Anyway it is not necessary to
choose scores that approximate distances between categories or reasonable
scalings of ordinal variables, since the scores only imply a pattern for the
local odds ratios. When the model fits well with equally spaced scores, the
uniform local odds ratio describes the association in any case, both the scores
are reasonable indexes and true distances between categories.

Sets of scores having the same spacings between the levels of the variables
lead to the same maximum likelihood estimate τ̂ , fitted values {µ̂ij} and
values X2, G2 to test the goodness of fit of the model. A linear transformation
of the scores does not affect the inferential results or the goodness of fit. For
istance, two sets of scores with one being a linear transformation of the other
lead to the same fitted values, but to a rescaled τ̂ .

It is sometimes useful to standardize the scores, so that they satisfy

∑
uiπi+ =

∑
vjπ+j = 0∑

u2
iπi+ =

∑
v2
jπ+j = 1.

Then τ represents the log odds ratio for a standard deviation increase in each
variable. Given the standard deviations for the original scores (σX , σZ), the
effect for the original scores τ and the effect for the standardized scores τ ∗,
τ ∗ equals the product of τ and the standard deviations

τ ∗ = τσXσZ .

The uniform association model fits well when the underlying distribu-
tion is approximately bivariate normal, then τ ∗ approximates ρ∗/ {1− (ρ∗)2},
where ρ∗ is the correlation between the underlying continuous variables.
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3.4 Linear-by-Linear Association Model Fitting and
Inference

In a two-way contingency table, for yij realizations of independent Poisson
random variables, the log-likelihood function is

l(µ) =
∑
i

∑
j

yij log µij −
∑
i

∑
j

µij

For the Linear-by-Linear Association model (3.1), the log-likelihood function
becomes

l(µ) = sβ0 +
∑
i

yi+β
X
i +

∑
j

y+jβ
Z
j + τ

∑
i

∑
j

uivjyij

−
∑
i

∑
j

exp(β0 + βXi + βZj + τuivj).

The likelihood equations of the model lead to

µ̂i+ = yi+, i = 1, . . . , r,

µ̂+j = y+j, j = 1, . . . , c∑
i

∑
j

uivjµ̂ij =
∑
i

∑
j

uivjyij.

Let pij = yij/s and π̂ij = µ̂ij/s. The likelihood equations imply that
π̂i+ = pi+ and π̂+j = p+j for all i and j, and

∑
i

∑
j uivjπ̂ij =

∑
i

∑
j uivjpij.

Therefore the marginal distributions are identical for the fitted and observed
distributions, so that also the correlation ρ̂ between the scores for X and Z
is the same for both distributions. The larger |ρ̂| is, the more the data are
far from independence.

Since the scores are fixed, the Linear-by-Linear Association model (3.1)
has only one more parameter than the independence model, τ . Its residual
degrees of freedom are

(r − 1)(c− 1)− 1 = rc− r − c,

so the model is unsaturated except for 2 × 2 tables. The Pearson X2 and
deviance G2 statistics are used to test the goodness of fit of the model and
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have, for large samples, approximate null chi-squared distribution with rc−
r − c degrees of freedom.

Given the deviance statistic for testing the goodness of fit of the inde-
pendence model G2(I) and the deviance for testing the one of the Linear-by-
Linear Association model G2(L x L), to detect positive or negative trends
we use the likelihood ratio statistic computed under the null hypothesis
H0 : τ = 0, which equals

G2(I | L x L) = G2(I)−G2(L x L)

The asymptotic null distribution is chi-squared with 1 degree of freedom.
Other possibilities are the Wald statistic and the score statistic. When

the data are highly sparse, another possibility is a bootstrap test using
G2(I | L x L) for samples obtained from a multinomial distribution having
probabilities based on the fit of the independence model.

Because of the noncentrality of the chi-squared asymptotic distribution,
the power of a chi-squared test increases when the degrees of freedom de-
crease. When the model holds, G2(I | L x L) is asymptotically more powerful
than G2(I), since even if the noncentrality is the same for both, G2(I | L x L)
has 1 degree of freedom compared to (r − 1)(c − 1) for G2(I), so that as r
and c increase, the noncentrality remains focused on 1 degree of freedom for
G2(I | L x L), but the degrees of freedom increase for G2(I).

3.5 Examples

3.5.1 Astrology and Education

This example is taken from the Section 6.2.5 of Agresti (2010), and deal
with the connection between education and belief about Astrology. The two
classification variables indicate the highest degree of the person and the opin-
ion the person has regarding the expression "Astrology is scientific". Table 3.1
shows the observed data, whose sample size is 1793.

The output for fitting the Linear-by-Linear Association model is ob-
tained through the function glm, indicating family = poisson and passing
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the counts as response and the two classification variables and the product
of the scores as explanatory variables as follows

LxL <- glm(y ~ astro1 + degree1 + uv, family = poisson)

summary(LxL)

Table 3.1: Education and Belief About Astrology

Astrology is Scientific
Highest Degree Not at all Sort of Very
< High School 98 84 23
High School 574 286 50

Junior College 122 44 4
Bachelor 268 57 11
Graduate 148 23 1

Using unit-spaced scores, the code above gives the output

Call:

glm(formula = y ~ astro1 + degree1 + uv, family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.69382 -0.48694 -0.04418 0.24369 2.08966

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.3153 0.4948 0.637 0.523971

astro11 -1.5585 0.1453 -10.725 < 2e-16 ***

astro12 -0.2885 0.0821 -3.515 0.000441 ***

degree11 4.3349 0.4672 9.278 < 2e-16 ***

degree12 4.8562 0.3656 13.283 < 2e-16 ***

degree13 2.1538 0.2672 8.061 7.57e-16 ***

degree14 1.7679 0.1559 11.339 < 2e-16 ***

uv 0.3898 0.0421 9.260 < 2e-16 ***

---

Signif. codes: 0 ’∗∗∗ ’ 0.001 ’∗∗ ’ 0.01 ’∗ ’ 0.05 ’ . ’ 0.1 ’ ’ 1
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(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2202.6574 on 14 degrees of freedom

Residual deviance: 6.8389 on 7 degrees of freedom

AIC: 108.87

Number of Fisher Scoring iterations: 4

Table 3.2 shows the fitted values for the model using equally spaced scores.

Table 3.2: Education and Belief About Astrology with Fit of Linear-by-Linear As-
sociation Model

Astrology is Scientific
Highest Degree Not at all Sort of Very
< High School 104.6 78.4 22.0
High School 567.3 287.9 54.8

Junior College 122.5 42.1 5.4
Bachelor 268.2 62.4 5.4
Graduate 147.4 23.2 1.4

The model fits very well, since it has a residual deviance of 6.8 with 7
degrees of freedom, especially compared to the independence model whose
results regarding the goodness of fit are substantially worse:

Null deviance: 2202.66 on 14 degrees of freedom

Residual deviance: 107.61 on 8 degrees of freedom

AIC: 207.64

Testing the null hypothesisH0 : τ = 0, the likelihood-ratio statistic equals
G2(I|L× L) = 107.6− 6.8 = 100.8, showing strong evidence of association.

For the scores of the columns v the reversing category order of the vari-
able "Astrology is Scientific" is used, so that "Not at all" corresponds to 3
and "Very" to 1. Using this codification the estimate of the parameter τ is
0.3898, showing that subjects having lower levels of education tend to see
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more scientific basis to Astrology, whereas it would be negative and equal to
-0.3898. The estimated common local odds ratio is exp(0.3898) = 1.46.

The model predicts the greatest departures from independence in the four
corners of the table, where the odds ratio equals

exp[τ̂(u5 − u1)(v3 − v1)] = exp[0.3898(5− 1)(3− 1)] = 22.61,

so that the estimated odds of believing that Astrology is very scientific versus
not scientific at all for those having less than an high school degree are 22.6

times the odds for those with a graduate degree. The 95% Wald confidence
interval for the common local odds ratio is exp[0.3898 ± (1.96)(0.042)] =

(1.36, 1.60), and the corresponding 95% Wald confidence interval for the odds
ratio for the four corner cells is exp[8(0.3898)±8(1.96)(0.042)] = (11.7, 43.7).

Using standardized scores, the parameter estimate results

τ̂ ∗ = 0.3898(1.464)(0.8452) = 0.4823.

Solving the equation τ̂ ∗ = ρ̂∗/[1−(ρ̂∗)2] for ρ̂∗, we obtain ρ̂∗ = 0.4037, so that
if the underlying distribution is approximately bivariate normal the estimate
of the correlation is 0.4037, which is a mild positive association.

3.5.2 Sexual Enjoyment Data

This example is taken from the Section 3.1 of Kolassa and Tanner (1994),
and deals with the sexual enjoyment of 91 married couples. The data are
shown in Table 3.3.

Table 3.3: Sexual Enjoyment Data

Wife’s response

Husband’s response
Never or Fairly Very Almost

occasionally often often always
Never or occasionally 7 7 2 3

Fairly often 2 8 3 7
Very often 1 5 4 9

Almost always 2 8 9 14
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The output for fitting the Linear-by-Linear Association model using equally
spaced scores is

LxL <- glm(y ~ wife + husb + uv, family = poisson)

summary(LxL)

Call:

glm(formula = y ~ wife + husb + uv, family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.80867 -0.53562 -0.07395 0.34885 0.93544

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.28172 0.33474 3.829 0.000129 ***

wife2 0.19717 0.38813 0.508 0.611451

wife3 -1.00343 0.56257 -1.784 0.074479 .

wife4 -1.26029 0.80242 -1.571 0.116276

husb2 -0.64346 0.37700 -1.707 0.087861 .

husb3 -1.48203 0.55779 -2.657 0.007885 **

husb4 -1.80654 0.81548 -2.215 0.026738 *

uv 0.28851 0.09451 3.053 0.002269 **

---

Signif. codes: 0 ’∗∗∗ ’ 0.001 ’∗∗ ’ 0.01 ’∗ ’ 0.05 ’ . ’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 33.5846 on 15 degrees of freedom

Residual deviance: 5.0051 on 8 degrees of freedom

AIC: 75.471

Number of Fisher Scoring iterations: 4

Table 3.4 shows the fitted values for the model.
The model has a residual deviance of 5 with 8 degrees of freedom, whereas

the goodness of fit of the independence model is
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Table 3.4: Sexual Enjoyment Data with Fit of Linear-by-Linear Association Model

Wife’s response

Husband’s response
Never or Fairly Very Almost

occasionally often often always
Never/occasionally 4.8 7.8 3.1 3.2

Fairly often 3.4 7.3 3.9 5.4
Very often 1.9 5.6 4.0 7.4

Almost always 1.9 7.2 6.9 17.0

Null deviance: 33.585 on 15 degrees of freedom

Residual deviance: 15.486 on 9 degrees of freedom

AIC: 83.952

Testing the null hypothesisH0 : τ = 0, the likelihood-ratio statistic equals
G2(I|L x L) = 15.486 − 5.005 = 10.48, showing evidence of association as-
suming a significance level of 0.05 (p-value = 0.0012).

The estimated common local odds ratio is exp(0.2885) = 1.33, whereas
in the four corners of the table the odds ratio equals

exp[τ̂(u4 − u1)(v4 − v1)] = exp[0.2885(4− 1)(4− 1)] = 13.42.

The 95% Wald confidence interval for the common local odds ratio is exp[0.2885±
(1.96)(0.0945)] = (1.11, 1.61), and the 95% Wald confidence interval for the
odds ratio for the four corner cells is exp[9(0.2885) ± 9(1.96)(0.0945)] =

(2.53, 71.1).
Using standardized scores instead the parameter estimate results

τ̂ ∗ = 0.2885(1.155)(1.155) = 0.3849.

Solving the equation τ̂ ∗ = ρ̂∗/[1− (ρ̂∗)2] for ρ̂∗, we obtain ρ̂∗ = 0.34, so that
if the underlying distribution is approximately bivariate normal the estimate
of the correlation is 0.34, which is a relatively weak positive association.



Chapter 4

The Modified Signed Root of the Log-
Likelihood Ratio

In this chapter modern higher-order likelihood inference is briefly re-
viewed. In particular a special likelihood-based procedure which modifies the
usual signed root of the log-likelihood ratio for higher accuracy is discussed.

As described in the Section 1.8, the signed root ofWP (τ0) has to O(n−1/2),
i.e. to first order, an asymptotic null distribution N(0, 1) under regularity
conditions. Then for observed data y,

Pr {rP (Y, τ0) ≤ rP (y, τ0); τ(θ) = τ0} = Φ {rP (y, τ0)}
{

1 +O(n−1/2)
}
,

where Φ is the standard normal distribution function and n is the sample
size.

A modification of rP (τ0), commonly denoted by r∗(τ0), has an accuracy
that can be formalized as the second-order result

Pr {rP (Y, τ0) ≤ rP (y, τ0); τ(θ) = τ0} = Φ {r∗P (y, τ0)}
{

1 +O(n−1)
}
. (4.1)

The quantity r∗(τ0) was derived by Barndorff-Nielsen in a form generally
difficult to compute. After that a lot of approximations came to notice, and
the one utilized in the accompanying software is the version developed by
Skovgaard (1996) Bernoulli.

At first the distribution of θ̂ is estimated using the likelihood ratio, and
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then, through trasformation and integration, we obtain an accurate approx-
imation to the distribution of r(τ0).

In general θ̂ is required to be a sufficient statistic, as indeed happens
in log-linear models. When it is not, an approximate ancillar statistic a is
used so that, conditioning on it, θ̂ is conditionally sufficient. An ancillar
statistic brings information about the accuracy of θ̂, but not the value of θ
itself. Anyway, despite conditioning on the ancillar statistic is important in
considering the distribution of θ̂, it is not that much for the distribution of
r(τ0), since the likelihood ratio is to second order stochastically independent
of any ancillary.

The ancillary information is based on the ratio of observed to expected
information i(θ̂)−1j(θ̂), and in order to make the distribution of the ancillary
more constant in θ, it can be rescaled dividing it by n1/2 times its estimated
asymptotic standard deviation, obtaining an ancillar statistic denoted by
a, whose dimension does not depend on the sample size. Skovgaard (1996)
established that this statistic is locally second order ancillary, so that the
distribution of a depends on θ only in terms of O(n−1), for θ-variations of
O(n−1/2). Given a, the accuracy (4.1) becomes

Pr {rP (Y ) ≤ rP (y)|a} = Φ {r∗P (y)}
{

1 +O(n−1)
}
,

for ||θ − θ̂|| = O(n−1/2) , but the result is valid also without conditioning on
the ancillary a, since likelihood ratio statistics are to second order indepen-
dent of any ancillary.

The likelihood ratio approximation to the density of θ̂, often called Barnodorff-
Nielsen’s p∗ formula, when θ̂ is a sufficient statistic, with p ≥ 1, is

p∗(θ̂; θ) =
|j(θ̂)|1/2L(θ)

(2π)p/2L(θ̂)

= L(θ̂)
{

1 +O(n−1)
} (4.2)

For the case in which θ̂ is not sufficient, it is necessary an ancillar statistic a
so that the quantity (θ̂, a) is sufficient and θ̂ is sufficient for the conditional
distribution of θ̂|a.

The same approximation formula as (4.2) used to approximate the density
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conditional on a, is

p∗(θ̂|a) =
|j(θ̂)|1/2L(y, θ)

(2π)p/2L(y, θ̂)

= L(θ̂|a)
{

1 +O(n−1)
}

which is often referred to as "Barndorff-Nielsen’s magic formula".
When p = 1, the distribution of r has density, under regularity conditions,

p∗(r|a, θ) =

∣∣∣∣∂r∂θ̂
∣∣∣∣−1

p∗(θ̂|a, θ).

Since this is not convenient to use, a second-order approximation is used.
From differentiating r2, we obtain that ∂r/∂θ̂ =

[
∂
{
l(θ̂)− l(θ)

}
/∂θ̂
]
/r.

After denoting ∂
{
l(θ̂)− l(θ)

}
/∂θ̂ by u, p∗ can be rewritten as follows

p∗(r|a) =
∣∣∣u
r

∣∣∣−1

(2π)−1/2 exp
(
−r2/2

)
.

After raising |u/r| to the exponential, completing the square and dropping
the second-order term (u/r)2, p∗ becomes

p∗(r|a) = (2π)−1/2exp
(
−(r∗)2/2

)
(4.3)

where r∗ = r + r−1 log(u/r).
When p > 1, the standard approach is

Pr(rP |a) =
Pr(rP , ζ̂τ |a)

Pr(ζ̂τ |rP , a)

The result is again (4.3), but it includes a more general definition of r∗P

r∗P = rP + r−1
P log(Cτ ) + r−1

P log

(
ũ

rP

)
, (4.4)

where

Cτ =

∣∣∣∣∣∂2l(θ̂τ )

∂ζ∂ζ̂τ

∣∣∣∣∣ {|jζζ(θ̂)||jζζ(θ̃)|}−1/2

,

ũτ =
∣∣∣∂ {lP (θ̂)− lP (θ)

}
/∂τ̂

∣∣∣ ∣∣∣jτ |ζ(θ̃)∣∣∣−1/2

,
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tilde indicates the estimation at θ̃ = (τ, ζ̂τ ) and jζζ(θ) is the second order
derivative −∂2l(θ)/∂ζ∂ζT . Instead jτ |ζ(θ) indicates the adjusted information
for τ , which is jτ |ζ(θ) = jττ (θ)− jτζ(θ)j−1

ζζ (θ)jζτ (θ). Is is common to express
(4.4) as follows

r∗P = rP +NP + INF

where NP refers to nuisance parameter and INF to information adjustments.
In the Skovgaard approach, it is often unreasonable to compute the log-

likelihood derivatives with respect to the data, but the best choice is to use
a simulation of datasets under the model to approximate them. The approx-
imations with second-order relative error are

∂2l(τ, ζ̃τ )

∂θ∂θ̂T
∼= covθ0

{
U(θ1), U(θ0)T

}
i(θ̂)−1j(θ̂)

∂
{
l(τ̂ , ζ̂)− l(τ, ζ̃τ )

}
∂θ̂

∼= covθ0 {l(θ0)− l(θ1), U(θ0)} i(θ̂)−1j(θ̂),

where the parameters are considered as fixed values evaluated at θ0 = θ̂ and
θ1 = θ̃. The covariances are computed without conditioning on an ancillary,
and are approximated by Monte Carlo simulation from the fitted model.

Dealing with discrete data, when r∗ is applied without any continuity
correction, the p-value can be seen as an approximation of the mid-p-value,
i.e. the probability of strictly greater evidence plus one-half the probability
of the observed result. It is shown that in relation to the discreteness it has
more nearly a uniform distribution under the hypothesis than the continuity-
corrected or exact p-value. More details can be found in the Section 6 of Pierce
and Bellio (2017).

4.1 The likelihoodAsy Package
The likelihoodAsy package Bellio and Pierce (2016) is designed to sim-

plify the application of the r∗ statistic. It requires a user-supplied funtion
which evaluates the likelihood, but since higher-order likelihood inference re-
quire model specification beyond the likelihood function, it is also required
another user-supplied function which generates a sample under the assumed
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parametric statistical model. The user may decide to supply also a function
that evaluates the gradient of the log likelihood function, which may lead to
safer computation and save computing time.

Both the functions for the log likelihood function and the one which
generates a data set should have two arguments. The first argument, theta,
is a numeric vector which contains the value of the parameter, whereas the
other one, data, is a list that should contain all the data required for the
model.

4.1.1 Examples

Astrology and Education

As already mentioned above, the package requires a function which re-
turns the log-likelihood at a given parameter value and a function which
simulates a dataset, and since to study contingency tables we use the Pois-
son loglinear model, they are given by

#Function which returns the Poisson log-likelihood function at a given

parameter value

loglik.Pois <- function(theta, data) {

y <- data$y

mu <- exp(data$X %*% theta)

l <- sum(y * log(mu) - mu)

return(l)

}

#Function which simulates a data set having Poisson distribution

gendat.Pois <- function(theta, data) {

out <- data

mu <- exp(data$X %*% theta)

out$y <- rpois(n=n, lam=mu)

return(out)

}

while the function which returns the score function is given by
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#Function which returns the Poisson score function at a given parameter

value

score.Pois <- function(theta, data) {

y <- data$y

mu <- exp(data$X %*% theta)

s <- y %*% data$X - t(mu) %*% data$X

return(s)

}

The r∗ statistic is obtained through the function rstar of the library
likelihoodAsy.

In this case, using the Linear-by-Linear Association model to study the
association between the variables, the parameter of interest is the one cor-
responding to the scores, τ , and in particular we are interested in studying
the independence hypothesis H0 : τ = 0. Regarding the scores, since the
standardized ones were more computationally manageable, we chose to use
those since this does not affect the inferential results.

library(likelihoodAsy)

rs <- rstar(data = data.astro, thetainit = theta.fix, floglik = loglik.

Pois, fscore = score.Pois, fpsi = function(theta) theta[8], psival =

0, datagen = gendat.Pois, trace = FALSE)

summary(rs)

Testing based on the r and r* statistics

-----------------------------------------------------------

Parameter of interest: User-defined function

Skovgaard covariances computed with 1000 Monte Carlo draws

psi value under testing:

[1] 0

-----------------------------------------------------------

Estimates

Maximum likelihood estimate of psi:

uv

0.4823

Standard error of maximum likelihood estimate of psi:
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[1] 0.05208

Maximum likelihood estimate of theta:

(Intercept) astro11 astro12 degree11 degree12

4.2135 -3.1178 -1.0682 1.2163 2.5173

degree13 degree14 uv

0.5945 0.9882 0.4823

Maximum likelihood estimate of theta under the null:

(Intercept) astro11 astro12 degree11 degree12

4.754e+00 -2.610e+00 -8.958e-01 1.755e-01 1.666e+00

degree13 degree14 uv

-1.169e-02 6.696e-01 -1.673e-21

-----------------------------------------------------------

Test Statistics

Wald statistic P(r_wald<observed value; 1st order):

uv uv

9.26 1.00

r statistic P(r<observed value; 1st order):

uv uv

10.04 1.00

r* statistic P(r<observed value; 2nd order):

[1] 10.03 1.00

-----------------------------------------------------------

Decomposition of high-order adjustment r*-r

NP adjustment INF adjustment:

uv

-0.002722 -0.008041

-----------------------------------------------------------

We see that in this case r and r∗ lead to very similar results, since the sample
size is very large (1793). Since the advantage in accuracy of r∗ is more evident
when the sample size is smaller and it is more reasonable to use samples
having always the same size, for the simulation study we decided to generate
the tables conditioning on the total count, and so using the multinomial
distribution to generate them. However the Poisson model has been used
to evaluate the log-likelihood, since, as shown in the previous Chapter, the
inferencial results are the same. This is true both for r and r∗.
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#Function which returns the multinomial log-likelihood function at a given

parameter value

loglik.Multinom <- function(theta, data) {

y <- data$y

mu <- exp(data$X %*% theta)

S <- sum(mu)

pi <- mu/S

l <- dmultinom(y,prob=pi,log=TRUE)

return(l)

}

#Function which generates a dataset having multinomial distribution

gendat.Multinom <- function(theta, data) {

out <- data

X <- data$X

mu <- exp(X %*% theta)

S <- sum(mu)

pi <- mu/S

out$y <- as.vector(rmultinom(n=1, size=sum(data$y), prob=pi))

return(out)

}

data.astro1 <- data.astro

data.astro1$X <- data.astro1$X[,-1]

rs1 <- rstar(data = data.astro1, thetainit = theta.fix[-1], floglik =

loglik.Multinom, fpsi = function(theta) theta[7], psival = 0, datagen

= gendat.Multinom, trace = FALSE)

summary(rs1)

Testing based on the r and r* statistics

-----------------------------------------------------------

Test Statistics

Wald statistic P(r_wald<observed value; 1st order):

uv uv

9.26 1.00
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r statistic P(r<observed value; 1st order):

uv uv

10.04 1.00

r* statistic P(r<observed value; 2nd order):

[1] 10.03 1.00

-----------------------------------------------------------

Decomposition of high-order adjustment r*-r

NP adjustment INF adjustment:

uv

-0.002723 -0.008041

-----------------------------------------------------------

the only difference is that the intercept is removed because of the reasons
explained in Section 2.3.

The computation of confidence intervals based on the r∗ statistic, and
also the r statistic, can be done by using the rstar.ci function.

rs.ci <- rstar.ci(data = data.astro, thetainit = theta.fix, floglik =

loglik.Pois, fscore = score.Pois, fpsi = function(theta) theta[8],

datagen = gendat.Pois)

summary(rs.ci)

Confidence interval calculations based on likelihood asymptotics

--------------------------------------------------------------------------

Parameter of interest: User-defined function

Calculations based on a grid of 18 points

Skovgaard covariances computed with 1000 Monte Carlo draws

--------------------------------------------------------------------------

1st-order

90% 95% 99%

( 0.3979 , 0.5693 ) ( 0.3820 , 0.5862 ) ( 0.3512 , 0.6197 )

2nd-order

90% 95% 99%

( 0.3972 , 0.5685 ) ( 0.3813 , 0.5854 ) ( 0.3505 , 0.6189 )

--------------------------------------------------------------------------

Decomposition of high-order adjustment
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Nuisance parameter adjustment (NP)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.005558 -0.005332 -0.005061 -0.005047 -0.004769 -0.004491

Information adjustment (INF)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.009356 -0.009259 -0.009141 -0.009133 -0.009012 -0.008886

--------------------------------------------------------------------------

Again, using the multinomial model the results are exactly the same.

rs.ci1 <- rstar.ci(data = data.astro1, thetainit = theta.fix[-1], floglik

= loglik.Multinom, fpsi = function(theta) theta[7], datagen = gendat.

Multinom, trace = FALSE)

Using smaller sample sizes more differences between r and r∗ are expected.
For instance, generating a sample having a similar structure to the observed
one fixing the total count to 50 using the function gentabMult, the results
are different.

#Function which simulates a contingency table having multinomial

distribution at a given parameter value

gentabMult <- function(theta, X, s) {

mu <- exp(X %*% theta)

S <- sum(mu)

pi <- mu/S

y <- rmultinom(n=1, size=s, prob=pi)

return(as.vector(y))

}

s <- 50

y <- gentabMult(theta.fix[-1], X[,-1], s=s)

data1 <- list(y=y, X=X)

rs <- rstar(data = data1, thetainit = theta.fix, floglik = loglik.Pois,

fscore = score.Pois, fpsi = function(theta) theta[8], psival = 0,

datagen = gendat.Pois, trace = FALSE)

summary(rs)
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Testing based on the r and r* statistics

-----------------------------------------------------------

Parameter of interest: User-defined function

Skovgaard covariances computed with 1000 Monte Carlo draws

psi value under testing:

[1] 0

-----------------------------------------------------------

Estimates

Maximum likelihood estimate of psi:

uv

0.7392

Standard error of maximum likelihood estimate of psi:

[1] 0.4264

Maximum likelihood estimate of theta:

(Intercept) astro11 astro12 degree11 degree12

0.3279 -4.4205 -1.2200 1.2206 3.1818

degree13 degree14 uv

1.1959 0.8669 0.7392

Maximum likelihood estimate of theta under the null:

(Intercept) astro11 astro12 degree11 degree12

1.253e+00 -3.555e+00 -9.163e-01 -5.108e-01 1.758e+00

degree13 degree14 uv

1.823e-01 3.365e-01 1.245e-20

-----------------------------------------------------------

Test Statistics

Wald statistic P(r_wald<observed value; 1st order):

uv uv

1.7336 0.9585

r statistic P(r<observed value; 1st order):

uv uv

1.9671 0.9754

r* statistic P(r<observed value; 2nd order):

[1] 1.8842 0.9702

-----------------------------------------------------------

Decomposition of high-order adjustment r*-r
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NP adjustment INF adjustment:

uv

-0.01866 -0.06426

-----------------------------------------------------------

rs.ci <- rstar.ci(data = data1, thetainit = theta.fix, floglik = loglik.

Pois, fscore = score.Pois, fpsi = function(theta) theta[8], datagen =

gendat.Pois)

summary(rs.ci)

plot(rs.ci)

Confidence interval calculations based on likelihood asymptotics

--------------------------------------------------------------------------

1st-order

90% 95% 99%

( 0.1099 , 1.5391 ) ( 0.002422 , 1.718549 ) ( -0.1998 , 2.0961 )

2nd-order

90% 95% 99%

( 0.08016 , 1.47380 ) ( -0.025 , 1.649 ) ( -0.2229 , 2.0178 )

--------------------------------------------------------------------------

Decomposition of high-order adjustment

Nuisance parameter adjustment (NP)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.042330 -0.039360 -0.035100 -0.031300 -0.025050 -0.009604

Information adjustment (INF)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.08226 -0.07962 -0.07559 -0.07344 -0.06810 -0.05923

--------------------------------------------------------------------------

plot(rs.ci)

We can see, for instance, that the 95% confidence interval obtained with r∗

includes 0, whereas the one obtained with r does not contain it.
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Sexual Enjoyment Data

The output of rstar and rstar.ci using the data of Section 3.5.2, again
testing for the null hypothesis H0 : τ = 0, is

rs <- rstar(data = data, thetainit = theta.fix, floglik = loglik.Pois,

fscore = score.Pois, fpsi = function(theta) theta[8], psival = 0,

datagen = gendat.Pois, trace = FALSE)

summary(rs)

Testing based on the r and r* statistics

-----------------------------------------------------------

Parameter of interest: Independence test

Skovgaard covariances computed with 1000 Monte Carlo draws

psi value under testing:

[1] 0

-----------------------------------------------------------

Estimates

Maximum likelihood estimate of psi:

uv

0.3847

Standard error of maximum likelihood estimate of psi:
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[1] 0.126

Maximum likelihood estimate of theta:

(Intercept) wife2 wife3 wife4 husb2

0.92109 0.91844 0.43910 0.90351 0.07781

husb3 husb4 uv

-0.03949 0.35725 0.38467

Maximum likelihood estimate of theta under the null:

(Intercept) wife2 wife3 wife4 husb2

9.185e-01 8.473e-01 4.055e-01 1.012e+00 5.129e-02

husb3 husb4 uv

-2.246e-08 5.521e-01 -1.334e-21

-----------------------------------------------------------

Test Statistics

Wald statistic P(r_wald<observed value; 1st order):

uv uv

3.0526 0.9989

r statistic P(r<observed value; 1st order):

uv uv

3.2374 0.9994

r* statistic P(r<observed value; 2nd order):

[1] 3.2008 0.9993

-----------------------------------------------------------

Decomposition of high-order adjustment r*-r

NP adjustment INF adjustment:

uv

-0.01843 -0.01816

-----------------------------------------------------------

rs.ci <- rstar.ci(data = data, thetainit = theta.fix, floglik = loglik.

Pois, fscore = score.Pois, fpsi = function(theta) theta[8], datagen =

gendat.Pois, trace = FALSE)

summary(rs.ci)

Confidence interval calculations based on likelihood asymptotics
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--------------------------------------------------------------------------

Parameter of interest: User-defined function

Calculations based on a grid of 18 points

Skovgaard covariances computed with 1000 Monte Carlo draws

--------------------------------------------------------------------------

1st-order

90% 95% 99%

( 0.1845 , 0.6013 ) ( 0.1475 , 0.6452 ) ( 0.07593 , 0.73359 )

2nd-order

90% 95% 99%

( 0.1788 , 0.5917 ) ( 0.1421 , 0.6352 ) ( 0.07117 , 0.72280 )

--------------------------------------------------------------------------

Decomposition of high-order adjustment

Nuisance parameter adjustment (NP)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.04632 -0.04202 -0.03587 -0.03493 -0.02833 -0.02064

Information adjustment (INF)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.02804 -0.02638 -0.02414 -0.02388 -0.02152 -0.01891

--------------------------------------------------------------------------

Here the results are slightly different but again quite close, and for the same
reasons as before the choice was to try a sample with total count equal to 45,
about half of the original sample size. Also for this example it is shown that
the results using the multinomial are the same. Generating the table from
the multinomial distribution, the results are

summary(rs)

Testing based on the r and r* statistics

-----------------------------------------------------------

Parameter of interest: User-defined function

Skovgaard covariances computed with 1000 Monte Carlo draws

psi value under testing:

[1] 0

-----------------------------------------------------------
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Estimates

Maximum likelihood estimate of psi:

uv

0.3035

Standard error of maximum likelihood estimate of psi:

[1] 0.1971

Maximum likelihood estimate of theta:

(Intercept) wife2 wife3 wife4 husb2

-0.3252 0.7623 0.6161 0.6515 0.9701

husb3 husb4 uv

0.7626 1.0432 0.3035

Maximum likelihood estimate of theta under the null:

(Intercept) wife2 wife3 wife4 husb2

-4.055e-01 7.732e-01 6.931e-01 8.473e-01 9.555e-01

husb3 husb4 uv

7.885e-01 1.163e+00 -1.052e-21

-----------------------------------------------------------

Test Statistics

Wald statistic P(r_wald<observed value; 1st order):

uv uv

1.5398 0.9382

r statistic P(r<observed value; 1st order):

uv uv

1.5873 0.9438

r* statistic P(r<observed value; 2nd order):

[1] 1.5502 0.9395

--------------------------------------------------------

Decomposition of high-order adjustment r*-r

NP adjustment INF adjustment:

uv

-0.01801 -0.01915

--------------------------------------------------------

summary(rs.ci)
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Confidence interval calculations based on likelihood asymptotics

--------------------------------------------------------------------------

1st-order

90% 95% 99%

( -0.01078 , 0.64513 ) ( -0.06976 , 0.71547 ) ( -0.1851 , 0.8586 )

2nd-order

90% 95% 99%

( -0.01747 , 0.62715 ) ( -0.07554 , 0.69623 ) ( -0.1892 , 0.8367 )

--------------------------------------------------------------------------

Decomposition of high-order adjustment

Nuisance parameter adjustment (NP)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.059100 -0.050420 -0.039000 -0.034960 -0.020270 -0.004426

Information adjustment (INF)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.03495 -0.03148 -0.02694 -0.02559 -0.02000 -0.01388

--------------------------------------------------------------------------

plot(rs.ci)

The results using a reduced sample size are slightly different. However, there
is not a big difference between the values of r and r∗.
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Chapter 5

Simulation Study

In the simulation studies of this chapter, 10000 tables are generated from
a multinomial distribution fixing the sample size of the contingency tables,
whereas the evaluation of the log-likelihood and the calculation of r and r∗

are done using the functions related to the Poisson distribution. As shown in
Section 2.3 inference is not affected by this choice.

The datasets used as a basis for the simulation studies are the two datasets
introduced in Sections 3.5.1 and 3.5.2, while the other simulations are done
on simulated tables generated by a given vector of parameters. In particular
the dimensions chosen for the simulated tables are 5×5, 6×6, 7×7, 8×8, 9×9

and 10×10. For the dataset "Sexual Enjoyment Data" s if fixed equal to 45,
about half of the original sample size, whereas for all the others simulations
s if fixed equal to 50.

For each setting two simulations are performed: one in which the param-
eter of interest τ is fixed to the value chosen for it, which in the case of the
datasets is the maximum likelihood estimate while in the case of the tables
is 0.3, and another one in which it is fixed to 0, i.e. under the independence
model.

The results show the empirical coverage of r and r∗, the empirical coverage
of the confidence intervals at a level of confidence of 90%, 95% and 99% and
the average lengths of the confidence intervals. The graphics show the normal
quantile plot for r and r∗ and the distribution of the lengths of the confidence
intervals.



52 Simulation Study

Astrology and Education, τ0 = 0.48, 5× 3, s = 50

Table 5.1: Empirical coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.63% 2.21% 3.16%

Table 5.2: Empirical coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

95.23% 2.55% 2.22

Table 5.3: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 89.18 (6.22, 4.6) 93.91 (3.24, 2.85) 98.81 (0.70, 0.49)
r∗ 90.11 (4.84, 5.05) 94.6 (3.2, 2.20) 98.96 (0.5, 0.54)

Table 5.4: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 1.141 1.368 1.824
r∗ 1.114 1.336 1.781
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Figure 5.1: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.2: Distribution of the Lengths of the Confidence Intervals
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Astrology and Education, τ0 = 0, 5× 3, s = 50

Table 5.5: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.04% 2.87% 3.09%

Table 5.6: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

94.93% 2.63% 2.44%

Table 5.7: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 88.54 (5.93, 5.53) 93.91 (3.24, 2.85) 98.93 (0.54, 0.53)
r∗ 89.43 (5.25, 5.32) 94.82 (2.61, 2.57) 98.99 (0.50, 0.51)

Table 5.8: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 1.143 1.373 1.836
r∗ 1.117 1.34 1.793
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Figure 5.3: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.4: Distribution of the Lengths of the Confidence Intervals
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Sexual Enjoyment Data, τ0 = 0.38, 4× 4, s = 45

Table 5.9: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

95.40% 1.65% 2.95

Table 5.10: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

96.36% 1.75% 1.89%

Table 5.11: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 87.73 (7.29, 4.98) 95.41 (2.95, 1.64) 99.42 (0.42, 0.16)
r∗ 91.06 (3.67, 5.27) 96.38 (1.88, 1.74) 99.51 (0.31, 0.18)

Table 5.12: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 0.6467 0.7742 1.0287
r∗ 0.6335 0.7584 1.0080
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Figure 5.5: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.6: Distribution of the Lengths of the Confidence Intervals
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Sexual Enjoyment Data, τ0 = 0, 4× 4, s = 45

Table 5.13: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.38% 2.75% 2.87%

Table 5.14: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

94.92% 2.5% 2.58%

Table 5.15: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 89.25 (5.46, 5.29) 94.40 (2.85, 2.75) 98.75 (0.67, 0.58)
r∗ 90.03 (5.08, 4.89) 94.95 (2.57, 2.48) 98.93 (0.59, 0.48)

Table 5.16: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 0.5785 0.6924 0.9198
r∗ 0.5694 0.6815 0.9054
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Figure 5.7: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.8: Distribution of the Lengths of the Confidence Intervals
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5× 5 Table, τ0 = 0.3, s = 50

Table 5.17: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.09% 2.55% 3.36%

Table 5.18: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

94.73% 2.63% 2.64%

Table 5.19: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 88.77 (6.37, 4.86) 94.09 (3.35, 2.56) 98.75 (0.76, 0.49)
r∗ 89.54 (5.33, 5.13) 94.73 (2.63, 2.64) 98.95 (0.55, 0.50)

Table 5.20: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 0.5985 0.7161 0.9505
r∗ 0.5884 0.7041 0.9347



61

Figure 5.9: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.10: Distribution of the Lengths of the Confidence Intervals
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5× 5 Table, τ0 = 0, s = 50

Table 5.21: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.35% 2.90% 2.75%

Table 5.22: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

94.85% 2.65% 2.50%

Table 5.23: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 89.25 (5.46, 5.29) 94.40 (2.86, 2.74) 98.75 (0.67, 0.58)
r∗ 90.03 (5.08, 4.89) 94.95 (2.57, 2.48) 98.93 (0.59, 0.48)

Table 5.24: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 0.5644 0.6753 0.8966
r∗ 0.5563 0.6657 0.8839
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Figure 5.11: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.12: Distribution of the Lengths of the Confidence Intervals
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6× 6 Table, τ0 = 0.3, s = 50

Table 5.25: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.26% 2.60% 3.14%

Table 5.26: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

94.71% 2.70% 2.59%

Table 5.27: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 89.04 (5.85, 5.11) 94.30 (3.11, 2.59) 98.77 (0.69, 0.54)
r∗ 89.71 (4.76, 5.53) 94.78 (2.51, 2.71) 99.00 (0.44, 0.56)

Table 5.28: Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 0.5784 0.6921 0.9188
r∗ 0.5787 0.6805 0.9035



65

Figure 5.13: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.14: Distribution of the Lengths of the Confidence Intervals
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6× 6 Table, τ0 = 0, s = 50

Table 5.29: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.37% 2.80% 2.83%

Table 5.30: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

94.89% 2.55% 2.56%

Table 5.31: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 88.97 (5.65, 5.38) 94.36 (2.83, 2.81) 98.88 (0.51, 0.61)
r∗ 89.82 (5.20, 4.98) 94.91 (2.58, 2.51) 99.01 (0.45, 0.54)

Table 5.32: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 0.5432 0.6500 0.8630
r∗ 0.5354 0.6407 0.8507
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Figure 5.15: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.16: Distribution of the Lengths of the Confidence Intervals
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7× 7 Table, τ0 = 0.3, s = 50

Table 5.33: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.68% 2.41% 2.91%

Table 5.34: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

95.3% 2.48% 2.22%

Table 5.35: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 89.53 (5.86, 4.61) 94.68 (2.91, 2.41) 98.72 (0.61, 0.67)
r∗ 90.60 (4.58, 4.82) 95.29 (2.21, 2.5) 98.85 (0.47, 0.68)

Table 5.36: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 0.6261 0.7492 0.9946
r∗ 0.6155 0.7366 0.9781
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Figure 5.17: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.18: Distribution of the Lengths of the Confidence Intervals
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7× 7 Table, τ0 = 0, s = 50

Table 5.37: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.49% 2.69% 2.82%

Table 5.38: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

95.05% 2.45% 2.50%

Table 5.39: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 89.12 (5.56, 5.32) 94.52 (2.82, 2.66) 98.89 (0.6, 0.51)
r∗ 89.80 (5.19, 5.01) 95.09 (2.51, 2.4) 99.01 (0.50, 0.49)

Table 5.40: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 0.5949 0.7120 0.9457
r∗ 0.5861 0.7015 0.9318
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Figure 5.19: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.20: Distribution of the Lengths of the Confidence Intervals
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8× 8 Table, τ0 = 0.3, s = 50

Table 5.41: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.52% 2.46% 3.02%

Table 5.42: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

95.03% 2.58% 2.39%

Table 5.43: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 89.33 (5.92, 4.75) 94.54 (3.04, 2.42) 98.82 (0.62, 0.56)
r∗ 90.16 (4.78, 5.06) 95.01 (2.40, 2.59) 99.00 (0.42, 0.58)

Table 5.44: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 0.6163 0.7374 0.9789
r∗ 0.6058 0.7249 0.9625
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Figure 5.21: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.22: Distribution of the Lengths of the Confidence Intervals
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8× 8 Table, τ0 = 0, s = 50

Table 5.45: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.07% 3.03% 2.9%

Table 5.46: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

94.42% 2.77% 2.81%

Table 5.47: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 88.82 (5.41, 5.77) 94.16 (2.85, 2.99) 98.71 (0.64, 0.65)
r∗ 89.75 (4.98, 5.27) 94.73 (2.59, 2.68) 98.94 (0.55, 0.51)

Table 5.48: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 0.5868 0.7023 0.9327
r∗ 0.5782 0.6921 0.9192
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Figure 5.23: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.24: Distribution of the Lengths of the Confidence Intervals
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9× 9 Table, τ0 = 0.3, s = 50

Table 5.49: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.69% 2.4% 2.91%

Table 5.50: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

94.75% 2.73% 2.52%

Table 5.51: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 89.53 (5.88, 4.59) 94.69 (2.99, 2.32) 98.83 (0.71, 0.46)
r∗ 90.19 (4.81, 5.00) 95.28 (2.25, 2.47) 99.06 (0.45, 0.49)

Table 5.52: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 0.5661 0.6774 0.8991
r∗ 0.5565 0.6659 0.8839
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Figure 5.25: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.26: Distribution of the Lengths of the Confidence Intervals
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9× 9 Table, τ0 = 0, s = 50

Table 5.53: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.48% 2.78% 2.74%

Table 5.54: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

94.90% 2.63% 2.47%

Table 5.55: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 89.14 (5.47, 5.39) 94.49 (2.71, 2.8) 98.84 (0.53, 0.63)
r∗ 89.91 (5.02, 5.07) 94.92 (2.48, 2.6) 98.97 (0.49, 0.54)

Table 5.56: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 0.5321 0.6368 0.8455
r∗ 0.5242 0.6273 0.8331
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Figure 5.27: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.28: Distribution of the Lengths of the Confidence Intervals
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10× 10 Table, τ0 = 0.3, s = 50

Table 5.57: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.08% 2.55% 3.37%

Table 5.58: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

94.73% 2.63% 2.64%

Table 5.59: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 88.76 (6.37, 4.87) 94.09 (3.35, 2.56) 98.75 (0.76, 0.49)
r∗ 89.54 (5.33, 5.13) 94.73 (2.63, 2.64) 98.95 (0.55, 0.50)

Table 5.60: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 0.5985 0.7161 0.9505
r∗ 0.5883 0.7041 0.9347
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Figure 5.29: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.30: Distribution of the Lengths of the Confidence Intervals
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10× 10 Table, τ0 = 0, s = 50

Table 5.61: Empirical Coverage of r

|r| < z1−α/2 r < −z1−α/2 r > z1−α/2

94.06 % 3.16% 2.78%

Table 5.62: Empirical Coverage of r∗

|r∗| < z1−α/2 r∗ < −z1−α/2 r∗ > z1−α/2

94.33% 2.88% 2.79%

Table 5.63: Empirical Coverage of the Confidence Intervals

CI 90% CI 95% CI 99%

r 88.67 (5.39, 5.94) 93.99 (2.83, 3.18) 98.69 (0.58, 0.73)
r∗ 89.38 (5.09, 5.53) 94.45 (2.71, 2.84) 98.93 (0.47, 0.60)

Table 5.64: Average Length of the Confidence Intervals

CI 90% CI 95% CI 99%

r 0.5274 0.6311 0.8379
r∗ 0.5195 0.6217 0.8254
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Figure 5.31: Normal quantile plot of r (left panel) and r∗ (right panel)

Figure 5.32: Distribution of the Lengths of the Confidence Intervals
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5.1 Conclusions
The results show that r∗ is slightly more accurate than r in all the em-

pirical coverages and in particular, considering the empirical coverage of the
confidence intervals, they show how r∗ not only lead to a better coverage of
the area between the quantiles, but also to a more symmetrical distribution
of the quantities in the areas outside them. The different tables show that
changes in the dimension of the table do not affect the accuracy of the re-
sults. This might be expected since the parameter of interest τ is a canonical
parameter of the Poisson distribution. Indeed, the profile likelihood coincides
with the conditional likelihood for τ and no nuisance parameter correction is
needed. Therefore the only difference between r and r∗ is given by the INF
adjustment, which for this model is not very relevant.

From the lengths of the confidence intervals we see that the average length
is always smaller for r∗, and that the distributions for r∗ tend to be more
symmetrical than the ones related to r.
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Appendix A

R Code

#Function which returns the log-likelihood function at a given parameter

value

loglik.Pois <- function(theta, data) {

y <- data$y

mu <- exp(data$X %*% theta)

l <- sum(y * log(mu) - mu)

return(l)

}

loglik.Multinom <- function(theta, data) {

y <- data$y

mu <- exp(data$X %*% theta)

S <- sum(mu)

pi <- mu/S

l <- dmultinom(y,prob=pi,log=TRUE)

return(l)

}

#Function which simulates a data set

gendat.Pois <- function(theta, data) {

out <- data
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mu <- exp(data$X %*% theta)

out$y <- rpois(n=n, lam=mu)

return(out)

}

gendat.Multinom <- function(theta, data) {

out <- data

X <- data$X

mu <- exp(X %*% theta)

S <- sum(mu)

pi <- mu/S

out$y <- as.vector(rmultinom(n=1, size=sum(data$y), prob=pi))

return(out)

}

#Function which simulates a contingency table at a given parameter value

gentabPois <- function(theta, X) {

mu <- exp(X %*% theta)

y <- rpois(n=n, lam=mu)

return(y)

}

gentabella <- function(theta, X, s) {

mu <- exp(X %*% theta)

S <- sum(mu)

pi <- mu/S

y <- rmultinom(n=1, size=s, prob=pi)

return(as.vector(y))

}

#Function which returns the score function at a given parameter value

score.Pois <- function(theta, data) {

y <- data$y

mu <- exp(data$X%*%theta)

s <- y %*% data$X - t(mu) %*% data$X

return(s)
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}

library(likelihoodAsy)

### Example: Education and Belief About Astrology with Fit of Linear-by-

Linear Association Model

y <- c(98, 84, 23, 574, 286, 50, 122, 44, 4, 268, 57, 11, 148, 23, 1)

#The number of cells of the table

n <- length(y)

#The sample size

s <- 50

#Astrology is Scientific: Not at all, Sort of, Very

astro <- as.factor(rep(3:1,5))

v <- as.numeric(astro)

v <- scale(v)

#Highest Degree: < High School, High School, Junior College, Bachelor,

Graduate

degree <- as.factor(c(rep(1,3), rep(2,3), rep(3,3), rep(4,3), rep(5,3)))

u <- as.numeric(degree)

u <- scale(u)

uv <- u*v

astro1 <- astro

degree1 <- degree

astro1 <- relevel(astro1,ref=3)

degree1 <- relevel(degree1,ref=5)

#Output for Fitting Linear-by-Linear Association Model

LxL <- glm(y~astro1+degree1+uv, family=poisson)

summary(LxL)

y1 <- fitted(LxL)
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theta.fix <- summary(LxL)$coefficients[,1]

theta.fix

X <- model.matrix(~astro1+degree1+uv)

X

data.astro <- list(y=y, X=X)

rs <- rstar(data = data.astro, thetainit = theta.fix, floglik = loglik.

Pois, fscore = score.Pois, fpsi = function(theta) theta[8], psival =

0, datagen = gendat.Pois, trace = FALSE)

summary(rs)

rs.ci <- rstar.ci(data = data.astro, thetainit = theta.fix, floglik =

loglik.Pois, fscore = score.Pois, fpsi = function(theta) theta[8],

datagen = gendat.Pois)

summary(rs.ci)

plot(rs.ci)

data.astro1 <- data.astro

data.astro1$X <- data.astro1$X[,-1]

rs1 <- rstar(data = data.astro1, thetainit = theta.fix[-1], floglik =

loglik.Multinom, fpsi = function(theta) theta[7], psival = 0, datagen

= gendat.Multinom, trace = FALSE)

summary(rs1)

rs.ci1 <- rstar.ci(data = data.astro1, thetainit = theta.fix[-1], floglik

= loglik.Multinom, fpsi = function(theta) theta[7], datagen = gendat.

Multinom, trace = FALSE)

summary(rs.ci1)
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plot(rs.ci1)

### Example: Sexual Enjoyment Data

y <- c(7, 2, 1, 2, 7, 8, 5, 8, 2, 3, 4, 9, 3, 7, 9, 14)

n <- length(y)

s <- 45

#Wife’s response: Never or occasionally, Fairly Often, Very Often, Almost

Always

wife <- as.factor(c(rep(1,4), rep(2,4), rep(3,4), rep(4,4)))

v <- as.numeric(wife)

v <- scale(v)

#Husband’s response: Never or occasionally, Fairly Often, Very Often,

Almost Always

husb <- as.factor(rep(1:4,4))

u <- as.numeric(husb)

u <- scale(u)

uv <- u*v

uv

X <- model.matrix(~wife+husb+uv)

X

#Output for Fitting Linear-by-Linear Association Model

LxL <- glm(y~wife+husb+uv, family=poisson)

summary(LxL)

y1 <- fitted(LxL)

theta.fix <- summary(LxL)$coefficients[,1]

theta.fix

data <- list(y=y, X=X)
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rs <- rstar(data = data, thetainit = theta.fix, floglik = loglik.Pois,

fscore = score.Pois, fpsi = function(theta) theta[8], psival = 0,

datagen = gendat.Pois, trace = FALSE)

summary(rs)

rs.ci <- rstar.ci(data = data, thetainit = theta.fix, floglik = loglik.

Pois, fscore = score.Pois, fpsi = function(theta) theta[8], datagen =

gendat.Pois, trace = FALSE)

summary(rs.ci)

plot(rs.ci)

data1 <- data

data1$X <- data1$X[,-1]

rs1 <- rstar(data=data1, thetainit = theta.fix[-1], floglik = loglik.

Multinom, fpsi = function(theta) theta[7], psival = 0, datagen =

gendat.Multinom, trace=FALSE)

summary(rs1)

rs.ci1 <- rstar.ci(data = data1, thetainit = theta.fix[-1], floglik=loglik

.Multinom, fpsi = function(theta) theta[7], datagen = gendat.Multinom,

trace = FALSE)

summary(rs.ci1)

plot(rs.ci1)

#5x5 Table

n = 25

s = 50

x1 <- as.factor(rep(1:5,5))



93

v1 <- as.numeric(x1)

v <- scale(v1)

x2 <- as.factor(c(rep(1,5),rep(2,5),rep(3,5),rep(4,5),rep(5,5)))

u1 <- as.numeric(x2)

u <- scale(u1)

uv <- u*v

uv

X <- model.matrix(~x1+x2+uv)

X

theta.fix <- c(1, 0.7, 0.6, 0.7, 0.8, 0.5, 0.4, 0.3, 0.5, 0.3)

#6x6 Table

n = 36

s = 50

x1 <- as.factor(rep(1:6,6))

v1 <- as.numeric(x1)

v <- scale(v1)

x2 <- as.factor(c(rep(1,6),rep(2,6),rep(3,6),rep(4,6),rep(5,6),rep(6,6)))

u1 <- as.numeric(x2)

u <- scale(u1)

uv <- u*v

uv

X <- model.matrix(~x1+x2+uv)

X

theta.fix <- c(1, 0.5, 0.6, 0.5, 0.6, 0.7, 0.6, 0.4, 0.5, 0.6, 0.8, 0.3)
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#7x7 Table

n = 49

s = 50

x1 <- as.factor(rep(1:7,7))

v1 <- as.numeric(x1)

v <- scale(v1)

x2 <- as.factor(c(rep(1,7),rep(2,7),rep(3,7),rep(4,7),rep(5,7),rep(6,7),

rep(7,7)))

u1 <- as.numeric(x2)

u <- scale(u1)

uv <- u*v

uv

X <- model.matrix(~x1+x2+uv)

X

theta.fix <- c(1, 0.5, 0.7, 0.5, 0.8, 0.5, 0.4, 0.3, 0.8, 0.5, 0.8, 0.5,

0.6, 0.3)

#8x8 Table

n = 64

s = 50

x1 <- as.factor(rep(1:8,8))

v1 <- as.numeric(x1)

v <- scale(v1)

x2 <- as.factor(c(rep(1,8),rep(2,8),rep(3,8),rep(4,8),rep(5,8),rep(6,8),

rep(7,8),rep(8,8)))

u1 <- as.numeric(x2)

u <- scale(u1)
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uv <- u*v

uv

X <- model.matrix(~x1+x2+uv)

X

theta.fix <- c(1, 0.5, 0.7, 0.5, 0.8, 0.5, 0.4, 0.3, 0.8, 0.5, 0.8, 0.5,

0.6, 0.5, 0.4, 0.3)

#9x9 Table

n = 81

s = 50

x1 <- as.factor(rep(1:9,9))

v1 <- as.numeric(x1)

v <- scale(v1)

x2 <- as.factor(c(rep(1,9),rep(2,9),rep(3,9),rep(4,9),rep(5,9),rep(6,9),

rep(7,9),rep(8,9),rep(9,9)))

u1 <- as.numeric(x2)

u <- scale(u1)

uv <- u*v

uv

X <- model.matrix(~x1+x2+uv)

X

theta.fix <- c(1, 0.5, 0.7, 0.5, 0.8, 0.5, 0.4, 0.3, 0.8, 0.5, 0.8, 0.5,

0.6, 0.5, 0.4, 0.6, 0.7, 0.3)

#10x10 Table

n = 100
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s = 50

x1 <- as.factor(rep(1:10,10))

v1 <- as.numeric(x1)

v <- scale(v1)

x2 <- as.factor(c(rep(1,10),rep(2,10),rep(3,10),rep(4,10),rep(5,10),rep

(6,10),rep(7,10),rep(8,10),rep(9,10),rep(10,10)))

u1 <- as.numeric(x2)

u <- scale(u1)

uv <- u*v

uv

X <- model.matrix(~x1+x2+uv)

X

theta.fix <- c(1, 0.5, 0.7, 0.5, 0.8, 0.5, 0.4, 0.3, 0.8, 0.5, 0.8, 0.5,

0.6, 0.5, 0.4, 0.6, 0.7, 0.5, 0.6, 0.3)

#Simulation

set.seed(3)

simulation <- function(N = 10000, s = 50, t = length(theta.fix)) {

r <- numeric(N)

rstar <- numeric(N)

r.ci90 <- matrix(NA,ncol=2,nrow=N)

r.ci95 <- matrix(NA,ncol=2,nrow=N)

r.ci99 <- matrix(NA,ncol=2,nrow=N)

rs.ci90 <- matrix(NA,ncol=2,nrow=N)

rs.ci95 <- matrix(NA,ncol=2,nrow=N)

rs.ci99 <- matrix(NA,ncol=2,nrow=N)

for(i in 1:N) {

y <- gentabMult(theta.fix[-1], X[,-1], s=s)
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data1 <- list(y=y, X=X)

rs <- tryCatch({rstar(data = data1, thetainit = theta.fix, floglik =

loglik.Pois, fscore = score.Pois, fpsi = function(theta) theta[t],

psival = theta.fix[t], datagen = gendat.Pois, trace = FALSE)}, error

= function(e) "Error")

if(is.character(rs)) {

r[i] <- NA

rstar[i] <- NA

}

else {

r[i] <- rs$r

rstar[i] <- rs$rs

}

rs1 <- tryCatch({rstar.ci(data = data1, thetainit = theta.fix, floglik =

loglik.Pois, fscore = score.Pois, fpsi = function(theta) theta[t],

datagen = gendat.Pois, trace = FALSE)}, error = function(e) "Error")

if(is.character(rs1)) {

r.ci90[i,] <- rep(NA, 2)

r.ci95[i,] <- rep(NA, 2)

r.ci99[i,] <- rep(NA, 2)

rs.ci90[i,] <- rep(NA, 2)

rs.ci95[i,] <- rep(NA, 2)

rs.ci99[i,] <- rep(NA, 2)

}

else {

r.ci90[i,] <- rs1$CIr[1,]

r.ci95[i,] <- rs1$CIr[2,]

r.ci99[i,] <- rs1$CIr[3,]

rs.ci90[i,] <- rs1$CIrs[1,]

rs.ci95[i,] <- rs1$CIrs[2,]
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rs.ci99[i,] <- rs1$CIrs[3,]

}

print(i)

}

return(list(r,rstar,r.ci90,r.ci95,r.ci99,rs.ci90,rs.ci95,rs.ci99))

}

s <- simulation()

r <- unlist(s[1])

rstar <- unlist(s[2])

r.ci90 <- unlist(s[3])

r.ci95 <- unlist(s[4])

r.ci99 <- unlist(s[5])

rs.ci90 <- unlist(s[6])

rs.ci95 <- unlist(s[7])

rs.ci99 <- unlist(s[8])

r.ci90 <- matrix(r.ci90, 10000, 2)

r.ci95 <- matrix(r.ci95, 10000, 2)

r.ci99 <- matrix(r.ci99, 10000, 2)

rs.ci90 <- matrix(rs.ci90, 10000, 2)

rs.ci95 <- matrix(rs.ci95, 10000, 2)

rs.ci99 <- matrix(rs.ci99, 10000, 2)

alpha <- 0.05

z <- qnorm(1-alpha/2)

rstar <- rstar[!is.na(r)]

r <- r[!is.na(r)]

#r statistic

# -z(1-alpha/2) < r < z(1-alpha/2)

int <- (abs(r)<z)
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# r < -z(1-alpha/2)

inf <- (r<(-z))

# r > z(1-alpha/2)

sup <- (r>z)

print(c(mean(int), mean(inf), mean(sup)))

#r* statistic

# -z(1-alpha/2) < r* < z(1-alpha/2)

ints <- (abs(rstar)<z)

# r* < -z(1-alpha/2)

infs <- (rstar<(-z))

# r* > z(1-alpha/2)

sups <- (rstar>z)

print(c(mean(ints, na.rm=TRUE), mean(infs, na.rm=TRUE), mean(sups,na.rm=

TRUE)))

plot(r,rstar)

qqnorm(r)

abline(0,1,col=2)

qqnorm(rstar)

abline(0,1,col=2)

threshold <- 0.1

r1 <- r[(abs(r)<threshold)|(is.na(rstar))]

rstar1 <- rstar[(abs(r)<threshold)|(is.na(rstar))]

r2 <- r[(abs(r)>=threshold)&(!is.na(rstar))]

rstar2 <- rstar[(abs(r)>=threshold)&(!is.na(rstar))]

qqnorm(rstar2)

plot(rstar2,r2)
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#Predicted r*

#lm

fit <- lm(rstar2~r2)

summary(fit)

rstar3 <- summary(fit)$coefficients[,1]%*%t(cbind(rep(1,length(r1)),r1))

rstar3

#smooth.spline

library(pspline)

fit1 <- smooth.spline(r2, rstar2)

rstar4 <- predict(fit1, x=r1)$y

#"Corrected" r*

rstar[(abs(r)<threshold)|(is.na(rstar))] <- rstar4

par(mfrow=c(1,2))

qqnorm(r)

abline(0,1,col=2)

qqnorm(rstar)

abline(0,1,col=2)

par(mfrow=c(1,1))

infs <- 0

sups <- 0

ints <- 0

#Empirical Coverage of r and r*

#r statistic

print(c(mean(int), mean(inf), mean(sup)))

#r* statistic

# r* < -z(1-alpha/2)
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infs <- (rstar<(-z))

# r* > z(1-alpha/2)

sups <- (rstar>z)

# -z(1-alpha/2) < r* < z(1-alpha/2)

ints <- (abs(rstar)<=z)

print(c(mean(ints), mean(infs), mean(sups)))

r.ci90 <- r.ci90[!is.na(r.ci90[,1]),]

r.ci95 <- r.ci95[!is.na(r.ci95[,1]),]

r.ci99 <- r.ci99[!is.na(r.ci99[,1]),]

rs.ci90 <- rs.ci90[!is.na(rs.ci90[,1]),]

rs.ci95 <- rs.ci95[!is.na(rs.ci95[,1]),]

rs.ci99 <- rs.ci99[!is.na(rs.ci99[,1]),]

#Length of the Confidence Intervals

#90

mean(r.ci90[,2]-r.ci90[,1])

mean(rs.ci90[,2]-rs.ci90[,1])

#95

mean(r.ci95[,2]-r.ci95[,1])

mean(rs.ci95[,2]-rs.ci95[,1])

#99

mean(r.ci99[,2]-r.ci99[,1])

mean(rs.ci99[,2]-rs.ci99[,1])

boxplot(r.ci90[,2]-r.ci90[,1], rs.ci90[,2]-rs.ci90[,1],

r.ci95[,2]-r.ci95[,1], rs.ci95[,2]-rs.ci95[,1],

r.ci99[,2]-r.ci99[,1], rs.ci99[,2]-rs.ci99[,1])

#Empirical Coverage of Confidence Intervals

t <- length(theta.fix)
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#alpha <- 0.10

r90sx <- (r.ci90[,1]>theta.fix[t])

rs90sx <- (rs.ci90[,1]>theta.fix[t])

r90dx <- (r.ci90[,2]<theta.fix[t])

rs90dx <- (rs.ci90[,2]<theta.fix[t])

#r

print(c(1-mean(r90sx)-mean(r90dx),mean(r90sx),mean(r90dx)))

#rs

print(c(1-mean(rs90sx)-mean(rs90dx),mean(rs90sx),mean(rs90dx)))

#alpha <- 0.05

r95sx <- (r.ci95[,1]>theta.fix[t])

rs95sx <- (rs.ci95[,1]>theta.fix[t])

r95dx <- (r.ci95[,2]<theta.fix[t])

rs95dx <- (rs.ci95[,2]<theta.fix[t])

#r

print(c(1-mean(r95sx)-mean(r95dx),mean(r95sx),mean(r95dx)))

#rs

print(c(1-mean(rs95sx)-mean(rs95dx),mean(rs95sx),mean(rs95dx)))

#alpha <- 0.01

r99sx <- (r.ci99[,1]>theta.fix[t])

rs99sx <- (rs.ci99[,1]>theta.fix[t])

r99dx <- (r.ci99[,2]<theta.fix[t])

rs99dx <- (rs.ci99[,2]<theta.fix[t])

#r

print(c(1-mean(r99sx)-mean(r99dx),mean(r99sx),mean(r99dx)))

#rs

print(c(1-mean(rs99sx)-mean(rs99dx),mean(rs99sx),mean(rs99dx)))
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