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Abstract

This thesis aims at presenting the mathematical methods ofMagnus Series Expansion and Eigen-
value Deflation, to improve the analytic evaluation of multi-loop Feynman integrals through the
Differential Equations approach.

In the first part of the work, the formalism of multi-loop integrals in dimensional regulariza-
tion and the relations among them are introduced, discussing how integration-by-parts identities,
Lorentz invariance identities and Euler’s scaling equation can be used to derive first order dif-
ferential equations for Feynman integrals. The analytic properties of the solutions are then
investigated by introducing the concepts of iterated integrals and uniform transcendentality.

The central part of the thesis is dedicated to the mathematical systematization of the Magnus
Series Expansion and of the Eigenvalue Deflation, employed to addreess the determination of
the solution of a system of differential equations by means of algebraic techniques. An original
derivation of the Eigenvalue Deflation method, based upon the operations of deflation and balance
transformation, is here presented.

The final part consists of the detailed application of both Magnus Series and Eigenvalue
Deflation methods to the one-loop box diagram, to the two-loop ladder diagram and to the non-
trivial three-loop ladder diagram, which enter the evaluation of 2→ 2 scattering process among
massless partons up to the next-to-next-to-next leading order in Quantum Electrodynamics and
Quantum Chromodynamics. The analytic expressions of the corresponding integrals, as well
as the ones corresponding to their subdiagrams, previously known in the literature, are hereby
re-derived one order higher and in a simpler way.

The presented approaches can be applied in a wider context, ranging from high-precision
collider phenomenology to the study of formal aspects of scattering amplitudes in gauge theories.
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Sommario

Questo lavoro di tesi di laurea magistrale ha lo scopo di presentare i metodi di Espansione in
Serie di Magnus e di Deflazione di Autovalori, sviluppati al fine di migliorare il calcolo analitico di
integrali di Feynman a molti loop utilizzando il metodo delle Equazioni Differenziali per Integrali
di Feynman.

Nella prima parte del lavoro vengono introdotti il formalismo degl’integrali a molti loop in
regolarizzazione dimensionale e le relazioni notevoli fra questi, mostrando come le identità di
integrazione per parti, le identità d’invarianza di Lorentz e l’equazione di scala di Euler possono
essere utilizzate per costruire equazioni differenziali del primo ordine fa gl’integrali. Le proprietà
analitiche delle soluzioni sono quindi trattate, introducendo i concetti di integrali ripetuti e di
uniforme trascendenza.

La parte centrale della tesi è dedicata alla sistematizzazione matematica delle tecniche di
Espansione in Serie di Magnus e di Deflazione di Autovalori, utilizzate per ricondurre la determi-
nazione delle soluzioni di un sistema di equazioni differenziali a tecniche algebriche. Viene infine
presentata una nuova derivazione del metodo di Deflazione di Autovalori, basata sul concetto di
Deflazione e di trasformazione di bilancio.

La parte conclusiva si occupa dell’applicazione dettagliata di entrambi i metodi di Serie di
Magnus e Deflazione di Autovalori ai diagrammi non banali 1-loop box, 2-loop ladder e 3-loop
ladder, che contribuiscono ai processi di diffusione 2 → 2 fra partoni non massivi in correzioni
fino al terzo ordine in processi di Elettrodinamica Quantistica e Cromodinamica Quantistica. Le
espressioni analitiche dei diagrammi sopra menzionati, insieme a quelle dei loro sottodiagrammi,
già note in letteratura, sono qui ricalcolate a più alto ordine e facendo uso di tecniche algebriche.

Le modalità di calcolo affrontate nel presente lavoro possono essere applicate in ampi con-
testi, dalla fenomenologia ad alta precisione degl’acceleratori allo studio di proprietà formali di
ampiezze di processi nelle teorie di gauge.
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Introduction

This thesis describes the method of Differential Equations for Feynman Integrals [1–12], giving
particular relevance to the recently developed techniques of Magnus Series Expansion [13, 14]
and Eigenvalue Deflation [15, 16], suitable for determining solutions by means of purely algebraic
approaches.

The necessity to investigate and understand the components of atomic and subatomic world
has lead to the formulation of quantum field theory, the framework unifying quantum mechan-
ics and special relativity, able to precisely describe all but one fundamental interactions and
constituents of matter known till now. A cardinal aspect of quantum field theory, derived to
describe and compute the different possible ways in which particles evolve during a scattering
or decaying process, is represented by Feynman diagrams. Given a set of external legs (the only
observable properties of the Feynman diagram), two classes of interactions are possible: interac-
tions represented by tree-level diagrams, in which the cut of any internal line will split into two
parts the process under study, and interactions involving loop diagrams, namely structures con-
taining closed internal paths and not subdivisible into separate graphs cutting an arbitrary line.
While tree level diagrams represent the main contribution to most of the scattering processes
and can be computed obtaining a finite result, loop diagrams are corrections proportional to ~l
(with l the number of independent loops in the diagram), containing also integrals that diverge
in D = 4 dimensions. Therefore, to regulate their bad behaviour, both in the Ultraviolet and
Infrared regions, regularization prescriptions are mandatory. Through this work, the ‘t Hooft–
Veltman continuous-dimensional regularization is adopted, and accordingly, results will be given
as Laurent series in ε, being ε = (4−D)/2 the regularization parameter.

Thanks to both the increasing precision of collider experiments and to the developments of
supersymmetric theories (like supergravity) in the last three decades, the necessity to compute
corrections beyond the tree level has became pressing, both to provide highly accurate theoretical
predictions of scattering amplitudes and to allow the study of formal properties of quantum
field theory, as degrees of divergence of form factors corrections. Since the direct evaluation
of multiloop processes in terms of ε series of analytic functions is prohibitive, the scattering
amplitudes are at first rewritten as a sum of terms composed by two parts: a tensorial structure,
carrying informations about Lorentz indexes, spin, and quantum numbers, and a form factor,
containing integrals on the loop momenta. These scalar integrals are closely connected to the
Feynman diagrams from which they come: the numerator may contain all scalar products with
at least one loop variable, whereas the denominator is formed by all the propagators present
in the diagram itself. To compute these Feynman integrals they are reduced in terms of a

ix



x INTRODUCTION

basis of Master Integrals, which are evaluated. Several techniques to compute master integrals
have been developed, as difference [17, 18] and differential [1, 4–7, 9, 19] equations, Mellin–Barnes
integration [20–24], asymptotic expansions [20, 25–27], sector decomposition [20, 28–33], complex
integration and contour deformation [34], and many more.

The method of Differential Equations for Feynman Integrals was originally proposed by
Kotikov [1] in 1991, whose basic idea was to consider the Feynman integrals as functions of
one of the propagator masses, writing a differential equation for the integral in that variable.
The value of the original expression could be found by solving the differential problem. The
advantages of the approach were soon realized [2, 3, 35, 36] and generalized by Remiddi [4] to
the differentiation with respect to any variable kinematic invariant of the process. A demonstra-
tion of the power of this method has been given by Gehrmann and Remiddi with the evaluation
of non-trivial two-loop corrections to γ∗ → 3 jets [5–7], which results are still considered as
state-of-the-art.

Differential equations have been widely used in different contexts of quantum field theory and
particle phenomenology, allowing to obtain results previously unreachable in jet physics, QED
corrections to lepton form factors, Bhabha scattering, QCD corrections to lepton form factors and
top-physics, forward-backward asymmetry of heavy quarks, Higgs physics, electroweak theory,
Sudakov form factors, semileptonic decay, static parameters and gauge boson properties. The
effort to achieve analytic solutions of differential equations for Feynman integrals has stimulated
new developments on the mathematical side [8, 37–40], especially concerning transcendental
functions: on this side, a generalization of Nielsen’s polylogarithms, the so-called Harmonic
Polylogarithms [8], has been introduced to cast the results in an analytical form.

Recently, Henn [10] suggested a new way to evaluate systems of differential equations: instead
of reducing the system of first order differential equations to a single differential equation of high
order, the system itself have to be solved through iterated integrals. Moreover, starting with an
ε-factorized system, the solutions can be written in the even simpler form of iterated integrals
over a rational kernel.

At this point, the problem of how to obtain an ε-factorized form for the system of differential
equations arises. Although a general algorithm to determine whether an ε-factorized form for
a given basis exists or not, and in a positive case able to give such form, has not yet found or
negated, algebraic techniques [13, 16] to manipulate differential equations system in order to find
a suitable form have become available in the last couple of years.

The leading path under the approach described up to here is to solve the problem of Feynman
integrals simplifying (under a conceptual point of view) the tools used to evaluate the solution:
the first step is to pass from integration to differentiation, a much more easier procedure (analytic
functions always admit analytic derivatives, whilst only in rare cases it is possible to express the
integral of an analytic function in terms of other simple analytic functions). From there, the
necessity to find an ε-factorized form moves the attention from differential properties to algebraic
ones, allowing to work with matrices and linear algebra instead of directly trying to integrate
functions.

A disadvantage of this passage from integral to differential, and to algebraic techniques is
that not all the systems of differential equations satisfy the constraints for the application of
the methods mentioned above [13, 16]. Therefore, the systematization of these methods in a
mathematical framework is essential for a better comprehension of their limits and for a possible
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generalization to a wider class of systems of the algorithms known so far.
The present thesis aims at presenting the method of Differential Equations for Feynman

Diagrams, as well as the most recent techniques to find an ε-factorized form for the system
of differential equations associated to a given basis of master integrals. The ε-factorization
allows then to write the solution in terms of a Dyson series of Harmonic Polylogarithms [8]. The
two algebraic techniques examined here are Magnus Series Expansion [13, 14] and Eigenvalue
Deflation [16].

The work is divided into three parts. The first part is focused on the presentation of the
differential equation method, from the construction of the equations to the mathematical form
of their solutions. The second part illustrates the algebraic methods of Magnus series expansion
and eigenvalue deflation to find a canonical form for the system of differential equations under
consideration. The last part presents the application of the two methods previously introduced
to the solution of the 1-loop box, 2-loop ladder and 3-loop ladder massless graphs.

In the first part, Chapter 1 presents the notions of topology and Feynman integral, showing
the process of tensor decomposition to pass from Feynman diagrams to Feynman integrals [9,
20]. After the derivation of a wide range of properties and relations of Feynman integrals [9,
20, 41, 42], integration-by-parts identities [41, 43] (the fundamental tool for the construction
of differential and algebraic relations among integrals) are illustrated, showing how they also
include most of the relations among different Feynman integrals.

Chapter 2 is divided into two main sections, after a brief introduction to the Laporta al-
gorithm, corresponding to two different methods to evaluate Feynman integrals: the first one
shows integral evaluation via Feynman parameters [20, 44] for sunset topologies, in order to find
a generic expression for sunset and bubble integrals [41], while the second one presents a detailed
discussion of the method of differential equations for Feynman integrals [4, 9, 20], as well as of
the fixing of boundary conditions [4, 9–12], and of the existence and uniqueness of the solutions
[4, 9, 20], concluding with the notion of canonical system [10].

In Chapter 3, following the procedure indicated in [10, 11, 13, 14], the solution of a canonical
system of differential equations [10] is written in terms of a Dyson series of iterated integrals.
Introducing the notion of fuchsian form, the solution of the differential equations can be written
in terms of harmonic polylogarithms, functions built up using iterated integrations on a rational
kernel [8]. The concept of transcendental weight (related to the number of iterated integrations
in the definition of a function) is then presented [8, 12, 14] and applied to series expansions in
order to characterize uniform transcendental functions. In conclusion, a selection of exact and
guiding criteria for the a priori determination of uniform transcendental Feynman integrals is
presented [10–14].

The second part opens with the presentation of the Magnus series expansion [13, 14] method
in Chapter 4. After the proof of Magnus theorem [13, 45], the concept underlying the definition
of the interaction picture in quantum perturbation theory is applied to a ε-linear system of
differential equations in a single variable, finding a change of basis for the master integrals which
casts the system in an ε-factorized form. Generalization to multi-scale problems is also explained.

In Chapter 5, after recalling the properties of Jordan block form, eigenvalue reduction [16] and
deflation [15] are explained, as well as their generalization to the differential equation framework,
for one-parameter problems. Here a new derivation of the algorithms presented in [16] is obtained,
starting from the deflation methods mentioned above. These algorithms allow to eliminate non-
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fuchsian poles in a wide range of cases, thanks to the property of eigenvalue deflation to reduce
the rank of a matrix, and to reduce all the eigenvalues to an ε-homogeneous form, thanks to the
eigenvalue reduction process. The application of deflation and reduction is possible thanks to
the introduction of balance transformations [16]. From there, a similarity transformation allows
to land on a canonical system.

The last part of the work presents the results of the application of Magnus series expansion
and eigenvalue deflation to the 1-loop box, 2-loop ladder and 3-loop ladder graphs [10, 11, 13,
14]: in Chapter 6 the graphs are evaluated up to order ε7, an order greater by one than the
available results in literature [10, 11]. For each one of these graphs, starting from the topologies
determined using the Laporta algorithm via Reduze2 code [17, 46, 47], a basis of master integrals
and its corresponding differential system in z = t/s are determined. With the application of
Magnus series, a transformation into a canonical fuchsian form is retrieved. Fixing the boundary
conditions with analysis of the pseudothresholds and of the complex behaviour of the basis, a
solution in terms of harmonic polylogarithms is found for all the masters, in terms of a small set
of integrals evaluated at fixed point [11, 14]. The evaluated integrals are proven to be uniformly
transcendent.

In Chapter 7, 1-loop box, 2-loop ladder and a subsystem of the 3-loop ladder differential
system are rewritten in a canonical fuchsian form using the eigenvalue deflation method, starting
from the Laporta basis of master integrals: at first, the systems are transformed into fuchsian
ones, then a form with ε-homogeneous eigenvalues is reached. Finally, a similarity transfor-
mation allows to reach a fuchsian ε-factorized form. The comparison between the resulting
bases of master integrals and the ones obtained via Magnus series reduction is realized through
integration-by-parts identities.

Appendix A, presents a discussion of the Mathematica code used to determine the basis of
harmonic polylogarithms thanks to their property of shuffle algebra, followed by the functions
used to generate their series expansions around x0 = 0; 1;−1 up to order o0

(
(x− x0)15

)
.

The integrals computed in this work were already considered in [10, 11, 16]. The derivation
presented in the following constitute an alternative and independent evaluation by means of the
new methods of Magnus Series Expansion and Eigenvalue Deflation. Moreover, results are given
up to the seventh order in ε, one order higher than the previously known expansions. As said
before, the passage from a differential problem to a purely algebraic one allowed by using Magnus
series expansion and eigenvalue deflation represents a huge simplification in terms of typology
of needed operations, and this simplification is even more important with respect to the original
integral problem.

The illustrated techniques and results can be used in the evaluation of QED and QCD
corrections to 2 → 2 scattering processes, such as pp → jj (dijet production), known at NNLO
[48], or to 2 → 1 processes, like gg → H (Higgs production via gluon fusion) in the limit
mtop → +∞, known at NNNLO within the threshold expansion approximation [49], and more
generally for the 3-loop vertex form factors (in the massless approximation).

Besides the application to high-accuracy phenomenology, the illustrated results and methods
can be applied in the context of scattering amplitudes within supersymmetric theories ad super-
gravity [50], for the study of formal properties of quantum field theory, such as the study of
divergences and renormalizability conditions, as well as to investigate properties of scattering
amplitudes which are not manifest in the Lagrangian.
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Feynman integrals
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The analytical integration of a function is rarely an easy task: among the (Lebesgue) in-
tegrable functions a very small number of expressions admits a primitive written in terms of
simple functions, and, even in that case, the way to find out such primitive may be tortuous and
computationally expensive.

On the other hand, derivation is an easier operation: assumed a function is at least C1 it is
always possibile to find a precise form for its derivative. Moreover, knowing the exact form of
the derivative of a function, it is possible to establish differential relations between this one and
other known functions, finding an explicit expression for it by solving the so-generated differential
equation.

A handy one-dimensional example from [9] to explain the idea above is the following: finding
analytic form for

In(α) =

∫ +∞

0
e−αx

2
xn dx, n ∈ N. (1)

The computation of the integral with n = 0 or n = 1 is not complicated: for n = 0, (1)
is the gaussian integral I0(α) =

∫ +∞
0 e−αx

2
dx = 1

2

√
π/α, while for n = 1 it has the form

I1(α) =
∫ +∞

0 e−αx
2
x dx = 1

2α . For n ≥ 2 the expression becomes more complicated, and
techniques like integration by parts must be applied before integration.

A different way to compute the integral for n ≥ 2 is looking for a differential relation linking
the already known functions I0(α) and I1(α) to the unknown In(α) with greater n. In particular,
the following relation holds:

In(α) = − d

dα
In−2(α). (2)

Iterating this relation all the integrals with n ≥ 2 can be expressed in terms of I0(α) or I1(α):

• n even

In(α) = − d

dα
In−2(α) =

(
− d

dα

)2

In−4(α) = . . . =

(
− d

dα

)n
2

I0(α); (3)

• n odd

In(α) = − d

dα
In−2(α) =

(
− d

dα

)2

In−4(α) = . . . =

(
− d

dα

)n−1
2

I1(α). (4)

In this way the value of all the integrals is determined starting from the direct computation
of just two of them, the so-called master integrals for the class of functions In.

This example sums up the leading path on which the method of solving Feynman integrals
via differential equations is based: given a scalar integral associated to a Feynman diagram,
differential relations linking the integral under examination to “simpler” ones can be determined
differentiating with respect to the not-integrated variables. Solving these differential equation
with suitable boundary conditions (known values of the master integrals at certain points, or
at least regularity properties) will then lead to an analytic expression for the desired functions
(usually in the form of a series in some regularization parameter).
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Chapter 1

From topologies to integral relations

In the first section, the notions of topology and Feynman integral are presented,
following [9, 20]. The second part of the chapter describes a wide range of properties
and relations of the Feynman integrals [9, 20, 41, 42], introducing integration-by-parts
identities [41, 43] and their relations to Lorentz-invariance identities. They are the
fundamental tool for the construction of differential and algebraic relations among
integrals. Integration-by-parts identities also include most of the relations that can
be constructed to relate different Feynman integrals.

1.1 Diagrams and integrals

1.1.1 Tensor decomposition

The generic structure of an l-loop one-particle irreducible Feynman diagram with g generic
external legs F (l)

λ;s(p1; . . . ; pg) (λ is the vector of bosonic indices, s is the vector of fermionic
indices) is composed by a tensorial part, carrying information related to the nature of the particles
and interactions involved, and by an integral function, resulting from the summation of all the
possible values of the momenta characterizing the loop propagators. As a result of the bare
application of the Feynman rules to compute the Feynman amplitude of a chosen process, this
two elements are often mixed together.

In order to focus on the integration techniques without worrying about tensor calculus or
peculiar problems of the interactions involved, the primary interest is to achieve a factorization
of the tensorial part from the integral functions. This process goes under the name of tensorial
decomposition, and allows to reach a result of the form:

F (l)
λ;s(p1; . . . ; pg) = Eµλ (p1; . . . ; pg)

H∑
h=1

Th;s;µ(p1; . . . ; pg)f
(l)
h (p1; . . . ; pg), (1.1)

where:

5
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• Eµλ;s(p1; . . . ; pg) includes the polarization vectors of the bosonic external legs, and it is
independent of the nature of the internal lines or vertexes of the diagram (µ is the vector
of the Lorentz indices);

• Th;s;µ(p1; . . . ; pg) is a projector containing all the tensorial and coupling information of the
k-th term of the sum plus the nature of the fermionic part of the external legs;

• f (l)
h (p1; . . . ; pg) is a scalar function of the external momenta in which the loop calculations
are enclosed, called form factor.

Thanks to tensorial reduction it is then possible to project out all the indices (in particular,
it is possible to move out all the Lorentz ones) from the loop integration variables on the external
momenta.

The fact that the decomposition (1.1) always exists is a consequence of the Lorentz covariance
and gauge invariance of scattering amplitudes. The same argument in a reversed way can be used
to determine the exact form of all the possible projectors available for the process under study,
through relations as Ward–Takahashi identity or BRST (notice that this property of invariance
allows to determine projectors independently from the internal propagators of the Feynman
diagram investigated or loop number).

1.1.2 Retrieving Feynman integrals

Once the tensorial part has been factorized out and the Wick rotation has been performed on
all the loop momenta, the form factor of a diagram with l loops, g external legs and d internal
lines can be written as:

f
(l)
h (p1; . . . ; pg) = Ch

∫
. . .

∫ ∏Nh
i=1 Snii∏Mh
j=1Dj

dDkl
(2π)D−2

. . .
dDk1

(2π)D−2
, (1.2)

where

• Ch is a numerical coefficient;

• Si is any scalar product formed by either a contraction between a loop momentum and an
external one, or by a contraction between two loop momenta. ni ∈ (N ∪ {0}) and Nh is
given by1

Nh = l(g − 1) +
l(l + 1)

2
= l

(
g +

l

2
− 1

2

)
; (1.3)

Notice that Nh is independent from the nature of the propagators or vertices.

• Dj = (q2
j +M2

j ) is the factor (from now on, with a little abuse of terminology, denominator)
corresponding to the j-th inner propagator with momentum qµj and massMj .

1l(g− 1) comes from all the possible independent contractions between external legs and loop momenta (there
are only g − 1 independent external momenta for momentum conservation). l(l + 1)/2 is the number of possible
contractions between two loop momenta, taking into account also self-contractions like kp · kp.



1.1. DIAGRAMS AND INTEGRALS 7

The notation is not yet minimal: among the denominators there could be repeated expres-
sions, and the scalar products in the numerator are not independent from the denominators.

To eliminate the redundancies among the Mh denominators all the identical expressions are
gathered together, giving out the structure

Mh∏
j=1

Dj →
Rh∏
j=1

Dmjj =
∏
D
Dmjj (1.4)

(D is the set of the Rh independent denominators; each denominator is evaluated to a corre-
sponding power mj ∈ N resulting from the rearranging of the original expression).

Looking at the numerator, it can be seen that Rh of the scalar products can be expressed in
terms of the independent denominators, leaving only Qh = Nh −Mh irreducible scalar products,
composing a set indicated as S. It is still possible to express the elements of such set in terms of
propagators, at the cost of adding denominators not present in D).

The form factor shows now the structure:

f
(l)
h (p1; . . . ; pg) = Ch

T∑
t=1

∫
. . .

∫ ∏
S S

ni;t
i∏

DD
mj;t
j

dDkl
(2π)D−2

. . .
dDk1

(2π)D−2
. (1.5)

The following step is to focus only on each integral at a time, completely forgetting the
quantum field theory structure of the process, that is now completely embedded in the tensorial
part. Doing so, first of all it is possible to associate to an integral of the form∫

. . .

∫ ∏
S S

ni;t
i∏

DD
mj;t
j

dDkl
(2π)D−2

. . .
dDk1

(2π)D−2
(1.6)

a structure called topology, describing how the momentum flows through the minimal set of
propagators.

Definition 1 (Topology). Given a set of loop momenta K = {kµ1 ; . . . ; kµl }, a topology is a couple
of sets (D;E), where D is the set of different denominators of the form Di = K2

i +M2
i (Mi is

the mass of the i-th propagator, and Ki is a function of at least one of the loop momenta), and
E is the set of the independent external legs (pe;Me) (where pe is the momentum andMe is the
mass). This couple (D;E) satisfies the following drawing rules to generate a graph:

• at each element in D is associated an oriented line with two extremal points (called internal
line). The associated momentum flows along this line according to its orientation;

• at each element in E is associated an oriented line with one extremal point (called external
line). The associated momentum flows along this line according to its orientation;

• two or more lines can be joint at their extremal points creating vertices. At each vertex
momentum conservation must be satisfied, namely the total momentum entering the vertex
must be equal to the total momentum exiting the vertex:∑

i entering

Ki =
∑

j exiting

Kj for each vertex; (1.7)



8 CHAPTER 1. FROM TOPOLOGIES TO INTEGRAL RELATIONS

• the graph is connected.2

Given the essential constituents of the diagram (the denominators), and using a principle
analogous to the one underlying Kirchhoff’s first law, a topology gives a minimal graph rep-
resentation that can be drawn following the enlisted rules. Notice that this representation is
completely separated from the original Feynman diagram, possibly resulting in different organi-
zation of the lines or in vertices with five or more lines attached.

Definition 2 (Subtopology). A topology A is said to be a subtopology of B if

DA ⊂ DB and EA = EB (1.8)

At a level of graph representation, a subtopology of a given topology is pictured by a graph
that can be obtained from the one of the topology by shrinking one or more internal lines (i.e.
erasing the internal lines one by one and merging together the vertices to which the extremal
points of each line were jointed). Given a topology, the set of all its subtopologies is called a
subtopology tree.

The concept of topology is fundamental in multi-loop calculations: given a form factor, all
the integrals in the sum of (1.5) share the same topology (at most some of them will belong to
the subtopology tree); moreover, all the integrals generated starting from a diagram F are part
of the same subtopology tree.3

It is now possible to bring back scalar products and powers of the denominators, retrieving
the expression (1.6), that goes under the name of Feynman integral :

Definition 3 (Feynman integral (FI)). A Feynman integral is an integral expression written
in terms of elements of D at the denominator (with powers mj ∈ N) and elements of S at the
numerator: ∫

. . .

∫ ∏
S Snii∏
DD

mj
j

dDkl
(2π)D−2

. . .
dDk1

(2π)D−2
(1.9)

A pictorial representation of the Feynman integral is obtained from the topology graph,
putting a number of dots on the lines equal to mj−1, and reporting the factors in the numerator
as coefficients of the graph in the form Si.4

So, while topologies are the common ground for Feynman integrals belonging to the same
Feynman diagram and for the relations between them (like “skeletons”, showing the essential
underlying momentum structure), the Feynman integrals themselves (from now on, FI) are the
elementary blocks for multiloop Feynman diagrams evaluation, carrying all and only the infor-
mation about the complete structure of the loops.

Obviously, starting from a FI a unique topology can always be determined, whilst the inverse
path is not unique. Being more precise, from FI to topologies the results are unique module
propagator inversions in a set of chained propagators, as in:

2Starting from any vertex it is possible to reach a different one only moving along the internal lines.
3The operations of tensor decomposition and reduction to S for the numerators can only delete some of the

denominators, not adding new ones.
4The usage to put dots on a line to indicate the power to which the corresponding denominator is risen mimics

the fact that having a power mj on a denominator is like chaining mj of such lines in sequence.
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.

Example 1 (From Feynman diagrams to Feynman integrals). From [9]. Consider the following QED
Feynman diagram with incoming momentum pµ from a photonic eternal leg:

D1

D2

D3

D4 D4

related to the integral (using Euclidean metric):∫
γµ[−i(/p− /k1) +m]γν [−i/k1 +m]γρ[−i(/k1 − /k2) +m]γρ[−i/k1 +m]

[k2
1 +m2][(k1 − p)2 +m2][(k1 − k2)2 +m2]k2

2[(k1 − p)2 +m2]

dDk2

(2π)D−2

dDk1

(2π)D−2
(1.10)

The sets D and S are composed as follows:

D S E

D1 = k2
1 +m2 S = k2 · p E = (pµ; p2)

D2 = k2
2

D3 = (k1 − k2)2 +m2

D4 = (k1 − p)2 +m2

Table 1.1: Sets related to (1.10).

One of the denominators (D1) is present twice, while among the five scalar products only one is irreducible,
and it is chosen to be S (usually the choice of the elements of S is not unique). The other scalar products can be
rewritten as:

k2
1 = D1 −m2

k2
2 = D2

k1 · k2 = 1
2
(D1 +D2 −D3)

k1 · p = 1
2
(D1 −D4 + p2)

Table 1.2: Substitutions for reducible scalar products.

The resulting topology has a graph of the following form:

.
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Notice that a peculiar difference between denominators is the value (more generally, the presence) of the mass
factor m2: to distinguish between massive and massless lines the former will be drawn thicker, the latter thinner.

After the tensor decomposition and the substitution of the reducible scalar products the resulting sum of FI
will show different topologies, all belonging to the same subtopoloy tree, namely the subtopology tree of the above
topology.

The simpler FI belonging to the topology just pictured is:∫
1

D2
1D2D3D4

dDk2

(2π)D−2

dDk1

(2π)D−2
(1.11)

where the denominators have the same powers owned in the Feynman diagram. The pictorial representation of
such a FI is then:

.

1.2 Topology relations

As seen before, given a Feynman diagram, or even just one of its form factors, all the FIs in
the expression will share the same generator topology (i.e. will belong to the set composed
by a given topology and by the elements in its subtopology tree), so in order to completely
evaluate the process under study it will be necessary to solve each one of the FIs generated.
Denoting with I(t;q;r;s) the set of FIs with t denominators in D, q irreducible scalar products in
S, r =

∑cardD
j=1 (mj − 1) and s =

∑card S
i=1 ni, the number of FIs generated is

N(I(t;q;r;s)) =

(
r + t− 1

t− 1

)(
s+ q − 1

q − 1

)
. (1.12)

Often, especially increasing loop number l, r and s are different from 0, resulting in a quite large
number of FIs to be evaluated. The question whether the FIs belonging to a common topology
plus related subtopology tree are all independent from each other or not arises then naturally.
Fortunately, there is a important number of identities and properties regarding FIs that allows
to reduce the number of effectively necessary evaluated integrals (as a reference for this section,
consider [9, 41]).

1.2.1 Dimensional regularization

Proposition 1. Given a FI of the form

I =

∫
. . .

∫
f(k1; . . . ; kl)

dDkl
(2π)D−2

. . .
dDk1

(2π)D−2
(1.13)

where all the loop momenta are massless (i.e. k2
i =M2

1 = 0 ∀i = 1; . . . ; l) and f(k1; . . . ; kl) is a
continuous scalar function solely of the loop momenta with mass dimension different from −D,
it must be

I = 0 (1.14)
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for dimensional regularization.

Proof. First of all:

J =

∫
(k2)α dDk = 0 ∀α ∈ R in D → 4. (1.15)

This has been proven in [42] for α ∈ R. Another, more naive, way to proof this equivalence is to use dimensional
analysis: J has a mass dimension of [m]D+2α, so the result must contain a well-dimensioned mass term. Since J
does not depend on any external dimensioned variable, and no dimensioned scalar variable is related to it (the
only variables present are the loop momenta), J must be null. This strictly applies when D + 2α 6= 0, while
for α = −D/2 → −2 the factor 1

(k2)2
can be seen as 1

k2
1
k2 , depicting a vacuum bubble formed by two equal

propagators. When α ∈ (−N) and α 6= −2, the corresponding graph is a vacuum bubble with −α propagators
all equal to k2 and it is 0 in dimensional regularization, so the case with α = −2 should not be different, since it
differs from the previous ones just for a minor (and not null) number of propagators.

A similar argument holds also to prove that I = 0: since no dependance from dimensioned external variables
is present in the FI, until it has not null mass dimension the only possibile result for the FI is 0. For mass
dimension of f equal to −D the structure of f must be investigated, looking for odd terms in the momentum
variables or dispositions of the denominators allowing argument as the one above to prove J = 0 in α = −D/2.

Thanks to this property all diagrams involving massless tadpoles or completely massless
vacuum structure automatically vanish.

Another interesting consequence of the previous proposition is:

Lemma 1. A completely massless FI having:

• mass dimension [m]γ and γ 6= 0;

• only two vertices on which external lines are attached;

• on one of these two vertices only one external line attached with related momentum pµ

satisfying p2 = 0;

is null.

Proof. As for the main proposition, the only scalar dimensional parameter related to the FI is the squared
external momentum p2 = 0. Since this variable is 0, so it has to be the FI.

As a consequence, topologies with massless internal lines having only two point on which
external lines can attach, just one massless external line attached to one of these are related to
null FIs. Such FIs are of the generic form:

.
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1.2.2 Redefinition of loop momenta

Since loop momenta are the variables of integration, it is always possible perform a change of
coordinates (usually through linear functions) to redefine the flows of the momenta in the internal
lines without changing the result of the integration.5

The first, and most important, consequence of that invariance is the formulation of an equiv-
alence relation on the set of topologies: all the topologies equal up to a change of coordinates
are enclosed in the same class.

Definition 4 (Independent topologies). Two topologies are said to be independent if, starting
from one of them, is impossible to obtain the other one via change of coordinates on the loop
momenta.

Most of the relations found redefining loop momenta may appear trivial, thanks to the in-
tuitive graph representation that can be associated to FIs. Nevertheless, operating on loop mo-
menta is still possible to relate different graphs and to find properties of the integrals themselves
or of their sub-integrals.

Starting from a FI having a subgraph without external lines that is connected to the rest of
the graph in just two vertices it is always possible to chose kµ1 as the momentum entering in the
sub-graph and K = {k2; . . . ; kA} as the set of loop momenta only flowing inside the sub-graph.
Denoting with n the sum of the powers of the numerator scalar products in which elements of
K are present, indicating with J the FI obtained from the original I by detaching the subgraph
and attaching it back swapping the vertices, it is found that:

J = (−1)nI. (1.16)

In fact, swapping the vertices results in a graph equal to the original one, except for the inversed
subgraph and the related incoming momentum, that changes verse of flow of k1 and of all the
elements of K: k1 → −k1; . . . ; kA → −kA.

This technique is also useful in getting rid of some loop variables present in scalar products.
Last but not least, by imposing the identity between the original FI and the expression

resulting from the redefinition of loop variables, a set of identities relating different FIs (not all
belonging to the same topology, but also to similar ones) is obtained, as explained in the next
session.

1.2.3 Factorization

If for a FI exists a choice of the loop variables such that the integrand is a factorized expression
in the loop variables

f(k1; . . . ; kl) = f1({ki}I)f2({kj}J) (1.17)

({ki}I and {kj}J are two partition of the set of loop variables {k1; . . . ; kl}) then the FI can be
considered as a product of two separated FIs.

A remarkable class of factorized FI is the one which graph representation shows a sub-graph
connected to the rest of the graph on only one vertex: factorizing the FI consists in separating

5An immediate consequence is the fact that odd functions of the loop momenta give FIs equal to 0.
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the two sub-graphs on the vertex of connection, then adding to it in both new graphs an external
line with incoming momentum equal to∑

i∈An entering

qµi −
∑

j∈An exiting

qµj (1.18)

where A is the set of removed internal lines attached to the vertex in which the separation has
been performed to obtain the new graphs (n = 1; 2, since incoming and outgoing momenta differs
for the detatched graph, indicated by 2, and for the parent one, indicated by 1).

Example 2 (Factorization). From [41].The FI (pµ is the momentum flowing from the left to the right with
p2 = m2) ∫ ∫ ∫

1

k2
1[(p− k1)2 +m2

1](k2
2 +m2

2)(k2
3 +m2

3)(k2 + k3)2

dDk3

(2π)D−2

dDk2

(2π)D−2

dDk1

(2π)D−2
(1.19)

can be factorized as∫
1

k2
1[(p− k1)2 +m2

1]

dDk1

(2π)D−2

∫ ∫
1

(k2
2 +m2

2)(k2
3 +m2

3)(k2 + k3)2

dDk3

(2π)D−2

dDk2

(2π)D−2
. (1.20)

Using FI graphs:

.

Considering now

this graph can be factorized in

.

Thanks to the fact that the second graph of the factorized form is null, satisfying lemma 1, the original FI is
0.
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1.2.4 Partial fractioning

A useful technique to separate a topology into a sum of its subtopologies is the partial fractioning.
At the cost to add more scalar products in the numerator it is possible to rewrite an integral as:∫

1

D1D2
dDK =

∫
f1(K)

D1
dDK +

∫
f1(K)

D2
dDK. (1.21)

Note that with this technique it is not possible to completely remove one or more loop momenta
from one of the obtained integrals, otherwise they will be null, for dimensional regularization.

1.2.5 Integration-by-parts identities

The most wide and useful set of relations used to relate integrals comes from the property of
invariance of the FIs under redefinition of loop momenta; these identities are called integration-
by-parts identities.

As explained in [41], a generic FI is invariant under the transformation

k′µi = Aijk
µ
j +Bijp

µ
j i = 1; . . . ; l (1.22)

acting on the loop momenta. A is a l× l invertible matrix, while B is a l× g rectangular matrix.
The invariance under this kind of substitutions corresponds to an invariance under the action

of the Lee group
GL(l) nRl. (1.23)

Consider now the associated infinitesimal transformation (also the integration measure can
change):

k′µi = kµi + αijq
µ
j i ≤ l, (1.24)

α =

(
α̃l×l α̂l×g
Og×l Oe×g

)
, (1.25)

f(K′;P) = f(K;P) +
∂f(Q)

∂qνi
αijq

ν
j = i ≤ l, (1.26)

dDk′1. . .d
Dk′l =

l∏
i=1

(1 +Dαii) dDk1. . .d
Dkl (1.27)

where K is the set of loop momenta, P is the set of external momenta, Q = K ∪ P ordered as
kµ1 ; . . . ; kµl ; pµ1 ; . . . ; pµg , qµi ∈ Q and α is the (l+ g)× (l+ g) matrix of infinitesimal increases, with
α̃l×l and α̂l×g generally non-zero rectangular sub-matrices.6

6α has all elements with i > l equal to 0 because the transformation under which the integral is invariant
involves only the loop momenta kµi .
To explain (1.27) consider the variation of the volume measure under a change of coordinates:

dDK′ =

∣∣∣∣det
∂K′

∂K

∣∣∣∣ dDK = |det(I + α̂)| dDK = |1 +D tr α̂| dDK = (1 +D tr α̂) dDK (1.28)

where the chain of equivalences holds at first order in αij . α̂ is the sub-matrix obtained from α removing the
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The transformation acting on the integral produces then (always at the first order)

δI =

∫
αij

(
Dδij + qνj

∂

∂qνi

)
f(Q) dDk1. . .d

Dkl = 0 i ≤ l, (1.30)

allowing to isolate the generator operator

Oij = Dδij + qνj
∂

∂qνi
=

∂

∂qνi
· qνj i ≤ l, (1.31)

with commutation rules
[Oij ;Oqr] = δirOqj − δqjOir, (1.32)

giving the structure constant of the Lie algebra.
To conclude the discussion, considering that 1 ≤ i ≤ l identifies the loop variable set, the

action of the operator on a FI can be rewritten as:∫
∂

∂kµi

(
qµj f(Q)

)
dDK = 0 (1.33)

This is the classical form of the integration-by-parts (IBP) identities.
Some remarks on the IBP identities are enlisted below.

1. Given a FI, l(l + g − 1) IBP-ids can be generated.

2. All the FI comparing in a set of IBP-ids belong to the same topology plus related subtopol-
ogy tree: applying the IBP operator the result may differ for some missing denominators
(resulting in a subtopology) or for some scalar products (which presence do not alter
the topology), whereas new denominators cannot appear; in particular, before involving
subtopologies due to simplifications, IBP-ids involve integrals I(t;q;r;s) (derivative acting
on the IBP momentum), I(t;q;r;s−1) (differentiating deletes an irreducible scalar product,
substituting it with a mass term), I(t−1;q;r;s−1) (irreducible scalar product changed to a
reducible one, without completely erasing a denominator), I(t+1;q;r;s) (derivative acting on
one of the denominators) and I(t+1;q;r;s+1) (differentiating one of the denominators gener-
ates an irreducible scalar product in the numerator).

3. IBP-ids cannot relate integrals with different loop number: if an IBP completely eliminates
the presence of a loop momentum the corresponding integral would be factorizable as∫

dk1

∫
f(k2; . . . ; kl) dk2. . .dkl, but then it will be null due to dimensional regularization

(see proposition 1).

elements with i > l and j > l and the dimension factor D arises in the trace due to the fact that each loop
momentum has D components. Finally, the module can be dropped considering αij as infinitesimal quantities.
Due to the presence of the trace, the infinitesimal variation operates only if i = j in αij , so:

dDK′ = (1 +D tr α̂) dDK =

l∏
i=1

(1 +Dαii) dDki (1.29)

still at first order in αij .
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4. Given a topology, the IBP-ids that can be written are infinite, due to the infinite number
of possible powers of denominators and irreducible scalar products.7

5. An alternative way to demonstrate the truth of the IBP relations is via the divergence
theorem: starting from the simple case∫

∂

∂kµ

(
kµ

(k2 +m2)α

)
dDk (1.34)

(where the integral is over RD) it is possible to apply the divergence theorem and pass to
spherical coordinates:∫

∂RD

‖k‖D−1

(k2 +m2)α
k · n̂ dΩ(D) = lim

r→+∞

rD

(r2 +m2)α
Ω(D) (1.35)

(where Ω(D) = SD(ρ)
ρD

is the solid-angle in D dimensions). This expression vanish for
sufficiently small dimensions D < 2α.8

Example 3 (1-loop massive vacuum diagram). Consider the 1-loop massive vacuum diagram FI, also
known as tadpole (n ∈ N):

In =

∫
1

(k2 +m2)n
dDk

(2π)D−2
. (1.36)

The only IBP for it is ∫
∂

∂kµ
kµ

(k2 +m2)n
dDk

(2π)D−2
= 0 (1.37)

⇓

(D − 2n)

∫
1

(k2 +m2)n
dDk

(2π)D−2
= −2nm2

∫
1

(k2 +m2)n+1

dDk

(2π)D−2
(1.38)

Iterating such identity (and remembering that Γ(n+ 1) = n!) it is possible to relate all the In to I1:

In =
Γ
(
n− D

2

)
(m2)n−1Γ(n)Γ

(
1− D

2

)I1; (1.39)

to indicate the fact that, knowing only the value of I1, it is possible to retrieve In ∀n ∈ N, I1 is called the master
integral of the topology.

1.2.6 Lorentz-invariance identities

Another important class of identities is derived considering the nature of the FIs with respect
to the Lorentz group: being Lorentz scalars, FIs are invariant under the action of the Lorentz
group O(1; 3) acting on the momenta carried by the external lines. As a result:

p′µe = pµe + ωµνp
ν
e , (1.40)

I(P ′e) = I(P) +
∂I(P)

∂pµe
ωµνp

ν
e (1.41)

7This apparently irrelevant comment is quite important: not always starting from a given FI the most useful
IBP-ids can be determined, while starting from FI with higher values of powers can bring to useful simplifications,
as for the case of the Lorentz invariance identities (see section 1.2.6).

8In operative cases, thanks to the high number of denominators, this condition is always satisfied, so the
IBP-ids are proven to be correct.
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where ωµν is the generator of the infinitesimal Lorentz transformation (a totally antisymmetric
tensor) and Pµe = (pµ1 ; . . . ; p′µe ; . . . ; pµg ).

Using the invariance of FIs and the fact that ωµν = ω[µν] = 1
2(ωµν − ωνµ) 6= 0 a relation is

found: (
peν

∂

∂pµe
− peµ

∂

∂pνe

)
I(P) = 0, e = 1; . . . ; g; (1.42)

summing over all the external momenta:

g∑
e=1

(
peν

∂

∂pµe
− peµ

∂

∂pνe

)
I(P) = 0. (1.43)

Finally, contracting with all the antisymmetric couples of a maximal set of external independent
momenta:

2
(
p

[µ
i p

ν]
j

) g∑
e=1

(
pe[ν

∂

∂p
µ]
e

)
I(P) = 0 ∀i; j = 1; . . . ; g independent. (1.44)

These expressions go under the name of Lorentz-invariance identities (LI).
This result can also be seen as the application of the generators of the Lorentz rotation (the

angular momentum Lµν = pe[ν
∂

∂p
µ]
e

) to a Lorentz scalar.

Concerning LI-ids, a remarkable property can be demonstrated ([43]):

Proposition 2. The LI-ids of a certain topology can be expressed as a linear combination of
IBP-ids of the same topology or of its subtopology tree.

Proof. First of all, notice that th differentiation with respect to the external momenta can commute with the
integral on the loop momenta, so it can be applied directly to the integrand. Adding and subtracting the expression

2
(
p

[µ
a p

ν]
b

)∑l
i=1

(
ki[ν

∂

∂k
µ]
i

)
to the LI operator:

2
(
p[µ
a p

ν]
b

)( l+g∑
j=1

qj[ν
∂

∂q
µ]
j

−
l∑
i=1

ki[ν
∂

∂k
µ]
i

)
f(Q) = 0. (1.45)

Since f(Q) is a Lorentz scalar function of qµj , the first operator gives 0 acting on f (it is essentially the generator
of the rotations in the space (k1; . . . ; kl; p1; . . . ; pg)), the expression becomes:

2

∫ (
p[µ
a p

ν]
b

) l∑
i=1

ki[ν
∂

∂k
µ]
i

f(Q)
dDK

(2π)l(D−2)
=

l∑
i=1

∫
∂

∂kµi
[(pµapb · ki − pµb pa · ki) f(Q)]

dDK
(2π)l(D−2)

. (1.46)

Thus LI-id can be expressed in term of IBP-ids of the same topology (the added derivative of ki with respect to
kµi vanishes due to antisymmetry), by adding a scalar product on the numerator (that can at most reduce the FI
topology to a subtopology of the original one).

1.2.7 Are IBP identities enough?

After having shown that LI-ids are just a particular set of IBP-ids, a question may arise: does
the IBP mechanism generate all the meaningful relations for a given topology?
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At least it is not true for the discrete ones, like redefinition of loop momenta, partial frac-
tioning or factorization of graphs, due to the fact that IBP-ids originates from a continuous and
connected group, whilst the swapping loop momenta and the rewriting of fractions are encoded
by discrete rules.

Even restricting the domain of the question to Lie groups the answer is not clear: on one
hand it seems that a group of relations among FIs, called Larin identities, is not related to the
IBP-ids, and on the other hand the IBP-ids are infinite in number for a given topology, so new
structure may arise with higher values of the parameters.

Another important aspect of the investigated relations is that they are not all independent:
as seen with LI-ids and IBP-ids, a huge part of the relations is redundant.

In any case, despite the fact that the question on the origin of relations among FIs is very
significant as a theoretical aspect, another important question is: in the case that all “continuous”
relations are generated by IBP mechanism, is this useful to compute all such relations with only
this one mechanism?

At present days most of the recursive work, like the determination of the relations among FIs,
is assigned to computers. If the same relations that could be obtained by immediate evaluation
(like the LI-ids, related to manifest invariance of the expressions) were obtained by iterated com-
putation of more complex structures (like IBP, involving differentiation and algebraic rearranging
of the terms) the only result, especially for bigger topologies, will be a really huge demand of
resources in terms of computational time and computer hardware.

To avoid unnecessary waste of resources, all current programs for the evaluation of relations
among FIs (like Reduze [46, 47], or FIRE [51]) use different approaches to the generation of
relations, like IBP, Lorentz invariance or change-of-coordinates invariance.



Chapter 2

Feynman integrals evaluation

Two ways of evaluating Feynman integrals are presented. At first, integral evaluation
via Feynman parameters [20, 44] for sunset topologies is used to find a generic ex-
pression for sunset and bubble integrals [41]. The subsequent part presents a detailed
discussion of the method of differential equations for Feynman integrals [4, 9, 20],
as well as of the fixing of boundary conditions [4, 9–12], and of the existence and
uniqueness of the solutions [4, 9, 20]. Finally, the notion of canonical system [9, 10]
is introduced starting from ε-factorized systems.

2.1 Master integrals and Laporta algorithm

Using the relations investigated in the previous chapter it is possible to express the FIs of a
specific topology in terms of either other FIs of the same topology or of FIs belonging to the
subtopology tree, or even of FIs of different topologies. Usually, the number of such fundamental
FIs is greatly inferior to the total number of initial integrals, and the knowledge of this relatively
restricted set of functions allows to obtain, with just algebraic operations, the values of all the
others. These “fundamental” FIs are called master integrals (MI) of the system.

The amount of MIs for a given topology may vary drastically from several, to one, to none:
in this last case, the topology is said to be reducible, and can be completely expressed in terms
of MIs belonging to different topologies (usually located in the subtopology tree of the orginal
FI).

Unfortunately, it has not yet discovered a criterion able to determine if, starting from a
FI or a set of FIs, a given set of MIs is truly a basis (i.e. is a maximal set of independent
functions with respect to all the possible algebraic relations among FIs). Nevertheless, starting
from even thousands of FIs, the number of MIs is usually about tens, so in any case an enormous
simplification of the calculations needed has been performed. It is even possible that some MIs
that appear to be independent are in fact related via identities (usually, IBP-ids) only derived
at higher orders; it would not be surprising, since relations like IBP-ids are infinite in number
and not fully understood.

19
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Fortunately, at least it has been proven that the number of MIs for a problem starting from
a Feynman diagram is always finite (see [52]).

The set of MIs is not fixed or unique, and the choice of a suitable basis is not an easy problem:
it is necessary to avoid uselessly complicated FIs, and to find expression as regular as possible
for D → 4 to obtain a smart form for the FI under investigation. This is not an easy task to
complete without some sort of automated classification of the “complexity” of a FI, due to the
overwhelming number of function to examine. Moreover, once the basis has been chosen, the
relations among FIs must be solved in order to express all the other integrals in terms of the
MIs. A parallel problem is the fact that not all the relations determined before are independent,
so the problem to select the easiest set of independent ones has to be considered.

The Laporta algorithm introduces a solution for the problem (for a detailed discussion, see
[17]): the core of the procedure is the determination of a “weight” function for FIs, an increasing
function of the exponents ni and mj , such as FIs with higher powers have higher weight; once
this is done the most weighty FIs are expressed in terms of the less weighty ones, trying to
minimize the total weight of the independent FIs. In this way, a set of MIs is determined.

Once a set of MIs is fixed, their evaluation can be performed in two different ways.

• Integral evaluation: for simple integrals a direct calculation can be performed, usually
thanks to Feynman parametrization. Feynman parametrization is often useful also on more
complex integrals to investigate some properties of the FIs without direct evaluation, like
properties of their series expansion.

• Differential evaluation: solving differential relations among MIs (determined differen-
tiating with respect to external parameters and simplifying the results using algebraic
relations, like IBP-ids) and imposing boundary conditions a series expansion in ε = 4−D

2
of the integrals is obtained.

2.2 Integral evaluation

Given an expression of the form 1
A
α1
1 . . . Aαnn

, with αi ∈ N, it is possible to rewrite it as:

1

Aα1
1 . . . Aαnn

=
Γ (
∑n

i=1 αi)∏n
j=1 Γ(αi)

∫ 1

0
. . .

∫ 1

0

δ (
∑n

i=1 xi − 1)
∏n
k=1 x

αk−1
k

[
∑n

l=1 xlAl]
∑n
m=1 αm

dxn . . . dx1. (2.1)

This technique is called Feynman parametrization (xi are the Feynman parameters, for more
details, see [20]). For n = 2, the expression simplifies as

1

Aα1
1 Aα2

2

=
Γ(α1 + α2)

Γ(α1)Γ(α2)

∫ 1

0

xα1−1(1− x)α2−1

[xA1 + (1− x)A2]α1+α2
dx. (2.2)

Feynman parameters are useful to evaluate selected elements belonging to the set of sunset
graphs. This set contains graphs with topology
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with either massive or massless lines.

2.2.1 Bubble integrals

A bubble integral is a loop integral of the form:

I =

∫
dDk

[(k − p)2 −m2
1]α1 [k2 −m2

2]α2
. (2.3)

corresponding to the graph

α1;m1

α2;m2

pµ

.

Reintroducing the imaginary prescription for the pole and rearranging the terms in the de-
nominator (p · p = s, the arrows indicate the flowing of the momentum):

I =
Γ(α1 + α2)

Γ(α1)Γ(α2)

∫ 1

0

∫
xα1−1(1− x)α2−1

[(k − px)2 − (−x(1− x)s+ x(m2
1 −m2

2) +m2
2) + iη]α1+α2

dDk dx.

(2.4)
Operating the change of variable k′µ = kµ + pµx (dDk′ = dDk), and performing Wick’s rotation:

I = i
Γ(α1 + α2)

Γ(α1)Γ(α2)

∫ 1

0

∫
xα1−1(1− x)α2−1

[−(k′2 + Ω)− iη]α1+α2
dDk′ dx, (2.5)

then

I = i(−1)α1+α2
Γ(α1 + α2)

Γ(α1)Γ(α2)

∫ 1

0

∫
xα1−1(1− x)α2−1

[k′2 + Ω + iη]α1+α2
dDk′ dx, (2.6)

with
Ω = Ω(m2

1;m2
2; s;x) = (−x(1− x)s+ x(m2

1 −m2
2) +m2

2). (2.7)

The integral in the loop momentum can be solved as:∫
dDk′

(k′2 + Ω)α1+α2
= (4π)ε−2 Ω2−α1−α2−εΓ(α1 + α2 − 2 + ε)

Γ(α1 + α2)
, (2.8)
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so I has the structure:

I = i(−1)α1+α2(4π)ε−2 Γ(α1 + α2 − 2 + ε)

Γ(α1)Γ(α2)

∫ 1

0
Ω2−α1−α2−εxα1−1(1− x)α2−1 dx. (2.9)

According to the masses and the momenta associated with the lines of the graph, several
expression can be determined.

• Massless bubble with massless external legs: m2
1 = m2

2 = 0 = s: the integral is equal to 0
for dimensional regularization (proposition 1).

• Massless bubble: m1 = m2 = 0 implies Ω = −x(1− x)s, so the integral becomes

(−s)2−α1−α2−ε
∫ 1

0
x2−α1−1−ε(1− x)2−α2−1−ε dx =

= (−s)2−α1−α2−εΓ(2− α1 − ε)Γ(2− α2 − ε)
Γ(4− α1 − α2 − 2ε)

. (2.10)

• Massless external legs: s = 0 and m1 = m2 = m 6= 0 implies Ω = m2, and the integral
simplifies as

(m2)2−α1−α2−ε
∫ 1

0
xα1−1(1− x)α2−1 dx = (m2)2−α1−α2−εΓ(α1)Γ(α2)

Γ(α1 + α2)
; (2.11)

Consideringm1 6= 0 or m2 6= 0 generally causes the integral to be not solvable in terms of simple
expressions of known functions.

• Equal-mass massive bubble: m1 = m2 = m 6= 0, so Ω = −x(1− x)s+m2.

• Half-massive bubble: m = m1 6= m2 = 0, so Ω = −x(1− x)s+ xm2. Assuming also s = 0,
so Ω = xm2, an integrable expression is found:

(m2)2−α1−α2−ε
∫ 1

0
x2−α2−1−ε(1− x)α2−1 dx =

= (m2)2−α1−α2−εΓ(2− α2 − ε)Γ(α2)

Γ(2− ε) ; (2.12)

moreover, when m2
1 = m2 = s (p = 0), when Ω = x2m2:

(m2)2−α1−α2−ε
∫ 1

0
x4−α1−2α2−1−2ε(1− x)α2−1 dx =

= (m2)2−α1−α2−εΓ(4− α1 − 2α2 − 2ε)Γ(α2)

Γ(4− α1 − α2 − 2ε)
. (2.13)
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All the integrals above share the same constant factor i(4π)ε−2, that is then redundant.
Moreover, it is useful to obtain dimensionless terms depending on ε. To reach such results it is
possible to perform a smart redefinition of the integration measure, like:

dD0 k =
(µ2)ε dDk

iπ2−ε , (2.14)

where µ is an auxiliary parameter with mass dimension [m]1. Rewriting also the expression
(−1)α1+α2(−s)2−α1−α2−ε as (−s)−εs2−α1−α2 the integrals assume the form:

• m1 = m2 = 0:

=

(
− s

µ2

)−ε
s2−α1−α2

Γ(α1 + α2 − 2 + ε)Γ(2− α1 − ε)Γ(2− α2 − ε)
Γ(4− α1 − α2 − 2ε)Γ(α1)Γ(α2)

(2.15)

• s = 0 and m1 = m2 = m 6= 0:

=

(
m2

µ2

)−ε (
−m2

)2−α1−α2 Γ(α1 + α2 − 2 + ε)

Γ(α1 + α2)
(2.16)

• m1 6= 0 and m2 = 0 = s:

=

(
m2

µ2

)−ε (
−m2

)2−α1−α2 Γ(α1 + α2 − 2 + ε)Γ(−α2 − 2− ε)
Γ(α1)Γ(−2 + ε)

(2.17)

• m2
1 = s 6= 0 and m2 = 0:

=

(
m2

µ2

)−ε (
−m2

)2−α1−α2 Γ(α1 + α2 − 2 + ε)

Γ(α1)Γ(4− α1 − α2 − 2ε)
(2.18)

• m1 6= 0 or m2 6= 0:

= (−1)α1+α2
Γ(α1 + α2 − 2 + ε)

Γ(α1)Γ(α2)

∫ 1

0
Ω2−α1−α2−εxα1−1(1− x)α2−1 dx (2.19)

Example 4 (Tadpole). A tadpole is a FI of the form:

I(m2) =

∫
dD0 k

(k2 +m2)α
. (2.20)

It is possible to follow the algorithm used above to determine the explicit expression for the bubbles, where now
Ω = m2, k′µ = kµ − pµ and the Feynman parametrization in no more necessary. The result is:

I(m2) =
(
m2)2−α−ε Γ(α− 2 + ε)

Γ(α)
. (2.21)

Another way to derive the analytic expression for the massive vacuum diagram is by starting from the integral∫
dD0 k

[k2 −m2]α1 [(k − p)2 −m2]α2
(2.22)
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and putting α1 = α and α2 = 0 the loop does not depend on external momentum anymore, resulting equivalent
to a vacuum tadpole:

It is possible to proceed as above without Feynman parameters. A third way consists of considering integral
(2.22) with p2 = s = 0, using equation (2.16), putting α1+α2 = α: thanks to the fact that the external momentum
in Feynman parametrization is present only as a squared parameter, the formula above is valid also in the case of
a momentum with all components separately vanishing, reproducing the vacuum bubble. The expression is then:(

m2

µ2

)−ε (
−m2)2−α Γ(α− 2 + ε)

Γ(α)
, (2.23)

as before.

2.2.2 Sunset integrals

A smart way to evaluate an l-loop (or n-propagator, with n = l + 1) massless sunset integral
is to detach a couple of internal lines at a time and substitute them with the expression of the
corresponding massless bubble seen above.

To perform this substitution, first of all a change of loop variables is needed to associate to
the couple of internal lines momenta of the form (k; k + k1) (k denotes a combination of loop
momenta not containing k1). It is then possible to substitute this bubble with expression (2.15),
where s = k2:

Example 5 (2-loop massless sunset). Consider a 2-loop sunset integral, with internal lines carrying momenta
kµ1 , (k2 − k1)µ and (p− k2)µ (where pµ is the external momentum), with powers α1, α2 and α3 respectively. The
detachable couple, with external momentum kµ2 , is (kµ1 ; (k2 − k1)µ), reducible using the expression (2.15):∫ ∫

dDk1dDk2

[k2
1]α1 [(k2 − k1)2]α2 [(p− k2)2]α3

=

=
(
−µ2)ε Γ(α1 + α2 − 2 + ε)Γ(2− α1 − ε)Γ(2− α2 − ε)

Γ(4− α1 − α2 − 2ε)Γ(α1)Γ(α2)

∫
dDk2

[k2
2]α1+α2−2+ε[(p− k2)2]α3

=

=

(
− s

µ2

)−2ε

s4−α1−α2−α3
Γ(2− α1 − ε)Γ(2− α2 − ε)Γ(2− α3 − ε)

Γ(α1)Γ(α2)Γ(α3)

Γ(α1 + α2 + α3 − 4 + 2ε)

Γ(4− α1 − α2 − α3 − 2ε)
. (2.24)

It is possible to generalize the result obtained in the previous example to a massless sunset
with an arbitrary number of loops (to confront the final result, see [41]):
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Proposition 3 (Massless sunset FI). Given a massless sunset FI with incoming momentum pµ

and n internal lines with powers {αn}1;. . . ;n, its analytic expression has the form:

(
− p

2

µ2

)−(n−1)ε (
p2
)2(n−1)−

∑n
j=1 αj Γ (

∑n
l=1 αl + (n− 1)(ε− 2))

Γ (−∑n
m=1 αm + n(2− ε))

n∏
k=1

Γ(2− αk − ε)
Γ(αk)

. (2.25)

Proof. The demonstration is carried out by induction.
First of all, the formula is verified for the basic case n = 2 (1-loop massless bubble): here it reproduces the

analytic result (2.15):(
− p

2

µ2

)−ε (
p2)2−α1−α2 Γ(α1 + α2 − 2 + ε)Γ(2− α1 − ε)Γ(2− α2 − ε)

Γ(4− α1 − α2 − 2ε)Γ(α1)Γ(α2)
(2.26)

For a generic n-propagator massless sunset ((n−1)-loop massless sunset), assuming that the first n−1 internal
lines have been reduced to a single one using the method explained in example 5, the equation for the final step
is: (
− p

2

µ2

)−(n−2)ε (
p2)2(n−2)−

∑n−1
j=1 αj

Γ
(∑n−1

l=1 αl + (n− 2)(ε− 2)
)

Γ
(
−
∑n−1
m=1 αm + (n− 1)(2− ε)

) n−1∏
k=1

Γ(2− αk − ε)
Γ(αk)

(
− p

2

µ2

)−ε (
p2)2−αn

Γ
(∑n−1

h=1 αh + αn − 2 + (n− 2)(ε− 2) + ε
)

Γ
(
−
∑n−1
q=1 αq + 2 + (n− 2)(2− ε)− ε

)
Γ(2− αn − ε)

Γ
(

4−
∑n
y=1 αy + (n− 2)(2− ε)− 2ε

)
Γ
(∑n−1

z=1 αz + (n− 2)(ε− 2)
)

Γ(αn)
=

=

(
− p

2

µ2

)−(n−1)ε (
p2)2(n−1)−

∑n
j=1 αj

Γ
(∑n

l=1 αl + (n− 1)(ε− 2)
)

Γ
(
−
∑n
m=1 αm + n(2− ε)

) n∏
k=1

Γ(2− αk − ε)
Γ(αk)

, (2.27)

and this proves the thesis.

2.3 Differential evaluation

2.3.1 Constructing differential equations

As explained in [4, 9], a given FI is a scalar integral depending on a set of not integrated
parameters S, as momenta of the external lines, masses of all the lines, Mandelstam invariants.
It can therefore be differentiated with respect to any of the elements of S, obtaining relations
among the given FI and other FIs, these last ones all belonging to the subtopology tree of the
first.1

Since scalar equations can be solved and manipulated easily with respect to integration, the
focus is set to retrieve scalar differential equations – for that, the variable of differentiation will
be only scalar quantities.
S can be divided into two subsets, based on the nature of the variables: a subset of internal

variables and a subset of external ones.
1As already said, differentiating can only vary the powers of the elemnts of D and S, without inserting new

elements.
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Internal variables formed by all the non-zero masses of the internal lines, the construction of
the differential equations is straightforward:

∂I(D;S)

∂
(
m2
i

) = CijJj(D;S) (2.28)

where Jj are FIs that differ from I just for some increased powers in the denominators,
therefore belonging to the same topology of I. This is due to the fact that differentiating
with respect to m2

i with denominators of the form (K + m2
j ) does not generate, in the

numerator, terms depending on momenta.

External variables formed by quantities containing external momenta or masses. Due to the
fact that inside the FIs also scalar products of the form pe · ki are present, the derivative
must be expanded:

∂I(D;S)

∂sα
=
∂pµi
∂sα

∂I(D;S)

∂pµi
=

[
∂sα
∂pµi

]−1 ∂I(D;S)

∂pµi
=

= Aαj(D;S)Jj(D;S) +Bαk(D;S)Kk(D;S), (2.29)

where the term [∂sα/∂p
µ
i ]−1 is obtained starting from the expressions ∂I/∂pµi = [∂sα/∂p

µ
i ]∂I/∂sα

and inverting these relations. The left-hand side of one of these expressions is a scalar quan-
tity, so it is possible to express the right-hand side in terms of denominators and irreducible
scalar products, possibly multiplied by mass coefficients. The integrals Jj , as above, will
belong to the same topology, but with different powers, while Kk are integrals only of the
subtopology tree, specifically of the trench with the same number of loop of the original,
otherwise the FIs will be null for dimensional regularization.

The same procedure can be applied to a vector of MIs, all depending on a common set of
kinematic variables, obtaining a system of differential relations that can be studied at once.

Most of the integrals Jj and Kk are not MIs for a given topology, therefore, applying again
the identities of reduction to MIs, it is possible to express the right-hand side of the relations in
terms of MIs only.

To conclude, through differentiation on the kinematic invariants it is possible to write differ-
ential equations (DE) for a set I of MIs, with structure:

∂I(D;S)

∂sα
= Mαi(D;S)Ii(D;S) + Cαj(D;S)Jj(D;S) (2.30)

with

• I the vector of MIs under study;

• J a vector of MIs belonging to subtopologies of I;

• M and C matrices of rational functions of the kinematic parameters (they can be singular
at particular configurations S̃).
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The system for I is not homogeneous, so a bottom-up approach to the MIs becomes natural:
starting with the evaluation of the MIs related to the simplest subtopologies one proceed with
the more complex ones, having determined all the Kk for a given “topology complexity” thanks
to the “simpler” one(s).

Another way to solve the problem is to start from a basis of MIs wide enough to include all
the FIs comparing in the DEs, each one with its own DE, then solving the whole system at once
(this is usually the way to proceed, when a MI with a wide number of sub-FIs must be evaluated);
this approach is often used when there are more than one (independent) MI for a given topology,
since MIs of the same topology have usually entangled DEs. Matematically speaking, due to the
fact that a MIs can be related via DEs only to FIs belonging to his subtopology or topology, it is
always possible to put the matrix of the coefficients in a block-triangular form, where the blocks
correspond to interactions between MIs with the same topology:

∂I(D;S)

∂sα
= Mαi(D;S)Ii(D;S). (2.31)

Mixing the two methods is also possible, mainly when topologies with more than one MI are
involved: the MIs related to the topology under study are treated in a differential way, while all
the other MIs are considered known.

Euler’s scaling equation

Another important source of differential relations is the Euler’s scaling equation for homogeneous
functions (see [4, 9]).

Proposition 4. An l-loop FI I(D; p1; . . . ; pg−1;m1; . . . ;ml) depending on dimension D, inde-
pendent external momenta pµ and internal masses mi, is an homogeneous function of degree
lD − 2

∑l
j=1 αj, where αj are the powers of the denominators Dj. So the integral obeys to the

Euler’s scaling equation:lD − 2
l∑

j=1

αj

 I =

 l∑
j=1

mj
∂

∂mj
+

g−1∑
e=1

pµe
∂

∂pµe

 I (2.32)

Proof. A change of loop momenta k′µ = kµ

λ
(dDk′ = λlD dDk) determines the expression:

I(D; p1; . . . ; pg−1;m1; . . . ;ml)λ
lD−2

∑l
j=1 αj = I(D;λp1; . . . ;λpg−1;λm1; . . . ;λml) (2.33)

Differentiating both sides of the relation with respect to λ one obtains:(
lD − 2

l∑
j=1

αj

)
I(D; p1; . . . ; pg−1;m1; . . . ;ml)λ

lD−2
∑l
k=1 αk−1 =

=

(
l∑

j=1

∂(λmj)

∂λ

∂

∂(λmj)
+

g−1∑
e=1

∂(λpµe )

∂λ

∂

∂(λpµe )

)
I(D;λp1; . . . ;λpg−1;λm1; . . . ;λml) =

=

(
l∑

j=1

mj
∂

∂(λmj)
+

g−1∑
e=1

pµe
∂

∂(λpµe )

)
I(D;λp1; . . . ;λpg−1;λm1; . . . ;λml). (2.34)
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Now taking the limit λ→ 1: (
lD − 2

l∑
j=1

αj

)
I =

(
l∑

j=1

mj
∂

∂mj
+

g−1∑
e=1

pµe
∂

∂pµe

)
I. (2.35)

So a FI is a homogeneous function of degree lD − 2
∑l
j=1 αj .

Also the scaling equation is related to the IBP-ids:

Proposition 5. The Euler’s scaling equation for FIs belonging to a certain topology can be
written in terms of IBP-ids of the same FIs.

Proof. It is possible to apply the scaling operator (2.32) directly on the integrand function, since all the derivatives
commute with the integration on loop momenta:(

lD − 2

l∑
j=1

αj −
l∑

k=1

mk
∂

∂mk
−
g−1∑
e=1

pµe
∂

∂pµe

)
f(D; p1; . . . ; pg−1;m1; . . . ;ml; k1; . . . ; kl) = 0. (2.36)

Now summing and subtracting
∑l
i=1 k

µ
i
∂f
∂k
µ
i
:(

lD − 2

l∑
j=1

αj −
l∑

k=1

mk
∂

∂mk
−
l+g−1∑
h=1

qµh
∂

∂qµh
+

l∑
i=1

kµi
∂

∂kµi

)
f = 0. (2.37)

The integrand f is an homogeneous function of degree −2
∑l
j=1 αj :

f(D;λP;λm;λK) = λ−2
∑l
j=1 αjf(D;P;m;K). (2.38)

So: (
l∑

k=1

mk
∂

∂mk
+

l+g−1∑
h=1

qµh
∂

∂qµh

)
f = −2

l∑
j=1

αjf (2.39)

thanks to the Euler’s theorem for homogeneous functions. Substituting the expression into (2.37):(
lD +

l∑
i=1

kµi
∂

∂kµi

)
f = 0 →

(
l∑
i=1

∂

∂kµi
kµi

)
f = 0. (2.40)

This is an IBP-id performed on the integrand of the initial FI.

2.3.2 Boundary conditions

To complete the Cauchy problem boundary conditions (BC) are needed, in order to select the
desired solution.

Traditionally BCs are obtained knowing the exact value of the solution at a certain point
inside the domain and imposing it to fix the value of the constant parameters. This possibility,
when available, is the easiest one, and fixes uniquely the solution on an interval of the domain.

Problems may arise when the domain is not connected, due to the presence of singular points
in the DEs: in this case, it is important to distinguish between singularities present both in
the DEs and in the MIs, called thresholds, and singularities present only in the DEs, called
pseudothresholds. This last type of singularities are fictional, and generates subdivisions in the
domain of the solutions that must be resewed imposing regularity on the points of divergence.
To find such points, analysis on the integral form of the FIs must be performed, verifying that
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the diagrams are still well-defined (or, at least, collapse on well-defined ones), even not knowing
the exact values. It is also possible to impose constraints to the values of the MIs in certain
regions of space, like forcing the MIs to be real in specific parts of the domain.

The two methods are complementary: obviously fixing the solution in the classical way is more
simple than imposing continuity or reality, but on the other hand the complexity of evaluation
of MIs by integration or related methods suggests to reduce as more as possible the set of exact
values needed as BCs.

A mid-way approach consists of using the pseudothresholds of the DEs to find useful relations
between MIs at certain points: given a DE

∂I0(x)

∂x
= Px0(x)

∑
i∈I

Ii(x) +
∑
j∈J

Ij(x), (2.41)

where Px0(x) indicates a function with a pseudothreshold in x0 of degree n, multiplying both
sides of the DE for (x− x0) and taking the limit x→ x0 a relation is found:2

0 = lim
x→x0

[(x− x0)nPx0(x)]
∑
i∈I

Ii(x0). (2.42)

This relation determines a BC on the pseudothreshold point, imposing regularity and a precise
value of the FIs at the same time.

Regarding the true thresholds, such points cannot be included in the domain. It is still
possible though to expand the function bypassing the singularity thanks to analytic continuation
on the complex plane, to connect different pieces of the domain.

Quadruple cut

Since a Feynman diagram has non-zero imaginary part when at least one of its loop particles
goes on-shell, and when k2 −m2 = 0 the corresponding denominator generates a singularity, a
good way to determine the true thresholds of a problem is to perform the maximum possible
amount of cuts on a give diagram, and to find the singularity in the outcome expression, which
will correspond to the singularities of the diagram.

Two properties of cuts on FIs will be useful:

1. the thresholds of a given FI are a subset of the thresholds of its topology;

2. thresholds of FIs belonging to subtopologies of a given FI are a subset of the thresholds of
the latter one;

The first property descends from the fact that dotted propagator do not generate new points
of singularity if compared to the undotted counterparts (maybe the singularity will present a
higher pole, but not new ones), and irreducible scalar products in the denominator can at most
eliminate some zeroes of the denominator, resulting harmless (at least for finite values of the
kinematic parameters).

2limx→x0

[
(x− x0)n ∂I0(x)

∂x

]
= 0, because both I(x) and its derivative are regular in x0,

limx→x0 [(x− x0)nIj(x)] = 0 because all the integrals are regular in x0.
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The second point comes from the fact that, removing denominator to pass into a subtopology
FI, singular points present in the original topology can be eliminated, whilst new singular point
cannot arise.

Thanks to the properties enlisted above, once that the singular points of the main FI are
determined, all the MIs used to determine it will present a subset of the found singularities.

For the problems investigated in this work then, it is sufficient to determine the singularities
of the n-loop ladders. For the 1-loop box, the quadruple cut is evaluated in appendix B, resulting
in3

∝ 1

st
=

1

(p1 + p2)2(p1 + p3)2
. (2.43)

It is then possible to see that, for the 1-loop box, the thresholds lies in s = 0 and in t = 0. Its
subtopologies, namely the s-bubble and the t-bubble, have respectively singularities in s and t,
as expected (confront the results with [10–12]).

Regarding the generic n-loop ladder, consider a quadruple cut of one of its extremal sub-
boxes:

∝

∝ 1

(p1 + p2)2(p1 + k1)2
=

=
1

s
. (2.44)

The neat effect of a quadruple cut is then the reduction of a n-loop ladder to a (n − 1)-loop
ladder multiplied by 1/s. Iterating this procedure for all the new extremal boxes, the final result

3External momenta pµ1 ; pµ2 ; pµ3 ; pµ4 are all incoming, the left and right upper legs carry pµ1 and pµ3 , respectively,
the left and right lower ones carry pµ2 and pµ4 , respectively.
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is:

⇒ 1

snt
. (2.45)

It is then possible to say that the thresholds are located in s = 0 and in t = 0, and all the
subtopologies have as singular points a subset (proper or not) of the set of thresholds of the
parent n-loop ladder (see [12]).

2.3.3 ε dependence

With all the ingredients above, an exact Cauchy problem in D is obtained, so in principle it
would be possible to express the solutions in terms of exact functions of the dimension D.

Usually, while working with wide systems of DEs it is easier (if not mandatory, due to the large
number of equations involved, and to the functions arising in the solution, like hypergeometric
functions) to work with series expansions of the MIs in the dimensional regularization parameter
ε = 4−D

2 . Moreover, as it will be explained in section 2.3.4, a stronger formulation of existence
and uniqueness of the solutions holds in expanded DEs. Since loop integral are divergent, I will
show a Laurent expansion in ε. In dimensional regularization divergencies are caused only by
finite poles, so the Laurent expansion has no more terms below N0 < 0:

I(D;S) =
N∑

n=N0

εnI(n)(S) + o0

(
εN
)
. (2.46)

Starting with a single DE (2.30), and expanding the terms in it:

+∞∑
n=N0

εn
∂I(n)(S)

∂sα
=

+∞∑
i=0

εiM (i)
α (S)

+∞∑
n=N0

εnI(n)(S) +

+∞∑
j=J0

εjC(j)
αc (S)

+∞∑
m=M0

εmJ(m)
c (S) (2.47)

a system of chained DEs in the Laurent expansions of I, J, M and C is obtained:

∂I(N0)(S)

∂sα
=M (0)

α (S)I(N0)(S) +
∑

j+m=N0

C(j)
αc (S)J(m)

c (S) (2.48)

∂I(N0+1)(S)

∂sα
=M (0)

α (S)I(N0+1)(S) +M (1)
α I(N0)(S) +

∑
j+m=N0+1

C(j)
αc (S)J(m)

c (S) (2.49)

. . .

Note that the homogeneous DE at every order is always the same: ∂I(i)(S)
∂sα

= M
(0)
α (S)I(i)(S), so

it is necessary to solve it just once to cover all orders.
In particular, the coefficient M cannot exhibit poles in ε: if it was the case, each term

of the MI woud be linked to the next one, and the homogeneous part of the DE would read
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I(n)(S) = C(S)I(n+h)(S), causing the series to have no inferior limit. In fact, starting from an
arbitrary n (if the MI is not a constant, at least one order must be non zero), the order n − h
will evolve according to the expression of that order; iterating the same procedure to the orders
n− ih the non-zero terms of the Laurent series will have no inferior limit, against the hypothesis
of finite-pole integrals. Considering I to be a vector of MIs the above property holds only if the
maximal ε pole of all the MIs has the same order, otherwise ε poles can be present in the matrix
to match different starting orders N0i.

To avoid ε poles in M the basis of MIs can be modified by multiplying each single MI by εh

in order to eliminate the poles:

E
∂I(ε;S)

∂sα
=E[Mα(ε;S)I(ε;S) + Cαc(ε;S)Jc(ε;S)]; (2.50)

∂Ĩ(ε;S)

∂sα
=EMα(ε;S)E−1Ĩ(ε;S) + ECαc(ε;S)E−1J̃c(ε;S); (2.51)

∂Ĩ(ε;S)

∂sα
=M̃α(ε;S)Ĩ(ε;S) + C̃αc(ε;S)J̃c(ε;S); (2.52)

where E is a diagonal matrix with elements of the form εn, such that Ĩ has no poles in ε, as M̃ .

2.3.4 Existence and uniqueness of the solutions

First of all, the basis of MIs used to write the DEs is obtained starting from tensor decomposition
performed on actual Feynman diagrams involved in scattering amplitudes, so the MIs have to
exist, usually diverging for ε → 0. Considering now the ε-divergent-free version of this basis,
the MIs have to exist with finite values. So, at least, there exists a choice of functions to be
determined via DEs that is well defined.

The problem now arises from the DE system perspective: given a set of DEs and a set of
BCs, can they determine a unique solution?

Due to the fact that (a basis of) MIs can depend on more that one single parameter, and
that for each one a (system of) DE(s) is determined, the problem separates according to the
number of needed parameters (single-scale or multi-scale problems) and according to the number
of parameters with respect to differentiation is performed (complete systems of DE or partial
systems of DEs).

One-scale problems

Considering a one-scale problem (consequently, a complete system of DE), the equations are
linear DEs of the first order. The system takes the form

dy(x)

dx
= M(x)y(x) + b(x), (2.53)

defined on the open set D = R \ {x : M(x) is singular}.
For each open interval A ∈ D of the x variable, the theorem of global existence and uniqueness

of the solutions holds (M(x)y(x) + b(x) is a Lipschitz continuous function in y for each compact
in A).
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Regarding the behaviour of the solutions on the frontier of D, an analysis can be performed
distinguishing between threshold and pseudothresholds: consider I1 ⊆ D and I2 ⊆ D, sepa-
rated by x0, frontier point of both the intervals, and a solution y1(x) in I1, already fixed using
the BC of the problem. If x0 is a pseudothreshold for the problem, it can be imposed that
limI13x→x0 y1(x) = limI23x→x0 y2(x), providing a BC for I2. Iterating the procedure it is possi-
ble to joint all the intervals separated by pseudothresholds.4

On the other hand, if an interval is delimited on a side by a threshold, it is still possible to
extend the solution thanks to analytic continuation, bypassing the pole with a prescription that
expands y in the complex plane, while before y ∈ Rn. This property is quite useful when dealing
with expressions like log x, where x = 0 is a true threshold for the function, and BCs are fixed
in x < 0.

Multi-scale problems, complete systems

Passing to multi-scale problems, the system of DE transforms into a system of partial DEs (PDE)
on y (a “system of systems of DEs”), of the form:

∂y(x)
x1

= M1(x)y(x) + b1(x)
∂y(x)
x2

= M2(x)y(x) + b2(x)

. . .
∂y(x)
xn

= Mn(x)y(x) + bn(x)

. (2.54)

In complete generality, for a PDE problem only the Cauchy—Kovalevskaya theorem for an-
alytic DEs holds, assuring local existence and uniqueness of an analytic solution. Working with
analytic functions as the MIs, this theorem will assure local existence and uniqueness, but it is
possible to say more on the solutions.

Considering the peculiar structure of the system under examination, in which the first-order
derivatives with respect to each variable are separated from the other ones (i.e. each PDE for y
contains only derivatives in one variable), it is possible to proceed solving one PDE at a time,
then substituting its solution in the remaining ones, proceeding for each one as in the ordinary
DEs case: solving e.g. ∂y/∂x1 a solution of the form Φ1(x) = Φ1(F1(x);C1(x2; . . . ;xn)) is
obtained (F1 is the function obtained integration with respect to x1, while C is the constant
function with respect to x1); substituting now Φ1(x) to y(x) and solving the PDE a function
Φ2(F2(x);C2(x3; . . . ;xn)) is found, where x2 has moved from C to Φ; iterating this procedure
one arrives to a form Φn(x) = Φn(Fn(x);Cn), that now can be fixed using BCs for y.

It is then possible to work with each single PDE at a time, as if each one was an ordinary DE
with respect to the variable of differentiation, considering all the other variables as constants.
Therefore, it is possible to apply theorems of existence and uniqueness of the solutions variable
by variable, as in the ordinary case.

To verify existence and uniqueness of the solution the simple a priori check on the coefficient
of the system is not sufficient: Φi can introduce expression in xi+1; . . . ;xn no more satisfying the

4Notice that a pseudothreshold must always be the separation point between two open intervals, otherwise the
extension of the solution to the point will generate a DE with a solution in a semi-closed set, which is impossible.
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hypothesis of the theorem of global existence and uniqueness of the solutions. Therefore, after
each substitution of the solution the hypothesis must be controlled.

It is possible to obtain a more constrained result using ε expanded DEs for a basis of “ε-pole
free” MIs: the ε dependence enters no more directly in the DEs, and it is possible to solve the
problem order by order, starting from the lowest one. Thanks to the fact that the solutions,
according to the nature of the coefficients, are of the form Φi(x) = Fi(x)Ci(xi+1; . . . ;xn) or
Φi(x) = Fi(x) + Ci(xi+1; . . . ;xn) (the first one if the same ε-order of the integral is present
both differentiated and as a simple term, the second if it only appears under differentiation)
the condition of Lipschitz continuity remains satisfied after the substitutions, if matched at the
beginning for every different PDE system (except al least for some isolated points, due to possible
inversion problem of F, that can be treated as pseudothresholds).

Finally, considering an ε factorized structure, order by order of the form
∂y(i)(x)
x1

= M
(1)
1 (x)y(i−1)(x)

∂y(i)(x)
x2

= M
(1)
2 (x)y(i−1)(x)

. . .
∂y(i)(x)
xn

= M
(1)
n (x)y(i−1)(x)

(2.55)

(ε-homogeneous structure), ir follows that all solutions have the form Φi(x) = Fi(x)Ci(xi+1; . . . ;xn),
so it is necessary to check the validity of the theorems of existence and uniqueness only once on
the original system, thanks to the fact that Fi(x) is a constant with respect to the xi+1 differen-
tiation (at least some isolated points may be excluded during the operation of substitution due
to some inversions, but from direct inspection of the integral form of the MIs regularity can be
imposed at these points, jointing back the new sets into the original one).

Multi-scale problems, partial systems

Even if y depends on a set x of parameters, but only PDEs with respect to a subset (x1; . . . ;xh)
are available, it is possible to obtain a unique solution, assumed that for all the available PDEs
global existence and uniqueness theorems hold, as explained above.

First of all, existence is guaranteed by the theorem of existence and uniqueness of the solutions
applied to the system of PDEs (in the sense explained above), plus the BC, in the form of a
function or constraint depending on xh+1; . . . ;xn.

Concerning uniqueness: at first sight, knowing only a subset of all the PDEs for y, it will
be possible to find a unique solution only with respect to the variables x1; . . . ;xh, leaving as
free parameters the remaining ones, obtaining in principle Rn−h different solutions. Consider
although how the BC is determined: the BC Ψ(xh+1; . . . ;xn) is a certain vector of MIs or
a constraint. If a vector of MIs, it is determined either via integral evaluation (and related
tools), or via DE method; in the first case, it depends uniquely from xh+1; . . . ;xn, in the second
one it has the form Ψ(Ω(xh+1; . . . ;xk);Ck(xk+1; . . . ;xn)), and also Ψ is a function determined
either via integral methods or differential methods, so the same conclusions apply also to it,
and so on until the constant term does not depend on parts of x and is completely fixed; at
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this point, going back to function Φ, the solution is completely determined without ambiguities,
each function inheriting existence and uniqueness from the inner ones. In the case the BC is a
constraint, ambiguities can arise if it does not bind the behaviour of the MIs with respect to all
the variables; in that case, a more suitable constraint must be used.

2.3.5 Solving DEs

A natural technique to solve a non-homogeneous DE (i.e. with an inhomogeneous part), either
exactly in D or in ε expansion, is the Euler’s method of variation of the constants: by solving the
related homogeneous DE a solution depending on a constant is obtained (the homogeneous DE
is a first order DE); promoting the constant to a function, reinserting the present solution into
the original DE and solving for this new function the complete solution is retrieved. Note that,
thanks to the peculiar structure of the PDEs to which MIs obey (i.e. PDEs with one derivative
in each equation), even these equations can be solved using this method.

This approach can be used both with solution in exact D dimension, and with ε expanded
solutions.
Example 6 (Massive bubble DE). A massive bubble FI F (x) with topology

satisfies the DE5

d

dx
(x) = − εx+ 2

x2 + 4x
(x) +

2(1− ε)
m2x(x+ 4)

, (2.56)

where is the simple tadpole (as presented in example 4, with α = 1), and x is the dimensionless s

Mandelstam variable (x = s/µ2). Solving directly the equation will lead to expressions containing hypergeometric
functions of the form 2F1(. . . ), so a better way to proceed consists of expanding both the known function (the
tadpole, of which the inhomogeneous term consists) and the unknown function (the massive bubble) in series of
ε, then solving the DE order by order, starting from the lowest one.

The kernel of the iterated integration will be the function C
√

4+x
x

. As it will be seen later, it is better to
have a kernel of the form C log y, in order to have iterated integrations of logarithmic functions. It is possible to
perform a change of variables, passing to the Landau parametrization:

− s

m2
= x =

(y − 1)2

y
. (2.57)

The DE then reads:

d

dy
(y) = − (y − 1)2ε+ 2y

y(y2 − 1)
(y)− 2(ε− 1)

m2(y2 − 1)
; (2.58)

where (y) := (x(y)).

5The present equations have been automatically determined using the computer code Reduze [46, 47].
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A useful limit for the BC is s = x = 0, corresponding to y = 1: in this limit the massive bubble reproduces
the result (2.16) (two propagators with zero incoming squared momentum, α1 = α2 = 1. Otherwise, multiplying

both sides of (2.58) by y− 1 and taking the limit y → 1, (1) = 1−ε
m2 is found; the right-hand side is

nothing else, thanks to IBP-ids, than the dotted tadpole .
The ε expansion of the simple tadpole (α = 1) will be used as BC, and has the form:

=
m2

ε
−m2

(
log

m2

µ2
+ γ − 1

)
+ o0(ε0) (2.59)

In conclusion, the Cauchy problem has the form:
d
dy

(y) = − (y−1)2ε+2y

y(y2−1)
(y)− 2(ε−1)

m2(y2−1)

(1) = 1−ε
m2

. (2.60)

It is now possible to expand and (y) in ε and solve the DE order by order in ε, starting from

the highest pole and rising the power of ε. The expansions can be written as:

(y) =

+∞∑
i=p<0

(i)

(y) (2.61)

=

+∞∑
i=−1

(i)

(2.62)

The general term of the DE expanded in ε has the form:
d
dy

(n)

(y) = − 2
y2−1

(n)

(y)− (y−1)2

y(y2−1)

(n−1)

(y) + 2
m2(y2−1)

(n)

− 2
m2(y2−1)

(n−1)

(n)

(1) = 1
m2

[
(n)

−
(n−1)

] .

(2.63)
To evaluate the equation the method of variation of the constants will be used: in particular, the homogeneous

equation has the same form at every order, so it has to be computed just once

d

dy H

(y) = − 2

y2 − 1 H

(y) →
H

(y) = −C y + 1

y − 1
. (2.64)

Notice that to determine the non-homogeneous part it is necessary to take into account also the degree of ε to
which each term of the integrals is related.

Fixed the homogeneous part, it is possible to proceed order by order in ε.

• εn and n < −1 Assuming that the massive bubble has finite order poles, and considering −n as the
highest order, still lower than the simple pole of the tadpole, the Cauchy problem assumes the form:

d
dy

(n)

(y) = − 2
y2−1

(n)

(y)

(n)

(1) = 0

, (2.65)

so the DE is equal to the associated homogeneous one. Due to the fact that
H

(y) has a pole in

y = 1, C(n) = 0 ∀n < −1, so
(n)

(y) = 0∀n < −1.
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• ε−1 At the lowest order of , the Cauchy problem has the form
d
dy

(−1)

(y) = − 2
y2−1

(−1)

(y) + 2
m2(y2−1)

(−1)

(−1)

(1) = 1
m2

(−1)

= 1

. (2.66)

Using the variation of constants method:
(−1)

(y) = − y+1
y−1

C(−1)(y) (promotion of the constant of

the homogeneous solution to a function of y), and the DE becomes

2C(y)− (y2 − 1)C′(y)

(y − 1)2
= −2− [(y + 1)C(y)]

(y2 − 1)(y − 1)
→ − (y + 1)

y − 1
C′(y) = 0 (2.67)

which complete solution is

C(−1)(y) = C →
(−1)

(y) =
C(y + 1) + 2

1− y . (2.68)

This solution must be equal to 1 in the y → 1 limit, so the divergence must be eliminated. Multiplying the
expression for y−1 and taking the limit y → 1 the coefficient of the divergent term will be put in evidence;
this term must be zero when evaluated in y = 1. So C = −1, giving the solution:

(−1)

(y) = 1. (2.69)

This solution has the same behaviour that the simple pole of the tadpole, and does not depend on kinematic
parameters or masses, as expected from the BC.

• ε0 Now also the previous orders enters in the DE:
d
dy

(0)

(y) = − 2
y2−1

(0)

(y)− (y−1)2

y(y2−1)

(−1)

(y) + 2
m2(y2−1)

(0)

− 2
m2(y2−1)

(−1)

(0)

(1) = 1
m2

[
(0)

−
(−1)

] .

(2.70)
Applying the variation of the constants method:
− (y+1)C′(0)(y)

y−1
+ (y+1)C(0)(y)

(y−1)2
− C(0)(y)

y−1
= −−2(y+1)C(0)(y)

(y−1)(y2−1)
+

2

(
(1−γ)m2−m2 log m

2

µ2

)
m2(y2−1)

− 2m2

m2(y2−1)
− (y−1)2

y(y2−1)

(0)

(1) = −m
2

m2

[
γ + log m2

µ2

] ,

which gives:

C′(0)(y) =
2y log m2

µ2 + y(y + 2γ − 2) + 1

y(y + 1)2
. (2.71)

So:

C(0)(y) = C −
2
(

log m2

µ2 + γ − 2
)

y + 1
+ log(y); (2.72)

and asking for regularity in y = 1 the function F (0) is determined:

(0)

(y) = − (y + 1)

y − 1
log(y)− log

m2

µ2
− γ + 2. (2.73)

The final result up to order ε0 is then:

(y) =
1

ε
− (y + 1)

y − 1
log(y)− log

m2

µ2
− γ + 2 + o0(ε0). (2.74)
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Example 7 (Half-massive bubble DE). Consider a bubble with one massive and one massless propagator:

.

First of all, an undotted version will be considered, obeying the DE:

d

dx
(x) =

(−xε+ ε− 1)

x(x+ 1)
(x) +

1

x(x+ 1)
, (2.75)

where x = − s
m2 , and is the dotted vacuum tadpole, whit expression:

=
1

ε
− log

m2

µ2
− γ + o0(ε0). (2.76)

Looking at the DE, it seems that there could be two possible suitable points to fix the BC: x = −1 and x = 0,
but the first one will give s = p2 = m2, a point in which the integral under consideration is singular, so only x = 0
remains.6

Another point of interest will be x = 1: in this point the half-massive bubble is well defined, and it will be
useful for fixing the value of coefficients of orders less than −1.

With this set up, the Cauchy problem reads:

(y) =

+∞∑
i=p<0

(i)

(y) (2.77)

=

+∞∑
i=−1

(i)

(2.78)


d
dx

(x) = −xε+ε−1
x(x+1)

(x) + 1
x(x+1)

(0) = 1
1−ε

, (2.79)

or, order by order:
d
dx

(n)

(x) = − 1
x(x+1)

(n)

(x)− (x−1)
x(x+1)

(n−1)

(x) + 1
x(x+1)

(n)

(n)

(0) =
(n−1)

(0) +
(n)

. (2.80)

The solution of the associated homogeneous DE is:

d

dx H

(x) = − 1

x(x+ 1) H

(x) →
H

(x) = C
x+ 1

x
. (2.81)

• εn and n < −1 In the hypothesis of finite pole, starting from the lowest order N of (x), the

Cauchy problem reduces to:
d
dx

(N)

(x) = − 1
x(x+1)

(N)

(x)

(N)

(0) = 0

(2.82)

6Singularities in a single loop integral can be found cutting the propagators and considering the tree diagram
coming out as a decay diagram and evaluating the invariant mass of the process. The pole lies on that value of
the squared incoming momentum.
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this problem has a solution equal to the one of the homogeneous DE. Fulfilling the BC C = 0,
(N)

(x) = 0. The same procedure can be carried on iteratively till n = −1, so under ε−1 there

are no coefficients different from 0:
(n)

= 0 if n < −1. (2.83)

• ε−1 The Cauchy problem has the form:
d
dx

(−1)

(x) = − 1
x(x+1)

(−1)

(x) + 1
x(x+1)

(−1)

(0) = 1

→ (2.84)

→ C(−1)(x) =
x

1 + x
→

(−1)

(x) = 1.

• ε0 The Cauchy problem has the form:
d
dx

(0)

(x) = − 1
x(x+1)

(0)

(x)− x−1
x(x+1)

− 1
x(x+1)

(
γ + log m2

µ2

)
(0)

(0) = 1− γ − log m2

µ2

→ (2.85)

→ C(0) = − log(x− 1)−
x
(

log m2

µ2 + γ − 2
)

x+ 1
→

(0)

(x) = 2− log
m2

µ2
− γ − (x+ 1) log(x+ 1)

x

In conclusion:

(x) =
1

ε
+ 2− log

m2

µ2
− γ − (x+ 1) log(x+ 1)

x
+ o0(ε0). (2.86)

Example 8 (Half-massive bubble with massive dotted propagator). Consider now a half-massive bubble
with the massive propagator dotted:

.

The corresponding DE is:
d
dx

(x) = − (x−1)ε+x+1
x(x+1)

(x)− ε
m2x(x+1)

(0) = ε
m2(ε−1)

; (2.87)

with its order-by-order Cauchy problem:

(y) =

+∞∑
i=p<0

(i)

(y) (2.88)

=

+∞∑
i=−1

(i)

(2.89)


d
dx

(n)

(x) = − 1
x

(n)

(x)− (x−1)
x(x+1)

(n−1)

(x)− 1
m2x(x+1)

(n−1)

(n)

(0) =
(n−1)

(0)− 1
m2

(n−1)
; (2.90)
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and the associated homogeneous DE:

d

dx H

(x) = − 1

x H

(x) →
H

(x) =
C

x
. (2.91)

So it is possible to proceed order by order using the variation of constants method (to fix the constants is sufficient
to impose regularity in x = 0, regular point by direct inspection of the integral).

• εn and n < 0 In the hypothesis of finite pole, starting from the lowest order, the Cauchy problem reduces
to: 

d
dx

(n)

(x) = − 1
x

(n)

(x)

(n)

(0) = 0

, (2.92)

this problem has a solution equal to the one from the homogeneous DE, and thanks to the fact that in
x = 0 the integral is regular, the constant must vanish to avoid singularities. Therefore

(n)

= 0 if n < 0. (2.93)

• ε0 The Cauchy problem has the form:
d
dx

(0)

(x) = − 1
x

(0)

(x)− 1
m2x(x+1)

(0)

(0) = − 1
m2

→
(0)

(x) = − log(x+ 1)

m2x
(2.94)

• ε1 The Cauchy problem has the form:
d
dx

(1)

(x) = − 1
x

(1)

(x) + (x−1)
x(x+1)

log(x+1)

m2x
+ 1

m2x(x+1)

(
γ + log m2

µ2

)
(1)

(0) = − 1
m2 +

γ+log m
2

µ2

m2

(2.95)

↓

(1)

(x) =
log(x+ 1)

(
log m2

µ2 − log(x+ 1) + γ
)
− Li2(−x)

m2x
(2.96)

where Li2 =
∫ x

0
1
t

log(1 + t) dt is the dilogarithm function.

Gathering the terms:

(x) = − log(x+ 1)

m2x
+ ε

log(x+ 1)
(

log m2

µ2 − log(x+ 1) + γ
)
− Li2(−x)

m2x
+ o0(ε) (2.97)

Example 9 (Half-massive bubble with massless dotted propagator). Considering the same topology,
but with the massless propagator dotted instead of the massive one:

.

Proceeding as above:
d
dx

(x) = − (x−2)x(ε+1)+ε−1

x(x2−1)
(x)− 1

m2x(x2−1)

(0) = − 1
m2(ε−1)

; (2.98)
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order by order:

(y) =

+∞∑
i=p<0

(i)

(y) (2.99)

=

+∞∑
i=−1

(i)

(2.100)


d
dx

(n)

(x) = − (x−2)x−1

x(x2−1)

(n)

(x)− x−1
x(x+1)

(n−1)

(x)− 1
m2x(x2−1)

(n)

(n)

(0) =
(n−1)

(0) + 1
m2

(n)
.

(2.101)
The asociated homogeneous DE:

d

dx H

(x) = − (x− 2)x− 1

x(x2 − 1) H

(x) →
H

(x) = C
1− x
x2 + x

. (2.102)

• εn and n < −1 In the hypothesis of finite pole, starting from the lowest order, the Cauchy problem
reduces to: 

d
dx

(x) = − (x−2)x−1

x(x2−1)

(n)

(x)

(n)

(0) = 0

, (2.103)

this problem has a solution equal to the one of the homogeneous DE, and thanks to the fact that in x = 0
the integral is regular, the constant must vanish to avoid singularities. Therefore

(n)

= 0 if n < −1. (2.104)

• ε−1 The Cauchy problem has the form:
d
dx

(−1)

(x) = − (x−2)x−1

x(x2−1)

(−1)

(x)− 1
m2x(x2−1)

(−1)

(0) = 1
m2

→ (2.105)

→
(−1)

(x) =
1

m2(x+ 1)

• ε0 The Cauchy problem has the form:
d
dx

(0)

(x) = − (x−2)x−1

x(x2−1)

(0)

(x)− x−1
x(x+1)

1
m2(x+1)

+
γ−log m

2

µ2

m2x(x2−1)

(0)

(0) = 1
m2 −

γ+log m
2

µ2

m2

→ (2.106)

→
(0)

(x) =
log(x+ 1)− x

(
log m2

µ2

)
− γx+ log(x+ 1)

m2x(x+ 1)

Putting all together:

(x) =
1

ε

1

m2(x+ 1)
+

log(x+ 1)− x
(

log m2

µ2

)
− γx+ log(x+ 1)

m2x(x+ 1)
+ o0(ε0). (2.107)

It is interesting to have a look to the divergencies in the two cases of dotted bubbles: while the integral with
massive dotted propagator does not shows poles in ε, the other one has a pole of order 1. The justification for
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this different behaviour does not lie in the UV area (that does not cause problems, having a maximal power in
the denominator of order kj , with j > 4), but in the IR behaviour. The integral in the massive dotted propagator
case has an asymptotic behaviour in 0 (chosen euclidean variables and performed Wick’s rotation) of the form:∫

dDk

k2((k − p)2 +m2)2
=

∫
κD−1 dκ dΩD

κ2(m4 + p4 + 2p2m2) + o0(κ2)
∼∗0
∫
κD−3 dκdΩD

m2
, (2.108)

converging in in κ = 0 iff D > 2, so there is no pole in the ε→ 0 limit.
Regarding the integral with a massless dotted propagator, the behaviour is different:∫

dDk

k4((k − p)2 +m2)
=

∫
κD−1 dκ dΩD

κ4(m2 + p2) + o0(κ4)
∼∗0
∫
κD−5 dκ dΩD

m2
(2.109)

this time the integral converges in κ = 0 iff D > 4, so it develops a pole in ε = 0.

Notice, as a conclusion, that a similar behaviour does not occur in the case of the massive bubble: at every
order, there is no divergence in κ = 0, thanks to the mass term m2(α1+α2) from [k2 + m2

1]α1 [(p − k)2 + m2
2]α2

(the divergence encoded by ε is in the UV region), while in the massless bubble is finite in κ = 0 without dotted
propagators, and develops divergences rising the denominators.

The previous examples illustrate application of the method of variation of the constants in
quite general cases. In order to make the resolution of the DE more compact three further aspects
can be considered:

Definition 5 (Canonical system). A canonical system of DEs is an ε-expanded system of DEs
with the following properties:

ε finiteness MIs are chosen to be free from ε poles (the Laurent expansion starts form N0 = 0)
and to obtain a matrix of coefficients Mα not singular in ε, so the whole system will be
regular in D → 4 (ε→ 0);

completeness the system of DEs is a homogeneous system of DEs, namely:

∂I(ε;S)

∂sα
= Mα(ε;S)I(ε;S). (2.110)

This expression does not contain non-homogeneous terms;

ε-homogeneity Mα is homogeneous in ε.

These requests allow to cast the system at εi order in the form:

∂I(i)(S)

∂sα
= M (1)

α (S)I(i−1)(S), (2.111)

with associated homogeneous DE

∂I(i)(S)

∂sα
= 0 → I(i)(S) = C(i), (2.112)
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and equation for the constants of the form:

∂C(0)(S)

∂sα
= 0→I(0)(S) = C(0),

∂C(1)(S)

∂sα
= M (1)

α (S)I(0)(S)→I(1)(S) = C(1) +

∫
sα

M (1)
α (X1)C(0) dτ1,

∂C(2)(S)

∂sα
= M (1)

α (S)I(1)(S)→I(2)(S) = C(2) +

∫
sα

M (1)
α (X1)C(1) dτ1+ (2.113)

+

∫
sα

M (1)
α (X1)

∫
τ1

M (1)
α (X2)C(0) dτ2dτ1,

. . .

where Xi = (x1; . . . ;xi−1; τi;xi+1; . . . ;xn), and it is possible to proceed as the system has a single
independent variable for the reasons explained in 2.3.4.

So with the constraints on the matrix Mα the solution order by order reduces to a series of
terms with increasing nested integrations, generating a regular iterated structure. This will be
the starting point to understand how to properly express the solutions.
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Chapter 3

Iterated integrals and uniform
transcendentality

Following the procedure indicated in [10, 11, 13, 14], the solution of a canonical system
of differential equations [10] is written in terms of a Dyson series of iterated integrals.
Introducing the notion of fuchsian form, it is possible to write the solution of the
differential equations in terms of harmonic polylogarithms, functions built up using
iterated integrations on a rational kernel [8]. The concept of transcendental weight is
presented [8, 12, 14] and applied to series expansions in order to characterize uniform
transcendental functions. In conclusion, a selection of exact and guiding criteria for
the a priori determination of uniform transcendental Feynman integrals is presented
[10–14].

From now on the analysis will focus on canonical systems only.

3.1 Dyson Series

The final result of (2.113) can be seen as a consequence of the fact that (starting with one-scale
problems) the differential problem{

dy(x;ε)
dx = εm(x)y(x; ε)

y(x0; ε) = y0(ε)
(3.1)

is equivalent to the Volterra integral problem

y(x; ε) = y0(ε) +

∫ x

x0

m(τ)y(τ ; ε) dτ. (3.2)

Considering now that (the matrix of coefficients is M(x; ε) = εm(x))

• generally speaking, matrices does not commute with their integrals, namely:
∫
xm(τ) dτm(x) 6=

m(x)
∫
xm(τ) dτ ,

45
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• the operator T = y0(ε) +
∫ x
x0
m(τ) dτ is a contraction in the space of the solutions of the

differential problem wrote above,

it is possible to write the solution as a series in T :

y(x) =y0(ε) + ε

∫ x

x0

m(τ1) dτ1y0(ε) + ε2
∫ x

x0

∫ τ1

x0

m(τ1)m(τ2) dτ2dτ1y0(ε) + o0(ε2) + . . . = (3.3)

=

(
1 +

N∑
n=1

εn
∫ x

x0

∫ τ1

x0

. . .

∫ τn−1

x0

m(τ1)m(τ2). . .m(τn) dτn. . .dτ2dτ1

)
y0(ε) + o0

(
εN
)

=

(3.4)

=De
∫ x
x0
m(τ) dτ

y0. (3.5)

The result obtained is equal to the Dyson series obtained considering M(x; ε) as a perturbation
term of the hamiltonian H = H0 + M ; for this reason, the equation (3.3) is called the Dyson
series of the ε-factorized DE (3.1).

3.1.1 ε factorization

The dependence from ε in (3.3) is not yet fully factorized, as

y(x; ε) =
N∑
n=0

εny(n)(x) + o0

(
εN
)
, (3.6)

y0(ε) =
N∑
n=0

εny
(n)
0 + o0

(
εN
)
. (3.7)

for the sake of simplicity the functions are considered to be finite in ε, but the results that will be
obtained will be valid also for ε-divergent functions, since it is possible to pass from the divergent
form of the function to the finite one multiplying by a suitable power of ε.

First of all, it is important to properly understand what expression (3.3) means: for this aim,
the process of antiderivation has to be separated from the process of evaluation of the primitive
at the end points of the interval of integration∫ x

x0

m(τ) dτ =

[∫
m(τ) dτ

]x
x0

. (3.8)

So the equation (3.3) can be written as:

y(x) =

[
1 +

N∑
n=1

M(n)(x)

]
y0; (3.9)

M(n)(x) =

{[∫
m(τn)M(n−1)(τn) dτn

]x
x0

if n > 1[∫
m(τ1) dτ1

]x
x0

if n = 1
(3.10)
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(
∫
indicates indefinite integration, or antiderivation) .It is possible to see that, at every order n,

the matrix M(n−1) is evaluated at the end points, while
∫
m(τn)M(n−1)(τn) dτn is just an an-

tiderivation, evaluated in a second moment (
[∫
m(τn)M(n−1)(τn) dτn

]x
x0
). Furthermore,M(n)(x)

can be decomposed considering the following notation:

M(i)(x) =

[∫
. . .

∫
m(τ1). . .m(τi) dτi. . .dτ1

]
x

; (3.11)

expanding in ε the Dyson series, and collecting the terms with the same power, the following
relations are obtained:

y(0)(x) = y
(0)
0 ; (3.12)

y(1)(x) = y
(1)
0 + M(1)(x)y

(0)
0 −M(1)(x0)y

(0)
0 ; (3.13)

y(2)(x) = y
(2)
0 + M(1)(x)y

(1)
0 −M(1)(x0)y

(1)
0 + M(2)(x)y

(0)
0 −M(2)(x0)y

(0)
0 +

−M(1)(x)M(1)(x0)y
(0)
0 +

[
M(1)(x0)

]2
y

(0)
0 ; (3.14)

. . .

finding a Dyson series of the form:

y(x) =

N∑
i=0

εi
i∑

j=0

M(j)(x)y
(i−j)
0 + o0

(
εN
)
, (3.15)

whereM(0)(x) = 1.

It is now possible to redefine the constant terms y(i)
0 as:

ỹ
(0)
0 = y

(0)
0 ; (3.16)

ỹ
(1)
0 = y

(1)
0 −M(1)(x0)y

(0)
0 = y

(1)
0 −M(1)(x0)ỹ

(0)
0 ; (3.17)

ỹ
(2)
0 = y

(2)
0 −M(1)(x0)y

(1)
0 −M(2)(x0)y

(0)
0 +

[
M(1)(x0)

]2
y

(0)
0 =

= y
(2)
0 −M(1)(x0)ỹ

(1)
0 −M(2)(x0)ỹ

(0)
0 ; (3.18)

. . .

ỹ
(n)
0 = y

(n)
0 −

n∑
i=1

M(i)(x0)ỹ
(n−i)
0 . (3.19)

This nested redefinition is well written, as i-th term is obtained by integrating the previous one,
and the term ỹ

(i−1)
0 multiplies always a term of the form [M1(x)−M1(x0)], as ỹ(i−1)

0 is the only
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constant term in each iteration. Rewriting the expressions in terms of y(i)
0 :

y(0)(x) = ỹ
(0)
0 ; (3.20)

y(1)(x) = ỹ
(1)
0 + M(1)(x)ỹ

(0)
0 ; (3.21)

y(2)(x) = ỹ
(2)
0 + M(1)(x)ỹ

(1)
0 + M(2)(x)ỹ

(0)
0 ; (3.22)

. . .

y(n)(x) = ỹ
(n)
0 +

n∑
i=1

M(i)(x0)ỹ
(n−i)
0 (3.23)

In this way the solution of the DE only depends on the operation of antiderivation, and the
values of the integrals in x0 are absorbed in ỹ

(n)
0 together with the constant y0, and can be fixed

imposing the BCs.
Concluding, the expression of the solution in terms of Dyson series takes the form:

y(x) =

N∑
i=0

εi
i∑

j=0

M(j)(x)ỹ
(i−j)
0 + o0

(
εN
)

= De
∫
m(τ) dτ , (3.24)

where M(0)(x) = 1.

What has been said above is still valid when working on a multi-scale problem, with some
precautions. The most important one is the fact that the operation of antiderivation carried on
to solve one by one the PDEs is separated from the operation of integration.

Regarding the operation of antiderivation, the properties explained above are still valid, one
variable at a time, as explained in the previous chapter for existence and uniqueness of the
solutions.

To evaluate the primitives, remember that all calculations are usually carried out in simple
connected spaces, so the path of integration is irrelevant, until the extremal points are fixed. It
is then possible to divide the line of integration in jointed straight lines parallel to one of the
axis at a time:

γ(x0 → x) = (3.25)
= [(x1;0 + α[x1 − x1;0];x2;0; . . . ;xn;0)]α∈[0;1] .

. [(x1;x2;0 + α[x2 − x2;0];x3;0; . . . ;xn;0)]α∈[0;1] .

. . .

. [(x1; . . . ;xn−1;0;xn;0 + α[xn − xn;0])]α∈[0;1] .

This allows to rewrite, according to the necessities, the result in various forms. One form that is
useful when working with two variables is:∫ x

x0

f(x) dgx =

g∑
i=1

∫ (x1;. . . ;xi−1;xi;xi+1;0;. . . ;xg;0)

(x1;. . . ;xi−1;xi;0;xi+1;0;. . . ;xg;0)
f(x1; . . . ;xi−1; τ ;xi+1;0; . . . ;xn;0) dτ, (3.26)
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obtained summing and subtracting terms like[∫
f(x1; . . . ;xi−1; τ ;xi+1;0; . . . ;xn;0) dτ

]
(x1;. . . ;xi;xi+1;0;. . . ;xg;0)

(3.27)

with i = 1; . . . ; g − 1.

3.1.2 Fuchsian form

The last step concerns a property of the coefficients of the DEs that will be fundamental for the
introduction of the harmonic polylogarithms, the class of functions in which the solutions are
usually expressed:

Definition 6 (Fuchsian system). A system of DEs
∂y(x)
∂x1

= M1(x)y(x)

. . .
∂y(x)
∂xn

= Mn(x)y(x)

(3.28)

is said to be fuchsian if all its matrices of coefficients Mi(x) are composed only by simple poles
in all the xi ∈ x, and only rational coefficients are present.

Rarely a system of DEs is already fuchsian. In order to pass to a fuchsian system a redefinition
of the MIs is necessary, usually inserting dots or irreducible scalar products. Good choices for
basis of MIs are the so-called uniform transcendental bases, that will be introduced in section
3.3.

3.2 Harmonic polylogarithms

From the beginning of the study on scattering amplitudes, functions like Euler’s dilogarithms
Li2(x) appeared in the result of radiation emission and scattering (one of the first paper in which
such functions appear is [53]). For multi-loop calculation with loop number l > 2 a generalization
of such dilogarithms is necessary, so Nielsen polylogarithms were used. A further generalization
of such structure has been made, introducing harmonic polylogarithms (HPL), and their version
for multi-scale problems, G-polylogarithms (G-HPL). This class of functions represents a useful
mathematical support for the study of multi-loop problems, especially massless. For a detailed
introduction see e.g. [8].

Here HPLs of one variable will be considered. Most of the properties and definitions are still
valid in the multi-scale case, variable by variable.

3.2.1 Basic definitions

HPLs originates from nested sum, as for Nielsen polylogarithms, of the form:

Hm1;. . . ;mk = Lim1;. . . ;mk(x; 1k−1; . . . ; 11) =

+∞∑
i1=1

i1−1∑
i2=1

. . .

ik−1−1∑
ik=1

xi1∏k
j=1 i

mj
j

(3.29)
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(for more details, see [54]). Such a series expression, that for k = 1 and m1 = 1 generates
logarithms like − log(1− x), is centered in x = 0 and has a radius of convergence r = 1. These
functions admit also an integral representation, which interval of validity, subsequently to the
finite radius of convergence, will be ]− 1; 1[.

Speaking about integral representation, HPLs are defined following a nested integration struc-
ture, totally analogous to the one used in the Dyson series. First of all, a finite set of integrands,
the integration kernel is chosen. By integration on a fixed interval [x0;x] (here, x0 = 0) a first
generation of functions (HPLs of weight 1) is generated. To compute HPLs of weight increased
by 1, the previous HPLs are multiplied by one of the functions of the integration kernel, then
integrated on the interval above. Iterating this process, starting from HPL of weight one, HPLs
on a desired weight can be generated.

Definition 7 (HPL kernel of integration). [8]

f(0;x) =
1

x
, (3.30)

f(1;x) =
1

1− x, (3.31)

f(−1;x) =
1

1 + x
(3.32)

form the kernel of integration for the HPLs.

Definition 8 (Transcendental weight). The transcendental weight w (also, weight, for simplicity)
of an HPL is the number of nested integrations carried out using the HPL kernel of integration,
in the form: ∫ x

x0

f(aw; τw)

∫ τw

x0

f(aw−1; τw−1. . .

∫ τ2

x0

f(a1; τ1) dτ1. . .dτw−1dτw. (3.33)

Operatively, the weight of a HPL is equal to the length of the list of indices (mw; . . . ;m1) in
H(mw; . . . ;m1;x).

In general, a function Fw : Cn → C is a function of transcendental weight w if it satisfies the
relation:

dFw(x) =

N∑
i=1

F
(i)
w−1(x) d logRi(x) (3.34)

where F (i)
w−1(x) are transcendental functions of weight w − 1 (function of weight 0 are natural

constants) and Ri(x) are rational functions.

Observation 1. Thanks to linearity property of integration, a sum of terms all with same tran-
scendental weight w has transcendental weight w.
Observation 2. Given a function f(x) of weight w, the function 1/f(x) is considered to have
weight −w for consistency.

The relation connecting HPLs of higher weight with lower HPLs is a differential expression
of the form:

dH(mw; . . . ;m1;x)

dx
= f(mw;x)H(mw−1; . . . ;m1;x). (3.35)
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At weight w = 1 there are three different HPLs:

H(0;x) = log x, (3.36)

H(1;x) =

∫ x

0

dτ

1− τ = − log(1− x), (3.37)

H(−1;x) =

∫ x

0

dτ

1 + τ
= log(1 + x). (3.38)

Few clarifications about the form of the HPLs are mandatory.
First of all, thanks to the fact that the integral representation is valid only inside the region

of convergence (i.e. in ]−1; 1[) and to the explicit form of the nested sum series, the result of the
two integrals enlisted above can be written without the symbol of absolute value. For coherence
with respect to the series expressions above, H(0;x) is defined as log x without any absolute
value.1

Due to the definition of H(0;x), in the subinterval ] − 1; 0[ an imaginary factor iπ appears.
This divide the interval of definition of the HPLs into two parts: ]− 1; 0[ and ]0; 1[, the latest is
called Euclidean region, in which all the HPLs are real.

Finally, to preserve the notion of weight, also to H(0;x) will be associated weight 1 (it comes
from a “formal integration” of f(0;x)).

Inverting equation (3.35) and taking into account the properties enlisted above, the generic
HPL is determined thanks to the iterative formula:

H(mw; . . . ;m1;x) =

{
1
w! logw x if mk = 0∀k∫ x
0 f(mw; τ)H(mw−1; . . . ;m1; τ) dτ if ∃mk 6= 0

. (3.39)

It follows immediately from simple integration that also

H(1w; . . . ; 11;x) =
1

w!
[− log(1− x)]w ; (3.40)

H(−1w; . . . ;−11;x) =
1

w!
logw(1 + x). (3.41)

Observation 3. Since HPLs are encoded by an ordered list of three numbers (−1; 0; 1) and a
variable x, the number of HPLs grows with the weight w as 3w.

Example 10 (w = 2 HPLs). For w = 2 there are 32 = 9 HPLs. These can be rewritten by direct integration

1Notice that the expression H(0;x) =
∫ x

0
1
τ

dτ = log x is not well-defined: first of all the integral in τ = 0
is divergent, not returning the logarithmic expression, moreover it is not related to any of the polylogarithmic
series, being Li1(1− x) = − log x, without the absolute value.
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in terms of Euler’s dilogarithms, as:

H(0; 0;x) =
1

2
log2 x, (3.42)

H(0; 1;x) = Li2 x, (3.43)
H(0;−1;x) = −Li2(−x), (3.44)

H(1; 0;x) = − log x log(1− x)− Li2 x, (3.45)

H(1; 1;x) =
1

2
log2(1− x), (3.46)

H(1;−1;x) = Li2
1− x

2
− log 2 log(1− x)− Li2

1

2
, (3.47)

H(−1; 0;x) = log x log(1 + x) + Li2(−x), (3.48)

H(−1; 1;x) = Li2
1 + x

2
− log 2 log(1 + x)− Li2

1

2
, (3.49)

H(−1;−1;x) =
1

2
log2(1 + x). (3.50)

3.2.2 Properties of HPLs

For a close examination of the properties of HPLs see [8]. Here only the most relevant ones will
be presented.

In any case, almost all of the left properties (mainly involving change of variables not used
in this work), can be derived using the fundamental theorem of calculus, in the form:

H(m;x) = H(m; a) +

∫ x

a

dH(m; τ)

dτ
dτ. (3.51)

• If m 6= (0; . . . ; 0) the HPLs vanish at x = 0, thanks to the fact that at least one actual
integration is involved:

∫ 0
0 φ(τ) dτ = 0, regardless of φ.

• If mw 6= 1 then H(m; 1) is finite. It is also finite if m = (1; 0; . . . ; 0), otherwise it has a
logaritmic divergence logp(1− x) in x = 1, with maximum power of the logarithm p equal
to the number of leftmost consecutive terms equal to 1.

• The following proposition on the change of sign of the argument holds:

Proposition 6 (Change of sign relation). If m1 6= 0

H(m;−x) = (−1)
∑w
i=1|mi|H(−m;x) (3.52)

Proof. The proof is carried out by induction. First of all, H(1;−x) = − log(1 + x) = −H(−1;x).
Now H(m;−x) =

∫ −x
0

f(mw; τ)H(mw−1; . . . ;m1; τ) dτ , performing the change of variables τ = −η:∫ −x
0

f(mw; τ)H(mw−1; . . . ;m1; τ) dτ = −
∫ x

0
f(mw;−η)H(mw−1; . . . ;m1;−η) dη = −

∫ x
0
f(mw;−η)(−1)

∑w−1
i=1 |mj |

H(−mw−1; . . . ;−m1; η) dη. Now:

f(mw;−η) =

{
f(mw; η) if mw 6= 0

−f(mw; η) if mw = 0
(3.53)

So:

−
∫ x

0

f(mw;−η)(−1)
∑w−1
i=1 |mj |H(−mw−1; . . . ;−m1; η) dη = (−1)

∑w
i=1|mi|H(−m;x). (3.54)
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• Using integration by parts, it is possible to write:

H(m1; . . . ;mw;x) =

w∑
p=1

(−1)p+1H(mp;mp−1; . . . ;m1;x)H(mp+1; . . . ;mw;x), (3.55)

where H(x) ≡ 1 and
∫ x

0
1
τ dτ ≡ log x. The proof is a direct calculation:

H(m1; . . . ;mw;x) =

∫ x

0
f(m1; τ)H(m2; . . . ;mw) dτ =

= H(m1;x)H(m2; . . . ;mw;x)−
∫ x

0
f(m2; τ)H(m1; τ)H(m3; . . . ;mw; τ) dτ =

= H(m1;x)H(m2; . . . ;mw;x)−H(m2;m1;x)H(m3; . . . ;mw;x) + . . .+

+ (−1)p+1H(_p; . . . ;m1;x)H(mp+1; . . . ;m1;x) + . . . + (−1)wH(mw; . . . ;m1;x). (3.56)

• When x < 0 imaginary terms may appear, due to the presence of the term H(0;x) = log x.
While H(±1;x) are real in all the interval of convergence ] − 1; 1[, H(0;x) develops an
imaginary part, following the prescription for analytic continuation:

H(0;x) = log(x+ i0) ⇒ H(0;x) = H(0;−x) + iπ = log(−x) + iπ. (3.57)

Thanks to the fact that an integral with real functions on real intervals cannot develop
imaginary parts, and all except H(0; . . . ; 0;x) HPLs are evaluated via integration, only
terms obtained iterating integration on HPLs with m = 0 can generate imaginary terms:
imaginary parts then come only from HPLs with one or more rightmost consecutive indices
equal to 0, thanks to the prescription (3.57) for the analytic continuation.

• Thanks to equation (3.57), to maintain the relation among terms of same weight, since a
sum of terms has weight w if all the terms have weight w, π must be considered having
weight 1: W (π) = 1. Moreover, from relation (3.55) it follows that products between
functions of weight a and b are functions with weight a+ b (it will be proven in proposition
7).

3.2.3 Shuffle algebra and MHPLs

The most fruitful property of HPLs is their nature to be a shuffle algebra.

Definition 9 (Shuffle product). Given two ordered set A = (a1; . . . ; an) and B = (b1; . . . ; bm),
the shuffle product A� B is the sum of all the ordered sets composed by all the elements of A
and B, ordered without changing the order among elements originating from the same set:

A�B =
∑

ai ordered as in A
bj ordered as in B

({a1. . . ; ai; . . . ; an; b1; . . . ; bj ; . . . ; bm}). (3.58)

A good analogy can be made with a card deck: splitting it into two parts and shuffling them
together, the resulting set maintains order among cards from the same half-deck.
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Observation 4 (Shuffle algebra of nested integrals [8, 54]). Nested integrals

I(τ1; . . . ; τn;x) =

∫ x

x0

. . .

∫ τn−1

x0

f1(τ1). . . fn(τn) dτn. . .dτ1 (3.59)

(where fi(τi) are functions possibly divergent in the interval [x0;x], depending only on τi among
integration variables) form a shuffle algebra.

First of all, consider the simple case (immediate by graphical comparision):

I(τ1;x)I(τ2;x) =

∫ x

0
dτ1

∫ x

0
dτ2 =

∫ x

0

∫ τ1

0
dτ2dτ1 +

∫ x

0

∫ τ2

0
dτ1dτ2 =

= H(τ1; τ2;x) +H(τ2; τ1;x) (3.60)

depicted in figure 3.1.
This simple case of integrals showing a shuffle algebra property can be generalized in several

ways.

Figure 3.1: From left to right:
∫ x

0

∫ τ1
0 dτ2dτ1,

∫ x
0

∫ τ2
0 dτ1dτ2,

∫ x
0 dτ1

∫ x
0 dτ2.

First of all, consider two integrals I(a;x) and I(b;x), working on the region {0 ≤ a1 ≤
x} × . . . × {0 ≤ an ≤ an−1} = A ⊂ Rn and {0 ≤ b1 ≤ x} × . . . × {0 ≤ bm ≤ bm−1} = B ⊂ Rm
respectively: their shuffle product will determine nested integrals on a region in the volume
(A × B) ⊂ Rn+m. Consider now the effect on the integration regions of the “swapping” of the
nested integrals: in general, the new evaluated region does not overlap the previous one, still
remaining a subset of the region {0 ≤ τ1 ≤ x} × . . . × {0 ≤ τi ≤ τi−1}. In particular, if
two integrals with integration intervals belonging to different initial sets are swapped, the new
integral will still cover a region inside A×B (that is because all parameters are not greater than
the previous ones in order of integration, so the set cannot exit from the borders of A × B).
Otherwise, if the swapped integrals belong to the same initial set, the resulting nested expression
will no more be contained in A × B, because the order of the integrals of each set has been
changed, resulting in a different initial set. So for the equivalence only integrals with the same
order on the separated lists of parameters must be considered: these are exactly the expressions
generated by a shuffle product.

Now the problem is to understand if summing together the shuffle products all and only the
region A×B is evaluated. Considering the swapping between two indices of different sets, without
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changing the order of integration for the variables coming from the same set, the new region does
not overlap the previous one. That can be seen, intuitively, from figure 3.1: swapping xi with
xi+1 the relation xi+1 ≤ xi becomes xi ≤ xi+1, determining a new, not overlapping, region. This
argument is also valid with xi and xj , i > j; moreover, for the same reason different nested
integrals derived from the same shuffle product cannot have overlapping domains of integration.
So all the possible nested integrals generated from the shuffle product are necessary in the sum.

The fact that the whole region A × B is covered by the sum of all the integrals from the
shuffle product can be proven by taking a point y = (a1. . . ; an; b1. . . ; bm) in A×B, and taking an
integral of the shuffle product. First of all, the coordinates of one set, take A, generates a plane
(a1; . . . ; an; τ1; . . . ; τm) in A×B that passes in all the sub-domains of integration (all the intervals
start from 0 and arrive at x, even if bounded by integral relations), so when an integration region
containing (b1; . . . ; bm) is found, it automatically contains (a1; . . . ; an; b1; . . . ; bm), so it is possible
to solve the problem working only with b coordinates. Operatively, to find such a set, one starts
from the most internal integral: if the corresponding b coordinate of the point does belong to the
interval of integration, it is possible to pass to the upper one, otherwise one swaps this one with
the nearest external one belonging to a different initial set. Proceed in this way until all the b
coordinates belong to the intervals of integration of the B part, and the domain of the integral
determined will be the region to which the point belong. This procedure can be carried out for
each point, so A×B is fully covered by the disjoint union of integration regions:

A×B =
⊔

I∈A�B
DI . (3.61)

In this way it is shown that volume integrals admit a structure of shuffle algebra. This ar-
gument is also valid assigning to each point of an interval a weight, i.e. changing the integrand
from 1 to φ(τi). Admitting functions in the integrals only depending on the variable of integra-
tion (regardless for their finiteness in the integration domains) does not change the core of the
argument used above, so in general nested integrals form a shuffle algebra.

Since HPLs are a particular case of nested integrals, they also admit a structure of shuffle
algebra (note that this structure is closed, i.e. the shuffle product of two HPLs is a sum of HPLs).

Example 11 (Dyson series). Consider the expression (3.3) for the Dyson series. A generic element of the
series has the form: ∫ x

x0

A(τ1)

∫ τ1

x0

A(τ2). . .

∫ τn−1

x0

A(τn) dτn. . . dτ2dτ1y0, (3.62)

which involves nested integrals. It is then possible to use the properties of shuffle algebra of nested integration;
the order of the matrices must be considered.

Consider first of all the case of matrices commuting with their own integral, and split the expression above
in two blocks of integration:

∫ x
x0
A(τ1) dτ1 and

∫ x
x0
A(τ2). . .

∫ τn−1

x0
A(τn) dτn. . . dτ2. It is possible to rewrite the
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initial integral using the shuffle algerba properties of the nested integration:∫ x

x0

A(τ1)

∫ τ1

x0

A(τ2). . .

∫ τn−1

x0

A(τn) dτn. . . dτ2dτ1+

+

∫ x

x0

A(τ2)

∫ τ1

x0

A(τ1). . .

∫ τn−1

x0

A(τn) dτn. . .dτ1dτ2+

+ . . .+

+

∫ x

x0

A(τ2). . .

∫ τn−1

x0

A(τn)

∫ τn−1

x0

A(τ1) dτ1dτn. . . dτ2 =

=

∫ x

x0

A(τ1) dτ1

∫ x

x0

A(τ2). . .

∫ τn−1

x0

A(τn) dτn. . . dτ2. (3.63)

Moreover, the equation can be written, performing a change of variables of the form (τ2 → η1; . . . ; τn → ηn−1; τ1 →
ηn), (η1 → τ1; . . . ; ηn → τn), as:

n

∫ x

x0

A(τ1)

∫ τ1

x0

A(τ2). . .

∫ τn−1

x0

A(τn) dτn. . . dτ2dτ1 =

=

∫ x

x0

A(τ1) dτ1

∫ x

x0

A(τ2). . .

∫ τn−1

x0

A(τn) dτn. . . dτ2. (3.64)

Iterating the procedure on the block
∫ x
x0
A(τ2). . .

∫ τn−1

x0
A(τn) dτn. . .dτ2 one arrives at the final form:∫ x

x0

A(τ1)

∫ τ1

x0

A(τ2). . .

∫ τn−1

x0

A(τn) dτn. . . dτ2dτ1 =
1

n!

[∫ x

x0

A(τ) dτ

]
. (3.65)

It is then possible to write the Dyson series as a true exponential, of the form:

y(x) = e
∫ x
x0
A(τ) dτ

y0. (3.66)

For generic squared matrices the order must be considered: in order to follow the original order in nested
integrations, in the product the matrices will be ordered according to their arguments, from the greater to the
smaller, i.e. in a time-ordered way:

y(x) =

+∞∑
k=0

1

k!
T
[∫ x

x0

A(τ1) dτ1. . .

∫ x

x0

A(τk) dτk

]
y0 = De

∫ x
x0
A(τ) dτ

y0. (3.67)

Observation 5 (HPLs shuffle algebra).

H(m;x)H(n;x) =
∑

p=a�b

H(p;x) (3.68)

Another way to prove the existence of the shuffle algebra for HPLs is shown in [8], using
integration by parts and induction.

The shuffle algebra structure inherited by the HPLs allows to write relations between sums of
HPLs of weight w and products of HPLs of minor individual weight p and q (p+q = w) of the same
argument. This relations already embed the integration by parts relations, as shuffle relations
are originated by integration by parts (another way to see this fact is by directly extract the
integration by parts identities from a convenient set of shuffle relations); these relations contain
all the possible relations among HPLs with the same argument x.
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Construction of the basis of independent HPLs

Shuffle relations, for a given weight and a given set of a points (called alphabet), form a set with2

[w+1
2 ]∑

p=1

apaw−p = aw
[
w + 1

2

]
(3.69)

relations. Considered that the total number of HPLs at weight w are aw, the set found has quite
a great amount of redundant relations. Moreover, not all the HPLs of a given weight can be
expressed in terms of HPLs of lower weight: such HPLs are called master HPLs (MHPL). Ob-
viously their choice is not fixed, but some prescriptions should be considered in the construction
of such set:

• HPLs with rightmost consecutive 0s generates imaginary parts in x < 0, due to the presence
of loga x terms in the integration;

• HPLs with leftmost consecutive 1s diverge in x = 1 as logp(1− x);

• HPLs with leftmost consecutive −1 diverge in x = −1 as logp(1 + x).

So the preferred path to follow is to separate i-generators and divergencies as powers of, respec-
tively, log x, − log(1 − x) and log(1 + x). The set of MHPL at each weight will be composed
preferably by HPLs with ±1 in rightmost position and 0 in leftmost position.

The number of MHPLs has been found by direct evaluation, and it is shown in table 3.1.

Weight w Number of HPLs Number of MHPLs

1 3 3
2 9 3
3 27 8
4 81 18
5 243 48
6 729 116
7 2187 312
8 6561 810

Table 3.1: MHPLs.

The values of the right column of table 3.1 can also be determined thanks to the Witt formula:

N(w; a) =
1

w

∑
d|w

µ(d)a
n
d (3.70)

where d are the divisors of w and µ is the Moebius function. See [14] for more details.
In appendix A codes to find MHPLs and relations, together with some example at low weights

are enlisted.
2For HPLs described in this chapter, the alphabet consists of {0; 1;−1}.
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3.3 Uniform transcendentality

HPLs are a good way to express the terms generated by the integrations on the matrix of
coefficients for fuchsian canonical systems. Using the concept of weight it can be seen how
εn term contains only functions of weight n, when HPLs are used; therefore, assigning to ε
transcendental weight W (ε) = −1, all the terms of the series have weight 0. This choice is also
supported by the fact that dimensional regularization is equivalent to cutoff regularizations, in
which role of ε is played by logarithmical structures like log Λ (see [12]). Although, not always
only HPLs are present in the series expansions of the functions used for graph evaluation, so also
series with non null weight can exist. It is then useful to give the following

Definition 10 (ε uniform transcendental function). A function F (x; ε) is ε uniform transcenden-
tal (ε-UT, here simply UT) if all the term of its series expansion in ε have the same transcendental
weight (called total weight), provided W (ε) = −1. A UT function is called pure UT function
if it has total weight 0 and all the terms of its expansion contain only functions with definite
transcendental weight.

Considering fuchsian canonical systems fixes only half of the problem, since the final results
depends also on the BC y0. It is then important to find also UT BCs: constraints usually do not
modify the transcendental structure of the functions, while limit functions may introduce non-
UT terms. Usually functions involved in BCs are other FIs or combinations of them; it follows
that BCs are sums, products and inversions of functions like HPLs, xP (ε), ζ(n) and Γ(P (ε)).

Proposition 7. The product of two functions with weights w1 and w2 is a function of weight
w1 + w2.

Proof. First of all it is possible to use the property of shuffle algebra of nested integrations: rewriting the
functions as nested integrations starting from weight 0 integrands, and shuffling, the expression can be rewritten
as: ∫

Aw1

a(τ) dRa(τ)

∫
Bw2

b(η) dRb(η) =
∑
a�b

∫
(Aw1

;Bw2
)

b(η)a(τ) dRb(η)dRa(τ). (3.71)

Each term of the sum now is a nested integration with differentials of the form d logR, starting from a function
of weight 0: they are then all terms of weight w1 + w2, so their sum has weight w1 + w2.

Proposition 8. Sums and products of UT functions are still UT. If f(x; ε) is UT, also 1/f(x; ε)
is UT.

Proof. For sums:

f(x; ε) + g(x; ε) =

+∞∑
i=0

εif (i)(x) +

+∞∑
j=0

εjg(j)(x) =

+∞∑
k=0

εk
[
f (k)(x) + g(k)(x)

]
. (3.72)

For products:

f(x; ε)g(x; ε) =

[
+∞∑
i=0

εif (i)(x)

][
+∞∑
j=0

εjg(j)(x)

]
=

∞∑
i=0

εi
i∑

j=0

f (j)(x)g(i−j)(x), (3.73)

And W (f (j)(x)) = j + a, W (g(i−j)(x)) = i− j + b, so W (f (j)(x)g(i−j)(x)) = i+ a+ b, W (f(x; ε)g(x; ε)) = a+ b
as seen above.
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For inversions:

1

f(x; ε)
=

+∞∑
i=0

εi
[

di

dεi
1

f(x; ε)

]
ε=0

=

+∞∑
i=0

εi
∑

(k1;. . . ;kI )∈K

f (k1)(x). . . f (kI )(x)

fI+1(x; 0)
(3.74)

(FIs have a finite non-zero parts in ε→ 0, so ε poles cannot appear by simple inversion) where K is the set of lists
(k1; . . . ; kI) of any length I such that

∑I
j=1 kj = i. It can then be seen that each term of the ε series has weight

I · a+
∑I
j=1 kj − a · (I + 1) = i− a.

Observation 6. Terms of the form xP (ε), where P (ε) is a polynomial in ε, are UT expressions:

xa0+a1ε+. . .+anεn = xa0ea1ε log x. . . eanε
n log x, (3.75)

and each exponential is a UT function, expanded in εi logi x, and a product of UT functions is
still UT. Moreover, only the term xa0 has no definite weight, so xP (ε) will be a pure UT function
only if the polynomial has no constant term.
Observation 7. Concerning ζ functions, the following relation holds:

ζ(2n) =
22n−1π2n |B2n|

(2n)!
, n ∈ N, (3.76)

and B2n is the (2n)-th Bernoulli number. So all even arguments of the ζ can be expressed in terms
of numbers with weight 0 (Bernoulli numbers are not related to HPLs or weighted functions)
and power of π, a constant with weight 1; is therefore immediate to associate to ζ(2n) weight
2n. It is finally reasonable to expand the association also to ζ(2n+1), resulting in W (ζ(n)) = n,
if n ∈ N.

The major role in analytic expressions of FIs is played by Euler’s gamma functions, defined
as:

Γ(z) =

∫ +∞

0
tz−1e−t dt. (3.77)

It can be seen using integration by parts that zΓ(z) = Γ(z+ 1), and, for n ∈ N, Γ(n) = (n− 1)!.
To determine if the gamma function is ε-UT varying the argument, each term of the series

expansion in ε must be inspected, checking if it has definite weight and if all the terms have the
same weight.

Before expanding the gamma function, a particular constant must be investigated. The
Euler–Mascheroni constant, indicated as γ, is a key valor in the evaluation of Euler’s gamma
function expansions, and admits the following expressions:

γ =

+∞∑
n=0

(−1)n
log n

n log 2
; (3.78)

γ = −
∫ +∞

0
e−x log x dx =

∫ y=1

y=0

y

y − 1
e

y
y−1 log

y

1− y d log
y

1− y , (3.79)

where the change of variable has been performed to reduce the interval of integration into a
compact set.3 From the first expression it is reasonable (but not yet proven) to assign the weight

3The use of compact sets for integration of weighted functions has been inherited from the definition of period
(see [55]).
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W (γ) = 1. The second expression is the typical form used to define a function with weight
n; assumed γ with weight 1, equation (3.79) tells that y

y−1e
y
y−1 log y

1−y must have weight 0 for

coherence, so W
(

y
y−1e

y
y−1

)
= −1.

Rewriting now the Euler’s gamma definition as:

Γ(1 + ε) =

∫ +∞

0
tεe−t dt =

+∞∑
n=0

εn

n!

∫ t=+∞

t=0
logn t e−tt d log t =

=

+∞∑
n=0

εn

n!

∫ y=1

y=0
logn

y

1− y
y

y − 1
e

y
y−1 d log

y

1− y (3.80)

the integrand is a product of the function y
y−1e

y
y−1 having weight w1 = −1 with the function

logn y
1−y with weight w2 = n, so the integral is a function with weight w1 + w2 + 1 = n. It is

then proven that Γ(1 + ε) is a pure UT function with weight 0. It follows moreover that also
Γ(1 + bε) is a pure UT function with w = 0.

Consider now Γ(bε): it is related to the previous case by Γ(1 + bε) = bεΓ(bε). Considering
that the only effect of a multiplication by ε on a UT function is to shift all the coefficients on the
next power of ε, Γ(bε) is still a UT function, but with weight 1. This reasoning fails with Γ(a+bε)
terms, when a 6= 0; 1: the multiplying factor (a− 1) + bε mixes the terms of the series expansion
with different weights, so they cannot be proven to be UT with this method, nevertheless there
could be some UT functions of that form.

The result cannot be generalized to εc: in that case the series expansion will feature terms of
the form εcn, resulting in a different growth of the power of ε and of the weight of each coefficient.
This is not a suitable behaviour, considering also the fact that in a canonical Dyson series the
weight grows as fast as the power of ε.

In conclusion, assuming W (γ) = 1, Γ(bε) and Γ(1 + bε) with c ∈ N are UT function, with
total weight 1 and 0, respectively.

3.3.1 UT graphs

Once established all the properties seen previously, it is possible to inspect the MIs, determining
if they are UT, and in some cases finding the correct UT MI for a given topology.

However, most of the time a priori criteria to determine the UT nature of FIs are not
available, if not for simple topologies, and the only possible way is to guess the UT form for
a given topology; the definitive test for UT properties will be reaching canonical fuchsian form
and UT BCs. To restrict the field of possible choices, it is useful to reverse some theorems or
conjectures about UT functions: if a UT function shows a certain property, usually graphs with
that property can be truly UT functions. Due to often long evaluation time to determine a
canonical fuchsian form (if it exists for the chosen basis) and to fix UT BCs (that may not exist
at all), this strategy turns out to be a valid ally to address the research.

For all the rest of the chapter, use of dD0 k integration measure (2.14) is understood.
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3.3.2 Exact criteria

Sunset graph

Consider again the sunset integral of section 2.2.2:

S(α1; . . . ;αn) =

(
− p

2

µ2

)−(n−1)ε (
p2
)2(n−1)−

∑n
j=1 αj

Γ (
∑n

l=1 αl + (n− 1)(ε− 2))

Γ (−∑n
m=1 αm + n(2− ε))

n∏
k=1

Γ(2− αk − ε)
Γ(αk)

. (3.81)

Thanks to proposition 8, it is possible to inspect the UT of each factor of S(α1; . . . ;αn) at a
time:(
− p2

µ2

)−(n−1)ε
UT with total weight 0;

Γ(
∑n
l=1 αl+(n−1)(ε−2))

Γ(−
∑n
m=1 αm+n(2−ε))

is UT if the constant terms in each gamma function must be 0 or 1, gen-

erating the system of conditions{∑n
l=1 αl − 2(n− 1) = 1 or 0

−∑n
m=1 αm + 2n = 1 or 0

→
{∑n

l=1 αl = 2n− 1 or 2n− 2∑n
m=1 αm = 2n− 1 or 2n

→ (3.82)

→
n∑
l=1

αl = 2n− 1

∏n
k=1

Γ(2−αk−ε)
Γ(αk) implies that 2−αk = 1 or 0 ∀k = 1; . . . ;n, resulting in αk = 1 or 2 ∀k = 1; . . . ;n.

Putting together all the conditions the only possible solutions are permutations of the list
(2; . . . ; 2; 1). Thus the UT form for the n-propagator sunset topology is a FI with all propa-
gators dotted except for one.

The generic formula for the UT sunset with n ≥ 2 propagators, indicated as Sn, is:

=

(
− p

2

µ2

)(1−n)ε (
p2
)−1 Γ (1 + (n− 1)ε)

Γ(1− nε) Γ(1− ε)Γn−1(−ε). (3.83)

Observation 8. Sn is a UT function, but it is not a pure UT function: the term
(
p2
)−1 has no

definite weight, and will remain as an overall factor in the series expansion. A pure UT version
of the sunset graph is instead:

Ŝn = p2Sn =

(
− p

2

µ2

)(1−n)ε
Γ (1 + (n− 1)ε)

Γ(1− nε) Γ(1− ε)Γn−1(−ε). (3.84)



62 CHAPTER 3. ITERATED INTEGRALS AND UNIFORM TRANSCENDENTALITY

.

Triangle graph

Consider the massless triangle graph, with massive external line momentum p2 6= 0, and massless
external line momenta p2

1 = p2
2 = 0:

The UT FI for the massless triangle topology has all undotted propagators. To prove this,
consider: ∫

dD0 k

k2(k − p1)2(k + p2)2
, (3.85)

and perform Feynman parametrization:

∫
dD0 k1

k2(k − p1)2(k + p2)2
=

=

∫ ∫ 1

0

∫ 1−y

0

2 dxdy

[xk2 + y(k + p2)2 + (1− x− y)(k − p1)2 + iη]3
dD0 k =

= −i
(
µ2
)ε ∫ ∫ 1

0

∫ 1−y

0

2 dxdy

[(k + (x− 1)p1 − yp2)2 − y2p2 − 2y(1− x)p1 · p+ iη]3
dDk. (3.86)

At this point y2p2 − 2y(1 − x)p1 · p + iη = Ω(x; y), Wick-rotate the integral, and change the
variable of integration into k′µ = kµ + (x− 1)pµ1 − ypµ2 . Using equation 2.8:

(
µ2
)ε

Γ(1 + ε)

∫ 1

0

∫ 1−y

0
Ω−1−ε dxdy =

=
(
µ2
)ε

Γ(1 + ε)

∫ 1

0

∫ 1−y

0
(y2p2 − 2y(1− x)p1 · p)−1−ε dxdy. (3.87)

The coefficient of the integral is UT, and also the integrand is UT, but the integration could
remove this condition in the second factor. Integrating first in x one obtains∫ 1−y

0
Ω−1−ε dx = −(y(p2y − 2p1 · p))−ε + (y2(p2 − 2p1 · p))−ε

2εyp1 · p
. (3.88)
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Rewriting the integral as a series in ε:

− (y(p2y − 2p1 · p))−ε + (y2(p2 − 2p1 · p))−ε
2εyp1 · p

=

= − 1

2εyp1 · p
+∞∑
n=0

(−ε)n
n!

logn
[
y(p2y − 2p1 · p)(y2(p2 − 2p1 · p))

]
. (3.89)

Now, rearranging the term 1/y with dy:

− 1

2εp1 · p
+∞∑
n=0

(−ε)n
n!

∫ 1

0
logn[y(p2y − 2p1 · p)(y2(p2 − 2p1 · p))] d log y. (3.90)

Each term of the expansion has definite weight, and the structure has total weight 1.

Propagator substitution

Generalizing the idea expressed in section 2.2.2, the following proposition can be formulated:

Proposition 9. Given a UT FI and substituting one of its undotted propagators with a 2-points
UT FI with mass dimension [m]2(1+bε), a new UT FI is obtained.

Proof. Consider a UT FI. Substituting a simple propagator with a UT two-point FI has the neat effect to multiply
the original structure by a bunch of terms independent from the kinematics that is UT, and to substitute the
expression of the propagator k2

1 with
(
k2

1

)1+bε. Using Feynman parametrization on the specific loop:

Γ
(
ε− 2 +

∑N1
i=1 αi

)
∏N1
j=1 Γ(αj)

∫ 1

0

. . .

∫ 1−
∑N1−2
i=1 xi

0

Ω
−ε+2−

∑N1
i=1 αi

1 dx. (3.91)

The modifications occur in:

• Ω
−ε+2−

∑N1
i=1 αi

1 becoming Ω
−ε+2−

∑N1
i=1 αi+bε

1 , with the same constant term form;

• Γ
(
ε− 2 +

∑N1
i=1 αi

)
changing into Γ

(
ε− 2 +

∑N1
i=1 αi + bε

)
, the constant term has not changed;

• Γ(αk1) = Γ(1) becoming Γ(1 + bε), UT.

The loop integral differs then only in the ε coefficient, not modifying the constant structure of the whole integral.
So the overall function is still UT.

Two two-point functions are said to be chained if they are jointed in the point each one has
one of the cumulative external legs connected to.

Lemma 2. Given a UT FI figuring a propagator with h dots, it is possible to substitute it with h
chained two-point UT FIs, where each one of the h FIs has mass dimension [m]2(1+bε). Indicated
with α̃i = 1 + b̃iε the power of the squared momentum of the new sub-graphs, multiplying the new
FI by

∏h−1
k=1

(
k + ε

∑h
i=1 b̃i

)
a UT function is retrieved.
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Proof. Proceeding as in proposition 9, and using Feynman parametrization on the loop with the substituted
propagator, associated with the power αi = h:

Γ
(
ε− 2 +

∑N1
i=1 αi

)
∏N1
j=1 Γ(αj)

∫ 1

0

. . .

∫ 1−
∑N1−2
i=1 xi

0

Ω
−ε+2−

∑N1
i=1 αi

1 dx. (3.92)

with the substitution this time αi = h⇒ h+ ε
∑h
i=1 b̃i. Everything follows as in proposition 9, with the exception

that this time Γ(h) at the denominator goes into Γ
(
h+ ε

∑h
i=1 b̃i

)
, which is not UT for h 6= 1. Although,

remembering Γ(z) = (z − 1)Γ(z − 1):

Γ

(
h+ ε

h∑
i=1

b̃i

)
=

(
h− 1 + ε

h∑
i=1

b̃i

)(
h− 2 + ε

h∑
i=1

b̃i

)
. . .

(
1 + ε

h∑
i=1

b̃i

)
Γ

(
1 + ε

h∑
i=1

b̃i

)
. (3.93)

So, multiplying the structure by
(
h− 1 + ε

∑h
i=1 b̃i

)(
h− 2 + ε

∑h
i=1 b̃i

)
. . .
(

1 + ε
∑h
i=1 b̃i

)
, a UT function is

found.

These last proven results concerning substitutions will be almost only used in this work to
replace propagators with sunsets in order to recognize UT versions of MIs.

3.3.3 Guiding criteria

Differential analysis and BCs

BCs, either as values of the MIs (exact or constrained) at some kinematic points, or as pseu-
dothresholds, play a fundamental role in the determination of the UT structure. Even if the
system is fuchsian and canonical, and the basis has no singularities in ε, no UT structure can be
reached if the BCs are not UT. The complete check of the UT nature of a MI basis is therefore
made up by two conditions:

• DE system in canonical fuchsian form;

• UT BCs.

Note that the presence of just one of the two properties does not assure the presence of the other
one: it is possible, for example, to find a canonical fuchsian form that does not admit BCs all
UT. Only when working with UT functions fuchsian canonical form assures the UT behaviour
and vice versa.

To find a suitable MI basis, it is possible to relax a bit the condition above, and consider just
the necessity to have a canonical fuchsian system: in this way the set of possible FIs is greatly
restricted, although some non-UT functions may still be present.

Mass dimension

A guiding relation can be found considering the mass dimension of UT graphs with a given
number of external legs, and looking for FIs having a mass dimension equal to the one of proven
UT graphs with the same number of external legs, following the scheme (in ε → 0, at least in
simple cases):

• 2-point UT FIs: [m]−2 (from UT version of the sunset);
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• 3-point UT FIs: [m]−2 (from UT version of the 1-loop triangle);

• 4-point UT FIs: [m]−4 or less (from UT version of the 1-loop box).

To match the generic n-point FI with those mass dimensions, dots or scalar products can be
added to the functions under examination, giving a way to choose the MIs. Usually one of the
MIs for a given topology follows this scheme, but this is no more than a rule of thumb.

Quadruple cut

As stated in [12], if a FI is UT, also its cuts will be UT. It is possible to reverse this relation to
determine a criterion to find UT diagrams: if the cut of a diagram determines a UT graph, the
original FI is a good candidate for the UT basis.

Consider, as example, the 1-loop box FI: performing a quadruple cut (as explained in ap-
pendix B), the result is a UT function (since it does not depend on ε):

∝ 1

st
. (3.94)

A similar procedure can be applied also to the n-loop ladder: iterating the quadruple cutting
on one of the extremal sub-boxes since all the propagators have been cut, the resulting function
is a weight 0 expression, since it does not present logarithms or π factors:

∝ 1

snt
. (3.95)

To find other suitable candidates to be UT it is possible to insert auxiliary propagators in
the numerator. To find the correct ones, again quadruple cuts are useful. Consider the following
FI of the 2-loop ladder topology:4

(p1 + k2)2. (3.96)

4External momenta pµ1 ; pµ2 ; pµ3 ; pµ4 are all incoming, the left and right upper legs carry pµ1 and pµ3 , respectively,
the left and right lower ones carry pµ2 and pµ4 , respectively. See the graph at the beginning of section 6.2.
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Cutting the left sub-box:

(p1 + k2)2 ∝ (p1 + k2)2

s
, (3.97)

but, since

=

∫
dDk

(k + p1)2k2(k − p3)2(k + p1 + p2)2
(3.98)

the cut is nothing else than

1

s

∫
(p1 + k2)2

(k2 + p1)2k2
2(k2 − p3)2(k2 + p1 + p2)2

dDk2 =
1

s
, (3.99)

which is a UT FI, as proven in section 3.3.2.

Remember in any case that the properties shown here are guiding criteria to find UT func-
tions, not rigorous ones. They not always lead to truly UT functions, and often the paths
proposed to reach UT FIs are not compatible.
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In previous chapters DEs have been introduced, showing a different and fruitful way to
determine FIs, otherwise hardy evaluable via direct integration. Among the systems of DEs,
particularly suitable structures are fuchsian canonical systems, admitting a Dyson series expan-
sion in ε that can be written in terms of HPLs. All the terms of the series share the same total
weight (considered w(ε) = −1). Moreover, MIs can be chosen to have a vector of UT solutions,
expressed in terms of HPLs, π and ζ(n), without poles in ε. Finally, evaluation through Dyson
series of such a system is straightforward, involving only repeated integrations.

The hope is, starting from a given set of topologies, to find a suitable UT basis of MIs and
to construct over it a fuchsian canonical system. Once these conditions are satisfied, the system
can be quite easily solved.

In this part of the work two recent algorithms to find fuchsian canonical structure will be
described.

The first method, introduced in [13], starting from [45], allows a system with a UT basis
without ε divergences to be put into a canonical form, starting from linear structures in ε, i.e.
the DE system has a coefficient matrix with each term depending on ε through the expression
a+bε, a, b ∈ R. The idea undergoing the method is the same of the Dirac picture in perturbation
theory: through a transformation obtained from the unperturbed hamiltonian it is possible to
express the time dependence of the states only using εH1I , where H1I is the perturbation in
interaction picture. To determine the transformation, an equivalent formulation of the Dyson
series, the Magnus series, is used. This procedure works also with systems of PDEs, simply
iterating the procedure each partial derivation at a time.

The second method does not require fuchsian form or UT basis a priori, but can work only
with single-scale problems. The procedure, introduced for the very first time in [16], is here
derived starting from a technique of manipulation of eigenvalues called eigenvalue deflation [15],
re-deriving a large part of the algorithms. This technique allows to modify and even nullify
the eigenvalues of a given matrix, and to diminish its rank. Adapting this method, originally
born to numerically compute eigenvalues, to DEs, it is possible, given a suitable non-fuchsian
ε-dependent system, to reduce it to a fuchsian form. Starting then with a fuchsian system, it
is possible to operate on its eigenvalues, passing to an ε-homogeneous structure for them (also
here, starting from a suitable form). At the end, a similarity transformation allows to put the
system into a canonical fuchsian form.

The two methods usually produce different basis of functions for the fuchsian canonical
system, that can be linked by IBP-ids.

In analogy with previous studies [4, 9–11, 13, 14, 16], in the following discussion only DE
systems with 0 total weight will be considered. This will allow highlighting remarkable properties
of the solutions.
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Chapter 4

Magnus series expansion

The method of Magnus series expansion, developed in [13] and used in [14], is pre-
sented. After the proof of Magnus theorem [13, 45], the concept underlying the
definition of the interaction picture in quantum perturbation theory is applied to a
ε-linear system of differential equations in a single variable, finding a change of basis
for the master integrals which casts the system in a canonical (ε-factorized) form.
Generalization to multi-scale problems is also explained.

The leading concept of the Magnus series can be introduced considering perturbation theory
in elementary quantum mechanics, as shown in [13].

Consider a system governed by a Hamiltonian operator H(t) = H0(t) + εH1(t), where ε is
small, so the system can be analyzed as a result of a small perturbation on a known structure
H0(t).

The time evolution equation for the states of this system, in Schroedinger picture, is:

i~
∂

∂t
|ψ(t)〉S = [H0(t) + εH1S(t)] |ψ(t)〉S (4.1)

It is possible to write the time evolution of the system using the interaction picture, in which,
starting from Schrödinger picture:

• states are written as |ψ(t)〉S = B(t) |ψ(t)〉I and evolve according only to εH1I(t): i~ ∂
∂t |ψ(t)〉I =

εH1I(t) |ψ(t)〉I ;

• observables are written as AS(t) = B(t)AI(t)B
†(t), and evolve following only H0(t):

i~ ∂
∂tAI(t) = [AI(t);H0(t)];

B(t) is a transformation matrix, for hypothesis commuting with H0(t) = H0I(t). To determine
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B(t), time-evolution equations of the states can be used:

i~
∂

∂t
|ψ(t)〉I = i~

∂

∂t

[
B†(t) |ψ(t)〉S

]
= i~

∂

∂t

[
B†(t)US(t) |ψ(t0)〉S

]
=

=

[
i~
∂B†(t)

∂t
US(t) + i~B†(t)

∂US(t)

∂t

]
|ψ(t0)〉S =

=

[
i~
∂B†(t)

∂t
B(t)UI(t)B

†(t) +B†(t) (H0(t) + εH1S(t))B(t)UI(t)B
†(t)

]
|ψ(t0)〉S =

=

[
−i~B†(t)

∂B(t)

∂t
+H0(t) + εH1I(t)

]
UI(t)B

†(t) |ψ(t0)〉S =

=

[
−i~B†(t)

∂B(t)

∂t
+H0(t) + εH1I(t)

]
|ψ(t)〉I ≡ εH1I(t) |ψ(t)〉I ; (4.2)

so:
i~
∂B(t)

∂t
= B(t)H0(t). (4.3)

The solution of such DE is:

B(t) = e
− i

~
∫ t
t0
H0(τ) dτ

. (4.4)

As said above, in the interaction picture states evolve following only the perturbation in the
Hamiltonian, in other words their DE is written in a canonical form for ε.

It is possible to use this idea to transform a given system of DEs linear in ε (i.e. of the form
∂iy(x) = M(x)y(x) with M(x) = A0(x)+ εA1(x)) into a system with a canonical form, through
a matrix evaluated similarly to B(t).

4.1 Magnus series

Following [13, 56], consider the derivative of Ωk(x) with respect to x

dxΩk = dx(Ω. . .Ω) = (dxΩ) Ωk−1 + Ω (dxΩ) Ωk−2 + . . . + Ωk−1 (dxΩ) , (4.5)

and the action of the expression
(
H d

dΩ

)
on Ω (where H is an operator not depending on Ω)(

H
d

dΩ

)
Ωk = H

dΩ

dΩ
Ωk−1 + ΩH

dΩ

dΩ
Ωk−2 + . . . + Ωk−1H

dΩ

dΩ
=

= HΩk−1 + ΩHΩk−2 + . . . + Ωk−1H. (4.6)

Defining the action of the operator
(

d
dΩ H

)
on Ωk as(

d

dΩ
H

)
Ωk :=

(
d

dΩ
Ωk

)
H =

(
dΩ

dΩ
H

)
Ωk−1 + Ω

(
dΩ

dΩ
H

)
Ωk−2 + . . . + Ωk−1

(
dΩ

dΩ
H

)
=

= HΩk−1 + ΩHΩk−2 + . . . + Ωk−1H, (4.7)

it is possible to write:

dxΩk =

(
dΩ

dx

d

dΩ

)
Ωk =

(
d

dΩ
Ωk

)
dΩ

dx
. (4.8)
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Note in particular that equations (4.6) and (4.7) reduce to kHΩk−1 when [H; Ω] = 0. Defining

adΩH := [Ω;H] (4.9)

it is possible to write
(
dΩk/dΩ

)
H as:(

d

dΩ
Ωk

)
H =

k−1∑
i=0

(
k

i+ 1

)
adiΩHΩk−i−1, (4.10)

where adiΩH = adΩ adΩ . . . adΩH i times, with ad0
ΩH = H. The proof for the formula is carried

out by induction, starting from (dΩ/dΩ)H = H and Ω adiΩH − adiΩHΩ = adi+1
Ω H.

Given the definition of exponential of a matrix :

eΩ :=
+∞∑
k=0

Ωk

k!
, (4.11)

the following lemmas hold.

Lemma 3 (Derivative of the exponential). The derivative of the exponential of a matrix is(
d

dΩ
eΩ

)
H = d exp adΩHeΩ, (4.12)

where H is a generic operator not depending on Ω and

d exp adΩH :=
+∞∑
k=0

adkΩH

(k + 1)!
(4.13)

Proof.

(
d

dΩ
eΩ

)
H =

+∞∑
k=0

1

k!

(
d

dΩ
Ωk
)
H =

+∞∑
k=1

1

k!

k−1∑
i=0

(
k

i+ 1

)
adiΩ HΩk−i−1 =

=

+∞∑
k=1

k−1∑
i=0

adiΩ H

(i+ 1)!

Ωk−i−1

(k − i− 1)!
=

+∞∑
k=1

Ωk−1

(k − 1)!
+

adΩ H

2

Ωk−2

(k − 2)!
+ . . . +

adk−1
Ω

k!
, (4.14)

where terms of the form adnΩ H

n!
start to be present when k = n+ 1;

+∞∑
i=0

adiΩ H

(i+ 1)!
eΩ = d exp adΩ HeΩ. (4.15)

Lemma 4 (Inverse of the exponential). If the eigenvalues of adΩ are different from 2ikπ, k ∈
(Z \ {0}), d exp adΩ is invertible, with:

d exp ad←Ω H =

+∞∑
k=0

βk
k!

adkΩH. (4.16)
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βk are the Bernoulli numbers, satisfying:

t

et − 1
=

+∞∑
k=0

βk
k!
tk. (4.17)

Proof. Proceeding in a formal way:

d exp adΩ H =

+∞∑
k=0

adkΩ H

(k + 1)!
=

∑+∞
k=1

1
k!

adkΩ
adΩ

H =

∑+∞
k=0

1
k!

adkΩ−1

adΩ
H =

exp adΩ−1

adΩ
H. (4.18)

d exp ad←Ω H = (d exp adΩ)−1 H =
adΩ

exp adΩ−1
H =

+∞∑
k=0

βk
k!

adkΩ H (4.19)

If the eigenvalues are multiple of 2iπ the exponential of adΩ is not invertible, as exp adΩ = 1.

It is now possible to demonstrate the Magnus theorem.

Proposition 10 (Magnus theorem). Given the linear system of DEs{
dY (x)

dx = A(x)Y (x)

Y (x0) = Y0

, (4.20)

its solution can be written as

Y (x) = eΩ[A](x;x0)Y0 = eΩY0 (4.21)

where Ω[A](x;x0) can be computed solving the DE{
dxΩ[A](x;x0) = d exp ad←Ω[A](x;x0)A(x)

Ω[A](x0;x0) = 0
. (4.22)

Proof. See [13]. Consider the derivative of Y (x) = eΩY0 (y0 can be extracted from the operation of derivation
since it is constant):

dY (x)

dx
=

(
d

dΩ
eΩ

)
dΩ

dx
Y0 = d exp adΩ(dxΩ)eΩY0 = d exp adΩ(dxΩ)Y (x); (4.23)

so it must be
d exp adΩ(dxΩ) = A(x); (4.24)

applying d exp ad←Ω to both members of the relation, and consdering that Y (x0) = eΩ[A](x0;x0)Y0 = y0, so
Ω[A](x0;x0) = 0: {

dxΩ[A](x;x0) = d exp ad←Ω[A](x;x0) A(x)

Ω[A](x0;x0) = 0
. (4.25)

The solution can be rewritten as a Magnus series:

Y (x) = eΩ[A](x;x0)Y0, (4.26)

Ω[A](x;x0) =
+∞∑
n=1

Ωn[A](x;x0), (4.27)

Ωn[A](x;x0) =

n−1∑
j=1

βj
j!

∫ x

x0

S(j)
n (τ) dτ. (4.28)
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The integrands S(j)
n can be computed recursively:
S

(1)
n (τ) = [Ωn−1[A](τ ;x0);A(τ)] ,

S
(j)
n (τ) =

∑n−j
k=j−1

[
Ωm[A](τ ;x0);S

(j−1)
n−m (τ)

]
if 2 ≤ j ≤ n− 2

S
(n−1)
n (τ) = adn−1

Ω1[A](τ ;x0)A(τ)

. (4.29)

The first terms of the Magnus series are:

Ω1[A](x;x0) =

∫ x

x0

A(τ1) dτ1, (4.30)

Ω2[A](x;x0) =
1

2

∫ x

x0

∫ τ1

x0

[A(τ1);A(τ2)] dτ2dτ1, (4.31)

Ω3[A](x;x0) =
1

6

∫ x

x0

∫ τ1

x0

∫ τ2

x0

[A(τ1); [A(τ2);A(τ3)]] + [A(τ3); [A(τ2);A(τ1)]] dτ3dτ2dτ1; (4.32)

. . .

in particular, if A(x) commutes with its own intergal
∫ x
x0
A(τ) dτ , the series is truncated at its

first term, resulting in e
∫ x
x0
A(τ) dτ .

Magnus series is equivalent to Dyson series to express solutions of Cauchy problems of the
form (4.20), and it is possible to pass from one representation to the other considering

∞∑
n=0

∫ x

x0

∫ τ1

x0

. . .

∫ τn−1

x0

A(τ1)A(τ2). . . A(τn) dτn. . .dτ2dτ1Y0 = e
∑+∞
j=0 Ωj [A](x;x0)Y0, (4.33)

from which:

Yk = Ωk +

k∑
i=2

1

i!
Q(i)
n , (4.34)

Yk =

∫ x

x0

∫ τ1

x0

. . .

∫ τn−1

x0

A(τ1)A(τ2). . . A(τn) dτn. . .dτ2dτ1Y0, (4.35)

Q
(i)
k =

k−i+1∑
m=1

Q(1)
m Q

(i−1)
k−m , Q

(1)
k = Ωn[A](x;x0), Q

(k)
k = Ωn

1 [A](x;x0). (4.36)

Both Magnus and Dyson series have positive aspects useful to represent solutions of linear
DEs. Dyson approach allows to write a series in terms of powers of the matrix of coefficients
(considering a canonical system, in terms on powers of ε) and it has a more immediate interpreta-
tion, in terms of Volterra integration problem (therefore it is easier to evaluate using computers).
Magnus series, on the other hand, preserves unitarity properties and allows to obtain finite series,
which can be exactly computed, if Ωi[A](x;x0) = 0.

As a paradigmatic example, consider a vectorial DE with A(x) diagonal: its Magnus series is
truncated at Ω1[A](x;x0), resulting in y(x) = eΩ[A](x;x0)y0 = eΩ1[A](x;x0)y0 = e

∫ x
x0
A(τ) dτ

y0; this



76 CHAPTER 4. MAGNUS SERIES EXPANSION

expression is perfectly consistent with the one obtained using the Dyson series (see example 11):

y(x) =

+∞∑
n=0

1

n!

[∫ x

x0

A(τ) dτ

]n
y0 = e

∫ x
x0
A(τ) dτ

y0. (4.37)

4.2 Reduction to canonical form

Consider a system of first order linear DEs

dy(x; ε)

dx
= M(x; ε)y(x; ε), (4.38)

with linear ε dependence in the matrix of coefficients:

M(x; ε) = A0(x) + εA1(x). (4.39)

Proceeding in the same way as in the time-evolution case, one imposes that

dg(x; ε)

dx
= εÂ1(x)g(x; ε), (4.40)

with
y(x; ε) = B(x)g(x; ε), A1(x) = B(x)Â1(x)B†(x), (4.41)

obtaining:

B†(x)
dB(x)

dx
= B†(x)A0(x)B(x). (4.42)

Inverting the previous relations:

g(x; ε) = B†(x)y(x; ε), (4.43)

εÂ1(x) = Â(x; ε) = εB†(x)A1(x)B(x) = B†(x)A(x; ε)B(x)−B†(x)
dB(x)

dx
. (4.44)

The matrix B(x) obeys the DE

dB(x)

dx
= A0(x)B(x). (4.45)

Note that this time A0(x) and B(x) do not commute, since A0(x) in general does not commute
with its integral matrix. Instead of a simple exponential the Magnus series is then used:

B(x) = eΩ[A0](x;x0). (4.46)

Once the changes are performed, the system assumes the canonical form

dg(x; ε)

dx
= εÂ1(x)y(x; ε). (4.47)

Using this procedure, a generic ε-linear DE system can be cast in a canonical form. Nothing
else is known about the nature of the poles, if working with generic MIs. For example, starting
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from a non-fuchsian ε-linear expression and changing basis to the canonical form, the new DE
could remain non-fuchsian, or even become fuchsian (it happens for n-loop ladders, as shown in
chapter 6).

The situation becomes more interesting when working with UT functions: in this case, canon-
ical form implies fuchsian form, so it is only necessary to reach canonical form to obtain a system
solvable in terms of HPLs.

Proposition 11. Given a system of DEs for UT MIs not singular in ε, if the system is canonical
it is also fuchsian.

Proof. If the system is canonical, the ε0 term does not evolve (otherwise a term ε−1 will be present in the basis,
but the MIs are not singular in ε). Then the basis is composed by pure UT functions: the total weight is 0,
because 0 is the weight of the first term and the functions are UT, and the first term is composed by constants
of weight 0. This last property is due to the BCs: if the BCs would not be constant for the 0 order, figuring a
term with no definite weight, in order 1 the primitive of that term will be present, again with no definite weight,
resulting in a structure not factorable and with no fixed total weight, against the hypothesis of UT function. So
a UT basis with no ε divergences, described by a canonical system of DEs forces that system to be also fuchsian.

The relation is not a bijection: think for example to the massless UT bubble, that is UT, and has a fuchsian
DE which is not canonical: ∂S2/∂s = −(1 + ε)/s. This is due to the presence of the term 1/s in the analytic
expression of the function.

As for the Dyson series, the exponentiated integrals in Magnus series are considered as a
simple antiderivation operation, namely only the evaluation in x is considered. This is possible
thanks to redefinitions in the initial values y0, as Magnus and Dyson series are related as shown
in section 4.1.

4.3 Multi-scale problems

The path illustrated for single-scale problem from ε-linear form to canonical form is still valid,
variable by variable, for multi-scale problems. In case of more than one variable, the construction
of the transformation is performed each variable at a time, using as matrix A(x; ε) = A0(x) +
εA1(x) the corresponding matrix of coefficients.

Starting from a system of PDE systems (for simplicity, PDEs), each one linear in ε:

1. select the matrix of coefficients of the first PDE: A1(x; ε) = A1 0(x) + εA1 1(x) from
∂x1y(x; ε) = A1(x; ε)y(x; ε);

2. construct the matrix of change of basis Bi(x) = starting from A1 0(x) with respect to the
variable x1;

3. apply B1(x) to the base of MIs (g(x; ε) = B†(x)y(x; ε)), and to to all the Ai(x; ε);

4. iterate these points until all the PDEs have been processed.

Note that this algorithm produces a canonical system of PDEs. This is guaranteed because with
the i-th iteration the PDE in xi is written in a canonical form, and with the (i+ 1)-th iteration
the previous PDE cannot gain terms either independent from ε (the matrix Âi1 is multiplied by
ε) or depending on εn, n > 1 (the transformation does not depend on ε).
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With more variables the definition of UT functions does not change, and if the basis is
composed by UT MIs without divergences in ε, proposition 11 still holds, guaranteeing, since the
algorithm generates canonical systems, also the fuchsianity of the results.



Chapter 5

Eigenvalues deflation

After recalling the properties of Jordan block form, eigenvalue reduction [16] and
deflation [15] are explained, as well as their generalization to the differential equation
framework, for one-parameter problems. Following [16], with the introduction of
balance transformations it is possible to adapt the deflation in order to eliminate
non-fuchsian poles in a wide range of cases, and to adapt eigenvalue reduction to cast
a well-chosen fuchsian system into one with all eigenvalues proportional to ε. From
there, a similarity transformation allows to land on a canonical system.

5.1 Eigenvalues and eigenvectors

Given a real square matrix A, n× n, the expression:

Aui = aiui (5.1)

(where ui is a vector and ai a scalar value) determines ui, called the right eigenvector of A, with
associated eigenvalue ai. On the other hand, considering

v†jA = ajv
†
j (5.2)

the left eigenvector vj with associated eigenvalue aj is defined. Since
(
v†jA

)†
= A†vj and

det
[
(A− aI)†

]
=
(
det
[
(A− aI)T

])∗
= [det(A− aI)]∗, if ai admits ni right eigenvectors, a∗i

admits ni left eigenvectors; the set of right eigenvectors associated to a specific eigenvalue may
differ from the corresponding set of left eigenvectors.

A fundamental property of left and right eigenvectors is that a left and a right eigenvector
associated to different eigenvalues are orthogonal. Consider in fact the defining equation for a
left eigenvector ui of the eigenvalue ai: Aui = aiui. Taking the adjoint of this expression and
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multiplying it from the right by vj (left eigenvector) one obtains:

u†iA
†vj = a∗iu

†
ivj ; (5.3)

aju
†
ivj = a∗iu

†
ivj ; (5.4)

(aj − a∗i )u†ivj = 0. (5.5)

So either aj = a∗i , meaning that the eigenvectors are related to the same eigenvalue, or u†ivj = 0,
giving ui orthogonal to vj .

A fundamental ingredient for the method of eigenvalues deflation is the Jordan form. A
matrix in Jordan form is a matrix like:

A =

B1

. . .
Bn

 , Bi =


ai 1

. . . . . .
ai 1

ai

 . (5.6)

Where nothing is indicated in the matrices, 0 is understood. Each Bi is a square matrix of
dimension Ki, and

∑I
i=1Ki = N is the dimension of the matrix A.

Thanks to Jordan theorem, it is always possible in C to find a matrix in Jordan form similar
to a given matrix. For simplicity (and also because all the systems of interest in this work are of
this form) only matrices similar to real Jordan matrices will be considered here.

Speaking about eigenvectors, it is possible to expand this concept for Jordan matrices defining
the so-called generalized eigenvectors.

As seen in (5.6), each block Bi is associated to an eigenvalue ai (different blocks can have
the same eigenvalue), a single right proper eigenvector u(0)

i = (1; 0; . . . ; 0)T and a single left proper
eigenvector v(0)

i = (0; . . . ; 0; 1)T . Consider now the vector u(k)
i = (01; . . . ; 0k; 1k+1; 0k+2; . . . ; 0Ki)

T ,
k > 0, the vector with 0 in all entries exept the (k + 1)-th, equal to 1:

Biu
(k)
i =


ai 1

. . . . . .
ai 1

ai




...
0

1k+1

0
...

 =



...
0
1k
0
...

+



...
0

ai · 1k+1

0
...

 = u
(k−1)
i + aiu

(k)
i ; (5.7)

its behaviour is similar to the one of an eigenvector, if not for the term u
(k−1)
i . For each block

in a Jordan matrix there are one regular eigenvector, and K − 1 vectors as the one above, which
are the generalized eigenvectors. The same happens for the left eigenvectors. To come back to
the complete matrix A it will be only necessary to add K1 + . . . + Ki−1 zeroes before the first
element of the generalized eigenvectors for Bi and Ki+1 + . . . +KI zeroes after the last element.
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It is therefore possible to sum up the rules for generalized eigenvectors as follows:

u
(k)
i =



01
...

0k
1k+1

0k+2
...

0Ki


; (5.8)

w
(k)†
j =

(
0Kj . . . 0k+2 1k+1 0k . . . 01

)
; (5.9)

Au
(0)
i = aiu

(0)
i ; Au

(k)
i = aiu

(k)
i + u

(k−1)
i with 0 < k < Ki; (5.10)

v
(0)†
j A = ajv

(0)†
j ; v

(k)†
j A = ajv

(k)†
j + v

(k−1)†
j with 0 < k < Kj ; (5.11)

v
(k)†
j u

(h)
i = δi;jδk+h;Ki−1. (5.12)

Notice that for a Jordan matrix a basis can be defined using the whole set of eigenvectors, proper
and generalized together, and for each matrix similar to a real Jordan matrix generalized eigen-
vectors are still present and well-defined, guaranteeing the presence of N linearly independent
vectors to use as a basis.

5.2 Deflation

Proposition 12 (Eigenvalue reduction). [16]. Given a matrix A with eigenvectors u1; . . . ;un
and associated eigenvalues a1; . . . ; an (some of the ai may be equal), the transformation

Ã = A− λuix†i (5.13)

(where x†iui = 1) operates on the eigenvalues lowering ai by λ and leaving all the other eigenvalues
unchanged.

Proof. First of all, pass in the basis of generalized right eigenvectors of A (this is always possible, and a similarity
transformation does not change the eigenvalues). In this basis (for sake of simplicity, take u = (1; 0; . . . ; 0)T ),
uix
†
i = (1; 0; . . . ; 0)T , x†i = (xi; 0. . . ; 0)†, so x†i = (1;x∗i2; . . . ) since x†iui = x∗i1 = 1 for hypothesis, and A has a

Jordan form (5.6). So:

A− λuix†i =


a1 − λ c1 − λx∗i2 . . . . . . −λxiN

0 ai ci
...

. . .
0 aI

 (5.14)

and the characteristic equation for this matrix assumes the form (a1−λ−a)(a1−a)K1−1(a2−a)K2 . . . (aI −a)KI ,
giving eigenvalues a1 − λ; a1 (if K1 > 1); . . . ; aI .

Notice that is also possible to perform an eigenvalue reduction using the left eigenvectors of
A, namely

Ã = A− λxiv†i (5.15)
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still diminishes ai by λ, leaving all the other eigenvalues unchanged. The proof is specular to
the one above: assuming for simplicity that v†i = 0; . . . ; 0; 1, and passing to the base of left
generalized eigenvectors,

A− λxiv†i =



a1 c1 −λxi1
0 ai ci

...
...

. . .
...

... ai cN−1 − λxi(N−1)

0 . . . . . . 0 aI − λ


, (5.16)

and, as above, aI is decreased by λ, while all the other eigenvalues are left unchanged.
With a little modification is also possible to immediately set ai to 0.

Proposition 13 (Deflation). [15]. The transformation

Â =
(
I− uix†i

)
A (5.17)

(with the same notation used in proposition 12) transforms ai into 0, not modifying the other
eigenvalues or the eigenvector ui. Moreover, rank Â = rankA− 1.

Proof. From [15]. Applying ui from the right on the right hand side of the equation:(
I− uix†i

)
Aui = ai

(
ui − uix†iui

)
= ai (ui − ui) = 0; (5.18)

so the couple has passed from (ui; ai) to (ui; 0). For the other eigenvalues consider the adjoint of the left
multiplication by vj , j 6= i:[

v†j

(
I− uix†i

)
A
]†

=
[(

I− uix†i
)
A
]†
vj = A†

(
I− xiu†i

)
vj (5.19)

where v†jui = δij as in (5.12) (a similarity transformation do not change the result), so v†jui = 0

A†vj =
(
v†jA

)†
= aj (5.20)

because aj is real. So eigenvalues different from ai are not touched by the transformation.
Consider now, in the basis of right generalized eigenvectors (so with A in Jordan form), the product (for

easier notation, i = 1, but the demonstration is valid ∀i):

x†1A =
[
v

(K1−1)†
1 + x∗1;2v

(K1−2)†
1 + . . . + x∗1;Nv

(0)†
n

]
A =

=
(
a1v

(K1−1)†
1 + v

(K1−2)†
1

)
+ x1;2

(
a1v

(K1−2)†
1 + v

(K1−3)†
1

)
+ . . . (5.21)

(x1 = (1;x1;2; . . . ;x1;N )T in right generalized eigenvectors basis, since x†1u1 = 1); the first parenthesis generates

a term of the form
(
a1 1 0 0 . . .

O

)
that eliminates the Jordan structure of the first row, while the rest of

the parenthesis generates non-zero terms in entries where ai 6= 0; notice that rows and columns containing null
Jordan cells are formed by 0: the product (5.21) gives 0 for eigenvectors related to null eigenvalues in 1×1 blocks
(i.e. rows made up only by 0), and the corresponding Jordan cells are always 1× 1.

The maximum minor of A will contain at least all the upper diagonal terms of B1; eliminating one of them
by acting with a deflation, the determinant of the corresponding minor in Â is 0, since an entire column is now
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null. Eliminating raw and column of the nullified terms from the minor of order h, a new minor is retrieved, with
dimension h− 1 (this matrix has non-zero determinant, since the originating one was a minor). The extra terms
introduced with the other x∗1j cannot avoid the downgrade of the rank, since they are all located on a row, off
from the null columns (that remain null).

Regarding the eigenvectors uj , vj and vi, their form can be modified by the operation of
deflation. For example, the relation between the new u′j and the old uj is:

uj = (aj − ai)u′j + ai

(
x†iu
′
j

)
u1. (5.22)

Different types of deflation can be constructed, according to the choice of the vector xi (from
vi to normalized columns of A) and to the form of the matrix A. See [15] for more details.

Lemma 5. The transformation

Â =

(
I−

∑
i∈I

uix
†
i

)
A (5.23)

with x†iuj = δij and the same notation as in proposition 13, transforms ai in 0 ∀i ∈ I, and
rank Â = rankA− card I.

Proof. ∏
i∈I

(
I− uix†i

)
=
(
I− ui1x

†
i1

)(
I− ui2x

†
i2

) ∏
i∈(I\{i1;i2})

(
I− uix†i

)
=

=
(
I− ui1x

†
i1
− ui2x

†
i2

) ∏
i∈(I\{i1;i2})

(
I− uix†i

)
= . . . = I +

∑
i∈I

uix
†
i , (5.24)

since ui1x
†
i1
ui2x

†
i2

= ui1δi1i2x
†
i2

= 0. So the transformation (I − P)A with P =
∑
i∈I uix

†
i is equivalent to the

chain of deflations (I− Pi1). . . (I− Picard I )A, Pi = u1x
†
i , each one reducing to 0 the corresponding eigenvalue and

reducing by 1 the rank of the outgoing matrix with respect to the rank of the incoming.

Using deflation is therefore possible to eliminate one by one all the eigenvalues of a matrix,
while using eigenvalue reduction it is possible to diminish the eigenvalues of an arbitrary constant
λ.

Since all matrices considered in the present work are similar to real Jordan ones, proposition
13 applies to a generic matrix, up to similarity transformations (which cannot modify the rank,
or the eigenvalues).

It is therefore possible to establish an algorithm to reduce the rank of a given matrix to zero
via rank deflation:

1. given a matrix M similar to a real Jordan matrix A, through a similarity transformation
transform M into A;1 define A0 := A;

1This procedure can be carried out immediately thanks to calculus programs; for example, in Mathematica the
command to jordanize a matrix is JordanDecomposition.
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2. construct the projector

P =
I∑
i=1

u
(0)
i x†i , (5.25)

with u(0)
i right proper eigenvector and xi : x†iv

(0)
i = 0, both related to the eigenvalue ai of

the block Bi of A0;

3. perform
A1 = (I− P)A0; (5.26)

4. define A0 := A1;

5. repeat from point 2 to point 5 until A1 is a null matrix (the result will be reached in
max{Ki, 1 ≤ i ≤ I} iterations).

5.3 Deflation for DEs

As explained in [16], given a DE system, the main purpose is to cast it in a canonical fuchsian
form. The matrix of coefficients of such DE system has a form:

A(z; ε) =

P∑
p=1

Qp∑
q=1

A(p;q)(ε)

(z − zp)q
, (5.27)

namely it is a sum of residues in the poles {x1; . . . ;xP }, each one with different degrees {1; . . . ;Qp},
p ∈ P , each one greater or equal to 0.

The first aim is to reach a fuchsian form, i.e. to eliminate the matrices of residues of the poles
with q > 1; since only the null matrix has rank 0, lowering the rank of the undesired matrices
down to 0 will eliminate the corresponding poles.

Once the system is fuchsian, a canonical form must be found. In order to do so, consider the
fact that if a matrix M(τ) is proportional to τ , the expression M(τ)/τ will stay the same for all
the values of τ :

M(τ1)

τ1
=
M(τ2)

τ2
; (5.28)

then, starting from a fuchsian matrix B(x; ε), imposing that its similarity transformation multi-
plied by 1/ε is independent from ε, one obtains

T−1(ε)Bp(ε)T (ε)

ε
=
T−1(µ)Bp(µ)T (µ)

µ
, (5.29)

from which a class of transformations T̃ (ε;µ; t) (where t is a vector of parameters independent
from both ε and µ) can be determined. Fixing all the elements of T̃ in terms only of ε, T (ε) is
found.

This procedure is by the way only possible if all the eigenvalues of the fuchsian matrix B(x; ε)
are proportional to ε, since a similarity transformation preserves the eigenvalues and a completely
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ε-factorized matrix has eigenvalues of the form bε (B(x; ε) = εB̃(x) and B̃ui = biui ⇒ εB̃(x)ui =
εbiui). It is then necessary to find a way to force all the eigenvalues to be proportional to ε: the
procedure of eigenvalue reduction solves only partially the problem, namely allows to reach a
form in which all the single matrices of residues in the, so it must have eigenvalues proportional
to ε. In conclusion, imposing that all the matrices of the residues have ε-proportional eigenvalues
will assure the existence of T (ε).

Although, all the techniques enlisted in section 5.2 cannot be used as they have been presented
when dealing with DEs. The main reason is that they have not the correct transformation form,
i.e. P−1A(z)P−P−1dzP . Moreover, with the bare elimination of entire raws or columns from A,
some MIs will be cut off from the DE, resulting in a harder (if not impossible) choice of suitable
BCs to solve the problem.

The main effort then is to rewrite the previous transformation as proper transformation for
DE systems, and retrieving the results enlisted in [16]. To obtain these new expressions, some
constraints have to be performed on the form of the matrices; the final result is nevertheless
useful for the evaluation in the present work.

5.3.1 Balances

Definition 11 (Balance). A balance between the points z1 and z2 is a transformation of the
form:

B(P; z1; z2|z) :=


I− P + z−z2

z−z1P if z1 6=∞ 6= z2

I− P− (z − z2)P if z1 =∞ 6= z2

I− P− 1
z−z1P if z1 6=∞ = z2

(5.30)

where P is a projector.

The inverse of a balance is also a balance, and precisely:

B(P; z1; z2|z)B(P; z2; z1|z) = I ⇒ B−1(P; z1; z2|z) = B(P; z2; z1|z) (5.31)

(it can be proven by direct calculation, remembering that PP = P).
Balances act as transformations in the usual way:

A′(z) = B−1A(z)B − B−1 dB
dz
, B := B(P; z1; z2|z). (5.32)

These transformations are called balance transformations, with balance B.

5.3.2 Reduction to fuchsian form

Proposition 14 (Rank reduction for maximum pole). [16]. Given a matrix A0

A0 := A(z; ε) =
P∑
p=1

Qp∑
q=1

A(p;q)(ε)

(z − zp)q
, (5.33)



86 CHAPTER 5. EIGENVALUES DEFLATION

consider a non-fuchsian pole z1, with matrix of coefficients of the maximum pole in z = z1

M := A0(1;Q1) and Q := A0(p;Q1−1). M0 must be nilpotent. Using a similarity transformation,
pass from A0 to Â0, such as M0 is sent to M̂0, Jordan matrix with non-zero blocks in the upper
left corner, and Q is sent to Q̂. Construct the projector

P =
∑
i∈I

u
(0)
i x†i , (5.34)

with u(0)
i right proper eigenvector associated to the block Bi of M̂0 with eigenvalue ai and auxiliary

vector xi, such as:

• qk;j = 0 ∀j ∈ I and ∀k ∈ (N \ I), where N = {1; 2; . . . ;N};

• ∑j∈(N\{i})

(
x†i

)
j
qj;k = 0 ∀i; k ∈ I;

• x†iuj = δij;

• the lines of B−1Q̂B corresponding to the null blocks of M̂0 are null;

• if z2 is a singular point of Â0, xi is a left proper eigenvector ṽ†i of Â0(2;Q2)(ε).

Perform on the whole Â0 the balance transformation

Â1 := B−1Â0B − B−1 dB
dz
, B = B(P; z1; z2|z), (5.35)

obtaining M̂1 := B−1M̂0B − B−1dzB = Â1(p;q). Then rankM1 = rankM0 − card I, and neither
new poles are generated, nor degrees of already present poles increased.
Proof. First of all, it is necessary to prove that the balance transformation (5.35) generates the same effect of
the transformation (5.26) on M0 and does not generate non-fuchsian terms where are not yet present or should
be eliminated by the transformation itself.

For convenience both z1 and z2 will be finite, since the proof will apply with the same steps to the case in
which one of them is infinite. Consider the derivative term:

B−1dzB =

(
I− P + Pz − z1

z − z2

)
P z2 − z1

(z − z1)2
= P

(
1

z − z2
− 1

z − z1

)
; (5.36)

this term has the only effect to add fuchsian expressions, so it is not problematic.
Consider now the other term of the transformation:

B−1A0B = B−1

 M̂0

(z − z1)Q1
+

Q̂

(z − z1)Q1−1
+ . . . +

Â0(1;1)(ε)

z − z1
+
Â0(2;Q2)(ε)

(z − z2)Q2
+ . . . +

P∑
p=3

Qp∑
q=1

Â0(p;q)(ε)

(z − zp)q

B
(5.37)

and examine it term by term.
•
∑P
p=3

∑Qp
q=1 Â0(p;q)(ε)/(z − zp)q:

B−1Â0(p;q)(ε)B
(z − zp)q

=

[
Â0(p;q) + PÂ0(p;q)(I− P)

z2 − z1

z − z2
+ (I− P)Â0(p;q)P

z1 − z2

z − z1

]
1

(z − zp)q
(5.38)

this term neither does create new poles nor increase the degree of existing ones, since

1

(z − a)(z − b)n =
1

(x− a)(a− b)n −
n∑
j=1

1

(a− b)n+1−j(x− b)j , n ∈ N (5.39)

(the proof is carried out by induction).
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• Â0(2;Q2)(ε)/(z − z2)Q2 :

B−1Â0(2;Q2)(ε)B
(z − z2)Q2

=

[
Â0(2;Q2) + PÂ0(2;Q2)(I− P)

z2 − z1

z − z2
+ (I− P)Â0(2;Q2)P

z1 − z2

z − z1

]
1

(z − z2)Q2
; (5.40)

the term (z1−z2)/[(z−z1)(z−z2)Q2 ] does not generate higher poles than the ones already present, thanks
to (5.39); problems arise with the term (z1 − z2)/(z − z2)Q2+1, that introduces a higher order pole in the
second point of balance (this will result in an inconsistent method, which simply moves the non-fuchsian
poles, instead of eliminating them); to avoid this result two possibilities ar available:

– if z2 is a pole, PÂ0(2;Q2)(I−P) must be equal to 0. Choosing x†i = ṽ†i , proper eigenvector of Â0(2;Q2),
the expression becomes:

PÂ0(2;Q2)(I− P) =

I∑
i=1

uiv
†
i Â0(2;Q2)

(
I−

I∑
j=1

ujv
†
j

)
=

I∑
i=1

uiv
†
i ai

(
I−

I∑
j=1

ujv
†
j

)
=

=
I∑
i=1

uiv
†
i ai −

I∑
i=1

I∑
j=1

uiδijv
†
j =

I∑
i=1

uiv
†
i ai −

I∑
i=1

uiv
†
i ai = 0, (5.41)

and no higher poles than (z − z2)−Q2 are generated;

– if z2 is a regular point (so Q2 = 0 is not in the list i ∈ [1; I]), the expression generates a fuchsian
point (z − z2)−1, and no further conditions are necessary.

• M̂0/(z − z1)Q1

B−1M̂0B
(z − z1)Q1

=

[
M̂0 + PM̂0(I− P)

z2 − z1

z − z2
+ (I− P)M̂0P

z1 − z2

z − z1

]
1

(z − z1)Q1
; (5.42)

since M̂0 is nilpotent, and P =
∑I
i=1 u

(0)
i x†i , M̂0P = 0. The equation then can be rewritten as:

B−1M̂0B
(z − z1)Q1

=

[
M̂0 + PM̂0

z2 − z1

z − z2

]
1

(z − z1)Q1
=

= (I− P)M̂0
1

(z − z1)Q1
+ PM̂0

1

(z − z2)(z − z1)Q1−1
; (5.43)

the first term of the last line is a deflation, and since the eigenvalues of M̂0 are null (M̂0 is nilpotent by
hypothesis), its effect is to lower the rank of the matrix by I, so to substitute the first row of each Jordan
block Bi, i ∈ I with a row of zeroes; the second term do not introduce forbidden poles, thanks to (5.39),
and has the effect to “traslate” the pole from z1 to z2. The nett effect of this part is to have a matrix which
rows and columns containing 1× 1 null Jordan blocks are completely formed by 0 as coefficient of the pole
(z − z1)−Q1 .

• Q̂/(z − z1)Q1−1:

B−1Q̂B
(z − z1)Q1−1

=

[
Q̂+ PQ̂(I− P)

z2 − z1

z − z2
+ (I− P)Q̂Pz1 − z2

z − z1

]
1

(z − z1)Q1−1
; (5.44)

PQ̂(I− P) does not generate poles with undesired degrees, also this time thanks to (5.39), while (I− P)Q̂P
increases the degree of the pole to Q1. The key point here is to find a way not to alter the new rank of
M̂1, so raws and columns corresponding to null singular Jordan blocks must be null. Consider the second
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term of the sum, and assume to have a projector of the form P = u1x
†
1:

(I− P)Q̂P =


0 −x∗1;2 . . . −x∗1;N

0 1
...

. . .
0 1

 Q̂


1 x∗1;2 . . . x∗1;N

0 0
...

. . .
0 0

 =

=


−x†1Q̂_1 −x∗1;2x

†
1Q̂_1 . . . −x∗1;Nx

†
1Q̂_1

q2;1 q2;2 . . . q2;N

...
...

. . .
...

qN ;1 qN ;2 . . . qN ;N




1 x∗1;2 . . . x∗1;N

0 0
...

. . .
0 0

 =

=


−x†1Q̂_1 −x∗1;2x

†
1Q̂_1 . . . −x∗1;Nx

†
1Q̂_1

q2;1 x∗1;2q2;2 . . . x∗1;Nq2;N

...
...

...
qN ;1 x∗1;2qN ;2 . . . x∗1;NqN ;N

 ; (5.45)

the condition now is that the first column of Q̂ is a null vector: this set to 0 the first row and column,
so summing this result to (5.43) the resulting matrix has the same rank as the initial two. In the case of
P made up by sums of eigenvectors, the condition of null column must be applied simultaneously for all
the lines containing a null Jordan block, since the matrices will have the form (supposing that all the null
Jordan blocks in M̂0 have been set in the upper left corner of the matrix, ordered with i; this is always
possible, since it is only a swapping of the blocks; Q̂ is ordered in the same way):

M̂0 =


0i1 . . . . . . 0
...

. . .
...

... 0icard I 0
0 . . . 0 B

 , (5.46)

Q̂ =



−x†i1Q̂_i1 . . . −x†icard I
Q̂_ card I −

∑
I x
∗
i;card I+1x

†
i1
Q̂_i . . . −

∑
I x
∗
i;Nx

†
i1
Q̂_i

...
. . .

...
...

...
−x†icard I

Q̂_i1 . . . −x†icard I
Q̂_icard I

−
∑
I x
∗
i;card I+1x

†
card IQ̂_i −

∑
I x
∗
i;Nx

†
icard I

Q̂_i

qcard I+1;i1 . . . qcard I+1;card I
∑
I x
∗
i;card I+1qcard I;i . . .

∑
I x
∗
i;N qcard I;i

...
...

...
. . .

...
qN ;i1 . . . qN ;card I

∑
I x
∗
i;card I+1qN ;i . . .

∑
I x
∗
i;N qN ;i


(5.47)

(the form of the matrices can be verified by direct calculation). So the column of Q̂ related to the eigen-
vectors of M̂0 have to satisfy

qi;j = 0 ∀j ∈ I and i ∈ (N \ I), (5.48)∑
j∈(N\{i})

(x†i )jqj;k = 0 ∀i; k ∈ I. (5.49)

Moreover all the lines in Q̂ corresponding to null lines in M̂0 have to be null, in order to not increase the
rank of the matrix resulting from their sum. In this way the sum of the two matrices will preserve the null
columns and rows, not increasing the rank of the new matrix of the pole.

Example 12 (Rank reduction, one eigenvector). To better understand the expression (5.47),
consider the case in of a P = u1x

†
1, with u1 = (1; 0; . . . ; 0)T . In this case, after the application
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of the balance, the matrices forming the new term in the pole will ave the form (remember that
M̂0 is a matrix in Jordan form):

M̂0 =


0 . . . . . . 0

m2;2 m2;3
...

. . . . . .
mN−1;N

0 mN ;N

 (5.50)


0 −x∗2 . . . . . . −x∗N
0 1 0 . . . 0
...

. . .
0 1

Q


1 x∗2 . . . x∗N
0 . . . . . . 0
...

. . .
0 0

 =

=


−∑N

i=2 x
∗
i qi;1 . . . −∑N

i=2 x
∗
i qi;N

q2;1 . . . q2;N
...

. . .
...

qN ;1 . . . qN ;N




1 x∗2 . . . x∗N
0 . . . . . . 0
...

. . .
0 0

 =

=


−∑N

i=2 x
∗
i qi;1 −x∗2

∑N
i=2 x

∗
i qi;1 . . . −x∗N

∑N
i=2 x

∗
i qi;1

q2;1 x∗2q2;1 . . . x∗Nq2;1
...

...
. . .

...
qN ;1 x2qN ;1 . . . x∗NqN ;1

 (5.51)

To have a decrease in the rank of the sum of these two matrices, the row and the column
corresponding to the 1 × 1 block of a1 → 0 must be null. It follows then that the quantities
qj;1, j > 1 must be all equal to 0, so also

∑N
i=2 x

∗
i qi;1 = 0; this will also assure that the first row

will be null. Moreover, further conditions on the rows and columns not related to the previous
one arise from the necessity that the lines corresponding to null lines in M̂0 do not gain non null
elements (this would increase the rank of the final matrix with respect to M̂0).

Example 13 (Rank reduction, two eigenvectors). Consider P = u1x
†
1 + uNy

†
N . Now:

M̂0 =



0 . . . 0
m2;2 m2;3

...
. . . . . .

...
... mN−2;N−1

...
mN−1;N−1

0 . . . 0


(5.52)
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0 −x∗2 . . . −x∗N
0 1 0 . . . 0
...

. . .
...

0 1 0
−y∗1 . . . −y∗N−1 0

Q


1 x∗2 . . . x∗N
0 0 0 . . . 0
...

. . .
...

0 0 0
y∗1 . . . y∗N−1 1

 =

=


−∑N

i=2 x
∗
i qi;1 . . . −∑N

i=2 x
∗
i qi;N

q2;1 . . . q2;N
...

. . .
...

qN−1;1 . . . qN−1;N

−∑N−1
i=1 y∗i qi;1 . . . −∑N−1

i=1 y∗i qi;N




1 x∗2 . . . x∗N
0 0 0 . . . 0
...

. . .
...

0 0 0
y∗1 . . . y∗N−1 1

 =

=


−∑N

i=2 x
∗
i vi1 . . . −∑N

i=2 x
∗
i viN

v2;1 . . . v2;N
...

. . .
...

vN−1;1 . . . vN−1;N

−∑N−1
i=1 y∗i vi1 . . . −∑N−1

i=1 yiviN

 (5.53)

where vij := x∗jqi;1 + y∗j qi;N , remembering that x∗1 = 1 and y∗N = 1. Both the first row and
column have to be null, in order to not increase the rank of the final matrix, so:

qi;1 = 0 ∀i 6= 1;N, (5.54)
qi;N = 0 ∀i 6= 1;N, (5.55)

N∑
i=2

x∗i qi;1 = 0, (5.56)

N∑
i=2

x∗i qi;N = 0, (5.57)

N−1∑
i=1

y∗i qi;1 = 0, (5.58)

N−1∑
i=1

y∗i qi;N = 0, (5.59)

due to the generality of x∗j and y
∗
j . Furthermore, the lines corresponding to null ones in M̂0 have

to be null.
The proposition above can be iterated multiple times, and if the hypothesis remain satisfied

all over the iterations, the rank of the non-fuchsian poles can be reduced to 0, eliminating the
non-fuchsian pole from the complete matrix of coefficients. It is then possible to summarize the
needed operations in the following algorithm.
Algorithm 1 (Reduction to fuchsian form). Given a matrix A(z; ε)

A(z; ε) =
P∑
p=1

Qp∑
q=1

A(p;q)(ε)

(z − zp)q
, (5.60)
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if the following algorithm arrives at conclusion, a system in fuchsian form is reached.

1. Consider a non-fuchsian pole z1, with matrix of coefficients of the maximum pole in z = z1

M := A(1;Q1)(ε). M must be nilpotent. Then:

2. A0 := A(z; ε), M0 := M = A0(1;Q1) Q := A0(p;Q1−1);

3. choose a point z2 6= z1;

4. using a similarity transformation, pass from A0 to Â0, such as M0 is sent to M̂0, Jordan
matrix with non-zero blocks at the beginning of the diagonal, and Q is sent to Q̂;

5. construct the projector
P =

∑
i∈I

u
(0)
i x†i , (5.61)

with u(0)
i right proper eigenvector associated to the block Bi of M̂0 with eigenvalue ai, and

auxiliary vector xi such as:

• qk;j = 0 ∀j ∈ I and ∀k ∈ (N \ I), where N = {1; 2; . . . ;N},
• ∑j∈(N\{i})

(
x†i

)
j
qj;k = 0 ∀i; k ∈ I,

• x†iuj = δij ,
• the lines of B−1Q̂B corresponding to the null blocks of M̂0 are null;
• if z2 is a singular point of Â0, xi is a left proper eigenvector ṽ†i of Â0(2;Q2)(ε);

6. perform on the whole Â0 the balance transformation

Â1 := B−1Â0B − B−1 dB
dz
, B = B(P; z1; z2|z), (5.62)

obtaining M̂1 := B−1M̂0B − B−1dzB = Â1(p;q);

7. Â0 := Â1, M̂0 := M̂1;

8. repeat from point 3 to here until the procedure cannot be iterated anymore;

9. repeat from point 1 to here until the procedure cannot be iterated anymore;

10. conclusion.

Some observation on the hypothesis and on the outcome of the algorithm are enlisted.

• It is not always possible to reduce a matrix to a fuchsian form, depending on the form of
the lower degrees of a given pole (in particular, on the columns related to eigenvectors of
the pole to be erased) and on the nilpotency of the matrix itself.

• Conditions satisfied in the first iteration of the algorithm may not be satisfied anymore in
further iterations, due to the mixing of the different matrices of the poles.

• Using a regular point as z2, the construction of P is easier, at the cost of introducing a new
fuchsian pole.
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5.3.3 Reduction to ε-homogeneous eigenvalues

Once a fuchsian form has been reached for the matrix of coefficients, the eigenvalues must
be normalized to be proportional to ε in order to have a suitable matrix for the similarity
transformation to a canonical form.

Since the transformation corresponding to a deflation for DEs is a balance, the aim is to find
a way to use balances to adjust the eigenvalues in a way similar to the one of proposition 12.

First of all, the case of a matrix with only two singular points, both fuchsian, is considered.
Despite the specificity of the case under consideration, in all the evaluations performed here
singularities consist of no more than two singular points, both fuchsian.

Proposition 15 (Eigenvalue balance, two fuchsian points). [16].Consider A(z; ε), matrix of
coefficients of a DE system with only two singular points, both fuchsian

A(z; ε) =
A1(ε)

z − z1
+
A2(ε)

z − z2
. (5.63)

Choose two points (τ1; τ2) in the set {z1; z2;∞}; call E the matrix of residues associated to τ1,
and F the one associated to τ2 (remember that the matrix of residues at z = ∞ is A∞(ε) =
−A1(ε) − A2(ε)). Named ui the right eigenvectors of E with associated eigenvalues ei and vj
the left eigenvectors of F with associated eigenvalues fj, performing the balance transformation
(5.32) with B := B(P; τ1; τ2|z) and

P = u
(0)
i v

(0)†
j and v

(0)†
j u

(0)
i = 1 (5.64)

the eigenvalue ei is increased by one and the eigenvalue fj is decreased by one, namely

e′i = ei + 1, f ′j = fj − 1, (5.65)

while all the other eigenvalues in all the matrices remain unchanged.

Proof. τ1 6=∞ 6= τ2 case.
Consider τ1 6=∞ 6= τ2 for simplicity; the case in which one of the points is infinite can be faced following the

same path presented in the following lines.
Perform the balance transformation:

B−1

(
E

z − τ1
+

F

z − τ2

)
B − B−1 dB

dz
= B−1

(
E

z − τ1
+

F

z − τ2
− dB

dz
B−1

)
B. (5.66)

At first, consider the term −(dB/dz)B−1:

−dB
dz
B−1 =

(
1

z − τ1
− 1

z − τ2

)
P. (5.67)

The expression (5.66) can be written as

B−1

(
E

z − τ1
+

F
z − τ2

)
B =

1

z − τ1
B−1EB +

1

z − τ2
B−1FB, (5.68)

where E = E + P and F = F − P. Concerning the eigenvalues of E and F , the expressions

E = E + uiv
†
j , (5.69)

F† = F † − vju†i (5.70)
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are exactly eigenvalue reductions from proposition 12 with λE = −1 and λF = 1, so E has the same eigenvalues of
E, except for ei associated to ui that is increased by 1, and F† has the same eingenvalues of F , except fj associated
to vj , that is lowered by 1 (remember that the eigenvalues are supposed to be real); since the eigenvalues of a
matrix and of its transpose are the same, the logic holds also for F and F .

Consider now the nature of B: B is an invertible matrix, so the transformation B−1AB is a similarity trans-
formation, conserving the eigenvalues of the matrix A. It is not yet sufficient to say that the eigenvalues of the
matrix of residues are the same: the balance transformation introduces in E terms with poles z − τ2, and in F
poles in z− τ2. To find the relation between the eigenvalues, consider that if A and B are matrices with the same
eigenvalues, also cA and cB have the same eigenvalues; then:

(z − τ1)

(
E

z − τ1
+

F
z − τ2

)
and (z − τ1)

(
E ′

z − τ1
+
F ′

z − τ2

)
(5.71)

have the same eigenvalues. Taking the limit z → τ1 follows that

E and E ′ (5.72)

have the same eigenvalues. The same procedure can be carried out for F and F ′.
The neat result of an eigenvalue balance with projector P = uiv

†
j is then to increase the eigenvalue ei of the

matrix E and to decrease the eigenvalue fj of the matrix F , leaving all the other eigenvalues unchanged.

τ1 =∞ or τ2 =∞ case.
Regarding the residues at infinity with a balance between two finite points:

A′∞ = −E ′ −F ′ = −B−1(E + F)B = −B−1(E + P + F − P)B = −B−1(E + F )B (5.73)

since a similarity transformation does not change the eigenvalues, the residue at infinity preserves its original
eigenvalues.

For a balance with infinity, like B(P; τ1;∞|z) = I − P − 1
z−τ1

P, −(dB/dz)B−1 = 1
z−τ1

P, P = u1;iv
†
∞;j , so at

finite only E has ei → ei + 1, while at infinity:

A′∞ = −E ′ −F ′ = −B−1(E + F)B = −B−1(E + P + F )B; (5.74)

the eigenvalues of −B−1(E + P + F )B are the same of −E − F − P)B. P is constructed with a left eigenvector of
A∞ = −E−F , so it acts like an eigenvalue reduction on the eigenvalue aj of A∞, lowering it by one, as expected.
The same happens, with u∞;iv

†
1;j instead of −u1;iv

†
∞;j , with B(P;∞; τ2|z), rising ai at infinity and lowering fj at

the corresponding finite pole.

The results can be compared with the ones presented in [16].
The proposition can be generalized to a matrix of coefficients with an arbitrary number of

poles, all fuchsian.

Lemma 6 (Eigenvalue reduction, fuchsian points). Given A(z; ε of the form

A(z; ε) =

M∑
m=1

Am(ε)

z − zm
, (5.75)

choose two points (τ1; τ2) in the set {{zm}M ;∞}; call E the matrix of residues associated to τ1,
and F the one associated to τ2 (remember that the matrix of residues at z = ∞ is A∞(ε) =
−∑M

m=1Am(ε)). Named ui the right eigenvectors of E with associated eigenvalues ei and vj the
left eigenvectors of F with associated eigenvalues fj, peforming the balance transformation (5.32)
with B := B(P; τ1; τ2|z) and

P = u
(0)
i v

(0)†
j and v

(0)†
j u

(0)
i = 1 (5.76)
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the eigenvalue ei is increased by one and the eigenvalue fj is decreased by one, namely

e′i = ei + 1, f ′j = fj − 1, (5.77)

while all the other eigenvalues in all the matrices remain unchanged.

Proof. Proceeding as in proposition 15, E and F change their eigenvalues as ei → ei + 1 and fj → fj − 1, and
A evolves as

A′(z; ε) = B−1

(
E + P
z − τ1

+
F − P
z − τ2

+
∑
m̄

Am̄
z − zm̄

)
B = (5.78)

=
E ′

z − τ1
+
F ′

z − τ2
+
∑
m̄

A′m̄
z − zm̄

(5.79)

so all the Am̄ preserve their eigenvalues, thanks to B being a similarity transformation. From this follows also
that the residue at infinity does not change if the balance is performed between two finite points.Finally, if the
balance is performed between a finite point and the infinite, it is possible to proceed as in proposition 15.

Notice that, while eigenvalues have a simple behaviour under the balance, the same is not
true for the eigenvectors: both the eigenvectors of modified eigenvalues and unmodified ones are
altered.

Using lemma 6 it is possible, moving unit by unit quantities between eigenvalues of different
residues, to force an eigenvalue to assume the form a+ b(ε), where a ∈

[
−1

2 ; 1
2

]
.

Consider now the case in which both the residues of the singular points and the residue at
infinity have eigenvalues of the form aτ ;i = nτ ;i + εbτ ;i (τ ∈ {z1; . . . ; zM ;∞} = M, nτ,i ∈ Z),
such as ∑

τ∈M

Nτ∑
i=1

cτ ;inτ ;i = 0, (5.80)

with cτ ;i the dimension of the Jordan block corresponding to the eigenvalue aτ ;i. In this case
there is the possibility to balance all the eigenvectors in order to eliminate their non-homogeneous
part in ε, using the claim above.

The reason for which also the dimension of each Jordan block is considered lies in the fact
that each time a balance among two eigenvalues is performed, if both or just one of them belong
to a non-unit Jordan block, the corresponding blocks are split into a 1× 1 block with modified
eigenvalue and into a block (n − 1) × (n − 1) preserving the original eigenvalue: this is due
intuitively to the fact that the projector P is built with the proper eigenvector of the block, so
its action focuses only on the first term of the diagonal of the block. So, to completely balance
one eigenvalue, the balance have to be performed a number of times equal to the dimension of
the corresponding Jordan block.

Operatively, the following algorithm is established.
Algorithm 2 (Reduction to ε-homogeneous eigenvalues). Starting with a matrix A(z; ε) with
singular points, only fuchsian, with matrices of residues satisfying (cτ ;i is the dimension of the
Jordan block corresponding to the eigenvalue aτ ;i = nτ ;i + εbτ ;i, n ∈ Z)

∑
τ∈{{zm}M ;∞}

Nτ∑
i=1

cτ ;inτ ;i = 0 : (5.81)
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1. evaluate eigenvectors and corresponding eigenvalues of all the matrices of residues ({Am}M
and A∞);

2. choose a ordered couple of eigenvalues to balance (a1; a2), where the first will be increased
by 1 and the second decreased by 1, such as the right eigenvector u of a1 and the left
eigenvector v of a2 satisfy v†u = 1;

3. perform the balance transformation (5.32) with P = uv†;

4. repeat from point 1 to here until all the eigenvalues are proportional to ε.

It can happen sometimes that no couple of eigenvalues with non-homogeneous parts can
be balanced, due to the fact that there are no couples with v†u 6= 0. In these cases, a third
eigenvalue of the matrix of residues that would not be used in the desired balance, but has a
suitable associated left or right eigenvector (according to the balance needed), can be used as a
“bypass” eigenvalue to transfer the unit. Remember however that the transformed eigenvectors
of the bypass eigenvalue can be modified by the balance, so a new final eigenvector might have
to be chosen to complete the passage.

Regarding cases with non-fuchsian poles, problems arise. The balances can operate only on
matrix associated to fuchsian points, since the part responsible for the eigenvalues reduction is
generated by dxBB−1, and the term is fuchsian, so not able to modify the matrices of deeper
singularities. The condition of fuchsianity of the poles is then a mandatory requirement.

5.3.4 Factoring out ε

If the algorithm of eigenvalue reduction allows to obtain a matrix A(z; ε) in which all the eigen-
values are proportional to ε, it is possible, via a similarity transformation, to find a basis in which
the whole matrix of coefficients will be ε-factorized. Since the matrix of coefficients, after the
successful application of algorithm 1 and 2, has the form

A(z; ε) =

M∑
m=1

Ãm(ε)

z − zm
, (5.82)

where Ãm(ε) has all eigenvalues proportional to ε, if each Ãm(ε) has an ε-factorized form, the
whole matrix A(z; ε) will present an ε-factorized structure.

To obtain this result, consider a similarity transformation of matrix T (ε): this matrix have to
be independent from z, to not alter the fuchsian structure and the residue form, and is applied
to the whole A(z; ε). So

T−1(ε)A(z; ε)T (ε) =

M∑
m=1

T−1(ε)Ãm(ε)T (ε)

z − zm
, (5.83)

and to obtain an ε-factorized A(z; ε), T have to satisfy to the following system:
T−1(ε)A1(ε)T (ε) = εA1

...
...

T−1(ε)AM (ε)T (ε) = εAM
. (5.84)
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Dividing all the equation by ε the system becomes independent from ε, since the matrices Ai do
not depend on ε: 

1
εT
−1(ε)A1(ε)T (ε) = A1

...
...

1
εT
−1(ε)AM (ε)T (ε) = AM

. (5.85)

The ε-independent structure just found then does not vary substituting ε with another value,
like µ, so a new set of equations can be written:

1
εT
−1(ε)A1(ε)T (ε) = 1

µT
−1(µ)A1(µ)T (µ)

...
...

1
εT
−1(ε)AM (ε)T (ε) = 1

µT
−1(µ)AM (µ)T (µ)

. (5.86)

Multiplying from the left by T (ε) and from the right by T−1(µ) both the sides of each equation,
and naming T̃ (ε;µ) := T (ε)T−1(µ), the following system must be solved:

1
εA1(ε)T̃ (ε;µ) = 1

µ T̃ (ε;µ)A1(µ)
...

...
1
εAM (ε)T̃ (ε;µ) = 1

µ T̃ (ε;µ)AM (µ)

. (5.87)

Solving this system, in general a class of solutions T̃ (ε;µ; t) is found. Since the only needed result
is to find one similarity transformation that factorizes out ε, it is possible to choose arbitrary
values for µ (real constants b or expressions like bε) and the vector of parameters t (real constants
b), with the only constraint that the matrix must remain invertible.

In this way the similarity transformation T (ε) is determined, and the matrix A(z; ε) =
T−1(ε)A(z; ε)T (ε) is canonical, as sum of canonical matrices.

5.4 Overview

The eigenvalue deflation method consists of three main steps:

• reduction to fuchsian form (section 5.3.2),

• eigenvalue balancing (section 5.3.3),

• transformation to a canonical form (section 5.3).

Each one of these parts has quite important constraints for its succesfull application, nevertheless
for some of the cases investigated in this work (1-loop box, 2-loop ladder and a part of the 3-loop
ladder) it has been possible, starting from the Laporta basis, to reach a canonical form for the
DEs.

It is not yet clear if the conditions imposed for the algorithm of reduction to fuchsian form
can be relaxed, maybe through a keen work to tune matrix Q of the coefficients of the immediate
lower degree of the pole of the reduction.
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In conclusion, it must be stressed how the adjustment of the eigenvalue deflation to DEs,
although supported by [16], is not yet fully understood, also for the limited set of its application
so far.
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Part III

Multiloop ladder graphs
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The calculations of the 1-loop box, 2-loop ladder and 3-loop ladder massless graphs are
presented, discussing how a canonical system of differential equations can be built, both by
Magnus exponential matrix and by eigenvalue deflation.

First of all, using Reduze2 (see [46, 47] for the documentation) the list of the topologies
comparing in the complete system of DEs for each graph listed above is determined. Starting
from these sets, an extensive study of the properties of each topology has been performed in
order to identify suitable candidates for the roles of UT functions.

Using again Reduze2, the systems of DEs in (s; t) variables for the basis chosen above is
determined.

In order to use Magnus series on easier DE systems, the DEs, originally dependent on (s; t),
are transformed into systems depending on (s; z = t/s), and the s-dependance is eliminated
through a redefinition of the MIs. ε singularities in MIs are then eliminated through a second
redefinition of the functions of the basis; these results have been compared to the ones in [10,
11]. Magnus series expansion is performed, arriving to a canonical, and also fuchsian, form for
the DE system in z. At this point, BCs are fixed considering that z = −1 (equivalent to u = 0)
is a pseudothreshold for the MIs and that for z > 0 the solutions must be real; after that these
requirements are satisfied, the series expansion in ε of just 1, 2 and 4 MIs is necessary, respectively
for 1-loop, 2-loop and 3-loop problems. The solutions of the three systems are obtained up to
order ε7, one order higher than the results presented in the literature [10, 11].

Regarding the method of eigenvalue deflation, it is applied to the most elementary version of
MI basis, obtained eliminating dots if unnecessary for topology copies independence. After the
elimination of non-fuchsian poles and the normalization of eigenvalues, canonical fuchsian basis
for 1-loop and 2-loop problems are found, and compared with the ones obtained with Magnus
series expansion through IBP-ids. For the 3-loop ladder problem, only the sub-system composed
by 3-loop ladders is investigated and its canonical fuchsian form determined.
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Chapter 6

Evaluation using Magnus series

Using Magnus series expansion method [13, 14] (and chapter 4), the 1-loop box, 2-
loop ladder and 3-loop ladder Feynman integrals are evaluated [10, 11, 13, 14], up to
order ε7, corresponding to a transcendental weight of the HPLs of 7. For each one of
these graphs, starting from the topologies determined using the Laporta algorithm
[17, 46, 47], a basis of master integrals and its corresponding differential system in
z = t/s are determined. With the application of Magnus series, a transformation into
a canonical fuchsian form is retrieved. Fixing the boundary conditions with analysis
of the pseudothresholds and of the complex behaviour of the basis, a solution in terms
of harmonic polylogarithms is found for all the masters, in terms of a small set of
integrals evaluated at fixed point [11, 14]. The evaluated integrals are proven to be
uniformly transcendent.

6.1 1-looop box

103
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• External momenta (p2
i = 0)

a pµ1

b pµ2

c pµ3

d pµ4

• Propagators

1 (k − p1)2

2 k2

3 (k + p2)2

4 (k + p2 + p4)2

THESIS_1L_MI shows the basis of MIs, and THESIS_1L_DE presents the DEs in sand
t, both from Reduze. THESIS_1L_SOL contains the determination of the canonical form and
of the BCs, while THESIS_1L_BC contains the construction of the series expansion of the
solutions.

6.1.1 Laporta basis

Reduze determines for this topology the following subtopology tree (the notation for the subtopol-
ogy is the same one used in Reduze, see [46, 47] for more details):

• INT[”nm1”, 2, 5] = : t-bubble;

• INT[”nm1”, 2, 10] = : s-bubble;

• INT[”nm1”, 4, 15] = : 1-loop box.

6.1.2 UT basis

t and s-bubbles

The UT structure for these topologies is obtained dotting one of the propagators, as explained
in section 3.3.2.

=
(
− t
µ2

)−ε
t−1 Γ(1+ε)

Γ(1−2ε)Γ(1− ε)Γ(−ε) (6.1)

=
(
− s
µ2

)−ε
s−1 Γ(1+ε)

Γ(1−2ε)Γ(1− ε)Γ(−ε) (6.2)
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1-loop box

The 1-loop box will be left unchanged.

The basis of MIs is then:

I(s; t) =




. (6.3)

6.1.3 DEs reduction

(s; t) DEs

The equation are determined using Reduze.

∂

∂s
I(s; t) =

 0 0 0
0 − ε+1

s 0
2

s(s+t) − 2
s(s+t) − s+t+tε

s(s+t)

 I(s; t) (6.4)

∂

∂t
I(s; t) =

 − ε+1
t 0 0

0 0 0
− 2
t(s+t)

2
t(s+t) − εs+s+t

t(s+t)

 I(s; t) (6.5)

(s; z) DEs

A different choice of variables for the problem consists of the couple (s; z), where z = t/s. This
new choice will cast the matrix of coefficients for the PDEs in s in a diagonal form, only depending
on s. This change allows to find a redefinition of the MIs which eliminates the s dependence. In
this way, the solution can be written int terms of HPLs in the z variable only.

First of all, consider the following change of coordinates:

s = s t = t(s; z) = sz. (6.6)

In the new coordinates the couple of PDEs has the form:

∂

∂s
I(s; z) =

∂

∂s
[I(s; t)]t=sz =

[
∂I(s; t)

∂s
+
∂I(s; t)

∂t
z

]
t=sz

=

− ε+1
s 0 0

0 − ε+1
s 0

0 0 − ε+2
s

 I(s; z);

(6.7)

∂

∂z
I(s; z) =

[
∂I(s; t)

∂t
s

]
t=sz

=

 − ε+1
z 0 0

0 0 0
− 2
sz2+sz

2
sz2+sz

− z+ε+1
z2+z

 I(s; z) (6.8)
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where I(s; t(s; z)) is indicated as I(s; z), with a little abuse of notation.
It is now possible to solve the PDE system in s, obtaining solutions of the form:

I(s; z) =

(−s)−1−εC1(z)
(−s)−1−εC2(z)
(−s)−2−εC3(z)

 . (6.9)

Redefining now the MIs as

I(z) = S(s)I(s; z) =



(−s)1+ε

(−s)1+ε

(−s)2+ε


(6.10)

the PDEs assume the form:
∂I(z)

∂s
= S(s)

∂I(s; z)

∂s
S−1(s) +

dS(s)

ds
= O, (6.11)

∂I(z)

∂s
= S(s)

∂I(s; z)

∂z
S−1(s) =

− ε+1
z 0 0

0 0 0
2

z(z+1) − 2
z(z+1) − z+ε+1

z(z+1)

 . (6.12)

Elimination of ε poles

The next step consists of the elimination of the poles in ε related to the MIs. It is known from
section 3.3.2 that bubbles have simple poles in ε, so a prefactor ε is applied to them. For the
box integral, a good way to find the prefactor is to look at the PDE in z (from now on, the
DE of the problem): since there is an ε factor only in the box coefficient for the box DE, it is
reasonable to think that the box has a pole of order 2 in ε. Moreover, multiplying the box by
ε2, the DE has ε-independent terms only on the diagonal, greatly simplifying the construction of
the transformation to the canonical form. The basis will then assume the following form:

ε(−s)1+ε

ε(−s)1+ε

ε2(−s)2+ε


, (6.13)

with matrix of coefficients:

Ã(z; ε) =

− ε+1
z 0 0

0 0 0
2ε

z(z+1) − 2ε
z(z+1) − z+ε+1

z(z+1)

 . (6.14)
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Canonical fuchsian form

It is now possible to use Magnus series expansion to pass in canonical form. The matrix of
coefficients can be separated as:

Ã(z; ε) = A0(z) + εA1(z), (6.15)

with

A0(z) =

−1
z 0 0

0 0 0
0 0 −1

z

 , A1(z) =

 −1
z 0 0

0 0 0
2

z(z+1) − 2
z(z+1) − 1

z(z+1)

 (6.16)

Since A0(z) has a diagonal structure, the Magnus series is truncated at first term, resulting in a
transformation matrix:

B(z) = e
∫
A0(z) dz =

1
z 0 0
0 1 0
0 0 1

z

 , (6.17)

which gives the canonical matrix of coefficients:

A(z; ε) = B†(z)Ã(z; ε)B(z)−B†dB(z)

dz
=

 − ε
z 0 0

0 0 0
2ε
z − 2ε

z+1 − 2ε
z+1

ε
z+1 − ε

z

 =

= ε

1

z

−1 0 0
0 0 0
2 0 −1

+
1

1 + z

 0 0 0
0 0 0
−2 −2 1

 . (6.18)

Note that this system is also fuchsian, so the choice of MI for the 1-loop box topology is not
negated. Moreover, the s-bubble does not evolve, as it should be once the dependance from s
has been eliminated. The definitive basis of functions for the 1-loop box problem is then:

I(z) =



ε(−s)1+εz

ε(−s)1+ε

ε2(−s)2+εz


. (6.19)

6.1.4 BCs

Analysis of the divergences

To fix part of the BCs for the problem, thresholds for a given FI must be found, in order to
identify the pseudothresholds, and to eliminate these last ones from the solutions.

To determine the singular points of the FI, a quadruple cut is performed, as explained in
section 2.3.2.
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For the case under consideration, only maximal cut of the 1-loop box have to be considered.
Cutting all the propagators, the result has the form

∝ 1

st
, (6.20)

so the divergences occur in s = 0 or in t = 0. In particular, in u = 0 ⇒ s = −t all the MIs are
regular.

In order to identify the solution of the problem, two conditions are considered:

• finiteness of the solutions in z = −1;

• reality of the solutions for z ≥ 0.

Since u = 0 is not a singular point of the system, it is possible to multiply both members of
the DE system and take the limit z → −1, obtaining:

0 = lim
z→−1

[
(z + 1)

dI(z; ε)

dz

]
= lim

z→−1
[(z + 1)A(z; ε)I(z; ε)] ; (6.21)

solving the resulting purely algebraic equations, it is possible to find relations among the MIs in
z = 1.

At this point, expressing the solution in z = −1 as I(−1; ε) = A(−1; ε)I0(ε), where A(z; ε) is
the Dyson series of A(z; ε) in z = −1,it is possible to extract relations among I

(i)
0 order by order

in ε. Starting from the expressions of I(z; ε) order by order

I(0)(z) = I
(0)
0 , (6.22)

I(1)(z) = I
(1)
0 +A(1)(z)I

(0)
0 , (6.23)

I(2)(z) = I
(2)
0 +A(1)(z)I

(1)
0 +A(2)(z)I

(0)
0 , (6.24)

. . .

and substituting them into the limit, one obtains:

lim
z→−1

[(z + 1)A(z)] I0 = 0, (6.25)

lim
z→−1

[(z + 1)A(z)] I
(1)
0 + lim

z→−1

[
(z + 1)A(z)A(1)(z)

]
I

(0)
0 = 0, (6.26)

lim
z→−1

[(z + 1)A(z)] I
(2)
0 + lim

z→−1

[
(z + 1)A(z)A(1)(z)

]
I

(1)
0 + lim

z→−1

[
(z + 1)A(z)A(2)(z)

]
I

(0)
0 = 0,

(6.27)

. . .
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These relations must be satisfied at all orders in ε. Due to the presence of possible diverging
terms generated by HPLs with kernel F (1; z), series expansions in z around z0 = −1 of the HPLs
are evaluated and substituted in the expressions, imposing that both the finite and the divergent
terms are 0 in the expressions. Note that, according to the expansion enlisted in section A.2,
divergent terms in z + 1 have only form logn(z + 1), thanks to the fact that all the exponents of
the (z − 1)n terms are positive and (z + 1) logn(z + 1) is 0 in z → −1 limit. With this request,
at order εn relations fixing coefficients of order n are determined.

Notice that this approach produces the same results of imposing the solutions I(z; ε) to be
finite in z = −1: multiplying by z+ 1 and taking the limit z → −1 only coefficients of divergent
parts remain in the relations, and are imposed to be equal to zero. In fact, the first method
works with coefficients of the terms 1/(z + 1) set to zero, while the second on the coefficients
of the terms log(1 + z) imposed to be zero, but since the integral of the matrix of singularities
in z = −1 is the matrix of log(z + 1), the two paths lead to the same results, but at different
orders: while the first method determines at order εn conditions for I(n)

0 , the second needs order
εn+1 for the same results; since series expansions and HPLs are available only up to order ε8,
gaining an order is quite important.

In expressions related to order n it has been found that, investigating for null coefficients in
lower orders, no additional relations are generated, so to find all the possible relations for a given
order n, εn terms are sufficient. One may expect that terms of the form log(z+ 1) will appear at
order εn, n ≥ 1, but working on systems in which previous order relations have been substituted
eliminates such occurrence. Consider, as example, the order ε1:

I(1)(z) =

∫
A(τ1)I

(0)
0 dτ1 + I

(1)
0 ; (6.28)

substituting the relation for order 0, all the terms containing log(1 + z) in
∫
A(τ1)I

(0)
0 dτ1 are

suppressed, avoiding the formation of terms log2(1 + z) from integration. Moreover, after the
substitution of the internal relations for I(0)

0 , the expression is in general different from the one
for ε0, resulting in possibly different constraints for I

(1)
0 , with respect to I

(0)
0 (usually, from ε1,

imaginary terms may be present, due to A(1)(−1)).
Not all the equations are linearly independent: in particular, for the 1-loop box problem just

one condition can be extracted at each order from the elimination of the pseudothreshold.

The second condition that can be applied is the fact that all the MIs must be real for z ≥ 0.
This condition emerges from the fact that the interval z ∈ [0; 1] corresponds to an Euclidean
region for the MIs, therefore they have to be real (as explained in [10, 11]). This condition can be
applied to the relations obtained from the finiteness in z = −1: initial conditions are evaluated
in z = 0, and imposing that all the coefficients of the series expansion of each MI have to be real
for z > 0, also I0(ε) = I(0; ε) has to be real. It follows that the relations among the terms of I0(ε)
must be set to zero, providing a new and independent set of conditions. The imaginary parts
come only from the terms logn z, evaluated in z = −1, and due to the fact that the imaginary
unit i is always multiplied by π, factors (explicitly or in the form of ζ(n)), the relations for I(n)

0

will be determined at one order higher in ε than the previous ones; so at order εn+1.
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Also in this case, investigating terms of order less than n−1 (or n−2, respectively) does not
provide more information; the proof of this follows the same steps to the one illustrated before
for finiteness in z = −1.

In this case, all the previous relations from the appropriate order have linearly independent
imaginary parts, so as much new relations as the previous ones are retrieved: in the 1-loop box
case, one relation.

Notice that all the constraint found solving the relations obtained here have definite weight,
equal to the one of the I

(n)
0 term with maximum weight present in them.

Thanks to the previous analysis, the actual number of known MIs necessary for the evaluation
is reduced to 1. Solving the relations, the UT s-bubble turns out to be the master MI (MMI)
for this problem: (

ε(−s)1+ε

)
. (6.29)

To simplify the problem, a suitable integration measure is chosen: this measure normalizes

the value of ε(−s)1+ε to 1, so

dDBk =
(µ2)ε

iπ2−ε
Γ(1− 2ε)

Γ(1 + ε)Γ2(1− ε) dDk. (6.30)

The MMI assumes the form:
ε2(−s)2+2ε = 1. (6.31)

It is only at this point of the analysis that it is truly possible to say that the chosen MIs are
pure UT functions: their coefficients are determined through relations with weight equal to the
one of the term determined, and the parent function is a pure UT FI. Here the proof of pure
UT nature of the function concludes, and the results obtained here are pure UT results, even if
not all expression are known and have been investigated separately (like polygamma functions
ψ(n)(a)).

6.1.5 1-loop box graph

ε2(−s)2+εz =
7∑
i=0

εifi(z) + o0

(
ε7
)

; (6.32)

• f0 = 4;

• f1(z) = −2H(0; z);

• f2(z) = −π2;

• f3(z) = (1/3)H3(0; z)−H(−1; z)[π2+H2(0; z)]+H(0; z)[π2+2H(0;−1; z)]−2[H(0; 0;−1; z)+
ζ(3)];
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• f4(z) = −π4/15+2H(0; 0;−1;−1; z)+2H(0; 0; 0;−1; z)+1/6(−3H(−1; z)2(π2+H(0; z)2)−
H(0; z)(H(0; z)3+3H(0; z)(π2+2H(0;−1; z))+12(H(0;−1;−1; z)−ζ(3)))+2H(−1; z)(2H(0; z)3+
3H(0; z)(π2 + 2H(0;−1; z))− 6(H(0; 0;−1; z) + ζ(3))));

• f5(z) = +1/60(3H(0; z)5 − 10H(−1; z)3(π2 +H(0; z)2) + 10H(0; z)3(π2 + 2H(0;−1; z)) +
4H(0; z)(π4+30H(0;−1;−1;−1; z))−H(−1; z)(4(π4−30H(0; 0;−1;−1; z)−30H(0; 0; 0;−1; z))+
15H(0; z)(H(0; z)3 + 2H(0; z)(π2 + 2H(0;−1; z)) + 8H(0;−1;−1; z)− 8ζ(3))) +
60H(0; z)2(H(0;−1;−1; z)−ζ(3))+10H(−1; z)2(2H(0; z)3 +3H(0; z)(π2 +2H(0;−1; z))−
6(H(0; 0;−1; z)+ζ(3)))−120(H(0; 0;−1;−1;−1; z)+H(0; 0; 0;−1;−1; z)+H(0; 0; 0; 0;−1; z)+
ζ(5)));

• f6(z) = −((2π6)/315) + 2H(0; 0;−1;−1;−1;−1; z) +
2H(0; 0; 0;−1;−1;−1; z) + 2H(0; 0; 0; 0;−1;−1; z) + 2H(0; 0; 0; 0; 0;−1; z) + 1/360
(−15H(−1; z)4(π2+H(0; z)2)−3H(−1; z)2(4(π4−30H(0; 0;−1;−1; z)−30H(0; 0; 0;−1; z))+
15H(0; z)(H(0; z)3 + 2H(0; z)(π2 + 2H(0;−1; z)) + 8H(0;−1;−1; z)− 8ζ(3))) +
20H(−1; z)3(2H(0; z)3+3H(0; z)(π2+2H(0;−1; z))−6(H(0; 0;−1; z)+ζ(3)))−H(0; z)(4H(0; z)5+
15H(0; z)3(π2+2H(0;−1; z))+12H(0; z)(π4+30H(0;−1;−1;−1; z))+120H(0; z)2(H(0;−1;−1; z)−
ζ(3))+720(H(0;−1;−1;−1;−1; z)−ζ(5)))+12H(−1; z)(2H(0; z)5+5H(0; z)3(π2+2H(0;−1; z))+
2H(0; z)(π4+30H(0;−1;−1;−1; z))+30H(0; z)2(H(0;−1;−1; z)−ζ(3))−60(H(0; 0;−1;−1;−1; z)+
H(0; 0; 0;−1;−1; z) +H(0; 0; 0; 0;−1; z) + ζ(5))));

• f7(z) = 1/2520(5H(0; z)7− 21H(−1; z)5(π2 +H(0; z)2) + 21H(0; z)5(π2 + 2H(0;−1; z)) +
28H(0; z)3(π4 + 30H(0;−1;−1;−1; z)) + 16H(0; z)(π6 + 315H(0;−1;−1;−1;−1;−1; z))−
7H(−1; z)3(4(π4−30H(0; 0;−1;−1; z)−30H(0; 0; 0;−1; z))+15H(0; z)(H(0; z)3+2H(0; z)(π2+
2H(0;−1; z)) + 8H(0;−1;−1; z)− 8ζ(3))) + 210H(0; z)4(H(0;−1;−1; z)− ζ(3)) +
35H(−1; z)4(2H(0; z)3+3H(0; z)(π2+2H(0;−1; z))−6(H(0; 0;−1; z)+ζ(3)))−H(−1; z)(16(π6−
315H(0; 0;−1;−1;−1;−1; z) − 315H(0; 0; 0;−1;−1;−1; z) − 315H(0; 0; 0; 0;−1;−1; z) −
315H(0; 0; 0; 0; 0;−1; z))+7H(0; z)(H(0; z)(12(π4+30H(0;−1;−1;−1; z))+5H(0; z)(H(0; z)3+
3H(0; z)(π2 + 2H(0;−1; z)) + 24(H(0;−1;−1; z)− ζ(3)))) + 720(H(0;−1;−1;−1;−1; z)−
ζ(5))))+2520H(0; z)2(H(0;−1;−1;−1;−1; z)−ζ(5))+42H(−1; z)2(2H(0; z)5+5H(0; z)3(π2+
2H(0;−1; z))+2H(0; z)(π4 +30H(0;−1;−1;−1; z))+30H(0; z)2(H(0;−1;−1; z)−ζ(3))−
60(H(0; 0;−1;−1;−1; z) +H(0; 0; 0;−1;−1; z) +H(0; 0; 0; 0;−1; z) + ζ(5)))−
5040(H(0; 0;−1;−1;−1;−1;−1; z)+H(0; 0; 0;−1;−1;−1;−1; z)+H(0; 0; 0; 0;−1;−1;−1; z)+
H(0; 0; 0; 0; 0;−1;−1; z) +H(0; 0; 0; 0; 0; 0;−1; z) + ζ(7)));

As expected, the 1-loop box has a ε2 pole.

The results for the other graphs of the basis are shown in THESIS_1L_BC.
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6.2 2-loop ladder

• External momenta (p2
i = 0)

a pµ1

b pµ2

c pµ3

d pµ4

• Propagators

1 k2
1

2 k2
2

3 (k1 − k2)2

4 (k1 + p1)2

5 (k1 + p1 + p2)2

6 (k2 + p1 + p2)2

7 (k2 − p3)2

• Auxiliary propagators

8 (k1 − p3)2

9 (k2 + p1)2

THESIS_2L_MI shows the basis of MIs, and THESIS_2L_DE presents the DEs in sand
t, both from Reduze. THESIS_2L_SOL contains the determination of the canonical form and
of the BCs, while THESIS_2L_BC contains the construction of the series expansion of the
solutions.
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6.2.1 Laporta basis

Reduze determines for this topology the following subtopology tree (the notation for the subtopol-
ogy is the same one used in Reduze, see [46, 47] for more details):

• INT[”nm2”, 3, 22] = : s-sunset;

• INT[”nm2”, 3, 76] = : t-sunset;

• INT[”nm2”, 3, 76] = : s-triangle;

• INT[”nm2”, 4, 51] = : double s-bubble;

• INT[”nm2”, 5, 93] = : 2-loop box;

• INT[”nm2”, 5, 94] = : N-box;

• INT[”nm2”, 7, 127] = , considered twice: 2-loop ladder.

There are then seven different topologies, for a total of eight MIs.

6.2.2 UT basis

t and s-sunsets

The UT structure for these topologies is obtained dotting two of the propagators, as explained
in section 3.3.2.

=
(
− s
µ2

)−2ε
s−1 Γ(1+2ε)

Γ(1−3ε)Γ(1− ε)Γ2(−ε) (6.33)

=
(
− t
µ2

)−2ε
t−1 Γ(1+2ε)

Γ(1−3ε)Γ(1− ε)Γ2(−ε) (6.34)

s-triangle

The simple triangle is proven to be UT. Using proposition 9 it is possible to substitute one of
its propagators with a UT bubble. The UT MI related to this topology is then obtained dotting
one of the bubble propagators.
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double s-bubble

As seen in the previous chapter, a bubble FI is UT when one of its propagators is dotted. This
topology is a product of two bubbles, so dotting one propagator for each of them a UT function
is obtained.

2-loop box

Using proposition 9 it is sufficient to dot one of the bubble propagators.

N-box

The N-box is UT. The proof has been produced by Amedeo Primo.
Consider the explicit form of the FI:∫ ∫

dk2dk1

(k2)2(k2 − p3)2(k1 − k2)2(k2 + p12)2(k1 + p1)2
, (6.35)

where p12 = p1 + p2. Introducing a Feynman parameter to sum up (k2)2 and (k2 − p3)2, the
expression [(k2−p3)2α+(k2)2(1−α)]2(k1−k2)2 represents a UT bubble with incoming momentum
(k1 − αp3)µ. It is then possible to integrate over kµ2 , obtaining:

Γ(1 + ε)Γ(1− ε)Γ(−ε)
Γ(1− 2ε)

∫ 1

0

∫
dk1dα

[(k1 − αp3)2]1+ε(k1 + p12)2(k1 + p1)2
. (6.36)

It is now possible to shift the loop variable as k′µ1 = kµ1 + pµ12, and introduce two additional
Feynman parameters x and y. Rearranging the terms it is now possible to reduce the FI to a
tadpole:

Γ(1 + 2ε)Γ(1− ε)Γ(−ε)
Γ(1− 2ε)

∫ 1

0

∫ 1

0

∫ 1−x

0

dydxdα

[s(1− α)(1− x) + [t+ u(1− α)]y]1+2ε
(6.37)

where s = (p1 + p2)2, t = (p1 + p3)2 and u = (p1 + p4)2 with s+ t+ u = 0.
Performing the change of variables

x = z1,

y = z2(1− z1), (6.38)
α = z3,

all the integration intervals are set to [0; 1]. In this way:

Γ(1 + 2ε)Γ(1− ε)Γ(−ε)
Γ(1− 2ε)

∫ 1

0

dz1

zε1(1− z1)1+2ε

∫ 1

0

∫ 1

0

dz3dz2

[sz3 + (t+ uz3)z2]1+2ε
. (6.39)

The first integral is an Euler’s beta function, namely
∫ 1

0 t
x−1(1 − t)y−1 dt = B(x; y) = Γ(x)Γ(y)

Γ(x+y) .
Integrating over z3:

−Γ2(1− ε)Γ(−ε)Γ(−2ε)

Γ(1− 2ε)Γ(1− 3ε)

∫ 1

0

s−2ε(1− z2)−2ε − t−2εz−2ε
2

s− (s+ t)z2
dz2. (6.40)
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Defining X = s− (s+ t)z2, the integral is rewritten as:

Γ2(1− ε)Γ(−ε)Γ(−2ε)

Γ(1− 2ε)Γ(1− 3ε)

s−2ε

s+ t

∫ X=t

X=s

[
(1− z2)−2ε −

(
t

s

)−2ε

z−2ε
2

]
d logX (6.41)

since the prefactor is UT (even if not pure UT), and the integrand has definite weight w = n+ 1
at each term of its series expansion in εn (the integral has the structure shown in definition 8),
the function is UT. Note also that the factor s + t present in the denominator of the prefactor
will be the coefficient arising from Magnus series expansion.

2-loop ladder

Performing a quadruple cut on one of the loop of the 2-loop ladder topology, a function propor-
tional to a 1-loop box is retrieved. Proceeding as shown in section 3.3.3,

∝ 1

s
, (6.42)

since, cutting the first box, the t channel is nothing else than (p1 + k2)2.
Since a maximal cut on one of the loops of the 2-loop ladder topology results in a box

multiplied by s, it is reasonable to use, as one of the MIs for this topology, the simple 2-loop
ladder FI.

For the other copy, power counting is useful: since the simple 2-loop ladder has mass di-
mension [m]−6, dots would not be a good choice. Instead, a numerator will increase the mass
dimension to [m]−4, as it usually is for 4-point functions. To choose the appropriate irreducible
scala product (in a massless case scalar product or numerator are truly synonyms), it is possible
to perform a quadruple cut on one of the loops, and look for a numerator that simplifies the FI,
reducing it to a known UT function. So, cutting for example the right loop, as for the analysis
of the divergences, one obtains:

1

s
∝ 1

s

∫
dk2

(k2)2(k2 + p1)2(k2 + p1 + p2)2(k2 − p3)2
. (6.43)

If a denominator is removed, a UT triangle FI is retrieved. Since numerators can only show
irreducible scalar products, only (k2 + p1)2 can be used, resulting in:

(p1 + k2)2 ∝ (p1 + k2)2 1

s
∝ 1

s
, (6.44)

where the proportionality indicates that the members are equal up to a numerical constant.
Also the auxiliary propagator (k1 − p3)2 can be used for the 2-loop ladder (it would have

been present if maximal cut had been performed on the loop on the right).
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The basis of MIs is then:

I(s; t) =

 (p1 + k2)2



. (6.45)

6.2.3 DEs reduction

(s; t) DEs

The equation are determined using Reduze.

∂

∂s
I(s; t) = As(s; t)I(s; t), (6.46)

∂

∂t
I(s; t) = At(s; t)I(s; t); (6.47)

As =



− 2ε+1
s

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 − 2ε+1

s
0 0 0 0 0

0 0 0 − 2(ε+1)
s

0 0 0 0
0 3

2s(s+t)
3ε

s(s+t)
0 − s+t+tε

s(s+t)
0 0 0

− 1
2(s+t)ε

t
2s(s+t)ε

0 0 0 − s+2tε
s(s+t)

0 0
3(s−t)
s2t(s+t)ε

3
s2(s+t)ε

− 6
s2(s+t)

2
s(s+t)ε

4
s(s+t)

− 12ε
s2t

− 2(s+t+tε)
s(s+t)

2ε
s(s+t)

3
s(s+t)ε

9t
2s2(s+t)ε

− 3
s(s+t)

s+2t
s(s+t)ε

4t
s(s+t)

− 18ε
s2

tε
s+t

− 3εs+2s+2t+2tε
s(s+t)


,

(6.48)
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At =



0 0 0 0 0 0 0 0
0 − 2ε+1

t
0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 − 3

2t(s+t)
− 3ε
t(s+t)

0 − 2εs+s+t+tε
t(s+t)

0 0 0
s

2t(s+t)ε
− 1

2(s+t)ε
0 0 0 − t+2sε

t(s+t)
0 0

− 3(s−t)
st2(s+t)ε

− 3
st(s+t)ε

6
st(s+t)

− 2
t(s+t)ε

− 4
t(s+t)

12ε
st2

− 2εs+s+t
t(s+t)

− 2ε
t(s+t)

− 3
t(s+t)ε

− 9
2s(s+t)ε

3
t(s+t)

− s+2t
t(s+t)ε

− 4
s+t

18ε
st

− sε
s+t

sε
t(s+t)


. (6.49)

(s; z) DEs

As explained in the previous chapter:

∂

∂s
I(s; z) = As(s; z)I(s; z) (6.50)

∂

∂z
I(s; z) = Az(s; z)I(s; z) (6.51)

As =



− 2ε+1
s

0 0 0 0 0 0 0
0 − 2ε+1

s
0 0 0 0 0 0

0 0 − 2ε+1
s

0 0 0 0 0

0 0 0 − 2(ε+1)
s

0 0 0 0

0 0 0 0 − 2(ε+1)
s

0 0 0
0 0 0 0 0 − 2ε+1

s
0 0

0 0 0 0 0 0 − 2ε+3
s

0

0 0 0 0 0 0 0 − 2(ε+1)
s


, (6.52)

Az =



0 0 0 0 0 0 0 0
0 − 2ε+1

z
0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 − 3

2sz(z+1)
− 3ε
sz(z+1)

0 − εz+z+2ε+1
z(z+1)

0 0 0
1

2z(z+1)ε
− 1

2(z+1)ε
0 0 0 − z+2ε

z(z+1)
0 0

3(z−1)

s2z2(z+1)ε
− 3
s2z(z+1)ε

6
s2z(z+1)

− 2
sz(z+1)ε

− 4
sz(z+1)

12ε
s2z2 − z+2ε+1

z(z+1)
− 2ε
sz(z+1)

− 3
sz(z+1)ε

− 9
2s(z+1)ε

3
sz(z+1)

− 2z+1
z(z+1)ε

− 4
z+1

18ε
sz

− sε
z+1

ε
z(z+1)


,

(6.53)
where I(s; t(s; z)) is indicated with I(s; z), with a little abuse of notation.
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Redefining now the MIs to eliminate s dependence as

I(z) =



(−s)1+2ε

(−s)1+2ε

(−s)1+2ε

(−s)2+2ε

(−s)2+2ε

(−s)1+2ε

(−s)3+2ε

(−s)2+2ε (p1 + k2)2



. (6.54)

the PDEs assume the form:

As = O, (6.55)

Az =



0 0 0 0 0 0 0 0
0 −2ε+1

z 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 3

2z(z+1)
3ε

z(z+1) 0 − εz+z+2ε+1
z(z+1) 0 0 0

1
2z(z+1)ε − 1

2(z+1)ε 0 0 0 − z+2ε
z(z+1) 0 0

3(z−1)
z2(z+1)ε

− 3
z(z+1)ε

6
z(z+1)

2
z(z+1)ε

4
z(z+1)

12ε
z2 − z+2ε+1

z(z+1)
2ε

z(z+1)
3

z(z+1)ε
9

2(z+1)ε − 3
z(z+1) − 2z+1

z(z+1)ε − 4
z+1 −18ε

z
ε

z+1
ε

z(z+1)


.

(6.56)

Note how MIs of the same topology generates block structures, instead of triangular forms.
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Elimination of ε poles

Knowing that sunsets and double bubbles have ε−2 poles, and fixing the other coefficients in
order to restrict terms independent from ε in the diagonal of the matrix, basis and DE become:



ε2(−s)1+2ε

ε2(−s)1+2ε

ε3(−s)1+2ε

ε2(−s)2+2ε

ε3(−s)2+2ε

ε4(−s)1+2ε

ε4(−s)3+2ε

ε4(−s)2+2ε (p1 + k2)2



, (6.57)

Ã(z; ε) =



0 0 0 0 0 0 0 0
0 − 2ε+1

z
0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 3ε

2z(z+1)
3ε

z(z+1)
0 − εz+z+2ε+1

z(z+1)
0 0 0

ε
2z(z+1)

− ε
2(z+1)

0 0 0 − z+2ε
z(z+1)

0 0
3(z−1)ε

z2(z+1)
− 3ε
z(z+1)

6ε
z(z+1)

2ε
z(z+1)

4ε
z(z+1)

12ε
z2 − z+2ε+1

z(z+1)
2ε

z(z+1)
3ε

z(z+1)
9ε

2(z+1)
− 3ε
z(z+1)

− (2z+1)ε
z(z+1)

− 4ε
z+1

− 18ε
z

ε
z+1

ε
z(z+1)


. (6.58)
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Canonical fuchsian form

It is now possible to use Magnus series expansion to pass in canonical form. Rewriting Ã(z; ε)
as Ã(z; ε) = A0(z) + εA1(z), the matrix of the terms not depending on ε is

A0(z) =



0 0 0 0 0 0 0 0
0 −1

z 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1

z 0 0 0
0 0 0 0 0 − 1

z+1 0 0

0 0 0 0 0 0 −1
z 0

0 0 0 0 0 0 0 0


; (6.59)

this matrix is diagonal, so the Magnus series is truncated at first term, resulting in a matrix for
the transformation

B(z) =



1 0 0 0 0 0 0 0
0 1

z 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1

z 0 0 0
0 0 0 0 0 1

z+1 0 0

0 0 0 0 0 0 1
z 0

0 0 0 0 0 0 0 1


(6.60)

After the transformation, the canonical matrix of coefficients A(z) is:

A(z; ε) = ε

[
1

z
A0 +

1

z + 1
A−1

]
(6.61)

A0 =



0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 3

2
0 0 −2 0 0 0

1
2
− 1

2
0 0 0 −2 0 0

−3 −3 0 0 4 12 −2 0
3 9

2
−3 −1 −4 −18 1 1


; (6.62)

A−1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 − 3

2
3 0 1 0 0 0

0 0 0 0 0 2 0 0
6 3 6 2 −4 −12 2 2
−3 − 9

2
3 −1 4 18 −1 −1


. (6.63)

Note that this system is also fuchsian, so the choice of MI for the 1-loop box topology is not
negated. Moreover, the s-sunset and the double s-bubble do not evolve, as it should be once the
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dependance from s has been eliminated. The definitive basis of functions for the 2-loop ladder
problem is then:

I(z) =



ε2(−s)1+2ε

ε2(−s)1+2εz

ε3(−s)1+2ε

ε2(−s)2+2ε

ε3(−s)2+2εz

ε4(−s)1+2ε(1 + z)

ε4(−s)3+2εz

ε4(−s)2+2ε (p1 + k2)2



. (6.64)

6.2.4 BCs

Analysis of the divergences

As discussed in section 2.3.2, quadruple cuts are performed on the 2-loop ladder topology, loop
by loop:

∝ 1

s
, (6.65)

1

s
∝ 1

s2t
, (6.66)

since, cutting the first box, the t channel is (p1 + k2)2. The divergences occur in s = 0 or in
t = 0. In particular, in u = 0⇒ s = −t all the MIs are regular.
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In order to identify the solution to the problem, as explained in the previous chapter, two
conditions are considered:

• finiteness of the solutions in z = −1 (giving three conditions);

• reality of the solutions for z ≥ 0 (giving other three conditions).

The number of MMIs is two. Solving the relations, s-sunset and double s-bubble can be choosen
as MMIs:  ε2(−s)1+2ε

ε2(−s)2+2ε

 (6.67)

As before, to simplify the problem a suitable integration measure is chosen: the measure

normalizes the value of
[
ε(−s)1+ε

]2

= ε2(−s)2+2ε to 1, so

dDBk1dDBk2 =

[
(µ2)ε

iπ2−ε
Γ(1− 2ε)

Γ(1 + ε)Γ2(1− ε)

]2

dDk1dDk2. (6.68)

The MMIs assume the form:

ε2(−s)1+2ε = − Γ(1 + 2ε)Γ2(1− 2ε)

Γ(1− 3ε)Γ2(1 + ε)Γ(1− ε) ; (6.69)

ε2(−s)2+2ε = 1. (6.70)

The basis is proven to be pure UT.

6.2.5 2-loop ladder graph

ε4(−s)3+2εz =
7∑
i=0

εifi(z) + o0

(
ε7
)

; (6.71)

• f0 = −4;

• f1(z) = 5H(0; z);

• f2(z) = (11π2)/6− 2H(0; z)2;

• f3(z) = 2H(−1; z)(π2+H(0; z)2)−2/3H(0; z)(7π2+H(0; z)2+6H(0;−1; z))+4H(0; 0;−1; z)+
3ζ(3);

• f4(z) = (187π4)/180−4H(0; 0;−1;−1; z)−44H(0; 0; 0;−1; z)+1/3(4H(0; z)4+3H(−1; z)2(π2+
H(0; z)2) +H(0; z)2(17π2− 6H(0;−1; z))− 20π2H(0;−1; z) + 6H(0; z)(2H(0;−1;−1; z) +
12H(0; 0;−1; z)−3ζ(3))−2H(−1; z)(4H(0; z)3+H(0; z)(5π2+6H(0;−1; z))−6(H(0; 0;−1; z)+
ζ(3))));
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• f5(z) = −(14/15)H(0; z)5+1/3H(−1; z)3(π2+H(0; z)2)−8/9H(0; z)3(5π2−6H(0;−1; z))−
4/3π2H(0;−1;−1; z) +H(0; z)(−((101π4)/45) + 34/3π2H(0;−1; z) + 10H(0;−1; z)2 −
4H(0;−1;−1;−1; z)−32H(0; 0;−1;−1; z))+4(H(0; 0;−1;−1;−1; z)+5H(0; 0;−1; 0;−1; z)+
29H(0; 0; 0;−1;−1; z)+28H(0; 0; 0; 0;−1; z))−6H(0; z)2(H(0;−1;−1; z)+4H(0; 0;−1; z)−
ζ(3)) − 4H(0;−1; z)(5H(0; 0;−1; z) + 18ζ(3)) − 1/3H(−1; z)2(4H(0; z)3 + H(0; z)(5π2 +
6H(0;−1; z))− 6(H(0; 0;−1; z) + ζ(3))) + 1/18H(−1; z)(23π4 − 72H(0; 0;−1;−1; z)−
1008H(0; 0; 0;−1; z) + 12(3H(0; z)4 + H(0; z)2(7π2 − 6H(0;−1; z)) − 13π2H(0;−1; z) +
6H(0; z)(H(0;−1;−1; z) + 8H(0; 0;−1; z) + 7ζ(3)))) + 27ζ(5);

• f6(z) = (1493π6)/3780+4/9H(0; z)6 +1/12H(−1; z)4(π2 +H(0; z)2)+1/9H(0; z)4(23π2−
42H(0;−1; z))+28H(0;−1;−1; z)H(0; 0;−1; z)+1/90π2(−229π2H(0;−1; z)+150H(0;−1; z)2+
2640H(0;−1;−1;−1; z))+20/3(π2+3H(0;−1; z))H(0; 0;−1;−1; z)+H(0; z)2((217π4)/90−
34/3π2H(0;−1; z)−10H(0;−1; z)2 +34H(0;−1;−1;−1; z)+32H(0; 0;−1;−1; z))+4(π2 +
10H(0;−1; z))H(0; 0; 0;−1; z)− 4H(0; 0;−1;−1;−1;−1; z)− 20H(0; 0;−1;−1; 0;−1; z)−
68H(0; 0;−1; 0;−1;−1; z)− 260H(0; 0; 0;−1;−1;−1; z)− 40H(0; 0; 0;−1; 0;−1; z)−
304H(0; 0; 0; 0;−1;−1; z)− 272H(0; 0; 0; 0; 0;−1; z) + 4/3H(0; z)3(4H(0;−1;−1; z) +
12H(0; 0;−1; z)− 3ζ(3)) + 8(10H(0;−1;−1; z) + 9H(0; 0;−1; z))ζ(3) + 27ζ(3)2 −
1/9H(−1; z)3(4H(0; z)3 +H(0; z)(5π2 + 6H(0;−1; z))− 6(H(0; 0;−1; z) + ζ(3))) +
1/36H(−1; z)2(23π4−72H(0; 0;−1;−1; z)−1008H(0; 0; 0;−1; z)+12(3H(0; z)4+H(0; z)2(7π2−
6H(0;−1; z)) − 13π2H(0;−1; z) + 6H(0; z)(H(0;−1;−1; z) + 8H(0; 0;−1; z) + 7ζ(3)))) +
H(0; z)(−2(π2 + 14H(0;−1; z))H(0;−1;−1; z) + 4H(0;−1;−1;−1;−1; z) +
8H(0;−1; 0;−1;−1; z) + 48H(0; 0;−1;−1;−1; z) + 6(π2 + 10H(0;−1; z))ζ(3)− 18ζ(5))−
2/45H(−1; z)(24H(0; z)5+90H(0; z)3(π2−2H(0;−1; z))+10H(0; z)(4π4−6H(0;−1; z)(7π2+
9H(0;−1; z))+9H(0;−1;−1;−1; z)+72H(0; 0;−1;−1; z))+90H(0; z)2(5H(0;−1;−1; z)+
8H(0; 0;−1; z) + 4ζ(3)) + 15(23π2H(0;−1;−1; z) + 2(5π2 + 36H(0;−1; z))H(0; 0;−1; z) +
(−7π2 + 150H(0;−1; z))ζ(3)− 6(H(0; 0;−1;−1;−1; z) + 12H(0; 0;−1; 0;−1; z) +
50H(0; 0; 0;−1;−1; z) + 36H(0; 0; 0; 0;−1; z) + 4ζ(5))));

• f7(z) = −(52/315)H(0; z)7 + 1/60H(−1; z)5(π2 + H(0; z)2) + H(0; z)5(−((52π2)/45) +
8/3H(0;−1; z))+77/30π4H(0;−1;−1; z)−38/3π2H(0;−1; z)H(0;−1;−1; z)+6/5π4H(0; 0;−1; z)+
12π2H(0;−1; z)H(0; 0;−1; z)+32H(0;−1; z)2H(0; 0;−1; z)+124H(0; 0;−1; z)H(0;−1;−1;−1; z)−
76H(0;−1;−1; z)H(0; 0;−1;−1; z)+32H(0; 0;−1; z)H(0; 0;−1;−1; z)−4/135H(0; z)3(58π4−
15H(0;−1; z)(17π2 + 15H(0;−1; z)) + 1440H(0;−1;−1;−1; z) + 720H(0; 0;−1;−1; z))−
152H(0;−1;−1; z)H(0; 0; 0;−1; z) + 212/3π2H(0;−1;−1;−1;−1; z) +
148/3π2H(0;−1; 0;−1;−1; z) + 148π2H(0; 0;−1;−1;−1; z)− 20H(0;−1; z)
H(0; 0;−1;−1;−1; z)− 20π2H(0; 0;−1; 0;−1; z)− 64H(0;−1; z)H(0; 0;−1; 0;−1; z)−
52π2H(0; 0; 0;−1;−1; z)− 184H(0;−1; z)H(0; 0; 0;−1;−1; z)−
16π2H(0; 0; 0; 0;−1; z)− 80H(0;−1; z)H(0; 0; 0; 0;−1; z) +
4(H(0; 0;−1;−1;−1;−1;−1; z) + 5H(0; 0;−1;−1;−1; 0;−1; z) +
29H(0; 0;−1;−1; 0;−1;−1; z) + 41H(0; 0;−1; 0;−1;−1;−1; z) +
16H(0; 0;−1; 0;−1; 0;−1; z) + 36H(0; 0;−1; 0; 0;−1;−1; z) +
137H(0; 0; 0;−1;−1;−1;−1; z) + 46H(0; 0; 0;−1;−1; 0;−1; z) +
142H(0; 0; 0;−1; 0;−1;−1; z) + 388H(0; 0; 0; 0;−1;−1;−1; z) +
20H(0; 0; 0; 0;−1; 0;−1; z) + 188H(0; 0; 0; 0; 0;−1;−1; z) +
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160H(0; 0; 0; 0; 0; 0;−1; z)) + (−((13π4)/5) + 38π2H(0;−1; z) + 18H(0;−1; z)2 +
72H(0;−1;−1;−1; z)− 96H(0; 0;−1;−1; z) + 96H(0; 0; 0;−1; z))ζ(3) +
H(0; z)4(−(10/3)H(0;−1;−1; z)− 8H(0; 0;−1; z) + 2ζ(3)) +H(0; z)
(−((568π6)/945)− 16/3π2H(0;−1; z)2 − 32/3H(0;−1; z)3 + 38H(0;−1;−1; z)2 +
H(0;−1; z)((148π4)/45− 124H(0;−1;−1;−1; z)− 32H(0; 0;−1;−1; z))−
2/3π2(91H(0;−1;−1;−1; z) + 8H(0; 0;−1;−1; z))− 4H(0;−1;−1;−1;−1;−1; z) +
144H(0;−1; 0;−1;−1;−1; z) + 256H(0; 0;−1;−1;−1;−1; z)−
112H(0; 0;−1; 0;−1;−1; z)− 336H(0; 0; 0;−1;−1;−1; z) +
H(0;−1;−1; z)(64H(0; 0;−1; z)− 52ζ(3))−
144H(0; 0;−1; z)ζ(3))−1/36H(−1; z)4(4H(0; z)3+H(0; z)(5π2+6H(0;−1; z))−6(H(0; 0;−1; z)+
ζ(3)))+1/108H(−1; z)3(23π4−72H(0; 0;−1;−1; z)−1008H(0; 0; 0;−1; z)+12(3H(0; z)4+
H(0; z)2(7π2 − 6H(0;−1; z))− 13π2H(0;−1; z) +
6H(0; z)(H(0;−1;−1; z) + 8H(0; 0;−1; z) + 7ζ(3)))) + 2/3H(0; z)2((7π2 + 18H(0;−1; z))
H(0;−1;−1; z) + 9(11H(0;−1;−1;−1;−1; z) +
8H(0;−1; 0;−1;−1; z) + 20H(0; 0;−1;−1;−1; z) − 2(π2 + 2H(0;−1; z))ζ(3) − 3ζ(5))) −
6(11π2 +70H(0;−1; z))ζ(5)−1/45H(−1; z)2(24H(0; z)5 +90H(0; z)3(π2−2H(0;−1; z))+
10H(0; z)(4π4−6H(0;−1; z)(7π2+9H(0;−1; z))+9H(0;−1;−1;−1; z)+72H(0; 0;−1;−1; z))+
90H(0; z)2(5H(0;−1;−1; z) + 8H(0; 0;−1; z) + 4ζ(3)) + 15(23π2H(0;−1;−1; z) + 2(5π2 +
36H(0;−1; z))H(0; 0;−1; z) + (−7π2 + 150H(0;−1; z))ζ(3) − 6(H(0; 0;−1;−1;−1; z) +
12H(0; 0;−1; 0;−1; z) + 50H(0; 0; 0;−1;−1; z) + 36H(0; 0; 0; 0;−1; z) + 4ζ(5)))) +
1/1890H(−1; z)(5(169π6−1512H(0; 0;−1;−1;−1;−1; z)−36288H(0; 0;−1;−1; 0;−1; z)−
54432H(0; 0;−1; 0;−1;−1; z)− 184464H(0; 0; 0;−1;−1;−1; z)−
54432H(0; 0; 0;−1; 0;−1; z)− 272160H(0; 0; 0; 0;−1;−1; z)−
133056H(0; 0; 0; 0; 0;−1; z)) + 42(20H(0; z)6 + 10H(0; z)4(11π2 − 30H(0;−1; z)) +
180π2H(0;−1; z)2+9H(0; z)2(11π4−100H(0;−1; z)(π2+H(0;−1; z))−20H(0;−1;−1;−1; z)−
40H(0; 0;−1;−1; z))+H(0;−1; z)(−187π4+4320H(0; 0;−1;−1; z)+6480H(0; 0; 0;−1; z))+
120H(0; z)3(9H(0;−1;−1; z) + 8H(0; 0;−1; z) + ζ(3))− 30(π2(13H(0;−1;−1;−1; z) +
50H(0; 0;−1;−1; z) + 12H(0; 0; 0;−1; z)) +H(0;−1;−1; z)(72H(0; 0;−1; z)−
6ζ(3)) + 3(2H(0; 0;−1; z)− 3ζ(3))(10H(0; 0;−1; z) + 3ζ(3))) + 60H(0; z)((22π2 +
36H(0;−1; z))H(0;−1;−1; z) + 2(5π2 − 12H(0;−1; z))H(0; 0;−1; z) + (−7π2 +
78H(0;−1; z))ζ(3) + 3(H(0;−1;−1;−1;−1; z)− 36H(0;−1; 0;−1;−1; z)−
64H(0; 0;−1;−1;−1; z) + 28H(0; 0;−1; 0;−1; z) + 84H(0; 0; 0;−1;−1; z) + 55ζ(5))))) +
159ζ(7);

Here the 2-loop ladder has a ε−4 pole.

The results for the other graphs of the basis are shown in THESIS_2L_BC.
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6.3 3-loop ladder

• External momenta (p2
i = 0)

a pµ1

b pµ2

c pµ3

d pµ4

• Propagators

1 k2
1

2 k2
2

3 k2
3

4 (k1 − k2)2

5 (k2 − k3)2

6 (k1 + p1)2

7 (k1 + p1 + p2)2

8 (k2 + p1 + p2)2

9 (k3 + p1 + p2)2

10 (k3 − p3)2

• Auxiliary propagators

11 (k1 − p3)2

12 (k2 − p3)2
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13 (k2 + p1)2

14 (k3 + p1)2

15 (k3 − k1)2

THESIS_3L_MI shows the basis of MIs, and THESIS_3L_DE presents the DEs in sand
t, both from Reduze. THESIS_3L_SOL contains the determination of the canonical form and
of the BCs, while THESIS_3L_BC contains the construction of the series expansion of the
solutions.

6.3.1 Laporta basis

Reduze determines for this topology the following subtopology tree (the notation for the subtopol-
ogy is the same one used in Reduze, see [46, 47] for more details):

• INT[”nm3”, 4, 92] = : s-sunset;

• INT[”nm3”, 4, 568] = : t-sunset;

• INT[”nm3”, 5, 157] = : nested bubbles;

• INT[”nm3”, 5, 188] = : 3-loop triangle;

• INT[”nm3”, 5, 213] = : sunset bubble;

• INT[”nm3”, 5, 316] = : sunset triangle;

• INT[”nm3”, 6, 349] = : 3-loop sefl-energy.

• INT[”nm3”, 6, 430] = : triangle bubble;

• INT[”nm3”, 6, 455] = : triple bubble;

• INT[”nm3”, 6, 633] = : 3-loop box;
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• INT[”nm3”, 6, 634] = : bubble box with diagonal;

• INT[”nm3”, 6, 636] = : bubble diagonal box;

• INT[”nm3”, 6, 698] = , considered twice: double bubble box;

• INT[”nm3”, 7, 382] = : 3-point FI;

• INT[”nm3”, 7, 701] = , considered twice: trapezoid;

• INT[”nm3”, 8, 763] = , considered twice: side-bubble ladder;

• INT[”nm3”, 8, 765] = , considered twice: diagonal ladder;

• INT[”nm3”, 8, 893] = , considered twice: central-bubble ladder;

• INT[”nm3”, 10, 1023] = , considered three times: 3-loop ladder;

There are then nineteen different topologies, for a total of twenty-six MIs.

6.3.2 UT basis

Sunsets and 2-loop UT graphs with UT FIs as propagators

All inner sunsets are replaced with their corresponding UT version.
In particular, s and t-sunsets are now UT, together with triangles-like graphs and most of

the box and ladder integrals (3-loop triangle, sunset triangle, triple bubble, 3-loop box, bubble
box with diagonal, bubble diagonal box).

Nested bubbles

Thanks to lemma 2, starting from a UT bubble, it is possible to substitute the dotted internal
line with two chained UT bubbles and multiply by 1 + 2ε to find a UT function.
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3-loop self-energy

First of all, the internal bubble is dotted in one propagator, to find a local UT structure. Con-
sidering now the matrix of coefficients, in order to eliminate off-diagonal presence of terms not
depending on ε, the MI is multiplied by −1 + 2ε. This choice also matches what is shown in [11,
14].

Double bubble box

First of all, the bubbles are dotted in one propagator to obtain their UT versions. The first MIs is
so obtained, and it is known to be UT. For the second one, consider the topology generated once
the bubbles are replaced with their analytic structures: a box topology is obtained. A numerator
is then added, in order to collapse to a triangular structure: (k2 + p1)2 is used (equivalenty,
(k2 − p3)2 is valid); in this way, a triangular structure is retrieved (on the original FI, only for
ε→ 0).

3-point FI

The graph does not show any symmetrical structure, so there are no preferred internal lines to
dot. Moreover, the mass dimension of this MI is [m]−2, correct for a three-point function not
resulting from chaining FIs.

Trapezoid

The first MI for this topology is chosen to be the simple trapezoid FI, without dots or numerators.
For the second MI, considering that the mass dimension is [m]−2 instead of [m]−4, a dotted version
is a good candidate. Since the structure is symmetrical, if a dot have to placed, the upper central
propagator is the best choice.

Side-bubble ladder

As for the double bubble box, first of all a UT structure is reached, and it is the first MI. For
the second one, proceed as for the 2-loop ladder, using the numerator (k2 + p1)2.

Diagonal ladder

The mass dimension is [m]−4, so the undotted version is a good candidate. Since adding nu-
merators will increase the mass dimension, a dot can be a better choice, so the diagonal is
dotted.

Central-bubble ladder

As explained above, the bubble is dotted in one propagator, obtaining the first MI. On this FI,
the numerator (k3 + p1)2 is added, retrieving the second MI.
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3-loop ladder

As for the 2-loop ladder, scalar product are introduced to find the two extra MIs: in particular,
following the method of maximal cuts, (p1 +k3)2 and (k1−p3)2 are introduced. See section 3.3.3
for a general discussion. In the present case, the quadruple cut is applied twice, each time on
the sub-box at the same end, once starting from the left (the version with numerator (p1 +k3)2),
once starting from the right (the version with numerator (k1 − p3)2). For example:

(p1 + k3)2 ∝ (p1 + k3)2

s
; (6.72)

(p1 + k3)2

s
∝ (p1 + k3)2

s2
=

1

s2
(6.73)

The basis of MIs is then:1

I(s; t) = (6.74)

(1 + 2ε)

(−1 + 2ε)

(k2 + p1)2

(k2 + p1)2

(k3 + p1)2

(p1 + k3)2 (k1 − p3)2



.

1From now on, the MIs of the 3-loop ladder problem will be shown in a table, but it must be intended as a
vector, with ordered elements starting from the highest row to the lowest one, from left to right.
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6.3.3 DEs reduction

(s; t) DEs

The equation are determined using Reduze.

∂

∂s
I(s; t) = As(s; t)I(s; t), (6.75)

∂

∂t
I(s; t) = At(s; t)I(s; t); (6.76)

As(s; t) =
(
S1 S2 S3 S4

)
, (6.77)

At(s; t) =
(
T1 T2 T3 T4

)
. (6.78)

S1 =



− 3ε+1
s

0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 − 3ε+1
s

0 0 0 0

0 0 0 − 3ε+1
s

0 0 0

0 0 0 0 − 3ε+2
s

0 0

0 0 0 0 0 − 3ε+1
s

0

0 0 0 0 0 0 − 3ε+1
s

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 4

3s(s+t)
0 0 0 4ε

s(s+t)
0

0 t
6s(s+t)ε

0 1
s+t

0 0 0

− 1
3(s+t)ε

t
3s(s+t)ε

0 0 0 0 0

0 1
s(s+t)

0 0 0 0 0

0 t
4s(s+t)

0 0 0 0 0

0 0 0 0 0 0 0

0 t
12s(s+t)ε2

− 2(2ε+1)

(s+t)ε2
− 2

(s+t)ε
0 0 0

0 t
3s2(s+t)ε

− 8(2ε+1)
s(s+t)ε

− 8
s(s+t)

0 0 0

0 2
s2(s+t)ε

0 − 8(3s−2t)

3s2t(s+t)
0 − 4

s2(s+t)
0

0 2t
s2(s+t)ε

0 − 40
9s(s+t)

0 − 2
3s(s+t)

0

17
54s(s+t)ε2

23t
27s2(s+t)ε2

− 14(2ε+1)

3s(s+t)ε2
− 56

9s(s+t)ε
− 1

6(s+t)ε2
− 1

6s(s+t)ε
0

12s−t
9s2t(s+t)ε

4(3s+7t)

9s3(s+t)ε
− 12(2ε+1)

s2(s+t)ε
− 40

3s2(s+t)
2

s(s+t)ε
− 7
s2(s+t)

0

4s−t
3s2t(s+t)ε

4
3s2(s+t)ε

0 0 0 − 6
s2(s+t)

− 3(2ε−1)

s2(s+t)
19s+9t

9s2(s+t)ε
20t

9s2(s+t)ε
0 0 0 − 2

s2
− (s+3t)(2ε−1)

s2(s+t)

− 17
9s3(s+t)ε2

0 − 28(2ε+1)

3s3(s+t)ε2
− 40

3s3(s+t)ε
7

s2(s+t)ε2
7

s3(s+t)ε

6(2ε−1)

s3(s+t)ε

− 41s+32t
18s3(s+t)ε2

4(6s−7t)t

9s4(s+t)ε2
− 2(7s−4t)(2ε+1)

3s3(s+t)ε2
− 4(17s−8t)

3s3(s+t)ε
7s+10t

2s2(s+t)ε2
7s+12t

2s3(s+t)ε

3(s+2t)(2ε−1)

s3(s+t)ε
7

6s2(s+t)ε2
28t

9s3(s+t)ε2
− 22(2ε+1)

3s2(s+t)ε2
− 20

3s2(s+t)ε

3(s+2t)

2s2(s+t)ε2
− 9

2s2(s+t)ε
0



;
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S2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

− 3ε+2
s

0 0 0 0 0 0

0 − 3(ε+1)
s

0 0 0 0 0

0 0 − s+t+tε
s(s+t)

0 0 0 0

0 0 0 − s+2tε
s(s+t)

0 0 0

0 0 0 0 − s+3tε
s(s+t)

0 0

0 0 0 0 0 − s+t+2tε
s(s+t)

4ε
s(s+t)

0 0 0 0 0 tε
2(s+t)

− 3εs+s+t+2tε
s(s+t)

0 0 0 0 0 0 0
0 0 0 − 2

s
0 0 0

0 0 0 0 0 0 0
− 2
s(s+t)

0 3
2s(s+t)

− 24ε
s2t

0 2
s(s+t)

0

− 2(2s+3t)
3s(s+t)

0 t
s(s+t)

− 24ε
s2

0 2t
s(s+t)

− 8
3s(s+t)

0 0 t
s(s+t)ε

− 20
3s2

− 2
s2

0 0

0 0 3
s2

− 16ε
s3

− 12(s+t)ε

s3t
0 0

0 0 3
s(s+t)

0 − 12ε
s2t

0 0

0 0 3t
s(s+t)

0 − 20ε
s2

0 0
6

s2(s+t)ε
− 2
s(s+t)ε2

0 0 0 0 0

3s+2t
s2(s+t)ε

− s+2t
s(s+t)ε2

− 3t2

s3(s+t)ε
− 16(3s−t)

s4
12(s+t)

s4
4t

s2(s+t)ε
0

3(s+2t)

s2(s+t)ε
− s+2t
s(s+t)ε2

3t
s2(s+t)ε

− 16
s3

− 12
s3

0 0



;

S3 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

− 3ε+1
s

0 0 0 0 0 0

0 − 3(2s+t)ε
s(s+t)

s
s+t

0 0 0 0

0 12tε2

s2(s+t)
− 2(s+t+2tε)

s(s+t)
0 0 0 0

0 0 0 − 2(s+t+tε)
s(s+t)

3ε
s(s+t)

0 0

0 0 0 2tε
3(s+t)

− 4εs+2s+2t+3tε
s(s+t)

0 0

− 2ε
3s(s+t)

8tε
3s2(s+t)

2
s+t

0 0 − 4εs+2s+t+5tε
s(s+t)

t
3(s+t)

− 4ε2

s2(s+t)
16tε2

s3(s+t)
4ε

s(s+t)
0 0 − 12ε2

s2
− 2s+2t+tε

s(s+t)

0 0 0 0 0 0 0
0 0 0 0 0 0 0
4ε

s3(s+t)
0 0 4

s(s+t)
0 0 − 4

s(s+t)
2(s+4t)ε

s3(s+t)
− 16t2ε
s4(s+t)

− 4t
s2(s+t)

6t
s(s+t)

6t
s2(s+t)

12tε
s3

− 2t(3s+t)

s2(s+t)

− 6ε
s2(s+t)

16tε
s3(s+t)

4
s(s+t)

2t
s(s+t)

0 − 12ε
s2

− 2t
s(s+t)



;
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S4 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

− 2s+2t+3tε
s(s+t)

3ε
s(s+t)

0 0 0
2tε
s+t

− 2(2εs+s+t+tε)
s(s+t)

0 0 0
2

s(s+t)
0 − 3(s+t+tε)

s(s+t)
2ε

s(s+t)
2ε

s(s+t)
2t

s(s+t)
0 2tε

s+t
− 4εs+3s+3t+3tε

s(s+t)
2tε

s(s+t)
3t

s(s+t)
− 3
s(s+t)

tε
s+t

− ε
s+t

− 3(ε+1)
s



.

T1 =



0 0 0 0 0 0 0

0 − 3ε+1
t

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 − 4

3t(s+t)
0 0 0 − 4ε

t(s+t)
0

0 − 1
6(s+t)ε

0 − s
t(s+t)

0 0 0
s

3t(s+t)ε
− 1

3(s+t)ε
0 0 0 0 0

0 − 1
t(s+t)

0 0 0 0 0

0 − 1
4(s+t)

0 0 0 0 0

0 0 0 0 0 0 0

0 − 1
12(s+t)ε2

2s(2ε+1)

t(s+t)ε2
2s

t(s+t)ε
0 0 0

0 − 1
3s(s+t)ε

8(2ε+1)
t(s+t)ε

8
t(s+t)

0 0 0

0 − 2
st(s+t)ε

0
8(3s−2t)

3st2(s+t)
0 4

st(s+t)
0

0 − 2
s(s+t)ε

0 40
9t(s+t)

0 2
3t(s+t)

0

− 17
54t(s+t)ε2

− 23
27s(s+t)ε2

14(2ε+1)

3t(s+t)ε2
56

9t(s+t)ε
s

6t(s+t)ε2
1

6t(s+t)ε
0

− 12s−t
9st2(s+t)ε

− 4(3s+7t)

9s2t(s+t)ε

12(2ε+1)
st(s+t)ε

40
3st(s+t)

− 2
t(s+t)ε

7
st(s+t)

0

− 4s−t
3st2(s+t)ε

− 4
3st(s+t)ε

0 0 0 6
st(s+t)

3(2ε−1)
st(s+t)

− 19s+9t
9st(s+t)ε

− 20
9s(s+t)ε

0 0 0 2
st

(s+3t)(2ε−1)
st(s+t)

17
9s2t(s+t)ε2

0
28(2ε+1)

3s2t(s+t)ε2
40

3s2t(s+t)ε
− 7
st(s+t)ε2

− 7
s2t(s+t)ε

− 6(2ε−1)

s2t(s+t)ε
41s+32t

18s2t(s+t)ε2
− 4(6s−7t)

9s3(s+t)ε2
2(7s−4t)(2ε+1)

3s2t(s+t)ε2
4(17s−8t)

3s2t(s+t)ε
− 7s+10t

2st(s+t)ε2
− 7s+12t

2s2t(s+t)ε
− 3(s+2t)(2ε−1)

s2t(s+t)ε

− 7
6st(s+t)ε2

− 28
9s2(s+t)ε2

22(2ε+1)

3st(s+t)ε2
20

3st(s+t)ε
− 3(s+2t)

2st(s+t)ε2
9

2st(s+t)ε
0



;
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T2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 − 3εs+s+t+2tε
t(s+t)

0 0 0 0

0 0 0 − εt+t+3sε
t(s+t)

0 0 0

0 0 0 0 − t+3sε
t(s+t)

0 0

0 0 0 0 0 − 3εs+s+t+tε
t(s+t)

− 4ε
t(s+t)

0 0 0 0 0 − sε
2(s+t)

− ε
s+t

0 0 0 0 0 0 0
0 0 0 2

t
0 0 0

0 0 0 0 0 0 0
2

t(s+t)
0 − 3

2t(s+t)
24ε
st2

0 − 2
t(s+t)

0
2(2s+3t)
3t(s+t)

0 − 1
s+t

24ε
st

0 − 2
s+t

8
3t(s+t)

0 0 − 1
(s+t)ε

20
3st

2
st

0 0

0 0 − 3
st

16ε
s2t

12(s+t)ε

s2t2
0 0

0 0 − 3
t(s+t)

0 12ε
st2

0 0

0 0 − 3
s+t

0 20ε
st

0 0

− 6
st(s+t)ε

2
t(s+t)ε2

0 0 0 0 0

− 3s+2t
st(s+t)ε

s+2t
t(s+t)ε2

3t
s2(s+t)ε

16(3s−t)
s3t

− 12(s+t)

s3t
− 4
s(s+t)ε

0

− 3(s+2t)
st(s+t)ε

s+2t
t(s+t)ε2

− 3
s(s+t)ε

16
s2t

12
s2t

0 0



;

T3 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 3εs−s−t
t(s+t)

− s2

t(s+t)
0 0 0 0

0 − 12ε2

s(s+t)
(t−3s)ε
t(s+t)

0 0 0 0

0 0 0 − 3εs+s+t+tε
t(s+t)

− 3ε
t(s+t)

0 0

0 0 0 − 2sε
3(s+t)

sε
t(s+t)

0 0
2ε

3t(s+t)
− 8ε

3s(s+t)
− 2s
t(s+t)

0 0 2εt−t+sε
t(s+t)

− s
3(s+t)

4ε2

st(s+t)
− 16ε2

s2(s+t)
− 4ε
t(s+t)

0 0 12ε2

st
− 3εs+s+t+2tε

t(s+t)

0 0 0 0 0 0 0
0 0 0 0 0 0 0

− 4ε
s2t(s+t)

0 0 − 4
t(s+t)

0 0 4
t(s+t)

− 2(s+4t)ε

s2t(s+t)
16tε

s3(s+t)
4

s(s+t)
− 6
s+t

− 6
s(s+t)

− 12ε
s2

2(3s+t)
s(s+t)

6ε
st(s+t)

− 16ε
s2(s+t)

− 4
t(s+t)

− 2
s+t

0 12ε
st

2
s+t



;
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T4 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

− 3εs+s+t
t(s+t)

− 3ε
t(s+t)

0 0 0

− 2sε
s+t

(s−t)ε
t(s+t)

0 0 0

− 2
t(s+t)

0 − 3εs+s+t
t(s+t)

− 2ε
t(s+t)

− 2ε
t(s+t)

− 2
s+t

0 − 2sε
s+t

sε
t(s+t)

− 2ε
s+t

− 3
s+t

3
t(s+t)

− sε
s+t

sε
t(s+t)

0



.

(s; z) DEs, elimination of ε poles and canonical fuchsian form

Changing variables the PDE in s can be immediately solved, and the basis of MIs can be redefined
eliminating the dependence on s. Each term of the basis is then multiplied by an εn term to
eliminate poles in ε and to confine ε-independent terms on only on the diagonal. The new basis
has then the form:

ε3(−s)1+3ε ε3(−s)1+3ε ε3(−s)1+3ε(1 + 2ε)

ε4(−s)1+3ε ε3(−s)2+3ε ε4(−s)1+3ε

ε4(−s)1+3ε(1− 2ε) ε4(−s)2+3ε ε3(−s)3+3ε

ε4(−s)2+3ε ε5(−s)1+3ε ε5(−s)1+3ε

ε4(−s)2+3ε ε4(−s)1+3ε (k2 + p1)2 ε6(−s)1+3ε

ε6(−s)1+3ε ε5(−s)2+3ε ε5(−s)3+3ε

ε5(−s)1+3ε (k2 + p1)2 ε6(−s)2+3ε ε5(−s)3+3ε

ε5(−s)3+3ε ε5(−s)2+3ε (k3 + p1)2 ε6(−s)4+3ε

ε6(−s)3+3ε (p1 + k3)2 ε6(−s)3+3ε (k1 − p3)2



.

The matrix for the change of basis to the canonical form is constructed using only A0(z), of
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the matrix A(z; ε) = A0(z) + εA1(z). This matrix is diagonal, with non-zero terms:

D2;2 = D10;10 = D13;13 = D16;16 = D18;18 = D21;21 = D22;22 = D24;24 = −1

z
,

D11;11 = D12;12 = D20;20 = − 1

1 + z
; (6.79)

resulting in a diagonal matrix for the transformation, with elements on the diagonal:(
1; 1

z ; 1; 1; 1; 1; 1; 1; 1; 1
z ; 1

z+1 ; 1
z+1 ; 1

z ; 1; 1; 1
z ; 1; 1

z ; 1; 1
z+1 ; 1

z ; 1
z ; 1; 1

z ; 1; 1
)

After these transformations the matrix of coefficients of the system has the form:

A(z) = ε

[
1

z
A0 +

1

z + 1
A−1

]
(6.80)

A0 and A−1 are presented in table 6.1 and table 6.2, respectively.
The basis of MIs is of the form:

ε3(−s)1+3ε ε3(−s)1+3εz ε3(−s)1+3ε(1 + 2ε)

ε4(−s)1+3ε ε3(−s)2+3ε ε4(−s)1+3ε

ε4(−s)1+3ε(1− 2ε) ε4(−s)2+3ε ε3(−s)3+3ε

ε4(−s)2+3εz ε5(−s)1+3ε(1 + z) ε5(−s)1+3ε(1 + z)

ε4(−s)2+3εz ε4(−s)1+3ε (k2 + p1)2 ε6(−s)1+3ε

ε6(−s)1+3εz ε5(−s)2+3ε ε5(−s)3+3εz

ε5(−s)1+3ε (k2 + p1)2 ε6(−s)2+3ε(1 + z) ε5(−s)3+3εz

ε5(−s)3+3εz ε5(−s)2+3ε (k3 + p1)2 ε6(−s)4+3εz

ε6(−s)3+3ε (p1 + k3)2 ε6(−s)3+3ε (k1 − p3)2



.

6.3.4 BCs

Analysis of the divergences

As discussed in section 2.3.2, maximal cuts are performed on the 3-loop ladder topology, loop
by loop, obtaining:

1

s3t
(6.81)
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∝ 1

s
, (6.82)

1

s
∝ 1

s2
, (6.83)

1

s2
∝ 1

s3t
, (6.84)

The divergences occur in s = 0 or in t = 0. In particular, in u = 0⇒ s = −t all the MIs are
regular.

In order to identify the solution to the problem, as explained for the 1-loop box, two conditions
are considered:

• finiteness of the solutions in z = −1 (giving eleven conditions);

• reality of the solutions for z ≥ 0 (giving other eleven conditions).

The number of MMIs is four. Solving the relations, the basis of MMIs can be chosen as:

ε3(−s)1+3ε

ε3(−s)2+3ε

ε4(−s)2+3ε

ε3(−s)3+3ε


. (6.85)

As before, to simplify the problem a suitable integration measure is chosen: the measure

normalizes the value of
[
ε(−s)1+ε

]3

= ε3(−s)3+3ε to 1, so

dDBk1dDBk2dDBk3 =

[
(µ2)ε

iπ2−ε
Γ(1− 2ε)

Γ(1 + ε)Γ2(1− ε)

]3

dDk1dDk2dDk3. (6.86)

The third MMI is recovered from the 2-loop ladder problem. Notice that, thanks to the

normalization factor, the expression of ε4(−s)2+3ε is equal to the expression of
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ε3(−s)1+2ε , and the expression ε3(−s)2+3ε to ε2(−s)1+2ε : the

bubble of the 3-loop graph is eliminated by the normalization, leaving only the other structure
with 2-loop normalization. Moreover, since the BCs are fixed at z = 0, for the triangular MMI
only the expansion in terms of initial values in z = 0 is necessary (all other MMI do not evolve,
so their expansions coincide with the expansion of their initial values).

The MMIs assume the form:

ε3(−s)1+3ε =
Γ(1 + 3ε)Γ3(1− 2ε)

Γ(1− 4ε)Γ3(1 + ε)Γ2(1− ε) (6.87)

ε3(−s)2+3ε = − Γ(1 + 2ε)Γ2(1− 2ε)

Γ(1− 3ε)Γ2(1 + ε)Γ(1− ε) ; (6.88)

ε4(−s)2+3ε =
1

4
+
π2

12
ε2 +

1

4

[
3ψ(2)(1) + 2ζ(3)

]
ε3+ (6.89)

+
1

48

[
72ζ(5) + 4π2

(
2ζ(3) + 3ψ(2)(1)

)
+ 21ψ(4)(1)

]
ε5+

+

[
1

8

(
2ζ(3) + 3ψ(2)(1)

)2
− 13π6

540

]
ε6+

+

[
9ζ(7)

2
+

1

48
π2
(

24ζ(5) + 7ψ(4)(1)
)

+
49ψ(6)(1)

480

]
ε7 + o0

(
ε7
)

ε3(−s)3+3ε = 1. (6.90)

The basis is proven to be pure UT. Notice that, even not knowing the weight of ψ(n)(a)
functions, the fact that they appear in the coefficient of a specific term εn of a known pure UT
function assures that they have a well-defined and fixed weight, equal to n.

6.3.5 3-loop ladder graph

ε6(−s)4+3εz =

7∑
i=0

εifi(z) + o0

(
ε7
)

; (6.91)

• f0 = 16/9;

• f1(z) = −11/3H(0; z);

• f2(z) = −((19π2)/18) + 3H(0; z)2;

• f3(z) = 1/18(−9(H(0; z)3 + 3H(−1; z)(π2 + H(0; z)2) − 3H(0; z)(3π2 + 2H(0;−1; z)) +
6H(0; 0;−1; z))− 38ζ(3));
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• f4(z) = −((43π4)/30)+3H(0; 0;−1;−1; z)+51H(0; 0; 0;−1; z)+1/4(−6H(0; z)4−3H(−1; z)2(π2+
H(0; z)2)+32π2H(0;−1; z)+5H(0; z)2(−7π2+2H(0;−1; z))−4/3H(0; z)(9H(0;−1;−1; z)+
84H(0; 0;−1; z)−5ζ(3))+2H(−1; z)(6H(0; z)3+H(0; z)(7π2+6H(0;−1; z))−6(H(0; 0;−1; z)+
ζ(3))));

• f5(z) = 81/40H(0; z)5−1/4H(−1; z)3(π2+H(0; z)2)+1/4H(0; z)3(43π2−38H(0;−1; z))−
8π2H(0;−1;−1; z)− 37/3π2H(0; 0;−1; z) +
12H(0;−1; z)H(0; 0;−1; z) +H(0; z)((46π4)/9− 49/3π2H(0;−1; z)− 6H(0;−1; z)2 +
3H(0;−1;−1;−1; z)+52H(0; 0;−1;−1; z)+24H(0; 0; 0;−1; z))−3(H(0; 0;−1;−1;−1; z)+
4H(0; 0;−1; 0;−1; z) + 41H(0; 0; 0;−1;−1; z) + 81H(0; 0; 0; 0;−1; z)) +
((65π2)/9 + 96H(0;−1; z))ζ(3) + 1/2H(0; z)2

(−5H(0;−1;−1; z) + 76H(0; 0;−1; z) + 9ζ(3)) + 1/4H(−1; z)2(6H(0; z)3 +H(0; z)(7π2 +
6H(0;−1; z))−6(H(0; 0;−1; z)+ζ(3)))−1/8H(−1; z)(27H(0; z)4+H(0; z)2(58π2−68H(0;−1; z))+
8(2π4−14π2H(0;−1; z)−3H(0; 0;−1;−1; z)−87H(0; 0; 0;−1; z))+8H(0; z)(3H(0;−1;−1; z)+
52H(0; 0;−1; z) + 49ζ(3))) + 13ζ(5);

• f6(z) = −((10705π6)/6804)−63/40H(0; z)6−1/16H(−1; z)4(π2+H(0; z)2)+739/90π4H(0;−1; z)−
21π2H(0;−1; z)2+9/16H(0; z)4(−17π2+22H(0;−1; z))+4H(0; 0;−1; z)(−27H(0;−1;−1; z)+
4H(0; 0;−1; z))− 76π2H(0;−1;−1;−1; z) + 1/3π2H(0; 0;−1;−1; z) + 36H(0;−1; z)
H(0; 0;−1;−1; z) +H(0; z)2(−((533π4)/60) + 57/2π2H(0;−1; z)− 6H(0;−1; z)2 −
163/2H(0;−1;−1;−1; z)−78H(0; 0;−1;−1; z)−36H(0; 0; 0;−1; z))+35π2H(0; 0; 0;−1; z)−
216H(0;−1; z)H(0; 0; 0;−1; z) + 3H(0; 0;−1;−1;−1;−1; z)− 36H(0; 0;−1;−1; 0;−1; z) +
36H(0; 0;−1; 0;−1;−1; z) + 195H(0; 0; 0;−1;−1;−1; z) + 216H(0; 0; 0;−1; 0;−1; z) +
1011H(0; 0; 0; 0;−1;−1; z) + 951H(0; 0; 0; 0; 0;−1; z) + 1/2H(0; z)3(19H(0;−1;−1; z)−
68H(0; 0;−1; z)− 23ζ(3))− 4(48H(0;−1;−1; z) + 119H(0; 0;−1; z))ζ(3)− (358ζ(3)2)/9 +
1/12H(−1; z)3(6H(0; z)3 +H(0; z)(7π2 + 6H(0;−1; z))− 6(H(0; 0;−1; z) + ζ(3)))−
1/16H(−1; z)2(27H(0; z)4 + H(0; z)2(58π2 − 68H(0;−1; z)) + 8(2π4 − 14π2H(0;−1; z) −
3H(0; 0;−1;−1; z) − 87H(0; 0; 0;−1; z)) + 8H(0; z)(3H(0;−1;−1; z) + 52H(0; 0;−1; z) +
49ζ(3)))+1/60H(−1; z)(162H(0; z)5+15H(0; z)3(37π2−86H(0;−1; z))+2H(0; z)(107π4−
10H(0;−1; z)(115π2 + 108H(0;−1; z)) + 90H(0;−1;−1;−1; z) +
1560H(0; 0;−1;−1; z)−2880H(0; 0; 0;−1; z))+30H(0; z)2(55H(0;−1;−1; z)+188H(0; 0;−1; z)+
117ζ(3)) + 20(66π2H(0;−1;−1; z) + (47π2 +
216H(0;−1; z))H(0; 0;−1; z) + (−43π2 + 468H(0;−1; z))ζ(3)−
9(H(0; 0;−1;−1;−1; z)+24H(0; 0;−1; 0;−1; z)+101H(0; 0; 0;−1;−1; z)+49H(0; 0; 0; 0;−1; z)−
19ζ(5)))) + 1/3H(0; z)((97π2 + 324H(0;−1; z))
H(0;−1;−1; z) + 4(π2 + 90H(0;−1; z))H(0; 0;−1; z)− 9H(0;−1;−1;−1;−1; z)−
12(36H(0;−1; 0;−1;−1; z) + 85H(0; 0;−1;−1;−1; z) + 38H(0; 0;−1; 0;−1; z) +
90H(0; 0; 0;−1;−1; z)) + 3(−35π2 + 24H(0;−1; z))ζ(3)− 471ζ(5));

• f7(z) = 513/560H(0; z)7−1/80H(−1; z)5(π2+H(0; z)2)+9/80H(0; z)5(59π2−94H(0;−1; z))−
499/90π4H(0;−1;−1; z) + 18π2H(0;−1; z)H(0;−1;−1; z)− 179/15π4H(0; 0;−1; z)−
48π2H(0;−1; z)H(0; 0;−1; z)− 154H(0;−1; z)2

H(0; 0;−1; z)− 156H(0; 0;−1; z)H(0;−1;−1;−1; z) + 156H(0;−1;−1; z)
H(0; 0;−1;−1; z) + 40H(0; 0;−1; z)H(0; 0;−1;−1; z) + 264H(0;−1;−1; z)
H(0; 0; 0;−1; z)−168H(0; 0;−1; z)H(0; 0; 0;−1; z)+H(0; z)3((101π4)/10−65/2π2H(0;−1; z)+
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21H(0;−1; z)2 + 317/2H(0;−1;−1;−1; z) + 78H(0; 0;−1;−1; z) + 36H(0; 0; 0;−1; z)) −
56π2H(0;−1;−1;−1;−1; z)−132π2H(0;−1; 0;−1;−1; z)−1105/3π2H(0; 0;−1;−1;−1; z)−
84H(0;−1; z)H(0; 0;−1;−1;−1; z) + 220/3π2H(0; 0;−1; 0;−1; z) +
308H(0;−1; z)H(0; 0;−1; 0;−1; z) + 101π2H(0; 0; 0;−1;−1; z) + 1080H(0;−1; z)
H(0; 0; 0;−1;−1; z)− 87π2H(0; 0; 0; 0;−1; z) +
588H(0;−1; z)H(0; 0; 0; 0;−1; z)− 3H(0; 0;−1;−1;−1;−1;−1; z) +
84H(0; 0;−1;−1;−1; 0;−1; z) + 12H(0; 0;−1;−1; 0;−1;−1; z)−
60H(0; 0;−1; 0;−1;−1;−1; z)− 308H(0; 0;−1; 0;−1; 0;−1; z)−
976H(0; 0;−1; 0; 0;−1;−1; z)−267H(0; 0; 0;−1;−1;−1;−1; z)−1080H(0; 0; 0;−1;−1; 0;−1; z)−
3504H(0; 0; 0;−1; 0;−1;−1; z) +
224H(0; 0; 0;−1; 0; 0;−1; z)−8307H(0; 0; 0; 0;−1;−1;−1; z)+308H(0; 0; 0; 0;−1; 0;−1; z)−
2351H(0; 0; 0; 0; 0;−1;−1; z)− 3591H(0; 0; 0; 0; 0; 0;−1; z)−
3/8H(0; z)4(33H(0;−1;−1; z)−60H(0; 0;−1; z)−37ζ(3))+((307π4)/30+2(π2−137H(0;−1; z))
H(0;−1; z) − 72H(0;−1;−1;−1; z) + 740H(0; 0;−1;−1; z) + 1044H(0; 0; 0;−1; z))ζ(3) +
1/48H(−1; z)4(6H(0; z)3 +H(0; z)(7π2 + 6H(0;−1; z))− 6(H(0; 0;−1; z) + ζ(3)))
+H(0; z)((52357π6)/11340 + 59π2H(0;−1; z)2 + 154/3H(0;−1; z)3−78H(0;−1;−1; z)2 +
24H(0; 0;−1; z)2+539/3π2H(0;−1;−1;−1; z)+8π2H(0; 0;−1;−1; z)+H(0;−1; z)(−((277π4)/18)+
156H(0;−1;−1;−1; z)−176H(0; 0;−1;−1; z)+120H(0; 0; 0;−1; z))+3H(0;−1;−1;−1;−1;−1; z)−
72H(0;−1; 0;−1;−1;−1; z)− 92H(0; 0;−1;−1;−1;−1; z) + 136H(0; 0;−1;−1; 0;−1; z) +
552H(0; 0;−1; 0;−1;−1; z) + 1560H(0; 0; 0;−1;−1;−1; z)− 176H(0; 0; 0;−1; 0;−1; z)−
160H(0; 0; 0; 0;−1;−1; z)+464H(0; 0;−1; z)ζ(3)+(32ζ(3)2)/3+8H(0;−1;−1; z)(5H(0; 0;−1; z)+
41ζ(3)))−1/48H(−1; z)3(27H(0; z)4+H(0; z)2(58π2−68H(0;−1; z))+8(2π4−14π2H(0;−1; z)−
3H(0; 0;−1;−1; z) − 87H(0; 0; 0;−1; z)) + 8H(0; z)(3H(0;−1;−1; z) + 52H(0; 0;−1; z) +
49ζ(3)))+1/120H(−1; z)2(162H(0; z)5+15H(0; z)3(37π2−86H(0;−1; z))+2H(0; z)(107π4−
10H(0;−1; z)(115π2 + 108H(0;−1; z)) + 90H(0;−1;−1;−1; z) + 1560H(0; 0;−1;−1; z)−
2880H(0; 0; 0;−1; z)) + 30H(0; z)2(55H(0;−1;−1; z) + 188H(0; 0;−1; z) + 117ζ(3)) +
20(66π2H(0;−1;−1; z)+(47π2+216H(0;−1; z))H(0; 0;−1; z)+(−43π2+468H(0;−1; z))ζ(3)−
9(H(0; 0;−1;−1;−1; z)+24H(0; 0;−1; 0;−1; z)+101H(0; 0; 0;−1;−1; z)+49H(0; 0; 0; 0;−1; z)−
19ζ(5))))+(191π2+828H(0;−1; z))ζ(5)+1/2H(0; z)2(−(105π2+344H(0;−1; z))H(0;−1;−1; z)−
4(π2+100H(0;−1; z))H(0; 0;−1; z)−101H(0;−1;−1;−1;−1; z)+232H(0;−1; 0;−1;−1; z)+
412H(0; 0;−1;−1;−1; z) + 472H(0; 0;−1; 0;−1; z) + 1048H(0; 0; 0;−1;−1; z) + (145π2 −
188H(0;−1; z))ζ(3)+825ζ(5))−1/15120H(−1; z)(20(1535π6−2268H(0; 0;−1;−1;−1;−1; z)−
54432H(0; 0;−1;−1; 0;−1; z)−108864H(0; 0;−1; 0;−1;−1; z)−392364H(0; 0; 0;−1;−1;−1; z)−
317520H(0; 0; 0;−1; 0;−1; z)−1381212H(0; 0; 0; 0;−1;−1; z)−1248156H(0; 0; 0; 0; 0;−1; z))+
21(1215H(0; z)6+405H(0; z)4(15π2−46H(0;−1; z))+72H(0; z)2(72π4−5H(0;−1; z)(131π2+
74H(0;−1; z)) + 275H(0;−1;−1;−1; z) − 460H(0; 0;−1;−1; z) − 2120H(0; 0; 0;−1; z)) +
360H(0; z)3(101H(0;−1;−1; z) + 220H(0; 0;−1; z) + 87ζ(3)) + 8(2610π2H(0;−1; z)2 +
H(0;−1; z)(−1147π4+6480H(0; 0;−1;−1; z)+37800H(0; 0; 0;−1; z))+30(−420H(0; 0;−1; z)2+
π2(66H(0;−1;−1;−1; z)−373H(0; 0;−1;−1; z)−441H(0; 0; 0;−1; z))+252(H(0;−1;−1; z)+
5H(0; 0;−1; z))ζ(3) + 528ζ(3)2)) + 240H(0; z)(137π2H(0;−1;−1; z) + 8(35π2 −
51H(0;−1; z))H(0; 0;−1; z) + 3(3H(0;−1;−1;−1;−1; z)− 72H(0;−1; 0;−1;−1; z)−
92H(0; 0;−1;−1;−1; z)+416H(0; 0;−1; 0;−1; z)+1152H(0; 0; 0;−1;−1; z)+544H(0; 0; 0; 0;−1; z)+
(29π2 + 68H(0;−1; z))ζ(3) + 737ζ(5)))))− (509ζ(7))/3;
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Here the 3-loop ladder has a ε−6 pole, as expected.
The results for the other graphs of the basis are shown in THESIS_3L_BC.



Chapter 7

Evaluation using eigenvalue deflation

1-loop box, 2-loop ladder and a subsystem of the 3-loop ladder differential systems are
rewritten in a canonical fuchsian form using tje eigenvalue deflation method [16] (and
chapter 5), starting from the Laporta basis of master integrals (except for topolo-
gies with multiple masters). First, the systems are transformed into fuchsian ones
[16](using algorithm 1 of chapter 5), then a form with ε-homogeneous eigenvalues is
reached [16] (using algorithm 2 of chapter 5). Finally, a similarity transformation
allows to reach a fuchsian ε-factorized form. The comparison between the result-
ing bases of master integrals and the ones obtained via Magnus series expansion is
realized through integration-by-parts identities.

7.1 1-loop box

The integral to be evaluated is the one presented in section 6.1.

See THESIS_1L_ER for the explicit calculations.

Starting from the Laporta basis:

I(s; t) =




, (7.1)
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the equations in (s; t) are of the form:

∂

∂s
I(s; t) =

 0 0 0
0 − ε

s 0
2(2ε−1)
st(s+t) −2(2ε−1)

s2(s+t)
− s+t+tε
s(s+t)

 I(s; t); (7.2)

∂

∂t
I(s; t) =

 − ε
t 0 0

0 0 0

−2(2ε−1)
t2(s+t)

2(2ε−1)
st(s+t) − εs+s+t

t(s+t)

 I(s; t). (7.3)

Passing now to (s; z) variables, and absorbing the s-dependance through a change of variables
as in 6.1.3, the DEs assume the aspect:

I(z) =



(−s)ε

(−s)ε

(−s)2+ε


, (7.4)

∂I(z)

∂s
= O; (7.5)

∂I(z)

∂z
=

 − ε
z 0 0

0 0 0
2(2ε−1)

z − 2(2ε−1)
z2 − 2(2ε−1)

z+1
2(2ε−1)

z − 2(2ε−1)
z+1

−ε−1
z + ε

z+1

 . (7.6)

7.1.1 Reduction to fuchsian form

A pole in z = 0 with degree 2 have to be eliminated. Jordanizing the matrix of coefficients of
1/z2, the matrix of coefficients of the system assumes the form:

A(z; ε) =

−ε−1
z + ε

z+1
1
z2 + 1

z+1 − 1
z

2(2ε−1)
z − 2(2ε−1)

z+1

0 − ε
z 0

0 0 0

 (7.7)

M =

0 1 0
0 0 0
0 0 0

 , Q(ε) =

−ε− 1 −1 2(2ε− 1)
0 −ε 0
0 0 0

 . (7.8)

M is nilpotent and has eigenvalue u1 = (1; 0; 0)T , and the corresponding column of Q, qi;1 =
(−ε−1; 0; 0)T is null in all entries except inQ1;1, as required by algorithm 1, while the transformed
Q (from expression 5.51) assumes the form:0 0 0

0 0 0
0 0 0

 . (7.9)
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It is possible to choose as second point of balance z = ∞, since A can be written in terms of
only poles at finite:

B =

−1
z 0 0

0 1 0
0 0 1

 , P = u1x
†
1 =

1
0
0

(1 0 0
)
. (7.10)

The final result, obtained after one iteration, is:

A =

 ε
z+1 − ε

z
1
z+1 − 1

z −2(2ε−1)
z+1

0 − ε
z 0

0 0 0

 ; (7.11)

I(z) =



−(−s)2+εz

−2(2ε− 1)(−s)ε

(−s)ε


. (7.12)

As can be seen, the matrix is now fuchsian in all its singular points.

7.1.2 Reduction to ε-homogeneous eigenvalues

There are three residues matrices to check for ε-homogeneous eigenvalues:

• residues in z = 0

A0 =

−ε −1 0
0 −ε 0
0 0 0

 (7.13)

with eigenvalues {(−ε)2; 0} (the subscript indicates that the eigenvalue belongs to a Jordan
block of the indicated dimension; if no subscript is present, the eigenvalue is linked to a
1× 1 block);

• residues in z = −1

A−1 =

ε 1 −2(2ε− 1)
0 0 0
0 0 0

 (7.14)

with eigenvalues {ε; 0; 0};

• residues at infinity

A∞ = −A0 −A−1 =

0 0 4ε− 2
0 ε 0
0 0 0

 (7.15)

with eigenvalues {ε; 02}.
The matrix has then already ε-homogeneous eigenvalues in all its residues.
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7.1.3 Factoring out ε

As explained in section 5.3.4, to determine the transformation matrix T̃ to pass into a canonical
form, the following system must be solved:{

1
εA0(z; ε)T̃ (ε;µ) = 1

µ T̃ (ε;µ)A0(z;µ)
1
εA−1(z; ε)T̃ (ε;µ) = 1

µ T̃ (ε;µ)A−1(z;µ)
; (7.16)

the result is a matrix of the form:

T̃ (ε;µ; t) =

t 0 0
0 εt

µ 0

0 0 ε(2µ−1)t
(2ε−1)µ

 . (7.17)

Choosing µ = t = 1, the matrix becomes

T̃ (ε) =

1 0 0
0 ε 0
0 0 ε

2ε−1

 . (7.18)

This matrix is invertible, and its application to A results in a canonical system of DE:

A = ε

 1
z+1 − 1

z
1
z+1 − 1

z − 2
z+1

0 −1
z 0

0 0 0

 , I =



−z(−s)2+ε

2(1−2ε)
ε (−s)ε

(2ε−1)
ε (−s)ε


. (7.19)

Using IBP-Ids it is possible to rewrite the basis above in terms of UT diagrams, obtaining:

I =



−(−s)2+εz

2
ε (−s)1+εz

−1
ε (−s)1+ε


. (7.20)

Multiplying the MIs by ε2, dividing the second one by 2 and changing sing to the first and the
third MIs, the basis determined using Magnus series expansion is retrieved:

A = ε

 1
z+1 − 1

z
2
z − 2

z+1 − 2
z+1

0 −1
z 0

0 0 0

 , I =



ε2(−s)2+εz

ε(−s)1+εz

ε(−s)1+ε


. (7.21)
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In this case the eigenvalue deflation method has determined a system identical to the one found
using Magnus series expansion method, up to constants or global powers of ε. From there, the
BC fixing and the evaluation of the solutions follows exactly the path presented in section 6.1.

7.2 2-loop ladder

For the explicit calculations, see THESIS_2L_ER.
Here the integral presented in section 6.2 is faced using eigenvalue deflation techniques.

Starting from the basis:

I(s; t) =

 (p1 + k2)2



(7.22)

the equation in (s; t) have the following matrices of coefficients:

• As(s; t; ε)

− 2ε−1
s

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 − 2ε
s

0 0 0 0 0

0 0 0 − 2ε
s

0 0 0 0

0
(3ε−2)(3ε−1)
st(s+t)ε

3ε−1
s(s+t)

0 − s+t+tε
s(s+t)

0 0 0

− (2ε−1)(3ε−2)(3ε−1)

s2(s+t)ε2
(2ε−1)(3ε−2)(3ε−1)

st(s+t)ε2
0 0 0 − s+2tε

s(s+t)
0 0

6(s−t)(2ε−1)(3ε−2)(3ε−1)

s4t(s+t)ε2
6(2ε−1)(3ε−2)(3ε−1)

s2t2(s+t)ε2
3(2s+t)(2ε−1)(3ε−1)

s3t(s+t)ε

2(2ε−1)2

s3(s+t)ε

12(2ε−1)
st(s+t)

− 12ε
s2t

− 2(s+t+tε)
s(s+t)

2ε
s(s+t)

6(2ε−1)(3ε−2)(3ε−1)

s3(s+t)ε2
9(2ε−1)(3ε−2)(3ε−1)

s2t(s+t)ε2
15(2ε−1)(3ε−1)

2s2(s+t)ε

(s+2t)(2ε−1)2

s3(s+t)ε

12(2ε−1)
s(s+t)

− 18ε
s2

tε
s+t

− 3εs+2s+2t+2tε
s(s+t)

 ;
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• At(s; t; ε)

0 0 0 0 0 0 0 0

0 − 2ε−1
t

0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 − (3ε−2)(3ε−1)

t2(s+t)ε
− 3ε−1
t(s+t)

0 − (2s+t)ε
t(s+t)

0 0 0

(2ε−1)(3ε−2)(3ε−1)

st(s+t)ε2
− (2ε−1)(3ε−2)(3ε−1)

t2(s+t)ε2
0 0 0 − t+2sε

t(s+t)
0 0

− 6(s−t)(2ε−1)(3ε−2)(3ε−1)

s3t2(s+t)ε2
− 6(2ε−1)(3ε−2)(3ε−1)

st3(s+t)ε2
− 3(2s+t)(2ε−1)(3ε−1)

s2t2(s+t)ε
− 2(2ε−1)2

s2t(s+t)ε
− 12(2ε−1)

t2(s+t)
12ε
st2

− 2εs+s+t
t(s+t)

− 2ε
t(s+t)

− 6(2ε−1)(3ε−2)(3ε−1)

s2t(s+t)ε2
− 9(2ε−1)(3ε−2)(3ε−1)

st2(s+t)ε2
− 15(2ε−1)(3ε−1)

2st(s+t)ε
− (s+2t)(2ε−1)2

s2t(s+t)ε
− 12(2ε−1)

t(s+t)
18ε
st

− sε
s+t

sε
t(s+t)

 .

Passing to (s; z) variables and absorbing the s-dependence, the system becomes:

I(z) =



(−s)−1+2ε

(−s)−1+2ε

(−s)2ε

(−s)2ε

(−s)1+2ε

(−s)1+2ε

(−s)3+2ε

(−s)2+2ε (p1 + k2)2



= φ, (7.23)

As(s; z; ε) = O; (7.24)

Az(z; ε) =
A1(ε)

z
+
A2(ε)

z2
+
A3(ε)

z3
+
A0(ε)

z + 1
(7.25)

• A1(ε)

0 0 0 0 0 0 0 0
0 1− 2ε 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 9ε2−9ε+2
ε

3ε− 1 0 −2ε 0 0 0
(2ε−1)(3ε−2)(3ε−1)

ε2
18ε3−27ε2+13ε−2

ε2
0 0 0 −2ε 0 0

12(18ε3−27ε2+13ε−2)
ε2

− 6(18ε3−27ε2+13ε−2)
ε2

− 3(6ε2−5ε+1)
ε

2(2ε−1)2

ε
12(2ε− 1) 0 −2ε− 1 2ε

6(2ε−1)(3ε−2)(3ε−1)

ε2
− 9(18ε3−27ε2+13ε−2)

ε2
− 15(2ε−1)(3ε−1)

2ε
− (2ε−1)2

ε
12(2ε− 1) −18ε 0 ε
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• A2(ε)

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 −9ε2+9ε−2
ε

0 0 0 0 0 0

0 −18ε3+27ε2−13ε+2
ε2

0 0 0 0 0 0

− 6(18ε3−27ε2+13ε−2)
ε2

6(18ε3−27ε2+13ε−2)
ε2

6(6ε2−5ε+1)
ε

0 −12(2ε− 1) 12ε 0 0

0
9(18ε3−27ε2+13ε−2)

ε2
0 0 0 0 0 0


(7.26)

• A3(ε) 

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 − 6(18ε3−27ε2+13ε−2)
ε2

0 0 0 0 0 0
0 0 0 0 0 0 0 0


(7.27)

• A0(ε)

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 −9ε2+9ε−2
ε

1− 3ε 0 ε 0 0 0

− (2ε−1)(3ε−2)(3ε−1)

ε2
−18ε3+27ε2−13ε+2

ε2
0 0 0 2ε− 1 0 0

− 12(18ε3−27ε2+13ε−2)
ε2

6(18ε3−27ε2+13ε−2)
ε2

3(6ε2−5ε+1)
ε

− 2(2ε−1)2

ε
−12(2ε− 1) 0 2ε −2ε

− 6(2ε−1)(3ε−2)(3ε−1)

ε2
9(18ε3−27ε2+13ε−2)

ε2
15(2ε−1)(3ε−1)

2ε
− (2ε−1)2

ε
−12(2ε− 1) 0 ε −ε


7.2.1 Reduction to fuchsian form

Elimination of 1/z3

The pole in z = 0 presents terms up to degree 3. Starting from the pole of order 3, and jordanizing
its matrix of coefficients, the system presents a matrix M for 1/z3 and a matrix Q for 1/z2 of
the form:

M =



0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(7.28)
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Q(ε) =



0 −1 0 12ε −12(2ε− 1) 0
6(6ε2−5ε+1)

ε −6(18ε3−27ε2+13ε−2)
ε2

0 0 0 0 0 0 0 0
0 −3

2 0 0 0 0 0 0
0 1

6 0 0 0 0 0 0
0 ε

6(2ε−1) 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (7.29)

M is nilpotent, and qi;1, the column ofQ(ε) corresponding to the eigenvector u1 = (1; 0; 0; 0; 0; 0; 0; 0)T

of M , to be used in the projector, is null. Here a bit more is risked, and the projector is con-
structed as

P =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, (7.30)

using all the right proper eigenvectors of M . In this way, the matrix Q transforms into:
−∑i∈I(x

†
i )1
∑N

j∈(N\I)(x
†
1)jqj;i . . . −∑i∈I(x

†
i )N

∑N
j∈(N\I)(x

†
1)jqj;i∑

i∈I q2;i(x
†
i )1 . . .

∑
i∈I q2;i(x

†
i )N

−∑i∈I(x
†
i )1
∑N

j∈(N\I)(x
†
3)jqj;i . . . −∑i∈I(x

†
i )N

∑N
j∈(N\I)(x

†
3)jqj;i

...
...

−∑i∈I(x
†
i )1
∑N

j∈(N\I)(x
†
N )jqj;i . . . −∑i∈I(x

†
i )N

∑N
j∈(N\I)(x

†
N )jqj;i

 , (7.31)

equal to 
0 . . . 0
0 . . . 0
0 . . . 0
...

...
0 . . . 0

 , (7.32)

so algorithm 1 can be applied, and infinite is chosen as second point for the balance transforma-
tion.

After the application of algorithm 1, the system has no more 1/z3 poles, and presents the
form:

A(z; ε) =
A1(ε)

z
+
A2(ε)

z2
+
A0(ε)

z + 1
(7.33)
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A1 =



−2ε 1 2ε 0 12(2ε− 1) 2(2ε−1)2

ε
− 3(6ε2−5ε+1)

ε

12(18ε3−27ε2+13ε−2)
ε2

0 1− 2ε 0 0 0 0 0 0

0 3
2

ε+ 1 −18ε 12(2ε− 1) − (2ε−1)2

ε
− 15(2ε−1)(3ε−1)

2ε
6(2ε−1)(3ε−2)(3ε−1)

ε2

0 − 1
6

0 1− 2ε 0 0 0 (2ε−1)(3ε−2)(3ε−1)

ε2

0 − ε
6(2ε−1)

0 0 1− 2ε 0 3ε− 1 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(7.34)

A2 =



0 −1 0 12ε −12(2ε− 1) 0
6(6ε2−5ε+1)

ε −6(18ε3−27ε2+13ε−2)
ε2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(7.35)

A0 =



2ε −1 −2ε 0 −12(2ε− 1) − 2(2ε−1)2

ε

3(6ε2−5ε+1)
ε

− 12(18ε3−27ε2+13ε−2)
ε2

0 0 0 0 0 0 0 0

ε − 3
2

−ε 0 −12(2ε− 1) − (2ε−1)2

ε
15(2ε−1)(3ε−1)

2ε
− 6(2ε−1)(3ε−2)(3ε−1)

ε2

0 1
6

0 2ε− 1 0 0 0 − (2ε−1)(3ε−2)(3ε−1)

ε2

0 ε
6(2ε−1)

0 0 ε 0 1− 3ε 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(7.36)

Elimination of 1/z2

Proceeding as before, the matrix of coefficients of 1/z2 is jordanized, resulting in:

M =



0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (7.37)
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Q(ε) =



−2ε −1 6(2ε−1)(3ε−2)(3ε−1)

ε2
3(2ε−1)(3ε−1)

ε
2(2ε−1)2

ε
0 12ε 2ε

0 1− 2ε 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

0 ε
6(2ε−1)

(3ε−2)(3ε−1)
ε

0 0 1 − 2ε2

2ε−1
0

0 1
6

2(2ε−1)(3ε−2)(3ε−1)

ε2
− (2ε−1)(3ε−1)

ε
0 2(2ε− 1) 1− 4ε 0

0 − 3
2

− 3(2ε−1)(3ε−2)(3ε−1)

ε2
3(2ε−1)(3ε−1)

2ε
− (2ε−1)2

ε
−6(2ε− 1) 0 ε+ 1


.

Also here, M is nilpotent, and choosing u1 = (1; 0; 0; 0; 0; 0; 0; 0)T as a vector to construct P,
the corresponding column in Q (the first one) is null except in the first entry. Is then possible to
apply algorithm 1, and after one iteration the non-fuchsian pole is eliminated, again balancing
with infinity.

The final result is:

A(z; ε) =
A1(ε)

z
+
A0(ε)

z + 1
(7.38)

with

A1 =



1− 2ε −1 0 0 0 0 0 0
0 1− 2ε 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

0 ε
6(2ε−1)

(3ε−2)(3ε−1)
ε

0 0 1 − 2ε2

2ε−1
0

0 1
6

2(2ε−1)(3ε−2)(3ε−1)

ε2
− (2ε−1)(3ε−1)

ε
0 2(2ε− 1) 1− 4ε 0

−ε − 3
2

− 3(2ε−1)(3ε−2)(3ε−1)

ε2
3(2ε−1)(3ε−1)

2ε
− (2ε−1)2

ε
−6(2ε− 1) 0 ε+ 1


,

A0 =



2ε 1 − 6(2ε−1)(3ε−2)(3ε−1)

ε2
− 3(2ε−1)(3ε−1)

ε
− 2(2ε−1)2

ε
0 −12ε −2ε

0 0 − 12(2ε−1)(3ε−2)(3ε−1)
ε

12(2ε− 1)(3ε− 1) 0 −12ε(2ε− 1) 12ε(2ε− 1) 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 − ε
6(2ε−1)

− (3ε−2)(3ε−1)
ε

0 0 −ε 2ε2

2ε−1
0

0 − 1
6

− 2(2ε−1)(3ε−2)(3ε−1)

ε2
(2ε−1)(3ε−1)

ε
0 −2(2ε− 1) 4ε− 1 0

ε 3
2

3(2ε−1)(3ε−2)(3ε−1)

ε2
− 3(2ε−1)(3ε−1)

2ε
− (2ε−1)2

ε
6(2ε− 1) −18ε −ε


,

The vector of MIs has now the following form:

(−s)3+2εz2φ7
6(−s)2ε−1(z(sε(2sε((2ε−1)φ5−εφ6)+(6ε2−5ε+1)φ3)+(18ε3−27ε2+13ε−2)φ1)+(18ε3−27ε2+13ε−2)φ2)

ε2

−(−s)−1+2εzφ1

−z(−s)2εφ3

−(−s)2εzφ4

−(−s)1+2εzφ5

−z(−s)1+2εφ6

−z(−s)2+2εφ8


(7.39)
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7.2.2 Reduction to ε-homogeneous eigenvalues

The residues are the following:

• residues in z = 0

1− 2ε −1 0 0 0 0 0 0
0 1− 2ε 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

0 ε
6(2ε−1)

(3ε−2)(3ε−1)
ε

0 0 1 − 2ε2

2ε−1
0

0 1
6

2(2ε−1)(3ε−2)(3ε−1)

ε2
− (2ε−1)(3ε−1)

ε
0 2(2ε− 1) 1− 4ε 0

−ε − 3
2

− 3(2ε−1)(3ε−2)(3ε−1)

ε2
3(2ε−1)(3ε−1)

2ε
− (2ε−1)2

ε
−6(2ε− 1) 0 ε+ 1


,

with eigenvalues {1; 1; 1; 1 + ε; 1 − 2ε; (1 − 2ε)3} (the subscript indicates that the corre-
sponding Jordan block is n× n, otherwise the block is 1× 1);

• residues in z = −1

2ε −1 −2ε 0 −12(2ε− 1) − 2(2ε−1)2

ε

3(6ε2−5ε+1)
ε

− 12(18ε3−27ε2+13ε−2)
ε2

0 0 0 0 0 0 0 0

ε − 3
2

−ε 0 −12(2ε− 1) − (2ε−1)2

ε
15(2ε−1)(3ε−1)

2ε
− 6(2ε−1)(3ε−2)(3ε−1)

ε2

0 1
6

0 2ε− 1 0 0 0 − (2ε−1)(3ε−2)(3ε−1)

ε2

0 ε
6(2ε−1)

0 0 ε 0 1− 3ε 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


with eigenvalues {0; 0; 0; 0; 0; ε; ε; 2ε− 1};

• residues at infinity

−1 0 6(2ε−1)(3ε−2)(3ε−1)

ε2
3
(
6ε− 5 + 1

ε

)
8ε− 8 + 2

ε
0 12ε 2ε

0 2ε− 1 12(2ε−1)(3ε−2)(3ε−1)
ε

−12
(
6ε2 − 5ε+ 1

)
0 12ε(2ε− 1) −12ε(2ε− 1) 0

0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 ε− 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 8ε− 8 + 2

ε
0 18ε −1


with eigenvalues {0;−1;−1; (−1)3; ε− 1; 2ε− 1}.

All the eigenvalues are of the form bε + n, n ∈ Z, and their sum (each one multiplied by the
dimension of his Jordan block) returns a quantity proportional to ε, so it is possible to balance
them to find residues with eigenvalues all proportional to ε.

To reduce the eigenvalues to an ε-homogeneous expression, the following couples are balanced
(see THESIS_2L_ER for the ordered eigenvalues and the explicit calculations, “m→n” indicates
that the m-th eigenvalue is decreased by 1 and the n-th eigenvalue is increased by 1):

1. 20 → 3∞ (from (1;−1) to (0; 0));

2. 30 → 3∞ (from (1;−1) to (0; 0));
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3. 40 → 4∞ (from (1 + ε;−1) to (ε; 0));

4. 50 → 8−1 (from (1− 2ε;−1 + 2ε) to (2ε; 2ε));

5. 50 → 5∞ (from (1− 2ε;−1) to (−2ε; 0));

6. 40 → 8∞ (from (1− 2ε;−1 + 2ε) to (−2ε; 2ε));

7. 80 → 7∞ (from (1− 2ε;−1 + ε) to (−2ε; ε));

8. 40 → 6∞ (from (1;−1) to (0; 0)).

After this chain, the residues have the form:

• residues in z = 0

−2ε 4
3

28(2ε−1)(3ε−2)(3ε−1)

ε2
− 14(2ε−1)(3ε−1)

ε
0 16(2ε− 1) −4ε 0

0 −4ε − 36(2ε−1)(3ε−2)(3ε−1)
ε

24(2ε− 1)(3ε− 1) 0 −24ε(2ε− 1) 24ε2 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 ε
6(2ε−1)

(3ε−2)(3ε−1)
ε

0 0 0 − 2ε2

2ε−1
0

0 0 − (2ε−1)(3ε−2)(3ε−1)

ε2
(2ε−1)(3ε−1)

ε
0 0 −2ε 0

−ε − 3
2

− 3(2ε−1)(3ε−2)(3ε−1)

ε2
3(2ε−1)(3ε−1)

2ε
− (2ε−1)2

ε
−10(2ε− 1) 22ε ε


,

with eigenvalues {0; 0; 0; ε;−2ε; (−2ε)3};

• residues in z = −1

2ε 1 − 6(2ε−1)(3ε−2)(3ε−1)

ε2
− 3(2ε−1)(3ε−1)

ε
− 2(2ε−1)2

ε
12(2ε− 1) −24ε −2ε

0 0 0 0 0 −24ε(2ε− 1) 24ε2 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 − ε
6(2ε−1)

− (3ε−2)(3ε−1)
ε

0 0 −ε 2ε2

2ε−1
0

0 − 1
6

− (2ε−1)(3ε−2)(3ε−1)

ε2
0 0 −3(2ε− 1) 4ε 0

ε 3
2

3(2ε−1)(3ε−2)(3ε−1)

ε2
− 3(2ε−1)(3ε−1)

2ε
− (2ε−1)2

ε
10(2ε− 1) −22ε −ε


with eigenvalues {0; 0; 0; 0; 0; ε; ε; 2ε};

• residues at infinity

0 − 7
3
− 22(2ε−1)(3ε−2)(3ε−1)

ε2
17
(
6ε− 5 + 1

ε

)
8ε− 8 + 2

ε
28− 56ε 28ε 2ε

0 4ε 36(2ε−1)(3ε−2)(3ε−1)
ε

−24(2ε− 1)(3ε− 1) 0 48ε(2ε− 1) −48ε2 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 ε 0 0
0 1

6
36ε− 4

ε2
− 54 + 26

ε
−6ε+ 5− 1

ε
0 6ε− 3 −2ε 0

0 0 0 0 8ε− 8 + 2
ε

0 0 0


with eigenvalues {0; 0; 04; ε; 2ε}.
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The basis of MIs is now:

−(−s)1+2ε
(
s2zφ7 − 14(z + 1)φ6

)
6(−s)2ε(2s2z(z+1)ε3φ6+(ε(6ε−5)+1)(szεφ3+(3ε−2)(zφ1+φ2)))

szε2

(−s)−1+2εφ1

(−s)2εφ3

(−s)2εφ4

(−s)1+2εφ5
(−s)1+2ε((2ε−1)φ5−(z+1)εφ6)

ε
(−s)2+2εφ8


. (7.40)

20 → 3∞ (from (1;−1) to (0; 0))

As example, the first balance is reported entirely (all the balances are present in detail in THE-
SIS_2L_ER).

20 has associated left eigenvector (it must be decreased) v, while 3∞ has associated right
eigenvector (it must be increased) u:

u =



0
9
(
6ε+ 1

ε − 5
)

ε
4−6ε

1
0
0
0
0


; v† =

(
0 0 0 1 0 0 0 0

)
; (7.41)

v†u = 1; P = uv† =



0 0 0 0 0 0 0 0
0 0 0 9

(
6ε− 5 + 1

ε

)
0 0 0 0

0 0 0 ε
4−6ε 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


; (7.42)

B(P;∞; 0|z) = I− P− zP =



1 0 0 0 0 0 0 0

0 1 0 −9(z+1)(6ε2−5ε+1)
ε 0 0 0 0

0 0 1 (z+1)ε
6ε−4 0 0 0 0

0 0 0 −z 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (7.43)

The new residues are:
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• residues in z = 0

1− 2ε −1 0 9(2ε−1)(3ε−1)
ε

0 0 0 0

0 1− 2ε 0
9(12ε3−16ε2+7ε−1)

ε
0 0 0 0

0 0 1 ε
2(3ε−2)

0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

0 ε
6(2ε−1)

(3ε−2)(3ε−1)
ε

1− 3ε 0 1 − 2ε2

2ε−1
0

0 1
6

2(2ε−1)(3ε−2)(3ε−1)

ε2
− (2ε−1)(3ε−1)

2ε
0 2(2ε− 1) 1− 4ε 0

−ε − 3
2

− 3(2ε−1)(3ε−2)(3ε−1)

ε2
12(2ε−1)(3ε−1)

ε
− (2ε−1)2

ε
−6(2ε− 1) 0 ε+ 1


,

with eigenvalues {0; 1; 1; 1 + ε; 1− 2ε; (1− 2ε)3};

• residues in z = −1

2ε 1 − 6(2ε−1)(3ε−2)(3ε−1)

ε2
− 3(2ε−1)(3ε−1)

ε
− 2(2ε−1)2

ε
0 −12ε −2ε

0 0 − 12(2ε−1)(3ε−2)(3ε−1)
ε

12
(
6ε2 − 5ε+ 1

)
0 −12ε(2ε− 1) 12ε(2ε− 1) 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 − ε
6(2ε−1)

− (3ε−2)(3ε−1)
ε

0 0 −ε 2ε2

2ε−1
0

0 − 1
6

− 2(2ε−1)(3ε−2)(3ε−1)

ε2
(2ε−1)(3ε−1)

ε
0 −2(2ε− 1) 4ε− 1 0

ε 3
2

3(2ε−1)(3ε−2)(3ε−1)

ε2
− 3(2ε−1)(3ε−1)

2ε
− (2ε−1)2

ε
6(2ε− 1) −18ε −ε


with eigenvalues {0; 0; 0; 0; 0; ε; ε;−1 + 2ε};

• residues at infinity

−1 0 6(2ε−1)(3ε−2)(3ε−1)

ε2
−36ε+ 30− 6

ε
8ε− 8 + 2

ε
0 12ε 2ε

0 2ε− 1 12(2ε−1)(3ε−2)(3ε−1)
ε

−180ε2 + 204ε− 75 + 9
ε

0 12ε(2ε− 1) −12ε(2ε− 1) 0
0 0 −1 ε

4−6ε
0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 3ε− 1 0 ε− 1 0 0
0 0 0 −3ε+ 5

2
− 1

2ε
0 0 0 0

0 0 0 21
2

(
−6ε+ 5− 1

ε

)
8ε− 8 + 2

ε
0 18ε −1


with eigenvalues {02;−1;−13;−1 + ε;−1 + 2ε}.

So the neat result consists in an eigenvalue from residues in z = 0 diminished from 1 to 0 (in this
case moreover the eigenvector of this particular eigenvalue is preserved by the transformation),
and in an eigenvalue from residues in infinity increased from -1 to 0 (in this case the eigenvector
is not preserved).

7.2.3 Factoring out ε

As explained in section 5.3.4, to determine the transformation matrix T̃ to pass into a canonical
form, the following system must be solved:{

1
εA0(z; ε)T̃ (ε;µ) = 1

µ T̃ (ε;µ)A0(z;µ)
1
εA−1(z; ε)T̃ (ε;µ) = 1

µ T̃ (ε;µ)A−1(z;µ)
; (7.44)
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once taken µ = t = 1 in the result, the matrix of the transformation is:



(2ε−1)(3ε−2)(3ε−1)

2ε3
0 0 0 0 0 0 0

0 9ε− 27
2

+ 13
2ε
− 1

ε2
0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 3− 2

ε
0 0 0 0

0 0 0 0 9
4

+ 1
4−8ε

− 1
ε

0 0 0

0 0 0 0 0 9
2

+ 1
ε2
− 9

2ε
0 0

0 0 0 0 0 0 (2ε−1)(3ε−2)(3ε−1)

2ε3
0

0 0 0 0 0 0 0 (2ε−1)(3ε−2)(3ε−1)

2ε3


.

This matrix is invertible, and its application to A results in a canonical system of DE:

A = ε



2
z+1
− 2

z
1
z+1

+ 4
3z

56
z
− 12

z+1
− 6
z+1
− 28

z
− 2
z+1

12
z+1

+ 16
z

− 24
z+1
− 4

z
− 2
z+1

0 − 4
z

− 72
z

48
z

0 − 24
z+1
− 24

z
24
z+1

+ 24
z

0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1

6z
− 1

6(z+1)
2
z
− 2

z+1
0 0 − 1

z+1
2
z+1
− 2

z
0

0 − 1
6(z+1)

− 2
z+1
− 2

z
2
z

0 − 3
z+1

4
z+1
− 2

z
0

1
z+1
− 1

z
3

2(z+1)
− 3

2z
6
z+1
− 6

z
3
z
− 3

z+1
− 1
z+1
− 1

z
10
z+1
− 10

z
22
z
− 22

z+1
1
z
− 1

z+1


.

Using IBP-Ids it is possible to rewrite the basis for this problem in terms of UT diagrams,
obtaining:

I =



ε4(−s)3+2εz

ε2(−s)1+2εz

ε2(−s)1+2ε

ε3(−s)1+2ε

ε2(−s)2+2ε

ε4(−s)1+2ε(1 + z)

ε2(−s)2ε

2εs2z + 3 (ε(6ε− 5) + 1)


ε4(−s)2+2ε (p1 + k2)2



. (7.45)
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A = ε



2
z+1
− 2

z
3
z
− 3

z+1
3
z
− 6

z+1
6
z+1
− 12

z
− 2
z+1

12
z
− 12

z+1
2
z+1
− 2

z
2
z+1

0 − 2
z

0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1

2z
− 1

2z
0 0 2

z+1
− 2

z
0 0

0 3
z
− 3

z+1
0 12

z+1
− 12

z
0 0 1

z+1
− 2

z
0

1
z
− 1

z+1
9

2(z+1)
− 9

2z
3
z+1
− 3

z
15
z
− 15

z+1
1
z+1

+ 1
z

18
z+1
− 18

z
2
z
− 2

z+1
1
z
− 1

z+1


(7.46)

It is interesting to notice that the seventh function in the MI vector seems to be not UT:

since ε2(−s)2ε, 2εs2z and are UT (as proven in sections 6.2 and 3.3), but

3 (ε(6ε− 5) + 1) is not, the result is not a priori UT. So, even if the matrix of coefficients is in a
canonical fuchsian form, as said in chapter 4, until BCs are not fixed, there is no certainty that
the solution will be expressed in terms of only UT functions. Even if the determination of the
solution for the current problem is not evaluated here, it can be predicted that the system will
not allow the same MMIs used for the basis of chapter 6, but will instead involve the seventh MI
of the present basis.

7.3 Reduced 3-loop ladder

As last application, the 3× 3 matrix of the sub-problem

∂

∂z


(−s)4+3ε

(−s)3+3ε (p1 + k3)2

(−s)3+3ε (k1 − p3)2

 =

 3ε
z+1 + −3ε−1

z
2ε
z − 2ε

z+1
2ε
z − 2ε

z+1
2ε
z+1

ε
z − ε

z+1 − 2ε
z+1

ε
z+1

ε
z − ε

z+1 0




(−s)4+3ε

(−s)3+3ε (p1 + k3)2

(−s)3+3ε (k1 − p3)2


is studied. Details and calculations can be found in THESIS_3L_ER.

7.3.1 Reduction to fuchsian form

The system is already fuchsian, so it is possible to pass to algorithm 2 directly, to find ε-
homogeneous eigenvalues.

7.3.2 Reduction to ε-homogeneous eigenvalues

There are three residues matrices to check for ε-homogeneous eigenvalues:

• residues in z = 0

A0 =

−3ε− 1 2ε 2ε
0 ε 0
0 ε 0

 (7.47)

with eigenvalues {ε;−1− 3ε; 0};
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• residues in z = −1

A−1 =

3ε −2ε −2ε
2ε −ε −2ε
ε −ε 0

 (7.48)

with eigenvalues {ε; ε; 0};

• residues at infinity

A∞ =

 1 0 0
−2ε 0 2ε
−ε 0 0

 (7.49)

with eigenvalues {1; 02}.

The non-homogeneous parts are all integer, and their sum gives 0, so algorithm 2 can be applied
to reduce the system:

1. 1∞ → 20 (from (1;−1− 3ε) to (0;−3ε)).

The resulting system has the form:

A(z; ε) =

 3ε
z+1 − 3ε

z − 2ε
z+1 − 2ε

z+1
2ε
z+1 − 2ε

z
ε
z − ε

z+1 − 2ε
z+1

ε
z+1 − ε

z
ε
z − ε

z+1 0

 ; I(z) =


−(−s)4+3εz

(−s)3+3ε (p1 + k3)2

(−s)3+3ε (k1 − p3)2

 . (7.50)

Multiplying by ε6 the vector of MIs, and changing sign to the first one, the subsystem of DE for
the three version of the 3-loop ladder topology from the 3-loop ladder problem of section 6.3 is
retrieved:

A(z; ε) =

 3ε
z+1 − 3ε

z
2ε
z+1

2ε
z+1

2ε
z − 2ε

z+1
ε
z − ε

z+1 − 2ε
z+1

ε
z − ε

z+1
ε
z − ε

z+1 0

 ; I(z) =


ε6(−s)4+3εz

ε6(−s)3+3ε (p1 + k3)2

ε6(−s)3+3ε (k1 − p3)2

 . (7.51)
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Chapter 8

Conclusions

Feynman integrals in dimensional regularization obey differential equations with respect to the
masses appearing in their propagators, as well as with respect to the kinematic invariants built
from the momenta associated to their external legs. The method of Differential Equations for
Feynman integrals is one of the mostly common used computational technique in high-energy
theoretical physics for evaluating high-order virtual corrections to scattering processes. Accord-
ingly, the evaluation of the multi-loop integrals proceed by solving the system of differential
equations they obey, rather than addressing their direct integration.

This thesis focused on the discussion and on the mathematical systematization of two of the
most recent ideas to solve differential equations for Feynman integrals, namely Magnus Series
Expansion and Eigenvalue Deflation. When applicable, they yield a dramatic simplification of
the algorithms for determining the solutions, turning the solving strategy into a purely algebraic
problem.

Algebra is ubiquitous. On the one side, it controls the transformation to bring the systems of
differential equations into a canonical form where the dependence on the space-time dimension is
factorized from the kinematics, by means of matrix similarity transformations, rank reductions
and eigenvalue balances. On the other side, it controls the shape of the solution, which, for
canonical systems, can be naturally expressed in terms of iterated integrals as Dyson series
expansion, or equivalently as Magnus series expansion, in the space-time dimensions.

Elaborating on the methodology present in the literature, the mathematical aspects of the
Magnus transform were discussed in details, while the algorithm of Eigenvalue Deflation for
differential equations was derived anew starting from the concepts of Deflation and Balance
Transformation.

The two techniques were applied to a certain class of integrals entering the virtual corrections
for 2 → 2 scattering processes among massless particles in QCD, such as dijet production,
pp → jj (known at NNLO), and to 2 → 1 processes, like Higgs production via gluon fusion in
the heavy top limit (known at NNNLO within the threshold expansion approximation), and more
generally for the 3-loop vertex form factors in the massless approximation (known at NNNLO). In
particular, the thesis contains the detailed calculation of the 1-loop box graph, the 2-loop ladder
graph and the non-trivial 3-loop ladder graph, and of all integrals related to their subdiagrams.
The corresponding results were given as Laurent series around four space-time dimensions up to
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order 7 in the expansion parameter, that is one order higher than the known results present in
the literature. The coefficients of the Laurent series are pure transcendental functions, expressed
in terms of Harmonic Polylogarithms. This achievement shows how the method can be iterated
at will, returning all the needed orders to the proper evaluation of a graph.

Besides their application to high-accuracy collider phenomenology, the illustrated methods
and results can be used for the study of formal properties of scattering amplitudes. More gener-
ally, they can be employed for investigating properties of quantum field theory which cannot be
deduced simply from the structure Lagrangian. There are properties that emerge only through
direct calculations, as it happened for the iterative behaviour of supersymmetric amplitudes,
as well as for the existence of dualities between supersymmetry and supergravity amplitudes,
recently exploited for investigation of the divergent behaviour of supergravity.

Concluding, the problems still open at the end of this work are numerous, even with respect
to only the method of differential equations. Some selected topics in this vaste outlook are:

• The search for uniform transcendental functions, and the notion of uniform transcendental-
ity itself are not fully understood: given a Feynman integral, there is no algorithm to find
its uniform transcendental form. The same Euler’s gamma γ is not yet rigorously proven
to have transcendental weight 1. Moreover, it is not known if the homogeneous transcen-
dentality plays a fundamental role in the evaluation of the solutions: to use Magnus Series
Expansion, uniform transcendental functions are warmly required, while for Eigenvalue
Deflation this property appear not to be essential.

• In the present work, Magnus Series have always shown a finite number of terms in their
construction. Studying massive sunsets, Magnus Series with an infinite number of terms
appear. It is then important to understand if these series admit a sum in terms of known
finite function to perform a change of basis in order to reach canonical form.

• The eigenvalue deflation technique presents not negligible constraints for the class of system
to which it can be applied. It is then important to understand if these constraints can
be relaxed, allowing a wider class of systems to be reduced to canonical form using the
algorithms derived in this work. Moreover, differently from Magnus Series Expansion, the
Eigenvalue Deflation method can be applied only to single-scale problems. A generalization
to just two-scale problems of this completely algebraic method will allow to cast a wide class
of systems into a canonical form without the huge preliminary study on the transcendental
properties of the master integrals.
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Appendix A

HPLs evaluation

Here the algorithms to manage HPLs up to weight 8 are presented, implemented using Mathematica
v.10.2.

First of all, the functions to order the HPLs of a given weight following the hints given in
section 3.2.3, and the function to extract MHPLs and their relations with the other HPLs, are
explained.

A.1 Construction of MHPLs and HPL tables

A.1.1 Organizer function

This function, given an alphabet alph (i.e. a list of symbols, in this case {0; 1;−1}), and a weight
w generates all the possible w-disposition with repetitions of the element of alph, and organize
them in an ordered list following the section 3.2.3. The alphabet is used as a set of signs forming
a w-base system, as

alph (w = 3) Base w = 3

0 ⇔ 0
1 ⇔ 1
−1 ⇔ 2

so, in alph = {0; 1;−1}, terms ending with 0s will be multiple of the length L = 3 of alph,
terms starting with 1 and not ending with 0 will be of the form 3w−1 + 3i + j, i = 1; . . . ;w − 2
and j = 1; 2, terms starting with −1 and not ending with 0 will be of the form 2 · 3w−1 + 3i + j,
i = 1; . . . ;w − 2 and j = 1; 2. The list is then generated ordering numbers.

To allow an easier check with the existing results, HPLs with leftmost −1 have not always
been reduced, so it is possible to find them in the MHPL basis. This does not affect the validity
of the results in any way, because extra divergencies generated by these terms are compensated
by suitable counterterms of the form [H(−1;x)]i.
ORGANIZER[alph_List ,w_]:=
Module [{tmp ,avar ,bvar ,cut ,svar ,svar2 ,i,j,k,FLAG ,sep ,che ,list1 ,aaa},
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For[i=1,i<w,i++,
If [Length[avar ]==0,
H avar ={( Length[alph]^i -1)/( Length[alph]-1)},
avar=Join [{( Length[alph]^i-1)/( Length[alph]-1)},avar]

]
];

(*Terms of the form 0;...;0;1;...;1*)
For[i=1,i<w-1,i++,

For[j=1,j<w-i,j++ ,
avar=Join [{(2 Length[alph ]^(i+j)-Length[alph]^i-1)/( Length[alph]-1)},avar]

]
];

(*Terms of the form 0;...;0; -1;...; -1;1;...;1*)
For[i=1,i<w,i++,

avar=Join [{2 (Length[alph]^i-1)/( Length[alph]-1)},avar]
];

(*Terms of the form 0;...;0; -1;...; -1*)
For[i=2,i<Length[alph ]^(w-1),i++,

FLAG =0;
For[j=1,j<= Length[avar],j++,

If[avar[[j]]==i||Mod[i,Length[alph ]]==0,
FLAG =1;
j=Length[avar]

]
];
If[FLAG==0,

avar=Join[{i},avar]
]

];
(*Terms of the form 0;...;0; a_1 ;...; a_n*)

For[i=1,i<w,i++,
avar=Join [{(2 Length[alph]^w-Length[alph]^i-1)/( Length[alph]-1)},avar]

];
(*0 and 1 at the top of the list*)

For[i=0,i<( Length[alph ]^(w-1)),i++,(* rightmost 0*)
aaa=i(Length[alph ]);
If[i==0,

bvar={aaa},
bvar=Join[bvar ,{aaa}]

]
];
For[i=0,i<Length[alph ]^(w-2),i++,(* leftmost 1*)

For[j=1,j<Length[alph],j++,
If[j==1,

If[Length[alph ]^(w-1)+i*Length[alph ]+1=!=( Length[alph]^w-1)/
(Length[alph]-1),

bvar=Join[bvar ,{ Length[alph ]^(w-1)+i*Length[alph]+j}]],
bvar=Join[bvar ,{ Length[alph ]^(w-1)+i*Length[alph]+j}]

]
]

];
bvar=Join[bvar ,{( Length[alph]^w-1)/( Length[alph ] -1)}];
cut=Length[bvar];
avar=Join[bvar ,avar];
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For[i=Length[alph]^w-1,i>=0,i--,
FLAG =0;
For[j=1,j<= Length[avar],j++,

If[avar[[j]]==i,
FLAG =1;
j=Length[avar ]+2

]
];
If[FLAG==0,

avar=Insert[avar ,i,cut +1]
]

];
svar=IntegerDigits[avar ,Length[alph],w];
For[i=1,i<= Length[svar],i++,(* Labelling H functions *)

For[j=1,j<=w,j++,(* Labelling function indices *)
For[k=0,k<Length[alph],k++,(* Labelling position in the alphabet *)

If[svar[[i,j]]==k,svar[[i,j]]= alph[[k+1]];k=Length[alph]
]

]
]

];
Clear[H];
Clear[x];
svar=H/@svar;
svar=svar/.H[{ list1__}]->H[{list1},x];
Return[svar]

];

A.1.2 Building shuffle relations

This group of functions generates the relations obtained by all the possible shuffle products with
a given total weight.

• shuffle generates the shuffle of two lists.

• PERM generates all the possible HPLs of given weight.

• BUILDER generates an ordered list of all the shuffle products at weight w; the first element of
the output is the list of products, the second one is the list of corresponding sums obtained
from the shuffle.

The function shuffle is from [57].
shuffle[s1_ ,s2_]:=
Module [{p,tp ,accf ,ord ,shuffle},

p=Permutations@Join [1&/@s1 ,0&/ @s2];
tp=BitXor[p,1];
accf=Accumulate [#\[ Transpose ]]\[ Transpose] #&;
ord=accf[p]+( accf[tp]+ Length[s1]) tp;
shuffle=Outer[Part ,{Join[s1,s2]},ord ,1]// First;
Return[shuffle]

];
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PERM[alph_List ,m_]:=
Module [{tmp ,n},

tmp=alph;
Do[ tmp=Join[tmp ,alph],{n,m-1}];
Return[Permutations[tmp ,{m}]]

];

BUILDER[list_List ,w_]:=
Module [{list1 ,list2 ,list1H ,list2H ,listMOLT ,listSUM ,somma ,a,b,c,el,soluz ,lista4 ,

lista5 ,lista7},
If[w==1, Return [" ERROR"],

For[a=1,a<(w+1)/2 ,a++,
list1=PERM[list ,a];
list2=PERM[list ,w-a];
Clear[H];
Clear[x];
list1H=list1;
list2H=list2;
list1H=H/@list1;
list1H=list1H /.H[{ lista4__}]->H[{ lista4},x];
list2H=H/@list2;
list2H=list2H /.H[{ lista5__}]->H[{ lista5},x];
If[a==w/2,

For[b=1,b<= Length[list1],b++,
For[c=1,c<=b,c++,

If[a==1&&b==1&&c==1, listMOLT ={ list1H [[b]]* list2H [[c]]},
listMOLT=Join[listMOLT ,{ list1H [[b]]* list2H [[c]]}]

];
If[a==1&&b==1&&c==1, listSUM ={ shuffle[Part[list1 ,b],Part[list2 ,c]]},

listSUM=Join[listSUM ,{ shuffle[Part[list1 ,b],Part[list2 ,c]]}]]
];

],
For[b=1,b<= Length[list1],b++,

For[c=1,c<= Length[list2],c++,
If[a==1&&b==1&&c==1,

listMOLT ={ list1H [[b]]* list2H [[c]]},
listMOLT=Join[listMOLT ,{ list1H [[b]]* list2H [[c]]}]

];
If[a==1&&b==1&&c==1, listSUM ={ shuffle[Part[list1 ,b],Part[list2 ,c]]},

listSUM=Join[listSUM ,{ shuffle[Part[list1 ,b],Part[list2 ,c]]}]
]

];
]

]
];
For[a=1,a<= Length[listSUM],a++,
listSUM [[a]]=H/@listSUM [[a]];
listSUM [[a]]= listSUM [[a]]/.H[{ lista7__}]->H[{ lista7},x];
somma =0;

For[b=1,b<= Length[listSUM [[a]]],b++,
somma=somma+listSUM [[a,b]];

];
listSUM [[a]]= somma;

];
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Return [{listMOLT ,listSUM }]
]

];

A.1.3 Solving equations

BUILDER3 is a function using Gauss’ algorithm to solve linear equations. The necessity to build
such a function instead of using the command Solve already present in Mathematica is due
essentially to two reasons:

• Solve needs several hours to only solve w = 5 relations (time needed grows more than
linearly with the weight), while Gauss’ algorithm solves all the relations up to w = 8 in
few hours;

• Since the number of MHPLs is known, but the single elements are not, it is only possible
to have a preference list for the reduction; Solve does not take into account the order of
the equations in the system, so no control is possible without knowing the exact elements
of the basis; Gauss’ algorithm allows to initially solve first equation, related to desired
reducible HPLs, assuring more control on the choice of the basis of MHPLs.

SOLVER3[listL_List ,el_List ]:=
Module [{tmp ,i,j,k,sol ,sys ,sysold ,ren ,kk ,sysres ,elc ,elvar},

sys=Table[listL [[1]][[k]]-listL [[2]][[k]],{k,1,Length[listL [[1]]]}];
sysres=Table[Coefficient[sys[[j]],el[[i]]],{j,1,Length[sys]},

{i,1,Length[el]}];
For[i=1,i<= Length[sysres],i++,

sysres [[i]]= Join[sysres [[i]],{listL[[1,i]]}]
];
sysres=RowReduce[sysres ];
elc=Join[el ,{1}];
For[i=1,i<= Length[sys],i++,

If[sysres [[i,Length[sysres [[1]]]]]==0 ,
sysres=Drop[sysres ,-(Length[sysres]-i+1)];
i=Length[sys ]+1

]
];
Print[" System reduced ."];
elvar =0;
For[i=1,i<= Length[sysres],i++,

For[j=1,j<= Length[el],j++,
If[sysres [[i,j]]=!=0 ,

If[Length[elvar ]==0,
elvar={el[[j]]},
elvar=Join[elvar ,{el[[j]]}]

];
j=Length[el]+2

]
]

];
sol=Flatten[Solve[sysres.elc==0,elvar ]];
Return[sol]
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];

A.1.4 Retrieving MHPLs

REN[listold_List ,list1_List ]:=
Module [{tmp ,i},

tmp =0;
For[i=1,i<= Length[list1],i++,

If[listold [[i]]== list1[[i]],
If[Length[tmp]==0,

tmp={list1 [[i]]},
tmp=Join[tmp ,{list1[[i]]}]

]
]

];
Return[tmp]

];

To find MHPLs and relation at weight w MHPLs of the previous weight must be known,
together with the shuffle relations. A possible code that can be written to use the previous
functions is:

F1[p]:=
Module [{tmp},

If[i==1,
hpl[[i]]={H[{0},x],H[{1},x],H[{-1},x]};
hpls[[i]]=hpl[[i]];
rn[[i]]=hpl[[i]],
hpl[[i]]= ORGANIZER[alfa ,i];
shuffle [[i]]= BUILDER[alfa ,i];
shuffle [[i]]= shuffle [[i]]/. subp[[i -1]]// Simplify;
subp[[i]]= SOLVER3[shuffle [[i]],hpl[[i]]];
hpls[[i]]=hpl[[i]]/. subp[[i]]// Simplify;
rn[[i]]=REN[hpl[[i]],hpls[[i]]]

]
];

where subp[[i-1]] is the list of relations of the previous weight, already evaluated.
With the enlisted functions MHPLs and relations have been determined up to weight 8.1

Example 14 (HPLs at w = 1; 2; 3). MHPLs and substitution tables for w = 1; 2; 3 are enlisted.

w = 1 MHPLs There are 3 MHPLs:

H(0;x)
H(1;x)
H(−1;x)

Relations There are no relations, all the HPLs at w = 1 are MHPLs.

1See ancillary files THESIS_HPL and THESIS_MHPL for the functions, and THESIS_HPL_LIST for the
results.
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w = 2 MHPLs There are 3 MHPLs:

H(−1; 1;x)
H(0;−1;x)
H(0; 1;x)

Relations There are 6 relations:

H(0; 0;x) → 1
2
H2(0;x)

H(1; 0;x) → H(0;x)H(1;x)−H(0; 1;x)
H(−1; 0;x) → H(−1;x)H(0;x)−H(0;−1;x)
H(1;−1;x) → H(−1;x)H(1;x)−H(−1; 1;x)
H(1; 1;x) → 1

2
H2(1;x)

H(−1;−1;x) → 1
2
H2(−1;x)

w = 3 MHPLs There are 8 MHPLs:

H(−1; 1; 1;x)
H(−1;−1; 1;x)
H(0; 1;−1;x)
H(0;−1;−1;x)
H(0; 0;−1;x)
H(0;−1; 1;x)
H(0; 1; 1;x)
H(0; 0; 1;x)

Relations There are 19 relations:

H(0; 0; 0;x) → 1
6
H3(0;x)

H(0; 1; 0;x) → H(0;x)H(0; 1;x)− 2H(0; 0; 1;x)
H(0;−1; 0;x) → H(0;x)H(0;−1;x)− 2H(0; 0;−1;x)
H(1; 0; 0;x) → 1

2
H(1;x)H2(0;x)−H(0; 1;x)H(0;x) +H(0; 0; 1;x)

H(1; 1; 0;x) → 1
2
H(0;x)H2(1;x)−H(0; 1;x)H(1;x) +H(0; 1; 1;x)

H(1;−1; 0;x) → H(−1;x)H(0;x)H(1;x)−H(0;−1;x)H(1;x)−H(0;x)H(−1; 1;x) +H(0;−1; 1;x)
H(−1; 0; 0;x) → 1

2
H(−1;x)H2(0;x)−H(0;−1;x)H(0;x) +H(0; 0;−1;x)

H(−1; 1; 0;x) → H(0;x)H(−1; 1;x)−H(−1;x)H(0; 1;x) +H(0; 1;−1;x)
H(−1;−1; 0;x) → 1

2
H(0;x)H2(−1;x)−H(0;−1;x)H(−1;x) +H(0;−1;−1;x)

H(1; 0; 1;x) → H(1;x)H(0; 1;x)− 2H(0; 1; 1;x)
H(1; 0;−1;x) → H(1;x)H(0;−1;x)−H(0;−1; 1;x)−H(0; 1;−1;x)
H(1; 1;−1;x) → 1

2
H(−1;x)H2(1;x)−H(−1; 1;x)H(1;x) +H(−1; 1; 1;x)

H(1;−1; 1;x) → H(1;x)H(−1; 1;x)− 2H(−1; 1; 1;x)
H(1;−1;−1;x) → 1

2
H(1;x)H2(−1;x)−H(−1; 1;x)H(−1;x) +H(−1;−1; 1;x)

H(1; 1; 1;x) → 1
6
H3(1;x)

H(−1; 0; 1;x) → H(−1;x)H(0; 1;x)−H(0;−1; 1;x)−H(0; 1;−1;x)
H(−1; 0;−1;x) → H(−1;x)H(0;−1;x)− 2H(0;−1;−1;x)
H(−1; 1;−1;x) → H(−1;x)H(−1; 1;x)− 2H(−1;−1; 1;x)
H(−1;−1;−1;x) → 1

6
H3(−1;x)
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A.2 Series expansion

In order to fix BC for the l-loop ladder problems, the MHPLs have been expanded around the
possible points of divergence, i.e. x0 = 0; 1;−1, up to o0

(
(x− x0)15

)
.

To perform the expansion in x0 for a MHPL H(a1; . . . ; aw;x) with w ≥ 2, the integral
representation

∫ x
0 f(a1; τ)H(a2; . . . ; an; τ) dτ will be used (note that H(0; . . . ; 0;x) is not part of

the MHPLs, except for H(0;x), so the integral representation is legit); for w = 1 MHPLs the
expansion will be carried out on the well-known primitive.

Starting from the integral form, f(a1; τ) will be substituted with the corresponding series
expansion around x0, as H(a2; . . . ; an; τ), once it has been expressed in terms of MHPLs. After
that, the expression will be integrated term by term. For x0 = 0

∫ x0

0 dτ will be used, whilst
for x0 = 1 the integration path is divided into

∫ 1
0 dτ and

∫ x0

1 dτ ; the first one is always a finite
integral in the set of MHPLs, and its values are expressed in terms of ζ functions and constants.
The case x0 = −1 will be reabsorbed in x0 = 1 using proposition 6. Note finally that the
divergent parts, using this approach, are encoded only in terms like H(0;x) for 0 and H(1;x)
for 1 (limx→x0(x− x0) logp(x− x0) = 0).

First of all, series expansion in x0 = 0 will be evaluated, followed by expansions in x0 = 1
and x0 = −1 at the end.
CloseKernels;
LaunchKernels [8]

Clear[listint0 ];
Clear[listint1 ];
w=8;
ord =15;

To overcome long-time evaluations with direct use of the command Integrate, the integration
has been performed on a set of selected terms of the form xp logq x, that, with a suitable change
of variable x, are the only ones that can be present in the series expansion both around 0 and
around 1 (logq x is not expanded in the point 0, so it will multiply the expansion of the regular
part). This set will provide a list of substitution used instead of direct integration. Notice, as
expected, that the value of the primitive of each term of the series is always 0 when evaluated
in 0 in expansions around 0 and when evaluated in 1 in expansion around 1, except for H(0;x)
and H(1;x), respectively.
listint0 =0;
For[k=0,k<=ord ,k++,

For[j=1,j<=w,j++,
tm=Integrate [\[Xi]^k Log [\[Xi]]^j,\[Xi]];
If[k==0&&j==1,

listint0 ={x^k Log[x]^j->tm},
listint0=Join[listint0 ,{x^k Log[x]^j->tm}]

]
]

];
For[k=1,k<=ord ,k++,

tm=Integrate [\[Xi]^k,\[Xi]];
listint0=Join[listint0 ,{x^k->tm}];

];
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SetDirectory[NotebookDirectory []];
subp=ToExpression[Import [" Substitutions8.txt","List "]];
rn=ToExpression[Import ["MHPL8.txt","List "]];

The functions SMONT0 and SMONT1 order the expansions and perform integration, respectively
in 0 and 1.
SMONT0[w_,HE_List(*,fE_List*),ord_ ,kk_ ,LL_ ]:=
Module [{tmp ,cont ,ext ,ww,j,val0 ,val\[Xi],valx},

tmp=LL;
cont=LL/.H[lista__ ,x]->lista;
If[Length[cont ]==0,

ext=tmp ,
If[Length[cont ]==1,

ext=tmp;
ext=ext/. Normal[HE[[kk ,1]]];
ext=ext/. Normal[fE[[kk]]],
ext=tmp/.H[lista__ ,x]->f[{First[lista]},x]H[Drop[lista ,{1}] ,x];
For[j=w,j>=1,j--,

ext=ext/.subp[[j]]
];
For[ww=1,ww <=w,ww++,

ext=ext/. Normal[HE[[kk ,ww]]]
];
ext=ext/. Normal[fE[[kk]]];
ext=ext+O[x]^(ord +1);
ext=Normal[ext];
Clear[x];
Clear[xx];
ext=ext// Expand;
ext=ext/.q_ x^n_/;n>=ord:>0;
ext=ext/.x^n_/;n>=ord:>0;
ext=ext*xx// Expand;
ext=ext/.x^n_ xx ->x^n;
ext=ext/.x xx->x;
ext=ext/.x^n_ Log[x]^m_ xx->x^n Log[x]^m;
ext=ext/.Log[x]^m_ xx ->Log[x]^m;
ext=ext/.Log[x] xx ->Log[x];
ext=ext/.x Log[x] xx ->x Log[x];
ext=ext/.x Log[x]^m_ xx->Log[x]^m;
ext=ext/.x^n_ Log[x] xx->x^n Log[x];
ext=ext/. listint0;
ext=ext/.xx ->\[Xi];
val0=ext/.Log[\[Xi]]->1;
val0=val0 /.\[Xi]->0;
val\[Xi]=ext /.\[Xi]->x;
ext=-val0+val\[Xi]+O[x]^( ord +1);
ext=ext// Expand;
ext=ext+O[x]^(ord +1);

]
];
Return[ext]

];

SMONT1[w_,HE_List ,fE_List ,ord_ ,kk_ ,LL_ ]:=



174 APPENDIX A. HPLS EVALUATION

Module [{tmp ,cont ,ext ,agg ,ww,j,val1 ,val\[Xi],val0},
tmp=LL;
agg=tmp/.H[lista__ ,x]->H[lista ,1];
cont=LL/.H[lista__ ,x]->lista;
If[Length[cont ]==0,

ext=tmp ,
If[Length[cont ]==1,

ext=tmp;
ext=ext/. Normal[HE[[kk ,1]]];
ext=ext/. Normal[fE[[kk]]],
ext=tmp/.H[lista__ ,x]->f[{First[lista]},x]H[Drop[lista ,{1}] ,x];
For[j=w,j>=1,j--,

ext=ext/.subp[[j]]
];
For[ww=1,ww <=w,ww++,

ext=ext/. Normal[HE[[kk ,ww]]]
];
ext=ext/. Normal[fE[[kk]]];
ext=ext+O[x,1]^( ord +1);
ext=Normal[ext];
Clear[x];
ext=ext/.x->1-\[Xi];
ext=ext// Expand;
ext=ext/.q_ \[Xi]^n_/;n>=ord:>0;
ext=ext /.\[Xi]^n_/;n>=ord:>0;
ext=ext*xx// Expand;
ext=ext /.\[Xi]^n_ xx ->\[Xi]^n;
ext=ext /.\[Xi] xx ->\[Xi];
ext=ext /.\[Xi]^n_ Log [\[Xi]]^m_ xx ->\[Xi]^n Log[\[Xi]]^m;
ext=ext/.Log[\[Xi]]^m_ xx->Log[\[Xi]]^m;
ext=ext/.Log[\[Xi]] xx ->Log [\[Xi]];
ext=ext /.\[Xi] Log[\[Xi]] xx ->\[Xi] Log [\[Xi]];
ext=ext /.\[Xi] Log[\[Xi]]^m_ xx->Log[\[Xi]]^m;
ext=ext /.\[Xi]^n_ Log [\[Xi]] xx ->\[Xi]^n Log [\[Xi]];
Clear[xx];
ext=ext /.\[Xi]->x;
ext=ext/. listint0;
ext=ext/.xx ->\[Xi];
val1=ext/.Log[\[Xi]]->1;
val1=val1 /.\[Xi]->0;
val1=-val1;
val\[Xi]=ext /.\[Xi]->1-x;
val\[Xi]=-val\[Xi];
ext=agg -val1+val\[Xi];
ext=ext/.x->1-\[Xi];
ext=ext// Expand;
ext=ext /.\[Xi]->1-x;
ext=ext+O[x,1]^( ord+1)

]
];
Return[ext]

];

This function put the MHPLs in integral representation and apply the functions of series
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expansion.

EXPANDERPAR2[w_ ,ord_ ,HE_ ,p_,HH_]:=
Module [{tmp ,tmp2 ,tmp3(*,HE*),i,j,k,h,kk ,App ,lista ,ku,listb ,listc ,App1 ,App2 ,ww ,

LApp ,LApp2 ,add ,pro ,ii ,jj,HE2 ,ind ,HE22},
Clear[lista];
Clear[H];
Clear[f];
HE2=HE;
Clear[listb];
Clear[listc];
j=w;
k=p+2;
Clear[H];
Clear[f];
kk=k;
If[k==1,

tmp=HH/.H[lista__ ,x]->lista;
App =(-1)^ Sum[tmp[[i]]^2 ,{i,1,Length[tmp]}]HH;
App=App/.H[lista__ ,x]->H[-lista ,x];
kk=k+2,
App =1*HH;
App=App/.H[lista__ ,x]->H[lista ,x]

];
For[ind=j,ind >=1,ind --,

App=App/.subp[[ind]]
];
LApp=MonomialList[App];
LApp=Map[FactorList ,LApp ,{1}];
If[kk==2,

LApp=Map[SMONT0[j,HE2 ,fE,ord ,kk ,#]&,LApp ,{3}]
];
If[kk==3,

LApp=Map[SMONT1[j,HE2 ,fE,ord ,kk ,#]&,LApp ,{3}]
];
tmp3 =0;
For[ii=1,ii <= Length[LApp],ii++,

tmp2 =1;
For[jj=1,jj <= Length[LApp[[ii]]],jj++,

tmp2=tmp2*LApp[[ii ,jj ,1]]^ LApp[[ii ,jj ,2]]
];
tmp3=tmp3+tmp2;

];
If[k==3,

tmp3=tmp3+O[x ,1]^( ord+1),
If[k==2,

tmp3=tmp3+O[x]^(ord+1),
If[k==1,

tmp3=tmp3// Normal;
tmp3=tmp3/.x->(-x);
tmp3=tmp3/.x->y-1;
tmp3=tmp3// Simplify;
tmp3=tmp3// Expand;
tmp3=tmp3+O[y]^(ord +1);
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tmp3=tmp3// Normal;
tmp3=tmp3/.y->x+1;
tmp3=tmp3+O[x, -1]^( ord+1),
Print[" ERROR"]

]
]

];
tmp=HH/.H[lista__ ,x]->lista;
HE22=H[tmp ,x]->tmp3;
Return[HE22]

];

Series expansions of the f and of the MHPLs at w = 1. The last part loads expansions in
previous points and weights (expansions in different points are used only for x0 = −1, where also
series in x0 = 1 are used).
HE={{H[{-1},x]->Log [1+x],
H[{0},x]->(Normal[Series[Log[x]+I \[Pi],{x,1,ord }]]/.x->(-x))+O[x,-1]^( ord+1),
H[{1},x]->(Normal[Series[-Log [1+x],{x,1,ord }]]/.x->(-x))+O[x, -1]^(ord+1)},
{H[{-1},x]->Series[Log[1+x],{x,0,ord}],
H[{0},x]->Log[x],
H[{1},x]->Series[-Log[1-x],{x,0,ord}]},
{H[{-1},x]->Series[Log[1+x],{x,1,ord}],
H[{0},x]->Series[Log[x],{x,1,ord}],
H[{1},x]->-Log[1-x]}};
Clear[iii];
For[i=1,i<=3,i++,

For[j=2,j<=w,j++,
If[j==2,

HE[[i]]= Join[{HE[[i]]},{iii ->iii}],
HE[[i]]= Join[HE[[i]],{iii ->iii}]

]
]

];
SetDirectory[NotebookDirectory []];
(* Expansions of previous points and weights loaded .*)
HE [[3]]= ToExpression[Import [" HPL_in_1.txt","List "]];
HE [[1]]= ToExpression[Import ["HPL_in_ -1 _PAR7.txt","List "]];

fE={{f[{-1},x]->1/(1+x),
f[{0},x]->Series [1/x,{x,-1,ord}],
f[{1},x]->Series [1/(1 -x),{x,-1,ord}]},
{f[{-1},x]->Series [1/(1+x),{x,0,ord}],
f[{0},x]->1/x,
f[{1},x]->Series [1/(1 -x),{x,0,ord}]},
{f[{-1},x]->Series [1/(1+x),{x,1,ord}],
f[{0},x]->Series [1/x,{x,1,ord}],
f[{1},x]->1/(1-x)}};

This block contains evaluation information, like the weight, indicated as index.
(*Block with evaluation information .*)
index =8;
HEP=ParallelTable[EXPANDERPAR2[index ,ord ,HE ,-1,rn[[index ,h]]],{h,1 ,100}];
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HEP=HEP// Flatten;
SetDirectory[NotebookDirectory []];
Export ["HPL_ -1_8_001 -100. txt", HEP];

Quit [];

Function EXPANDERMOD2 is analogous to EXPANDERPAR2, without upgrades for parallel calcu-
lations. All the functions and the series expansions of all the MHPLs around 1, 0 and −1, up to
order 15 and weight 8 can be found in THESIS_SERIES_TABLES.nb,
THESIS_SERIES_DEVELOPER.m and THESIS_SERIES.nb. Random samplings of the re-
sults have been compared with previously known expansions, for points 0 and 1, up to order 10
and weight 7.
Example 15 (Series expansions for H(0; 1;−1;x)).
• Around x→ 0

H(0; 1;−1;x) =

=
1

4
x2 +

1

18
x3 +

5

96
x4 +

7

300
x5 +

47

2160
x6 +

37

2940
x7 +

319

26 880
x8 +

533

68 040
x9 +

1879

252 000
x10+

+
1627

304 920
x11 +

20 417

3 991 680
x12 +

18 107

4 684 680
x13 +

263 111

70 630 560
x14 +

237 371

81 081 000
x15 + o0

(
x15) . (A.1)

• Around x→ 1

H(0; 1;−1;x) =

= (1− x) log 2 log(1− x) +
1

2
(1− x)2 log 2 log(1− x) +

1

3
(1− x)3 log 2 log(1− x)+

+
1

4
(1− x)4 log 2 log(1− x) +

1

5
(1− x)5 log 2 log(1− x) +

1

6
(1− x)6 log 2 log(1− x)+

+
1

7
(1− x)7 log 2 log(1− x) +

1

8
(1− x)8 log 2 log(1− x) +

1

9
(1− x)9 log 2 log(1− x)+

+
1

10
(1− x)10 log 2 log(1− x) +

1

11
(1− x)11 log 2 log(1− x) +

1

12
(1− x)12 log 2 log(1− x)+

+
1

13
(1− x)13 log 2 log(1− x) +

1

14
(1− x)14 log 2 log(1− x) +

1

15
(1− x)15 log 2 log(1− x)+

+H(0; 1;−1; 1) + [−H(−1; 1; 1) + log 2] (x− 1) +

[
−1

4
+

1

2
H(−1; 1; 1)− log 2

4

]
(x− 1)2+

+

[
3

16
− 1

3
H(−1; 1; 1) +

log 2

9

]
(x− 1)3 +

[
− 83

576
+

1

4
H(−1; 1; 1)− log 2

16

]
(x− 1)4+

+

[
1337

11 520
− 1

5
H(−1; 1; 1) +

log 2

25

]
(x− 1)5 +

[
− 33 497

345 600
+

1

6
H(−1; 1; 1)− log 2

36

]
(x− 1)6+

+

[
5587

67 200
− 1

7
H(−1; 1; 1) +

log 2

49

]
(x− 1)7 +

[
− 136 919

1 881 600
+

1

8
H(−1; 1; 1)− log 2

64

]
(x− 1)8+

+

[
35 054 939

541 900 800
− 1

9
H(−1; 1; 1) +

log 2

81

]
(x− 1)9 +

[
− 946 522 553

16 257 024 000
+

1

10
H(−1; 1; 1)− log 2

100

]
(x− 1)10+

+

[
946 538 429

17 882 726 400
− 1

11
H(−1; 1; 1) +

log 2

121

]
(x− 1)11+

+

[
− 114 531 943 709

2 360 519 884 800
+

1

12
H(−1; 1; 1)− log 2

144

]
(x− 1)12+

+

[
458 129 108 861

10 228 919 500 800
− 1

13
H(−1; 1; 1) +

log 2

169

]
(x− 1)13+
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+

[
− 77 423 915 447 309

1 861 663 349 145 600
+

1

14
H(−1; 1; 1)− log 2

196

]
(x− 1)14+

+

[
38 711 978 428 267

997 319 651 328 000
− 1

15
H(−1; 1; 1) +

log 2

225

]
(x− 1)15 + o0

(
(x− 1)15) . (A.2)

• Around x→ −1

H(0; 1;−1;x) =

= −H(−1; 1; 1)(1 + x) +
1

8
(1 + x)2(3− 4H(−1; 1; 1)− 2 log(1 + x))+

+
1

144
(1 + x)3[37− 48H(−1; 1; 1)− 30 log(1 + x)]+

+ (1 + x)4

[
107

576
− 1

4
H(−1; 1; 1)− 1

6
log(1 + x)

]
+

+ (1 + x)5

[
8257

57 600
− 1

5
H(−1; 1; 1)− 131

960
log(1 + x)

]
+

+ (1 + x)6

[
13 369

115 200
− 1

6
H(−1; 1; 1)− 661

5760
log(1 + x)

]
+

+ (1 + x)7

[
953

9800
− 1

7
H(−1; 1; 1)− 1327

13 440
log(1 + x)

]
+

+ (1 + x)8

[
314 543

3 763 200
− 1

8
H(−1; 1; 1)− 1163

13 440
log(1 + x)

]
+

+ (1 + x)9

[
357 205 771

4 877 107 200
− 1

9
H(−1; 1; 1)− 148 969

1 935 360
log(1 + x)

]
+

+ (1 + x)10

[
1 059 178 397

16 257 024 000
− 1

10
H(−1; 1; 1)− 447 047

6 451 200
log(1 + x)

]
+

+ (1 + x)11

[
11 538 639 919

196 709 990 400

−1

11
H(−1; 1; 1)− 44 711

709 632
log(1 + x)

]
+

+ (1 + x)12

[
125 893 736 459

2 360 519 884 800
− 1

12
H(−1; 1; 1)− 983 705

17 031 168
log(1 + x)

]
+

+ (1 + x)13

[
6 501 060 475 493

132 975 953 510 400
− 1

13
H(−1; 1; 1)− 7 869 871

147 603 456
log(1 + x)

]
+

+ (1 + x)14

[
84 007 545 221 459

1 861 663 349 145 600
− 1

14
H(−1; 1; 1)− 102 309 709

2 066 448 384
log(1 + x)

]
+

+ (1 + x)15

[
20 892 179 156 921

498 659 825 664 000
− 1

15
H(−1; 1; 1)− 40 924 141

885 620 736
log(1 + x)

]
+

+H(0;−1; 1; 1) + o0

(
(x+ 1)15) . (A.3)

A.3 HPLs at fixed points

When evaluated at x = 0; 1;−1, if not divergent, HPLs of weight w return constant values with
same weight.

To evaluate these particular values, properties like change of variables are used (see [8] for a
complete list of properties). The values needed here are only the ones related to x = 1, but they
are not evaluated explicitly in this work. A list of these values up to weight 7 can be found at
the bottom of the file THESIS_HPL_LIST.
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Example 16 (HPLs in x = 1). For w = 1, w = 2 and w = 3 in x = 1 one has:

H(0; 1) = 0
H(1; 1) = limx→1 [− log(1− x)]

H(−1; 1) = log 2

H(−1; 1; 1) = −π
2

12
− log2 2

2

H(0;−1; 1) = −π
2

12

H(0; 1; 1) = π2

6

H(−1; 1; 1; 1) = −π
2 log 2
12

H(−1;−1; 1; 1) = − 1
6

log3 2 + ζ(3)
8

H(0; 1;−1; 1) = −ζ(3) + π2 log 2
4

H(0;−1;−1; 1) = ζ(3)
8

H(0; 0;−1; 1) = 3ζ(3)
4

H(0;−1; 1; 1) = −π
2 log 2

4
+ 13ζ(3)

8

H(0; 1; 1; 1) = ζ(3)
H(0; 0; 1; 1) = ζ(3)

Notice how the weight of the explicit values of the HPLs at a fixed point is the same of the HPLs at a generic
point x.
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Appendix B

Quadruple cut of the 1-loop box

The quadruple cut operated on a 1-loop box is a fundamental ingredient in several parts of the
present work. Here a derivation of the relation

∝ 1

st
. (B.1)

is presented, using the spinor elicity formalism. As explained in [44], a cut corresponds to put
the momentum of a propagator on-shell; mathematically speaking, this operation corresponds
to substitute a propagator with a Dirac delta function. Considering a box graph with flowing
momenta as depicted in section 6.1, the quadruple cut transforms the integral

=

∫
dDk

k2(k + p1)2(k + p1 + p2)2(k − p3)2
(B.2)

into

=

∫
δ
(
k2
)
δ
(
(k + p1)2

)
δ
(
(k + p1 + p2)2

)
δ
(
(k − p3)2

)
dDk. (B.3)

Using the elicity spinor formalism (see [58]), it is possible to write the external momenta (all
massless and incoming) as:

• upper-left momentum pµ1 = 1
2〈1γµ1] = 1

2 [1γµ1〉;

• lower-left momentum pµ2 = 1
2〈2γµ2] = 1

2 [2γµ2〉;

• upper-right momentum pµ3 = 1
2〈3γµ3] = 1

2 [3γµ3〉;

181
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• lower-right momentum pµ4 = 1
2〈4γµ4] = 1

2 [4γµ4〉;

and loop momentum kµ as:

kµ = α1
[1γµ1〉

2
+ α2

[2γµ2〉
2

+ α3
[1γµ2〉

2
+ α4

[2γµ1〉
2

. (B.4)

As expected:

pi · pi =
1

4
[iγµi〉[iγµi〉 = 0; (B.5)

and the only non-zero scalar products are:

2p1 · p2 = 2p3 · p4 = s = 〈12〉[21], (B.6)
2p1 · p3 = 2p2 · p4 = t = 〈13〉[31], (B.7)
2p1 · p4 = 2p2 · p3 = u = −s− t = 〈14〉[41]. (B.8)

A change of variables from kµ to (α1; . . . ;α4) is performed.
First of all, it is necessary to express the arguments of the Dirac deltas in terms of spinors.

After some algebraic calculations and applications of momentum conservation:

k2 = (α1α2 − α3α4)s; (B.9)

(k + p1)2 = (α1α2 + α2 − α3α4)s; (B.10)

(k + p1 + p2)2 = (α1α2 + α1 + α2 + 1− α3α4)s; (B.11)

(k − p3)2 = (α1α2 + α2 − α3α4)s+ (α1 + α2)t+ α3[13]〈32〉+ α4[23]〈31〉. (B.12)

The deltas impose to solve the following system:
(α1α2 − α3α4)s = 0

(α1α2 + α2 − α3α4)s = 0

(α1α2 + α1 + α2 + 1− α3α4)s = 0

(α1α2 + α2 − α3α4)s+ (α1 + α2)t+ α3[13]〈32〉+ α4[23]〈31〉 = 0

; (B.13)

which solutions are:

S1 =


α1 = −1

α2 = 0

α3 = t/([13]〈32〉)
α4 = 0

or S2 =


α1 = −1

α2 = 0

α3 = 0

α4 = t/([23]〈31〉)

. (B.14)

Now consider the variation associated to the integration measure:

dDk =

√∣∣∣∣det

(
∂kµ

∂αi

∂kµ
∂αj

)∣∣∣∣dα1dα2dα3dα4, (B.15)
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(
∂kµ

∂αi

∂kµ
∂αj

)
=


0 s

2 0 0
s
2 0 0 0
0 0 0 − s

2
0 0 − s

2 0

 , (B.16)

√∣∣∣∣det

(
∂kµ

∂αi

∂kµ
∂αj

)∣∣∣∣ =
s2

4
. (B.17)

It is then possible to rewrite the expression (B.3) as:

=

(
1

|det J(α)|S1

+
1

|det J(α)|S2

)
s2

4
, (B.18)

where J(α) = ∂Di
∂αj

has the following form:

J(α) =


α2s α1s −α4s −α3s
α2s (α1 + 1)s −α4s −α3s

(α2 + 1)s (α1 + 1)s −α4s −α3s
α2s+ t (α1 + 1)s+ t −α4s+ [13]〈32〉 −α3s+ [23]〈31〉

 . (B.19)

When evaluated on the solutions, J(α) becomes:

[J(α)]S1 =


0 −s 0 − st

[13]〈32〉
0 0 0 − st

[13]〈32〉
s 0 0 − st

[13]〈32〉
t t [13]〈32〉 − st

[13]〈32〉 + [23]〈31〉

 , (B.20)

[J(α)]S2 =


0 −s − st

[23]〈31〉 0

0 0 − st
[23]〈31〉 0

s 0 − st
[23]〈31〉 0

t t − st
[23]〈31〉 + [13]〈32〉 [23]〈31〉

 , (B.21)

with
[det J(α)]S1 = −s3t, [det J(α)]S2 = s3t. (B.22)

Substituting the expressions above in (B.18):

=

(
1

s3t
+

1

s3t

)
s2

4
=

1

2

1

st
. (B.23)
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