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Das ewig Unbegreifliche an der
Welt ist ihre Begreiflichkeit.

� � � � �
The eternally incomprehensible thing

about the world is its comprehensibility.

— Albert Einstein, Physik und Realität (1936)





Abstract

The mathematical modeling of ecosystems with Lotka-Volterra-like equations suffers
from the lack of ability to predict the existence of strongly biodiverse ecosystems. For
example, an application of random matrix theory predicts that an ecosystem with in-
teracting species becomes decreasingly stable as the number of species increases, until
at a critical threshold the system becomes unstable. This result does not agree with
empirical observations and has originated the so-called diversity-stability debate, which
has been dominating the field of ecology for more than 40 years with no solution to the
paradox. Furthermore, the competitive exclusion principle predicts that in a single trophic
level the number of coexisting species cannot be greater than the number of resources.
However in the oceans the available nutrients are less than a dozen but the number of
coexisting plankton species is of the order of a few hundred. Numerous solutions to
this paradox have been proposed but none of them is flawless.
Recently a possible solution has been proposed for the case of competitive systems; this
thesis concerns this proposed model investigating it, highlighting its eventual weak-
nesses and the substantial differences that characterize it from the countless previous
ones, and determining some of its possible generalizations.
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Preface

The study of ecosystem dynamics has a long story, but only in the last 40 years it has
gained huge attention from the scientific community, both from an experimental and
a theoretical point of view. The reason for the growing interest in this field is clear:
human activity is hugely reshaping Earth’s biosphere, reducing its biodiversity at an
unprecedented and ever-increasing rate, and introducing species in ecosystems where
they are non-native. For this reason in the last four decades a great amount of effort has
been put in the investigation of the relationship between an ecosystem’s biodiversity
(or simply diversity) and its stability, giving birth to what has since been known as the
stability-complexity or diversity-stability debate [36].
The origin of the diversity-stability debate can be identified in a work by Robert May
[30], where he showed with a rigorous stability analysis that a randomly constructed
ecosystem becomes increasingly unstable as the number of coexisting species increases.
This result was really unexpected, since before its publication it was a well-established
fact among field ecologists that the most diverse ecosystems were also the most stable
ones; therefore a paradoxical situation took shape: while observations led unambigu-
ously to the conclusion that diversity brings stability, even the most simple null model
where dynamics is governed by diversity alone predicts the exact opposite.
Today we are still far from having a complete and exhaustive picture of this relation-
ship, but the progress of the diversity-stability debate in the last decades forms a “col-
lection of evidence” that suggests that diversity can generally be expected to bring sta-
bility in an ecosystem.

Within this debate the so-called competitive exclusion principle [20] has faced (and is still
facing) some serious paradoxes. The origin of the principle is difficult to identify, since
it has been “lurking in the background” of the scientific debate for decades: many au-
thors, including Darwin in The Origin of Species, have expressed the main idea of the
principle without stating it explicitly, but only in the 40s it came to light as we now
know it. Very briefly, the competitive exclusion principle can be stated as follows: if
two species compete for the same resource, the one with the slightest advantage over
the other will outcompete it and bring it to extinction. More generally, if in an ecosys-
tem there are n available resources the competitive exclusion principle states that no
more than n species competing for them can coexist in that ecosystem.
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The paradox of this principle is that even though mathematically it is expected to hold
by even simple models, there are cases in nature where it is clearly violated, the most
famous one being the so-called paradox of the plankton [23]: phytoplankton species are
known to feed upon a dozen different nutrients, but field experiments [7] show that in
the same region as much as a few hundred different species of phytoplankton can be
found, also in the periods of the year when nutrients are less abundant.

Countless models and ecological mechanisms have been proposed in order to explain
the striking biodiversity that is observed in real ecosystems and how it can influence
stability, but none of them if flawless.
Very recently a model [47] has been proposed for competitive systems, inspired by the
paradox of the plankton. This thesis focuses on this proposed model, examining it
in depth in order to highlight its strengths and weaknesses; in particular, the known
results will be reproduced and many original ones will be proposed. More specifically,
after the review of the diversity-stability debate provided in the first chapter, sections
2.2, 2.3 and paragraph 2.4.1 repropose the results shown by the authors in the original
work; from paragraph 2.4.2 on (with the exception of the introductory part of 2.6) all
the results shown in this work are original.
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CHAPTER 1

The diversity-stability debate

In this first chapter we outline a review of the diversity-stability debate [36]. Of course
the subject is too broad to be thoroughly covered in a single chapter, so our aim will
be just to retrace the most important and relevant contributions that have been made
on the subject, with particular attention to those that will be necessary in the following
chapters.

1.1 The relationship between biodiversity and stability

1.1.1 The origins: before the first mathematical models of ecosystems

The scientific investigation of the relationship between diversity and stability in ecosys-
tems began far sooner than the introduction of the first mathematical models designed
to analyze it (which, as we will shortly see, happened at the beginning of the 70s). Of
course, lacking a theoretically rigorous foundation this investigation was based purely
on field observations and empirical data, whose results (as we are shortly going to see)
led ecologists to believe that diversity is a factor that brings stability to an ecosystem.

Eugene Odum was one of the first ecologists who laid the logical foundations of this
widespread belief. In 1953, in his seminal book Fundamentals of Ecology, he simply gave
the definition of ecosystem stability as “the amount of choice which the energy has
in following the paths up through the food web1” [41], without giving any particular
reason for this choice. Soon after, McArthur [33] tried to make this statement more for-
mal by using information theory in order to give a quantitative definition of “stability”;
even though his idea might sound intriguing it must be stressed that it was not a proper
theory since it completely ignored population and community dynamics.

1A food web [45] is a graphical representation of the trophic relationships in an ecosystems. It is generally
represented as a directed graph were each node stands for a species and links show the flow of energy and
matter through the web, i.e. links are arrows pointing from preys to predators.
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At the end of the 50s the ecologist Charles Elton, in one of the last chapters (mean-
ingfully entitled The Reasons for Conservation) of a book [14] completely focused on the
effects of the introduction of non-native species in ecosystems, gathers

some of the evidence that the balance of relatively simple communities of
plants and animals is more easily upset than that of richer ones; that is, more
subject to destructive oscillations in populations, especially of animals, and
more vulnerable to invasions.

This evidence is divided by Elton into six different groups, each based on experiments
and field observations or on what was then known theoretically about the interaction
between species (which was basically limited to Lotka-Volterra [55] systems, known to
show even very intense oscillatory behavior). To use the words of Elton himself:

The six lines of evidence just given can be summarized as follows. Mathe-
matical concepts about the properties of the food-chain, and simplified lab-
oratory experiments, prepare our minds for instability in very simple pop-
ulation systems. In them we may expect strong oscillations and often ex-
tinction. If the habitat is given additional structural properties in the form
of cover, there may be some mitigation of this instability, though complete
success in experiment is still very rare. Oceanic islands and crop mono-
cultures are simple ecosystems that show high vulnerability to invasions
(whether from other lands or from other habitats in the same country) and
frequent outbreaks of population subsequently. But tropical rain forest has
these features damped down to a remarkable degree. An orchard that has
not been treated with insecticide achieves an ecological stability amongst its
hundred or more species of animals, though it does not reach the standards
of quality and abundance of fruit that are wanted. The explosions of pests
in orchards have partly been due to new invasions from without, partly
to the numerous accidents and interactions that affect any animal commu-
nity, but in a notable degree to upsetting of the relationships between pests
and their natural enemies and parasites through differential effects of the
poisons used. These six lines of evidence all seem to converge in the same
direction, though each of them really requires much more extensive analysis
and discussion than can be given here.

As Elton himself highlighted, the evidenced he had gathered must not be considered a
full proof, but only a starting point for further work. Nevertheless that was enough for
the ecologists of that time to be confident that biodiversity was the main responsible
for the stability of ecosystems.

1.1.2 The turning point: May’s work on random ecosystems

The situation changed drastically in 1972, with the publication of an article [30] by
Robert May in which the stability of randomly constructed ecosystems was analyti-
cally studied; the results were so important that this work later became the core of a
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whole book on the subject [31]. As it will be extremely important for later chapters, we
illustrate here May’s work with also some generalizations [1].

First of all, in general we model an ecosystem composed of m coexisting species as a
continuous-time dynamical system, so that the evolution in time of the species’ popula-
tion densities nσs (with σ = 1, . . . ,m) can be described by a set of differential equations
of the form

d

dt
nσ(t) = fσ(~n(t)) , (1.1)

where fσs are generic functions (with suitable smoothness properties) and ~n is the vec-
tor of population densities.
Therefore, as it is well known from the theory of dynamical systems, we will surely
have an equilibrium ~n∗ if

d

dt
nσ(t)

|~n∗
= fσ(~n∗) = 0 ∀σ , (1.2)

and linear stability analysis establishes that the nature of this equilibrium is determined
by the spectrum of the so-called community matrixM, i.e. the Jacobian matrix of system
(1.1) computed at the equilibrium:

Mστ =
∂

∂nτ
fσ(~n(t))

|~n∗
. (1.3)

In particular ~n∗ will be a stable equilibrium if all the eigenvalues ofM have at least a
non-positive real part.
Note that from (1.3) we can see that the entryMστ of the community matrix describes
the interaction of species τ with species σ at the equilibrium: ifMστ is positive then the
effect of τ on σ is advantageous for the latter (the presence of τ enhances the growth
of σ), while ifMστ is negative the effect is disadvantageous for the latter (e.g. τ preys
upon σ); on the other hand, if Mστ is null the two species are not interacting and do
not influence each other2. Note in particular thatMσσ is the effect of species σ on itself:
these entries are generally negative (or at least non-positive) because ecosystems have a
limited carrying capacity, and so a single species does not grow indefinitely if left alone.

At this point, in order to actually study the nature of an equilibrium of such a system
we need to know the exact form of the functions fσs, i.e. we have to choose a partic-
ular model for the ecosystem, and the final results can drastically change depending
on which we use3; in other words any different set of equations of the form (1.1), i.e.

2This only means that there is no direct interaction between them, but nothing can exclude a priori
the possibility of indirect interactions between the species. There can in fact be cases where a species
“mediates” the interaction between two non-directly interacting species, for example ifMστ = 0 but both
Mσρ andMρτ (with of course σ 6= ρ 6= τ ) are different from zero.

3We must also be very careful on which model we choose, because even pretty simple nonlinear equa-
tions can lead to extremely complicated dynamics [32].
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any different possible model, would lead to a different community matrix and thus to
equilibriums with different stability properties.
May’s solution to this problem consists in completely skipping the construction of the
Jacobian matrix and considering directly the community matrix as a properly con-
structed random matrix, and then using the results of random matrix theory in order to
study the stability properties of the equilibrium. In other words, we completely ignore
the explicit form of the aforementioned functions fσs and suppose that the interactions
between the species at the steady state are simply random. This way the particular
nature of the interspecific interactions is ignored, and the properties of the system are
determined by diversity alone (i.e. by the number of species m that are present in the
ecosystem).
We also have to keep in mind, however, that field observations of real ecosystems show
(see for example [3] or [45, section 5.1.2]) that each species generally interacts with a few
others (particularly in very large ecosystems), so a realistic community matrix must be
at least partially sparse.
The community matrix that we want to study, therefore, must be built as follows:

– all the diagonal elements are set to −d (with d > 0):Mσσ = −d,

– all the off-diagonal elements are set to zero with probability 1−C and with prob-
abilityC are independently drawn from a probability distribution with null mean
and variance Σ2.

With a rescaling of time the diagonal elements can be simply set to −1, but in order to
be as much general as possible we will keep d explicitly. The probability C is called
connectance of the community matrix and is the additional parameter that we must in-
troduce in order to makeM sparse and thus more realistic.
Note that the distribution from which the non-null off-diagonal elements are drawn is
not specified; it will become shortly clear why this is so, and that only its mean and
variance are the relevant parameters.

Now that we have built our community matrix we must determine the nature of the
steady state of the system, and in particular we are interested in determining when the
system is stable. We must therefore perform a spectral analysis of M and see under
which conditions all its eigenvalues have negative real part; in other words, if we call
λ the rightmost eigenvalue ofM on the complex plane (or one of the rightmost ones,
if there are more eigenvalues with that same real part) we want to determine when
Reλ < 0. For this purpose a very important result of random matrix theory proves
very useful: the circular law [53]. This can be stated as follows:

Circular law LetM be anm×mmatrix whose all entries are independent and identically dis-
tributed random variables drawn from a distribution with null mean and unit variance. Then,
the empirical spectral distribution

µm(x, y) =
1

m
# {σ ≤ m : Re(λσ) ≤ x , Im(λσ) ≤ y} (1.4)
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(i.e. the distribution where a probability 1/m is put on each eigenvalue) of the eigenvalues
λ1, . . . , λm of M/

√
m converges to the uniform distribution on the unit disk in the complex

plane in the limit m→∞.

Note that there are no assumptions on the probability distribution of the entries: as
long as its mean is zero and its variance is one, for sufficiently large values of m the law
will hold. Note also that the law does not predict that all the eigenvalues of M/

√
m

will surely fall inside the unit disk for a given (finite) value of m: it only states that the
“bulk” of the eigenvalues converges to the unit disk, and this does not prevent a single
eigenvalue from falling outside it; even if the probability of this event becomes increas-
ingly negligible as m increases, this fact could in principle prevent us from correctly
predicting the position of the rightmost eigenvalue of M/

√
m. Fortunately, however,

it has been shown [4, theorem 5.18] that if the fourth moment of the distribution from
which we draw the entries of the matrix is finite, then the limit superior of the spectral
radius of M/

√
m for increasing values of m is one, i.e. all the eigenvalues are surely

contained in the unit disk as m → ∞. Therefore, since in all biologically relevant cases
we deal with distributions with finite moments, we are sure that all the eigenvalues are
contained in the disk; from these facts we can conclude that Reλ ≈ 1 when m→∞.
In figure 1.1 we show numerically that the eigenvalue distribution of a renormalized
random matrix does indeed converge to the unit disk; in particular, we have drawn its
entries from the normal distribution N (0, 1) and the uniform distribution U [−

√
3,
√

3],
both with zero mean and unit variance. As it can be seen the circular law holds and
does not depend on the particular distribution chosen (provided its mean and variance
are fixed), and a few single eigenvalues can anyway fall outside the unit disk since we
are using finite values of m.

We now must try to apply the circular law to more general cases, in order to understand
the eigenvalue distribution of the community matrix we want to study.
First of all, we can note that the circular law can be equivalently reformulated by stating
that in the limit m→∞ the eigenvalues of the matrixM lie within a disk of radius

√
m

centered at the origin of the complex plane, and so Reλ ≈
√
m when m is large. Then

we can consider the case where the probability distribution of the entries has a generic
variance Σ2; we can obtain a matrix with Σ2 6= 1 from one with Σ2 = 1 by simply
multiplying its entries by Σ. Therefore, when m→∞we have Reλ ≈ Σ

√
m.

As we have already stated, we have introduced the connectance C in order to make our
community matrix more realistic; however, how does C affect the distribution of the
eigenvalues? The universality of the circular law comes to our aid: the entries ofM are
now drawn from a new probability distribution, called zero-inflated distribution, such
that they are null with probability 1−C and drawn from the previous distribution with
probability C. If one wants to be more precise, we can write the entries of M as the
random variables

Mστ = XMστ (1.5)

where X is a random variable that follows a Bernoulli distribution with probability C,
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Figure 1.1: Numerical verification of the circular law.
The red circle is the border of the unit disk centered at the origin.

and Mστ s follow the previous distribution. Since the expectation value E[Mστ ] is null
and X and Mστ s are of course independent, the mean of this new distribution is still
zero, but its variance is now reduced to

Var[Mστ ] = Var[XMστ ] = E[X2]E[M2
στ ]− E[X]2E[Mστ ]2 =

= (Var[X] + E[X]2)(Var[Mστ ] + E[Mστ ]2) = CΣ2 . (1.6)

Therefore, including the connectance we now have Reλ ≈ Σ
√
mC in the limit m→∞.

Finally, we must consider the effect of having all the diagonal entries equal to −d. This
fact, as we now show, simply shifts all the eigenvalues by −d keeping the shape of
their probability distribution unchanged: let A be any n × n matrix, and B = A − dI
with I the identity matrix; as known, the eigenvalues λAi and λBi of, respectively, A
and B are the solutions of det(λI − A) = 0 and det(λI − B) = 0. From this last equa-
tion, however, using the definition of B we get det((λ + d)I − A) = 0, and therefore
λBi + d = λAi ⇒ λBi = λAi − d, i.e. the eigenvalues of B are simply shifted by −d.
One may complain, however, that if we subtract dI from M we get a matrix whose
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Figure 1.2: Eigenvalue distribution for a community matrix with m = 1000, C = 1 and d = 0 when the diagonal
entries are drawn from a different distribution with respect to the off-diagonal ones. The off-diagonal elements are

drawn in all three cases from U [−
√

3,
√

3], and the distributions of the diagonal ones are indicated in the captions.
As can be clearly seen, if the variance of the diagonal entries is too large the eigenvalue distribution differs sensibly

from the circular law.

diagonal elements are not exactly equal to −d, but are drawn from a probability distri-
bution with mean −d and variance Σ2. The spectral probability distribution in the two
cases is however the same: in figure 1.2 we show that if the off-diagonal entries are
drawn from one distribution with mean zero and variance Σ2 while the diagonal ones
are drawn from a different distribution with null mean and variance Σ2

d, the circular
law continues to hold as long as Σd is small enough. In our case we can thus initially
set the diagonal entries of M all equal to zero (therefore Σ2

d = 0), so that the circular
law holds, and then subtract dI. In figure 1.3 we show numerically the validity of these
more general versions of the circular law.

We can thus understand that the eigenvalues of the community matrixM built by May
will be comprised in a disk centered at −d and with radius Σ

√
mC. Therefore, the real

part of the rightmost eigenvalue will be Reλ ≈ Σ
√
mC−d for large m. This means that

in the limit m→∞ the ecosystem we are studying will be stable if

Σ
√
mC < d . (1.7)

As we can expect, in the case of finitemwe will have that if (1.7) is valid the probability
that the system is stable is extremely high, and otherwise it drops to zero increasingly
fast as m increases, as figure 1.4 shows.
This is the extremely important and unexpected result found by May in 1972: once the
properties of the species and the interactions between them are specified (i.e. once d, C
and Σ are fixed), m must be not too large in order for the system to be stable.
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Figure 1.3: Numerical verification of the circular law for the general case.
R is the radius of the disk and D its center.

1.1.2.1 Improvements of May’s stability criterion

The stability condition (1.7) can be generalized in order to take account of more complex
and realistic situations. We now proceed to implement some of these generalizations.

Non-null off-diagonal mean The first thing we can do is to find a criterion analogous
to (1.7) for the case where the probability distribution from which we draw the non-null
off-diagonal elements has a generic non-zero mean4. Therefore, this time we build our
community matrix as before, but the off-diagonal entries are drawn with probability
C from a distribution with mean µ and variance Σ2; this means that the mean of the
off-diagonal elements is E = E[Mστ ] = E[X]E[Mστ ] = Cµ; the diagonal entries are still
all set to −d. In this case, however, we must be particularly careful because as we will
now show we can have a single eigenvalue lying very far from the bulk.
The first thing that we have to note is that as a consequence of how we have built the
community matrix its row sums will have the same mean; in fact, for any given σ we
have that

E

[
m∑
τ=1

Mστ

]
= E

Mσσ +
∑
τ 6=σ
Mστ

 = −d+
∑
τ 6=σ

E[Mστ ] = −d+ (m− 1)E . (1.8)

Now, for sufficiently large m we expect the row averages to be approximately equal,
since the fluctuations of E will reduce. Therefore, in the limit m → ∞ it will be highly
probable that one of the eigenvalues of the community matrix will be close to the mean
of the row sums: this means that this eigenvalue, particularly if the mean µ is large

4In real ecosystems, in fact, it is not true that the positive effects of resources on consumers and the
negative ones of consumers on resources are balanced, which follows from the assumption that the distri-
bution we are using has null mean.
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Figure 1.4: Probability for the system to be stable as a function of different parameters, with fitting curves.
In (a) we have computed the probability of the system’s stability as an increasing function of m (with a step size of

10) over 100 iterations. With the chosen parameters the “critical” value of m is 800; this has been obtained by
setting Σ

√
mC = d (which is what happens at the “boundary” between the “stable” and “unstable” phases of the

system), which yields m = d2/Σ2C. In (b), on the other hand, for three different fixed values of m we have again
computed the probability of the system’s stability over 100 iterations, but now as a function of the variance (with a
step size of 0.02); this time, for every value of m we have set d =

√
mC so that the “transition” occurs at Σ = 1.

As one could have easily expected, the larger the matrix the sharper the transition (in the limit m→∞ the
function representing the probability of the system’s stability tends to a step function).

enough, can lie very far from the other ones, which continue to behave “normally” (i.e.
they still follow the circular law). However, this time the center of the disk will be
shifted with respect to the null mean case because the mean value of all the real parts
of the eigenvalues must still be −d; in particular, if we call D the new position of the
center of the disk (i.e. the mean of the real parts of all them−1 eigenvalues that behave
“normally”), imposing that the mean of the real parts of all the eigenvalues is−d yields

(m− 1)D− d+ (m− 1)E

m
= −d ⇒ D = −d− E . (1.9)

We then have to recompute the variance of the off-diagonal elements of the community
matrix, which following (1.6) turns out to be

V = Var[XMστ ] = (Var[X]+E[X]2)(Var[Mστ ]+E[Mστ ]2) = C[Σ2 +(1−C)µ2] . (1.10)

With this result we can estimate the real part of the rightmost eigenvalue on the disk as
−(d+E) +

√
mV . All these considerations are only driven by our intuition, but can be

easily verified numerically as figure 1.5 shows.

Now, what about the new stability criterion?
If the mean µ of the distribution is negative then −d + (m − 1)E < 0, i.e. also the row
sums will be negative, and thus the rightmost eigenvalue of the community matrixM
will be the rightmost point of the disk, which as we have already stated has a real part
that can be estimated as −(d + E) +

√
mV . On the other hand, if µ > 0 two situations
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Figure 1.5: Effect of drawing the off-diagonal entries of the community matrix from a distribution with non-zero
mean, both in the positive and negative case. The mean row sum has been indicated withR, and the relative

eigenvalue is highlighted in orange.

can occur: either the row sum is large enough to send an eigenvalue out of the disk, or
it is small enough such that its corresponding eigenvalue still lies within the disk; in the
first case we estimate the rightmost eigenvalue as the row sum−d+ (m− 1)E, while in
the second we again estimate its real part as −(d+ E) +

√
mV .

To consider all these possibilities, the stability criterion can now be written as follows:

max
{√

mV − E, (m− 1)E
}
< d , (1.11)

which, in terms of C, µ and Σ becomes

max
{√

mC(Σ2 + (1− C)µ2)− Cµ, (m− 1)Cµ
}
< d . (1.12)

Correlations and elliptic law In the approach we have just used for building the com-
munity matrix all the off-diagonal elements are independently drawn from the same
probability distribution, and so the entriesMστ andMτσ aren’t correlated. However
this generally doesn’t happen in real ecosystems: if for example we want to describe a
system where σ is a prey and τ a predator, we expect thatMστ < 0, representing the
negative effect of the predator on the prey, and Mτσ > 0, representing on the other
hand the positive effect of the prey on the predator. Therefore, we are also interested in
the case where the entries are directly sampled in pairs, rather than singularly. In this
case we must use a generalized version of the circular law, the so-called

Elliptic law LetM be an m×m matrix whose off-diagonal coefficients are sampled indepen-
dently in pairs from a bivariate distribution with zero marginal mean, unit marginal variance
and correlation ρ. Then, the empirical spectral distribution of the eigenvalues λ1, . . . , λm of
M/
√
m converges in the limit m → ∞ to the uniform distribution on an ellipse centered at

(0, 0), with horizontal semi-axis of length 1 + ρ and vertical semi-axis of length 1 − ρ in the
complex plane.
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A proof is provided, for example, in [40].
Just as we have previously done, the elliptic law can be generalized to more interesting
cases, like sparse matrices, matrices with diagonal elements all set equal to −d (with
d > 0), or off-diagonal entries sampled from a bivariate distribution with non-zero
marginal means.

In the end, the community matrix we are interested in will be built as follows:

– all the diagonal entries are set to −d,

– all the off-diagonal pairs (Mστ ,Mτσ) are set to (0, 0) with probability 1− C, and
with probability C are drawn from a bivariate distribution with mean and covari-
ance matrix

~µ =

(
µ
µ

)
Σ̂ =

(
Σ2 ρΣ2

ρΣ2 Σ2

)
. (1.13)

The situation is now similar to the previous one, with the difference that the rightmost
eigenvalue of the “bulk” will be located at −d − E +

√
mV (1 + ρ), accounting for the

fact that now the eigenvalues lie on an ellipse.
From this we can also notice that a prey-predator system (where ρ < 0) will be more
easily stable than its mutualistic5 equivalent, i.e. a system with identical d, m, E and V
but with ρ > 0.

The previous argument for the generalization of the stability criterion can therefore be
repeated, and in the end we find that (1.11) becomes

max
{√

mV (1 + ρ)− E, (m− 1)E
}
< d . (1.14)

In figure 1.6 we provide a couple of numerical verifications of the elliptic law.

1.1.3 Beyond May: the role of food web structure

At this point it was clear that diversity was not the only requirement for stability, and
that something was missing; May himself [31] suggested that an important role could
be played by the structure of the food web, i.e. by the presence of patterns in the inter-
action strengths between species. A clue of this could be found in the fact that the study
of community matrices built from actually observed food webs revealed that they were
more stable than randomly built ones [59].
Therefore, experimentalists started observing ecosystems in order to compile food webs
and looked for patterns or particular structures, i.e. they tried to formulate models that
reproduced the properties of observed food webs [12]; at the beginning they managed
to do so (and the result of this work gave birth to the so-called cascade model [9]), but later

5In a mutualistic system the interaction between two species is beneficial for both; such are the interac-
tions between plants and pollinator insects, for example. In this case ifMστ > 0 then alsoMτσ > 0, so
the correlation between entries of the community matrix is positive.
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Figure 1.6: Elliptic law.

and improved experiments [46] showed that these patterns were just artifacts caused by
the incompleteness of previous data and the methods used for analysis; as we will later
cover in more detail in 1.3, one of the greatest problems in the study of ecosystems is
indeed the retrieval of reliable and unbiased experimental data. The improvement pro-
vided by the new observations led to the formulation of models like the niche model [56]
and the nested hierarchy model [6]; even though they have different formulations it has
been shown [52] that they bring to the same distributions of predators, preys and links
among species.

In the same years, while some ecologists tried to shed light on the topology of food
webs, others were attempting to understand the distribution and the role of the strength
of interspecific interactions. In our framework this is given by the magnitude of the
community matrix elements, and experimentally it is generally measured by observing
the effect of the removal of a single species from an ecosystem (the stronger is the inter-
action with a given species, the heavier will be the consequences on the population of
this species). Even if the experimental methods for their quantitative estimate have still
to be improved, some experiments (like [15], [43] and [58]) have already given us an
impression of the arrangement of the interaction strengths in ecosystems, and all point
to the same conclusions: the distribution of interaction strengths is skewed towards
weak ones. In other words, the great majority of the interactions in an ecosystem will
be weak, with only a very few strong; this has been called the weak-interaction effect. The
subject has also been tackled theoretically [35], leading to analogous conclusions.
The reason why it is convenient for an ecosystem to have many weak interactions and
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just a few strong ones can be intuitively explained as follows. Communities made of
strongly interacting species are easily prone to instabilities and oscillatory behavior:
since they have a strong effect on each other, the slightest variation in population of
one of these species can lead to drastic changes in the whole ecosystem; the presence of
enough weakly interacting species, however, can dampen these effects by reducing the
predatory pressure on the strongly interacting ones.
Recently it has been discovered [5] that in many observed ecosystems the value of Cm
is approximately constant, i.e. all species interact on average with the same number of
other species. The fact that Cm ∼ const., from May’s point of view, means that the real
part of the rightmost eigenvalue of the community matrix does not grow asm increases,
so the interaction strength between species does not scale with the system.

1.1.4 Conclusion and future developments

A definite and clear conclusion to the diversity-stability debate cannot still be drawn,
mainly because of the lack of reliable data. As we will cover in a little more detail in 1.3,
ecological experiments are incredibly difficult to perform on the field since there are too
many aspects of the ecosystem that cannot be controlled, and laboratory experiments
are often too simplified to be confronted with real-world systems.
As we have tried to outline there is empirical evidence that supports the validity of the
weak-interaction effect, but we are still far from being sure that it is ubiquitous. It is
therefore comprehensible that one of the main efforts that are being made in this field is
the improvement of the experimental techniques, with the purpose of gathering more
precise and accurate data.
On the other hand, from a theoretical perspective many lines of research are being de-
veloped; among these we may mention the study of the relationship between food web
structure and population dynamics, or the attempt to form a “spatiotemporal” theory
of food webs (the effects of spatial and temporal variation on the structure of food webs,
in fact, have been long ignored and only recently addressed).

We may therefore conclude by saying that the diversity-stability debate is still far from
being concluded, and the most important step towards its possible resolution is the
improvement of experimental methods.

1.2 The competitive exclusion principle

From what we have shown in the previous section one must not be led to think that
before the 70s ecology was a purely empirical science. At least one theoretical argu-
ment, in fact, was already developed and actively discussed: the so-called competitive
exclusion principle [20]. This principle is known in the scientific literature under many
names, one of the most famous ones being Gause’s principle from the name of Russian
biologist Georgij Frantsevich Gause, who as we will later see performed some experi-
ments on competition between similar species. However, this is one of those curious
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cases in science eponymy where a principle or a law gets the name of someone who has
not introduced it: Gause, in fact, was not the first to explicitly formulate the principle,
and even when he discussed it explicitly he gave credit to previous works like those of
Lotka [28] and Volterra [55]. The name has nevertheless been established by tradition,
but in this work we prefer to continue using the more explanatory name competitive
exclusion principle.

The principle can be stated as follows: consider two different species, say A and B, that
occupy the same region and compete for the same resources, and suppose that A has
a slight advantage over B, i.e. A reproduces even the slightest bit faster than B; then
in the long term, as the equilibrium is reached, A will completely overwhelm B and
bring it to extinction. In other more technical words, there cannot be two sympatric
and non-interbreeding species competing for the same resources; in the literature the
principle can also be found summed up in the maxim complete competitors cannot coexist.
Another possible reformulation that will be useful in the future is the following: if in
an ecosystem there are p resources and m different species competing for them, then an
equilibrium where all species coexist is allowed only if m < p (otherwise some species
will die out until finally we will be left with m < p species).

1.2.1 The origins and developments of the principle

The history of the competitive exclusion principle is long and complicated, since for
many decades it has eluded any formalization or even any explicit formulation. Its first
traces have been found by Hardin [20] in Darwin’s The Origin of Species [11]; for exam-
ple, the section entitled Struggle For Life Most Severe Between Individuals And Varieties Of
The Same Species opens as follows:

As the species of the same genus usually have, though by no means invari-
ably, much similarity in habits and constitution, and always in structure, the
struggle will generally be more severe between them, if they come into com-
petition with each other, than between the species of distinct genera. We see
this in the recent extension over parts of the United States of one species
of swallow having caused the decrease of another species. The recent in-
crease of the missel-thrush in parts of Scotland has caused the decrease of
the song-thrush. How frequently we hear of one species of rat taking the
place of another species under the most different climates! In Russia the
small Asiatic cockroach has everywhere driven before it its great congener.
In Australia the imported hive-bee is rapidly exterminating the small, sting-
less native bee. One species of charlock has been known to supplant another
species; and so in other cases. We can dimly see why the competition should
be most severe between allied forms, which fill nearly the same place in the
economy of nature; but probably in no one case could we precisely say why
one species has been victorious over another in the great battle of life.

As we can see, the principle is “lurking” behind these words but is never brought to
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light explicitly, not even in the other numerous parts of the book where Darwin covers
the competition between similar species.
The first clear statement of the principle dates back to 1904, when Grinnel wrote [19]:

Every animal tends to increase at a geometric ratio, and is checked only by
limit of food supply. It is only by adaptations to different sorts of food, or
modes of food getting, that more than one species can occupy the same lo-
cality. Two species of approximately the same food habits are not likely to
remain long enough evenly balanced in numbers in the same region. One
will crowd out the other; the one longest exposed to local conditions, and
hence best fitted, though ever so slightly, will survive, to the exclusion of
any less favored would-be invader. However, should some new contin-
gency arise, placing the native species at a disadvantage, such as the intro-
duction of new plants, then there might be a fair chance for a neighboring
species to gain a foothold, even ultimately crowding out the native form.

Another important explicit statement of the principle (and also the first explicit refer-
ence to Gause as its “father”) which brought the topic to a broader public can be found
in the late 40s in the work Darwin’s Finches by David Lack [25], the book which pop-
ularized the study of a group of some species of birds of the genus Geospiza (the ones
that Darwin himself studied on the Galápagos Islands during the second voyage of the
Beagle), characterized by beaks of different shapes and sizes. In a section dedicated to
the study of beak and diet differences between closely related species, Lack states that
empirical observations had shown that different species of Geospiza, despite having dif-
ferent beaks, tend to feed on approximately the same food; this had led ecologists to
think that

[...] the beak differences between the species of Geospiza are not of adaptive
significance in regard to food. The larger species tend to eat rather larger
seed, but this he [Snodgrass, another ecologist who had performed similar
studies] considered to be an incidental result of the difference in the size of
their beaks.

This conclusion had been accepted by many ecologists, including Lack himself; how-
ever, shortly after he writes:

My views have now completely changed, through appreciating the force of
Gause’s contention that two species with similar ecology cannot live in the
same region [...]. This is a simple consequence of natural selection. If two
species of birds occur together in the same habitat in the same region, eat
the same types of food and have the same other ecological requirements,
then they should compete with each other, and since the chance of their
being equally well adapted is negligible, one of them should eliminate the
other completely. Nevertheless, three species of ground-finch live together
in the same habitat on the same Galapagos islands, and this also applies to
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two species of insectivorous tree-finch. There must be some factor which
prevents these species from effectively competing.

As we can see, even if Lack considers the principle to be true he immediately identifies
some cases where it appears to be violated, concluding that for some unknown reasons
the hypotheses of the principle are not satisfied.

1.2.2 Some attempts of experimental verification

A very important question that has challenged ecologists since the “birth” of the com-
petitive exclusion principle is the possibility of its experimental verification. There have
been in fact attempts to directly prove it empirically, but the results are very difficult
to interpret: the aforementioned Gause in the early 30s carried out some experiments
where he put two different species of yeast (Saccharomices cerevisiae and Schizosaccha-
romyces kefir) [16] and protozoa (Paramecium caudatum and Paramecium aurelia) [17] in a
closed environment, providing a constant food supply, and found out that one of the
two species systematically outcompeted the other. On the other hand, in the mid 50s
Park and Lloyd [44] performed similar experiments with two different species of flour
beetles (Tribolium confusum and Tribolium castaneum) and found out that there was in-
deed one species that in the end eliminated the other one, but it was not always the same.
It is therefore clear that even under the most possible controlled conditions there can be
factors that we are not considering when studying competition between species.

Also because of this wealth of disagreeing experiments, it has been argued by Hardin
that the validity of the principle can be established only theoretically and that it is not
possible to verify it directly through experiment [20]:

The theoretical defense for adhering come-hell-or-high-water to the com-
petitive exclusion principle is best shown by apparently changing the sub-
ject. Consider Newton’s first law: “Every body persists in a state of rest or
of uniform motion in a straight line unless compelled by external force to
change that state.” How would one verify this law, by itself? An observer
might (in principle) test Newton’s first law by taking up a station out in
space somewhere and then looking at all the bodies around him. Would
any of the bodies be in a state of rest except (by definition) himself? Prob-
ably not. More important, would any of the bodies in motion be moving
in a straight line? Not one. (We assume that the observer makes errorless
measurements.) For the law says, “... in a straight line unless compelled
by external force to change ...,” and in a world in which another law says
that “every body attracts every other body with a force that is inversely
proportional to the square of the distance between them ...,” the phrase in
the first law that begins with the words unless compelled clearly indicates
the hypothetical character of the law. So long as there are no sanctuaries
from gravitation in space, every body is always “compelled.” Our observer
would claim that any body at rest or moving in a straight line verified the
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law; he would likewise claim that bodies moving in not-straight lines veri-
fied the law, too. In other words, any attempt to test Newton’s first law by
itself would lead to a circular argument [...]. The point is this: We do not test
isolated laws, one by one. What we test is a whole conceptual model [...].
From the model we make predictions; these we test against empirical data.
When we find that a prediction is not verifiable we then set about modify-
ing the model. There is no procedural rule to tell us which element of the
model is best abandoned or changed. (The scientific response to the results
of the Michelson-Morley experiment was not in any sense determined.) Es-
thetics plays a part in such decisions. The competitive exclusion principle is
one element in a system of ecological thought. We cannot test it directly, by
itself. What the whole ecological system is, we do not yet know.

Therefore, we may conclude that experiments that try to test the competitive exclusion
principle by itself cannot help us in understanding if it is actually valid, and that this
problem must be addressed only by theory. The principle, however, must not be con-
sidered to be an isolated law, but a single component of a wider ecological theory (just
like Newton’s first law is only one of the main “bricks” upon which classical mechanics
is built); the problem is that we still have to find the “missing pieces” of this theory.

1.2.3 Theoretical arguments in favor of the principle

That being said, we must add that the competitive exclusion principle holds in vari-
ous mathematical models of ecological competition, like [2], [22, section 5.4], [26], [34]
and [48]. We now provide one example of such models inspired by [22] and [48].

Consider an ecosystem where m species compete for p < m resources, and that the
equation that regulates the density nσ of the σ-th population is

ṅσ = (ασ1r1 + · · ·+ ασprp − δσ)nσ , (1.15)

where δσ > 0 is the death rate of the σ-th species (i.e. the rate of decline in the absence
of any resource), ri is the total intake rate of the i-th resource, and ασi represents the
efficiency of the σ-th species in using the i-th resource. The ris depend in turn on the
population densities; we could for example suppose that this dependence is linear, i.e.

ri = ri −
m∑
σ=1

nσaiσ (1.16)

with ri and aiσ positive constants, but this is not a mandatory requirement. Without
regard to the explicit functional dependence chosen, it is sufficient to postulate that the
resources can be depleted, i.e. that population densities nσ cannot grow to infinity.
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The system of equations 
x1α11 + · · ·+ xmαm1 = 0

...
x1α1p + · · ·+ xmαmp = 0

(1.17)

surely admits a nontrivial solution (x̃1, . . . , x̃m). We then define

δ :=
m∑
σ=1

x̃σδσ (1.18)

and suppose6 δ 6= 0. From (1.15), then, we have that

m∑
σ=1

x̃σ
d lnnσ
dt

=
m∑
σ=1

x̃σ
ṅσ
nσ

= −
m∑
σ=1

x̃σδσ = −δ , (1.19)

and integrating with respect to time from 0 to t we get

m∏
σ=1

nσ(t)x̃σ = Ke−δt (1.20)

for some constant K. If δ < 0 we have limt→∞ e
−δt =∞, but since all population densi-

ties are bounded from above then for at least one of them we must have limt→∞ nσ = 0
with x̃σ < 0. On the other hand, if δ > 0 then limt→∞ e

−δt = 0 and for the same reason
there must be at least one population density for which limt→∞ nσ = 0 with x̃σ > 0.
We can now reiterate this argument with m− 1 species, and in the end we obtain

m−1∏
σ=1

nσ(t)x̃σ = Ke−δt (1.21)

and thus come to the same conclusion: there must be at least one species that dies out.
This reiteration can be continued until m = p: in this case there will be p resources and
p coexisting species, but we cannot say a priori that any of them must necessarily die
out; their particular behavior depends on the specific functional form of the functions
ris, on the particular values of the parameters aiσs and on initial conditions.

We can therefore conclude by saying that in this case there will be at least m− p species
that die out, and so at most p species will be able to coexist; this is exactly what the
competitive exclusion principle states.

6This is not a very restrictive or unrealistic hypothesis. Indeed, the fact that (1.17) admits a nontrivial
solution is not enough to be completely sure that δ 6= 0: if some x̃σs are negative and some are positive
we still could have δ = 0 for appropriate values of δσ . This is a rather unlikely case, but in order to be
completely safe we suppose δ 6= 0.
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1.2.4 The paradox of the plankton

We have stated in 1.2.2 that some experiments have shown that (even if not always as
one might expect) the competitive exclusion principle seems to hold, and we have just
shown how even relatively simple models support that; there are, however, many docu-
mented cases where the principle is clearly violated. In 1.2.1, for example, we have seen
that Lack had already noticed that on the Galápagos Islands there were a few species
of the genus Geospiza that were coexisting in the same regions despite having similar
eating habits, and thus theoretically being in competition for the same resources.
The most famous example of an extreme violation of the competitive exclusion prin-
ciple, however, is another one: the so-called paradox of the plankton [23]. It is known,
in fact, that species of phytoplankton feed upon a few dozen resources (sunlight and
some chemical compounds), but experiments have repeatedly shown that the number
of species that can be found in a single marine environment can be of the order of a few
hundred (see [7] for a recent example).

In the last decades many mechanisms have been proposed in order to explain this stun-
ning diversity [49], and all are based on the same assumption: since the competitive ex-
clusion principle states that at equilibrium there can be no more species than resources,
either there is something that prevents the system from reaching equilibrium or for
some reason there are additional limiting factors. In the first case the proposed mecha-
nisms take into account the fact that, for example, real ecosystems are not spatially ho-
mogeneous (the intensity of sunlight and/or the concentration of chemical compounds
is surely not uniform in the oceans), or that they are not subject to constant environmen-
tal conditions (seasonal cycles): this way the system is always in an out-of-equilibrium
state, and the coexistence of species is allowed because population densities undergo
periodic or chaotic behavior (see also 1.3.1); other possible proposed explanations in-
clude self-organizing or behavioral effects. In the second case, on the other hand, there
are some other factors that limit the growth of species, like predation or self-limitation
through toxin production.
However, none of these proposed models is completely satisfactory, and no complete
theory for the biodiversity of phytoplankton has been universally accepted; as Roy and
Chattopadhyay [49] put it:

Although most mechanisms discussed in the literature allow the coexistence
of a few extra competitors, unlike the real-world, very few theories would
allow the coexistence of hundreds of species on a small number of resources
[...]. Present-day theories could not overcome this serious limitation. Even if
each of the proposed mechanisms potentially explain the paradox in a fairly
convincing way, the question that still remains open is to ask, which one or
which combination of the mechanisms hold in real-world plankton commu-
nities. Although the proposed mechanisms seem to offer an explanation of
the diversity of certain systems, an investigation of a universally accepted
theory, that alone could explain the species diversity of phytoplankton in
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laboratory waters, fresh waters and marine environments, is still an un-
achieved goal.

When they say that “very few theories would allow the coexistence of hundreds of
species on a small number of resources” they explicitly refer to a model proposed by
Ebenhöh in 1988 [13], in which an unlimited number of species is observed to coexist
on only one nutrient. We will briefly discuss this model later, in order to compare it to
the one we are going to study.

The concept of the paradox of the plankton has also been extended to terrestrial ecosys-
tems [57], but to date it appears to have no definitive solution (see [18] for a review of
the problem made in the mid 80s, but as of today the situation hasn’t sensibly changed).

1.2.4.1 A recently proposed solution

Recently it has been proposed that plankton community ecology can be influenced by
different, trait-based phenomena [27]; in particular it has been argued that trade-offs
can play an important role in determining community structure.
One of the classes of trade-offs that may be significant in this sense are metabolic trade-
offs, i.e. trade-offs in the efficiency that species can have in using different resources. In
very general terms a metabolic trade-off can be realized by requiring that species have
a fixed energy budget for metabolism: this way if a species employs a great amount of
this budget in the metabolization of a particular resource it will not have much energy
left for the metabolization of the other ones. Phytoplankton species, for example, can
synthesize different molecules (e.g. chlorophyll and carotenoids) in order to increase
the absorption rate of light in different parts of the visible spectrum; since the amount of
molecules that a single species can synthesize is limited7, every species will be subject to
a trade-off: “specializing” in the absorption of a portion of the visible spectrum means
being unable to take advantage of the rest of the spectrum. This principle can of course
be applied to any community of competing species.
Very recently a model [47] has been proposed on the basis of these kinds of arguments,
and constitutes the object of study of this whole thesis. We postpone its description and
analysis to the subsequent chapters, but as we will see the introduction of metabolic
trade-offs allows the coexistence of an arbitrary number of competing species in the
same ecosystem, thus overcoming the aforementioned problem highlighted by Roy and
Chattopadhyay.

1.3 The relationship between theory and experiments

One of the most challenging aspects of the study of ecosystems has always been the at-
tempt to unite theory and experiments: there have been in fact many obstacles that have

7In this case the requirement for a finite energy budget is equivalent to the requirement that species
have a finite amount of enzymes they can use for metabolism, since the allocation of an enzyme for
metabolism has an energetic cost.
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made the retrieval of reliable data and its comparison to theoretical models extremely
difficult. In this section we briefly review them.

1.3.1 How to define “equilibrium” and “stability” for an ecosystem?

All the work that we have reviewed so far is based on a fundamental assumption, i.e.
that the equilibrium of an ecosystem is defined in the sense of differential equation
theory. This idea can be very useful, since it allows one to use all the well known ma-
chinery of linear stability analysis (just like we have done in 1.1.2), but there are good
reasons to believe that such definition is too restrictive or incomplete. For example, an
approach based on differential equation theory would not consider in equilibrium an
ecosystem where some species are coexisting but their populations exhibit oscillatory
or chaotic behavior; these last cases, however, are still interesting because can allow in
general the coexistence of multiple species and is ecologically more realistic than the
former because real populations are variable, and there can be many processes (both
biotic or abiotic) that can make them change. In other words we must also consider
cases which strictly speaking are out of equilibrium because it is unrealistic to believe
that the population of a given species will always remain exactly equal to a given value.
Furthermore, the use of differential equation theory brings along a very precise defini-
tion of “stability” (i.e. an ecosystem is said to be stable if at equilibrium it returns to the
same steady state after small perturbations), which is in turn too restrictive for the same
reasons that we have outlined before. Consider for example the same situation that we
have just mentioned, i.e. an ecosystem where species’ populations oscillate: in this case
if the system returns to an oscillating state after a small perturbation it should be still
considered as stable, since all species continue to coexist, but this situation is clearly not
contained in the definition of “stability” given by differential equation theory.

Ecological theory has traditionally relied on the assumption that an ecosystem’s “equi-
librium” and “stability” are meant in the sense of differential equation theory, but as
we have shown these are strong assumptions with no a priori justifications; this fact
has made it difficult for many years to bring together theoretical models and experi-
mental results. For this reason, in the last decades many other and broader definitions
of “stability” have been introduced, which are summarized in table 1.1; some of them
have the merit to be particularly fit for experimental measurements.

1.3.2 The problem of experimental verification of theoretical models

As we have already suggested, performing experiments on the structure of ecosystems
is a very difficult task: real ecosystems are in fact extremely complex systems, affected
by countless factors difficult to control in an experiment, and this has been a major
problem for the first experimentalists who tried to study the structure of food webs.
We have anticipated in 1.1.3 that the first model introduced in order to explain the
properties of food webs was the so-called cascade model, developed by Cohen and New-
man [9] and applied to a catalog of collected food webs from their previous and other
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Term Definition
Equilibrium stability A system is said to be stable if it returns to its equilibrium after a small

perturbation away from it. Therefore, if a system is stable according to
this definition it has no variability in the absence of perturbations.

General stability A measure which assumes that the stability of a system increases as the
lower limit of population density moves further away from zero. Under
non-equilibrium dynamics (e.g. if the system exhibits oscillatory behav-
ior), high stability in this sense generally implies a decrease in variabil-
ity.

Variability The variance in population densities over time. It is fairly common in
experimental tests.

Equilibrium resilience A measure of stability that assumes system stability increases as the time
required to return to equilibrium after a perturbation decreases. In other
words if a system is highly resilient it means that it recoils rapidly back
to its equilibrium state if perturbed.

General resilience A measure of stability that assumes system stability increases as the re-
turn time to the equilibrium/non-equilibrium solution decreases after
a perturbation. In other words if a system is highly resilient in gen-
eral sense it means that it recoils rapidly back to its equilibrium/non-
equilibrium state.

Resistance A measure of the degree to which a variable changes after a perturba-
tion. Frequently used as a discrete measure that assesses a community’s
ability to resist invasion.

Table 1.1: Definitions of “stability” (from [36]).

studies [10], and that it brought to conclusions that were in good agreement with the ob-
served properties. However, some problems were already present in the data collected:
many experimentalists, in fact, highlighted that the analyzed food webs exhibited much
less diversity than what was known to occur in ecosystems. Furthermore, the meth-
ods they used for data analysis turned out to introduce some heavy bias: Cohen and
Briand [8] had in fact previously introduced the technique of trophic aggregation, which
consist in “merging” together all the species that have same predators and preys in a
single “trophic species”. Their purpose was to reduce possible methodological artifacts
due to the fact that higher trophic levels are generally more resolved (i.e. species are
more easily distinguished) than lower ones by researchers, but it ended up introducing
other biases: with this technique, for example, a species can be easily misrepresented
if one of its preys or predators are not recorded during the experiment (and this can
happen if the prey’s or predator’s species is rare). Furthermore, the food webs present
in the catalog were gathered from different studies made by different researchers and
with different methods; additionally, all the cannibalistic links were explicitly and un-
justifiably removed from all the food webs, and since the cascade model excludes the
possibility of cannibalism this obviously introduced a bias that increased the agreement
between theory and data. These and other issues were the basis upon which, as we
have said, the whole research program was heavily criticized. Since then experimental
methods have been continuously improved (and consequently new models have been
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introduced), but as we have said a lot of work must still be done in order to be able to
gather satisfactory data in field tests.
Because of the difficulty in controlling all aspects of the system in a field experiment,
many tests have been performed in the laboratory (and they are often called microcosms
experiments). This approach, however, has its flaws: while it is true that laboratory ex-
periments allow for a much more efficient control on the system, it is also true that they
might prove to be over-simplified for certain purposes. Moreover, there is also a very
big difference between field and laboratory experiments: scale. A microcosm in fact,
as the name suggests, is several order of magnitudes smaller than a real ecosystem,
and so even if this allows for a better control and replicability of the experiment it also
introduces the issue of extrapolation: can the results of a laboratory experiment be ex-
trapolated to a whole ecosystem?
Furthermore, even under the seemingly controlled environment of a laboratory exper-
iment there can still be factors that we do not fully comprehend, like in the already
mentioned experiments of Park [44] on competitive exclusion.

We therefore see that from an experimental point of view there are still many problems
in the study of ecosystems that are still awaiting for an answer.
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CHAPTER 2

The PTW model

As we have seen in 1.2.4 the paradox of the plankton provides a rather clear example of a
violation of the competitive exclusion principle, and that recently it has been proposed
that metabolic trade-offs could be relevant in order to explain the observed biodiversity
of planktonic ecosystems.
In this chapter we proceed to study the model proposed by Posfai, Taillefumier and
Wingreen [47] for a competitive ecosystem, and to which we will refer from now on
(without any great stretch of the imagination) as the PTW model. As we are going to
see this model allows the coexistence of an aribtrary number of competing species, thus
being a potentially very powerful tool to explain why plankton species seem to violate
the competitive exclusion principle.

2.1 Origin of the model: the chemostat

Since the aim of the PTW model is to describe a resource-consumer ecosystem its ori-
gins lie in the so-called chemostat model, “the ideal place to study competition in its most
primitive form - exploitative competition” [51]: it is the “classic” model used to describe
systems of species competing for a common pool of resources, and the basis on which
more complex models can be built. Here we illustrate the chemostat in its simplest
formulation following [51, Chapter 1, Section 2] (and partly [21], where another simi-
lar derivation can be found), and then in the next section we will first define the PTW
model and then highlight its main improvements and differences over the chemostat.

The system described by the chemostat can be represented as three connected vessels1:
a feed bottle which contains all the nutrients, a culture vessel where competition takes
place, and a collection vessel; the content of the feed bottle is pumped inside the culture
vessel at a constant rate, and the content of the culture vessel is pumped with the same
constant rate inside the collection vessel.

1This system is definitely inspired by experiments, but the model is the same even for real ecosystems.
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Suppose that the feed bottle contains only one nutrient2 and that the culture vessel con-
tains one species of microorganism, and let us call V the volume of the culture vessel,
F the volumetric flow rate (both for input and output), and S(0) the concentration of
the input nutrient. We then suppose that the density of microorganisms and nutrient
inside the culture vessel is uniform, and that the temperature and S(0) (i.e. all parame-
ters affecting growth) are kept constant. We then want to determine the equations that
regulate the evolution in time of the concentration S(t) of the nutrient and of the pop-
ulation x(t) of the species inside the culture vessel. In very general terms, we can say
that the change rate of the nutrient’s concentration can be expressed as

dS

dt
= input− output− consumption , (2.1)

where the “consumption” term is of course due to the fact that microorganisms are
using the nutrient for metabolism. Considering now the amount V S(t) of nutrient in
the culture vessel instead of only its concentration, its “input” and “output” terms can
be written as S(0)F and S(t)F respectively, and therefore we have

d

dt
(V S) = S(0)F − S(t)F − consumption . (2.2)

If we introduce the washout rate D = F/V we can rewrite this equation as

dS

dt
=
(
S(0) − S

)
D − consumption . (2.3)

The consumption term is a little bit more complicated to determine. In 1942 Monod [39]
on the basis of empirical observations showed that the growth rate of the species can
be written as

growth = x(t) ·m S(t)

a+ S(t)
, (2.4)

where m is the maximum growth rate and a is the so-called half-saturation constant; in
general a function of the form f(x) = x/(k+x) with k constant is called Monod function,
and is the more common choice for the intake rate of microorganisms in biology. He
also showed that there is a simple relationship between the growth of the species and
the utilization of the nutrient, in particular

dx

dt
= −γ dS

dt |cons.
, (2.5)

where dS/dt|cons. is the consumption of the resource, and γ is called yield constant; if we
integrate over any period of time we see that this can be expressed as

γ =
quntity of organism formed
quantity of substrate used

. (2.6)

2To be more precise, the chemostat is formulated in general by requiring that the feed bottle contains
any number of nutrients, but all are in excess except for one, so in the end there is only one nutrient that
regulates the dynamics of the system. In the PTW model, on the other hand, no nutrient is in excess so
every one of them affects the dynamics.
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The yield constant is therefore a “measure” of the efficiency with which the substrate
is “converted” into population, and since dx/dt is the growth rate of the species in the
end we have that

consumption = −x(t)

γ
·m S(t)

a+ S(t)
. (2.7)

Therefore, the equations that regulate the evolution in time of S(t) and x(t) will be

dS

dt
=
(
S(0) − S

)
D − x

γ
·m S

a+ S
, (2.8a)

dx

dt
= x

(
m

S

a+ S
−D

)
. (2.8b)

If we now rescale the following quantities:

S −→ S

S(0)
a −→ a

S(0)
x −→ x

S(0)
t −→ tD (2.9)

equations (2.8a) and (2.8b) can be rewritten in the adimensional form

dS

dt
= 1− S − x

γ
·m S

a+ S
, (2.10a)

dx

dt
= x

(
m

S

a+ S
− 1

)
, (2.10b)

which are the final equations that must be studied in order to determine the properties
of the system.

This is the simplest formulation of the chemostat model that can be made, but e.g.
in [51] some generalizations are provided, like the case where the system contains one
nutrient and n species; from the study of the resulting equations it follows that the
competitive exclusion principle always holds.

2.2 Definition of the model

Let us now see how the PTW model is defined.
We consider a system of m species competing for p resources; we also assume that the
environment is well-mixed (i.e. nutrients are uniformly distributed in space) and that
the resources are supplied to the system with constant rates (s1, . . . , sp) = ~s, and we
call S =

∑p
i=1 si the total nutrient supply rate. In general, nutrients can also undergo

chemical degradation or other processes that make them unusable, so we also consider
the resource loss rates (µ1, . . . , µp) = ~µ.
Everyone of the m species in our ecosystem is characterized by its metabolic strategy,
i.e. the efficiency with which a given species uses the available resources; more for-
mally, calling ασi (with σ = 1, . . . ,m and i = 1, . . . , p) the rate at which an individual
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of species σ uses resource i, the metabolic strategy of species σ will be represented by
the p-dimensional vector ~ασ = (ασ1, . . . , ασp). Therefore in this model every species is
represented by a point in the p-dimensional space of nutrient uptake rates.
We also call ci the concentration of nutrient i and nσ the population of species σ.

As we have anticipated, we must introduce in this framework the fact that every species
is subject to a metabolic trade-off, i.e. has a fixed energy budget for metabolism (or
equivalently, a fixed number of enzymes that can be used for metabolism); this means
that a given species in this model has two options: either it specializes in the use of
some particular nutrients, thus paying the price of not being able to take advantage of
the other ones, or it doesn’t, paying the price of being not very efficient in the metabo-
lization of any nutrient.
Conceptually, the rate ασi is proportional to the number of enzyme molecules allocated
by an organism of species σ in order to metabolize nutrient i; furthermore, different
resources may have in principle different “costs” wi, i.e. they may be more or less diffi-
cult to assimilate and therefore require more or less enzymes for their metabolization.

With these definitions the metabolic trade-off condition can be introduced as

p∑
i=1

wiασi = E ∀σ , (2.11)

ore more elegantly
~w · ~ασ = E ∀σ , (2.12)

where ~w is the vector of resource costs andE is the total energy budget (or equivalently
the number of total available enzymes).
We finally call ri the per-enzyme uptake rate of nutrient i. Many choices are possible
for the particular functional form of ri; in general it can be any monotone increasing
and continuously differentiable function of ci with ri(0) = 0, and as we have already
said the most common choice in biology is the Monod function

ri(ci) =
ci

Ki + ci
, (2.13)

where Kis are constants.
With these assumptions the evolution in time of the concentrations of nutrients is gov-
erned by the equations

dci
dt

= si −

(
m∑
σ=1

nσ(t)ασi

)
ri(ci)− µici(t) . (2.14)

Now, metabolic reactions typically occur on timescales that are much smaller than cel-
lular ones (i.e. resource metabolization is generally much faster than cell division), and
this allows us to introduce the so-called quasi-steady-state approximation or timescale sep-
aration (see, for example, [24, section 2.2.2]): since cis evolve much more rapidly than
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nσs, they reach their steady-state values almost immediately and then remain constant
as the other variables evolve. This means that we can consider cis as always fixed to
their steady-state values in (2.14), i.e. we can set dci/dt = 0 ∀i; we therefore have that
the nutrient uptake rates ris are functions of nσs.

On the other hand, population abundances will be regulated by equations of the form

dnσ
dt

= [gσ(c1, . . . , cp)− δ]nσ ∀σ , (2.15)

where δ is a constant death rate and gσ(c1, . . . , cp) is the overall growth rate of species
σ; this is given by

gσ(c1, . . . , cp) =

p∑
i=1

viασiri(ci) , (2.16)

where we have also introduced the resource “values” vi, which are a measure of how
much efficiently a resource contributes to the growth rate of a species3; in other words,
the more valuable a resource is the faster it will make the species grow (of course at a
fixed value of the uptake rate).

2.2.1 Relationship with the chemostat model

The main difference that can be spotted between the chemostat and the PTW model is
the number of nutrients that can be present in the system: while all the formulations of
the former require that the evolution of the system is regulated by only one nutrient,
no such limitation is present in the latter.
If we look at equations (2.14) and (2.15) we see that they have indeed the same form
of (2.8a) and (2.8b). In particular if we write the equations of the PTW model for one
nutrient and one species

dn

dt
= n

(
vα

c

K + c
− δ
)
, (2.17a)

dc

dt
= s− µc− nα c

K + c
(2.17b)

(where we have dropped all the indexes), we see that they are indeed equivalent to
those of the chemostat

dx

dt
= x

(
m

S

a+ S
−D

)
, (2.18a)

dS

dt
=
(
S(0) − S

)
D − x

γ
·m S

a+ S
, (2.18b)

once the appropriate identifications are made.

3They are similar to the yield constant that we have seen in 2.1.
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2.2.2 Some preliminary simplifications and assumptions

We now introduce some assumptions that simplify the equations, but don’t change the
main results and properties of the model.
First of all, since in physically relevant cases the degradation rates of nutrients are sev-
eral orders of magnitude smaller than the supply rates, we can set µi = 0 ∀i. This
means, from (2.14) and timescale separation, that

ri =
si∑m

σ=1 nσασi
. (2.19)

Secondly, we consider the “symmetric” case in which all nutrients are equally costly,
accessible4 and valuable, i.e. we set wi = Ki = vi = 1 ∀i. As we will later show this
choice is equivalent to the rescaling of some parameters and doesn’t affect the nature
of the results we will find.
With these assumptions, we obtain the system of differential equations that we are go-
ing to study:

dnσ
dt

=

(
p∑
i=1

ασi
si∑m

τ=1 nτατi
− δ

)
nσ . (2.20)

If we sum both sides over σ we get ṅtot = S − δntot, where ntot =
∑

σ nσ is the total
population of the ecosystem; this means that at the steady state n∗tot = S/δ, i.e. the total
population depends only on S and δ.

Finally, we note that in this case the trade-off condition (2.12) becomes

p∑
i=1

ασi = E , (2.21)

and thus each metabolic strategy belongs to a (p− 1)-dimensional simplex in the space
of nutrient uptake rates. As an example, in figure 2.1 we show the situation for the case
p = 3, which is the most simple to represent graphically: in this case, in fact, metabolic
strategies belong to a 2-dimensional simplex, i.e. a triangle, where each vertex corre-
sponds to the uptake rate of a different nutrient.

2.3 Coexistence of species

We now proceed to determine analytically the condition under which the coexistence
of m ≥ p species is possible in the PTW model.

4The constants Kis are the half-saturation constants of the Monod functions used to represent the per-
enzyme uptake rates ris, and can be used as a “measure” of the accessibility of a nutrient; e.g. ifKi is small
the Monod function quickly reaches its saturation value, so the nutrient will be used at the maximum
rate possible even with low values of population abundances, or in other words the resource is highly
accessible to the individuals of the species.
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ασ1

ασ2ασ3

Figure 2.1: Schematic representation of the metabolic trade-off condition for the case p = 3: each species in the
model is represented by a point in the simplex, and its position reflects the metabolic strategy of the species. The red
point, for example, represents a species which eats only nutrient 2, while the blue one feeds equally upon 1 and 2;

the orange point, on the other hand, represents a species which uses all resources with a slight preference on 3.
For the sake of simplicity, from now on we will omit the axes when representing this kind of simplex.

Since we want to determine when all species coexist in a stationary state, imposing
dnσ/dt = 0 ∀σ in (2.15) one obtains the general condition

gσ(c1, . . . , cp) = δ ∀σ (2.22)

for the system to be in a steady state, where of course we are not considering the trivial
case nσ = 0 ∀σ. We can already note that this is a system of m equations in p variables,
so in general we cannot expect it to be solvable if m > p. As we will shortly see, how-
ever, the metabolic trade-off condition will come to our aid.
Using (2.16) and the assumptions we have made, the stationarity condition for the sys-
tem reads

p∑
i=1

ασiri = δ ∀σ , (2.23)

which, introducing the matrix of metabolic strategies

A =

α11 · · · α1p
...

. . .
...

αm1 · · · αmp

 (2.24)

(i.e. the matrix which has the metabolic strategies ~ασs as its rows) and the p-dimensional
vector ~δ T = (δ, . . . , δ), can be written in the more compact form

A~r = ~δ , (2.25)

where we have called ~r T = (r1, . . . , rp) the vector of per-enzyme uptake rates; this is a
system of equations that determines m ≥ p hyperplanes:

α11r1 + · · ·+ α1prp = δ
...

αm1r1 + · · ·+ αmprp = δ

. (2.26)
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Because of the trade-off condition (2.21) the unique solution of this system is

~r ∗ =
δ

E

1
...
1

 , (2.27)

and depending on the particular functional form of ri(ci) the steady-state nutrient con-
centrations can be determined; using our choice (2.13) we immediately find that

~c ∗ =
δ

E − δ

1
...
1

 . (2.28)

Considering now population abundances, we want to determine under which condi-
tions they can adjust themselves so that the steady state that we have found is realized,
i.e. (2.27) holds. From (2.19) we see that this happens if

AT~n =
E

δ
~s (2.29)

has a positive solution (n∗1, . . . , n
∗
m), where ~n T = (n1, . . . , nm) is the vector of popula-

tion abundances. Note that this can be rewritten as the following system of equations:
n1α11 + · · ·+ nmαm1 = Es1/δ

...
n1α1p + · · ·+ nmαmp = Esp/δ

, (2.30)

or more compactly as

n1~α1 + · · ·+ nm~αm =
E

δ
~s . (2.31)

Therefore, the steady state we are looking for will exist if the set{
n∗1 > 0, . . . , n∗m > 0 : n∗1~α1 + · · ·+ n∗m~αm =

E

δ
~s

}
(2.32)

is non-empty.

This condition resembles the definition of convex hull; we recall that by definition a
vector ~y is said to belong to the convex hull of a set of points {~x1, . . . , ~xn} if it can be
written as a convex combination of them, i.e. if

~y =

n∑
i=1

ai~xi , (2.33)
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where a1, . . . , an are coefficients such that

ai ≥ 0 ∀i ,
n∑
i=1

ai = 1 . (2.34)

We therefore see that in order to recover the definition of convex hull in (2.32) we have
to normalize the coefficients n∗σ so that their sum is equal to one. This is easily done by
dividing both sides of the equation in (2.32) by n∗tot = S/δ, i.e. rescaling the n∗σs with
n∗tot. We thus see immediately that condition (2.32) for the coexistence of species can be
restated as{

n∗1 > 0, . . . , n∗m > 0 ,
m∑
σ=1

n∗σ = 1 : n∗1~α1 + · · ·+ n∗m~αm =
E

S
~s

}
6= ∅ . (2.35)

We have therefore found a very important result: in order for an arbitrary number of
species to coexist the “renormalized” resource supply rates ~sα := (E/S)~s must lie within the
convex hull of metabolic strategies, i.e.

n∗1~α1 + · · ·+ n∗m~αm =
E

S
~s , (2.36)

where
∑

σ n
∗
σ = 1.

From (2.36) we can foresee something that will be discussed in more detail in 2.6.2: there
can be an infinite number of possible steady states of the system, because any possible
combination of n∗σs that sums to one is an equilibrium if (2.36) is satisfied.

2.3.1 Parameter rescaling

We now want to show that the choicewi = vi = 1∀i previously made does not influence
the results we have found, up to a rescaling of the parameters.
Let us consider a given species σ with its metabolic strategy ~ασ and suppose wi 6= vi 6=
1; we then introduce the rescaled metabolic strategy

~̃ασ :=

w1ασ1/E
...

wpασp/E

 (2.37)

and the rescaled resource supply rate vector

~̃s :=

v1s1...
vpsp

 . (2.38)

Note that because of (2.12) the rescaled metabolic strategies satisfy the rescaled metabolic
trade-off condition

p∑
i=1

α̃σi = 1 . (2.39)



Chapter 2. The PTW model 34

Substituting (2.37) and (2.38) in the expression (2.16) of gσ it follows that

gσ(n1, . . . , nm) =

p∑
i=1

viασi
si∑m

τ=1 nτατi
=

p∑
i=1

α̃σi
s̃i∑m

τ=1 nτ α̃τi
= g̃σ(n1, . . . , nm) ,

(2.40)
i.e. the growth rate of the rescaled metabolic strategies are equal to the original ones
and therefore the dynamics of the species’ populations is the same in both cases.
Using (2.40) and measuring population abundances in units of

∑
i s̃i/δ and time in units

of 1/δ, i.e. defining

ñσ := nσ ·
δ∑p
i=1 s̃i

, (2.41a)

t̃ = tδ , (2.41b)

we can rewrite equation (2.20) as:

dñσ

dt̃
=

(
p∑
i=1

α̃σi
s̃i∑m

τ=1 ñτατ̃ i
· 1∑p

j=1 s̃j
− 1

)
ñσ . (2.42)

Redefining now s̃i as s̃inew = s̃i/
∑

j s̃j , and renaming s̃inew with s̃i so that

p∑
i=1

s̃i = 1 , (2.43)

we can rewrite (2.42) as

dnσ̃

dt̃
=

(
p∑
i=1

α̃σi
s̃i∑m

τ=1 ñτ α̃τi
− 1

)
nσ̃ . (2.44)

We therefore see from (2.39), (2.43) and (2.44) that choosing wi = vi = 1 is equivalent
to rescaling the parameters so that δ = E = S = 1; this means that with this choice the
steady-state vector of per-enzyme uptake rates is ~r ∗T = (1, . . . , 1), the steady-state total
population is n∗tot = 1, and the vector that must lie within the convex hull of metabolic
strategies in order to allow coexistence of multiple species is ~̃s itself.

Repeating the calculations that we have previously made but without the assumption
wi = vi = 1 it is easy to see that the steady-state resource concentrations are equal to

c∗i = Kiwi
δ

viE − wiδ
, (2.45)

and that coexistence is allowed if

~sα :=
E

δ

v1s1/w1
...

vpsp/wp

 (2.46)
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is inside the convex hull of metabolic strategies.
From now on, unless explicitly stated, we will use the rescaled equations (2.39), (2.43)
and (2.44) to study the system, omitting tildes for the sake of simplicity.

To conclude we can notice that even if we do not use the timescale separation hypoth-
esis, we can anyway write a rescaled equation also for the concentrations of nutrients
cis. In particular, using all the definitions that we have made here (with the exception
of the renaming s̃inew −→ s̃i) and introducing

c̃i :=
vi∑p
j=1 s̃j

ci (2.47)

one can easily find out that equation (2.14) now becomes, still neglecting the degrada-
tion rates:

˙̃ci = s̃i
new −

(
m∑
σ=1

nσα̃σi

)
r̃i(c̃i) , (2.48)

where

r̃i(c̃i) =
E∑p
j=1 s̃j

· vi
wi
· c̃i

K̃i + c̃i
, and K̃i =

vi∑p
j=1 s̃j

Ki . (2.49)

In any case we are able to rescale the quantities involved in the equations in order
to rewrite them in an adimensional form, just like what we have seen in 2.1 for the
chemostat model.

2.4 Numerical results

We present now some numerical simulations that confirm the results we have found in
the previous sections.

2.4.1 Coexistence

As just stated, we use the rescaled version of the equations:

dnσ
dt

= (gσ(~n)− 1)nσ gσ(~n) =

p∑
i=1

ασi
si∑m

τ=1 nτατi
, (2.50)

where ntot =
∑m

σ=1 nσ = 1 and

p∑
i=1

ασi = 1 ∀σ ,
p∑
i=1

si = 1 . (2.51)

With this notation the coexistence of species is allowed if ~s lies inside the convex hull of
metabolic strategies, i.e. if there are some {n∗1, . . . , n∗m} with n∗σ > 0 ∀σ and

∑
σ n
∗
σ = 1

such that
~s = n∗1~α1 + · · ·+ n∗m~αm . (2.52)
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In figures 2.2 and 2.3 we show the numerical solutions of equations (2.50) with differ-
ent initial conditions for the populations: we clearly see that when (2.52) is satisfied the
coexistence of an arbitrary number of species is indeed allowed.

From this result we can also deduce a very interesting property of this model, i.e. the
fact that it “predicts” the existence of the so-called keystone species: in 1966 Paine ob-
served for the first time [42] that the removal of even a single species in some ecosys-
tems can trigger mass extinctions, so these species are essential for the existence of the
whole ecosystem. We can see theta in the PTW model such species exist: in figures 2.4
and 2.5 we provide a couple of examples of how the removal of a single species can put
the nutrient supply vector ~s outside of the convex hull of metabolic strategies, destroy-
ing the whole ecosystem.

As we have anticipated in 1.2.4, Ebenhöh proposed in 1988 a model [13] where an un-
limited number of species is observed to coexist on only one nutrient. There are how-
ever many important differences between that model and the PTW one: apart from the
fact that in [13] only one nutrient is considered while in the PTW model the dynamics of
population abundances can be determined by any number of resources, in Ebenhöh’s
model the nutrient is provided in pulses at regular time intervals instead of being con-
stantly supplied to the system, and the coexisting species exhibit a periodic or chaotic
behavior instead of reaching a steady state.

We conclude with an important remark: if the number m of coexisting species is high
it will be very likely that the convex hull of metabolic strategies will cover all the sim-
plex because the ~ασs will be scattered all over it, and thus the probability that ~s lies
outside of the convex hull will be extremely low. In other words, as the number m of
the coexisting species increases so does the probability that the system will be stable:
this is in complete contrast with May’s stability criterion! We therefore have already a
taste of the peculiarity of the PTW model, and later on we will have other occasions to
appreciate it fully.

2.4.2 Extinction

It is also interesting to study the system when it is not in a configuration that allows
the coexistence of species. Let us therefore see what happens (in a very particular case)
when ~s does not belong to the convex hull of metabolic strategies.
We start from the situation shown in figure 2.6a, i.e. we suppose m = p = 3 and that
the matrix of metabolic strategies is:

A =

1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2

 . (2.53)

Suppose that the vector of nutrient supply rates ~s lies on the left of the triangular convex
hull, so that the green species will die out while the other two survive. If we call σ = 3
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(b) On the boundary of the convex hull.
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(c) Inside the convex hull.

Figure 2.2: Solutions of equations (2.50) for m = 15 and p = 3, with initial conditions taken as equal populations
(nσ(0) = 1/m ∀σ). We have chosen p = 3 because this way metabolic strategies must belong to a 2-dimensional

simplex (i.e. a triangle) and so the system is more easily representable. The coloured dots are the metabolic strategies
~ασ , chosen from a uniform distribution on the simplex, while the black star is the nutrient supply rate vector ~s. As
we can clearly see, if ~s lies outside the convex hull of metabolic strategies the competitive exclusion principle holds
(and only the species “nearest” to ~s survive); if ~s lies on the boundary of the convex hull the competitive exclusion
principle continues to hold, but the species that go to extinction take an infinite time to die out. On the other hand,

if ~s is inside the convex hull the system reaches a steady state were all species coexist.
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Figure 2.3: Same situation of figure 2.2, again wigh m = 15 and p = 3, but the initial conditions for the
populations are now drawn independently from U [0, 1].
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(a) Keystone species present.
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(b) Keystone species removed.

Figure 2.4: Keystone species in the PTW model. Starting from an ecosystem with m = 20 and p = 3, the removal of
the lilac species on the right leaves the nutrient supply rate vector outside of the convex hull of metabolic strategies,

triggering a mass extinction. The equations (2.50) are again solved with initial conditions nσ(0) = 1/m ∀σ.
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(b) Keystone species removed.

Figure 2.5: Same situation of figure 2.4, again starting from m = 20 and p = 3, but the initial conditions for the
populations are now drawn independently from U [0, 1].
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(a) Situation given by the matrix of metabolic strategies
(2.53).
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●●● ●●●

(b) “Stretched” convex hull given by the matrix of
metabolic strategies (2.59).

Figure 2.6: Convex hulls considered in 2.4.2.
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the extinct species and σ = 1, 2 the surviving two, at the steady state of the system the
equation to be solved (the equivalent of (2.25)) is

3∑
i=1

ασi
si∑3

τ=1 nτατi
= 1 σ = 1, 2 . (2.54)

This can be rewritten as the system of equations{
2s1

2n∗
1+n

∗
2

+ s2
n∗
1+2n∗

2
+ s3

n∗
1+n

∗
2

= 1
s1

2n∗
1+n

∗
2

+ 2s2
n∗
1+2n∗

2
+ s3

n∗
1+n

∗
2

= 1
, (2.55)

whose solution is
n∗1 =

2s1 − s2
s1 + s2

n∗2 =
2s2 − s1
s1 + s2

. (2.56)

Since of course the steady-state populations must be positive, we see that what we have
found is valid if s1/2 < s2 < 2s1.

The steady-state per-enzyme uptake rates are

r∗1 = r∗2 =
4

3
(s1 + s2) r∗3 = 4s3 , (2.57)

and the steady-state nutrient concentrations:

c∗1 = c∗2 =
4(s1 + s2)

3− 4(s1 + s2)
c∗3 =

4s3
1− 4s3

. (2.58)

From this last equations we see that s3 < 1/4 and s1 + s2 < 3/4, since c∗i > 0 ∀i; from
s1/2 < s2 < 2s1 we then have 3s1/2 < s1 + s2 < 3s1 < 3/4 and so s1 < 1/4, and from
this we finally have s2 < 1/2.

The simplicity of the results we have found (and also the fact that r∗1 = r∗2 and c∗1 = c∗2)
is just a consequence of the extreme “symmetry” of the case we have considered, and
does not hold in general.
For example, if we slightly “stretch” the convex hull as in figure 2.6b, i.e. we use the
new matrix of metabolic strategies

A =

3/5 1/5 1/5
1/4 1/2 1/4
1/4 1/4 1/2

 , (2.59)

then the steady-state populations turn out to be

n∗1 =
5

21

(
14s1 + 9s2 + 2s3 −

−
√

49s21 + 144s22 + 25s23 + 128s1s2 − 70s1s3 + 120s2s3

)
, (2.60a)
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n∗2 =
1

21

(
−49s1 − 24s2 + 11s3 +

+5
√

49s21 + 144s22 + 25s23 + 128s1s2 − 70s1s3 + 120s2s3

)
, (2.60b)

while the per-enzyme uptake rates are

r∗1 =
12s1

17s1 + 12s2 + 5s3 −
√

49s21 + 14s1(12s2 − 5s3) + (12s2 + 5s3)2
, (2.61a)

r∗2 = − 14s2

7s1 + 2s2 − 5s3 −
√

49s21 + 14s1(12s2 − 5s3) + (12s2 + 5s3)2
, (2.61b)

r∗3 =
84s3

7s1 + 12s2 + 19s3 +
√

49s21 + 14s1(12s2 − 5s3) + (12s2 + 5s3)2
, (2.61c)

and the steady-state nutrient concentrations:

c∗1 =
12s1

5s1 + 12s2 + 5s3 −
√

49s21 + 14s1(12s2 − 5s3) + (12s2 + 5s3)2
, (2.62a)

c∗2 = − 14s2

7s1 + 16s2 − 5s3 −
√

49s21 + 14s1(12s2 − 5s3) + (12s2 + 5s3)2
, (2.62b)

c∗3 =
84s3

7s1 + 12s2 − 65s3 +
√

49s21 + 14s1(12s2 − 5s3) + (12s2 + 5s3)2
. (2.62c)

2.4.3 Rank-abundance curves

We have also studied the rank-abundance curves of the PTW model. A rank-abundance
curve [29, Chapter 2] is a plot with the species’ ranks on the abscissa (where the most
abundant species is given rank 1, the second most abundant is given rank 2 and so
on) and the species’ relative abundances on the ordinate. It is a very useful tool to
visualize species diversity in ecosystems. In figure 2.7, for example, we can see the
rank-abundance curve of the PTW model when the metabolic strategies are drawn in-
dependently from a uniform distribution on the simplex; we can note that this curve
(like all the others that will follow) is not trivial, and exhibits a common property of
ecosystems: only a small number of species is widespread in the system while the great
majority are rare or even very rare.

In order to see if the distribution from which we draw the strategies can be in any way
relevant we would like to compare rank-abundance curves originated from different
distributions with same mean and variance. We have repeated the simulations in two
different cases: drawing the components ασis of the metabolic strategies (which have
been then renormalized so as to satisfy (2.21)) from a normal distribution in absolute
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Fixed mean Fixed variance
µ̃ = 1, Σ̃2 = 1/2 µ̃ = 1/2, Σ̃2 = 1

µ̃ = 1, Σ̃2 = 1 µ̃ = 1, Σ̃2 = 1

µ̃ = 1, Σ̃2 = 2 µ̃ = 2, Σ̃2 = 1

µ̃ = 1, Σ̃2 = 5 µ̃ = 5, Σ̃2 = 1

Table 2.1: Parameters of the original Gaussian.

value, in order to avoid negative metabolic strategies, and from a Gamma distribution;
this is defined as having the probability density function

Γ̃k,θ(x) =
1

Γ(k)θk
xk−1e−x/θ , (2.63)

where Γ is the Euler Gamma function, and has mean kθ and variance kθ2.
Now, if x is a random variable distributed normally with mean µ̃ and variance Σ̃ the
distribution of |x| will not have the same parameters; therefore in order to compare
rank-abundance curves originated from distributions with the same mean and variance
we first have have to determine the mean and the variance of |x| when x is distributed
normally. In particular we have proceeded as follows:

1. we have chosen some values (provided in table 2.1) for the mean µ̃ and variance Σ̃
of a Gaussian in two cases (keeping the mean or the variance fixed and changing
the other parameter),

2. we have computed the mean µ and variance Σ of the corresponding Gaussian in
absolute value,

3. we have used a Gamma distribution with these mean and variance.

The analytical computation of the new parameters is not theoretically difficult but tech-
nically very demanding, so we have computed them numerically from the values of
table 2.1; the results are shown in table 2.2.

In figure 2.8 we see an overall comparisons of the two distributions when their mean
or their variance is kept fixed. In figures 2.9 and 2.10 we see also a comparison of the
curves obtained from the two distributions with the same value of mean and variance;
we see that they are generally compatible if not nearly perfectly overlapped, so we can
say that the properties of the system depend on the particular distribution chosen only
on its mean and variance and weakly on higher moments.

2.5 The PTW model and the competitive exclusion principle

With the assumption of the existence of metabolic trade-offs we are able to determine
the condition under which an arbitrary number of species can coexist, thus overcoming
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Fixed mean Fixed variance
µ = 1.00849, Σ2 = 0.232947 µ = 0.895593, Σ2 = 0.447913

µ = 1.16663, Σ2 = 0.638972 µ = 1.16663, Σ2 = 0.638972

µ = 1.79119, Σ2 = 1.79165 µ = 2.01698, Σ2 = 0.931786

µ = 4.06895, Σ2 = 9.44368 µ = 5, Σ2 = 1

Table 2.2: Parameters of the Gaussians of table 2.1 in absolute value.
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Figure 2.7: Rank-abundance curve for the PTW model. The curve has been obtained from a system with m = 300
and p = 3 which has been let to evolve until t = 200, when its rank-abundance curve has been built ordering the
species by their final abundance; the curve represented here has been obtained as an average of the results of 150

iterations of this procedure. The metabolic strategies have been drawn independently from a uniform distribution on
the simplex, while initial conditions for nσs have been drawn independently from U [0, 1].



45 Chapter 2. The PTW model

0 50 100 150 200 250 300

10-6

10-5

10-4

10-3

10-2

10-1

Rank

R
e

la
ti

v
e

a
b

u
n

d
a

n
c

e

(a) Gamma distribution, fixed mean.
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(b) Normal distribution in absolute value, fixed mean.
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(c) Gamma distribution, fixed variance.
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(d) Normal distribution in absolute value, fixed variance.

Figure 2.8: Rank-abundance curves of the PTW model for two different distributions and various values of mean
and variance. As in figure 2.7, the curves have been obtained from a system with m = 300, p = 3 which has been
let to evolve until t = 200, and 150 iterations have been averaged; initial conditions for the populations are again

drawn independently from U [0, 1].
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(a) µ = 1.009, Σ2 = 0.233
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(b) µ = 1.167, Σ2 = 0.639
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(c) µ = 1.791, Σ2 = 1.792
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(d) µ = 4.069, Σ2 = 9.444

Figure 2.9: Comparisons of the rank-abundance curves of figure 2.8 for fixed values of mean. The coloured bands
represent error bars, where the error has been computed for every point of the curves as the standard error of the

mean, i.e. εi = σi/
√
N with i ∈ {1, . . . ,m}, N = 150 and σi the variance of the sample made with all the points

with rank i obtained from the iterations.
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(a) µ = 0.896, Σ2 = 0.448
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(b) µ = 1.167, Σ2 = 0.639
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(c) µ = 2.017, Σ2 = 0.932
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(d) µ = 5, Σ2 = 1

Figure 2.10: Comparisons of the rank-abundance curves of figure 2.8 for fixed values of variance. The coloured
bands represent error bars, where the error has been computed for every point of the curves as the standard error of

the mean, i.e. εi = σi/
√
N with i ∈ {1, . . . ,m}, N = 150 and σi the variance of the sample made with all the

points with rank i obtained from the iterations.
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the competitive exclusion principle. It is therefore legitimate to ask what is the role of
equation (2.12) ((2.21)) in this model: what happens if we remove it? Is the coexistence
of an arbitrary number of species (or in any case greater than that of the available re-
sources) still possible?
It is pretty straightforward to show that the metabolic trade-off condition in the PTW
model is essential in order for an arbitrary number of species to coexist, and that with-
out it the competitive exclusion principle must necessarily hold.

We have seen in 2.3 that the equation that regulates the evolution in time of population
abundances is

dnσ
dt

= (gσ(~n)− δ)nσ ∀σ , (2.64)

and that at stationarity we either have nσ = 0 (i.e. the species σ dies out) or gσ = δ; we
have also shown that the latter can be rewritten as the system of equations (2.26), i.e.

α11r1 + · · ·+ α1prp = δ
...

αm1r1 + · · ·+ αmprp = δ

, (2.65)

which is a linear system of m equations in p unknowns. As such, if we do not introduce
any other assumption this system won’t be always solvable, and in particular:

– if m > p it will be overdetermined and hence admit no solution,

– if m = p it will have at most one solution,

– if m < p it will be underdetermined and hence admit infinite solutions.

We therefore see clearly that without any additional assumption the system can be
solved only if the number of coexisting species is less than or equal to that of the re-
sources: the competitive exclusion principle holds. On the other hand, if we introduce
the metabolic trade-off condition ~w · ~ασ = E ∀σ we have an “additional tool” that al-
lows us to solve system (2.65) in any case, regardless of the particular values of m and p.

It is therefore clear that metabolic trade-offs are crucial for the coexistence of any num-
ber of species. They are also “responsible” for the general and elegant geometrical
interpretation of the condition under which this coexistence is possible, i.e. the fact that
the rescaled nutrient supply rate vector ~sα must lie within the convex hull of metabolic
strategies (equation (2.36)): as we have seen in 2.3 the solution of (2.65) when metabolic
trade-offs are present is r∗i = δ/E ∀i, which is completely general and above all does not
depend on the particular values of the chosen metabolic strategies; therefore the prop-
erties of this solution do not depend on the particular system considered. Conversely,
if we do not use metabolic trade-offs the solutions of (2.65) (if they exist) will inevitably
depend on the values of ασis, and therefore the eventual conditions for coexistence will
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not follow a general rule.

As we will later show in 3.1.2, this fact will continue to hold also in a generalized ver-
sion of the PTW model.

2.6 Robustness of the steady state

We have thus shown under which conditions the PTW model allows the coexistence
of an arbitrary number of species. However, we are still not sure if this steady state
is robust under slight perturbations. What we now want to show is that the solution
of (2.52) is a stable equilibrium for the dynamical system (2.50), and we do so with a
standard linear stability analysis.

The equations that determine the evolution in time of the populations are

dnσ
dt

= (gσ(~n)− 1)nσ , gσ(~n) =

p∑
i=1

ασiri . (2.66)

Writing ~n = ~n∗+∆~n, with ~n∗ the steady state of the system, we have of course gσ(~n∗)−
1 = 0 ∀σ, therefore expanding gσ(~n) around ~n∗ in Taylor series to the first order we get

d

dt
∆nσ =

(
m∑
τ=1

∂gσ
∂nτ

(t)∆nτ

)
n∗σ , (2.67)

and deriving the expression (2.66) of gσ:

∂gσ
∂nτ

(~n∗) = −
p∑
i=1

ασiατi
si(∑m

ρ=1 n
∗
ραρi

)2 = −
p∑
i=1

ασiατi
r∗i

2

si
. (2.68)

With the notation we are using we have

~r ∗ =

1
...
1

 , (2.69)

and therefore
∂gσ
∂nτ

(~n∗) = −
p∑
i=1

ασiατi
si

. (2.70)

Thus, (2.67) can be rewritten as
d
dt∆n1

...
d
dt∆nm

 =M

∆n1
...

∆nm

 , (2.71)
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where the community matrixM has the form

M = −DM , D =


n∗1 0 · · · 0

0 n∗2 · · ·
...

...
...

. . . 0
0 · · · 0 n∗m

 , Mστ = −
p∑
i=1

ασiατi
si

. (2.72)

At this point ~n∗ will indeed be an equilibrium for the system if all the eigenvalues of the
community matrixM = −DM are non-positive, i.e. if DM is a positive semidefinite
matrix. In order to determine if this is the case we first note that since n∗σ > 0 ∀i the
matrix D is invertible, and so we can perform the following similarity transformation:

DM 7−→ D−1/2(DM)D1/2 = D1/2MD1/2 . (2.73)

The transformed matrix D1/2MD1/2 is clearly symmetric, and contrarily to DM it is
easy to show that it is positive semidefinite; in fact, for any vector ~v we have

~v ·D1/2MD1/2~v =

p∑
j,k=1

m∑
σ,τ=1

vjD
1/2
jσ MστD

1/2
τk vk =

p∑
i=1

m∑
σ,τ=1

vσ
√
n∗σ
ασiατi
si

vτ
√
n∗τ =

=

p∑
i=1

1

si

(
m∑
σ=1

vσ
√
n∗σασi

)(
m∑
τ=1

vτ
√
n∗τατi

)
=

p∑
i=1

(
m∑
σ=1

vσ
√
n∗σασi√
si

)2

≥ 0 . (2.74)

Since the spectra of similar matrices are identical we can conclude that DM is a pos-
itive semidefinite matrix, and so the community matrix M is negative semidefinite.
Therefore, ~n∗ is indeed an equilibrium for the dynamical system (2.66).

2.6.1 Properties and spectral distribution of the community matrix

We have just seen that the eigenvalues of the community matrix are never positive, so
we are sure of the fact that the steady state of the system were all species coexist is not
an unstable equilibrium. However, is there something more we can say about it?
The first interesting result we can obtain is the rank of the community matrix; this
can be more easily derived by noting that M can be written as the product of more
elementary matrices. In fact, from the definitions of D, M and A (the matrix (2.24) of
metabolic strategies) it can be easily seen that introducing

S :=


1/s1 0 · · · 0

0 1/s2 · · · 0
...

...
. . . 0

0 · · · 0 1/sp

 (2.75)

the community matrix can be written as

M = −DASAT . (2.76)
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We can now prove that if m ≥ p then5 rkM = p, using the following known results on
the rank of products of matrices:

rk(AB) ≤ min {rkA, rkB} , (2.77a)
rk(AB) ≥ rkA+ rkB − n , (2.77b)

where A is an m× n matrix, and B an n× k one (with m, n and k any integer).
Now, since the dimensions of the matrices that defineM are the following:

D −→ m×m A −→ m× p S −→ p× p , (2.78)

if we suppose m ≥ p we have:{
rk(DA) ≤ min {rkD, rkA} = min {m, p} = p

rk(DA) ≥ rkD + rkA−m = m+ p−m = p
=⇒ rk(DA) = p , (2.79)

{
rk(SAT ) ≤ min {rkS, rkA} = min {p, p} = p

rk(SAT ) ≥ rkS + rkA− p = p+ p− p = p
=⇒ rk(SAT ) = p , (2.80)

and as a consequence:{
rkM≤ min

{
rk(DA), rk(SAT )

}
= min {p, p} = p

rkM≥ rk(DA) + rk(SAT )− p = p+ p− p = p
=⇒ rkM = p . (2.81)

Therefore if m ≥ p the community matrix does not have full rank and thus m − p of
its eigenvalues will be equal to zero. This could seem a problem for the stability of the
system, particularly in the limit m� p, but as we will later show this does not alter the
essential properties of the equilibrium.

As for the spectral distribution of the community matrix, we have studied it numeri-
cally for different values of p and m. As we can see in figure 2.11, the great majority of
the eigenvalues ofM has a very small magnitude (confirming thus what we have said
about the weak-interaction effect in 1.1.3) and become less probable as their magnitude
increases; we can also see that as m increases (for a fixed value of p) their distribution
is “squeezed” towards zero.

2.6.2 Null eigenvalues

We have just seen that in the case m ≥ p the community matrix has m − p null eigen-
values, which obviously become the majority when m � p. It is therefore essential
to ask ourselves what is the behavior of their relative eigenvectors under some slight

5Using the very same argument that we are going to show it can be proved that rkM = m if m ≤ p,
i.e. in general rkM = min{m, p}.



Chapter 2. The PTW model 52

R
e

la
ti

v
e

F
re

q
u

e
n

c
y

(a) m = 100, p = 100, bin width: 5 · 10−5; the
results of 10 different iterations have been merged.
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(b) m = 200, p = 100, bin width: 0.5 · 10−5; the
results of 10 different iterations have been merged.
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(c) m = 300, p = 100, bin width: 0.5 · 10−5; the
results of a single iteration has been used.

Figure 2.11: Histograms of the distribution of the eigenvalues of the community matrixM. The matrix has been
built as in (2.76), where the steady-state populations n∗

σ have been computed by letting the system evolve until
t = 200 with initial conditions for nσs independently drawn from U [0, 1]. The metabolic strategies and ~s have been

drawn independently from a uniform distribution on the simplex.
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perturbations: if the system is driven away from the equilibrium do they return to the
same state or do they tend to another one? Do they oscillate around the equilibrium or
do they move away from it?
A “canonical” approach to the problem would consist in studying the stability of the
system at higher orders: we should consider also the second derivatives in the Taylor
expansion (2.67) and determine their contribution at the steady state, hoping that it is
non-positive so that d∆nσ/dt ≤ 0 ∀σ and the system does not move away from the
steady state. Using the properties of the model, however, we can skip this procedure
altogether and determine the behavior of the system anyway. In particular, in 2.3 we
have seen that the steady state where coexistence is allowed exists if ~s belongs to the
convex hull of metabolic strategies, i.e. if

~s = n1~α1 + · · ·+ nm~αm (2.82)

has a positive solution {n∗1, . . . , n∗m} with
∑

σ n
∗
σ = 1. This equation, however, is a sys-

tem of p equations in m variables, and therefore a unique solution exists only if m = p;
in the case m > p it is underdetermined since there are more variables than equations.
When m > p system (2.82) is overdetermined and thus has an infinite number of solu-
tions, i.e. there is an infinite number of states where all species can coexist.
This means that if our ecosystem is slightly perturbed from equilibrium, the eigenvec-
tors relative to the null eigenvalues will tend to one of these infinitely many possible
steady states: therefore even if the system has a large amount of null eigenvalues we
are completely sure that, if perturbed, the system will always remain in a state where all
the species coexist (even if this new final state can be different from the previous one).
In order to verify these considerations we have studied numerically how the system re-
sponds to perturbations once it reaches a steady state. As we can see in figure 2.12, the
coexistence of species is indeed robust in the sense that the system will always return
in a state where all species coexist, even if the particular steady state of the system can
change. We can therefore conclude that the coexistence of species in the PTW model is
robust against perturbations in species populations; technically speaking, on the other
hand, the particular steady state of the system is stable but not asymptotically.

2.7 The PTW model and May’s stability criterion

Since we have found that this model allows the coexistence of an arbitrary number of
species under a fairly simple condition (i.e. the fact that ~s must lie within the convex
hull of metabolic strategies), it could be interesting to see how this model relates to
May’s stability criterion (equation (1.7) and its improvements given in 1.1.2.1). In par-
ticular, we want to see if the community matrixM as given in (2.76) satisfies the most
general form of May’s stability criterion (1.14), which can be simply rewritten as

1

d
max

{√
mV (1 + ρ)− E, (m− 1)E

}
< 1 . (2.83)

We have therefore proceeded as follows: we have generated the metabolic strategies ~ασ
drawing them from a uniform distribution on the simplex, and then we have drawn
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Figure 2.12: Robustness of species coexistence against slight perturbations. Initial conditions for nσs are taken as
equal populations (nσ(0) = 1/m ∀σ), and ~s is of course chosen inside the convex hull of metabolic strategies,

which are in turn drawn independently from a uniform distribution on the simplex. The system is left to evolve
until it reaches equilibrium, then at t = 600 populations are changed to nσ + εσ , where εσ is drawn from the

distributions shown in captions, and renormalized so that they again sum to one; the system is then left again to
evolve. In (a) we can see that even if the perturbations are not so slight the system comes back to the same steady
state, because since m = p = 3 there are no null eigenvalues and the equilibrium is asymptotically stable. E is the

exponential distribution Eλ(x) = λe−λx for x > 0, and Γ̃ is the Gamma distribution (2.63).
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Figure 2.13: May’s stability criterion (2.83) for the community matrix of the PTW model; the curve has been built
with the procedure described in 2.7, with m going from 100 to 500 in steps of 50 and p = 10, and finally averaged
over five iterations. The fact that the curve is always above one (purple line) means that the PTW model does not

satisfy May’s stability criterion (2.83), even if we are in the conditions that allow the coexistence of all species.

~s from a uniform distribution on their convex hull (so we are putting ourselves on
purpose in the conditions for coexistence); then we have let the system evolve until
t = 500 and obtained the steady-state populations n∗σs. With these data we have built
the community matrixM as in (2.76), i.e. M = −DASAT , and then computed all the
necessary quantities: d as the mean of the diagonal elements ofM, E as the mean of all
the off-diagonal ones, V as their variance, and their correlation ρ as

ρ =
E[MijMji]− E2

V
. (2.84)

Finally, we have computed max{
√
mV (1+ρ)−E, (m−1)E}/d to see if (2.83) is satisfied.

This procedure has been repeated for increasing values of m (i.e. increasing size of the
community matrix) and p = 10, and finally averaged over five iterations. The results
are shown in figure 2.13: since the curve has values which are always greater than one
we can conclude that the community matrix of the PTW model does not satisfy May’s
stability criterion (2.83) even if we are in the conditions that allow the coexistence of an
arbitrary number of species!
This is an extremely interesting result, that shows how the PTW model belongs to a
class of models completely different from those studied until now.
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CHAPTER 3

Generalizations of the PTW model

As we have seen, many interesting properties derive from the formulation of the PTW
model that we have given (which is the one proposed by the authors in the original
work). However, some of its aspects are not completely satisfying or realistic from an
ecological point of view: for example, death rates and energy budgets are assumed to
be equal for all species, which is a clearly restrictive and unrealistic hypothesis; further-
more, metabolic strategies are kept always constant while in real ecosystems they can
change over time in order to enhance a species’ fitness.
Some of the features of the model could thus be just consequences of such choices, i.e.
the interesting properties of the PTW model could be not so interesting after all because
results of a fine-tuning of these parameters. It is therefore crucial to find more general
formulations of the model in order to see if its fundamental properties, above all the
possibility that an arbitrary number of species can coexist, are inherent to the model
itself or only effects of this fine-tuning.

In this chapter we provide some basic generalizations of the PTW model aimed at fixing
the problems highlighted here: we let for example each species to have its own death
rate and energy budget, and then we let also the metabolic strategies to evolve over
time so that their evolution maximizes the fitness of species .

3.1 Species-dependent death rates and energy budgets

We want to relax the hypothesis that every species has the same death rate δ and energy
budget E, so species σ will now have its own δσ and Eσ. As we will shortly see, as a
consequence of this choice we must also require that the per-enzyme nutrient uptake
rates become species-dependent, i.e. we must substitute ri in the equations with rσi. For
what we know so far we have no means to understand the exact relationship between
these two quantities, but we can set in general rσi = ζσici/(Ki + ci) = ζσiri.
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Therefore, the generalized equations for the evolution over time of nσs are

dnσ
dt

= (gσ − δσ)nσ , (3.1)

where:

gσ =

p∑
i=1

viασirσi , (3.2)

~w · ~ασ = Eσ . (3.3)

On the other hand the equations that regulate the concentrations of nutrients, in the
absence of degradation, are

dci
dt

= si −
m∑
σ=1

nσασirσi . (3.4)

Now, proceeding as in 2.3, at stationarity we will have

gσ =

p∑
i=1

viασirσi = δσ , (3.5)

and because of the separation of metabolic and cellular timescales we also have

si =
m∑
σ=1

nσασirσi . (3.6)

Equation (3.5) can be rewritten as the system of equations
α11v1r11 + · · ·+ α1pvpr1p = δ1

...
αm1v1rm1 + · · ·+ αmpvprmp = δm

, (3.7)

whose solution, thanks to the new metabolic trade-off condition (3.3), is

r∗σi =
δσ
Eσ
· wi
vi

. (3.8)

Now we can also understand why the request of having species-dependent death rates
and energy budgets “forces” us to have also species-dependent per-enzyme uptake
rates: if we had used ri instead of rσi we would have found now that r∗i = δσwi/Eσvi,
a result which is clearly meaningless since ri cannot depend on the index σ.
Using the fact that we have set rσi = ζσi

ci
Ki+ci

, from (3.8) we have

δσ
Eσ
· wi
vi

= ζσi
c∗i

Ki + c∗i
. (3.9)
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Since also c∗i cannot depend on σ, a possible choice for ζσi can be ζσi = ξiδσ/Eσ, with ξi
a number. This way we get

c∗i =
Ki

ξi
vi
wi
− 1

, (3.10)

from which we see that the ξis cannot be any real number, but we must have ξi >
wi/vi ∀i. We therefore see that the relationship between the per-enzyme nutrient uptake
rate ri and its species-dependent version rσi is

rσi = ξi
δσ
Eσ

ri , (3.11)

and requiring that we recover the original case when all death rates and energy budgets
are equal, i.e. that rσi = ri when δσ = δ and Eσ = E, we easily see that we must set

ξi :=
m∑m

σ=1 δσ/Eσ
. (3.12)

Let us now consider equation (3.1); if we introduce n̂σ := nσδσ and define

n̂ :=
m∑
σ=1

nσ and n :=
m∑
σ=1

nσ , (3.13)

using also equation (3.6) we can rewrite it as

ṅ =

p∑
i=1

visi − n̂ , (3.14)

which implies that at stationarity n̂ =
∑

i visi := N̂ .
Since every species has its own energy budget if we want to represent the system graph-
ically like we have done in 2.3, i.e. if we want the metabolic strategies to belong to the
same simplex in the space of resource uptake rates, we must rescale them. In particular,
if we define

α̂σi := ασi
wi
Eσ

(3.15)

we will have
∑

i α̂σi = 1 ∀σ (just like in 3.1); with this definition, and introducing

~̂s :=
1

N̂

s1v1...
spvp

 , (3.16)

equation (3.6) can be rewritten as the following system of equations:

n̂1

N̂
~̂α1 + · · ·+ n̂m

N̂
~̂αm = ~̂s . (3.17)

Since
∑

σ n̂σ/N̂ = 1 we see that in order to have coexistence the rescaled nutrient sup-
ply rate vector ~̂s must lie within the convex hull of the rescaled metabolic strategies
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~̂ασs; the situation is therefore identical to the one we have encountered in 2.3, provided
of course that we use the rescaled quantities. In particular we can note that also in this
case the system can have infinite possible steady states: like what we have said in 2.3,
every possible configuration of the coefficients n̂σ/N̂s that sums to one corresponds to
an equilibrium if (3.17) holds.

3.1.1 Relationship between this formulation and the original one

In order to show that the formulation that we have just given is really a more general
version of the PTW model and not a particular case of the original one, we must show
that there is no parameter rescaling that can bring us back to the previous case. In other
words, we must see if (3.1) can be brought back to (2.44) only by parameter rescaling.
With the definitions of n̂σ and α̂σi equation (3.6) can be rewritten as

si =
m∑
σ=1

n̂σα̂σi
ξi
vi
ri , (3.18)

from which we have

ri =
wi
ξi
· si∑m

σ=1 n̂σα̂σi
= N̂

wi
viξi
· ŝi∑m

σ=1 n̂σα̂σi
, (3.19)

where we have also used the definition of ŝi. Therefore the growth rate gσ of species σ
can be rewritten as

gσ = N̂

p∑
i=1

α̂σi
ŝi∑m

τ=1 n̂τ α̂τi
, (3.20)

and thus (3.1) can be rescaled to

ṅσ = n̂σ

(
N̂

p∑
i=1

α̂σi
ŝi∑m

τ=1 n̂τ α̂τi
− 1

)
, (3.21)

which is similar but not equal to (2.44), since on the left hand side we have nσ instead of
n̂σ. We see therefore that the introduction of species-dependent death rates and energy
budgets really constitutes a more general version of the PTW model.
If we try to sum (3.21) over σ on both sides we get

ṅ = N̂ − n̂ , (3.22)

so we see again that at stationarity n̂ = N̂ ; at variance with the case δσ = δ ∀σ and
Eσ = E ∀σ, however, it is not possible to write a single equation for n alone.

3.1.2 Relationship with the competitive exclusion principle

We now briefly show that the results found in 2.5 are still valid in this generalized for-
mulation of the PTW model, i.e. that the metabolic trade-off condition is still essential
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in order to allow the coexistence of an arbitrary number of species and that without it
the competitive exclusion principle must hold.

We have seen that this time at stationarity we have to solve gσ = δσ ∀σ, which can be
rewritten as system (3.7), i.e.

α11v1r11 + · · ·+ α1pvpr1p = δ1
...

αm1v1rm1 + · · ·+ αmpvprmp = δm

. (3.23)

We already know that introducing the trade-off conditions ~w · ~ασ = Eσ ∀σ this sys-
tem can be solved regardless of the values of m and p, like what we have seen in 2.3.
However, if we do not introduce them it could seem that we are in a very unpleasant
situation, since (3.23) looks like a linear system of m equations in mp variables and
thus can never admit any solution. Nevertheless, we have seen that rσi is actually a
“rescaled” version of ri, i.e. that we can in general set rσi = ζσiri; regardless of the
particular expression of ζσi this means that (3.23) can be rewritten as

α11v1ζ11r1 + · · ·+ α1pvpζ1prp = δ1
...

αm1v1ζ1mr1 + · · ·+ αmpvpζmprp = δm

, (3.24)

which is a system of m equations in p unknowns (we can easily “absorb” the vis and
ζσis by rescaling the metabolic strategies ασis). We thus see that we are in the same
situation seen in 2.5, and so all the considerations made there are still valid; in particu-
lar, we have that without the metabolic trade-off conditions the competitive exclusion
principle holds.

3.1.3 Relationship with the chemostat model

We conclude with a remark: in [51, Chapter 2, Section 4] is provided a generalization of
the chemostat model where there are n species in the system and every one of them is
allowed to have its own washout rate Dσ. As it can be seen from the comparison made
in 2.2.1 the washout rate of a species in the chemostat model is equivalent to its death
rate in the PTW model, so this generalized version of the chemostat is really interesting
because it is an equivalent of the generalization of the PTW model that we have studied
now. In [51], however, it is found that if we allow every species of the chemostat to have
its own washout rate the competitive exclusion principle continues to hold; we thus see
how the PTW model constitutes a crucial improvement over the chemostat: in addition
to allowing the presence of an arbitrary number of resources, the metabolic trade-off
condition allows the violation of the competitive exclusion principle even when every
species has its own death rate.
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3.2 Implicit death rates

It is also possible to generalize the original version of the PTW model so that it doesn’t
need to have an explicitly predefined death rate δ. As we will now show, this is possible
by requiring that the total population of the ecosystem is conserved, i.e.

∑
σ ṅσ = 0; this

means that at stationarity the system reaches its carrying capacity, and the value of the
total population is the largest possible compatibly with the characteristics of the system.

Let us consider the equations ṅσ = gσnσ ∀σ; as it is well known in this case populations
grow exponentially over time. If we now expand this equation to the first order and
require

∑
σ nσ(t) = N , we have

nσ(t+ dt) = N
nσ(t) + gσnσ(t)dt∑m
τ=1(nτ + gτnτdt)

, (3.25)

where we have renormalized the right hand side so that
∑

σ nσ(t + dt) = N . We now
sum

∑
τ nτ in the denominator, factorize an N and expand the denominator:

nσ(t+ dt) =
nσ(t) + gσnσ(t)dt

1 + 1
N

∑m
τ=1 gτnτdt

= (nσ + gσnσdt)

(
1− 1

N

m∑
τ=1

gτnτdt+ · · ·

)
, (3.26)

and neglecting higher orders yields

nσ(t+ dt) = nσ +

(
gσnσ −

nσ
N

m∑
τ=1

gτnτ

)
dt , (3.27)

from which we get
dnσ
dt

=

(
gσ −

1

N

m∑
τ=1

gτnτ

)
nσ . (3.28)

These are the new equations that population abundances must satisfy.

Note that summing both sides of (3.28) over σ we get

m∑
σ=1

dnσ
dt

=

(
m∑
τ=1

gτnτ

)
·

(
1− 1

N

m∑
σ=1

nσ

)
, (3.29)

and so if
∑

σ nσ(0) = N we indeed have
∑

σ ṅσ = 0.
Furthermore, at stationarity we have

gσ =
1

N

m∑
τ=1

gτnτ := g , (3.30)

and using the explicit expression of the growth rates, i.e.

gσ =

p∑
i=1

ασi
si∑m

τ=1 nτατi
, (3.31)
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(3.30) becomes:

g =
1

N

m∑
σ=1

gσnσ =
1

N

p∑
i=1

si

∑m
σ=1 nσασi∑m
τ=1 nτατi

=
S

N
. (3.32)

This means that as stationarity is approached all growth rates tend to the same val-
ues. This case is therefore essentially equivalent to the original formulation of the PTW
model (where at stationarity gσ = δ ∀σ) with the difference that the free parameter is
now N instead of δ. In fact, in 2.2 we have seen that death rates are fixed to the same
value and the total final population depends on it (n∗tot = S/δ), while now the total
population is fixed and the final value of the death rates depends on it.

3.3 Dynamical metabolic strategies

We now proceed to a further generalization of the PTW model which constitutes one of
the main results of this thesis.
Until now we have always supposed that the species’ metabolic strategies are constant:
their value is fixed by initial conditions and then always remains the same. It is rea-
sonable, however, to consider also the case in which they are dynamical variables and
are allowed to evolve in time, since species in real ecosystems can actually change their
eating habits in order to adapt to the environment; the aim of this section is to provide
such a generalization of the PTW model and investigate its properties.

3.3.1 An “equation of motion” for the metabolic strategies

Since we want to allow the metabolic strategies to evolve in time, we must provide a
differential equation that regulates their “motion” to be solved alongside the equation
for the population abundances, and therefore we must identify a principle under which
the strategies evolve. Our approach here is to use a variational principle: we want the
metabolic strategy ~ασ to evolve so that the fitness of species σ increases over time, and
reaches the largest possible value at stationarity. This is of course achieved by requiring
that the “equations of motion” of the metabolic strategies imply that a given quantity
increases or decreases as time passes; the problem therefore lies in finding the appro-
priate quantity to use in this variational approach.
Let us therefore see in general the formalism needed in order to write the equations that
regulate the evolution in time of the metabolic strategies.

Let Q(~x) be a quantity that we want to maximize after the variable ~x(t) ∈ Rq has been
let to evolve for a suitable time interval. During this evolution the variable must also
be subject to some constraints Fi(~x) = const. with i = 1, . . . , ` < q, so we also want to
keep Fis constant. We start with ` = 1 for the sake of simplicity, so we only have one
constraint F (~x) = const.
An evolution of the type

d~x

dt
= ~∇Q(~x) (3.33)
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α̂σ1

α̂σ2
F = const.

~∇Q

~∇F

~∇F
|~∇F |

(
~∇F
|~∇F |

· ~∇Q
)

ẋ = ~∇Q− ~∇F
|~∇F |2

~∇F · ~∇Q

Figure 3.1: Effect of the additional term introduced in (3.35).
This is just an illustrative representation, made for the case p = 2 for ease of representation and not faithful to the
functional form of F we are considering. It’s just an example to make it easier to understand that the additional

term in (3.35) bounds the metabolic strategies to move on the manifold defined by the constraint F = const.

implies (by scalarly multiplying both sides by d~x/dt)(
d~x

dt

)2

= ~∇Q(~x) · d~x
dt

=
dQ

dt
, (3.34)

so dQ/dt ≥ 0. In order to keep F (~x) constant we simply eliminate the component of
~∇Q parallel to ~∇F , i.e.

d~x

dt
= ~∇Q(~x)−

~∇F (~x)

|~∇F (~x)|

(
~∇F (~x)

|~∇F (~x)|
· ~∇Q(~x)

)
. (3.35)

Figure 3.1 contains an illustrative representation of this process.

Let us now show that this equation satisfies our requirements. First of all, F is constant:

dF

dt
= ~∇F · d~x

dt
= ~∇F · ~∇Q− |

~∇F |2

|~∇F |2
~∇F · ~∇Q = 0 , (3.36)

and Q increases with time:

dQ

dt
= ~∇Q · d~x

dt
= |~∇Q|2 −

(
~∇F
|~∇F |

· ~∇Q

)2

≥ 0 , (3.37)

since by Schwartz’s inequality (~a·~b)2 ≤ |~a|2|~b|2, and so (~∇F ·~∇Q/|~∇F |)2 is never greater
than |~∇Q|2.
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Let us now consider the more general situation where the variable ~x is subject to `
constraints. In this case in order to keep Fis constant we have to subtract in (3.33) from
~∇Q the component that lies in the subspace spanned by ~∇Fis, and in order to do so we
use the following result. Let ~ei with i = 1, . . . , ` a basis for R`, so that the matrix B with
components

Bij = ~ei · ~ej (3.38)

has non-zero determinant. If we define Bij to be the (i, j)-th element of its inverse, i.e.

∑̀
k=1

BikBkj = δij (3.39)

with δij a Kronecker delta symbol, then the reciprocal basis is defined as

~e i :=
∑̀
k=1

Bik~ek , (3.40)

which implies

~e i · ~ei = δij and ~ei =
∑̀
k=1

Bik~e k . (3.41)

In our case1 ~ei = ~∇Fi(~x), so that Bij(~x) = ~∇Fi(~x) · ~∇Fj(~x) depends on ~x (ans so does
Bij). The analogous of (3.35) is now

d~x

dt
= ~∇Q−

∑̀
i=1

~ei(~e
i · ~∇Q) , (3.42)

or more explicitly2

d~x

dt
= ~∇Q−

∑̀
i,j=1

~∇Fi(~x)Bij(~x)
(
~∇Fj(~x) · ~∇Q(~x)

)
. (3.43)

From this equation it is straightforward to see that

dFi
dt

= ~∇Fi ·
d~x

dt
= 0 , (3.44)

so Fis are indeed constant; in addition

dQ

dt
= ~∇Q · d~x

dt
= |~∇Q|2 −

∑̀
i=1

(~∇Q · ~e i)(~∇Q · ~e i) , (3.45)

1The gradients of the constraints are in fact linearly independent, in general.
2Note that numerically speaking Bij(~x) in (3.43) should be computed at every time step.
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and we can prove that this quantity is positive as follows: if ~ei with i = ` + 1, . . . , q
are linearly independent and orthogonal to ~ei with i = 1, . . . , `, the whole set of vectors
provides a basis for the space Rq. We will then have that the matrix B′ with elements

B′ij = ~ei · ~ej i, j = 1 . . . q (3.46)

is block diagonal (the first block being just B). If we then define again

~e i :=

q∑
j=1

B′ij~ej (3.47)

(which for i = 1, . . . , ` coincide with the previously defined ~e is) we will have

|~∇Q|2 =

q∑
i=1

(~∇Q · ~ei)(~∇Q · ~e i) , (3.48)

so that the right hand side of (3.45) is equal to

q∑
i=`+1

(~∇Q · ~e i)(~∇Q · ~ei) =

q∑
i,j=`+1

(~∇Q · ~e i)B′ij(~∇Q · ~e j) =

=

q∑
i,j=`+1

(~∇Q · ~e i)~ei · ~ej(~∇Q · ~e j) =

q∑
i=`+1

[
(~∇Q · ~e i)~ei

]2
≥ 0 , (3.49)

so indeed dQ/dt ≥ 0.
If we have a single constraint F (~x) = const., then

~e1 = ~∇F B11 = |~∇F |2 B11 =
1

|~∇F |2
~e 1 =

~∇F
|~∇F |

, (3.50)

and so (3.43) indeed reduces to (3.35).

We can now apply this formalism to the rescaled generalized version of the PTW model
that we have seen in 3.1, where now the metabolic strategies ~̂ασs are dynamical vari-
ables whose evolution tries to maximize their own growth rates

ĝσ({~̂αρ}, {n̂ρ}) =

p∑
i=1

α̂σiŝi∑m
τ=1 n̂τ α̂τi

. (3.51)

This choice has been made because the growth rate of a species is generally used as a
“measure” of its fitness to an ecosystem: the fitter a species, the more favorable will be
the conditions for its reproduction and so the larger will be its growth rate.
Since every ~̂ασ tries to maximize gσ and all gσs depend on all the metabolic strategies,
we have that many functions that depend on the same variables have to be optimized
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simultaneously, so in general we will have to find a “compromise” in order to get the
best possible result3: this problem is commonly known as multiobjective optimization
[38], and is typically addressed by optimizing a convex combination of all the involved
functions, in our case the growth rates. In other words we want the evolution of the
metabolic strategies to maximize the quantity

G({~̂αρ}, {n̂ρ}) =

m∑
σ=1

λσ ĝσ with λσ ≥ 0∀σ ,
m∑
σ=1

λσ = 1 (3.52)

(if all the ĝσs could be optimized simultaneously we would of course have maxG =∑
σ λσ max ĝσ, but this does not typically occur).

We can thus apply the previous formalism with ~x→ {~̂αρ}, Q→ G and the constraints

Fσ(~̂ασ) =

p∑
i=1

α̂σi = 1 . (3.53)

Since we also need α̂σi ≥ 0 we prefer to work with the auxiliary variables ησi, where

α̂σi := F(ησi) (3.54)

and F(x) ≥ 0 ∀x.
The equivalent of (3.43) is, explicitly in components:

dησi
dt

=
∂G

∂ησi
−

m∑
ρ,τ=1

∂Fρ
∂ησi
Bρτ

m∑
ν=1

p∑
j=1

∂Fτ
∂ηνj

∂G

∂ηνj
, (3.55)

and writing dF(x)/dx = F ′(x) the quantities we need are

∂Fρ
∂ησi

= δρ,σF ′(ηρi) Bρτ =

m∑
σ=1

p∑
i=1

∂Fρ
∂ησi

∂Fτ
∂ησi

= δρ,τ

p∑
i=1

F ′(ηρi)2 , (3.56a)

Bρτ =
δρ,τ∑p

i=1F ′(ηρi)2
∂ĝσ
∂ηρi

=
∂ĝσ
∂α̂ρi

F ′(ηρi) =
F ′(ηρi)ŝi∑m
τ=1 n̂τ α̂τi

(
δσ,ρ −

n̂ρα̂σi∑m
τ=1 n̂τ α̂τi

)
,

(3.56b)

∂G

∂ησi
=

m∑
ρ=1

λρ
∂ĝρ
∂ησi

⇒ ∂G

∂α̂σi
=

m∑
ρ=1

λρ
∂ĝρ
∂α̂σi

=

m∑
ρ=1

λρ
ŝi∑m

τ=1 n̂τ α̂τi

(
δσ,ρ −

n̂ρα̂σi∑m
τ=1 n̂τ α̂τi

)
,

(3.56c)
with which (3.55) becomes

dησi
dt

=
∂G

∂ησi
− F ′(ησi)∑p

k=1F ′(ησk)2
p∑
j=1

F ′(ησj)
∂G

∂ησj
, (3.57)

3We will in fact be subject to a “trade-off” between the growth rates, because maximizing one of them
could minimize other ones and vice versa.
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and since from (3.54) we have

dα̂σi
dt

=
dησi
dt
F ′(ησi)

∂G

∂ησi
=

∂G

∂α̂σi
F ′(ησi) (3.58)

equation (3.57) in terms of the metabolic strategies becomes

dα̂σi
dt

= F ′(ησi)2
 ∂G

∂α̂σi
− 1∑p

k=1F ′(ησk)2
p∑
j=1

F ′(ησj)2
∂G

∂α̂σj

 . (3.59)

Once an appropriate F has been chosen these are the final equations for the metabolic
strategies, and must now be solved together with the ones for the populations, i.e.

ṅσ = n̂σ

(
N̂

p∑
i=1

α̂σi
ŝi∑m

τ=1 n̂τ α̂τi
− 1

)
. (3.60)

The most simple choice we can make for the function F is F(x) = x2/2, i.e.

α̂σi =
η2σi
2

. (3.61)

In this case, since F ′(ησi) = ησi equation (3.59) becomes

dα̂σi
dt

= 2α̂σi

 ∂G

∂α̂σi
− 1∑p

k=1 α̂σk

p∑
j=1

α̂σj
∂G

∂α̂σj

 . (3.62)

From what we have shown in 3.1 we know that at stationarity

~̂s =
m∑
σ=1

n̂σ

N̂
~̂ασ . (3.63)

This time, unlike what we have seen in 2.3, also the metabolic strategies α̂σis are vari-
ables and so the system defined by (3.63) will always admit infinite solutions, since the
number of unknowns is much larger that the number of equations; in other words, by
letting also the metabolic strategies to be variables we give the system many additional
degrees of freedom, and this allows (3.63) to be always solvable. This is a very impor-
tant result, since it means that the condition for the coexistence of an arbitrary number of
species is always satisfied when metabolic strategies are dynamical variables, regardless of
the initial configuration of the system: even if the rescaled nutrient supply rate vector
~̂s is initially outside of the convex hull of metabolic strategies, all the species in the
ecosystem will coexist.
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In figure 3.2 we provide a couple of numerical examples of the evolution of the system
described by equations (3.60) and (3.62). One interesting property of this system that
we can see is how the strategies generally arrange themselves once the steady state is
reached, and in particular that it is possible for some of their components to tend to
zero: in both the examples of figure 3.2 we see that at stationarity some of the metabolic
strategies end up on one of the sides of the simplex, and from the plots representing
the evolution in time of the components of the strategies we see that some of them do
indeed tend to zero. This means that for the system it is convenient that some species
change their eating habits so as to quit utilizing one of the resources, i.e. that some
species become more specialized in the metabolization of certain nutrients.

3.3.1.1 Another possible “equation of motion”

Of course the choice (3.61) for the function F is only one of the many possible that one
can make. Another very simple choice could be F(x) = ex, i.e.

α̂σi = eησi , (3.64)

from which F ′(ησi) = eησi = α̂σi and so (3.59) becomes

dα̂σi
dt

= α̂2
σi

 ∂G

∂α̂σi
− 1∑p

k=1 α̂
2
σk

p∑
j=1

α̂2
σj

∂G

∂α̂σj

 . (3.65)

The main problem of this choice, however, is that small values of α̂σis are “disadvan-
taged”, because in order to have α̂σi ≈ 0 the auxiliary variables ησis must reach negative
values with very large (ideally infinite) magnitude.
In figure 3.3 we provide a couple of examples of the time evolution with this choice.
These examples have been built so as to have exactly the same initial conditions (for
n̂σs and α̂σi) and parameters (m, p, ~w, ~v, δσs, Eσs and λσs) of the corresponding system
of figure 3.2. We can see that the evolution of the system is similar to the one given
by equation (3.62) with the difference that now the metabolic strategies do not reach a
“complete specialization”, i.e. they do not end up on the sides on the simplex (their
components can tend to small values, bot not to zero).

3.3.2 Angular distribution of the steady-state strategies

Now that we have seen that in the dynamical case the metabolic strategies do indeed
reach a steady-state, we may wonder how they are arranged on the simplex in this
final state; we will now therefore study the distribution of the steady-state metabolic
strategies on the simplex. In order to do so we investigate the distribution of the angles
between them taken with respect to their “center of mass”, i.e. for each couple4 (σ, ρ)

4Obviously, since cos θσρ = cos θρσ we have considered the couples (σ, ρ) and (ρ, σ) as perfectly equiv-
alent, and used only one of them in the following computations so as to avoid double counts. In particular
we have only used the couples (σ, ρ) with σ < ρ.
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(a) Here we have used m = 6, p = 3, ~w = (1, 1, 2), ~v = (1, 1, 0.7) (i.e. the third resource is more costly and less
valuable than the other two), δσs are independently drawn from U [0, 1] and Eσs fromN (5, 1). Initial conditions

for the populations are independently drawn from U [0, 1], while λσ = 1/m ∀σ.
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(b) Here we have used m = 8, p = 3, ~w = (1, 0.6, 1), ~v = (1, 1.3, 1) (i.e. the second resource is less costly and
more valuable than the others), δσs are independently drawn from |N (2, 1)| and Eσs from U [3, 4]. Initial

conditions for the populations are independently drawn from U [0, 1], and λσs have been drawn from U [0, 1] and
then renormalized so that

∑
σ λσ = 1.

Figure 3.2: Evolution of the system in the case given by equatons (3.60) and (3.62). In both cases the figures
represent, going from left to right and from top to bottom: the initial case considered, the evolution of n̂σs and α̂σis,

and the final state of the system; the black star represents the rescaled vector of nutrient supply rate ~̂s: Intial
metabolic strategies and ~̂s are drawn independently from a uniform distribution on the simplex. In the plot of the

time evolution for the strategies the curves of the same color represent the three components of a same strategy ~̂ασ .
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(a) Here we have used exactly the same parameters and initial conditions of figure 3.2a.
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(b) Here we have used exactly the same parameters and initial conditions of figure 3.2b.

Figure 3.3: Evolution of the system in the case given by equatons (3.60) and (3.65). The arrangement and the
notation are the same of figure 3.2.
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Figure 3.4: Probabilities of cos θσρ and θσρ. They have been computed in the following way: a system with
m = 20, p = 3, wi = vi = 1 ∀i has been left to evolve until t = 1000 according to equations (3.60) and (3.62); the
initial conditions for the metabolic strategies and ~̂s have been drawn independently from a uniform distribution on
the simplex, and the initial populations have been drawn from U [0, 1]. As of the other parameters, the death rates
δσs have been drawn from U [1, 2] and the energy budgets Eσs from |N (5, 1)|. At this point the center of mass ~C of

the steady-state strategies has been computed as in (3.67) and the cosines cos θσρ of the angles between the
strategies as in (3.66); as discussed in footnote 4 on page 69, only the couples (σ, ρ) with σ < ρ have been used in

order to avoid double counts. The results of 3000 iterations have been put together, and then P (cos θσρ)s have been
computed as the relative frequency of cos θσρ, dividing the interval [−1, 1] in 500 bins.

with σ 6= ρ we have first determined the probability density function fcos of

cos θσρ =

(
~̂α∗σ − ~C

)
·
(
~̂α∗ρ − ~C

)
|~̂α∗σ − ~C| · |~̂α∗ρ − ~C|

(3.66)

where

~C =
1

m

m∑
τ=1

~̂α∗τ , (3.67)

and then we have computed the probability distribution fθ of the angles θσρ as

fθ(θσρ) = fcos(cos θσρ) sin θσρ . (3.68)

In figure 3.4a we have plotted the probability P (cos θσρ) computed as the relative fre-
quency of cos θσρ, while in figure 3.4b we have plotted the values of P (cos θσρ) sin θσρ
in order to have a rough idea of the behavior of fθ(θσρ); these results, however, are far
from being rigorous and general: they are useful if one wants to have a qualitative idea
of the behaviors of fcos and fθ, but they do not contain all the information of a probabil-
ity density function (and of course the particular values of the relative frequencies do
not remain exactly the same every time we perform a new computation).

In order to have more general results, we must estimate the probability density func-
tions fcos (and then fθ) from our set of data, which is possible through the so-called ker-
nel density estimation [50]. Very concisely, if {xi}i=1,...,n is a sample of data drawn from
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Figure 3.5: Probability density functions of cos θσρ and θσρ. Figure (a) has been obtained with variable kernel
density estimation with Gaussian kernels, as explained in the text. Figure (b) has been obtained using (3.68).

an unknown probability density function f(x), its kernel density estimator is defined as

f̂h(x) :=
1

nh

n∑
i=1

K

(
x− xi
h

)
, (3.69)

where the function K is called the kernel, and can be any non-negative function with
zero mean and normalized to 1, while h > 0 is a free parameter called bandwidth; the
main difficulty of kernel density estimation consists in finding the optimal value for
h: if it is too small f̂ has a very “rugged” aspect and depends strongly on the data set
used (and we say that that the estimated PDF is undersmoothed), while if it is too large f̂
will be very smoothed and too spread with respect to the data set used (in this case the
estimated PDF is said to be oversmoothed). There are numerous algorithms designed to
determine the best possible value for the bandwidth, and many possible functions that
can be used as kernel. In our case we have decided to use Gaussian kernels

K(y) =
1√
2π
e−

y2

2 , (3.70)

and for the bandwidth we have resorted to the so-called adaptive or variable kernel density
estimation [54] (which consists in using a variable bandwidth) because it gives the most
accurate results.
The outcomes of the computation are shown in figure 3.5, together with the plot of the
probability density function fθ(θσρ) of the angles.

3.4 PTW model without timescale separation

One of the main assumptions that we have made in 2.2 but never questioned is the
separation of the timescales on which metabolism and reproduction take place, which
allowed us to write ris as

ri =
si∑m

σ=1 nσασi
, (3.71)
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which is a general form that does not depend on nutrient concentrations cis, and insert-
ing this expression in the equation that regulates nσs we were left with only one set of
equations to solve.
We could however wonder if the removal of this hypothesis can actually change things,
and to what extent; therefore, we will now consider the generalized PTW model shown
in 3.1 with no timescale separation and see how much this differs from what we have
studied so far. First of all, since we are not supposing that from the beginning dci/dt =
0 ∀i we necessarily have to solve two coupled systems of equations, i.e.

dnσ
dt

=

(
p∑
i=1

viασirσi(ci)− δσ

)
nσ , (3.72a)

dci
dt

= si −
m∑
σ=1

nσασirσi(ci) , (3.72b)

where of course rσi = ξi(δσ/Eσ)ri(ci), and the choice of the particular functional form
of ri(ci) is still up to us; we obviously continue to use the form introduced in 2.2, i.e the
Monod function ri(ci) = ci/(Ki + ci) with Kis constants.

It is now easy to see that the conditions that allow the coexistence of an arbitrary num-
ber of species are exactly the same as the one we have already found. In fact, setting
dnσ/dt = 0 ∀σ with nσ 6= 0 ∀σ we have

∑
i viασirσi(ci) = δσ ∀σ which brings to the

system of equations (3.7), and with the metabolic trade-off conditions we can deter-
mine that its solutions are (3.8), i.e. r∗σi = (δσ/Eσ) · (wi/vi). Now, even if we have
not assumed from the beginning that dci/dt = 0 ∀i we are anyway studying equations
(3.72a) and (3.72b) at stationarity, so we must set dci/dt = 0 ∀i in any case. We therefore
have that at stationarity the relationship between rσis and nσs is the same that we have
already seen, and thus the final conditions for coexistence that we obtain are exactly the
same: even when the timescale separation is removed the PTW model allows the coex-
istence of an arbitrary number of species when the rescaled nutrient supply rate ~̂s lies
within the convex hull of the rescaled metabolic strategies α̂σi. In figure 3.6 we provide
a couple of numerical examples of the evolution of the system in this case.

3.4.1 Dynamical metabolic strategies

We can even generalize what we have just seen by letting again the metabolic strategies
to be dynamical variables. This means that along with the equations (3.72a) and (3.72b)
we must also solve an equation for the metabolic strategies; we choose to use

dασi
dt

= 2ασi

 ∂G

∂ασi
− 1∑p

k=1 ασk

p∑
j=1

ασj
∂G

∂ασj

 , (3.73)

which is obtained from (3.57) just as what we have seen in 3.3.1, with the definition

ασi := F(ησi) =
η2σi
2

, (3.74)
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Figure 3.6: Solutions of equations (3.72a) and (3.72b) for m = 8, p = 3, wi = vi = 1 ∀i. Initial conditions for
populations and resource concentrations have been drawn independently from U [0, 1]; δσs, Eσs and Kis have been

drawn independently from, rexpectively, |N (1, 1)|, |N (3, 1/2)| and |N (2, 1/2)|. The metabolic strategies have
been drawn independently from a uniform distribution on the simplex.



Chapter 3. Generalizations of the PTW model 76

i.e. we simply substitute α̂σi with ασi. The main difference with the previous case is the
expression of ∂G/∂ασi:

G =
m∑
ρ=1

λρgρ =
m∑
ρ=1

p∑
j=1

λρvjαρjξj
δρ
Eρ

cj
Kj + cj

⇒ ∂G

∂ασi
= λσviξi

δσ
Eσ

ci
Ki + ci

(3.75)

In figures 3.7 and 3.8 we provide a couple of numerical examples of the evolution of
such a system. As we can see, the situation is pretty similar to the one we encountered
in 3.3; in particular, the metabolic strategies evolve so that their convex hull incorpo-
rates the rescaled nutrient supply rate vector ~̂s in the steady state.
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Figure 3.7: Evolution of the system defined by equations (3.72a), (3.72b) and (3.73). The figures represent, going
from top to bottom and from left to right, the initial condition of the system, the evolution of the populations, of the

resource concentrations, the rescaled metabolic strategies, and the final state of the system. Here we have used
m = 10, p = 3, wi = vi = 1 ∀i, δσ ∈ |N (1, 1/2)|, Eσ ∈ U [3, 4], nσ(0) ∈ U [0, 1], ci(0) ∈ U [0, 1],

Ki ∈ |N (1, 1)|, λσ = 1/m ∀σ.
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Figure 3.8: Evolution of the system defined by equations (3.72a), (3.72b) and (3.73). The arrangement of the figures
is the same of figure 3.7. Here we have used m = 7, p = 3, wi = vi = 1 ∀i, δσ ∈ U [1, 2], Eσ ∈ |N (3, 1)|,

nσ(0) ∈ U [0, 1], ci(0) ∈ U [0, 1], Ki ∈ U [2, 3], λσ = 1/m ∀σ.
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Conclusions and future perspectives

As this thesis has shown, the PTW model is a very interesting and powerful one, since it
allows the explicit violation of the competitive exclusion principle in an unprecedented
way. It must be stressed, in fact, that unlike any other model the PTW one allows any
number of species to coexist, even hundreds or thousands, on any number of resources,
even as small as three (in fact as we have highlighted in 2.4.1, apart from all the other
differences, in Ebenhöh’s model only one nutrient is considered).

The results of this thesis clearly show that this model is worth further study. Possible
fascinating further generalizations of the model could include the “relaxation” of the
metabolic trade-off condition, i.e. the requirement that ~w · ~ασ ≤ Eσ ∀σ; in other words
we could ask that the energy budget for metabolism is finite without necessarily keep-
ing it fixed to a predefined constant; in the case of dynamical metabolic strategies this
could also allow us to require that the evolution of the metabolic strategies maximizes
the available energy budget.
Furthermore, we could also “get rid” of the nutrient supply rate vector ~s (and all its
rescaled forms) by requiring that the resources are not externally provided to the sys-
tem but “self-generated”, e.g. through abiotic processes or chemical reactions; in this
case we do not expect the conditions for coexistence (if they exist at all) to be in general
interpretable geometrically.

To conclude, the PTW model has shown that metabolic trade-offs are essential for the
coexistence of species competing for the same resources. This certainly does not mean
that the problems of the competitive exclusion principle, particularly the paradox of
the plankton, are solved: a comprehensive theory of biodiversity is still missing, but
further study on the PTW model could shed light on what we need in order to reach it,
or at least in order to lay the foundations for it.
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