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Abstract

Quantum computers promise to outperform conventional computational processes

by taking advantage of exclusive quantum properties, such as superposition and

entanglement. In the last years, several breakthroughs have demonstrated Rydberg

atoms as a promising scalable quantum computing platform. Rydberg atoms

are excited atoms that show exaggerated properties, where two different internal

states encode a qubit with long coherence times. The progress in manipulating

individual Rydberg atoms has allowed the experimental realization of single and

two-qubit gate protocols. This has motivated a widespread theoretical interest

in improving gate fidelity and finding alternative protocols. After reviewing the

physics of Rydberg atoms and the most up-to-date gate protocols, in this Thesis

we simulate one and two qubits gates, then we apply optimal control techniques,

as implemented in the open-source optimal control suite QuOCS, to optimize the

laser pulse shapes for the realization of controlled-phase gate.
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Introduction

In the last 70 years, physicists have extensively used simulation on classical computers to

further investigate nature laws. However, the complexity of simulating quantum systems

in classical digital computers scales exponentially with the number of its sub-constituents.

Richard Feynman proposed for the first time to solve this problem by implementing the

simulation in a quantum computer [1]: a device that works with qubits as elementary units

of information. Beyond chemical-physical simulations, examples as the Shor algorithm [2]

and the Quantum Fourier Transform [3] have made clear the huge potential of quantum

computers. One way to define a quantum computation algorithm is with a quantum circuit

composed of quantum logic gates. In complete analogy with classical computers, there exist

universal sets of quantum gates from which we can realize every algorithm. It can be proven

that the combination of single-qubit gates plus entangling operations realizes a universal set

of quantum gates [4].

Quantum computers based on neutral atoms trapped in optical tweezers and manipulated

with laser pulses are a promising technology. The advantages of this platform are the long

lifetime of the qubits since they are encoded onto hyperfine ground states of neutral atoms,

and scalability, as long as many atoms can be packed close together given the weak interaction

between neutral atoms in the array. In the early 2000s, it has been proposed to realize a

two-qubit operation by temporarily exciting neutral atoms to Rydberg states [5]. Indeed,

when atoms get excited in Rydberg states they became much larger and with a huge electric

dipole moment. The latter makes Rydberg states interact very strongly with each other. More

specifically, the strong interaction permits a peculiar effect called Rydberg blockade for which

more than an atom cannot be excited to the Rydberg state at the same time, and that enables

the entangling between qubits [6]. This discovery with the experimental proof of optical

tweezers platform [7], kicked off neutral atoms as quantum hardware shortening the gap in

gate fidelities with respect to ions and superconductive circuit implementations [8].

To be able to execute efficiently quantum algorithms, the current main task of quantum

computing is to improve gate quality. Several engineering techniques are then being applied

to manipulate quantum systems. One of them is quantum optimal control [9], a family of

algorithms to find the optimal pulse shape to improve quantum technologies via a minimiza-

tion of a figure of merit.

The aim of this Thesis is to analyze different protocols that implement a controlled-phase

gate in a neutral atoms platform. Our simulations neglect Rydberg states’ decay and other

contribution to the dynamics, and then we do not expect to find realistic fidelities. Then, our

goal is to minimize the gate time reducing the average time spent on Rydberg states. Indeed,



as been shown in Ref. [10], the latter is the biggest source of intrinsic errors for these kind of

gates. Firstly, we reproduce a protocol with two laser pulses of length τ, phase jump ξ, and

constant detuning ∆, in the hypothesis of a perfect blockade, as in Ref. [8]. We optimize the

detuning and the gate time with a direct search method in the imperfect blockade regime

analyzing the effect of a finite interaction on the gate time. Then, by following the approach

of Ref. [11], we make use of optimal control techniques to reduce the total time of the gate. In

this case, we consider a symmetric detuning pulse with a zero phase and we perform the

optimization by using the dCRAB algorithm implemented in the software QuOCS [12].

In Chapter 1, we briefly describe the physics of Rydberg atoms. Firstly, we summarize

the general properties of individual Rydberg atoms as their long coherence times or their

huge electric dipole moment. Then, we describe the interaction between two Rydberg atoms

and how atoms can be manipulated using light. Afterwards, we introduce the phenomenon

of the Rydberg blockade, arising from to the strong interaction between Rydberg states. As

we have already mentioned, the Rydberg blockade phenomenon plays an important role in

gate protocols, making possible entangling operations in a neutral atom system. In Chapter

2, we give a brief introduction to quantum optimal control theory. We focus our attention

on the dressed Chopped Random Basis (dCRAB) technique: an optimization algorithm to

compute the optimal pulse to let the system evolve from an initial state to a target state.

Finally, in Chapter 3, we review some protocols to realize one- and two-qubit gates with

Rydberg atoms. We show how a controlled-phase gate can be realized by using different

input pulse shapes and how to optimize it with quantum optimal control techniques.





Chapter 1

Rydberg atoms physics

Rydberg atoms are atoms with a valence electron in a highly-excited state, i.e. states with large

principal quantum number n. Since almost all of their parameters scale with positive powers

of n they show exaggerated proprieties, and that is exploited in quantum technologies [13].

For example, Rydberg atoms have long decoherence times, that scales as n3. Furthermore,

they are huge and their interaction is really strong since size and electric dipole moment scale

as n2. The strong interaction between Rydberg atoms enables a phenomenon called Rydberg

blockade. This effect prevents the simulateneous excitation to a specific Rydberg state of more

than an atom in a certain volume and can be exploited to entangle several qubits [14].

In Sec. 1.1, we briefly explain the general properties of the Rydberg atoms and their

scaling behavior with the principal quantum number n. Then, in Sec. 1.2 and in Sec. 1.3 we

describe the interaction between two Rydberg atoms and we explain the interaction with

an atom with an external electromagnetic field. Finally, in Sec 1.4 we focus on the Rydberg

Blockade mechanism.

1.1 General properties

In the simplest approach, it is sufficient to treat Rydberg atoms as hydrogenic. Indeed, the

orbit size r of Rydberg atoms scales with n2, and then the outer electron stays far away from

the atomic core and in a first approximation one can assume that all the electrons of the

inner states shield the nucleus [14]. For a more realistic model, one should take into account

relativistic effects and spin-orbit interaction: the so-called fine structure correction [15].

Furthermore, we can consider a non-perfect shield of the ionic nucleus, introducing the

quantum defect theory [6]. From a semi-classical point of view, as we show in Fig. 1.1a, the

quantum defect theory correction needs to be introduced for states with angular momentum l

far from n, since the outer electron is close to the ionic nucleus only at some point. This is still

valid in quantum mechanics as shown with an example about Rubidium atoms in Fig. 1.1b.

The corrected Hamiltonian eigenvalues are given by En,l = E′
n,l
+∆E f s where ∆E f s is called fine

structure correction [15] :

∆E f s = E0
n

α2

n2

[︄

n

j + 1/2
− 3

4

]︄

, (1.1)

The term E′
n,l

takes into account quantum defect theory [6] :

E′n,l = −
R∞

1 +
me

M

1

(n − δn,l)2
, (1.2)
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2 Chapter 1. Rydberg atoms physics

where E0
n are the energies of the hydrogen atom, n is the principal quantum number, l is the

azimuthal quantum number, α is the fine structure constant, R∞ is the Rydberg constant, me is

the mass of the electron, M is the total mass of the atom, j is the total angular momentum

quantum number and δn,l is the quantum defect which depends on the atomic species and on

n and l.

(a)
(b)

Figure 1.1: (a) Semiclassical orbiting of the valence electron around the atomic core(black dot),
with l orbital angular momentum and principal quantum number n = 5. For lower
l, the outer electron is close to the ionic core and thus the perfect-shield hypothesis
should be corrected with quantum defect theory. (b) Density distributions of the
valence electron in the radial direction of 87Rb [14]. When l=n-1 this electron is
highly localized around n2a0, indeed we are in the perfect-shield regime.

Rydberg atoms have a lifetime τ that has essentially two contributions:

1

τ
=

1

τ0
+

1

τbb
. (1.3)

The radiative lifetime τ0 takes into account spontaneous emission and scales as n3 for final

low energy states and as n5 to neighboring Rydberg states. Instead, the blackbody lifetime τbb

considers the coupling between the atom and the blackbody radiation in the environment

and scales as n2 [14].

1.2 Rydberg-Rydberg interaction

Let us consider two Rydberg atoms separated by a distance R. If the interatomic distance of

two Rydberg atoms is much greater than the Rydberg state radius, we can describe our atoms

as electric dipoles with p = −ed, where d is the displacement between the electron and the
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ionic nucleus. Then atoms interaction reduces to a dipole-dipole interaction [16]:

Vdd =
e2

4πϵ0

d1 · d2 − 3(d1 · ûR)(d2 · ûR)

|R|3 , (1.4)

where R is the interatomic distance and ûR the versor along R.

Without an external electric field, by indicating a general eigenvector with |Ψnlm⟩ and the

parity operator with P̂, it is easy to show that d = 0 since for each eigenvector we have

dnlm := ⟨Ψnlm| d(t)|Ψnlm⟩ = ⟨Ψnlm(t)|d|Ψnlm(t)⟩ = ⟨Ψnlm|d|Ψnlm⟩

= ⟨Ψnlm|P̂P̂
−1

dP̂P̂
−1|Ψnlm⟩ = ⟨Ψnlm|P̂(−d)P̂

−1|Ψnlm⟩ = −dnlm ,
(1.5)

and then d = 0 which involves that Vdd = 0.

Beside that, d has non-zero matrix elements between states with different parities, so it

can be shown that in the case of a single transition from |r1⟩ |r2⟩ to |r′
1
⟩ |r′2⟩, where each one of

them is a different Rydberg state, we can reduce the description with an Hamiltonian in the

subspace {|r1⟩ |r2⟩ , |r′1⟩ |r′2⟩} [14]:

Ĥ =

⎡

⎢

⎢

⎢

⎢

⎣

0 C3/R3

C3/R3 δF

⎤

⎥

⎥

⎥

⎥

⎦

, (1.6)

where C3 ∝ n4 is the anisotropic interaction coefficient and δF = (Er′
1
+Er′

2
)− (Er1

+Er2
) the Foster

defect. In the case where δF ≫ V(R) := C3/R3 we could treat the system with perturbation

theory getting as a result ∆E± = ±C′6/R
6 with C′6 = C2

3/δF. Note that, since Vdd = 0 we need to

consider second-order corrections.

By fixing r1 = r2 = r, we can generalize and consider all the second-order perturbations of

others Rydberg states:

Crr =
∑︂

|r′
1
⟩|r′

2
⟩

[︄

C2
3

R6δF

]︄

|r⟩|r⟩−>|r′
1
⟩|r′

2
⟩
=
∑︂

|r′
1
⟩|r′

2
⟩

| ⟨r′
1
, r′2|Vdd|r, r⟩ |2

2Er − Er′
1
− Er′

2

= C6,rr/R
6 . (1.7)

This is the so-called Van der Waals interaction [17], and we will consider that as the Rydberg-

Rydberg interaction in the next chapters. The C6,rr coefficient scales as n11 which shows the

huge interactions between Rydberg atoms.

1.3 Light-Atom interaction

Let us consider a two-level atom with ground state |g⟩ and excited state |e⟩ interacting with

an electric field. We describe the oscillating electric field as a monochromatic plane wave

E(t) = E′0 cos(ωt + ϕ) = E0e−iωt + E∗0eiωt with E0 = E′0eiϕ/2. The interaction between the atom

and the light can be modeled as:

Ĥint = −p · E(t) , (1.8)
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where p is the electric dipole of the atom. In this description, we are considering the atom as

a dipole and we are neglecting higher multipole terms since their smaller contributions. As

we have seen in Eq. (1.5) the dipole operator has only non-diagonal terms different by zero,

and then the Hamiltonian of the two level system with the interaction of the dipole with the

light is:

Ĥint = −ℏ(Ωe−iωt + Ω̂eiωt) |g⟩ ⟨e| − ℏ(Ω̂∗e−iωt +Ω∗eiωt) |e⟩ ⟨g| , (1.9)

with Ω0 = ℏ
−1 ⟨e|p|g⟩ · E′0 the Rabi frequency, Ω = −Ω0

2
e−iϕ and Ω̂ = −Ω0

2
eiϕ. Defining

ωd := ω|e⟩ − ω|d⟩ we can express the Hamiltonian of the non-interacting system as H0
ˆ =

−ℏωd/2 |g⟩ ⟨g| + ℏωd/2 |e⟩ ⟨e| since the difference of the two eigenvalues of the energies are

∆E = Ee − Eg. The total Hamiltonian is then

Ĥ = H0
ˆ + Ĥint . (1.10)

If we consider a unitary transformation to the Dirac picture we get

Ĥint,dirac = −ℏ(Ωe−i∆t + Ω̂ei(ωd+ω)t) |g⟩ ⟨e| − ℏ(Ω̂∗e−i(ωd+ω)t +Ω∗ei∆t) |e⟩ ⟨g| . (1.11)

Setting the electric field near resonance we have that the detuning ∆ := ω − ωd satisfy

∆ ≪ ωd + ω, the so-called rotating wave approximation [18]. Then, in Equation (1.11) the

terms with frequency ωd + ω oscillates much faster with respect to the other and then we can

neglect it:

Ĥint,dirac ≈ −ℏ(Ωe−i∆t) |g⟩ ⟨e| − ℏ(Ω∗ei∆t) |e⟩ ⟨g| . (1.12)

Finally, transforming back to the Schrodinger picture and going in a rotating frame of reference

defined by Ĥrw f = ÛĤÛ
†
+ iℏ

∂Û

∂t
Û
†
, with

Û =

⎡

⎢

⎢

⎢

⎢

⎣

e−iωt/2 0

0 eiωt/2

⎤

⎥

⎥

⎥

⎥

⎦

, (1.13)

we get the Hamiltonian in the rotating frame,

Ĥ = −ℏ∆ |e⟩ ⟨e| + ℏ(Ω |e⟩ ⟨g| +Ω∗ |g⟩ ⟨e|) . (1.14)

Note that we have not considered the spatial term of the electric wave, as if it is interacting

with the atoms in a single point fixed to zero.

1.4 Rydberg blockade effect

Now, let us consider two identical Rydberg atoms both interacting with light, where each one

has a basis composed of a ground state |g⟩ and a Rydberg state |r⟩. Moreover, we consider

a resonant laser that couples |g⟩ to |r⟩. Since we are using resonant light, we shrink all the

possible Rydberg states only to |r⟩, but we do not neglect the interaction of all Rydberg states
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with the only one reachable. Due to the Rydberg-Rydberg interaction, we cannot promote

both atoms as the first excited shifts the Rydberg energy level of the other off-resonance. The

dynamic is then governed by the following Hamiltonian:

Ĥ = ℏ(Ω |r⟩ ⟨g| ⊗ 1 +Ω1 ⊗ |r⟩ ⟨g| +H.c...) − C6,rr/R
6 |rr⟩ ⟨rr| . (1.15)

We can easily make a change of basis to express the dynamics as a three level system with

basis {|gg⟩ , |+⟩ = (|gr⟩ + |rg⟩)/
√

2, |rr⟩}:

H′ˆ = ℏ
√

2(Ω |gg⟩ ⟨+| +Ω |+⟩ ⟨rr| +H.c...) − C6,rr/R
6 |rr⟩ ⟨rr| . (1.16)

From the structure of the Hamiltonian (1.14), we recognize that in Eq.(1.16) |gg⟩ and |+⟩ are

perfectly coupled with a new Rabi frequencyΩ′0 =
√

2Ω0 , while |+⟩ and |rr⟩ are not, because of

the Rydberg-Rydberg interaction. In fact, in complete analogy with Eq. (1.14), this interaction

acts as a detuning term decoupling the two states. We can then define the regime of Perfect

Blockade as C6,rr/R6 ≫ ℏ |Ω0|, which corresponds to Rb := (C6,rr/(ℏΩ0))1/6 >> R where Rb is

the blockade radius. From what we have just said, in this condition |rr⟩ is decoupled from the

dynamics as also illustrated in Fig. 1.2.

Figure 1.2: The Van der Waals interaction shifts out of resonance the state |rr⟩ if the atoms are
separated by R < Rb.
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Chapter 2

Quantum Optimal Control

Over the last two decades, Quantum Optimal Control has undergone a huge evolution

helping the engineering process of quantum physics. Nowadays, this technique is used from

control of quantum many-body physics [19] to gate optimization, which is one of the most

relevant problems for the realization of digital quantum computers. Quantum optimal control

consists of searching for optimal input parameters, which control some physical interaction,

in order to achieve a specific objective. The latter is reached by minimizing, or maximizing,

a specific objective function. An optimization method to solve the control pulse shaping

that evolves a system in the desired manner is the dressed Chopped Random Basis(dCRAB)

technique [20]. Its features permit to optimize pulses avoiding local minimum, with a natural

inclusion of experimental constraints.

In Sec. 2.1 we describe how to fully describe a control problem providing some examples.

Then, in Sec. 2.2 we made a brief explanation on the limits of QOC. In Sec. 2.3 we describe

CRAB and dCRAB algorithms to optimize pulses in order to control the dynamics of quantum

systems.

2.1 Control problems in quantum computing

To define a control problem we need to specify the system dynamics, the objective function to

minimize, and the physical constraints we apply [21].

To describe an isolated system we define the Hamiltonian and solve the Schrödinger

equation. Moreover, we define a function to minimize that depends on the dynamics and

therefore on the control parameters. For example, the simplest optimization problem is the

state to state transfer, where the objective function J is the infidelity that the initial state ψ0

evolves after a time T into a chosen state ψ f :

J = 1 −
⃓

⃓

⃓⟨ψ f |ψ(T)⟩
⃓

⃓

⃓

2
, (2.1)

where |ψ(T)⟩ = U(T, 0) |ψ0⟩, with time-evolution operator U that depends on control param-

eters. Minimizing this function over the control parameters corresponds to changing the

system dynamics in order to make ψ0 evolve to the nearest possible state to ψ f .

In general, one could impose physical constraints in order to implement a more accurate

simulation of a real physical system. We will see a specific example where the use of a

QOC technique, the CRAB algorithm, naturally imposes a constraint on the bandwidth.

Other very useful physical constraints, such as limiting the power of the pulse, are easily

7



8 Chapter 2. Quantum Optimal Control

implementable [9] [21].

2.2 Controllability and Quantum Speed Limit

In general, is not always possible to find a QOC solution. We define a quantum system

controllable if for every unitary transformation on the system there is a control pulse that

generates it [22]. It is also necessary that the information stored in the pulse is sufficient to

steer the system to the desired state. With information theory arguments it has been shown

that, in the noiseless case, the number of degrees of freedom Dr needed to solve a control

problem is equal to Dr = 2N − 2 where N is the dimension of the quantum system [23].

An intuitive way to see this in the specific case of a state-to-state transfer problem is by

considering that the final desired state is described by 2N − 2 real numbers since we are in an

N-dimensional complex Hilbert space with 2 constraints, unitary norm, and independence

from the global phase. On top of that, transformations of the system cannot be achieved

arbitrarily fast for finite energies. Although time cannot be expressed as a Hermitian operator

and hence the general uncertainty principle is not applicable for time and energy, we can find

bounds for times inversely proportional to energy uncertainty. This is called Quantum Speed

Limit (QSL) [24].

2.3 CRAB and dCRAB algorithms

Pulse shaping to drive a specific evolution is a typical control problem and the CRAB and his

recursive version dCRAB, proved to be effective and efficient algorithms to face it [19] [20].

Let us consider an isolated system with Hamiltonian H = H( f (t)), where f(t) is the control

pulse. The main idea of the CRAB algorithm is to make a randomized truncated expansion of

the pulse in a given basis, for example in Fourier series, with the coefficients ci, where i is the

base index. The optimization steps for these kind of problems are:

1. Set initial state and coefficients

2. Simulate the dynamics

3. Compute the objective function J( f (t)) = J(c1, c2...cN)

4. Update ci in order to minimize J, and return to step 2.

By setting stopping criteria in the minimization algorithm we conclude our optimization.

Note that the minimization algorithm used in the CRAB could be either gradient-free such as

Nelder-Mead simplex method algorithm [25], or gradient-based as the GOAT algorithm [26].

Let us consider the pulse f (t) ∈ L2, where L2 is the function space of square-integrable
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functions. By truncating f (t) in an N basis expansion of L2 we perform the optimization on a

subspace of dimension N risking to consider a local minimum of J as a global one, a so-called

false trap. The latter is in fact defined rigorously in the following manner:

δJ( f ) = 0 ∀ δ f =

N
∑︂

i=1

fi(t)δci & ∃ δ f ∈ L2 : δJ( f ) ≠ 0 (2.2)

The CRAB algorithm weakens the truncating constraint by choosing randomly the basis

functions, e.g. in a Fourier basis the frequencies ci = ωi are chosen stochastically in a fixed

interval. One step further to overtake false traps is achievable by introducing the dCRAB.

The basic idea is to reiterate the CRAB algorithm each time with an initial pulse equal to

the final one of the previous iteration. Those iterations are called super-iteration in order

to distinguish them from the ones of the coefficients’ optimization. Once we start a new

super-iteration the old coefficients do not need to be refreshed because we can consider the

old directions of L2 as already optimized. In fact, in the j-th super-iteration we optimize only

c
j

i
, i = 0, 1..N of

f j(t) = c
j

0
f j−1(t) +

N
∑︂

i=1

c
j

i
f

j

i
(t) , (2.3)

where f j−1 is the pulse obtained from the previous one super-iteration and f j are the new

basis functions randomly chosen. As mentioned above, the dCRAB algorithm is very useful

to contrast false traps. Supposing we are stuck in one of them, the probability of adding a

new random direction and remaining in the false trap is zero because of the infinite possible

choices of basis [9].

Despite all the discussion above, the truncation of basis in the CRAB or dCRAB algorithm

translates to a natural arise of bandwidth limits which contribute to the capability of these

algorithms to encompass experimental constraints [21].
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Chapter 3

Quantum computing with neutral atoms

Neutral atoms are one of the most promising platforms to realize digital quantum processors.

Encoding qubits in hyperfine ground states permit a long lifetime and weak coupling with

surroundings electromagnetic radiation. They are easy to initialize with optical pumping,

control with e.m. pulses, and be measured with fluorescence [27]. Furthermore, arrays of

identical atoms can be trapped in optical tweezers and their spatial geometry can be easily

configured in many ways [28]. The weak interaction between neutral atoms is the key element

to trapping a lot of them in a very small volume. However, in that way only one-qubit gates

could be realized. By exciting these atoms into Rydberg state we can exploit the Rydberg

blockade feature to entangle qubits and then to implement two-qubit gates in order to form a

universal quantum computing gate set [4].

In Sec. 3.1 we briefly describe one-qubit gates and simulate them. Then, in Sec. 3.2 and in

Sec. 3.3 we explain different protocols for the realization of an ideal CZ gate from [8], [10], [11]

implementing and optimizing them in the open-source optimal control suite QuOCS [12].

Quantum optimal control techniques are applied in order to decrease gate infidelity and

reduce gate time.

3.1 Single-qubit gate

Let us encode the qubit on two hyperfine ground states of a neutral atom since they are

uncoupled to electromagnetic waves in the environment and they have long lifetimes [14].

Single-qubit gates are performed with laser beams that couples the ground state |0⟩ and the

excited state |1⟩ with a Rabi frequency Ω0 and a detuning ∆. The dynamic is described by the

Hamiltonian:

Ĥ =
ℏ

2
∆ |0⟩ ⟨0| − ℏ/2∆ |1⟩ ⟨1| + ℏ(Ω |1⟩ ⟨0| +Ω∗ |0⟩ ⟨1|) . (3.1)

Let us note that this equation is the same as Eq. (1.14) within the sum of a multiple of the

identity. If the phase of the pulse is set to zero, we can write the Hamiltonian as a combination

of σx and σz getting as evolution on the Bloch Sphere a rotation around an axis in XZ-plane.

If we fix ∆ = 0 we get a rotation around the x-axis with frequencyΩ, as we see in Fig. 3.1a,

while with ∆ = Ω0 we obtain a rotation around the axis x + z with the same frequency. The

latter can be brought back to a Hadamard gate by choosing a pulse time that completes half

rotation, as in Fig. 3.1b. Every unitary transformation on a single-qubit can be realized as a

combination of Hadamard and X-rotations gates [4].

11



12 Chapter 3. Quantum computing with neutral atoms

(a) (b)

Figure 3.1: Evolution of |0⟩ on the Bloch sphere, simulating one-qubit gates (a) Simulation with
∆ = 0, Ω0 = 10MHz. By choosing the length of the pulse τ we can make a rotation
of an arbitrary angle about the x-axis. In the figure τ = 2π/Ω0 since Ω0 is also
the frequency of the rotation. (b) Simulation with ∆ = Ω0,Ω0 = 10MHz in order
to make an Hadamard gate. The frequency of the rotation is still Ω0 but the

circumference traced has a radius
√

2/2 times smaller than (a) and so the pulse

time to make a Hadamard gate is τ = (
√

2/2)2π/Ω0.

3.2 Two-qubit gate

To make a universal set of gates we need a way to create entangled states, for example with

a controlled-phase gate [4]. The latter could be implemented by exploiting the Rydberg

Blockade effect in many ways, as shown in Ref. [5] and in [8]. In the following, we will

consider two identical atoms, each one modeled as a three-level system with the qubit states

|0⟩ and |1⟩ and the Rydberg state |r⟩. The transition between the state |1⟩ and |r⟩ is driven

by a detuned laser simultaneously for both atoms. The Hamiltonian is obtained by adding

detuning terms to Equation (1.15):

H = H∆=0 +H∆ , (3.2)

where H∆=0 corresponds to Eq. (1.15) and H∆ = −ℏ∆(|r⟩ ⟨r| ⊗ 1 + 1 ⊗ |r⟩ ⟨r|). Since |0⟩ is

uncoupled by the laser, the dynamics of |01⟩ can be described in a two-level system {|01⟩ , |1r⟩}
with Rabi frequency Ω0. Instead, as seen in Eq. (1.16), |11⟩ follows a two-level system

composed by {|11⟩ , |1r⟩ + |r1⟩
√

2
}with an enhanced Rabi frequency

√
2Ω0. Thanks to different

dynamics for |01⟩ and |11⟩, and to the requirement of a laser pulse which guarantees that both

states end up in themselves after the evolution, we can make those states acquire different
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phases:

|00⟩ −→ |00⟩
|01⟩ −→ |01⟩ eiϕ01

|10⟩ −→ |10⟩ eiϕ10

|11⟩ −→ |11⟩ eiϕ11 .

(3.3)

Where ϕ01 = ϕ10 because of the symmetry of their dynamics. If the phases satisfy the relation

ϕ11 = 2ϕ01 + π , (3.4)

we realize a controlled-Z (CZ) gate, up to a global rotation by ϕ01 of the excited state |1⟩.

3.3 Controlled-Z gate optimization

Now, we analyze different protocols for implementing a CZ gate [11]. In particular, we

perform a numerical simulation of the two atom system considered in the previous section

(Sec. 3.2) and we optimize the gate parameters for a fixed Rabi frequency Ω0 = 10 MHz. Let

us note that this analysis is performed considering an ideal system, i.e. sources of errors

like the finite lifetime of the Rydberg state are not introduced. As shown in [11], the leading

contribution to the gate infidelity is given by the decay of Rydberg states, which is not taken

into account in the evolution of our ideal simulations. The quality of the gate is estimated

through a fidelity measurement and in the ideal case we expect at the end of the optimization

a fidelity close to 1. To numerically optimize the final phase differences in order to make

a CZ gate, we minimize a state to state infidelity with initial state ψ0 =
|01⟩ + |11⟩
√

2
and with

target state ψ f =
|01⟩ + ei(ϕ01−π) |11⟩

√
2

. If U(T) is the time evolution operator of our dynamics

described by Equation (3.3), the actual expression of the infidelity is:

J = 1 − | ⟨U(T)ψ0|ψ f ⟩ |2

= 1 − |(eiϕ01
|01⟩ + ei(ϕ11−ϕ01) |11⟩

√
2

) · ( |01⟩ + ei(ϕ01−π) |11⟩
√

2
)|2 .

(3.5)

We then see that J has a global minimum if the condition given by Eq. (3.4) is fulfilled. Note

that J is the same as a Bell state infidelity within perfect single-qubit gates transformation.

In the Subsection 3.3 we reproduce the protocol of [8], with two laser pulses of length τ, phase

jump ξ and constant detuning ∆, in the hypothesis of perfect blockade. Then, we optimize

the detuning and the gate time in the imperfect blockade regime analyzing its impact on the

dynamics and on the gate time. In the Subsection 3.3, we apply optimal quantum control on

a symmetric detuning pulse ∆(t) with a zero phase, in order to reduce the gate time τ′ and the
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infidelity.

Constant detuning with phase jump

Let us assume a perfect Rydberg blockade, i.e. with the state |rr⟩ decoupled from the dynamics.

In this case, an analytical solution that fulfills the pulse contraints exists [8], thus we do not

perform any numerical optimization. We consider two pulses of length τ = 2π/
√︂

∆2 + 2Ω2
0

chosen in a way that |11⟩ undergoes a complete rotation in the Bloch sphere, gaining a phase

ϕ11/2. This behavior is shown in Fig. 3.2b. Note that |01⟩ does not make a complete oscillation

after the first pulse since its dynamics has not an enhanced Rabi Frequency as |11⟩. However,

by a proper choice of the phase jump ξ, as indicated in [8], we can guarantee that after the

second pulse the state |01⟩ returns to himself with a dynamical phase ϕ01, as we see in Fig.

3.2a. Both ϕ01 and ϕ11 can be expressed analytically as function of ∆/Ω, and from the phases

constraint of Eq. (3.4) we get the relation ∆/Ω0 = 0.377. Then, we are able to obtain all the

remaining parameters, as indicated in Table 3.1a.

Let us now consider the imperfect Rydberg blockade case. In particular, let us consider

(a) (b) (c)

Figure 3.2: Evolution of states |01⟩, |11⟩ on the Bloch sphere in the imperfect blockade regime, with
constant detuning and a phase jump between the two pulses. For the first two Bloch-spheres,
a perfect blockade regime is visually the same. (a) The phase jump ξ changes the axis
of rotation symmetrically making return |01⟩ in itself with a phase |ϕ01⟩. (b) The
length of each pulse τ is chosen such that |11⟩ undergoes a complete rotation
acquiring a phase ϕ11/2. (c) The percentage in the evolution of |11⟩ composed by
|rr⟩ is negligible and so its contribution to the Rydberg states decay probability.

two Strontium-88 atoms at an interatomic distance of 3um [29]. The imperfect blockade term

seen in Sec. 1.2 affects only the dynamic of |11⟩ and then we can keep the expression of ξ

to guarantee a complete rotation of |01⟩ after the two pulses. Furthermore, we can always



3.3 Controlled-Z gate optimization 15

Parameters Ω0 ξ τ ∆ V/ℏ J

Value 10 MHz 3.90 0.43 µs 3.77 MHz ∞ 3.5 · 10−6

(a) Perfect blockade regime

Parameters Ω0 ξ τ ∆ V/ℏ J

Value 10 MHz 3.93 0.43 µs 3.91 MHz 211 MHz 7 · 10−6

(b) Imperfect blockade regime

Table 3.1: Input parameters and results of the simulation of a protocol with constant detuning
and a phase jump.

choose τ such that the |11⟩makes a closed path in the Bloch Sphere, and then we can use ∆ as

a control knob to adjust the right dynamical phases between |01⟩ and |11⟩ [8]. The detuning

and the gate time of the pulses are now optimized by using the direct search method of

Nelder-Mead to minimize infidelity in Eq.(3.5). As we can see in Table 3.1, ξ and ∆ slightly

change in different regimes, but without visible variation of trajectories on the Bloch Sphere

for states |01⟩, as seen in Fig. 3.2a, and |11⟩ in Fig. 3.2b. During the evolution of |11⟩ only a

very small percentage of |rr⟩ is present, as we can see in Fig. 3.2c. This means that the average

time passed on a Rydberg state is practically the same for the two regimes and so the decay

probability of those states [11].

One can demonstrate that a protocol with time-dependent phase of the laser ξ(t) and

constant detuning ∆ is equivalent, within a unitary transformation, to a protocol with time-

dependent detuning ∆(t) with the form of ∆(t) = ∆ + ξ(t)˙ and with zero phase [10]. Then, if

we view the protocol analysed above with an Heaviside function ξ(t) = H(t − τ) with the step

after the first pulse, the system is equivalent to a protocol with ∆(t) = ∆ + δ(t − τ). Because of

that equivalence, from now on we will only consider protocols composed of one single pulse

with time-dependent detuning and a zero phase.

Detuning optimization with dCRAB

We now apply the dCRAB algorithm, with settings reported in Figure 3.3, to improve the

gate performance. We optimize the detuning pulse ∆(t) while changing in a fixed range

the gate time to find its minimum duration τ′. Let us note that according to the quantum

speed limit, a minimum value of tau exist since we are working with a finite power pulse.

Since here we cannot apply the analytical constraints found before to make |01⟩ and |11⟩
back to themselves, we have to operate differently. For a fixed time of the pulse and with

the constraint of a symmetric ∆(t), the optimization algorithm needs to find a first half of

the detuning which is able to make both states evolve into a point of the XZ plane in the

Bloch-sphere space. Indeed with a time-dependent Hamiltonian, the evolution on a Bloch
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sphere is a series of infinitesimal rotations around different axes that belong to the XZ-plane,

since the Hamiltonian at each time can be decomposed in a sum of σx and σz. Then, if after

a time τ′/2 the states evolved on an XZ-plane point, we are sure that they will return to

themselves after another τ′/2 because of the symmetry of the detuning and the fact that the

rotations are around axes on the XZ plane. That is confirmed by our simulations as we can

see in Fig. 3.3a and in Fig. 3.3b. The optimization brings to the pulse in Fig. 3.3c which

(a) (b)

(c) (d)

Figure 3.3: Analysis of the realization of a CZ gate with a time-dependent detuning optimized with
the dCRAB Algorithm (a,b) Evolution of states |01⟩, |11⟩ on the Bloch sphere. After
τ′/2 the state evolved in the XZ plan in such a way that can return to itself after
another τ′/2. (c,d) Control pulse and Figure of merit(objective function) after an
optimization with the dCRAB method using the Nelder-Mead algorithm. We use
4 vectors in the Fourier basis with random uniform distribution picked in the
interval [0, 1.6 MHz]. We do 3 super-iterations with a maximum of 500 evaluations
each.

reduce the gate time by 10%, as we can see in Table 3.2. This improvement is very useful

since it has been established that the biggest contribution to infidelity is given by medium
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Parameters Ω0 τ′/2 V/ℏ J

Value 10 MHz 0.385 µs 211 MHz 4.1 · 10−8

Table 3.2: Input parameters and results of the simulation of a protocol with time-dependent
detuning optimized with the dCRAB algorithm

time passed on a Rydberg state which decreases with gate time [11].

Now, we analyze how the interatomic distance r affects the minimum gate time possible,

which exists in accordance with QSL. We set a threshold of 10−6 on the infidelity to consider if

an optimization converges or not. For r > 4µm the optimization does not converge, while for

Figure 3.4: Plot of half gate time τ′/2 as a function of the interatomic distance r of two
strontium-88 atoms. For each interatomic distance, τ′ is the minimum accessible
gate duration in accordance with QSL.

r < 3µm the gate time quickly tends towards a perfect blockade regime. As shown in Fig. 3.4,

in the range r ∈ [3, 4]µm, we see that the gate time decrease with the interatomic distance. At

a distance r of 4µm we find an half duration of the pulse of τ′/2 = 0.375µs. Then, we can

loosen r in order to obtain a smaller gate time and then a better realistic gate fidelity.



18



Conclusion

In this Thesis, we have shown applications of Quantum Optimal Control techniques for the

implementation of a controlled-phase gate in a Rydberg atoms quantum computer. Firstly,

we have reviewed the general properties of Rydberg atoms and their interactions, with a

particular focus on the Rydberg blockade. Then, we have introduced the basic concepts

of QOC theory, summarizing the dressed Chopped Random Basis (dCRAB) algorithm and its

capability of avoiding false traps in comparison to the CRAB algorithm.

We have shown how to implement one-qubit gates in a Rydberg atoms device. We have

simulated the one-qubit Hamiltonian to reproduce the behavior of Hadamard and X-rotation

gates. Indeed, by combining those gates it is possible to realize any one-qubit rotation. To

obtain a universal gate set, entangling operations are required. Thus, we have reviewed

some protocols to implement a controlled-Z gate in the neutral atoms platform. For this

purpose, we have simulated the Hamiltonian of a system of two identical Rydberg atoms

driven by a laser field that couples the excited state |1⟩ to the Rydberg state |r⟩. To reproduce

the behavior of a controlled-Z gate, we have first analyzed the case of two laser pulses of time

length τ with constant detuning ∆ and a phase jump ξ between them, in the case of perfect

Rydberg blockade. By fixing a Rabi frequency ofΩ0 = 10MHz, we obtain an optimal pulse

length τ = 0.43µs with the laser detuned by ∆ = 3.77MHz. We have studied also the case of a

finite Rydberg interaction. In particular, we suppose to have two strontium-88 atoms at an

interatomic distance of 3µm. In this case, we fix the interaction V = 211MHz and we find

that the optimal pulse length is still τ = 0.43µs with approximately the same detuning of the

perfect blockade case.

Afterwards, since it can be shown that this protocol is equivalent to one with a zero

phase and a time-dependent detuning ∆(t), we consider only the last one to verify if with

an optimal control optimization we can reduce the gate time τ′. Accordingly to Ref. [11],

we have obtained a reduction of the gate time of about 10% finding τ′/2 = 0.385µs. The

reduction in pulse length is a great improvement since the total duration of the pulse is

directly related to the time spent in the Rydberg state. The decay out of the Rydberg state is

the main source of intrinsic errors in a Rydberg platform and thus minimizing the time in this

state can increase the quality of the gate operation. We further investigate this protocol by

analyzing the dependence of the minimum gate time achievable with the interatomic distance

between the two atoms. We see that, for a distance r < 3µm, the gate time very quickly

tends towards the value found in the perfect blockade regime, and for r > 4µm, a solution

cannot be found anymore due to the weak interaction. However, in the range r ∈ [3, 4]µm,

we can always find a solution in which the gate time turns out to be inversely proportional to

interatomic distance. At a distance of r = 4µm, we find an optimal half duration of the gate of



Chapter 3. Conclusion

τ′/2 = 0.375µs.

In conclusion, we have reproduced the results of Refs. [8] and [11]. We have made an

extensively use of optimal control techniques, as implemented in QuOCS [12], showing their

capability of improving gate quality in a Rydberg atoms quantum device.
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