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Abstract
In the present thesis we perform a step towards understanding the effec-
tiveness of Hamiltonian perturbation theory in quantum dynamics, which is
made possible by the Hamiltonian framing of quantum mechanics. To such
a purpose, we focus our attention on quantum spin chains, namely on the
isotropic Heisenberg ferromagnet, which is well known to be equivalent, via
the Jordan-Wigner transformation, to a system of interacting fermions, and
is also known to be exactly integrable through the Bethe ansatz. The in-
teraction term of the Hamiltonian, of order four in fermionic creation and
annihilation operators, is treated as a perturbation in the regime of small
excitations: small number of reversed spins or, equivalently, small number of
fermions per site. The calculation of the first order normal form Hamiltonian
amounts to erasing all the nonresonant interaction terms, and allows to draw
interesting conclusions on the dynamics of the system, e.g. to determine ap-
proximately conserved quantities. Moreover, we get a good correspondence
between our perturbative energy spectrum and the exact one computed via
the Bethe ansatz, the approximation being of course the more accurate the
smaller is the number of fermions per site. The present method, here tested
in an exactly solvable case, can be applied to any nonintegrable system of
weakly interacting fermions (and/or bosons).
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Introduction

One of the many advantages that came with the advent of quantum mechan-
ics was finding the explanation to ferromagnetic phenomena, a true mystery
at the time. In fact, purely classical physics fails to explain ferromagnetism
from an atomic point of view, since it misses a proper concept for spin. The
revolution came from Heisenberg, who found that the laws of quantum me-
chanics imply the existence of an effective interaction between electron spins
on neighboring atoms with overlapping orbital wave functions. This exchange
interaction, usually of the form

gij ~̂Si · ~̂Sj ,

is caused by the combined effect of the Coulomb repulsion and the Pauli
exclusion principle. Starting from this discovery, many other spin models
arose to comprise a microscopic theory of ferromagnetism.

Spin chains
Spin chains are one-dimensional spin models. Because it is easier to deal
with complex structures in lower dimensions, they are the most studied class
of spin models. Their application is not restricted to just ferromagnetic
models: they have a vast range of application due to their core structure and
versatility. In modern applications, they are of crucial importance in fields
like quantum information theory and computability theory.

Classical spin chains

The classical versions of spin chains were introduced as semi-classical descrip-
tions of magnetic phenomena in metals, particularly one-dimensional ones.
The reason we say it is a semi-classical approach is that there is actually no
real concept of spin in classical physics, being it a purely quantum feature.
That said, it was possible to study the phenomena resulting from spin pres-
ence using classical tools, by modeling the spin as a vector that is intrinsic
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to each particle and of fixed norm. Depending on the kind of interaction
between the spins (for example, nearest neighbors), but also on the vector
space to be spanned by the vectors, we have different models with different
characteristics. To mention a few: the Ising model for vectors pointing in just
one direction, the XY model for planar interaction and fixed z component,
the Heisenberg model for vectors pointing on a sphere, with interaction along
each direction.

For big values of spin S, the classical description is more than satisfac-
tory; indeed, as S goes to infinity, the quantum models actually revert to
the classical ones. From the classical approach, it is also possible to obtain
the Landau-Lifshitz equation — and we will do just so in the first chapter
—, which can be then modified to become the more precise Landau-Lifshitz-
Gilbert equation (LLG) [1]. Together with the Maxwell equations, this equa-
tion is the one describing the dynamics of basically any magnetic device.
There are some other equations that are useful in magnetism like the Bloch
equation, the Landau-Lifshitz-Bloch equation, or the Ishimori equation, all
of them in some way deriving from the Landau-Lifshitz. In fact, the explicit
form of the Gilbert equation is similar to the original LL equation, therefore
the name. Both equations describe the dynamics of a single spin in a lattice,
with the LLG equation being the one describing the correct physics while
the LL equation fails in the limit of consistent damping [2].

Quantum spin chains

Quantum spin-chains are the quantum (therefore more accurate) version of
the classical spin chains just mentioned. In this case, the spin is always
considered having three components, represented by the Pauli matrices, as
it should be, and the type of model considered is identified by the kind of
interaction present — Ising for interaction along z only, XY model for in-
teraction along x and y, Heisenberg for interaction on all components, all
of these being nearest neighbor interactions. Naturally, the quantum for-
mulation also changes how we look at the states of the chain, meaning that
we allow complex linear superpositions of different spin configurations as a
physical state.

Some quantum spin chains are exactly solvable, i.e. they are “quantum in-
tegrable” systems in 1+1 spacetime dimensions. The dynamics of the system,
i.e. how a particular state evolves in time, is governed by the Schrödinger
equation, if we work under the Schrödinger picture. In this dissertation, we
will work in the Heisenberg picture frame, since it is more suitable for con-
structing a Poisson algebra on the system, and we will therefore look at the
evolution of the operators involved in order to determine the dynamics of the



iii

system.
“Exactly solvable” models or “quantum integrable” systems are important

because they may be non-trivial interacting systems where exact solutions
can be obtained (for all values of the coupling constant). In this project, we
will focus our attention on the quantum isotropic Heisenberg chain, or XXX
chain, with Hamiltonian

Ĥ = −g
∑
n

~̂Sn · ~̂Sn+1 ,

which is an interactive integrable system. Various aspects of quantum spin
chains, many of which are here useful, have been collected in [3].

Integrable systems
The concept of integrability has its roots in the context of differential equa-
tions, and bears the meaning of “to solve from initial conditions”; i.e., a
system of differential equation is integrable if it is possible to integrate its
equations using the initial conditions, obtaining the behavior of its variables.
Integrability is a feature closely related to the presence of many conserved
quantities, or first integrals, in the system. However, there are some other
things besides this that can suggest integrability, for example the presence
of algebraic geometry in the system, which can open paths to algebraic in-
tegrable techniques. Then, of course, a system is integrable whenever we
are able to find an explicit solution. There are many interesting systems in
physics that are integrable, like models for shallow water waves, described
by the Korteweg-de Vries equation, the nonlinear Schrödinger equation, and
the Toda lattice in statistical mechanics.

When we deal with classical Hamiltonian systems, the Liouville-Arnold
theorem is a powerful tool to approach the concept of integrability, [4]. Un-
fortunately, in the quantum case there is no clear analogue of such a theo-
rem, and it is much harder to understand if we are dealing with an integrable
system or not. In the quantum setting, functions on phase space are to be re-
placed by self-adjoint operators on a Hilbert space, while the Poisson bracket
is replaced by the Heisenberg commutator (i.e. the commutator over i~). If
we consider a system of particles, we might say that a quantum system is
“integrable” if the dynamics are two-body reducible. This is because being a
two-body reducible system equals to fulfilling the Yang-Baxter equation [5],
the latter leading to trace identities that provide an infinite set of conserved
quantities. This approach to quantum integrability is generally applied in the
so called quantum inverse scattering method, introduced by Faddeev in 1979
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(see [6]), together with the algebraic Bethe ansatz, to obtain exact solutions
in many quantum spin chains. Apparently, this method can be applied in
one-dimentional quantum systems only. Another way to study integrability
of a quantum system is to see what happens when it is possible to map it
into a system of particles — from here, the name fermionization or bosoniza-
tion, depending on the type of particle we map the system into. Clearly, if
the system is mapped into free particles, then it is one-body reducible, i.e.
naturally integrable. This happens for example — and we will see this later
in detail — for the XY model.

Examples of quantum integrable models are the Lieb-Liniger Model, the
Hubbard model [7] and several variations on the Heisenberg model. For more
on quantum integrability, see [8], [9], [5].

Just as the non-integrability in classical systems is related to determin-
istic chaos theory, non-integrability in quantum systems is related to the
somewhat less precise concept of quantum chaos. For a quick study on these
concepts, see [10].

Integrable techniques

As we just mentioned, there is more than one way to tackle the problem
of quantum integrability. In this dissertation, we will not delve into the
quantum inverse scattering method; we will, however, give a review of the
coordinate Bethe ansatz technique (Bethe’s original work) and perform our
calculations in the setting of fermionization.

Bethe ansatz

Historically, Bethe’s work [11] on the isotropic case (gx = gy = gz) of the
Heisenberg model, known as the XXX chain, had unexpected success and was
the starting point in the development of more modern techniques for solving
quantum systems. The “ansatz” consists in thinking the eigenstates of the
XXX spin-chain as a superposition of plane waves. The momenta describing
these plane waves end up satisfying a set of non-linear equations, called
Bethe’s equations, which are usually solvable via computational methods.
In literature, this approach is referred to as “coordinate Bethe ansatz”, to
separate it from its algebraic counterpart, and its core idea has been applied
to solve many other quantum integrable systems. We give a more detailed
account of the original coordinate Bethe ansatz in Appendix B. For more on
it, see [11], [12], [13], [14].
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Fermionization or bosonization

This kind of approach is, of course, particularly interesting, since it means
that anything we understand about the particle version of the system can be
immediately applied to learn something about the spin system. The idea is
that particle systems are easier to deal with, therefore the best way of under-
standing spin systems may be to map them onto mathematically equivalent
but physically different systems, whose properties we already understand.
In other words, we introduce a quasiparticle description of the spin system,
in order to simplify its understanding. This idea became central in various
aspects of modern physics, including the field of superconductivity and the
quantum Hall effect.

Whether we map into bosons or fermions usually depends on the prop-
erties of the system, and what they are most similar to. For example, the
spin 1/2 Heisenberg chain is naturally mapped into a system of interacting
fermions via the Jordan-Wigner transformation [15]. A case of bosoniza-
tion is instead the Luttinger model, which can be mapped into a system of
non-interacting bosons [16]; its fermionic version (interacting) is treated per-
turbatively in [17]. We therefore see that this method is very versatile and
that there are multiple paths that one can take.

Another reason why this mechanism is so important is that it is possible
to generalize it to more than one dimension, so that we can also study spin
lattices. To give a few examples, Kitaev in [18] provides a fermionization
for the 2d Luttinger model, while recently Chen, Kapustin and Radičević
described in [19] a 2d analog of the Jordan-Wigner transformation while
also giving some examples of 2d bosonization. This is actually nothing new,
as Lieb, Schultz and Mattis presented, already in 1961, an alternative to
Onsager’s 2d Ising model solution using the fermionization technique [20].

In this discussion, we will use this method by fermionizing the Heisenberg
isotropic chain via the Jordan-Wigner transformation obtaining a Hubbard-
like model [7], and we will exploit the fact that the XY part of the Hamil-
tonian is mapped into a free fermion system, and is therefore integrable, to
apply perturbation theory; the free system will constitute the unperturbed
Hamiltonian, while the remaining term will be treated as a perturbation.

Perturbation theory
A powerful tool that constitutes the central action in this dissertation is a
particular version of Hamiltonian perturbation theory, which will be taken
for granted in the main discussion but explained in detail in Appendix A.
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Expanding the classical and well known version of Hamiltonian perturba-
tion theory, the approach we use has it roots in the Poisson algebra framework
of Hamiltonian systems. The core idea of this framework is that of extending
the definition of a Hamiltonian system to a more general class of systems by
admitting other forms of Poisson structure besides the usual symplectic one
when studying the dynamics of the system. The theory for this, together with
the properties the tensor must satisfy in order to be suitable for Hamiltonian
formulation, can be found in [21], [22].

Once we adopt the Poisson algebra formalism, we can exploit the alge-
braic structure of quantum mechanics given by the replacement of the Poisson
bracket with the Heisenberg commutator to effortlessly transfer the mecha-
nism and results of classical perturbation theory directly onto the quantum
setting, and to therefore use it upon quantum systems.

The main goal of this kind of perturbation theory is that of finding a
suitable unitary transformation which enables us to eliminate (partially or
completely) the perturbation. The unitary transformation will actually be a
composition of Schrödinger time evolution operators generated by unknown
Hamiltonians, which we call generating Hamiltonians. In particular, this
method is a formal and justified way to eliminate the less important terms
in the perturbation, usually the same contributions that physicists neglect
because they intuitively know them to be of less impact. The central result
of our Hamiltonian perturbation theory is what we call Averaging principle,
namely a theorem demonstrating the possibility to rewrite the perturbation
in “normal form” up to a pre-fixed order, where each term considered has the
remarkable property of being a first integral for the unperturbed system.

Our use of Hamiltonian perturbation theory will be exactly to profit from
its applicability in quantum mechanics by exploiting it on the fermionized
Heisenberg isotropic spin chain, where the role of the (easily integrable) un-
perturbed system will be played by the terms that are quadratic in fermionic
creation and annihilation operators, while the quartic term will be treated as
a perturbation. As we will see, this is allowed when the quartic term has an
impact on the dynamics which is small with respect to the contribution from
the unperturbed one; this happens when the number of reversed spins (as in,
reversed in relation with the aligned ground state) is small when compared
to the available number of sites.

Structure and results
Before we start the discussion, let us anticipate the way this thesis is orga-
nized, and the main results we obtained.
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• The first chapter serves as an overlook on the classical Heisenberg
model, along with the study of its dynamic. From the equations of
motion, the continuum limit provides us with a version of the already
mentioned Landau-Lifshitz equation.

• In the second chapter, we introduce our quantum model of the Heisen-
berg chain. Starting from the quantized version of the Hamiltonian, we
go through the ladder operators Ŝ± to then formulate the Hamiltonian
in terms of fermionic creation and annihilation operators on the sites
via the Jordan-Wigner transformation, completing the mapping from
spin chain to a system of interacting spinless fermions. We dedicate a
section to the concepts of the general technique by Jordan and Wigner.

• In the third chapter, the core of the discussion, we apply perturbation
theory to the system, its applicability regimes being discussed in Sec-
tion 3.4. First, we begin by changing coordinates via Fourier, finding
spinless fermions labeled by momenta. In this setting, the unperturbed
quadratic terms in the Hamiltonian are diagonalized, thus easily solved.
In Section 3.2 we use the known dynamics of the unperturbed system
to find the normal form of the Hamiltonian at first order, commenting
on the results. While the dynamics in the case of odd number of sites
is somehow trivial, the case of even number of sites is much more com-
plicated, presenting additional interacting terms and a higher degree
of degeneracy. In Section 3.3 we find the approximated values for the
eigenvalues of our system with the help of quantum perturbation theory
(eigenvalue corrections to first order), which is particularly necessary in
the interacting case of even sites. Since the eigenvalue corrections for
this case are not easily put in general form, we proceed in Section 3.5
by explicitly studying the corrections in the convenient yet not trivial
example of N = 6, where N is the number of sites. In Section 3.6, we
make an attempt at comparing the eigenvalues found via our perturba-
tive approach with the exact ones found by the Bethe ansatz solution.
The comparison reported is performed computationally for the case of
two excitations, and for odd N, obtaining satisfactory results for bigger
values of N , as expected. The other instances present more challenges,
which we briefly discuss.

• Appendices A and B are dedicated to the illustration of the techniques
of Hamiltonian perturbation theory and coordinate Bethe ansatz, re-
spectively.



Chapter 1

The classical model

The classical formulation for 1D spin chains, but generally for any spin lattice,
has served the purpose of modeling the physical phenomenon of magnetiza-
tion and all that comes associated with the response to an external magnetic
field. This is done by modeling microscopic magnetic moments (the spin) as
vectors situated on each lattice site, which interact among themselves and
with the mentioned external magnetic field. Such interaction is given by the
scalar product between the quantities — indeed, naturally, the energy for a
magnetic moment interacting with an external magnetic field is −~µ · ~B. The
exact form of the interaction can vary greatly, especially among the spins —
long range, short range, negative or positive interaction etc. — the choice is
made upon the physical properties of the material one wishes to study, be it
ferromagnetic or anti-ferromagnetic, for example.

Assuming we have rescaled the system to dimensionless quantities, we
call the spin variable placed at the nth site ~Sn and we assume it to have
fixed magnitude (we are considering, in the quantum system part of the
dissertation, a spin 1/2 chain). The external field will be denoted by ~hn, as
it can virtually have different values on each site (it will not, in our case).
Then, the total energy of the system, the starting point for the construction
of a suitable Hamiltonian, will be:

H = −1

2

∑
n,m

~Sn · Inm~Sm −
∑
n

~hn · ~Sn . (1.1)

Notice that the indexes n and m in the sums cover the whole lattice, which in
our discussion will be made up of N sites with periodic conditions (~SN+n =
~Sn , ∀n ∈ Z). The second term clearly describes the interaction of each spin
with the external field, while the first represents the spin-spin interaction
— meaning,

∑
m Inm

~Sm is the total magnetic field that the spins generate
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at site n, with Inm being the symmetric interaction matrix. The factor 1/2
in front of the first term is there simply to avoid recounting. Generally we
require no self-interaction, i.e. we will have that Inn = 0, while we will call
the interaction isotropic if we have Inm = gnm13, with gnm a scalar matrix.

1.1 Poisson structure
In order to study the dynamic of the spin chain above described in the work
environment of a Hamiltonian approach, and to exploit its various benefits,
one has to define a Poisson structure for the variables that come in play.
One can then treat the energy as a proper Hamiltonian, and thus be able to
compute the equations of motion via the proper Poisson tensor. We will now
do exactly this. For those who are not familiar with the concept, please see
[22], [21].

1.1.1 General Heisenberg 1D spin chain

The appropriate Poisson structure for our spin system is found quickly once
we realize that we can treat the spin just as a regular angular momentum.
We can deduce it by analogy with the case of the Euler equations for the
rigid body. In that case, the Poisson bracket for angular momenta is

{Li, Lj} = −
3∑

k=1

εijkL
k , (1.2)

where the negative sign in front of the sum is purely conventional, as the
map ~L→ −~L brings it to a plus sign.

Thus, the Poisson bracket for spin systems is simply

{Sin, Sjm} = δnm

3∑
k=1

εijkS
k
n . (1.3)

Naming J the Poisson tensor, the equations of motion follow accordingly:

dSin
dt

= (J∇H)in =
∑
m,j

{Sin, Sjm}
∂H

∂Sjm
=
∑
m,j

δnm

3∑
k=1

εijkS
k
n

∂H

∂Sjm
=

=
∑
kj

εijkS
k
n

∂H

∂Sjn
= −

∑
kj

εikjS
k
n

∂H

∂Sjn
= −(~Sn ×

∂H

∂~Sn
)i ,
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encoded in

d~Sn
dt

= −~Sn ×
∂H

∂~Sn
. (1.4)

Obviously, this can be obtained also by computing dSin/dt = {Sin, H}.
Finally, substituting H into the equations of motion we get

d~Sn
dt

= ~Sn ×
[
~hn +

∑
m

Inm~Sm

]
. (1.5)

1.1.2 Isotropic Heisenberg chain and XXZ chain

When the interaction among the spin in a 1D chain is isotropic in the sense
previously mentioned, Inm = gnm13, and it concerns only first neighbors, the
model is called isotropic Heisenberg chain or XXX chain; when the
interaction is isotropic only on the x and y directions, i.e.

Inm = gnm

1 0 0
0 1 0
0 0 λ

 , (1.6)

the model is called XXZ chain. When in presence of constant external
magnetic field ~h it is possible in both cases to perform a simple change of
variables — a time dependent rotation, precisely — that can get rid for us
of the contribution of the external field to the Hamiltonian. In the case of
the fully isotropic model the operation is always allowed, while for the XXZ
chain we must require that the direction of anisotropy is the same of that of
the external field, i.e. ~h goes along z.

Removal of constant external field

The Hamiltonian is

H = −1

2

∑
n,m

~Sn · Inm~Sm −
∑
n

~hn · ~Sn , (1.7)

with the equations of motion

d~Sn
dt

= ~Sn × ~hn + ~Sn ×
∑
m

Inm~Sm . (1.8)
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Let us define the time dependent transformation etA ∈ SO(3)

~Sn = etA~σn , (1.9)

such that, for any vector ~v,

A~v = −~h× ~v . (1.10)

In practice, this means that

A =

 0 h3 −h2

−h3 0 h1

h2 −h1 0

 , (1.11)

so the matrix etA describes a uniform rotation around the axis ~h, as etA is
the flow of the equation d~S/dt = ~S × ~h.

We will now insert the transformation into our equations of motion. Be-
fore we do that, let us mention that for any rotation matrix R and any pair
of vectors ~u , ~v, the following identity holds:

R(~u× ~v) = (R~u)× (R~v) . (1.12)

That said, whenever the rotation matrix commutes with the interaction ma-
trix, we find:

etA
d~σn
dt

= (etA~σn)× (etA
∑
m

Inm~σm) , (1.13)

so that
d~σn
dt

= ~σn ×
∑
m

Inm~σm , (1.14)

But these are the equations of motion for the usual Hamiltonian

H = −1

2

∑
n

~σn · Inm~σm , (1.15)

so the external field has been removed.
This is always true for the isotropic case as the interaction is basically

only the identity. In the case of the XXZ chain, since the rotation is along ~h,
the rotation matrix etA commutes with the interaction matrix (1.6) when ~h
itself is along z, and this is the only case in which we can formally eliminate
the contribution of the external field. Notice that this operation can be
performed under these conditions on a spin lattice of arbitrary dimension,
not just one-dimensional.

From now on, we will assume the conditions of a 1D Heisenberg model
with constant external field ~h along z — and we will continue the discussion
with only the spin-spin interaction term.
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Ferromagnetic XXX chain

Let us look at what remains of the Hamiltonian in the general form (1.1)
when we make the assumption of XXX chain. Here we have isotropic and
nearest neighbor interaction, i.e.

Inm =

{
g13 , g > 0 , if |n−m| = 1

0 otherwise
, (1.16)

and plugging it into the Hamiltonian gives us

H = −g
2

N∑
n=1

~Sn ·
(
~Sn+1 + ~Sn−1

)
= −g

N∑
n=1

~Sn · ~Sn+1 (1.17)

where the equations of motion are

d~Sn
dt

= g ~Sn ×
(
~Sn+1 + ~Sn−1

)
. (1.18)

In this model, the ferromagnetic behavior is determined by the condition
g > 0. Indeed, from a thermodynamical point of view, the energy is min-
imized in the situation of all spins aligned, the minimum value of H being
−gN on any equilibrium configuration ~Sn = ~S , ∀n = 1, ..., N .

1.2 Continuum limit
Let us now perform the continuum limit for the case of the XXX chain. Doing
so will lead us to an important, well known equation: the Landau-Lifshitz
equation.

We imagine that there exists a function which interpolates our values of
the spins in space and time, meaning

~S :R× T −→ S2

(T, x) 7−→ ~S(T, x) , (1.19)

such that

~Sn(t) = ~S(T, x)
∣∣
T=t/N
x=n/N

. (1.20)

Using the new map, the equations of motion become

∂~S

∂T
=

g

N

(
~S × ∂2~S

∂x2
+O(

1

N2
)

)∣∣∣∣∣T=t/N
x=n/N

, (1.21)
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while the Hamiltonian is

H = −1

2

g

N

∑
n

1

N

(
~S · ∂

2~S

∂x2
+O(

1

N2
)

)∣∣∣∣∣T=t/N
x=n/N

− g

N
. (1.22)

Given the appearance of the ratio g/N , it is natural assume the existence
of

lim
N→∞

g

N
:= γ . (1.23)

Upon performing the actual limit N →∞ we find

H := lim
N→∞

(H + gN) = −1

2
γ

∫
T

~S · ∂
2~S

∂x2
dx =

γ

2

∫
T

∣∣∣∂~S
∂x

∣∣∣2dx , (1.24)

with equations of motion

∂~S

∂T
= γ~S × ∂2~S

∂x2
= −~S × δH

δ~S
. (1.25)

This PDE, which we rewrite in the compact form

∂T ~S = γ~S × ~Sxx , (1.26)

is precisely the so called Landau-Lifshitz equation, which, along with its vari-
ations, is the central equation for describing the dynamics of magnetism and
micromagnetism [1].

1.2.1 Linear waves

It is interesting to see how the continuum limit for the spin chain, perturbed
around an equilibrium solution, is mapped into the Schŕ’odinger equation for
the free particle. One can see that any constant vector ~S0 is a solution to
the Landau-Lifshitz equation (1.26); let us perturb such a solution, where for
example ~S0 is the unit vector in the z direction (for simplicity we can assume
to have unit spin and γ = 1 without having to change our discussion up to
now). The spin function is then ~S = êz + ~σ, and if we linearize the resulting
equation in ~σ, we find

∂~σ

∂T
= êz × ∂2

x~σ ⇐⇒

{
∂Tσx = −∂2

xσy

∂Tσy = ∂2
xσx

. (1.27)
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This is a Hamiltonian system since the proper Hamiltonian (so that the
Hamilton equations for σx and σy are satistisfied) can be found in the follow-
ing:

H :=
1

2

∫
T
[(∂xσx)

2 + (∂xσy)
2]dx . (1.28)

We can now define the complex field

ψ :=
σx + iσy√

2
, ψ∗ :=

σx − iσy√
2

, (1.29)

which transforms the usual symplectic Poisson tensor
[

0 1
−1 0

]
into

[
0 −i
i 0

]
.

Its Hamiltonian reads

H =

∫
T
|∂xψ|2dx (1.30)

with associated equations of motion

∂Tψ = −i δH
δψ∗

= i∂2
xψ (1.31)

and its complex conjugate, namely the Schŕ’odinger equation for the free
particle on T. Moreover, if we look for plane-wave solutions of the form

ψ(T, x) = Aei(kx−ωT ) , (1.32)

we find the dispersion relation ω = k2, with k = 2πj , j ∈ Z.



Chapter 2

The quantum model

The classical formalism for spin chains is certainly interesting and intuitive,
and has been studied at great length for this reason. Nevertheless, it is not
quite an accurate description for the phenomena it wishes to study, as the
concept of spin and its consequences are an intrinsic feature of matter at
a quantum level. The quantum models of spin systems, in fact, revert to
their classical correspondents in the limit S → ∞, which is very far from
our S = 1/2. Because of this, we will go through the process of quantizing
the Heisenberg chain in order to later work upon its quantum version. This
will require, naturally, to move to the quantum notion of spin in terms of
spin operators; after that, we will be able to act somewhat freely as to which
variables and operators we wish to use to describe our system.

2.1 First quantization
We begin the process of quantizing the Heisenberg isotropic spin 1/2 chain
by studying the model in a first quantization work frame, promoting the
physical quantities from functions to operators. We will see that, once we go
over the technicalities of working with operators, the model remains formally
similar to its classical counterpart.

2.1.1 Heisenberg ferromagnetic chain in first quantiza-
tion formalism

In the Heisenberg model of the classical spin chain, the prime quantities
playing a role are the spin vector components. The spin is described by
representations of the SU(2) Lie group and acts upon a (2s+ 1)-dimensional
Hilbert space. In our case of spin 1/2, then, the spin component operators

8
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on each site are described by half the Pauli matrices (remember that we are
working with the convention ~ = 1), and the commutation relations for such
operators are, naturally,

[Ŝim, Ŝ
j
n] = iδmnεijkŜ

k
n . (2.1)

We now proceed by substituting the classical components with the new op-
erators in the Heisenberg Hamiltonian, which becomes

Ĥ = −~h ·
∑
n

~̂Sn −
1

2

∑
n

g
(
~̂Sn · ~̂Sn+1 + ~̂Sn · ~̂Sn−1

)
= −~h ·

∑
n

~̂Sn − g
∑
n

~̂Sn · ~̂Sn+1 , (2.2)

as any component commutes with the others when on different sites. We
start to notice that, visually speaking, there is not much difference between
this quantized Hamiltonian and the classical one. We will see that, in this
formalism, the similarity persists further in our analysis of the discrete case.

Equations of motion

Prior to calculating the equations of motion, it is useful to make the following
observation.

Observation 2.1.1. For any vector ~v, we have

[ ~̂Sn, ~v · ~̂Sn] = i(~v × ~̂Sn) . (2.3)

Proof.

[Ŝxn, ~v · ~̂Sn] = [Ŝxn, v
xŜxn + vyŜyn + vzŜzn] =

= [Ŝxn, v
yŜyn + vzŜzn] = i(vyŜzn − vzŜyn) ,

and so on for the other components.

In the eyes of the operator ~̂Sn, any other spin ~̂Sm with n 6= m has no
more meaning than a mere vector, since any two components on different
sites commute. In light of this we see that we can extensively make use of
observation (2.1.1) in the computation of the equations of motion, just so:

d~̂Sn
dt

= −i[ ~̂Sn, Ĥ]
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= i[ ~̂Sn,~h · ~̂Sn] + ig[ ~̂Sn, ~̂Sn · ~̂Sn+1] + ig[ ~̂Sn, ~̂Sn · ~̂Sn−1] =

= i(i~h× ~̂Sn) + ig(i ~̂Sn+1 × ~̂Sn) + ig(i ~̂Sn−1 × ~̂Sn) =

= ~̂Sn ×
[
~h+ g( ~̂Sn−1 + ~̂Sn+1)

]
. (2.4)

These are, as said before, completely analogous to the classical Heisenberg
model equations of motion.

2.1.2 Elimination of constant external field

It is easy to see that the removal of the external field ~h in the case of first
quantization is conceptually the same procedure as in the classical case, with
only a few more details to review. Indeed it has to be noted that the time
dependent SO(3) transformation we previously applied in 1.1.2 of the classical
case will now only affect the “vectorial” nature of our quantities, leaving
their “operator” feature — that is, the real new feature of this approach —
untouched.

The only concern we have now is that the new rotated spin, this time
an operator, ~̂σn, remains a spin in the quantum sense, i.e. that it keeps the
usual commutation relations. This fact is intuitively true, and very easy to
check. Naturally, one can see that the commutation relations for the spin
can be encoded in the following:

~̂Sn × ~̂Sn = i ~̂Sn . (2.5)

It is then obvious that applying a rotation to the vector ~̂Sn will not change
this identity, thanks to the already mentioned properties of SO(3).

Let us now briefly retrace the steps of field removal. First, we define the
transformation etA ∈ SO(3)

~̂Sn = etA~̂σn , (2.6)

such that, for any vector ~v,

A~v = −~h× ~v . (2.7)

Then we use it manifestly in the equations of motion obtained earlier and we
find

d~̂σn
dt

= g~̂σn × (~̂σn−1 + ~̂σn+1) . (2.8)



11

We successfully managed once again to eliminate the external field, as these
are the equations of motion for the usual Hamiltonian

Ĥ = −g
∑
n

~̂σn · ~̂σn+1 . (2.9)

Just like in the classical case, we will henceforth continue our dissertation
considering no external field ~h without loss of generality, since we can always
revert back to the original system with a rotation of the spins.

Going forward

To go forth with the analogy between classical and first quantized system
one would begin to perform the continuum limit in order to obtain a first
quantized version of the Landau-Lifshitz equation. We leave it to the reader
to check that the process of doing so is formally the same, leading simply to
the equation

∂T ~̂S = ~̂S × ∂2
x
~̂S . (2.10)

2.2 Ladder operators
As we saw, there is really nothing interesting about a first quantized version
of the Heisenberg chain — the discussion follows step by step its classical
version, with no additional information to be extracted from the quantum
model. It is more interesting, both for technical and conceptual reasons,
to resort to ladder operators. From a technical point of view, this is an in-
between step which is necessary in order to later shift to a second quantization
approach (we will map the Heisenberg model into a system of particles).
From a conceptual one, there is a great deal more to say about the system
when using such operators; the famous Bethe Ansatz [11], the first historical
solution to the model and the most vastly researched, was made studying
the system precisely in the work frame of ladder operators.

The new set of operators in play is then made up of the following two:

Ŝ+
n := Ŝxn + iŜyn , (2.11)

Ŝ−n := Ŝxn − iŜyn , (2.12)

along with Ŝz, which stays the same. Every operator can now act on states
like |↑1, ↑2, ↓3, ..., ↑N〉 which symbolize the spin up-down configuration of the
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system. The action of the ladder operators on such states is

Ŝ+
n |↑1, ↑2, ↓3, ..., ↑n, ..., ↑N〉 = 0 ;

Ŝ+
n |↑1, ↑2, ↓3, ..., ↓n, ..., ↑N〉 = |↑1, ↑2, ↓3, ..., ↑n, ..., ↑N〉 ; (2.13)

Ŝ−n |↑1, ↑2, ↓3, ..., ↑n, ..., ↑N〉 = |↑1, ↑2, ↓3, ..., ↓n, ..., ↑N〉 ;

Ŝ−n |↑1, ↑2, ↓3, ..., ↓n, ..., ↑N〉 = 0 ; (2.14)

while Ŝz acts like

Ŝzn |↑1, ↑2, ↓3, ..., ↑n, ..., ↑N〉 =
1

2
|↑1, ↑2, ↓3, ..., ↑n, ..., ↑N〉 ;

Ŝzn |↑1, ↑2, ↓3, ..., ↓n, ..., ↑N〉 = −1

2
|↑1, ↑2, ↓3, ..., ↓n, ..., ↑N〉 ; (2.15)

2.2.1 Heisenberg in ladder operators

From the previous Section, we know that the Heisenberg Hamiltonian reads

Ĥ = −g
∑
n

Ŝn · Ŝn+1 , (2.16)

where the commutation relations for the Ŝn operators are

[Ŝim, Ŝ
j
n] = iδmnεijkŜ

k
n . (2.17)

From these, we find that the commutation relations for the new operators
are

[Ŝ+, Ŝ−] = 2Ŝz , [Ŝz, Ŝ+] = Ŝ+ , [Ŝz, Ŝ−] = −Ŝ− . (2.18)

Just from the definition of Ŝ+
n and Ŝ−n , we know that they deal only with the

x and y directions. It is then straightforward to check that the x-y interaction
term in the Hamiltonian can be written in terms of ladder operators simply
via the following identity:

Ŝ+
n Ŝ
−
n+1 + Ŝ−n Ŝ

+
n+1 = 2

[
ŜxnŜ

x
n+1 + ŜynŜ

y
n+1

]
. (2.19)

Thus, since the interaction along z remains unaltered, we find the new Hamil-
tonian to be

Ĥ = −g
∑
n

(
1

2

[
Ŝ+
n Ŝ
−
n+1 + Ŝ−n Ŝ

+
n+1

]
+ ŜznŜ

z
n+1

)
. (2.20)
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2.2.2 Towards another change of coordinates

It is interesting to notice that there is an abundance of operators in use,
i.e. there exists an identity which relates Ŝ+

n , Ŝ−n and Ŝzn. This follows from
the fact that the square of the spin on each site has just one eigenvalue,
s(s+ 1) = 3/4, so

3

4
=

1

2

[
Ŝ+
n Ŝ
−
n + Ŝ−n Ŝ

+
n

]
+ (Ŝzn

)2
. (2.21)

Therefore, we are allowed to look for a change of variables that, for each site
n, maps our three spin-related operators into two new operators.

It is also worth noticing that the raising and lowering operators here
introduced possess a quite peculiar property, and that is what will finally
enable us to make the crucial change of variables. Such property is simply

(S+
n )2 = (S−n )2 = 0 , (2.22)

S−n S
+
n + S+

n S
−
n = 1 . (2.23)

Clearly, this already looks like some fermionic creation and annihilation op-
erator property. As we will see in Section 2.3, it is thanks to this that we
will be able to transfer precisely into a fermionic Fock space workframe, via
the so called Jordan-Wigner transformation.

2.3 Jordan-Wigner transformation
As we already mentioned in section 2.2, equations (2.22) and (2.23) are simi-
lar to the relations pertaining the fermion creation and annihilation operators
on one site. Meaning,

(f †n)2 = (fn)2 = 0 , (2.24)
{fn, f †n} = fnf

†
n + f †nfn = 1 . (2.25)

Unfortunately, this similarity does not hold when we take into account
spin operators on different sites; such spin operators clearly commute when on
different sites, while generic fermion will keep the anti-commutation relations

{f †n, f †m} = {fn, fm} = 0 , {fn, f †m} = δnm . (2.26)

This means that we need to be careful if we want to properly map a spin chain
into a fermion system; we cannot simply replace the spin raising and lowering
operators with the correspondent fermionic creation and annihilation ones.
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The correct (although longer) procedure has been brought to us in 1928 by
Pascual Jordan and Eugene Wigner, opening a portal between spin-1/2 spin
chains and fermion chains - spinless fermions, to be exact. Reference an notes
on the Jordan-Wigner transformation are [15], [23], [14], [24]. The change of
variable is the following:

S−n = Qnfn = exp

{
iπ

n−1∑
l=1

f †l fl

}
fn ,

S+
n = f †nQ

†
n = f †n exp

{
− iπ

n−1∑
l=1

f †l fl

}
,

Szn = f †nfn − 1/2 . (2.27)

Here the factor Qn, which we will see is self-adjoint, is the key which lets
our spin operators commute on different sites while the operators fn keep on
being fermions. For practical reasons and from now on, let us use a different
form of this factor, as presented in the following lemma:

Lemma 2.3.1.

Qn = exp

{
iπ

n−1∑
l=1

f †l fl

}
=

n−1∏
l=1

(1− 2f †l fl) . (2.28)

Proof. Let us notice that, for any integer l, we have that

(f †nfn)l = f †nfn , (f †nfn)0 = 1 .

Then, clearly,

eiπf
†
l fl =

∞∑
n=0

(iπ)n

n!
(f †l fl)

n = 1 +

(
∞∑
n=1

(iπ)n

n!

)
f †l fl =

= 1 + (eiπ − 1)f †l fl = 1− 2f †l fl .

The same exact calculation holds for Q†n, showing that Q†n = Qn.

Let us quickly interpret this map in terms of Hilbert spaces. From the
change of variables (2.27), we can see that the fermion operators act on the
standard spin basis in such a way:

fn |↑〉 = |↓〉 , fn |↓〉 = 0 ,

f †n |↓〉 = |↑〉 , f †n |↑〉 = 0 . (2.29)
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Therefore, by defining the particle number operator nn = f †nfn, it is intuitive
that the downward spin state corresponds to an empty site in the fermionic
chain, and that the upward spin state means an occupied site in the fermionic
chain:

nn |↑〉 = |↑〉 , nn |↓〉 = 0 . (2.30)

It is clear now why the fermions here are regarded as spinless; the only
two possible states for each fermion are "present" and "not present", i.e. a
fermion number nn that can be only 0 or 1. This means that our particles
are, indeed, fermions, as they obey the same commutation relations, yet they
possess no internal degree of freedom, not even spin.

The anti-commutation property of fermions and the nature of the factor
Qn give birth to many other not-so-intuitive relations, which will reveal cru-
cial for the computation of our fermion Hamiltonian. We will present them
here, much like a small handbook of properties:

fn(1− 2f †nfn) = −fn , f †n(1− 2f †nfn) = f †n ,

(1− 2f †nfn)fn = fn , (1− 2f †nfn)f †n = −f †n ,
(1− 2f †nfn)2 = 1 ,

fn(1− 2f †l fl) = (1− 2f †l fl)fn , l 6= n ,

f †n(1− 2f †l fl) = (1− 2f †l fl)f
†
n , l 6= n ,

fnQl = Qlfn , l ≤ n ,

f †nQl = Qlf
†
n , l ≤ n ,

QnQn+1 = 1− 2f †nfn ,

Q2
n = 1 . (2.31)

Reverse Jordan-Wigner

For the sake of completeness we report here the reverse identities for the
Jordan-Wigner transformation, i.e. the expression of the fermion operators
in terms of spin, obtained using equations (2.31). They are:

fn =
n−1∏
l=1

(−2Szl )S−n ,

f †n = S+
n

n−1∏
l=1

(−2Szl ) ,

nn = Szn + 1/2 . (2.32)
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2.4 The Heisenberg fermion system
Now that we have seen the technicalities of the Jordan-Wigner transforma-
tion, we may proceed to turn our Heisenberg spin chain into a system of
fermions located on a discrete number of sites in one dimension. This has
been done extensively starting from the XY model instead of the full Heisen-
berg model, with the result, as we will see for ourselves, of a mapping onto
a system of free fermions. Applying the transformation on the full model,
complete with interaction among the z-components, will naturally provide us
with additional contributions in the fermion Hamiltonian, i.e. with interac-
tion.

2.4.1 Transformed Heisenberg Hamiltonian

We recall from the previous section the following change of coordinates:

Ŝ−n = Qnfn (2.33)

Ŝ+
n = f †nQn (2.34)

Ŝzn = f †nfn − 1/2 . (2.35)

By the properties of these new operators and coefficients widely explored in
the same section, the key components of our Hamiltonian behave in such a
way:

Ŝ+
n Ŝ
−
n+1 = f †nQnQn+1fn+1 = f †n(1− 2f †nfn)fn+1 =

= f †nfn+1 ; (2.36)

Ŝ−n Ŝ
+
n+1 = fnQnQn+1f

†
n+1 = fn(1− 2f †nfn)f †n+1 =

= −fnf †n+1 = f †n+1fn . (2.37)

Now we clearly have all the elements to bring the Heisenberg spin chain
to a fermion system. Before rushing into it, though, let us slowly study
the Hamiltonian piece by piece; meaning, let us first observe how the x-y
interaction alone (i.e. the XY model) is mapped into a Hamiltonian which
is quadratic in the fermion operators and that represents a free system of
fermions. Let us also study the contribution of the Ŝz interaction alone, and
see how it provides us with a quartic term (an interaction term) as well as
another quadratic term that can be put together with the XY terms to make
up the integrable part of our system. But we’re getting ahead of ourselves.



17

The XY model

The standard XY model Hamiltonian has the same form as the Heisenberg
one, but with the interaction - once again homogeneous - only present in the
x and y directions. Namely,

ĤXY = −g
∑
n

[
ŜxnŜ

x
n+1 + ŜynŜ

y
n+1

]
=

= −1

2
g
∑
n

[
Ŝ+
n Ŝ
−
n+1 + Ŝ−n Ŝ

+
n+1

]
. (2.38)

From equations (2.37) it is immediate to see that the Hamiltonian in terms
of the fermionic operators reads

ĤXY = −1

2
g
∑
n

[
f †nfn+1 + f †nfn−1

]
. (2.39)

This is not a free fermion Hamiltonian at first sight. However, any Hamil-
tonian of the form H =

∑
jk αjkf

†
j fk can be converted into a free fermion

Hamiltonian by means of a simple transformation. Our case clearly fits in
this family, as it is just the situation in which αjk = −1

2
g(δk,j+1 + δk,j−1).

The procedure is fully explained in [25] for the case of a more general family
of Hamiltonians which are quadratic in the Fermi operators. Such generality
is not of particular interest for us, so we only report here a simpler version
of the transformation (in particular case, this will take the form of a discrete
Fourier transform).

Keeping in mind that for the Hamiltonian to be hermitian we would
require α∗jk = αkj (i.e. the matrix α is hermitian itself), we introduce the
operators

ϕj :=
∑
k

ujkfk , ujk ∈ C , (2.40)

where we want the ujk to be such that the commutation relations are pre-
served (i.e. that the ϕj are still fermions). Namely

{ϕj, ϕk} =
∑
lm

ujlu
∗
km{fl, fm} =

∑
lm

ujlδlmu
†
mk1 =

= (uu†)jk1 , (2.41)

so that we require uu† to be the identity, i.e. that u be a unitary transforma-
tion. Given this new information, we can then revert the relation between
the two fermion operators, obtaining

fj :=
∑
k

u†jkϕk , (2.42)
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and insert it into H. In this way, the Hamiltonian has the form

H =
∑
jk

αjkf
†
j fk =

∑
jk

∑
lm

αjkϕ
†
lulju

†
kmϕm = (2.43)

=
∑
lm

ϕ†l

(∑
jk

uljαjku
†
km

)
ϕm =

∑
lm

ϕ†l

(
uαu†

)
lm
ϕm . (2.44)

Since α is hermitian, we can still choose the transformation u such that
it diagonalizes it. If we let λj be the eigenvalues of α, we then have

H =
∑
j

λjϕ
†
jϕj , (2.45)

which is manifestly the Hamiltonian for a free system of fermions.

The Heisenberg Model

Adding the Ŝz interaction to the XY model and substituting Sz with the cor-
respondent according to the Jordan-Wigner, we get the fermionic formulation
of the Heisenberg model, i.e.

Ĥ = −g
∑
n

(
1

2

[
Ŝ+
n Ŝ
−
n+1 + Ŝ−n Ŝ

+
n+1

]
+ ŜznŜ

z
n+1

)
= −g

∑
n

[(
f †nfn −

1

2

)(
f †n+1fn+1 −

1

2

)
+

1

2

(
f †nfn+1 + f †nfn−1

)]
= −g

∑
n

[1

4
+

1

2

(
f †nfn+1 − 2f †nfn + f †nfn−1

)
+ f †nfnf

†
n+1fn+1

]
(2.46)

= Ĥ0 + Ĥz ,

where we defined Ĥ0 and Ĥz so that the Hamiltonian is split into a quadratic
term (leading term) and a quartic term of interaction that will be later treated
as a perturbation. Namely,

Ĥ0 = −g
∑
n

[1

4
+

1

2

(
f †nfn+1 − 2f †nfn + f †nfn−1

)]
, (2.47)

Ĥz = −g
∑
n

f †nfnf
†
n+1fn+1 . (2.48)

The unperturbed term, Ĥ0, is then basically the XY model Hamiltonian
plus a quadratic term (which is a sum of number operators). This additional
term, reverted to S variables, reads

g
∑
n

f †nfn = g
∑
n

[
Szn −

1

2

]
, (2.49)
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meaning that what we treat as the unperturbed system is an XY model with
a constant external magnetic field depending on g.

2.4.2 Equations of motion for fermions

Let us shorten the computation of the equations of motion for the fermionic
operators by proving the following relations:

Observation 2.4.1.

[fa, f
†
b fc] = δabfc , (2.50)

[f †a , f
†
b fc] = −δacf †b . (2.51)

Proof.

[fa, f
†
b fc] = [fa, f

†
b ]fc + f †b [fa, fc] = (δab − 2f †b fa)fc + f †b (−2fcfa) =

= δabfc − 2f †b {fa, fc} = δabfc . (2.52)

The proof for (2.51) is completely analogous.

Knowing these relations and the ones presented in Section 2.3, the compu-
tation is quite straightforward. We report it here for the sake of completeness,
highlighting the origin (quadratic or quartic part of the Hamiltonian) of each
contribution:

dfa
dt

= −i[fa, Ĥ] = −i
(

[fa, Ĥ0] + [fa, Ĥz]
)

= A+B ,

where

A = −i[fa, Ĥ0] = i
g

2

∑
n

[fa, f
†
nfn+1 − 2f †nfn + f †nfn−1] =

= i
g

2

∑
n

(
δanfn+1 − 2δanfn + δanfn−1

)
= i

g

2

(
fa+1 − 2fa + fa−1

)
=

= i
g

2
∆d(fa) ,

B = −i[fa, Ĥz] = ig
∑
n

[fa, f
†
nfnf

†
n+1fn+1] =

= ig
∑
n

(
[fa, f

†
nfn]f †n+1fn+1 + f †nfn[fa, f

†
n+1fn+1]

)
=

= ig
∑
n

(
δanfnf

†
n+1fn+1 + δa,n+1f

†
nfnfn+1

)
= ig

(
faf

†
a+1fa+1 + f †a−1fa−1fa

)
=



20

= ig
(
f †a+1fa+1 + f †a−1fa−1

)
fa = ig

(
f †a+1fa+1 + f †a−1fa−1 − 2f †afa

)
fa =

= ig∆d(f
†
afa)fa .

This way, we finally get:

dfa
dt

= i
g

2
∆d(fa) + ig∆d(f

†
afa)fa . (2.53)

The symbol ∆d(φn)
(

:= φn+1 + φn−1− 2φn
)
is here used as a sort of discrete

Laplacian, as its value suggests.
The equations of motion for the creation operator f † are computed anal-

ogously, step by step. Of course, we find exactly the hermitian conjugate of
equation (2.53), namely

df †a
dt

= −ig
2

∆d(f
†
a)− igf †a∆d(f

†
afa) . (2.54)



Chapter 3

Perturbative approach

The main aim of this dissertation is discussed in this chapter. As announced,
we are interested in verifying the possible advantages of Hamiltonian pertur-
bation theory, in its quantum parallel explained in appendix A, by applying
it on the quantum Heisenberg chain. For this purpose, we will work with the
fermionized version found in the previous chapter, described by the Hamil-
tonian

Ĥ = −g
∑
n

[1

4
+

1

2

(
f †nfn+1 − 2f †nfn + f †nfn−1

)]
− g

∑
n

f †nfnf
†
n+1fn+1 .

(3.1)

The quadratic part is diagonalizable, i.e. can be easily solved. This pro-
vides us with an simple integrable system to start with. The quartic term
will then be our perturbation; working with the isotropic chain, though,
restricts the goodness of the approximated approach to the case of few over-
turned spins, or small excitations. The applicability of the method is further
discussed in section 3.4.

Section 3.1 will be dedicated to performing a change of variables in order
to diagonalize the quadratic term, while section 3.2 will contain the actual
application of the Averaging Principle theorem [21] on the perturbative term
to find the first order truncated normal form of the Hamiltonian. We will
then comment on the findings by also examining the correction to the energy
eigenvalues that follows from adding the perturbative term.

21
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3.1 Diagonalization of quadratic (unperturbed)
term

We know that the XY model is integrable. This is because, as we know from
2.4.1, any quadratic femionic Hamiltonian is diagonalizable. So, of course,
our quadratic term is integrable as well (this is nothing new — we know that
it basically corresponds to some XY model). We will therefore diagonalize
the system made of the quadratic term in order to solve it, and to later treat
it as the unperturbed Hamiltonian, whereas the perturbation itself will be
coming from Ĥz once it is put in the right variables. From now on, we choose
to ignore any constant term that will appear in the Hamiltonian.

3.1.1 Fourier transform: quadratic term

The procedure described in subsection 2.4.1 to diagonalize quadratic fermionic
Hamiltonians offers a transformation which is left in general terms and is not
explicit. Fortunately, our case is easily diagonalized via Fourier. Defining
the fourier coefficients fk (which are operators) such that

fn =
1√
N

∑
k

fke
ikn , k =

2πj

N
, j = 1, ..., N (3.2)

and remembering that

δkk′ =
1

N

∑
n

ei(k−k
′)n , (3.3)

we find the free fermion Hamiltonian:

Ĥ0 = −g
∑
n

(1

2
f †nfn+1 +

1

2
f †nfn−1 − f †nfn

)
=

= − g

N

∑
n

∑
kk′

[1

2
f †kfk′e

−i(k−k′)n(eik′ + e−ik
′)− f †kfk′e−i(k−k′)n] =

= −g
∑
kk′

f †kfk′(cos(k′)− 1)δkk′ = g
∑
k

(1− cos k)f †kfk =

=
∑
k

ω(k)f †kfk , (3.4)

where we defined the frequency

ω(k) := g(1− cos k) . (3.5)
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With this precious information we can now solve the dynamics of the XY
model. Notice that the commutation relations for the Fourier operators are
still exactly the same as for the fermions. To show it very quickly, we recall
that expanding in Fourier series can be easily reverted:

fk =
1√
N

∑
n

fne
−ikn . (3.6)

Therefore,

{f †k , fk′} =
1

N

∑
n,m

{f †n, fm}eikne−ik
′m =

1

N

∑
n,m

δmne
ikne−ik

′m =

=
1

N

∑
n

ei(k−k
′)n = δkk′ , (3.7)

and proceeding similarly for the other anticommutators we get

{f †k , fk′} = {fk, f †k′} = δkk′ ,

{f †k , f
†
k′} = {fk, fk′} = 0 . (3.8)

We can then take advantage of the many properties we explored before for
fermion operators, which are especially useful when calculating the equations
of motion. Explicitly, these are

dfq
dt

∣∣∣
H0

= −i[fq, Ĥ0] = −i
∑
k

ω(k)δqkfk = −iω(q)fq . (3.9)

The time evolution of the fk operators is then simply

fk(t) = fke
−iω(k)t . (3.10)

3.1.2 Fourier transform: quartic term

Now that we know the flow (3.10) of the quadratic part of the Hamiltonian
alone, we can use this integrable Hamiltonian as the unperturbed part of the
system, while treating the quartic part as a perturbation. Clearly, though, we
must have the whole system in terms of the same variables, thus we translate
into Fourier the quartic term.

Ĥz =− g
∑
n

f †nfnf
†
n+1fn+1 =
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=− g
∑
n

1

N2

∑
k, k′, q, q′f †kfk′f

†
q fq′e

−i(q−q′)e−i(k+q−k′−q′)n =

=− g 1

N

∑
k, k′, q, q′f †kfk′f

†
q fq′e

−i(q−q′)×

×
(
δk+q,k′+q′ + δk+q,k′+q′+2π + δk+q,k′+q′−2π

)
. (3.11)

The sum of deltas here comes from the following:

Lemma 3.1.1. For k = 2πj
N
, j ∈ Z, the following identity holds:

1

N

N∑
n=1

eikn =
∑
m∈Z

δk,2πm . (3.12)

Proof. Knowing that k = 2πj/N , and using the formula for the finite complex
geometric series, we find

1

N

N∑
n=1

eikn =
1

N
eik

N−1∑
n=0

(eik)n =
1

N
eik
eikN − 1

eik − 1
=

1

N
ei

2πj
N
ei2πj − 1

ei
2πj
N − 1

,

which is zero whenever k 6= 2πm , m ∈ Z. Otherwise, we have

1

N
eik
eikN/2

eik/2
sin kN

2

sin k
2

=
1

N
ei2πm

(eiπm)N

eiπm
sin(Nπm)

sin(πm)
,

and using the expansion for the sine of multiple angle

sin(Nx) =
∑
r=0,

2r+1≤N

(−1)r
(
N
2r + 1

)
cosN−2r−1(x) sin2r+1(x) , (3.13)

we get

1

N
ei2πm

(eiπm)N

eiπm
sin(Nπm)

sin(πm)
=

1

N
(eiπm)N−1

∑
r=0,

2r+1≤N

(−1)r
(

N
2r + 1

)
×

× cosN−2r−1(πm) sin2r(πm) =

(only r = 0 remains) =
1

N
(eiπm)N−1N(eiπm)N−1 = (−1)2m(N−1) =

=1 .
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Notice that we already made use of this in (3.3), with the restriction that
each k goes from 1 to N . This allows for k−k′ = 2πm the only value m = 0.
It works the same when we have k − k′ + q − q′ = 2πm; the maximum and
minimum values are going to be

max
k,k′,q,q′

(k − k′ + q − q′) = 4π − 4π

N
< 4π (3.14)

min
k,k′,q,q′

(k − k′ + q − q′) = −4π +
4π

N
> −4π , (3.15)

so that the only values of m allowed are m = −1, 0, 1.

3.2 Applying perturbation theory
Let us begin the calculation of the first order normal form for our Hamil-
tonian, following the program described in appendix A. The role of the
integrable unperturbed system is played by

ĥ =
∑
k

ω(k)f †kfk ,

whereas the perturbative term, in which we state the time dependence of the
operators, is the following:

Ĥz = − g

N

∑
kk′

∑
qq′

f †k(t)fk′(t)f
†
q (t)fq′(t)e

−i(q−q′)∆k+q,k′+q′ , (3.16)

where we put

∆k+q,k′+q′ := δk+q,k′+q′ + δk+q,k′+q′+2π + δk+q,k′+q′−2π . (3.17)

We proceed by evaluating its time average along the flow (3.10) of ĥ,
〈Ĥz〉h. By doing so, we automatically find the first order perturbative term
of the Hamiltonian in normal form, which we call Ŝ.

Ŝ =
1

T

∫ T

0

Ĥz(t)
∣∣∣
unperturbed

dt

= − g

N

∑
kk′

∑
qq′

f †kfk′f
†
q fq′e

−i(q−q′)∆k+q,k′+q′
1

T

∫ T

0

ei[ω(k)−ω(k′)+ω(q)−ω(q′)]tdt

= − g

N

∑
kk′

∑
qq′

f †kfk′f
†
q fq′e

−i(q−q′)∆k+q,k′+q′δω(k)+ω(q),ω(k′)+ω(q′) . (3.18)
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Even though the latter equation could technically constitute the result
we are looking for, there is really nothing useful in having it under such
appearance; the only information we have added is encoded into the delta of
frequencies, but we cannot yet make any use of it. As a matter of fact, to
better understand the properties of Ŝ, we will have to solve the system of
the two deltas ∆k+q,k′+q′ and δω(k)+ω(q),ω(k′)+ω(q′), in order to figure out which
combinations of momenta will survive in the sum. The system is pretty
straightforward to solve, with only a few remarks to be made, although it is
quite a long calculation. The next subsection will be entirely devoted to its
illustration.

3.2.1 Solving the delta system

Since ∆k+q,k′+q′ is actually made up of a sum of three deltas, we are in fact
dealing with three different systems. Let us solve them one by one, keeping in
mind that the systems coming from δk+q,k′+q′+2π and δk+q,k′+q′−2π are related
by symmetry under the exchange k ↔ k′, q ↔ q′.

First sub-system

Let us start with the symmetric term of the delta:{
ω(k) + ω(q) = ω(k′) + ω(q′)

k + q = k′ + q′
=⇒

{
cos(k) + cos(q) = cos(k′) + cos(q′)

k + q = k′ + q′{
cos(k+q

2
) cos(k−q

2
) = cos(k

′+q′

2
) cos(k

′−q′
2

)

k + q = k′ + q′
=⇒{

cos(k+q
2

) cos(k−q
2

) = cos(k+q
2

) cos(k
′−q′
2

)

k + q = k′ + q′
=⇒{

cos(k+q
2

) = 0

k + q = k′ + q′
∨

{
cos(k−q

2
) = cos(2k′−k−q

2
)

k + q = k′ + q′

Considering k = 2πj
N

and the range of values for such j , the solutions are{
k + q = π , k ∈ K1

k′ + q′ = π , k′ ∈ K1

(if N even) ∨

{
k = k′

q = q′
∨

{
k = q′

q = k′

(3.19)

where k ∈ K1 means that jk ∈ [1, N
2
− 1] ∩ N.
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Second and third sub-systems

We go on with the second system,{
ω(k) + ω(q) = ω(k′) + ω(q′)

k + q = k′ + q′ + 2π
=⇒

{
cos(k) + cos(q) = cos(k′) + cos(q′)

k + q = k′ + q′ + 2π{
cos(k+q

2
) cos(k−q

2
) = cos(k

′+q′

2
) cos(k

′−q′
2

)

k + q = k′ + q′ + 2π
=⇒{

cos(k+q
2

) cos(k−q
2

) = cos(k+q
2

+ π) cos(k
′−q′
2

)

k + q = k′ + q′ + 2π
=⇒{

cos(k+q
2

) = 0

k + q = k′ + q′ + 2π
∨

{
cos(k−q

2
) = − cos(k

′−q′
2

)

k + q = k′ + q′ + 2π

Considering k = 2πj
N

and the range of values for such j , the solutions are{
k + q = 3π , k ∈ K2

k′ + q′ = π , k′ ∈ K1

(if N even) (3.20)

where k ∈ K2 means that jk ∈ [N
2
, N ] ∩ N.

By symmetry, the third delta system{
ω(k) + ω(q) = ω(k′) + ω(q′)

k + q = k′ + q′ − 2π

gives the solutions{
k + q = π , k ∈ K1

k′ + q′ = 3π , k′ ∈ K2

(if N even) . (3.21)

Intersection of solutions

Let us tidy up all the results we found so far, labeling each set of solutions.
Naturally, in our Hamiltonian these sets of solutions will be translated into a
sum of deltas, in order to“pick” the right combinations of momenta from the
sum over them. There is one thing to be careful about, though. Every time
we sum two deltas pertaining to two different set of solutions, we over-count
every combination that is part of both sets of solutions. Therefore, we need
to actually see which solutions are in the intersection of more sets and take
proper measure. We follow with labeling the solution sets and finding each
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intersection — wherever there is no explicit restriction upon the values of
the momenta, assume that it can take up any original value.

A =

{
k = k′

q = q′
B =

{
k = q′

q = k′
A ∩B =


k = k

k′ = k

q = k

q′ = k

C1 =

{
k + q = π , k ∈ K1

k′ + q′ = 1π , k′ ∈ K1

C2 =

{
k + q = 3π , k ∈ K2

k′ + q′ = 3π , k′ ∈ K2

C3 =

{
k + q = π , k ∈ K1

k′ + q′ = 3π , k′ ∈ K2

C4 =

{
k + q = 3π , k ∈ K2

k′ + q′ = π , k′ ∈ K1

A ∩ C1 =


k = k

k′ = k

q = π − k
q′ = π − k

, k ∈ K1 A ∩ C2 =


k = k

k′ = k

q = 3π − k
q′ = 3π − k

, k ∈ K2

B ∩ C1 =


k = k

k′ = π − k
q = π − k
q′ = k

, k ∈ K1 A ∩ C2 =


k = k

k′ = 3π − k
q = 3π − k
q′ = k

, k ∈ K2

A ∩ C3 = ∅ A ∩ C4 = ∅ B ∩ C3 = ∅ B ∩ C4 = ∅

A ∩B ∩ C1 =


k = π

2

k′ = π
2

q = π
2

q′ = π
2

A ∩B ∩ C2 =


k = 3π

2

k′ = 3π
2

q = 3π
2

q′ = 3π
2
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Inserting the solutions

By calling each Hamiltonian term by the label associated to its solution set,
let us insert the solutions into the Hamiltonian, in the form of a delta. We
start with the main sets, noticing how the Ci sets are added together nicely
once in the Hamiltonian.

A = − g

N

∑
kk′

∑
qq′

f †kfk′f
†
q fq′e

−i(q−q′)δk,k′δq,q′ =

= − g

N

∑
kq

f †kfkf
†
q fq , (3.22)

B = − g

N

∑
kk′

∑
qq′

f †kfk′f
†
q fq′e

−i(q−q′)δk,q′δq,k′ =

= − g

N

∑
kq

f †kfqf
†
q fke

−i(q−k). (3.23)

We use the periodic properties of the fermions to be able to write 3π − k →
π−k every time. This makes it possible for us to merge together the following
terms:

C1 = − g

N

∑
kk′

∑
qq′

f †kfk′f
†
q fq′e

−i(q−q′)δq,π−kδq′,π−k′ =

= − g

N

∑
k,k′∈K1

f †kfk′f
†
π−kfπ−k′e

i(k−k′) , (3.24)

C2 = − g

N

∑
kk′

∑
qq′

f †kfk′f
†
q fq′e

−i(q−q′)δq,3π−kδq′,3π−k′ =

= − g

N

∑
k,k′∈K2

f †kfk′f
†
π−kfπ−k′e

i(k−k′) , (3.25)

C3 = − g

N

∑
kk′

∑
qq′

f †kfk′f
†
q fq′e

−i(q−q′)δq,π−kδq′,3π−k′ =

= − g

N

∑
k∈K1
k′∈K2

f †kfk′f
†
π−kfπ−k′e

i(k−k′) , (3.26)
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C4 = − g

N

∑
kk′

∑
qq′

f †kfk′f
†
q fq′e

−i(q−q′)δq,π−kδq′,π−k′ =

= − g

N

∑
k∈K2
k′∈K1

f †kfk′f
†
π−kfπ−k′e

i(k−k′) . (3.27)

As we said, they are added together like so:

C = C1 + C2 + C3 + C4 =

= − g

N

[ ∑
k,k′∈K1

+
∑

k,k′∈K2

+
∑
k∈K1
k′∈K2

+
∑
k∈K2
k′∈K1

]
f †kfk′f

†
π−kfπ−k′e

i(k−k′) =

= − g

N

[ ∑
k∈K1

∑
k′

+
∑
k∈K2

∑
k′

]
f †kfk′f

†
π−kfπ−k′e

i(k−k′) =

= − g

N

[∑
k

∑
k′

]
f †kfk′f

†
π−kfπ−k′e

i(k−k′) = − g

N

∑
kk′

f †kfk′f
†
π−kfπ−k′e

i(k−k′) .

(3.28)

We can now deal with the intersection terms:

A ∩B = − g

N

∑
k

f †kfkf
†
kfk = − g

N

∑
k

f †kfk , (3.29)

A ∩ C = A ∩ C1 + A ∩ C2 =

= − g

N

[ ∑
k∈K1

f †kfkf
†
π−kfπ−k +

∑
k∈K2

f †kfkf
†
3π−kf3π−k

]
=

= − g

N

∑
k

f †kfkf
†
π−kfπ−k , (3.30)

B ∩ C = B ∩ C1 +B ∩ C2 =

= +
g

N

[ ∑
k∈K1

f †kfπ−kf
†
π−kfke

2ik +
∑
k∈K2

f †kf3π−kf
†
3π−kfke

2ik
]

=

= +
g

N

∑
k

f †kfπ−kf
†
π−kfke

2ik , (3.31)

A ∩B ∩ C = A ∩B ∩ C1 + A ∩B ∩ C2 =
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= − g

N
f †π

2
fπ

2
− g

N
f †3π

2

f 3π
2

. (3.32)

With the many properties we have available in the fermion world, we
really have freedom in terms of how we want our Hamiltonian pieces to look.
We try our best to rewrite some of them in such a way to later have terms
cancel, while still retaining a good view of how each term will behave. We
rewrite B in the following way:

B = − g

N

∑
k

f †kfk +
g

N

∑
kq

f †kfkf
†
q fqe

−i(q−k) =

= − g

N

∑
k

f †kfk +
g

N

∣∣∣∑
k

f †kfke
ik
∣∣∣2 ; (3.33)

followed by B ∩ C,

B ∩ C = +
g

N

∑
k

f †kfπ−kf
†
π−kfke

2ik =

= ... = +
g

N

∑
k

f †kfke
2ik − g

N

∑
k

f †kfkf
†
π−kfπ−ke

2ik

− g

N
f †π

2
fπ

2
− g

N
f †3π

2

f 3π
2

, (3.34)

and C itself:

C =
g

N

∑
kk′

f †kfk′f
†
π−kfπ−k′e

i(k−k′) =

= ... =
g

N

∑
k

f †kfke
2ik − g

N

∣∣∣∑
k

f †kf
†
π−ke

ik
∣∣∣2 . (3.35)

For the sake of clarity, we list all of the Hamiltonian terms here, one by
one, in the shape we last chose:

A = − g

N

∑
kq

f †kfkf
†
q fq

B = − g

N

∑
k

f †kfk +
g

N

∣∣∣∑
k

f †kfke
ik
∣∣∣2

C =
g

N

∑
k

f †kfke
2ik − g

N

∣∣∣∑
k

f †kf
†
π−ke

ik
∣∣∣2

A ∩B = − g

N

∑
k

f †kfk

A ∩ C = − g

N

∑
k

f †kfkf
†
π−kfπ−k
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B ∩ C = +
g

N

∑
k

f †kfke
2ik − g

N

∑
k

f †kfkf
†
π−kfπ−ke

2ik − g

N
f †π

2
fπ

2
− g

N
f †3π

2

f 3π
2

A ∩B ∩ C = − g

N
f †π

2
fπ

2
− g

N
f †3π

2

f 3π
2

3.2.2 First order normal form

We are now ready to put together all that we have found, to write a version
of the first order normal form of the perturbation in terms that are, more
or less, manifest in their action. The reasoning behind the first line of the
following calculation comes naturally from trying to uniformly cover three
sets which have all nonzero intersection. We follow with the whole explicit
computation, cancelling all the terms that do:

Ŝ = A+B + C − A ∩B − A ∩ C −B ∩ C + A ∩B ∩ C =

= − g

N

∑
kq

f †kfkf
†
q fq −

g

N

∑
k

f †kfk +
g

N

∣∣∣∑
k

f †kfke
ik
∣∣∣2 +

g

N

∑
k

f †kfke
2ik

− g

N

∣∣∣∑
k

f †kf
†
π−ke

ik
∣∣∣2 +

g

N

∑
k

f †kfk +
g

N

∑
k

f †kfkf
†
π−kfπ−k −

g

N

∑
k

f †kfke
2ik

+
g

N

∑
k

f †kfkf
†
π−kfπ−ke

2ik +
g

N
f †π

2
fπ

2
+

g

N
f †3π

2

f 3π
2
− g

N
f †π

2
fπ

2
− g

N
f †3π

2

f 3π
2

=

= − g

N

∑
kq

f †kfkf
†
q fq +

g

N

∣∣∣∑
k

f †kfke
ik
∣∣∣2 − g

N

∣∣∣∑
k

f †kf
†
π−ke

ik
∣∣∣2

+
g

N

∑
k

f †kfkf
†
π−kfπ−k +

g

N

∑
k

f †kfkf
†
π−kfπ−ke

2ik =

= − g

N

(∑
k

f †kfk

)2

+
g

N

∣∣∣∑
k

f †kfke
ik
∣∣∣2 − g

N

∣∣∣∑
k

f †kf
†
π−ke

ik
∣∣∣2

+
g

N

∑
k

∣∣∣f †kf †π−k∣∣∣2(1 + cos(2k)
)

=

= − g

N

∑
kq

f †kfkf
†
q fq
(
1− cos(k − q)

)
− g

N

∑
kq

f †kf
†
π−kfπ−qfq cos(k + q)

+
g

N

∑
k

f †kf
†
π−kfπ−kfk

(
1 + cos(2k)

)
.

Notice that Ŝ here is manifestly hermitian. Also, recall that each term in
which π − k appears comes from the C sets of solutions, which are present
only in the case of N even. For this reason, let us neatly restate our result,
highlighting the fact that a part of it appears only whenever N is divisible
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by 2:

Ŝ = − g

N

∑
kq

f †kfkf
†
q fq
(
1− cos(k − q)

)
− g

N

∑
kq

f †kf
†
π−kfπ−qfq cos(k + q)δN%2

+
g

N

∑
k

f †kf
†
π−kfπ−kfk

(
1 + cos(2k)

)
δN%2 . (3.36)

To simplify later calculations, we also give a label to each of the three terms
here present:

Ŝ = S1 + SN%2 = S1 + SA + SB , (3.37)

where

S1 = − g

N

∑
kq

f †kfkf
†
q fq
(
1− cos(k − q)

)
; (3.38)

SA = − g

N

∑
kq

f †kf
†
π−kfπ−qfq cos(k + q)δN%2 ; (3.39)

SB =
g

N

∑
k

f †kf
†
π−kfπ−kfk

(
1 + cos(2k)

)
δN%2 . (3.40)

Checking consistency

From Hamiltonian perturbation theory explored in Appendix A, we should
have that [Ŝ, ĥ] = 0, if we did everything correctly. Let us now check just
that, as it is not really obvious in the version of S we just obtained. We will
use the splitting in (3.37) to break the calculations into three easier chunks.
The first, naturally, is zero, since every addend in (3.38) is a function of some
number operator, exactly like h, and we know that number operators always
commute. Therefore,

[S1, ĥ] = 0 . (3.41)

The second term is definitely trickier. Let us first see how (3.39) commutes
with a generic number operator:

[SA, np] =− g

N

∑
kq

[f †kf
†
π−kfπ−qfq, np] cos(k + q) =

=− g

N

∑
kq

(
[f †k , np]f

†
π−kfπ−qfq cos(k + q) + f †k [f †π−k, np]fπ−qfq cos(k + q)+
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+ f †kf
†
π−k[fπ−q, np]fq cos(k + q) + f †kf

†
π−kfπ−q[fq, np] cos(k + q)

)
=

=− g

N

∑
kq

(
− δk,pf †pf

†
π−kfπ−qfq cos(k + q)− f †kδπ−k,pf

†
pfπ−qfq cos(k + q)+

+ f †kf
†
π−kδπ−q,pfpfq cos(k + q) + f †kf

†
π−kfπ−qδq,pfp cos(k + q)

)
=

=
g

N

∑
q

(
f †pf

†
π−pfπ−qfq cos(p+ q) + f †pf

†
π−pfπ−qfq cos(q − p)

)
+

− g

N

∑
k

(
f †kf

†
π−kfπ−pfp cos(k − p) + f †kf

†
π−kfπ−pfp cos(k + p)

)
=

=
g

N

∑
q

cos(p+ q)
(
− f †pf

†
π−pfπ−qfq + f †q f

†
π−qfπ−pfp

)
+

g

N

∑
q

cos(p− q)
(
− f †pf

†
π−pfπ−qfq + f †q f

†
π−qfπ−pfp

)
=

=− g

N

∑
q

[
f †pf

†
π−pfπ−qfq − f †q f

†
π−qfπ−pfp

]
2 cos(p) cos(q) . (3.42)

We will leave it like this for now, and also calculate the commutator between
(3.40) and the number operator:

[SB, np] =
g

N

∑
k

[f †kf
†
π−kfπ−kfk, np]

(
1 + cos(2k)

)
=

=
g

N

∑
k

[
− δk,pf †pf

†
π−kfπ−kfk

(
1 + cos(2k)

)
− δπ−k,pf †kf

†
pfπ−kfk

(
1 + cos(2k)

)
+

+ δπ−k,pf
†
kf
†
π−kfpfk

(
1 + cos(2k)

)
+ δk,pf

†
kf
†
π−kfπ−kfp

(
1 + cos(2k)

)]
=

=
g

N

∑
k

[
− f †pf

†
π−pfπ−pfp

(
1 + cos(2p)

)
− f †pf

†
π−pfπ−pfp

(
1 + cos(2p)

)
+

+ f †pf
†
π−pfπ−pfp

(
1 + cos(2p)

)
+ f †pf

†
π−pfπ−pfp

(
1 + cos(2p)

)]
=

= 0 . (3.43)

Then, combining (3.42) and (3.43), we find that

[SN%2, ĥ] =
∑
k,q

ω(k)[SB, nk] =

=− g2

N

∑
k,q

(
1− cos(k)

)[
f †kf

†
π−kfπ−qfq − f

†
q f
†
π−qfπ−kfk

]
2 cos(k) cos(q) .
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By exchanging k ↔ q in one half of this term, the contribution of 1 into ω(k)
disappears, and we are left with

[SN%2, ĥ] = −g
2

N

∑
k,q

f †kf
†
π−kfπ−qfq2 cos(k) cos(q)[cos(k)− cos(q)] ,

which, if we send k → π − k and q → π − q, is sent into its exact opposite.
This is always allowed, and we can change the indexes in half of it to prove
that it is zero. We finally found, as we anticipated, that

[Ŝ, ĥ] = 0 . (3.44)

3.2.3 On the dynamics of the system

Let us now briefly discuss the implications of the perturbative approach to
the dynamic of the system.

Notice that while we were proving that [Ŝ, ĥ] = 0 just in the previous
paragraph, we also proved that [S,

∑
k nk] = 0, which tells us that the con-

servation of the whole number of fermion modes in the system — that is
related to the conservation of total z component in the spin chain — is still
valid in the new system described by the perturbed Hamiltonian H = h+S.
Basically, this tells us that our process has not disrupted a fundamental prop-
erty of the system, even though we truncated part of its original Hamiltonian.

Additionally, for the N odd case we found a result which is in complete
analogy with what usually happens in the classical system setting of tra-
ditional Hamiltonian perturbation theory dealing with the symplectic Pois-
son tensor and with action-angle variables. When the unperturbed classical
Hamiltonian is a function of the sole action variables, it might happen —
and this greatly simplifies the problem — that an eventual dependence on
the angle variable disappears from the perturbation once it is put in trun-
cated normal form (usually at first order). In general, this is a recurrent
result in some applications of classical Hamiltonian perturbation theory, and
our quantum case is no exception: the normal form of the perturbation in
the case of odd number of particles (or sites, or spins) is

S1 = − g

N

∑
kq

f †kfkf
†
q fq
(
1− cos(k − q)

)
, (3.45)

and clearly depends only on the number operators nk, which plays the role
of the action variable, the absolute value, etc. , and not on single creation or
annihilation operators. Just as in the classical case, where the dependence
on the action variable only implies a new set of first integrals with respect



36

to the original system, here too we find that the dynamic of the system is
quite trivial, and that we have a whole new collection of conserved quantities.
In fact, the Hamiltonian Ĥ = ĥ + S1 commutes with every single number
operator (recall that number operators commute with each other), which
means that every one of them is separately conserved; this does not happen
in the original system. Going back to the spin configuration, it would mean
that each z-component of the z is conserved and does not change.

In the N even case, though, this simplification does not happen: the term

SN%2 = − g

N

[∑
kq

f †kf
†
π−kfπ−qfq cos(k + q)−

∑
k

f †kf
†
π−kfπ−kfk

(
1 + cos(2k)

)]
(3.46)

does not commute with single number operators, but only with certain com-
binations of them. This corresponds, in a classical case, to having a pertur-
bation in normal form that retains some dependence on the angle variables,
particularly in a way that implies a change in time of the actions. In terms
of spins, this means that when N is odd, the z-component of each spin can
vary in time, even in the first order perturbed system.

The fundamental reason for this non-negligible difference between the
even and odd cases is still somewhat mysterious to us. We can certainly tell
that there is a major difference between the two, both in terms of possible
momenta and of possible configurations. In the Fourier space framework, we
notice that in the case of even N there is the appearance of a new possible
momentum k = π, which adds a completely new degree of degeneracy and
makes it possible to have more solutions for the delta system, resulting in
the additional terms. The new type degeneracy found is further discussed
in 3.3.3. In the spin configuration setting, these additional terms in the
normal form of the perturbation seem to be connected to a particular type
of configuration that is possible only with an even number of sites: the
one where all the neighbors of any spin are flipped, which would be the
ground state for a complete anti-ferromagnetic Heisenberg spin chain with
no external field. Bear in mind that while it is always possible, naturally, to
have a state with spin up-down-up-down, |↑↓↑↓↑ ...〉 , we are working with
periodic conditions. Because of that, when we spread out the N sites into an
infinitely long chain, we see right away that the complete anti-ferromagnetic
ground state is possible only when N is even, as illustrated in the following
sketch:
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.

Actually, this is just a particular case of configuration possible only on
even sites. More generally, any configuration of repeating intervals (up or
down) of the same length is impossible in the case of odd N . At a physical
level, if we actually visualize the circular version of the chain, we see that
what is missing in the odd case is the configurations which are conserved
under spin flip, i.e. the “balanced” configurations where, naturally, the total
z-component of the chain is zero. This could have been seen right away, since
the total z-component can only assume values in [−N

2
, N

2
] distributed at unit

intervals, so that the value Sz = 0 is absent when N is odd.
Therefore, the two cases really appear to be structurally different. What

remains to understand, besides a deeper understanding of this feature, is why
techniques like the Bethe ansatz seem to not mention this at all; meaning, if
this is purely a result of the perturbation theory — although it does not look
like it, given how there is an intuitive difference between the two cases — or
if this discrepancy is actually present in the traditional method, but hidden
somewhere.

3.3 Eigenvalue corrections
Now that we found the normal form of the perturbation, since we are working
in the quantum regime, it is natural to be interested in the energy levels
of the system. Finding the eigenvalues of the Hamiltonian is important in
order to better understand the dynamic of the system and the role of each
state, as well as evaluate the possible advantages and disadvantages of our
approach by comparing the levels found with known results, or with the
levels of the unperturbed system. Naturally, the eigenvalues of the energy
are also a starting point for any study involving the statistical mechanics of
the system, as they are needed to compute the partition function.
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What we propose to do is to therefore give our approximate version of
the eigenvalues of the Hamiltonian. Alas, we do have to make the distinc-
tion between even and odd sites/modes — a distinction which is absent in
other kinds of approaches — and which will make the computation of the
eigenvalues straightforward in one case, but a terrible pain in the other.

A generally good thing about finding the normal form of the perturbation
to some order is that it may greatly simplify later computations by means
of the usual time-independent perturbation theory — the same old theory
for eigenvalue corrections, present in any good book on matter physics. This
is especially true whenever the unperturbed system has a non-degenerate
spectrum. Because of the commutation property between S and h, we have,
for general eigenstates of h |k1,2〉,

〈k1| [Ŝ, ĥ] |k2〉 = 〈k1|
[
ŜE(k2)− E(k1)Ŝ

]
|k2〉

!
= 0 , (3.47)

which implies, if E(k2) 6= E(k1),

〈k1|S |k2〉 = 0 . (3.48)

Unfortunately, this is not the case for our ĥ. The degeneracy does exist,
smaller in the case of N odd and greater and more complicated in the case
of N even. Nevertheless, the incredible property of Ŝ will prove to lighten
part of the cumbersome calculations in our case as well.

3.3.1 Fermionic Fock states

Before we continue, let us freshen up on the state basis upon which our
fermionic operators act. Obviously, since we are working with creation, an-
nihilation and number operators, the proper Hilbert space is a Fock space F
of the form

F =
N⊕

M=0

HM , (3.49)

where M indicates the number of fermions present in the state. The H0

block here spans a unique state with M = 0, the vacuum state |0〉 :=
|all nα are zero〉. The H1 block spans those states with M = 1, where only a
single nα = 1 and all the other nβ with β 6= α are zero. Similar to the very
well known bosonic case, we may identify the states with the notation below

|α〉 := |nα = 1; any other n = 0〉 = f †α |0〉 , (3.50)
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therefore identifying the H1 block of the Fock space with a single particle
Hilbert space. The H2 block spans those states with M = 2, where only
two indexes α and β are such that nα = 1, nβ = 1, while all the others
are zero. These states (|nα = 1;nβ = 1; any other n = 0〉) will be written as
|α, β〉. One has to be careful with such states now that we have more than
one particle, as the commutation relations of the fermionic operators (and
thus the anti-symmetric properties — under exchange of particles — of any
two-body fermion wavefunction) has the following implication:

|α, β〉 := f †βf
†
α |0〉 = −f †αf

†
β |0〉 = − |β, α〉 . (3.51)

This means that, if out of N spots we have M = 2 possible particles α and
β present, we have the following regarding the orthonormality of the states
in H2:

〈α1, β1|α2, β2〉 = δα1,α2δβ1,β2 − δα1,β2δβ1,α2 . (3.52)

We can continue the discussion analogously for each HM , where we only have
to be careful that, in all cases, the order of the particles does not matter
physically but affects the overall sign of the state according to the sign of the
permutation from the original.

Let us make just one more point about the use of these states, now in
relation with the annihilation operator. Since we have defined the states in
(3.51) conforming to the action of consecutive creation operators upon the
vacuum state, we require a better understanding of the annihilation operator
on a given state labeled by |αi1 , ..., αiM 〉, where the indexes ia are ordered
but not necessarily the whole set [1,M ] ∩ N.

Then, the annihilation of the ib-th fermion would look like:

fαib |αi1 , ..., αib , ..., αiM 〉 = (δnαib ,1
)(−1)

∑
a>ib

na |αi1 , ...,∼ αib , ..., αiM 〉 ,

(3.53)

where ∼ αib means that the once present fermion in that spot is now gone.
The factor (−1)

∑
a>ib

na is called the Jordan-Wigner string. With this con-
struction, we have that eachHM withM ≥ 2 is a Hilbert space ofM identical
fermions with well defined properties and responses under fermionic opera-
tors.

Eigenstates of ĥ

The conservation of the total z-component of the spin in our system is, as we
know, reversed into the conservation of total number of fermions, or fermion
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modes. This means that whenever the system Hamiltonian acts upon a state
inside HM , the resulting state will again be part of HM . In the specific case
of the unperturbed Hamiltonian h, we have even more restrictive conditions:
since h is solely a function of the nk’s, which are all conserved as they com-
mute with each other, we have that any fermionic Fock state here mentioned
is actually an eigenstate of h.

For the sake of clarity, let us write the explicit convention for the states
that will be used from now on in the discussion. A state with M fermion
modes present with wave numbers k1, ..., kM will be denoted as

|k1, k2, ..., kM〉 such that |k, q〉 = − |q, k〉 . (3.54)

Then, the operators act as such:

nq |k1, k2, ..., kM〉 =
∑
j

δq,kj |k1, k2, ..., kM〉 , (3.55)

fq |k1, k2, ..., kM〉 =
∑
j

δq,kj(−1)M−j |k1, k2, ..., (∼ kj), ..., kM〉 , (3.56)

f †q |k1, k2, ..., kM〉 =
[∏

j

(1− δq,kj)
]
|k1, k2, ..., kM , q〉 , (3.57)

where the factor (−1)M−j serves the purpose of the Jordan-Wigner string.
The unperturbed Hamiltonian ĥ applied to these state gives then the

unperturbed spectrum:

h |k1, k2, ..., kM〉 = g
M∑
j=1

(1− cos kj) |k1, k2, ..., kM〉 =

= g
[
M −

M∑
j=1

cos kj

]
|k1, k2, ..., kM〉 . (3.58)

3.3.2 Odd number of modes N

The case of odd number of total possible modes N proves to be the simplest
one to study, since the portion of S that survives in this case has the same
eigenvectors of the unperturbed system. Indeed, as one can see right away,
the first order normal form here is written only in terms of single mode
number operators, just like ĥ:

S1 = − g

N

∑
kq

nknq
(
1− cos(k − q)

)
. (3.59)
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Let us mention that the spectrum of the unperturbed system is degenerate
in this case for any substitution k −→ 2π − k. For simplicity let us just call
any two such states |k, ...〉 and |2π − k, ...〉. Such degeneration is not canceled
by the perturbation, as S1 commutes with an operator which actually would
split the degeneration (K =

∑
k knk) and therefore

〈k, ...| [S1,K] |2π − k, ...〉 =
(

2π − k + (...)− k − (...)
)
〈k, ...|S1 |2π − k, ...〉 =

!
= 0 , (3.60)

which implies

〈k, ...|S1 |2π − k, ...〉 = 0 . (3.61)

Thus, the eigenvalue corrections are simply given by the equation

S1 |k1, ..., kM〉 = E2(k1, ..., kM) |k1, ..., kM〉 . (3.62)

The calculation follows this way:

E2(k1, ..., kM) |k1, ..., kM〉 = − g

N

∑
kq

nknq
(
1− cos(k − q)

)
|k1, k2, ..., kM〉 =

= − g

N

∑
k

nk
∑
j

(
1− cos(k − kj)

)
|k1, k2, ..., kM〉 =

= − g

N

∑
i

∑
j

(
1− cos(ki − kj)

)
|k1, k2, ..., kM〉 =

= − g

N

[
M2 −M − 2

∑
i

∑
j,j>i

cos(ki − kj)
]
|k1, k2, ..., kM〉 .

We lastly get the correction to the spectrum in the case of odd N , for a
generic number M ≤ N of modes present:

E2(k1, ..., kM) = − g

N

[
M2 −M − 2

∑
i

∑
j,j>i

cos(ki − kj)
]

. (3.63)

3.3.3 Even number of modes N

The case for N even is much more problematic. This is due to the fact that
we can now witness the appearance of a mode which was absent before, the
mode with wave number q = π, and of the pairings {k, π − k}. Such pairs
were of course not present earlier among the discrete set of possible wave
numbers. This is crucial because it introduces a new degree of degeneracy in
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the unperturbed spectrum. This degeneracy proves to be quite a challenge
to handle, for it groups any state containing a pair {k, π − k} with all the
other states in which some {q, π − q} is present instead of the k pair, while
everything else remains untouched. We can see this very quickly in the
following:

ĥ |k, π − k, something〉 =
[
E(something) + g(2− cos(k)− cos(π − k)

]
|k, π − k, something〉 = (3.64)

=
[
E(something) + 2g

]
|k, π − k, something〉 .

(3.65)

It is clear then that q can have any possible value, excluding whatever modes
are included it the “something”, and still be part of the same degenerate
subspace of the original state. This means, especially in the case of low spin-
flip (i.e. few modes M) and large N, that we have a really huge degree of
degeneracy, to be added to the k −→ 2π−k degeneracy discussed in the last
section.

To recap, this is what we can say about what kind of states are degenerate
to |k, π − k, something〉:

|k, π − k, something〉 ←→



|2π − k, π − k, something〉
|k, π + k, something〉
|q, π − q, something〉
|2π − q, π − q, something〉
|q, π + q, something〉

, (3.66)

where each and every one of these states is also degenerate to the version of
themselves in which any of the elements in “something” are sent to their
“2π−” version. Thus, the dimension of each degenerate subspace varies
greatly upon the content of “something” and its relation with the pair/s.
You can see how very confusing it all looks already.

For each degenerate subspace of dimension d, we can write the first order
correction eigenvalue system according to the theory of time-independent
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perturbations in case of degenerate spectrum:

S11α1 + S12α2 + ...+ S1dαd = E(1)α1

S21α1 + S22α2 + ...+ S2dαd = E(1)α2

.

.

.

Sd1α1 + Sd2α2 + ...+ Sddαd = E(1)αd

, (3.67)

where Sij = 〈ψi|S |ψj〉 and the |ψi〉 are the eigenstates in the degenerate
subspace in consideration.

Sadly, if in the odd case we found that the matrix S is diagonal, which
made computations easy even though the degeneracy was not removed, in
this case it is not. Recall that Ŝ is made up of two parts, one which is the
only one that survives in the odd case, see (3.59), and one which acts on a
state only when a pair {k, π − k} is present:

Ŝ = S1 + SN%2 . (3.68)

Whenever we have a degeneracy of the first type, i.e. k → 2π − k, that
makes all the pairs (k, π − k) disappear, the only contribution that matters
is once again S1, and the relevant properties are the same as in the odd case:
a diagonal block of equal entries in S. In the case of pair degeneracy, we
see that for different states with pairs associated respectively to k and q, the
matrix element is now different from zero, as the section SN%2 couples exactly
such states, with a non zero contribution. The S1 part of the Hamiltonian is
here absent, since any state is its eigenstate, and thus there is no coupling.
The diagonal entries for the states with at least one pair are interesting: the
S1 contribution is not zero, while the SN%2 contribution is, although it might
not be obvious at a first glance. We will address the proof of this at the end
of this section.

As one can see, there is not much hope to formally solve a system like
this. It varies greatly with the kind and number of modes present in the
states.

Proof of zero contribution for SN%2 in diagonal pair terms of S

Let us first split SN%2 into two more parts:

SN%2 = SA + SB

= − g

N

∑
kq

f †kf
†
π−kfπ−qfq cos(k + q) +

g

N

∑
k

f †kf
†
π−kfπ−kfk

(
1 + cos(2k)

)
,
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where

SA = − g

N

∑
kq

f †kf
†
π−kfπ−qfq cos(k + q) , (3.69)

SB = +
g

N

∑
k

f †kf
†
π−kfπ−kfk

(
1 + cos(2k)

)
. (3.70)

Then, the contribution of the SN%2 part of Ŝ into the diagonal entries of S,
associated with states in which a pair {k, π − k} is present, is given by

〈k̄, π − k̄|SN%2 |k̄, π − k̄〉 = 〈k̄, π − k̄|SA |k̄, π − k̄〉+
+ 〈k̄, π − k̄|SB |k̄, π − k̄〉 . (3.71)

Let us handle the two additions separately, remaining well aware of the
unintuitive properties of fermionic Fock states:

〈k̄, π − k̄|SA |k̄, π − k̄〉 = − g

N
〈k̄, π − k̄|

∑
kq

f †kf
†
π−kfπ−qfq cos(k + q) |k̄, π − k̄〉

= − g

N
〈k̄, π − k̄|

∑
kq

f †kf
†
π−k cos(k + q)(δq,π−k̄ − δq,k̄) |0〉

= +
g

N

∑
k

[cos(k + k̄) + cos(k − k̄)] 〈k̄, π − k̄| |π − k, k〉

= +
g

N

∑
k

[cos(k + k̄) + cos(k − k̄)](δk,π−k̄ − δk,k̄)

= −2g

N
[1 + cos(2k̄)] , (3.72)

〈k̄, π − k̄|SB |k̄, π − k̄〉 = +
g

N
〈k̄, π − k̄|

∑
k

f †kf
†
π−kfπ−kfk(1 + cos(2k)) |k̄, π − k̄〉

= − g

N
〈k̄, π − k̄|

∑
k

f †kf
†
π−k(1 + cos(2k))(δk,π−k̄ − δk,k̄) |0〉

= +
g

N
〈k̄, π − k̄|

[
f †
π−k̄f

†
k̄
− f †

k̄
f †
π−k̄

]
(1 + cos(2k̄)) |0〉

= +
g

N
(1 + cos(2k̄)) 〈k̄, π − k̄|

[
|k̄, π − k̄〉 − |π − k̄, k̄〉

]
= +

2g

N
[1 + cos(2k̄)] . (3.73)
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Clearly, the two terms cancel each other and

〈k̄, π − k̄|SN%2 |k̄, π − k̄〉 = 0 . (3.74)

3.4 Applicability of perturbation theory
Let us make use of this section by exploring in more detail the applicability of
the perturbative approach, along with its possible problems. The first thing
we will examine is how the method should be valid in case of small excitations.
Then, we will check the regularity of the generating Hamiltonian, i.e. the
one that creates the change of variables we used to find the first order normal
form of the perturbation. After that, we will shortly discuss another setting
in which the perturbative method just used — Jordan-Wigner change of
coordinates, first order normal form upon unperturbed XY model — might
work as well, even though we lose part of the symmetry of the system.

3.4.1 Small excitations

It has been briefly mentioned that our perturbative approach is justified in
case of small excitations, or small M . Indeed, we are certainly not the first
ones to consider Ĥz a perturbation: Davydov in his book [26] states that it
can be treated as a perturbation whenever the number of excitations is small,
i.e.

1

N

∑
n

f †nfn =
1

N

∑
k

f †kfk << 1 , (3.75)

which corresponds to few spins being overturned. We can see from the N odd
case that the validity of perturbation theory for small excitations is confirmed
just by looking at the eigenvalues. We don’t need to be concerned about the
even case, as it only adds a term that does not really change the trend of the
perturbation size with respect to M . Obviously, the unperturbed term gives
an energy that scales proportionally to M :

E0(k1, ..., kM) = g
[
M −

M∑
j=1

cos kj

]
, (3.76)

while the first order normal form of the perturbation actually goes likeM2/N ,
since it reads

E1(k1, ..., kM) = − g

N

[
M2 −M − 2

∑
i

∑
j,j>i

cos(ki − kj)
]

. (3.77)
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Defining the ratio perturbed-over-unperturbed,

ρ(k1, ..., kM) :=

∣∣∣∣E1(k1, ..., kM)

E0(k1, ..., kM)

∣∣∣∣ , (3.78)

we find that, as M is an integer, the trend of ρ is roughly M
N
. This clearly

states that our perturbation is small enough for our purpose whenever it
happens that M

N
<< 1. In particular, M could actually be a fraction of

the number of sites, namely M = αN , as long as α << 1. Naturally, this
becomes more and more possible for bigger values of N .

3.4.2 Generating Hamiltonian

In the procedure used to find the normal form of the perturbation, formally
and completely described in appendix A, the change of variables that we
implicitly performed is actually a canonical transformation which takes the
form of a composition with the flow at a certain time of a certain Hamiltonian
G, called the generating Hamiltonian. The further we go with the orders at
which we want the perturbative Hamiltonian to be in normal form, the more
of these generating Hamiltonians Gj we will have to use in the change of
coordinates, which will look like a composition of flows (at times λ, λ2, ..., λj

for each generator G1, G2, ..., Gj). These generating Hamiltonians are the
actual unknowns of the perturbative construction, and have to be found order
by order. By the nature of this construction, one has to make sure that the
change of variables is actually achievable; such information is encoded into
each generating Hamiltonian, under the regularity of the function. In other
words, for us to be at ease with the procedure we require that the generating
Hamiltonians do not diverge.

Let us see if, or when, this is true in our case. Since we truncated our
Hamiltonian at the first order normal form, we only have to study the diver-
gence of G1, which, according to the theory, has the following form:

Ĝ1 = Ĝ1 +
1

T

∫ T

0

(s− T ) δP̂1 ◦ Φs
h ds , (3.79)

where Ĝ1 is an arbitrary element of ker(Lh), i.e. any operator such that
[Ĝ1, ĥ] = 0.

Recall that when we calculated 〈P̂1〉h, the result was a new condition,
attached to the term in form of a Kronecker delta that involved the cosines
of the momenta in the sum. Then, clearly, δP̂1 will be made of the exact same
summation term, but in which the condition will be expressly the opposite
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of what we had found. Therefore, defining

Ω := cos(k) + cos(k′)− cos(q)− cos(q′) , (3.80)

we find that δP̂1 = P̂1 − 〈P̂1〉h reads

δP̂1 = − g

N

∑
k k′ q q′

Ω6=0

f †kfk′f
†
q fq′e

−i(q−q′)(δk+q,k′+q′ + δk+q,k′+q′+2π + δk+q,k′+q′−2π

)
= − g

N

∑
k k′ q q′

Ω6=0

A(k, k′, q, q′)∆k+q,k′+q′ , (3.81)

where

A(k, k′, q, q′) = f †kfk′f
†
q fq′e

−i(q−q′) , (3.82)

and

∆k+q,k′+q′ = δk+q,k′+q′ + δk+q,k′+q′+2π + δk+q,k′+q′−2π . (3.83)

Let us now build the whole computation for (3.79) piece by piece. First, let
us define the primitive function

g(s) :=

∫
δP̂1 ◦ Φs

h ds =

∫
− g

N

∑
k k′ q q′

Ω6=0

A(k, k′, q, q′)∆k+q,k′+q′e
iΩs ds =

= − g

N

∑
k k′ q q′

Ω6=0

A(k, k′, q, q′)∆k+q,k′+q′

∫
eiΩs ds =

= − g

N

∑
k k′ q q′

Ω6=0

A(k, k′, q, q′)∆k+q,k′+q′
eiΩs

iΩ
. (3.84)

We now use this to compute the following integral:

f(T ) :=

∫ T

0

(s− T ) δP̂1 ◦ Φs
h ds =

=

[
(s− T )

∫
δP̂1 ◦ Φs

h ds

]T
0

−
∫ T

0

δP̂1 ◦ Φs
h ds =

=

[
(s− T )g(s)

]T
0

= −Tg(T ) =



48

= +T
g

N

∑
k k′ q q′

Ω6=0

A(k, k′, q, q′)∆k+q,k′+q′
1

iΩ
. (3.85)

Substituting this f(T ) into (3.79), we finally find

Ĝ1 = Ĝ1 +
g

N

∑
k k′ q q′

Ω6=0

A(k, k′, q, q′)∆k+q,k′+q′
1

iΩ
. (3.86)

Since both the deltas and the A(k, k′, q, q′) are regular, the only possible
source of divergence is the Ω at the denominator. This means that the
generating Hamiltonian blows up whenever Ω = 0, making our change of
variables at least unreliable, if not even impossible. Fortunately we see,
from the condition coming form δP̂1, that all combinations of momenta for
which Ω = 0 are not included in the sum. This leads us to think that we
have nothing to worry about. It may very well be the case, as long as N
is finite. Indeed, for finite values of N we have that any other combination
of momenta yields an Ω which is definitely non-zero, as all the cosine values
are well separated even for close sets of mj such that kj =

2πmj
N

. Alas, this
does not hold once we take the thermodynamic limit. The bigger N is, the
closer together can be the values of momenta that we work with. Now, if we
are only dealing with an issue like k ∼ k′ , q ∼ q′, with each momenta far
away from π or from 0, then we have that each difference of cosines goes like
∼ 1

N
, which is taken care of by the factor 1

N
in front of the sum, and there

is no divergence. In fact, if we say k = ε ∼ 1
N
, i.e. k = 2πj

N
with j such that

limN→∞
j
N

= 0, we explicitly have that

cos(k) + cos(q)− cos(k + ε)− cos(q + ε) = [sin(k) + sin(q)] ε ∼ 1

N
.

(3.87)

However, if both couples are close together while also close to π or 0, the sum
of sines in (3.87) is 1

N
itself, so that the difference of cosines goes like 1

N2 . This
creates a divergence that cannot be removed. One can study it further and
see that, typically, combinations of momenta which fluctuate closely about π
and 0, or 2π naturally, do present a problem. This is just a quick assessment
on the issues regarding this limit; the study of the thermodynamic limit
usually requires very detailed examination, and we will exempt from it in
this dissertation.
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3.4.3 The parameter problem

As we said, in this chapter of the dissertation we have acted deliberately
carefree of the prime concern of perturbation theory (of any kind); as it is
stated in appendix A, a proper application of Hamiltonian perturbation the-
ory requires the possibility to express the perturbation in implicit or explicit
terms of a parameter that must be small (λ << 1). Our perturbation does
definitely not have such an explicit dependence. In such cases, to prove that
the theory is well suited for the system, one would have to find some norm
|| · || such that, if we have the Hamiltonian as

Ĥ = ĥ+ P̂ , ĥ integrable , (3.88)

the ratio of the two Hamiltonian vector fields is small, i.e. ||XP ||/||Xh|| << 1.
This does not apply to us — our "perturbative" term Ĥz is most likely not
a perturbation, in general, when part of the isotropic Heisenberg spin 1/2
chain—, but it works only in the case of a few overturned spins, or small
excitations. Therefore, in addition to the possible problems at N → ∞
expressed in 3.4.2, we might have more general problems of applicability if
we consider generic states. In fact, the case of few overturned spins, while
suitable for the perturbative treatment, is a restriction on the kind of states
that can be studied with the perturbative approach, and not on the whole
system— as opposed to whenever we restrict the applicability of perturbation
theory for certain (small) values of the parameter λ, which defines the system
itself, not the states. But perhaps something of this kind can be done here
too, even though technically outside of the isotropic spin chain environment;
it is suggested by the fact that the core of our perturbation Ĥz comes from
changing variables on the z interaction term of the original Hamiltonian.
Indeed, by inserting a parameter λ in front of the ŜznSzn+1 term, we are gifted
with an explicit dependence of Ĥz on λ, along with its disappearance when
λ → 0. Obviously, this would mean breaking isotropy along the z axis,
resulting in the XXZ chain.

3.4.4 The XXZ chain

Even though inserting the parameter in front of the z interaction implies
inserting it in front of the term we called Ĥz, this is not the end of the
story. We recall that the change of variables of the z term also resulted in a
quadratic term, which joined the other ones coming from the x and y terms
into creating the unperturbed Hamiltonian ĥ. Let us quickly retrace the
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steps we did, while we insert the new parameter λ:

ĤXXZ = −g
∑
n

[
1

2

(
S+
n S
−
n+1 + S−n S

+
n+1

)
+ λSznS

z
n+1

]
=

= −g
∑
n

[
1

2

(
f †nfn+1 + f †nfn−1

)
− λf †nfn + λf †nfnf

†
n+1fn+1

]
,

(3.89)

and under Fourier transform, we have

ĤXXZ = −g
∑
k

[
cos kf †kfk − λf

†
kfk + λĤz

]
. (3.90)

Since
∑

k λf
†
kfk has its time average equal to itself (recall that

∑
k f
†
kfk

is conserved), we have that there is nothing computationally different from
the isotropic chain in evaluating the first order normal form. Therefore, the
normal form for the XXZ chain at first order reads:

Ĥ ′XXZ =
∑
k

ω̃(k, λ)f †kfk + λŜ , (3.91)

where

ω̃(k, λ) = g(λ− cos k) . (3.92)

3.5 N=6 example
Because of the difficulties explored in Subsection 3.3.3 in terms of generalizing
the description of eigenvalue corrections for the N even case, it is interesting
to witness what actually happens in those situations with an example. The
simplest non-trivial case is for N = 6. The values of the momenta, which we
will label with 1, 2, ..., 6 are

j 1 2 3 4 5 6
kj

π
3

2π
3

π 4π
3

5π
3

2π
,

while the important couplings for each kind of degeneracy are as follows:

π − k −→ 3− j , 2π − k −→ 6− j
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j 3− j 6− j
1 2 5
2 1 4
3 6 3
4 5 2
5 4 1
6 3 6

.

3.5.1 Degeneracy for fixed M

The other kind of degeneracy, i.e. adding a 2π-momentum to any state, is
here forgotten, as it actually has no coupling whatsoever — the two states
have different M , which is a conserved quantity of the system. We will
therefore discuss the degeneracy of the states for each M .

One excitation

Let us begin with the study of one excitation states, by listing the states and
all the ones degenerate to them:

state degenerate

|1〉 |5〉
|2〉 |4〉
|3〉 /
|4〉 |2〉
|5〉 |1〉
|6〉 /

(3.93)

So the degenerate subspaces are{
|1〉
|5〉

}
,

{
|2〉
|4〉

}
,
{
|3〉
}
,
{
|6〉
}
. (3.94)

Everything is diagonal and there is no pair, so the only contributions are

〈j|S1 |j〉 = 0 , (3.95)

so there is no correction to the unperturbed eigenvalues, which are 0, 1
2
g

(twice), 3
2
g (twice), 2g.
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Two excitations

We do the same process for two excitations states |j1, j2〉, simplifying the
degeneration table by not mentioning in the first column eigenstates that are
already found degenerate to others. We denote with a star ∗ the states which
are paired by the nasty term of the Hamiltonian, i.e. the ones that will give
birth to a non-diagonal matrix that will have to be diagonalized in order to
find the eigenvalue corrections at first order.

state degenerate

|1, 2〉∗ |2, 5〉 , |1, 4〉 , |3, 6〉∗ , |4, 5〉∗

|1, 3〉 |3, 5〉
|1, 5〉 /
|1, 6〉 |5, 6〉
|2, 3〉 |3, 4〉
|2, 4〉 /
|2, 6〉 |4, 6〉

(3.96)

The degenerate subspaces are:
|1, 2〉∗
|1, 4〉
|2, 5〉
|3, 6〉∗
|4, 5〉∗

 ,

{
|1, 3〉
|3, 5〉

}
,

{
|1, 6〉
|5, 6〉

}
,

{
|2, 3〉
|3, 4〉

}
,

{
|2, 6〉
|4, 6〉

}
,

{
|1, 5〉

}
,
{
|2, 4〉

}
. (3.97)

Within each space we study the interaction matrix. All the diagonal
terms are, as usual,

〈j1, j2|S1 |j1, j2〉 = −2g

N
[1− cos(kj1 − kj2)] , (3.98)

while the non-diagonal terms are zero whenever one of the states is not
denoted by a star ∗. Whenever they are both starred, we get

〈j1, 3− j1|SN%2 |j2, 3− j2〉 = − g

N
cos(kj1 + kj2) . (3.99)

We could compute here the corrections for each subspace, although it is clear
that in those spaces where we have diagonal interaction we will find that all
the corrections are the same, and there is nothing interesting about it. Thus,
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we will skip those calculations and focus on the subspace
|1, 2〉∗
|1, 4〉
|2, 5〉
|3, 6〉∗
|4, 5〉∗

 , with eigenvalue E(0) = 2g .

Using formulas (3.98) and (3.99), we find the interaction matrix to be

S =


−4 g

N
0 0 0 0

0 −4 g
N

0 0 0
0 0 − g

N
g

2N
− g

2N

0 0 g
2N

−4 g
N
− g

2N

0 0 − g
2N
− g

2N
− g
N

 . (3.100)

As we expected, we are presented with a diagonal block, corresponding to
those state with no pair, and a non diagonal one, which is diagonalized in
the following:

− g

12

 2 −1 1
−1 8 1
1 1 2

 −→ − g

12

3 0 0

0 9+
√

57
2

0

0 0 9−
√

57
2

 . (3.101)

Thus, the five new eigenvalues read

E(0) + E(1) =


4
3
g (twice)

7
4
g

39+
√

57
24

g
39−
√

57
24

g

. (3.102)

Three excitations

The case of three excitations in the most cumbersome in the N = 6 case,
with four subspaces that have non-diagonal interaction matrices. Let us do
the same as we did in the previous subsection and classify the states that are
degenerate, this time with two different notations for pairing, one star ∗ and
two ∗∗, as there are cases where in a single subspace there are more than one
sub-subspace that pair. This will give rise to block matrices. The grouping
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is the following:

state degenerate

|1, 2, 3〉∗ |2, 3, 5〉 , |1, 3, 4〉 , |3, 4, 5〉∗

|1, 2, 4〉∗ |2, 4, 5〉∗∗ , |3, 4, 6〉∗ , |2, 3, 6〉∗∗

|1, 2, 5〉∗ |1, 4, 5〉∗∗ , |3, 5, 6〉∗ , |1, 3, 6〉∗∗

|1, 2, 6〉∗ |2, 5, 6〉 , |1, 4, 6〉 , |4, 5, 6〉∗

|1, 3, 5〉 /
|1, 5, 6〉 /
|2, 3, 4〉 /
|2, 4, 6〉 /

(3.103)

so the degenerate subspaces are:
|1, 2, 3〉∗
|2, 3, 5〉
|1, 3, 4〉
|3, 4, 5〉∗

 ,


|1, 2, 4〉∗
|2, 4, 5〉∗∗
|3, 4, 6〉∗
|2, 3, 6〉∗∗

 ,


|1, 2, 5〉∗
|1, 4, 5〉∗∗
|3, 5, 6〉∗
|1, 3, 6〉∗∗

 ,


|1, 2, 6〉∗
|2, 5, 6〉
|1, 4, 6〉
|4, 5, 6〉∗

 ,

{
|1, 3, 5〉

}
,
{
|1, 5, 6〉

}
,
{
|2, 3, 4〉

}
,
{
|2, 4, 6〉

}
. (3.104)

Let us go through each type of term possible in this case. All the diagonal
terms are, as usual,

〈j1, j2, j3|S1 |j1, j2, j3〉 = −2g

N
[3− cos(kj1 − kj2)− cos(kj1 − kj3)− cos(kj2 − kj3)] ,

(3.105)

while the non-diagonal terms are zero whenever one of the states is not
denoted by some kind of star ∗. Whenever they are both starred, we get

〈j1, 3− j1, l1|SN%2 |j2, 3− j2, l2〉 = − g

N
cos(kj1 + kj2)δl1,l2 . (3.106)

That delta, then, indicates that not all the couples of states with a pair
inside have nonzero interaction. This is precisely the reason why we starred
differently some of the states: to indicate which ones actually interact with
each other. It turns out that the spaces that have the same coupling (i.e.
either two single states and two coupled or four states coupled two by two)
give exactly the same first order corrections. For this reason we will show
the diagonalization of only two of them.

Let us start with the subspace
|1, 2, 3〉∗
|2, 3, 5〉
|1, 3, 4〉
|3, 4, 5〉∗

 , with eigenvalue E(0) = 4g . (3.107)
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Using formulas (3.105) and (3.106), we find the interaction matrix to be

S =


−8 g

N
0 0 0

0 −8 g
N

0 0
0 0 −5 g

N
− g

2N

0 0 − g
2N
−5 g

N

 . (3.108)

Just like with two excitations, we are presented with a diagonal block and a
non diagonal one, the latter being is diagonalized in the following:

− g

12

[
10 1
1 10

]
−→ − g

12

[
11 0
0 9

]
. (3.109)

Thus, the four new eigenvalues read

E(0) + E(1) =


5
3
g (twice)

25
12
g

9
4
g

. (3.110)

We now work with the other kind of subspaces, for example
|1, 2, 4〉∗
|2, 4, 5〉∗∗
|3, 4, 6〉∗
|2, 3, 6〉∗∗

 , with eigenvalue E(0) =
7

2
g . (3.111)

Using formulas (3.105) and (3.106), we find the interaction matrix to be

S =


−8 g

N
− g

2N
0 0

− g
2N
−8 g

N
0 0

0 0 −8 g
N

g
2N

0 0 − g
2N
−8 g

N

 . (3.112)

This time, we have two non diagonal blocks, both of which though have the
same eigenvalues

− g

12

[
16 ±1
±1 16

]
−→ − g

12

[
17 0
0 15

]
. (3.113)

Thus, the four new eigenvalues read

E(0) + E(1) =

{
25
12
g (twice)

9
4
g (twice)

. (3.114)
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Four excitations

We do the same for M = 4. Now, in this case, any state will contain at least
one pair. This doesn’t necessarily mean that it interacts with other state; in
fact, we will see that the only interacting states are the ones with two pairs
inside, which will be signaled with the usual star ∗. Once again we have the
table of degeneracies:

state degenerate

|1, 2, 3, 4〉 |2, 3, 4, 5〉
|1, 2, 3, 5〉 |1, 3, 4, 5〉
|1, 2, 3, 6〉∗ |2, 3, 5, 6〉 , |1, 3, 4, 6〉 , |3, 4, 5, 6〉∗ , |1, 2, 4, 5〉∗

|1, 2, 4, 6〉 |2, 4, 5, 6〉
|1, 2, 5, 6〉 |1, 4, 5, 6〉
|1, 3, 5, 6〉 /
|2, 3, 4, 6〉 /

(3.115)

The degenerate subspaces are:
|1, 2, 3, 6〉∗
|2, 3, 5, 6〉
|1, 3, 4, 6〉
|3, 4, 5, 6〉∗
|1, 2, 4, 5〉∗

 ,

{
|1, 2, 3, 4〉
|2, 3, 4, 5〉

}
,

{
|1, 2, 3, 5〉
|1, 3, 4, 5〉

}
,

{
|1, 2, 4, 6〉
|2, 4, 5, 6〉

}
,

{
|1, 2, 5, 6〉
|1, 4, 5, 6〉

}
,
{
|1, 3, 5, 6〉

}
,
{
|2, 3, 4, 6〉

}
.

(3.116)

Once again, the diagonal terms will read:

〈j1, j2, j3, j4|S1 |j1, j2, j3, j4〉 = −2g

N
[6− cos(kj1 − kj2)− cos(kj1 − kj3)−

− cos(kj2 − kj3)− cos(kj1 − kj4)−
− cos(kj2 − kj4)− cos(kj3 − kj4)] , (3.117)

while the non-diagonal terms are zero whenever one of the states is not
denoted by a star ∗ (you can easily check that all others are zero). Whenever
they are both starred, we get — notice that in couples of such states, there
is always one pair {k, π − k} which is the same in both —

〈j1, 3− j1, j, 3− j|SN%2 |j2, 3− j2, j, 3− j〉 = − g

N
cos(kj1 + kj2) .

(3.118)
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Let us then diagonalize the subspace
|1, 2, 3, 6〉∗
|2, 3, 5, 6〉
|1, 3, 4, 6〉
|3, 4, 5, 6〉∗
|1, 2, 4, 5〉∗

 , with eigenvalue E(0) = 4g .

Using formulas (3.117) and (3.118), we find the interaction matrix to be

S =


−16 g

N
0 0 0 0

0 −16 g
N

0 0 0
0 0 −13 g

N
− g

2N
− g

2N

0 0 − g
2N

−13 g
N

g
2N

0 0 − g
2N

g
2N

−16 g
N

 . (3.119)

Once again, we have a diagonal block, corresponding to those state that have
no interaction, and a non diagonal one, which is diagonalized in the following:

− g

12

26 1 1
1 26 −1
1 −1 32

 −→ − g

12

27 0 0

0 57+
√

57
2

0

0 0 57−
√

57
2

 . (3.120)

Thus, the five new eigenvalues read

E(0) + E(1) =


4
3
g (twice)

7
4
g

39+
√

57
24

g
39−
√

57
24

g

. (3.121)

Remarkably, we found the same final eigenvalues as the M = 2 case.
This is not only true for the conjugated states; as one can easily prove, the
complete set of M = 2 eigenstates matches with the M = 4 one.

Five excitations

It gets easier now with M = 5, and with same properties of degeneracy as
the M = 1 case:

state degenerate

|1, 2, 3, 4, 5〉 /
|1, 2, 3, 4, 6〉 |2, 3, 4, 5, 6〉
|1, 2, 3, 5, 6〉 |1, 3, 4, 5, 6〉
|1, 2, 4, 5, 6〉 /

, (3.122)
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with the degenerate subspaces (all with diagonal interaction){
|1, 2, 3, 4, 6〉
|2, 3, 4, 5, 6〉

}
,

{
|1, 2, 3, 5, 6〉
|1, 3, 4, 5, 6〉

}
,
{
|1, 2, 3, 4, 5〉

}
,
{
|1, 2, 4, 5, 6〉

}
.

(3.123)

The diagonal interaction, thus the corrections, will be calculated this way:

〈j1, j2, j3, j4, j5|S1 |j1, j2, j3, j4, j5〉 = −2g

N
[10− cos(kj1 − kj2)− cos(kj1 − kj3)−

− cos(kj2 − kj3)− cos(kj1 − kj4)−
− cos(kj2 − kj4)− cos(kj3 − kj4)−
− cos(kj1 − kj5)− cos(kj2 − kj5)−
− cos(kj3 − kj5)− cos(kj4 − kj5)] ,

(3.124)

but there is nothing more to say about it, and the process is quite trivial.
The corrections actually all give the same result (−4g), and the order of the
energy states in herein preserved from the unperturbed one. Once again,
though, we find that the final eigenvalues are the same as the M = 1 case,
meaning 0, 1

2
g (twice), 3

2
g (twice), 2g.

Six excitations

Even more trivial is, naturally, the M = 6 case, for which we have only one
state

|1, 2, 3, 4, 5, 6〉 , with eigenvalue E(0) = 6g . (3.125)

The correction, calculated the usual way, actually gives an interesting
result: −6g. This means, that at first order approximation, our model in
this state has the energy

E(0) + E(1) = 0 . (3.126)

As we found in the previous cases, this state goes, from the unperturbed
system to the perturbed one, from one of the highest energy states to one
with energy equal to the ground state.

3.5.2 Conclusions

What we found in this simple example, i.e. that the unperturbed higher
energy state go back to lower levels once the perturbation is added, is actually
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intuitively true. The M = 6 state, for example, has all the spins flipped, i.e.
is completely polarized. It is natural that, in the case of no external magnetic
field such as it is ours, this has the same energy as the ground state, which
corresponds to all spins in the same direction, even though it is the opposite
one — we do not really have a privileged direction here. The same goes for
the pairs M = 1,M = 5 and M = 2,M = 4, as one is the “flipped” version
of the other, i.e. have same, but opposite, total z-component. If there is
no preferred z direction, like in our model, these pairs describe the same
states, and therefore have the same energy. In fact, the difference in ordering
the energies with M in the unperturbed case (M = 0 ground state, M = 6
highest possible state) is actually due to the fact that the unperturbed system
is equivalent to the XY model, but with a constant external field which breaks
the symmetry under parity (along z), making a completely polarized state in
one direction much less likely than the one in the opposite direction.

Conceptually, this explanation is quite neat and understandable, although
at a first glance it might seem mysterious how intuitively true our perturbed
result looks to be. In fact, we are working in the isotropic case, where our
approach is theoretically reliable only for really small values of the ratio M

N
;

instead, we have calculated the eigenvalues regardless of this requirement not
being met, yet still found (apparently) sensible results — meaning, results
that follow our intuitive understanding of the system. In reality, the ordering
of M is restored because we have resumed the z inversion symmetry just by
adding the first order normal form of the perturbation, while the actual values
of the eigenstates might be very far from the true ones. Indeed, recalling that
the one quadratic term coming from z-z interaction had its average equal to
itself (see 3.4.4), we see that the only thing we did to the z-z interaction term
ŜznŜ

z
n+1 was performing the average upon the flow of the unperturbed system

— an action which ultimately preserves the symmetry by spin flip.

3.6 Comparison with the Bethe Ansatz
Having estimated the spectrum resulting from the Hamiltonian in normal
form (at least in a simple way for the N odd case), one would straight away
consider studying a parallel with the energy levels found by the Bethe ansatz,
the integrable technique that was first able to exactly solve the Heisenberg
chain. Unfortunately, the comparison proved to be more of a challenge than
what our expectations were, and we were not able to study it in the majority
of the cases. On our part, the case of N even is difficult to approach because
of the computation being particularly case specific, as shown in the previous
section for the N = 6 case. For the N odd case, the difficulties have more
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to do with the ansatz and its relationship with our method. The three main
challenges are the following:

• The complexity of the integrable technique and its solutions
— as one can see from appendix B, finding the complex solutions for
the Bethe ansatz is generally not an analytical process, and mainly
requires the use of numerical methods. Furthermore, the identification
and classification of complex solutions still an open problem at M > 2
already (for a detailed account on such computational difficulties see
[12]). What is usually done to solve the system is to resort to the
so called string hypothesis — see appendix B. First of all, we are
unsure if this approach actually does exhaust all the solutions; not to
mention, the whole string hypothesis requires the thermodynamic limit
— which, as we explained in Section 3.4.2, may present a problem in
our approach.

• Different variables — while the notation might be misleading, the ks
present in the Bethe approach are not the same as ours. This represents
a problem when trying to check if the two formulas for the energies
(ours and Bethe’s) coincide, or in trying to assess in which regime they
become similar, regardless of the computational difficulties in solving
the Bethe equations. First, as one immediately sees from the M = 2
discussion in the appendix, the Bethe are the following

k1,2 =
2πm1,2

N
± θ

N
, (3.127)

where θ is a phase with the purpose of carrying information on the
interaction between the two magnons. But even if the first part of the
Bethe ks looks like our way of writing them, this is actually not true. In
fact, the integers m there described do not have fermionic properties,
and one can find solutions in which the two ks contain the same value of
m — this is untrue for our variables. The reason for this can be found
by looking at the way the wavefunction is built for the case M = 1 of
the Bethe ansatz:

|ψ〉 =
∑
n

eikn |n〉 =
∑
n

eiknŜ+
n |0〉 , (3.128)

which seems to correspond to a Fourier transform upon the ladder
operators themselves, instead of upon the fermionic creation and an-
nihilation operators we deal with. This recalls the Holstein-Primakov
transformation — see [27] — for spin 1/2, in which the ladder operators
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directly identify creation and annihilation operators of a kind of particle
that is not a fermion nor a boson (anti-commutation relations on same
site, bosonic commutation relations on different sites). This aspect of
the Bethe ansatz seems to indicate the Holstein-Primakov transforma-
tion as the most suitable change of variables to use if searching for a
match with the energy levels found by the ansatz. The reason we did
not use such a change of coordinates is precisely for the fact that it does
not map the system into the analogue system made of known types of
particles, bosons or fermions, but it maps it into a system of weird
hybrid ones. One could try anyways and retrace the steps we did, sub-
stituting the Jordan-Wigner transformation with Holstein-Primakov,
and see if a comparison with the Bethe ansatz is easier that way.

The problem of the non-fermionic properties of the integers m in the
Bethe ansatz is actually removed in that instance by shifting to other
variables — the rapidities λ—, but we remain unsure as to if a compar-
ison is possible between our energy levels and the Bethe ones in terms
of the rapidities; even though the rapidities seem to be fermions, it is
quite difficult to understand, through the change of variables performed
form k to λ, if these fermions are actually the same variables we end
up with via the Jordan-Wigner transformation. In other words, our
process and the Bethe process are different both in terms of approach
and of variables involved, creating non-negligible complications when
attempting to build a bridge between the two results.

A possible avenue, to be further explored at another time, would be
to actually adapt the Bethe ansatz approach to the Heisenberg sys-
tem already fermionized via Jordan-Wigner, and see if the Fourier-like
coefficients of the wave functions can be more easily used for the com-
parison with the ks of the Fourier transform we used on our fermionic
operators. More importantly, one would be interested in checking if the
new variables provide some advantage to the computational complexity
of the technique.

• Approximate results vs. accurate results — In addition to the
two substantial issues above, we also have that while the energy levels
found by Bethe are exact (whenever the solution is available), ours are
certainly not, so there is never going to be an exact correspondence
between the two. This is especially true in the case of a ratio M/N
which is not small, since, as we know from Section 3.4, the system is
not in a perturbative regime anymore, and our method fails.
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3.6.1 Computational comparison: M=2

Despite the challenges presented, it is possible to get an idea of how the Bethe
energie levels are arranged, and compare the trend with our results, at least
in a simple case, that of M = 2. In that case, solving the Bethe equations
is computationally approachable, especially once we notice that the Bethe
equations in terms of rapidities for two variables give converging solutions
using a simple algorithm for solving a system of nonlinear equation. The
method is not 100% accurate, and might present some issues in a few cases;
however, the general trend of the energy levels should be similar enough to
the real solutions, with an average error that becomes smaller for bigger
values of N . Comparing different cases of N , we confirm that our approach
gets better at approximating the spectrum for smaller values of M

N
, as we can

see from the following graphs.
The case of N = 6 shows that while the trend looks similar, our results

are still too approximated:
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Figure 3.1: Comparison with Bethe ansatz for N=6

This is because in the case of N = 6 the parameter is M
N

= 1
3
, which is not

small enough, and not just because the algorithm is less reliable. In fact, in
[12] we find a table for accurate energy levels of the Bethe ansatz for N = 5,
M = 2; plotting them together with our results, we see that while the trend
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is ok, the approziamtion is not very satisfactory:
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Figure 3.2: Comparison with Bethe ansatz (accurate) for N=5

The situation improves for bigger values of N , and we report here the
graphs for N = 25 and N = 101, with parameters M

N
respectively 0.08 and

0.02 :
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Figure 3.3: Comparison with Bethe ansatz for N=25
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Figure 3.4: Comparison with Bethe ansatz for N=101
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Clearly, as we can see, the smaller the parameter is the more correctly
our method describes the system, just as we expected.



Appendix A

Hamiltonian perturbation theory

Perturbation theory was first introduced in the field of celestial mechanics,
owing its name to the works of Lagrange and Laplace. It was later studied by
great scholars — Poincarè, Birkhoff and Kolmogorov, the latter responsible
for the well known KAM theorem for quasi-periodic motion. The general
theory of non-linear oscillations was developed by Krylov and Bogolyubov.
As one can see from the list of people involved, but also on the amount of
works still on the topic, the approach has met great encouragement from the
scientific community, to speak for its unprecedented success in the field [28].

In general, perturbation theory is based on the fact that it is possible to
give an approximate description of a system by comparing it to an ideal and
solvable one that is somehow close to it. One of the criteria of applicability of
perturbation theory is that whatever differentiates the real system from the
ideal one must be, implicitly or explicitly, dependent on some small parameter
— and that whenever such parameter is zero, the system must revert to the
ideal model. In quantum mechanics, perturbation theory takes the form of
an eigenvalue correction for stationary states, thus retaining a static outlook
at the system. Even so, it is widely used and is taught in every course on
condensed matter theory.

What is proposed here is a slight generalization to classical Hamiltonian
perturbation theory, exploiting the advantages of the Poisson algebra for-
mulation of classical systems, [22], [21], which allows freedom of coordinate
change. Actually, a Poisson algebra formulation is possible even in the case of
quantum mechanics — Heisenberg’s operator algebra is a suitable one — and
we will see that the results of classical Hamiltonian perturbation theory can
be translated in a quantum setting very easily. This result was also obtained
in [29], restricted to Birkhoff-Gustavson normal forms, where a Lie algebra
framework for the classical systems allows a parallel between classical and
quantum normal forms.

66



67

A.1 Classical perturbation theory
We start by considering a Hamiltonian of the form

Hλ = h+ λP1 + λ2P2 + ...+ λnPn +Rn+1 , (A.1)

where λ is a small parameter (|λ| << 1), the functions Pj for j = 1, ..., n are
λ-independent, and Rn+1 = O(λn+1) .
If the system described by the Hamiltonian h is integrable, meaning that
its flow Φt

h ∀t ∈ R is known, Hλ is said to be quasi-integrable or close to
integrable, while P (λ) = Hλ − h is called the perturbation, or perturbative
Hamiltonian. Generally, the perturbation P does not appear explicitly or-
dered in terms of the parameter λ. In those cases, the Hamiltonian is then
split into a leading part (P1) plus a remainder (R2) , such remainder in turn
is then possibly split into a leading part (P2) and so on. This splitting can
be different in different regions of the phase space. When we split the per-
turbation like so, we can artificially insert the parameter λ as a tracer of
the ordering, and we will set it to one at the end of the calculations. When
we deal with perturbations that do not have any explicit small parameter
ordering, we must be careful about the fact that the Hamiltonian P might
actually not be fit to treat as a perturbation, meaning that it is not "small"
compared to the unperturbed system. We must then study the closeness of
the perturbed system Hλ to the unperturbed one defined by h. What really
matters in determining it is not really the ratio |P |/|h|— to see this, remem-
ber that a constant perturbation does not affect the dynamics independently
of its size. More importantly, it is the ratio of the respective vector fields,
i.e. ‖XP‖/‖Xh‖ << 1 , in some norm.

The procedure at the heart of Hamiltonian perturbation theory consists
in looking for a change of variables which removes, completely or at least
partially, the perturbation P (λ) from the original Hamiltonian Hλ , up to a
pre-fixed order. Unfortunately, in general, the complete removal of the per-
turbation, even just at first order, is not possible. Therefore, we resort to a
partial removal of the perturbation (still, up to some order), i.e. a transfor-
mation of the perturbative Hamiltonian into another form — called normal
form — which possesses useful properties. It is defined in the following:

Definition A.1.1. (Normal form) A Hamiltonian Hλ of the form

Hλ = h+
n∑
j=1

λjSj +Rn+1 , (A.2)

is said to be in normal form up to order n with respect to h, if {Sj, h} = 0
for any j = 1, ..., n and Rn+1 = O(λn+1) .
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We notice that the Hamiltonian (A.2) is of the form (A.1), but now the
perturbation consists of the summation of first integrals Sj of h. Notice that
this includes the case Sj = 0 for some j , i.e. the complete removal of the
perturbation at the order j. So, from a technical point of view, Hamiltonian
perturbation theory aims to find a suitable change of variables that maps the
quasi-integrable Hamiltonian (A.1) into its normal form of the type (A.2) ,
i.e. Hλ → Hλ . Let us state this more precisely.

Let Γ be the phase space, D the definition domain of the Hamiltonian and
let us suppose that

1. the Hamiltonian Hλ has the form (A.1) for any x ∈ D ⊂ Γ ;

2. the unperturbed Hamiltonian h is integrable in D, i.e. its flow Φt
h(ξ),

which is the solution of the Hamilton equations

ẋ = Xh(x) = J∇H(x),

is known for any ξ ∈ D ;

3. the flow Φt
h(ξ) is bounded in D uniformly in time, i.e. there exists a

constant C such that
‖Φt

h(ξ)‖ ≤ C

for any ξ ∈ D in some suitable norm ‖ · ‖ .

With this, we look for a canonical transformation

Cλ : x 7→ y = Cλ(x) = x+O(λ) , (A.3)

which we require to be smooth, λ-dependent and λ-close to the identity, such
that

Hλ(y) := Hλ(C−1
λ (y)) (A.4)

is in normal form up to a certain order n with respect to h. The λ-closeness
to the identity of this map is necessary in order to match the unperturbed
problem as λ 7→ 0. The canonicity of Cλ is instead optional; we only require
it in order to perform the transformation of the Hamiltonian function with-
out ever minding about the consequent deformation of the Poisson structure.
However, this is just a concern for the sake of simplicity, a choice; unfortu-
nately, it does produce a substantial restriction in our perturbation theory
framework.
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A.1.1 Construction of Cλ and the Averaging Principle

Our approach into building the above mentioned canonical transformation
Cλ, is to assume it to be a composition of Hamiltonian flows of suitable
generating Hamiltonians, each at λ-dependent times.
We then look for a canonical transformation Cλ of the form

Cλ = Cn ◦ Cn−1 ◦ ... ◦ C2 ◦ C1 (A.5)

with its inverse

C−1
λ = C−1

1 ◦ C−1
2 ◦ ... ◦ C−1

n−1 ◦ C−1
n , (A.6)

where we choose

C−1
j = Φλj

Gj
, Cj = Φ−λ

j

Gj
, ∀j = 1, ..., n , (A.7)

and where the choice of the minus sign in front of λj in the direct transforma-
tion is just a convention. Here, Φ±λ

j

Gj
is the flow of a certain Hamiltonian Gj

respectively at time ±λj. Let us state the whole transformation explicitly:

C−1
λ = Φλ

G1
◦ Φλ2

G2
◦ ... ◦ Φλn−1

Gn−1
◦ Φλn

Gn . (A.8)

The n Hamiltonians G1, ..., Gn are the so-called generating Hamiltonians of
the canonical transformation Cλ; said transformation is completely specified
when all the generating Hamiltonians are known. In fact, for the perturba-
tive approach introduced here, the generating Hamiltonian are precisely the
unknowns of the process, and their form is determined order by order. Actu-
ally, we will see that the normal form of a given quasi-integrable Hamiltonian
Hλ is not unique, but there are infinitely many possible sets of generating
Hamiltonians G1, ..., Gn that bring the perturbation to normal form.

Let us now introduce some of the notation that we will make extensive
use of. We start with the definitions of time-average and deviation:

Definition A.1.2. (Time-average) Given a Hamiltonian function h, the
time-average of f along the flow of h is

〈f〉h :=
1

t
lim
t→∞

∫ t

0

(f ◦ Φs
h)ds , (A.9)

where f is any real function defined on the phase space Γ .

Definition A.1.3. (Deviation) Given a Hamiltonian function h, the devi-
ation of f from its time-average is

δhf := f − 〈f〉h , (A.10)

where f is any real function defined on the phase space Γ .
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Let us also state — and prove — the following technical lemmas, which
we will later need.

Lemma A.1.4. The time-average along the flow of the Hamiltonian function
h is invariant with respect to the flow of h , i.e. for any function f one has

〈f〉h ◦ Φt
h = 〈f〉h ∀t . (A.11)

Proof. According to the definition, and making use of the group property of
the flow Φs

h ◦ Φr
h = Φs+r

h , one obtains

〈f〉h ◦ Φr
h :=

1

t
lim
t→∞

∫ t

0

(f ◦ Φs+r
h ) ds = lim

t→∞

1

t

∫ t+r

r

f ◦ Φu
h du .

Let us split the integral in three parts, i.e.
∫ t+r
r

du =
∫ 0

r
du+

∫ t
0
du+

∫ t+r
t

du :
the first and the third integrals are on bounded intervals (with lenght equal
to r) , so the only term which survives is the second one. As a result one has

〈f〉h ◦ Φr
h(ξ) = lim

t→∞

1

t

∫ t

0

f(Φu
h(ξ)) du = 〈f〉h .

Lemma A.1.5. Let G be a Hamiltonian function, with Φs
G its flow. Then,

for any function f ,
f ◦ Φs

G = esLgf , (A.12)

where LG is the Lie derivative along the Hamiltonian vector field XG, defined
by

LG := {·, G} = (J∇G) · ∇ = XG · ∇ . (A.13)

Proof. Set f̃(s) := f ◦ Φs
G and notice that f̃(0) = f .

One has
˙̃f = {f,G} ◦ Φs

G = L̃Gf ,

so that ¨̃f = L̃2
Gf and so on, i.e. dnf̃

dsn
= L̃nGf for any n ≥ 0 . Performing now

the Taylor expansion of f̃ at s = 0 one finally gets

f̃(s) =
∑
n≥0

sn

n!

dnf̃

dsn
|s=0 =

∑
n≥0

snLnG
n!

f = esLGf .
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Lemma A.1.6. For any function f , the solution of the equation

Lhg = δhf ⇐⇒ {g, h} = f − 〈f〉h (A.14)

is given by

g = G + L−1
h δhf := G + lim

t→∞

1

t

∫ t

0

(s− t)(δhf ◦ Φs
h) ds , (A.15)

where G ∈ kerLh , i.e. {G, h} = 0 .

Proof. Consider first the left part of (A.14) . Composing now both sides with
the flow of h , multiplying by (s − t) , integrating with respect to s from 0
to t and dividing all this by t one obtains

1

t

∫ t

0

(s− t)(Lhg ◦ Φs
h) ds =

1

t

∫ t

0

(s− t)(δhf ◦ Φs
h) ds .

One notices that Lemma (A.1.5) leads to

g =
1

t

∫ t

0

esLhg ds+
1

t
(s− t)δhf ◦ Φs

h ds ;

performing the limit for t → ∞ of the latter equation and observing that
G := 〈g〉h ∈ kerLh , thanks to Lemma (A.1.4) the thesis follows.

Theorem A.1.7. (Averaging Principle) Consider a quasi-integrable Hamil-
tonian Hλ of the form (A.1) satisfying the three hypothesis made above; then

1. For any choice of the generating Hamiltonians G1, ..., Gn , defining the
canonical transformation (A.8) , one has

H̃λ = Hλ ◦ C−1
λ = h+

n∑
j=1

λjPj +Rn+1 , (A.16)

where, for every j = 1, ..., n and taking F1 = 0

Pj = −LhGj + Pj + Fj[h, P1, ..., Pj−1, G1, ..., Gj−1] , (A.17)

Rn+1 = λn+1(Pn+1 +Fn+1[h, P1, ..., Pn, G1, ..., Gn])+O(λn+2) . (A.18)

2. The perturbation at order j = 1, ..., n of the normal form is given by

Sj = 〈Pj + Fj〉h . (A.19)
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3. The jth generating Hamiltonian, for j = 1, ..., n , is given by

Gj = Gj + L−1
h δh(Pj + Fj) (A.20)

where Gj ∈ kerLh , ∀j .

Proof. Let us denote Lj = LGj = {·, Gj} ∀j = 1, ..., n . According to Lemma
(A.1.5) and to the definition of the canonical transformation C−1

λ one has

H̃λ = eλ
nLn · · · eλ2L2eλL1(h+ λP1 + λ2P2 + ...+ λnPn +Rn+1) . (A.21)

We are going to prove the statements by induction, first considering the
transformation for the case n = 2 .
Performing the expansion of the exponentials what comes out is

H̃λ = h+ λ(L1h+ P1) + λ2(L2h+ P2 + L1P1 +
1

2
L2

1h)+

+ λ3(P3 + L2P1 +
1

2
L2

1P2 +
1

6
L3

1h+ L2L1h) +O(λ4) ,

which satisfies (A.17)-(A.18) , i.e.

P1 = −LhG1 + P1 , F1 = 0 ;

P2 = −LhG2 + P2 + F2 , F2 = L1P1 +
1

2
L2

1h ,

R3 = λ3(P3 + F3) +O(λ4) , F3 = L2P1 +
1

2
L2

1P2 +
1

6
L3

1h+ L2L1h .

Statement (1) : it holds for n = 1, 2 . Let us denote with H̃(m−1)
λ the Hamil-

tonian up to the order m−1 and suppose that it has the form (A.17)-(A.18).
Take the exponential operator eλmLm = 1 +λmLm +O(λ2m) and let it act on
the left of H̃(m−1)

λ , obtaining H̃(m)
λ = eλ

mLmH̃
(m−1)
λ . At this point one has

H̃
(m)
λ = h+

m∑
j=1

λjPj +Rm+1

with
Rm+1 = λm(−LhGm + Pm + Fm) +O(λm+1) ,

which has the form we were looking for and by induction it holds for any j
up to any pre-fixed order n.

Statement (2 - 3) : in order to get the Hamiltonian (A.16) in normal form
we impose the condition Pj = Sj ∈ kerLh , where Pj is given by (A.17) .
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At this point one has to solve the homological equation of Hamiltonian
perturbation theory

Sj = −LhGj + Pj + Fj (A.22)

with respect to the unknows Sj and Gj .
Composing both sides of (A.22) with Φs

h
1 , integrating with respect to s

from 0 to t and dividing all by t one gets

Sj = −Gj ◦ Φt
h −Gj

t
+

1

t

∫ t

0

(Pj + Fj) ◦ Φs
h ds ,

so statement (2) follows in the limit t → ∞ by the boundedness of the
unperturbed flow.
Now put into (A.22) the expression Sj = 〈Pj + Fj〉h , which yields

LhGj = Pj + Fj − 〈Pj + Fj〉h = δh(Pj + Fj) ,

so statement (3) holds thanks to Lemma (A.1.6) , which reveals that the
solution of the latter equation is

Gj = Gj + L−1
h δh(Pj + Fj) .

A.2 Quantum perturbation theory
The perturbation theory formalism in the work frame of classical mechanics
can be automatically translated in a quantum environment. This is possible
thanks to the Poisson structure of the algebra of linear self-adjoint operators
in the Heisenberg picture, i.e. the existence of a proper Poisson bracket acting
on the operators (the commutator over i~). The formalism of the Hamilto-
nian perturbation theory can be applied to quantum mechanics regardless of
the choice of coordinates, just like in the classical case. To see why, we first
notice that unitary transformations of the wave function ψ — the unknown
of the Schrödinger equation — , act as canonical transformations; this is true,
since the Schrödinger equation performs the role of the classical Hamilton
equations, and is preserved precisely by unitary transformations. Explicitly,
let us take the map

ψ 7−→ ψ′ = Û †ψ , Ĥ 7−→ Ĥ ′ = Û †ĤÛ , Û †Û = 1 , (A.23)

1In the composition we take into account that Sj ◦Φs
h = Sj and LhGj ◦Φs

h =
d(Gj◦Φs

h)
ds .
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so that the Schrödinger equation

i~ψt = Ĥψ (A.24)

becomes
i~ψ′t = Ĥ ′ψ′ , (A.25)

which is formally the same, as anticipated.
Knowing this, we can now look at the perturbative context, in which the

Hamiltonian is of the form Ĥ = ĥ+λP̂ . Naturally, the Schrödinger equation
will then be

i~ψt = Ĥλψ = (ĥ+ λP̂ )ψ , (A.26)
where Ĥλ is a certain self-adjoint operator consisting of an unperturbed part
ĥ and a perturbation P̂ , with λ a small parameter. Just like in the classical
case, one can try to eliminate the perturbation P̂ by looking for a particular
unitary time-dependent operator Û(λ) that conjugates Ĥ to its normal form.
Therefore, we work once again by analogy with the classical case, imagining
the canonical transformation Û(λ) to be the Schrödinger flow (i.e. a time
evolution operator) at time λ of some unknown Hamiltonian, the generator,
which is going to be a Hermitian operator Ĝ. Namely, the transformation
will be

Ûλ = e
1
i~λĜ . (A.27)

To any Hermitian operator Ĝ one can associate an operator LĜ, which plays
the role of the quantum Lie derivative along Ĝ, defined as the following:

LĜ :=
1

i~
[ · , Ĝ] = J · , ĜK , (A.28)

Furthermore, it is easy to obtain the quantum version of Lemma (A.1.5),
which is the following

Lemma A.2.1. Let F̂ and Ĝ be two Hermitian λ-independent operators.
Then

eiλĜ/~F̂ e−iλĜ/~ = eλLĜF̂ . (A.29)

Proof. Let F̂ (λ) define the left hand side of the equation, and take its deriva-
tive with respect to λ:

d

dλ
F̂ (λ) =

i

~
(
ĜF̂ (λ)− F̂ (λ)Ĝ

)
= LĜF̂ (λ) .

This equation can then be formally integrated with initial condition F̂ (0) =
F̂ , giving

F̂ (λ) = eλLĜF̂ .
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From the Lemma, it follows that the operator F̂ is invariant with respect
to the flow of Ĝ if and only if [F̂ , Ĝ] = 0. What we proved here is simply the
Heisenberg evolution equation for observables, i.e. for a generic operator Â,

d

dt
ÂĤ(t) = JÂĤ(t) , ĤK =

1

i~
[ÂĤ(t) , Ĥ] = LĤÂĤ(t) .

We have shown that, starting from the Schrödinger equation, one can find
an equivalence to the classical Hamiltonian equation for evolution by shifting
the focus onto the quantum observables, the operators, with the Heisenberg
picture evolution. This parallel is nice and complete, as the quantum Heisen-
berg Lie derivative (A.28) picks up the role of proper Poisson brackets, giving
birth to a well defined Poisson structure for the system. Thanks to this, we
are able to exactly retrace the steps leading to the classical Averaging Princi-
ple, and to quickly find the quantum version of the normal form construction.

A.2.1 The quantum normal form

Let us again think of a quantum Hamiltonian in the following form:

Ĥλ = ĥ+
n∑
j=1

λjP̂j . (A.30)

We are interested on its normal form up to a fixed order. Let us very quickly
see how the classical procedure for finding the normal form is kept concep-
tually the same up to first order; higher orders are left to the reader, but it
will be evident that there is really nothing different to do with respect to the
classical approach.

As we have seen above, the proper change of coordinate can be achieved
by looking for a unitary transformation ÛĜ1

(λ) generating by an unknown
Hamiltonian (Hermitian) operator Ĝ1 at time λ. Therefore, we define Û1 :=
ÛĜ1

, which will look like

Û †1(λ) = e−
1
i~λĜ1 ; (A.31)

we require that, under the action of Û1, the Hamiltonian (A.30) is sent to

Ĥλ = eλL1Ĥλ = ĥ+ λŜ1 + ...

= ĥ+ λ
(
P̂1 + LĜĥ

)
+O(λ2) , (A.32)

where L1 = LĜ1
= 1

i~ [·, Ĝ1] and Ŝ1 is such that [Ŝ1, ĥ] = 0. Notice the
formal equivalence with the classical version. Taking into account that LĜĥ =
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−LĥĜ, we can write down the first order quantum homological equation

Ŝ1 = P1 − LĥĜ1 (A.33)

and solve it for Ŝ1 and Ĝ1, just like in the classical case. The resulting
solutions are

Ŝ1 = 〈P̂1〉ĥ = lim
t→∞

1

t

∫ t

0

Û †
ĥ
(s)P̂1Ûĥ(s) ds (A.34)

and

Ĝ1 = Ĝ1 + lim
t→∞

1

t

∫ t

0

(s− t)Û †
ĥ
(s)(P̂1 − 〈P̂1〉ĥ)Ûĥ(s) ds , (A.35)

where Ĝ1 is any Hermitian operator such that [Ĝ1, ĥ] = 0. The formulas for
the next orders can be obtained by using the quantum Averaging Principle.
We simply report here the ones for the second order,

Ŝ2 = 〈P̂2 + F̂2〉ĥ , (A.36)

F̂2 = L1P̂1 +
1

2
L2

1P̂1 , (A.37)

and
Ĝ2 = Ĝ2 + L−1

ĥ
δh(P̂2 + F̂2) , (A.38)

where [G2, ĥ] = 0 .
We have seen, then, that the Hamiltonian perturbation theory represents

a powerful tool that can help study a great deal of systems which are not
integrable, as long as they remain similar to other integrable ones, in the
sense described before. It is widely used to study classical systems, but it
may become a precious approach to understand quantum systems as well,
since there is no conceptual difference between the classical and quantum
case. Moreover, as opposed to the usual perturbation theory in quantum
mechanics, which has a strictly static point of view, this Hamiltonian ap-
proach allows us to keep a watch over the dynamic of the system, a dynamic
which is itself a pertubed one.



Appendix B

The Bethe Ansatz

In 1931, Hans Bethe published in [11] a method for solving the one dimen-
sional spin-1/2 Heisenberg model by obtaining the exact eigenvalues. It con-
sists in a parametrization of the eigenvectors, the so called Bethe ansatz,
which, beyond Bethe’s expectations, was found to be actually expendable
in the case of other one-dimensional systems. Indeed, many other quantum
many body systems are known to be solvable by some variant of the Bethe
ansatz.

Since the Bethe ansatz is rarely discussed in textbooks, except at the
advanced level, we add this appendix in order to introduce the Bethe ansatz
at an elementary level, following [13], [12], [14]. Although the eigenvalues and
eigenvectors for a finite system may be more easily obtained by numerical
diagonalization, the Bethe ansatz bears some important advantages. Among
them, there is the big asset of being able, in many cases, to evaluate the
eigenvalues and the physical properties in the thermodynamic limit. Indeed,
the Bethe ansatz is a basis transformation that does not have to be supported
by a numerical diagonalization, in a way that removes the cap on system
size. However, as we will see, the approach comes with some significant
computational and analytical challenges.

B.1 Vacuum state and magnon excitations
Let us start with the study of the vacuum state and the first excitation.

The M = 0 case is the case in which all spins are aligned; let us say
that this vacuum state is the state where all spins are down. This is just a
convention, many sources regard their vacuum state as the one with all spins
up. So, the vacuum state, the single vector |0〉, is an eigenstate, H |0〉 =

77
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E0 |0〉 , with energy

|0〉 = |↓ ... ↓〉 =⇒ E0 =
−g
4
N . (B.1)

The natural way to describe the invariant subspace in which M = 1 (one
spin down) is to label the position of the flipped spin:

|n〉 = S+
n |0〉 , n = 1, ..., N . (B.2)

Such states are clearly not eigenstates of H because of the coupling term, but
we can construct N new states as linear combinations of |n〉, simply

|ψ(k)〉 =
1√
N

N∑
n=1

an(k) |n〉 , (B.3)

for wave numbers k = 2πm/N ,m = 0, ..., N −1 . The ansatz given by Bethe
in this case is a guess for the value of the coefficients an(k), keeping in mind
that they should respect translational symmetry, i.e. the invariance of H
with respect to discrete translations. The Bethe states are, explicitly,

|ψ(k)〉 =
1√
N

N∑
n=1

eikn |n〉 . (B.4)

The vectors |ψ〉 are, as we requested, eigenstates of the translation opera-
tor with eigenvalues eik; their crucial property is that they are also eigenstates
of H with eigenvalues

E(k) = E0 + g(1− cos k) , (B.5)

as can be verified. The vectors (B.4) represent the so called magnon ex-
citations (∆S = 1 excitations), which means that the complete spin down
alignment of the polarized vacuum state |0〉 is periodically disturbed by a
single spin wave with wavelength λ = 2π/k (the magnon). Note that the
k = 0 state, or the k = 2π if m = 1, ..., N , is degenerate with |0〉.

B.2 The two-body problem
At first, one might think the M > 1 case to be just a simple superposition
of magnons. Alas, just by comparing the number of the states in each base,
we see that this is not the case. Let us discuss in detail the M = 2 case.
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Again, we can think of a new state as a generic linear combination of the
two-spin-flip base states |n1, n2〉 = S+

n1
S+
n2
|0〉, i.e.

ψ(k1, k2) =
∑

1≤n1<n2≤N

an1,n2(k1, k2) |n1, n2〉 . (B.6)

With this, the eigenvalue equation translates into:

2[E − E0]an1,n2 = g[4an1,n2 − an1−1,n2 − an1+1,n2−an1,n2−1 − an1,n2+1] ,
(B.7)

(for n2 > n1 + 1)

2[E − E0]an1,n2 = g[2an1,n2 − an1−1,n2 − an1,n2+1] , (B.8)
(for n2 = n1 + 1)

Bethe’s preliminary ansatz to determine the coefficients an1,n2(k1, k2) has
been

an1,n2(k1, k2) = Aei(k1n1+k2n2) + A′ei(k1n2+k2n1) , (B.9)

which, once again, automatically satisfies the eigenvalue equations with en-
ergy

E(k1, k2) = E0 + g
∑
j=1,2

(1− cos kj) . (B.10)

From the eigenvalue equation we can also recover the scattering phase relation
for the coefficients A and A′ of the ansatz:

A

A′
:= eiθ =

ei(k1+k2) + 1− 2eik1

ei(k1+k2) + 1− 2eik2
, (B.11)

which can also be restated in the form

2 cot
θ

2
= cot

k1

2
− cot

k2

2
. (B.12)

Now, the quasi-momenta k1, k2 of the Bethe Ansatz wave function are not
simply the magnon wave numbers; they are related to those by the phase θ
and can be determined by requiring that the wave function ψ(k1, k2) satisfies
the periodic boundary conditions an1,n2 = an2,n1+N , i.e.

eik1N = eiθ , eik2N = e−iθ . (B.13)
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Equivalently,

k1 =
2πm1

N
+

θ

N
, k2 =

2πm2

N
− θ

N
. (B.14)

where the mj = 0, ..., N − 1 are the usual integer quantum numbers.
The total momentum of this state is independent of θ and reads

K = k1 + k2 =
2π(m1 +m2)

N
. (B.15)

The fact that the magnons in this state are interacting is reflected in the
phase shift θ, i.e. in the deviation of the quasi-momenta k1,2 from the free
magnon wave numbers. It has to be said that the quasi momenta k1, k2 are
necessary to specify the Bethe Ansatz wave function but are not observable
(they may be regarded as bookkeeping parameters), while the wave number
K is the quantum number associated with the translational symmetry of H
and exists independently of the Bethe Ansatz.

The allowed (m1,m2) pairs are restricted to 0 ≤ m1 ≤ m2 ≤ N − 1,
because switching the two simply interchanges k1 and k2 and produces vir-
tually the same solution. There are N(N +1)/2 pairs that meet the ordering
restriction, but only N(N + 1)/2 of them are compatible as a solution for
equation (B.14). Note that the scattering phase θ does not depend on the
difference between the momenta of the scattering magnons. This means that
equal Bethe numbers m1 = m2 do not imply k1 = k2 (which would make the
coefficients of the wavefunction ψ vanish). Thus, we cannot exclude solutions
with equal quantum numbers, and therefore we lack of a good criterion to
exclude the N spurious choices of Bethe numbers.

The solutions for the interacting Bethe wave numbers can be determined
analytically or computationally. Some of them have real k1, k2, while others
yield complex conjugate momenta, k2 = k∗1. The majority of solutions are real
and different from zero. Traditionally, they are classified in three separate
cases:

• C1-class of states — If m1 = 0, then all solutions are real and k1 = 0,
k2 = 2πm2/N for m2 = 0, ..., N − 1, θ = 0. These states are clearly
degenerate with the single magnon states.

• C2-class of states — both m1, m2 are non-zero and are set apart by
two or more, i.e. m2 − m1 ≥ 2. There are N(N − 5)/2 + 3 such
pairs of numbers, and all of them are real and correspond to suitable
quasi momenta k1, k2. To find them, we tweak equation (B.14) into a
nonlinear equation for k1, in terms of the total momentum K:

2 cot
Nk1

2
= cot

k1

2
− cot

K − k1

2
. (B.16)
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Considering that the total momentum of the state is quantized (K =
2πn/N), we can substitute for different n to determine k1 and k2 =
K−k1. There are several cases where the analytic solution is possible,
while the others are usually found numerically.

• C3-class of states — both m1, m2 are non-zero and are either equal
or differ by 1. There are 2N − 3 pairs possible, but only N − 3 of
them are compatible with (B.14), and the solutions, when present, are
complex. It is quite difficult to numerically find the complex solutions
of a system of equations, so we are better off turning everything into a
real equation by parameterizing in the following way:

k1 :=
K

2
+ ik , k2 :=

K

2
− ik . (B.17)

This yields, for θ,

θ = π(m2 −m1) + iNk , (B.18)

and

cos
K

2
sinh(Nk) = sinh[(N − 1)k] + cos[π(m1 −m2)] sinh k . (B.19)

which gives k as a function of the total momentumK = 2π(m1+m2)/N .
This solution represents a bound state in which the two flipped spins
cannot be more than order of k sites apart. Substituting the parametric
equations into the energy formula we find the energy of this complex
solution to be

E = E0 + 2g
(
1− cos

K

2
cosh k

)
. (B.20)

For N →∞, we get

k1,2 =
K

2
± i ln cos

K

2
, (B.21)

which means that for large systems the energy of the bound state is

E(N →∞) = E0 +
g

2
(1− cosK) . (B.22)

In the large N limit, the real solutions for the k’s are not too different
from a simple superpositions of two magnons, as the quasi-momentum of
each excitation differs from the free one as

k1,2 =
2π

N
m1,2 +O

( 1

N2

)
. (B.23)
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B.3 The Bethe Solution
In analogy with the method used for the two-body problem, we can now
build the eigenstates in the case of a generic number M of overturned spins.
Just like we did in the previous section, we write the generic states as a linear
combination of the states in the natural basis for fixed M :

|ψ(k1, ..., kM)〉 =
∑

1≤n1<...<nM≤N

an1,...,nM (k1, ..., kM) |n1, ..., nM〉 . (B.24)

Trying to generalize the form of the coefficients for a genericM case, starting
from their form and the known solutions in the two-body case, we write them
as such:

an1,...,nM (k1, ..., kM) =
∑
σ

exp
[
i
M∑
j=1

kσjnj +
i

2

∑
l < jθ(kσl, kσj) , (B.25)

where the sum runs over all M ! permutations σ of the assignments of the
quasi-momenta kj to each overturned spin nj. We also introduced an an-
tisymmetric phase shift, θ(kl, kj) = −θ(kj, kl), which plays the role of a
generalization of the θ phase shift in the two excitations case. The consis-
tency equations for the coefficients an1,...,nM (k1, ..., kM) are once again found
plugging the state into the eigenvalue equation H |ψ〉 = E |ψ〉. They are,
naturally, just a straightforward generalization of the two-particle case. The
energy eigenvalue equation becomes

E(k1, ..., kM) = E0 + g
M∑
j=1

(1− cos kj) , (B.26)

and the eigenstate condition can be written as

2an1,...,nj ,nj+1,...,nM = an1,...,nj ,nj ,...,nM + an1,...,nj+1,nj+1,...,nM , (B.27)

for j = 1, ...,M . These conditions fix the phase shift θ(kj, kl), similarly to
the old one:

eiθ(kj ,kl) = −e
i(kj+kl) + 1− 2eikj

ei(kj+kl) + 1− 2eikl
. (B.28)

Just like in the M = 2 case, this last set of equations can be presented in
real form, once again in terms of cotangents:

2 cot
θ(kj, kl)

2
= cot

kj
2
− cot

kl
2

, j, l = 1, ...,M . (B.29)
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The periodic conditions on the chain for translations byN sites an1,...,nM =
an2,...,nM ,n1+N pose the constraint

M∑
j=1

kσjnj+
1

2

∑
l<j

θ(kσl , kσj) =
1

2

∑
l<j

θ(kσ′l , kσ′j)−2πmσ′M
+

M∑
j=2

kσ′j−1
nj+kσ′M (n1+N) .

(B.30)
Here, the permutations σ′ are defined as{

σ′(j − 1) = σ(j) , j = 2, ...,M

σ′(M) = σ(1) .
(B.31)

The numbersmj are integers and play the same role ofm1, m2 in the previous
section. From (B.31), it is clear that all terms which do not involve σ′(M) =
σ(1) are equal on both sides, and they cancel. Thus, we get the simpler
relations between the phase shifts and the quasi-momenta:

kj =
2πmj

N
+

1

N

∑
l 6=j

θ(kj, kl) , j = 1, ...,M , (B.32)

where mj ∈ {0, 1, ..., N − 1}, all in complete analogy with the two-body
system.

Recall that even in the case of two flipped spins we had more to dwell
upon, as not all choices of quantum numbersm1, m2 were suitable to produce
solutions. Of course the generalization to mj for j = 1, ...,M is no different.
Furthermore, among the possible choices of quantum numbers there are some
that yield complex quasi-momenta, and this does nothing but increase the
computational complexity of solving the Bethe equations. As a matter of
fact, the classification of such complex solutions is so convoluted that it still
presents an open problem. For more details on these issues, see [12]. A
lot more can be said, though, in the case of thermodynamic limit N →
∞, which simplifies the circumstances. In this case, we will see that it is
possible to assume that all complex solutions organize themselves into strings
— a so called string hypothesis. Such an assumption does provide an aid
in constructing the Hilbert space of the system, and thus in studying its
thermodynamic properties.

Introduction of rapidities

Before we delve into the string solutions, let us notice that the scatter-
ing phase θ(kl, kj) does not depend on the difference between the particle
quasi-momenta. This means that we cannot exclude solutions with the same
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quantum numbers, and more generally that we have more possible choices
of quantum numbers than states in the Hilbert space. To fix this problem
and restore translational invariance to the Bethe equations, we introduce the
rapidities λj to parametrize the quasi-momenta in the following way:

cot
kj
2

= λj , i.e. kj =
1

i
ln
λj + i

λj − i
= π − θ1(λj) , (B.33)

where

θn(λj) := 2 arctan
λj
n

. (B.34)

The energy and momentum of a single magnon associated to a quasi-
momentum k are, in terms of the new variable λ,

p0(λ) = k =
1

i
ln
λ+ i

λ− i
, (B.35)

ε0(λ) = g(1− cos k) =
2g

λ2 + 1
. (B.36)

Here we have inserted a subscript 0 just to indicate that it corresponds to a
single (real) particle — what we later be called a 0-type string. The scattering
phase becomes, again in terms of the rapidities,

θ(kj, kl) = −θ2(λj − λl) + πsgn[<(λj − λl)] , (B.37)

where <(x) is the real part of x and sgn(y) means the sign of y. The Bethe
equations for the kj’s set in terms of the rapidities are then

θ1(λj) =
2πm̃j

N
+

1

N

M∑
l=1

θ2(λj − λl) , j = 1, ...,M , (B.38)

where the m̃j numbers are again integers, but different from before, and with
different qualities. The state is now defined by these new Bethe numbers
m̃j = 1, ...,M , and while it is not easy to relate them to the previous quantum
numbers, we will not need to do it and thus we will not be concerned with the
matter. Because (B.38) is now translational invariant, two equal quantum
numbers m̃j produce the same rapidities. Thus, we do not need to count
sets of quantum numbers with repetitions. This is principally the reason
why it is more convenient and widely accepted to work with the m̃j, which
now have “fermionic” properties, and thus provide the proper counting of
the states (recall that each choice of increasing and non-repeating quantum
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numbers produces a physical state). If we completely switch to rapidities to
parametrize the eigenstates, we find that their energies and momenta are

E = E0 +
M∑
j=1

ε0(λj) , (B.39)

K =

[
M∑
j=1

p0(λj)

]
mod 2π =

[
πM − 2π

N

M∑
j=1

m̃j

]
mod 2π . (B.40)

Let us recap: initially, we have expanded the wavefunction coefficients
for the Bethe state as a sum of plane waves parametrized by quasi-momenta,
but found that, as a result, the scattering phase was not explicitly transla-
tional invariant. The change of variable from quasi-momenta into rapidities
shows that the basis

(
λ+i
λ−i

)n is a more appropriate choice for the wavefunction
ansatz, with as a consequence the knowledge that any complete single-particle
basis can be used for the ansatz. Unfortunately, the problem of identifying
and classifying real and complex solutions is not resolved by only turning to
rapidities, as the computational complexity remains unchanged. However,
we will see that the string hypothesis for the complex solutions can account
for them in a very elegant way.

B.3.1 String solutions

Bethe himself had already noticed (in [11]) that the Bethe equations admit
complex solutions, which in general are to be found numerically. Computa-
tionally, it might not be an easy task. However, there is a way around it if
we take the thermodynamic limit N →∞. There is a simple structure that
emerges in this limit; it is known as string hypothesis, [30]. The reason it
is called a hypothesis is that it is not yet clear whether the resulting string
solutions do in fact exhaust the whole Hilbert space. The situation is even
more unsure for the case of XXZ chain. Despite the possible incompleteness
of the solutions, there seems to be consensus about the fact that the string
hypothesis does provide an accurate description of the thermodynamics of
the system. This would suggest that solutions that are not part of the string
structure, if they exist, might be relevant only for certain response functions
or interesting only in the case of out-of-equilibrium studies [31].

Before we start with the general case, let us study again the case of two
flipped spins M = 2.

The Bethe equations, written in terms of the rapidities, are:(
λ1 + i

λ1 − i

)N
=
λ1 − λ2 + 2i

λ1 − λ2 − 2i
, (B.41)
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(
λ2 + i

λ2 − i

)N
=
λ2 − λ1 + 2i

λ2 − λ1 − 2i
. (B.42)

If the imaginary part of λ1, =(λ1), is different form zero, then the left hand
side in (B.41) will vary exponentially with N . Therefore, in the thermody-
namic limit it is either zero or infinity and the right hand side will have to
follow, so either the numerator or the denominator must be zero. Thus, we
must have

λ1 − λ2 = ±2i , i.e. λ1,2 = λ± i . (B.43)

Then, the energy and momentum of this state are real:

p12(λ) = p0(λ+ i) + p0(λ− i) =
1

i
ln
λ+ 2i

λ− 2i
, (B.44)

ε12(λ) = ε0(λ+ i) + ε0(λ− i) =
4g

λ2 + 4
, (B.45)

which gives the dispersion relation

ε12(p) =
g

2
(1− cos p12) . (B.46)

Notice that for g > 0 we have

ε12(p) < ε0(p− p′) + ε0(p′) , (B.47)

meaning that in the ferromagnetic regime these bound states are energetically
favored compared to real solutions.

For M > 2, as we said initially, we make the following assumption: com-
plex solutions can be organized into so called complexes (or strings) of 2R+1
rapidities, where all the rapidities have the same real value λR, and dif-
ferent, equidistant, imaginary parts. The new index runs by half integers,
R = 0, 1/2, 1, ..., and the rapidities have the following form:

λ(R)
r = λR + 2ir , r = −R,−R + 1, ..., R− 1, R . (B.48)

If we call νR the number of strings of length R, a state with a given
magnetization satisfies

M =
∑
R

(2R + 1)νR . (B.49)

We expect the results obtained through the string hypothesis to be a good
approximation of reality as long as the number of single-particle solutions ν0

dominates over all other parts in the sum.
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These rapidities represent a group of 2R + 1 spins that move together
with the same real rapidity. Also, and these spins are more likely to stay
close to one-another — otherwise they would penalize the wavefunction by
an exponential decay the farther away they are. Therefore, we will treat
them as a single entity. Actually, all interactions between the individual
rapidities in a string can be factorized and summed over separately when
computing the interactions between the strings themselves. The energy and
momentum of an R-complex are obtained by summing over all the rapidities
in the complex:

pR(λR) =
R∑

r=−R

p0(λR − 2ir) =
1

i
ln
λR + i(2R + 1)

λR − i(2R + 1)
= π − θ2R+1(λR) ,

(B.50)

εR(λR) =
R∑

r=−R

ε0(λR − 2ir) =
2g(2R + 1)

λ2
R + (2R + 1)2

=
g

2R + 1
(1− cos pR) .

(B.51)

Due to the equidistance between the imaginary parts of the rapidities, we
are left with a highly regular structure which enables us to eliminate various
terms. After doing so, we see that we can consider the scattering phase of an
R-complex with a 0-complex, by taking the product with respect to all the
particles in the given string. This way, we find

S0,R(λ0 − λR) = S0,R(λ) =
λ+ i2R

λ− i2R
λ+ i2(R + 1)

λ− i2(R + 1)
. (B.52)

Generalizing, the scattering of two strings of length R and R′ is

SR,R′(λ) =
R+R′∏

L=|R−R′|

S0,L(λ) . (B.53)

Now that we set the notation straight, we wish to describe an eigenstate
of the Heisenberg chain in terms of:

• the number of complexes νR for each R ,

• the rapidities of their center of mass λR,j , where λR,j is the real part
of the j-th string of lenght R, and j = 1, ..., νR.

The Bethe equations for the strings are obtained by grouping all the rapidities
λ

(R)
j which are part of the same complex, to then compute the products
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within each complex, in such a way that we are left only with the consistency
conditions on their real centers λR,j, just so:

eipR(λR,j)N =
∏
R′

νR′∏
j′

(R′,j′)6=(R,j)

SR,R′(λR,j − λR′,j′) , ∀R , j = 1, ..., νR . (B.54)

Once again, we take the logarithm to find everything in terms of scattering
phases. To account for the branches of the logarithms for each complex type,
we introduce the half-integer quantum numbers mR,j. Going back to the
identity

1

i
ln
λ+ in

λ− in
= π − 2 arctan

λ

n
= π − θn(λ) , (B.55)

we finally find

θ2R+1(λR,j) =
2π

N
mR,j +

1

N

∑
(R′,j′)6=(R,j)

θR,R′(λR,j − λR′,j′) , (B.56)

where

θR,R′(λ) :=
R+R′∑

L=|R−R′|

[θ2L(λ) + θ2L+2(λ)] , (B.57)

and the L = 0 is intended to be omitted. The equations (B.56) are called
the Bethe-Gaudin-Takahashi equations.

In the string hypothesis, each state is then characterized by the num-
ber of strings νR and by the Bethe quantum numbers mR,j of each string
type. Since the Hilbert space of a spin chain is limited, not all quantum
numbers are allowed, as usual. The first thing to notice is that, within each
complex, it must be that mR,j 6= mR,j′ , in order to have a non-vanishing
solution. Furthermore, since the momenta are constrained within a Brillouin
zone (we are dealing with a lattice in real space), the fitting quantum num-
bers are bounded. Also, observe that a diverging rapidity λ(∞)

R =∞ (which
corresponds to a quasi-momentum at the edge of the Brillouin zone) has a
fixed scattering phase with all other particles, because arctan(±∞) ± π/2.
Therefore, we find that λ(∞)

R is given by the Bethe number

m
(∞)
R = −

∑
R′ 6=R

[2 min(R,R′) + 1]ν ′R −
(

2R +
1

2

)
(νR − 1) +

N

2
. (B.58)
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Mind that adding an R-complex shifts this boundary by 1
2π
θR,R(∞) = 2R+ 1

2
,

so the maximum quantum number which describes a finite rapidity, before it
goes to the edges, is

mmax
R = m

(∞)
R −

(
2R +

1

2

)
− 1

2
=
N − 1

2
−
∑
R′

J(R,R′)νR′ , (B.59)

where

J(R,R′) :=

{
2 min(R,R′) + 1 , R 6= R′

2R + 1
2
, R = R′

, (B.60)

while the additional shift of 1/2 in (B.59) is there to take into account that
with each rapidity the Bethe numbers shift from integers to half-integers
and vice-versa. Since all the scattering phases are odd functions of their
argument, we have that

mR,min = −mR,max , (B.61)

which indicates that there are

PR = 2mmax
R + 1 = N − 2−

∑
R′

J(R,R′)νR′ (B.62)

vacancies for an R-complex. Clearly, the range of allowed values becomes
narrower and narrower for complexes of any size if strings are added to the
system. Using the results here, one can estimate the number of states acces-
sible within the hypothesis implemented. One can show that such number
scales like 2N as we would like it to, [32], [33], since that means that only
few states are possibly neglected in the string hypothesis framework. Such
neglected states usually involve a large number of complex rapidities — typ-
ically a finite percentage of the number of sites N, which is here brought
to infinity. Those rapidities are not organized in strings; even so, they are
still somewhat able to satisfy the Bethe equations, because the exponential
growth/decay previously mentioned on that left hand side is accidentally
properly compensated on the right hand side [31]. As it was said already,
these spurious states do not contribute significantly to the thermodynamics
of the model. They are nonetheless important to determine the complete-
ness of the Bethe solution and for other investigations, such as correlation
functions, dynamical responses, or in working with finite systems.
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A word on the ferromagnetic case

Up until now, we have studied the elementary excitations of the Heisenberg
chain, providing a classification of its states. To continue on with the study
of the properties of the energy states in the Bethe ansatz, one has to spec-
ify wether the regime is ferromagnetic or antiferromagnetic, since there is a
dramatic difference between the two. Even though it is the most relevant for
physical applications, we will not concern ourselves with the antiferromag-
netic case here1.

In the case of a ferromagnetic coupling, the state with all spins in the
same direction |0〉 can be taken as the ground state. As we have seen from
the Bethe energies, the ground state is degenerate with all the other members
of the S = N/2 multiplet, i.e. states that are created from |0〉 by adding zero-
momentum magnons. Right after, the lowest energy states are the individual
magnons of momentum k along with bound states complexes, which have
lower energy compared to superposition of magnon excitations — this is
natural, since a ferromagnetic coupling promotes the clustering of overturned
spins. The ground state can be then described as a magnon-vacuum, where
there is a quadratic dispersion relation for the excitations.

1For the interested reader, see [13].
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