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Abstract

This thesis explores the application of multilingual embedding models to the semantic search
for the Italian language, a critical step toward integrating these technologies into Retrieval-
Augmented Generation (RAG) frameworks. The work leverages state-of-the-art pre-trained
and fine-tuned neural models to address the challenges of document retrieval in both symmet-
ric and asymmetric contexts. Using a variety of datasets, including translated corpora for vali-
dation, the study evaluates models such as LaBSE, multilingual-e5-large, and bge-m3 for their
ability to generate meaningful embeddings and improve retrieval performance. Performance
for the asymmetric framework is assessed using nDCG@10.

The fine-tuning phase, where the model is modified by inserting an adapter on top of the
query embedding for each pre-trainedmodel, demonstrates the adaptability of two of the afore-
mentioned models to Italian-language tasks. The statistical significance has been assessed with
theWilcoxon signed-rank test, which results in a p-value< 0.001 formultilingual-e5-large and
bge-m3, beating their counterpart without the addition of the adapter.

One of our models, multilingual-e5-large with the linear adapter, achieved superior results
to proprietary solutions like OpenAI’s text-embedding-3-small. The significance has been as-
sessed with the same statistical test, resulting in a p-value< 0.05.
Additionally, our solution demonstrated substantial improvements in document retrieval

times, reducing latency of OpenAI’s model with our best-performing model of one order of
magnitude. Furthermore, the training process is cost-effective and the lightweight design of
the model enables it to operate on local hardware.
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1
Introduction

Siav S.p.A.* is an Italian software and IT services companybased inRubano, Padua, specializing
indematerialization, documentmanagement, anddigital processes. Founded in1989byAlfieri
Voltan, Siav has established itself as a leader in the Enterprise Content Management sector,
providing innovative solutions for electronic document management, workflowmanagement,
and digital preservation.

With a commitment to improving operational efficiency, Siav offers a comprehensive suite
of software solutions and Business Process Outsourcing services that enable organizations
to manage the entire document lifecycle. This includes in-house, outsourcing, or hybrid ap-
proaches tailored to meet the specific needs of both public and private sectors.

Siav operates multiple offices in Italy, including locations in Milan, Genoa, Bologna, and
Rome, and has expanded its reach to international markets such as Switzerland and Romania.
The company boasts over 4,000 installations across various industries, serving notable clients
such as the Bank of Italy and San Raffaele Hospital.

In addition to its robust service offerings, Siav dedicates more than 12% of its revenue to re-
search and development, underscoring its commitment to innovation and excellence and high-
lighting it through partnerships with leading academic institutions. This focus on innovation
is exemplified by projects involving advanced technologies such as process mining and social
network analysis.

*https://www.siav.com/it/chi-siamo/azienda/
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One of the projects that Siav is working on involves developing a system capable of accu-
rately answering customer questions in natural language. Providing natural-language answers
to queries offers several significant benefits to the company using this system.
First, the ease of interaction is greatly improved. When users ask a question in plain lan-

guage, they expect a direct response that addresses their query, rather than having to search
throughmultiple documents or links to find relevant information. This streamlined approach
accelerates decision making, which is particularly crucial in environments where time is very
important, such as business or emergency settings.
Second, there is a notable reduction of information overload. Simply presenting users with

documents or links to resources can often overwhelm them, especially when the query is com-
plex. Natural language responses, on the other hand, condense the necessary information into
a clear and concise answer. This approach ensures that users are only provided with what is
relevant and manageable, preventing the confusion that can arise from excessive or unrelated
data.
Additionally, natural-language answers are more accessible to a broader range of people.

Userswhomaynotbe familiarwith technical language, complexdocument structures, or search
syntax can still effectively use the system, making it more inclusive and user-friendly.
Themain idea is to use a Large LanguageModel (LLM) as a kind of search engine, bypassing

the need to examine various websites ranked by traditional algorithms. Instead, the goal is for
the model to generate a natural language response directly. To achieve this, the most straight-
forward approach might be to rely on the assumption that the LLM has already learned the
necessary information during its training. By simply inputting a query describing the topic
of interest, one could hope the model would infer the answer. Although this may seem like a
viable alternative, there exists a phenomenon known as “hallucination”, where the model pro-
duces responses that are incorrect or entirely fabricated. This occurs because LLMs generate
output based onpatterns learnedduring training. This alsomeans that the information learned
by an LLM is fixed to the time of its training data. For instance, if we were to ask it questions
about current events, it would either be unable to provide an answer or would likely generate
fabricated information. As a result, theymay often provide confident yet inaccurate responses,
particularly when the query falls outside their knowledge base.
A potential solution to this problem is Retrieval-Augmented Generation (RAG). It com-

bines the natural language generation capabilities of LLMs with external retrieval systems, of-
fering a solution to some of the key limitations inherent in LLMs, particularly the issues of
hallucination, incomplete or outdated information, and limited domain-specific knowledge.

2



In an RAG system, instead of relying solely on the pre-trained LLM parameters, which in-
cludes knowledge only from its training data, the system retrieves themost relevant documents
from a predefined external database. These documents are then passed as input to the LLM,
ensuring that the model has access to up-to-date or domain-specific information to generate a
response. This allows RAG systems to provide an additional layer of transparency by allowing
users to trace the sources of the generated responses. When the LLMgenerates an answer based
on retrieved documents, those documents can be presented alongside the response, enabling
users to verify the information and build trust in the system.
Despite the promising premises, the process presents numerous challenges. For example,

integrating the retrieved context into the generative process is one of them. LLMs must effec-
tively process the retrieved documents and understand their relevance to the query.
Another example is that RAG systems inherently introduce additional computational over-

head due to the retrieval step. Retrieving documents from a large-scale vector database in real-
time can increase response latency, making it challenging to deployRAG in scenarios requiring
instantaneous responses. This problem is particularly relevantwith the integration ofAPI calls
and not suited vector database’s settings or excessively large embeddings.
Another crucial point is that the effectiveness of a RAG system is highly dependent on the

quality of the retrieval mechanism. Irrelevant or low-quality retrieved documents can mislead
the LLM, resulting in inaccurate or incoherent responses. Ensuring that the retrieval compo-
nent consistently identifies the most relevant information from large-scale databases is a sig-
nificant challenge, especially when dealing with ambiguous or complex queries. This can be
achieved using traditional count-based methods, such as BM25. However, these approaches
often retrieve documents that are not entirely relevant to the query, leading to suboptimal re-
sults.
During my internship at Siav, I worked on a project aimed at developing a semantic search

system tailored to the Italian language, with the goal of future integration of this system into
an RAG application. The primary objective was to replace paid embeddings with privately
fine-tuned or pre-trained models, offering a more cost-effective and scalable alternative for se-
mantic representation, lookingboth at computational overhead andperformance. This project
spanned sixmonths, encompassing the complete design, coding, and implementation of the se-
mantic search framework presented in this Master’s thesis.
The thesis examines semantic search systems in two different frameworks: symmetric and

asymmetric retrieval frameworks. Symmetric search, which focuses on queries and documents
of similar length, leverages the Quora Question Pairs (QQP) triplets dataset, translated into

3



Italian, to validate the generalizability ofmodels such as LaBSE,multilingual-e5-large, and bge-
m3. Conversely, asymmetric search, emphasizing short queries against longer documents, relies
on the multilingual MS MARCO (Microsoft MAchine Reading Comprehension, in short,
mMARCO) dataset for training and the DBpedia-Entity-v2 dataset for validation and testing,
also adapted for Italian. This framework is the main focus of this work, where we shaped fine-
tuning processes to build our proprietary model. Looking to recent research, we decided to
work with an approach that involves the integration of adapters on top of query embeddings,
with the goal of efficiently mapping short queries to a shared semantic space with documents
that are more semantically rich than very short queries. While other methods like LoRA were
explored, computational constraints led to a focus only on the adapter methodology.
We then compare all themodels cited abovewithOpenAI’s text embedder-3-small, themodel

currently usedby the company, to evaluate the performance of themain selectedmetric, nDCG
@ 10, which is a standard metric used to evaluate the quality of ranking retrieval systems. A
higher nDCG@10 score indicates that the most relevant documents are ranked closer to the
top, reflecting better retrieval performance.
Methodologies include the development of a relational database to handle complex datasets

and facilitate efficientmodel testing. Embedding-based search algorithms, such asHierarchical
Navigable Small World (HNSW) and exact search, were used to rank documents based on se-
mantic similarity through theWeaviate vector database. The thesis also details the deployment
environment, leveraging AWS infrastructure for fast and high-performance training. This pro-
vides an opportunity to explore an alternative data type, known as bfloat16, which accelerates
training by a factor of three compared to the standard type.
The results highlight the adaptability and statistical effectiveness of fine-tuned multilingual

models for Italian semantic search for two of three models in our test set, achieving an im-
provement in nDCG@10 scores from 32.78 to 38.37 for LaBSE and from 45.23 to 53.89 for
multilingual-e5-large. This is done by adding only a linear adapter on top of the query embed-
ding.
Further investigations were conducted on the third model, bge-m3, to understand why it

did not perform as expected. First, we attempted to enhance the adapter’s representational ca-
pacity by using two layers instead of one and incorporating a non-linear activation function in
between. Next, we reduced thewindow size anddivided the text into smaller chunks. However,
none of these adjustments ultimately led to any improvement.
This research also achieves a notable result in comparison with OpenAI’s text-embedding-

3-small model: we manage to statistically outperform it (though not by a large margin) with

4



the multilingual-e5-large model with the linear adapter fine-tuned by us. This, along with an
improvement in search time by an order of magnitude (615ms vs 47ms), is because ourmodel
uses embeddings of smaller size and does not require an API call.
In summary, by focusingon adapter-basedfine-tuning and leveraging advanced vector search

techniques, this research offers a scalable and high-performance alternative to proprietary so-
lutions for the Italian language, emphasizing the feasibility of adopting custom embeddings in
real-world applications.
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2
RelatedWorks

2.1 LLM

Large Language Models (LLMs) have become a crucial point of research in NLP due to their
remarkable capabilities in understanding and generating human language. The evolution of
language models has seen a significant shift from traditional statistical approaches to neural
network-based methodologies. The early models relied on n-grams and other statistical meth-
ods, but the introduction of deep learning, particularly the Transformer architecture [4], com-
pletely changed the field. Transformer-based models, such as BERT [5] and GPT [6], have
allowed the training of models on enormous datasets, significantly improving performance in
various NLP tasks.

Several prominent families of LLMs have emerged, each contributing uniquely to the land-
scape. The Generative Pre-trained Transformer (GPT), developed byOpenAI*, includes mod-
els such as GPT-1 [6], GPT-2 [7], GPT-3 [8], and GPT-4 [9], designed for general-purpose
language understanding and generation. These models leverage unsupervised pretraining fol-
lowed by fine-tuning for specific tasks, in particular, Reinforcement Learning with Human
Feedback (RLHF). Another notable family is LLaMA (Large Language Model Meta AI), de-
veloped by Meta that has 3 main releases: LLaMA[10], LLaMA 2 [11], and LLaMA 3 [12].
The last one, in particular, focuses on efficiency and accessibility in training large models while

*https://openai.com/
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emphasizing multi-modal capabilities that integrate both text and image data. Google’s Path-
ways LanguageModel (PaLM) [13] is recognized for its advanced reasoning capabilities and im-
proved multilingual support, showcasing the trend towards more capable and versatile LLMs.

Despite their success, LLMs pose significant efficiency challenges as a result of their high re-
source requirements. Recent research categorizes efforts to enhance efficiency into three main
areas: model-centric approaches that optimize architecture or trainingmethods to reduce com-
putational costs, for example new data types and quantization; data-centric approaches that
involve curating or augmenting training datasets to improve model performance without in-
creasing size; and framework-centric approaches that innovate hardware frameworks to facili-
tate more efficient training and deployment of LLMs, like LPU fromGroq †.

Evaluation of LLMs is critical to understand their performance in various tasks. Common
metrics include perplexity, accuracy on benchmark datasets, and task-specific evaluations. The
literature has seen the development of various benchmarks aimed at assessing LLMcapabilities
in tasks such as summarization, translation, and question answering. For summarization tasks,
metrics such as ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [14] are com-
monly used. Translation quality is often evaluated using the BLEU (Bilingual Evaluation Un-
derstudy) [15] score, which computes matching n-grams between the LLM’s predicted trans-
lation and a human-produced reference. Question answering capabilities are assessed using
metrics such as accuracy, F1-score, andMacro F1-score.

Despite significant advancements in the field, several challenges remain. Issues related to
bias and fairness are ofmain importance, as addressing inherent biases in training data is crucial
for ethical deployment. In addition, enhancing the interpretability of LLM decision-making
processes is necessary to gain trust in AI applications. Sustainability is also a growing concern;
developingmethods to reduce the environmental impact of training largemodels is increasingly
important as their popularity continues to rise.

2.2 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) represents a significant advancement in the capabili-
ties of LLMs by integrating external knowledge sources to enhance the accuracy and relevance
of generated content. It was first introduced by Lewis et al. [16] in 2020.
RAG combines the strengths of retrieval systems and generative models, allowing real-time

access to up-to-date information from external databases. This integration not only improves
†https://groq.com/

8

https://groq.com/


the factual accuracy of responses, but also enables LLMs to handle knowledge-intensive tasks
more effectively. The RAG framework typically consists of three main components, each play-
ing a crucial role in the overall process:

1. Retrieval: The retrieval phase involves sourcing relevant documents or data chunks
from an external knowledge base based on semantic similarity to a user query. This is
achieved through techniques such as vector embeddings, which convert text into numer-
ical representations that facilitate efficient similarity searches. The effectiveness of this
phase is critical, as it directly impacts the quality of the information available for the
subsequent generation step.

2. Augmentation: Augmentation refers to themethods used to enhance the integration of
the retrieved informationwith the generated responses. Thismay involve techniques for
re-ranking retrieved documents or compressing context to focus on key details. Effective
augmentation ensures that the generated output is coherent and contextually relevant,
thereby improving user satisfaction and trust in the system.

3. Generation: In this phase, the LLM synthesizes a response using both the original user
query and the retrieved information. The model can leverage its inherent knowledge
while also grounding its responses in the specific context provided by the retrieved data.
This dual approach helps mitigate issues such as hallucination, where the model could
otherwise generate inaccurate or irrelevant content.

This first component is the main core of a RAG application and is usually implemented as
a semantic search algorithm, the focus of this work. Semantic search is an advanced search
methodology that focuses on understanding the meaning and intent behind a user’s query
rather than simplymatchingkeywords. Unlike traditional keyword-based search,whichmainly
relies on finding exact word matches within documents, semantic search analyzes concepts,
context, and relationships between terms in both the query and the content, making it possi-
ble to retrieve more relevant results even if they do not contain exact keyword matches. This
is done with the use of embeddings, which are vectors that capture the semantic meaning of
a piece of text (e.g. queries and documents). After embedding the query and documents, a
similarity metric (like cosine similarity) measures the distance between vectors. Documents
with vectors closer to the query vector are recognized as more semantically similar and priori-
tized in the results. In the end, the relevant documents are ranked and presented based on their
semantic similarity score.

9



Figure 2.1: A representative instance of the RAG process applied to question answering. It mainly consists of 3 steps. 1)
Indexing. Documents are split into chunks, encoded into vectors, and stored in a vector database. 2) Retrieval. Retrieve the
Top k chunks most relevant to the question based on semantic similarity. 3) Generation. Input the original question and the
retrieved chunks together into LLM to generate the final answer. This is taken in the survey by Gao et al. [1].

2.2.1 Asymmetric vs Symmetric Framework

A critical distinction for our setup is symmetric vs. asymmetric semantic search:

• Symmetric semantic search: in this framework, the queries and the documents in the
corpus are about the same length and have the same amount of content. An example
would be searching for similar questions.

• Asymmetric semantic search: in this framework the queries are usually short (like a
question or some keywords) and the documents we want to find are a longer paragraph
answering the input query.

This distinction plays a crucial role in guiding our models and datasets selection, as we will
see in chapter 4.
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2.3 EmbeddingModels: an overview

In natural language processing, an embedding model is a type of model that transforms words,
phrases, or entire pieces of text into vectors that capture their semantic meaning. These vec-
tors, often referred to as embeddings, represent the relationships between words in a high-
dimensional space where similar words are positioned closer together and dissimilar ones far-
ther apart.

We are going to focus on the models that turn text into dense, continuous vectors. Unlike
traditional methods such as one-hot encoding, which represents words as large, sparse vectors,
dense embeddings provide a more compact and informative way to capture linguistic patterns.

Embeddingmodels allow computers to process text by converting the language into numer-
ical form, making it easier for algorithms to identify and understand relationships between
words. The models achieve this by learning patterns from large amounts of text data, allowing
them to place semantically related words near each other in the vector space.

More advanced embedding models, such as BERT or GPT, generate context-aware embed-
dings,meaning that the representation of aword changes depending on thewords surrounding
it. This allows for a finer understanding of language, as the sameword can have differentmean-
ings in different contexts.

Weneed to exploit a littlemorewhat is BERT(and its variants) to gain abetter understanding
of the concept of neural embedding model. BERT (Bidirectional Encoder Representations
from Transformers) is a state-of-the-art model developed by Devlin et al. [5] at Google. It is
designed to better understand the context of words in relation to other words in a sentence.
The structure of BERT is based on the Transformer architecture introduced by Vaswani et al.
[4], particularly its encoder component.

The architecture of BERT consists of multiple layers (12, in the base variant) of encoders
stacked on top of each other, which allows it to process and understand complex relationships
in language.
The key innovation of BERT lies in its bidirectional nature. Unlike previous models that

processed text in one direction (either left-to-right or right-to-left), BERT reads the entire sen-
tence in both directions simultaneously. This allows it to capture the full context of a word
by looking at the words both before and after it, improving its ability to understand meaning
based on context.
BERT is pre-trained onmassive amounts of text using two specific tasks: Masked Language

Modeling (MLM) and Next Sentence Prediction (NSP). In MLM, random words in a sen-
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Figure 2.2: BERT model architecture.

tence are masked, and in BERT the masking strategy is to take 15% of the input tokens of each
training sequence and divide them into 3 categories:

• 80% are replaced with [MASK];

• 10% are replaced with randomly selected tokens;

• 10% are left unchanged.

These 15% are the tokens that the model tries to predict. In NSP, the model is presented
with pairs of sentences and is asked to predict whether each pair consists of an actual pair of
adjacent sentences from the training corpus or a pair of unrelated sentences. In BERT, 50% of
the training pairs consisted of positive pairs, and in the other 50% the second sentence of a pair
was randomly selected from elsewhere in the corpus. To do so, after tokenizing the input, the
token [CLS] is placed before the input sentence pair, and the token [SEP] is placed between
the sentences and after the final token of the second sentence. Finally, embeddings representing
the first and second segments of the input are added to the word embeddings and positional
embeddings to allow the model to more easily distinguish the input sentences.

At the end, each token has its own vector representation, and the whole context embedding
is computed with a pooling layer that in the model we are going to see is a mean pooling or a
[CLS] token embedding extraction, to capture the semantics of each token of text.
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One of its variants, namely theXLM-RoBERTa architecture, is amodel introduced byCon-
neau et al. [17] used as pre-trained initialization for two of our embedding models.
RoBERTa is an improved version of BERT, introduced by Liu et al. [18] to address limita-

tions in the original pretraining methodology of BERT. The focus of RoBERTa is on optimiz-
ing pre-training strategies rather than altering the underlying architecture of BERT. The key
changes are as follows:

• Longer training with larger batch sizes and increased dataset size;

• Dynamic masking, that dynamically generates a newmasking pattern for each sequence
in every training iteration instead of using a static pattern;

• Removal of Next Sentence Prediction;

• Training on longer sequences (up to 512 tokens).

In the XLM-RoBERTa training procedure, there are new training methods, different from
theMLM described above.

Causal Language Modeling (CLM) is a task in which a Transformer-based language model
is trained to estimate the probability of awordP (wt|w1, . . . , wt−1, θ) given all previouswords
in a sentence. Themodel learns to predict the next word in a sequence by attending only to the
past context, making it well-suited for autoregressive tasks like text generation.

Translation Language Modeling (TLM) is a training objective designed to enhance cross-
lingual pretraining by leveraging parallel data (aligned sentence pairs in two languages). It ex-
tends the MLM objective by jointly training in bilingual sentence pairs. Words are randomly
masked in both the source and target sentences, and the model learns to predict the masked
tokens using context from either the same language or its translation.

XLM(Cross-lingualLanguageModels), first introducedbyLample et al. [19], is an acronym
used for Transformer based architecture that is pre-trained using one or both of the two lan-
guagemodelingobjectives,CausalLanguageModeling andMaskedLanguageModeling, along-
side with Translation Language Modeling.

Putting it all together, XLM-RoBERTa is a model that adopts the same training setup and
architecture as RoBERTa, while incorporating the XLMmethod to enhance its performance,
particularly in multilingual contexts.

In models where this structure is present, there is always the “large” version, which includes
24 layers, 1024 embedding dimensions, 16 attention heads, and a Feed-ForwardNetwork with
a size of 4096.
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2.4 Benchmark: MTEB

The Massive Text Embedding Benchmark (MTEB) is an evaluation framework designed by
Muenninghoff et al.[2] to evaluate the performance of text embedding models with different
tasks, datasets, and languages. MTEB covers eight different tasks, with the goal of evaluating
the generalizability and effectiveness of text embeddings in different applications. Figure 2.3
illustrates an overview of the benchmark.

Figure 2.3: Overview of tasks and datasets in MTEB. Multilingual datasets are marked with a purple shade. Taken from
Muennighoff et al. [2].

For our use case, wewant to focus specifically on one task: document retrieval. The retrieval
task is one of the eight tasks in the MTEB benchmark. It involves finding relevant documents
from a corpus based on a given set of queries. For this task, each retrieval dataset consists of a
corpus of documents, a set of queries, and a mapping of each query to relevant documents in
the corpus. The objective is to rank the documents in the corpus according to their relevance
to each query.
The evaluation process is structured as follows: first, the embedding model is used to gener-

ate embeddings for both the queries and the documents. Then cosine similarity is computed
between the embeddings of each query and all documents in the corpus and based on these
similarity scores, the documents are ranked for each query.
In our work, we adopt the samemetrics as used in the referenced paper, which are as follows:
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• nDCG@k (Normalized Discounted Cumulative Gain): This is the mainmetric used
for evaluating retrieval performance in MTEB. nDCG@k measures the quality of the
ranking, giving more weight to the positions at the top of the list; the formula is the
following:

nDCG =
DCG@k

IDCG@k
(2.1)

where

DCG@k =
k∑

i=1

rel(i)
log2(i+ 1)

(2.2)

with rel@i is an indicator function telling us if the i-th document is relevant (and it takes
value 1) or not (and it takes value 0) and IDCG@k is the ideal DCG@k, so the one
computed when all the relevant documents are retrieved in the first places.

• MRR@k (Mean Reciprocal Rank): It measures the average of the reciprocal ranks of
the first relevant document for each query; the formula is the following:

MRR@k =
1

N

N∑
n=1

1

rank(n)
(2.3)

whereN is the number of queries and rank(n) is the position of the first relevant item
for query q in the top-k results.

• MAP@k (Mean Average Precision): This metric calculates the mean of the average
precision scores for all queries, where precision is computed at each rank position; the
formula is the following:

MAP@k =
1

N

N∑
n=1

APqn@k (2.4)

whereN is the number of queries and AP is called Average Precision and it is computed
for each query q as follows:

AP@k =
1

Total number of relevant items for the query q

k∑
i=1

Prec@i× rel(i) (2.5)

where rel@i is an indicator function telling us if the i-th document is relevant (and it
takes value 1) or not (and it takes value 0).

• Precision@k: It measures the proportion of relevant documents in the top-k ranked
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results; the formula for one query q is the following:

Precq@k =
Number of relevant items within the top-k

k
(2.6)

Then we compute the mean over all the queries as

Prec@k =
1

N

N∑
n=1

Precqn@k (2.7)

whereN is the number of queries.

• Recall@k: This metric evaluates the ability of the model to retrieve all relevant docu-
ments within the top-k results; the formula for one query q is the following:

Recall@k =
Number of relevant items within the top-k

Total number of relevant items
(2.8)

Then we compute the mean over all the queries as

Recall@k =
1

N

N∑
n=1

Recallqn@k (2.9)

whereN is the number of queries.

• F1@k: This metric combines the two aspect of precision and recall through the har-
monic mean; the formula for one query q is the following:

F1q@k = 2 · Prec@k · Recall@k

Prec@k + Recall@k
(2.10)

Then we compute the mean over all the queries as

F1@k =
1

N

N∑
n=1

F1qn@k (2.11)

whereN is the number of queries.

The retrieval task in MTEB primarily reuses datasets and evaluation protocols from the
Benchmarking-IR (BEIR) [20] benchmark, ensuring consistency and comparability with pre-
vious work in information retrieval. The nDCG@10 score is particularly emphasized as the
main metric for evaluating the retrieval performance in MTEB.
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For ourwork, we took inspiration from the above paper to adapt theirmethod (whichworks
for the English language and a multilingual setting) to the Italian language, selecting k = 10

and nDCG@10 as our main metric for the asymmetric framework andMRR@10 for the sym-
metric one.
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3
Models

3.1 Baselines (Frequency Based)

3.1.1 TF-IDF

TF-IDF, which stands for Term Frequency-Inverse Document Frequency, is a widely used
statistical measure in NLP and information retrieval that evaluates the importance of a word
within a document relative to a collection of documents, known as a corpus. The fundamental
principle behindTF-IDF is to quantify how relevant a term is to a specific documentwhile con-
sidering its frequency across multiple documents. The idea is to use it as an embedding model
by creating a vector of dimension |V |whereV is the vocabularymade from all thewords inside
the corpus documents.

The Term Frequency (TF) componentmeasures how frequently a term t appears in a partic-
ular documentd. It is calculated by taking the number of times a term appears in the document
and dividing it by the total number of terms in that document. This gives a normalized score
that reflects the term’s importance within the document itself. The formula for TFt,d can be
expressed as:

TFt,d =
Number of times term t appears in the document d

Total number of terms in the document d
= count(t, d) (3.1)
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It is common to squash the raw frequency a bit, using the log10 of the frequency instead,
resulting in a loss of the amplitude.

TFt,d = log10(count(t, d) + 1) (3.2)

On the other hand, InverseDocument Frequency (IDF) assesses howcommonor rare a term
is across all documents in the corpus. It helps reduce the weight of terms that occur frequently
in many documents, thus highlighting terms that are more unique and potentially more infor-
mative. IDFt is calculated using the following formula:

IDFt = log10

(
Total number of documents

Number of documents containing the term t

)
(3.3)

The final TF-IDFt,d score for a term is obtained by multiplying its TFt,d and IDFt values:

TF-IDFt,d = TFt,d × IDFt (3.4)

A high TF-IDFt,d score indicates that the term t is significant within that specific document
d but not common among others, which makes it likely to be crucial for understanding the
content of the document. For example, if a document frequently uses a specialized term that
rarely appears in other documents, it will have a high TF-IDF score, suggesting its relevance to
the topic discussed.

At this point, we know the TF-IDFt,d for each t and d in the corpus, so we can proceed by
constructing a vector of dimension |V | and entering theTF-IDFt,d value for each term t in that
document d and 0 for each term in the vocabulary that is not in the document d.
We chose TF-IDF because it is a great baseline in NLP, because of its simplicity and the fact

that it is count-based. Thus, it does not account for semanticmeaning or context beyondword
counting, which can lead to suboptimal results for queries and documents that require deeper
understanding.

3.1.2 BM25

BM25, or Best Match 25, also known as Okapi BM25, is a variant of the TF-IDF family used
in information retrieval systems to assess the relevance of documents to a given search query.
Developed in the 1990s, BM25 builds on earlier probabilistic models and introduces several
enhancements over traditional methods such as TF-IDF.
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The core components of BM25 includeTermFrequency (Equation 3.2), InverseDocument
Frequency (Equation 3.3), and document length normalization. Term Frequency measures
how often a term appears in a document, with BM25 employing a modified version that ac-
counts for diminishing returns, meaning that after a certain point, additional occurrences of
the term contribute less to the overall score. This adjustment helps prevent overly high scores
for documents that contain many repetitions of a term.

Inverse Document Frequency evaluates the rarity of a term across the entire corpus. It op-
erates on the principle that terms appearing in fewer documents should carry more weight,
thus enhancing the relevance of documents containing these rare terms. The formula for IDF
(Equation 3.3) is structured to provide higher scores for terms that are less common across
documents.

The length of the document is another critical factor in BM25. The algorithm normalizes
the scores based on the length of each document compared to the average length of the docu-
ment in the collection. This normalization ensures that longer documents do not receive an
unfair advantage simply due to their size, which could lead to skewed relevance rankings.

BM25 incorporates two tunable parameters: k1 and b. The parameter k1 adjusts the influ-
ence of term frequency, while b controls the extent to which the length of the document affects
the score. Typically, k1 is set between 1.2 and 2.0, and b is often set around 0.75.

The overall BM25 score for a document concerning a query is computed using the following
formula:

BM25(q, d) =
n∑

i=1

IDFqi ·
TFqi,d

k1 · (1− b+ b · |d|
|davg|) + TFqi,d

(3.5)

In this equation:

• TFqi,d is the frequency of term qi in the document d.

• |d| is the length of the document d.

• davg is the length of the average document of all the documents in the corpus.

• IDFqi denotes the Inverse Document Frequency for term qi.

BM25 has several advantages over its predecessors. It dynamically adjusts rankings based
on the distribution of terms within a collection, making it more adaptable to different types
of queries and documents. It also performs particularly well with longer queries, effectively
addressing issues related to term saturation.
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However, BM25 also has limitations. It does not account for semantic meaning or context
beyond term matching, which can lead to suboptimal results for queries and documents re-
quiring deeper understanding.

3.2 Neural EmbeddingModels

As we anticipated in chapter 2, all the neural models we are going to use are based on BERT or
one of its numerous variants.

3.2.1 LaBSE

LaBSE * [21], or Language-Agnostic BERT Sentence Embedding, is a sophisticated multilin-
gual sentence embedding model developed by Google AI. It is designed to encode text from
109 different languages in a shared vector space.

Its architecture consists of a 12-layer transformer that leverages a vocabulary size of 500,000
tokens, ensuring comprehensive coverage across the supported languages (including Italian),
allowing a window size of 256 tokens for the generation of the embedding. The window size
is only of 256 tokens for this model. This is the smallest of the neural embeddingmodels, with
a total of 471.517.440 parameters.

The full model architecture is as follows:

1 SentenceTransformer(
2 (0): Transformer({'max_seq_length': 256, 'do_lower_case': False})

with Transformer model: BertModel
3 (1): Pooling({'word_embedding_dimension': 768, '

pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False,
'pooling_mode_max_tokens': False, '

pooling_mode_mean_sqrt_len_tokens': False})
4 (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, '

activation_function': 'torch.nn.modules.activation.Tanh'})
5 (3): Normalize()
6 )

*https://huggingface.co/sentence-transformers/LaBSE
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Figure 3.1: LaBSE training structure.

Figure 3.1 illustrates the LaBSE training scheme. This model is trained as a dual encoder
with the goal of generating cross-lingual embeddings. It consists of paired encoding networks
that independently process the source and target sentences. The resulting embeddings are com-
pared via a scoring function. The model leverages a translation ranking task with in-batch neg-
ative sampling and incorporates an additivemargin softmax to increase the separation between
correct translations and closely related non-translations.

The embedding networks in LaBSE are initialized using pre-trained BERT weights and fur-
ther trained through two techniques: Masked Language Modeling (MLM) and Translation
LanguageModeling (TLM). These steps are explained inmore detail in section 2.3. TheMLM
pre-training uses monolingual data from sources like CommonCrawl and Wikipedia, while
TLM employs concatenated bilingual translation pairs derived from a bitext mining system.

The embedding related to the [CLS] token is used as the embedding of the full text. For
computational efficiency, the model uses a dot-product scoring function to compute pairwise
similarity scores on the embeddings. The softmax operation is applied to the resulting scores
to classify the embeddings.

LaBSEmodel achievedmedium results on benchmarks such as theMTEB (English text em-
beddings), scoring an nDCG@10 of 45.2.

Despite its capabilities, the model has some limitations. For example, it truncates long texts
to amaximumof 256 tokens, which surely affects its performance on longer documents. Addi-
tionally, while it performs robustly across many languages, some low-resource languages may
experience reduced effectiveness. Moreover, the embedding dimension is 768, which is lower
compared to the othermodel that will be presented later. That could result in a lower represen-
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tation capability.

3.2.2 multilingual-e5-large

The multilingual-e5-large model † [22] represents a multilingual extension of the English e5
model, allowing it to supportmore than100 languages. Developedbasedon theXLM-RoBERTa
architecture, it comprises 24 layers and generates embeddings of 1024 size, as described in sec-
tion 2.3. Thewindow size is of 512 tokens for thismodel. This is themiddle neural embedding
model in terms of parameters, with a total of 559.890.432 parameters. The full model archi-
tecture is as follows:

1 Model: SentenceTransformer(
2 (0): Transformer({'max_seq_length': 512, 'do_lower_case': False})

with Transformer model: XLMRobertaModel
3 (1): Pooling({'word_embedding_dimension': 1024, '

pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True,
'pooling_mode_max_tokens': False, '

pooling_mode_mean_sqrt_len_tokens': False, '
pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken
': False, 'include_prompt': True})

4 (2): Normalize()
5 )

It is trained through a two-stage methodology. First, it undergoes weakly-supervised con-
trastive pre-training on approximately 1 billion multilingual text pairs from diverse sources
(e.g., Wikipedia, mC4, and Reddit). This is followed by supervised fine-tuning on 1.6 million
high-quality labeled datasets, incorporating mined hard negatives and knowledge distillation
to enhance embedding quality.
The input handling of multilingual-e5-large requires specific prefixes for queries and docu-

ments’ passages, denoted as “query: ” and “passage: ”, respectively.
The embedding of the full text is computed with the element-wise mean of all the embed-

dings of the tokens that compose the text, as we can see in the model structure above.
The model achieved good results on benchmarks such as MTEB (English text embeddings)

and MIRACL (multilingual retrieval across 16 languages). In the MTEB, Multilingual-E5-

†https://huggingface.co/intfloat/multilingual-e5-large
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large scored an nDCG@10 of 61.5. In the MIRACL dev set, this model achieved an average
nDCG@10 of 66.5.
Despite its impressive capabilities, themodel has some limitations. For example, it truncates

long texts to amaximumof 512 tokens, whichmay affect its performance on longer documents.
Additionally, while it performs robustly across many languages, some low-resource languages
may experience reduced effectiveness.

3.2.3 bge-m3

bge-m3‡ [23], developed by the Beijing Academy of Artificial Intelligence (BAAI), is an ad-
vanced sentence transformermodel that stands out for its multi-functionality, multi-linguality,
and multi-granularity capabilities (the 3 Ms). Developed based on the XLM-RoBERTa archi-
tecture adaptedby theRetroMAEmethod (a retrieval-orientedpre-training paradigmbased on
the Masked Auto-Encoder from Xiao et al. [24]), it comprises 24 layers and generates embed-
dings of size 1024, as described in section 2.3. One of the standout features of this model is its
window size of 8192 tokens, allowing it to accommodate entire documents. This is the largest
of the neural embedding models, with a total of 567.754.752 parameters. The full model ar-
chitecture is as follows:

1 Model: SentenceTransformer(
2 (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False})

with Transformer model: XLMRobertaModel
3 (1): Pooling({'word_embedding_dimension': 1024, '

pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False,
'pooling_mode_max_tokens': False, '

pooling_mode_mean_sqrt_len_tokens': False, '
pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken
': False, 'include_prompt': True})

4 (2): Normalize()
5 )

This model is developed to address significant challenges in multi-linguality, retrieval func-
tionalities, and input granularity. By learning a shared semantic space, it enables both mono-
lingual retrieval within individual languages and cross-lingual retrieval between different lan-

‡https://huggingface.co/BAAI/bge-m3
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guages, supportingmore than 100world languages. This versatilitymakes BGE-M3apowerful
tool for multilingual and cross-lingual applications.
The model is designed to generate embeddings that are not restricted to a single retrieval

approach. Instead, it supports multiple retrieval paradigms, including dense retrieval, sparse
retrieval, and multi-vector retrieval. The [CLS] token embedding is optimized for dense re-
trieval, whereas embeddings derived from other tokens enable sparse andmulti-vector retrieval
functionalities. We decided to stick to the default one in the sentence-transformers library, us-
ing the embedding related to the [CLS] token as the embedding of the full input text (as we
can see in the model architecture above).

Another notable feature of bge-m3 is its ability to handle inputs of varying length. From
short texts such as sentences and passages to long documents containing up to 8,192 tokens,
the model effectively processes input across this broad spectrum.

The bge-m3 training process incorporates several innovative techniques to enhance the qual-
ity of the embeddings. One key advancement is the introduction of a self-knowledge distilla-
tion framework. This approach jointly learns and reinforces multiple retrieval functionalities
by integrating relevance signals from dense, sparse, and multi-vector retrieval methods. These
signals act as teacher guidance, enabling themodel to improve performance through an ensem-
ble learning approach.

To further optimize training, the model employs a high-performance batching strategy that
facilitates large batch sizes, contributing significantly to the discriminative power of the embed-
dings. In addition, the training process benefits from extensive and high-quality data curation.
This includes leveraging unsupervised data from vast multilingual corpora, integrating related
supervised datasets, and synthesizing data to address gaps in scarce training samples. Each of
these data sources complements the others and is applied at different training stages, ensuring
a robust training process.

The model achieved remarkable results on benchmarks such asMTEB (English text embed-
dings) andMIRACL (multilingual retrieval across 16 languages). In theMIRACLdev set, this
model achieved an average nDCG@10 of 71.5.

3.2.4 text-embedding-3-small

The text-embedding-3-small§ model is an embedding model from OpenAI, designed to en-
hance the performance of text representation tasks while being cost-effective..

§https://openai.com/index/new-embedding-models-and-api-updates/
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Compared to its predecessor, the text-embedding-ada-002 model, text-embedding-3-small
shows significant performance enhancements. The average score on the multi-language re-
trieval benchmark (MIRACL) has risen from 31.4% to 44.0%, while the average score on En-
glish tasks (MTEB) has increased from 61.0% to 62.3%.
The price for using text-embedding-3-small has been reduced significantly (by five times

compared to the previous model), making it more accessible to developers. The cost is low:
$0.00002 per 1,000 tokens.
The model produces embeddings with a size of 1536 dimensions, allowing for a rich repre-

sentation of the text’s semantic content.
This is the model Siav is trying to replace, since the embedding dimension is big and it is

not optimal for our semantic search task. Furthermore, the cost is low but not zero, and some
lighter models can run locally (depending on the number of documents requiring embeddings
for integration into the system) to avoid also the cost of virtual machines like Amazon Web
Services (AWS).
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4
Datasets

4.1 Symmetric Dataset: QQP triplets

The QQP triplets dataset [25] is primarily focused on the subtask of semantic similarity classi-
fication. It contains data in English, and the dataset is available under the MIT license, which
is an open-source license that allows for a wide range of uses. The dataset is provided by the
hugging-face website (April 2024 version*). QQP triplets are built on another dataset called
QuoraQuestion Pairs (QQP), consists ofmore than 400,000 question pairs, and each question
pair is annotated with a binary value indicating whether the two questions are paraphrased of
each other. The result is a dataset of 101762 samples, where each instance is composed by 3
elements:

• a query, that is used as anchor,

• a positive sentence, that has the same meaning of the query,

• a list of negative sentences, that is composed by sentences with different meanings with
respect to the query.

An example is presented in the following. Since I have a bachelor’s degree in mathematics, I
thought that this would be the best example to report.

*https://huggingface.co/datasets/embedding-data/QQP_triplets
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1 {
2 "query": "How can you overcome phobia of mathematics?",
3 "pos": ["Can I overcome a phobia of mathematics?" ],
4 "neg": ["What are some mind blowing uses of mathematics?",
5 "How do I fall in love with mathematics?",
6 "How do you fall in love with mathematics?",
7 "Why should I study mathematics?",
8 "What are the taboos, if any, in mathematics?",
9 "How do I truly understand mathematics?",
10 "Is mathematics meaningless?",
11 "Can you suck at math and be smart?",
12 "How can an individual become an expert in mathematics?",
13 "When I look at some math Olympiad problems I feel really

intimidated. I only know how to solve basic problems,
nothing special, but I like math very much. Is there any
hope for me to become a mathematician?",

14 "How would you revolutionize the teaching of mathematics to
children?",

15 "How can I be an expert in mathematics?",
16 "Is mathematics becoming less relevant?",
17 "Why do people think that girls can't be as good in

mathematics?",
18 "What are some unsolved problems in mathematics?",
19 "Does being good at mathematics make you intelligent?",
20 "Is mathematics always necessary in doing good science?",
21 "Is it possible for someone to have academic interests in

mathematics but not physics?",
22 "Can I hate math but love science?",
23 "Why are 'bright ideas' ridiculed by those who know how to

manipulate mathematics? Do they want to build authority/
monopoly of mathematics?",

24 "Are girls really bad at mathematics?",
25 "Is mathematics another language?",
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26 "I love science, but I hate maths. Is that bad?",
27 "What can you do with a mathematics degree?",
28 "Why do people find mathematics difficult?",
29 "What are good ways to mentally grasp foreign mathematical

concepts?",
30 "I struggle with math and science and it makes me feel stupid.

What can I do to get better?",
31 "What are some mind-blowing facts about mathematics?",
32 "Does being good at mathematics make you intelligent in other

subjects?",
33 "How do you become a prodigy in math?" ]
34 }

We can see from these examples that the negative sentences are instead more similar to hard-
negative sentences. Hard negatives are examples that are similar to positive samples, but belong
to a different class or category. These samplesmake it difficult for themodel to distinguish them
frompositive examples,making them“hard” to classify correctly. In this case, all sentences refer
to mathematics in a certain way, but have different meanings.
The goal of this dataset is to test the models we choose for the symmetric semantic search.

To the best of our knowledge, this is one of the best datasets for semantic similarity for the
presence of hard negatives instead of classical negatives.
Since we are interested in the application of embeddings for the Italian language, we trans-

lated the whole dataset to Italian using an open source transformer-based model made by the
Language Technology Research Group at the University of Helsinki specifically trained to
translate from English to Italian, namely opus-mt-en-it† [26] [27].

To test our models, we decided to use the split 70/10/20: 70% of the sample for a possible
training set, 10% for validation, and 20% for the test set.

4.2 AsymmetricTrainingDataset: unicamp-dl/mmarco

The unicamp-dl/mmarco‡ dataset is a multilingual version of theMicrosoftMSMARCOpas-
sage ranking dataset [28], created by researchers at the University of Campinas (Unicamp) in

†https://huggingface.co/Helsinki-NLP/opus-mt-en-it
‡https://github.com/unicamp-dl/mMARCO
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Brazil[29]. This dataset is composed of 14 different languages, but we are interested only in
the Italian part. Each language is composed of about 39 million samples. Here is an example
from the Italian mMARCO.

1 {'query': "quale frutto è originario dell'australia",
2 'pos': ["Passiflora herbertiana. Un raro frutto della passione

originario dell'Australia. I frutti sono a buccia verde, a
polpa bianca, con una valutazione commestibile sconosciuta.
Alcune fonti elencano il frutto come commestibile, dolce e
gustoso, mentre altre elencano i frutti come amari e non
commestibili.assiflora herbertiana. Un raro frutto della
passione originario dell'Australia. I frutti sono a buccia
verde, a polpa bianca, con una valutazione commestibile
sconosciuta. Alcune fonti elencano il frutto come commestibile,
dolce e gustoso, mentre altri elencano i frutti come amari e

non commestibili."],
3 'neg': ["La noce di cola è il frutto dell'albero di cola, un

genere (Cola) di alberi originari delle foreste pluviali
tropicali dell'Africa."]}

The structure is the same as the QQP triplets dataset described in section 4.1, but with a
significant difference: each sample has only one negative.

The goal of this dataset is to implement the fine-tuning of the models we choose for the
asymmetric semantic search. To the best of our knowledge it is one of the best datasets for
semantic similarity for the presence of hard negatives instead of classical negatives. We decided
to use this dataset for the asymmetric semantic search section of this work only as training set.

4.3 AsymmetricValidation/TestDataset: Dbpedia-Entity-
v2

DBpedia-Entity-v2§, as explained by Hasibi et al. [3], is a standard test collection for entity
search over the DBpedia knowledge base and the dataset is available under the MIT license.
The dataset is provided by the hugging-face website (April 2024 version) ¶. DBpedia is a com-

§https://github.com/iai-group/DBpedia-Entity/
¶https://huggingface.co/datasets/mteb/dbpedia

32

https://github.com/iai-group/DBpedia-Entity/
https://huggingface.co/datasets/mteb/dbpedia


munity effort, where a set of rules are collaboratively created to extract structured informa-
tion from Wikipedia. DBpedia-Entity-v2 is designed to evaluate retrieval systems that return
a ranked list of entities in response to a free text user query. It was released in 2017 and is a
result of a collaborative effort between the IAI‖ group of the University of Stavanger, the Nor-
wegian University of Science and Technology, Wayne State University, and Carnegie Mellon
University.

The dataset is divided into 3 parts:

• corpus;

• queries;

• qrels.

Let us first talk about the corpus. This is composed of about 4.6Mdocuments coming from
the DBpedia collection, and the structure is the following: (id, title, text). I report an example
below.

1 {"_id": "<dbpedia:Animalia_(book)>",
2 "title": "Animalia (book)",
3 "text": "Animalia is an illustrated children's book by Graeme Base.

It was originally published in 1986, followed by a tenth
anniversary edition in 1996, and a 25th anniversary edition in 201
2. Over three million copies have been sold. A special numbered
and signed anniversary edition was also published in 1996, with an
embossed gold jacket."}

The queries of the collection are organized into four categories:

• SemSearch ES: these are short and ambiguous queries that search for a particular entity.
An example can be “Harry Pottermovie”. These are taken from the ad-hoc entity search
task of the Semantic Search Challenge series[30][31]

• INEX-LD: these are keywordqueries,muchmore like traditional InformationRetrieval.
An example can be “Eiffel”, which can refer to either the Italian music group (Eiffel 65)
or the Eiffel tower located in Paris, France. These are taken from the ad-hoc search task
in the INEX 2012 Linked Data track [32]

‖https://iai.group/
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• List Search: these are made to find a particular list of entities. An example can be “Win-
ners of the ACM Athena award”. These are taken from the list search task of the 2011
Semantic Search Challenge (SemSearch LS) [30], from the INEX 2009 Entity Ranking
track (INEX-XER) [33], and from the Related Entity Finding task on the TREC 2009
Entity track [34].

• QALD-2: these are classical questions in natural language. An example can be “Which
professional surfers were born on the Philippines?”. These are taken from the question
answering challenge on linked data [35]

This leads to a total of 467 queries, following a similar structure to the corpus, but now
without the title, i.e. (id, text). An example is presented in the following.

1 {"_id": "INEX_LD-20120112",
2 "text": "vietnam war facts"}

It can be seen that the _id field contains the name of the category towhich the query belongs.
This will be useful in our models.

The dataset comes with about 49.2k relevance judgments (which we will call “qrels”) that
are organized in the following way: (query-id, corpus-id, score). The score takes value in 0, 1,
2 with the following meanings:

• Highly relevant (2): the entity is a direct answer to the query (i.e. the entity should be
among the top answers).

• Relevant (1): the entity helps one to find the answer to the query (i.e. the entity can be
shown as an answer to the query, but not among the top results).

• Irrelevant (0): the entity has no relation to the intent of the query (i.e. the entity should
not be shown as an answer)

For the sake of our models, we decide to deal with highly relevant and relevant documents
as if they were the same. To do so, we assign the value of 1 to both relevant classes and keep
the zero value to the irrelevant documents. Our choice has been made for future work in the
context of RAG.

We decided to use this dataset for the asymmetric semantic search section of this work only
as a validation and test set. Since we are interested in the application of embeddings for the
Italian language, we translated the entire dataset (corpus and query texts) into Italian using
an open source transformer-based model made by the Language Technology Research Group
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Category #queries Type R1 R2

SemSearch ES 113 named entities 12.5 3.0
INEX-LD 99 keyword queries 23.5 9.2
ListSearch 115 list of entities 18.1 12.7
QALD-2 140 NL questions 28.4 29.8
Total 467 21.0 14.7

Table 4.1: Query categories in Dbpedia‐Entity‐v2. R1 andR2 refer to the average number of relevant and highly relevant
entries per query, respectively. This table has been taken from Hasibi et al.[3]

of the University of Helsinki specifically trained to translate from English to Italian, namely
opus-mt-en-it** [26] [27].

Sometime, this model had some trouble translating. This happens in some different cases:

1. Thenumber of tokens exceeds thewindowof themodel of 512 tokens (typically this case
where the lists of a certain topic); in this case, we tried to split the text by its punctuation
marks. If this is still not working, we save the original documents as an error document
and proceed with the translation in a second moment.

2. Handling characters coming from different languages results in really bad translations,
such as

Mores (in genere pronunciato / &lt; m2 &gt; m2 &gt; m2 &gt;
m2 &gt; m2 &gt; m2 &gt; m2 &gt; m2 &gt; m2 &gt; m2 &gt;
m2 &gt; m2 &gt; m2 &gt; m2 &gt; m2 &gt; m2 &gt; m2 &gt;
m2 &gt; m2 &gt; m2 &gt; m2 &gt; m2 &gt; m2 &gt; m2 &lt;
m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt;
m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt;
m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt;
m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt;
m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt;
m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt;
m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt;
m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt;
m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt;
m2 &lt; m2 &lt; m2 &lt; m2 &gt; m2 &lt; m2 &lt; m2 &lt;
m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt;
m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt;
m2 &lt; m2 &lt; m2 &gt; m2 &lt; m2 &lt; m2 &lt; m2 t;
m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt; m2 &lt;

**https://huggingface.co/Helsinki-NLP/opus-mt-en-it
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3. Some documents were just translated as:

== Note ==== Altri progetti ==== Collegamenti esterni ==* Sito ufficiale

with no evident pattern in these cases.

We decided to address this problem by deploying a Google Translate API where we spent
the free trial of 300$ to correct the errors made by the original model coming from Helsinki
University.
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5
Methodologies

5.1 Methodologies for the symmetric framework

Since the symmetric part is not the main focus of our work, we decided to just test the models
without fine-tuning them. This choice has been made for one main reason: budget. Consider-
ing that the company focus is to build anRAG applicationwhere the documents can last pages
and we expect the query to be much shorter, it makes no sense to use time and resources to try
to fine-tune the model for the symmetric dataset.

However, we used this part of the work to investigate the ability of our models to create a
good semantic space from queries of the QQP triplets dataset (as seen in section 4.1), which
are very similar to each other in terms of topic but far in terms of semantic meaning.

Because of the structure of the dataset we decided to count as relevant document only the
positive query and consider all the other documents as irrelevant. This leads to the following
choice of evaluation metrics:

• Recall@k: that tells us if the only relevant document has been retrieved in the first k
retrieved documents.

• MRR@k: that tells us the reciprocal of the retrieved position of the right documents
and zero otherwise.
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5.2 Methodologies for the asymmetric framework

5.2.1 Virtual machine with AWS

The company used AmazonWeb Services (AWS) to develop all its applications, so they giveme
the possibility to use a virtual machine to have more computational resources. In this service
there are a lot of different choices: we decided to go with an Ubuntu based machine with a
GPU called g5.xlarge with 24GB of vRAM and a pre-made deep learning setting to be able to
track the GPU usage with the terminal command nvidia-smi -l 1 that automatically up-
dates every second. In thiswaywewere able to select themax batch size possible for everymodel
to have the best possible estimation of the gradient. The choice of this particularGPUhas been
made with respect to the use of bfloat16 datatype. It was originally developed by Google and
is called the “Brain Floating Point Format”. The name comes from “Google Brain”, which is
an artificial intelligence research group at Google where the idea for this format was conceived.
The bfloat16 format uses 16 bit to represent a number (as in float16) but maintaining the orig-
inal range from float32. This is done by truncate the float32 to use only 7 bits for the decimal
places, allows for fast conversion to and from a float32, at the expense of precision but gaining
in speed. Figure 5.1 shown the differences between the three data types just described.

Figure 5.1: Comparison between the bits used for each data type: bfloat16 (bfloat16), double‐precision floating‐point
(float32) and single‐precision floating‐point (float16).

This datatype is supported only on some type of GPU, like the NVIDIAA10 ones adopted
in the g5 instances by AWS. This gives us a 3 times faster training only by adding a line of
command in our code when computing the gradients. We also tried to compile the model
using toch.compile() but we could not get the command to cooperate with models from
sentence-transformers library, so we decided to give up on that upgrade, which ideally would
have brought about a further improvement in terms of training time.
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5.2.2 Fine tuning

Initially the idea was to fine-tune in 3 ways:

• Add an adapter only on top if the query embedding [1], with the idea of letting the
model learn to map shorter documents (only the query) near the embeddings of longer
documents, to create a unique semantic space where both the query and the documents
lay close to each other.

• usingLoRA(LowRankAdaptation) fromHuet al.[36] tomimic the full fine-tuning of
the model without losing all the pre-trained initialization and use way fewer parameters.

• Both previous works combined to see how they cooperate each other and try to further
improve performance.

Figure 5.2: LoRA’s new parameters visualization.

We initially chose Low-Rank Adaptation
(LoRA) [36] since this fine-tuning method
provides an efficient method for adjusting
pre-trained models, thereby reducing the
high computational costs typically associated
with traditional fine-tuning approaches. It
is based on the concept of matrix decompo-
sition, which addresses the observation that
while the weight matrices in LLMs are typi-
cally high-rank, the updates required for fine-
tuning can often be represented as low-rank
matrices. By reducing the rank of these ma-
trices, the number of parameters requiring
training is significantly reduced, which in
turn lowers computational costs.

More than that, LoRA operates by freezing the pretrained weights of the model, allowing
for low-rank matrices to be injected into specific layers. This preserves the original knowledge
of the model while allowing it to adapt to new tasks. This makes it more resource-efficient.

LoRA decomposes the update matrix∆W into two smaller matrices, A and B, such that
A is of size d× r andB is of size r × d. The variable r, which represents the rank, is typically
much smaller than d, resulting in a significant reduction in the number of parameters requiring
adjustment, down to 2dr, particularly useful when r << d (and the rank is typically chosen
as a hyperparameter, so we just pick some low r values, e.g. 4, 8, 16,...).
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During training, the outputs are computed using both the original pre-trained weights and
the low-rankmatrices. Themodel then combines these components to produce a final output,
allowing the model to learn effectively with reduced computational resources.
In the end, we just save the weight ofA andB andmodify the pre-trained model parameter

one time just before use. This allows us to save in memory very few parameters, meaning less
memory requirements.

We exploited the peft * library from huggingface to fine-tune with LoRA adapters but the
computational burden was too heavy and we decided to drop it; more than this the library was
very instable to some longer documents, and sometimes theGPU crashed during the use of the
bigger model, even with 24GB vRAM.

These considerations lead to the use only of the first method, the one related to adding an
adapter on top of the query embedding, as seen in the survey by Gao et al.[1]. As an architec-
tural consideration, to ensure consistency with the pre-trained models, we added a normaliza-
tion layer after the adapter. A significant advantage of using only the adapter is that we need to
store only its parameters. This results in minimal memory usage, as the number of parameters
is limited to

embedding_dimension× (embedding_dimension+ 1)

for the linear adapter and

inner_dimension×(embedding_dimension+1)+embedding_dimension×(inner_dimension+1)

for the non-linear one.
For the largest model tested, namely bge-m3, the simpler linear adapter on top of the query

was not working as expected. We thought that this could be caused by two things:

• too big chunks;

• too little representation power by the adapter.

So we tried both by decreasing the chunk size of the biggest model to only 512 tokens or
using a non-linear adapter with inner dimension as a new hyperparameter.

Talking about the evaluation metrics, we stick to those cited in section 2.4.

*https://github.com/huggingface/peft
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5.2.3 Relational Database: dbpedia_ita

Looking at the structure of the dataset, we decide to create a Relational Database containing
the translated dataset of Dbpedia-Entity-v2 (section 4.3) and add some useful tables to deal
with the window sizes of the embedding models described in chapter 3.

We used the Python library called SQLmodel to interact and create our database, which is an
Object-RelationalMapping (ORM).AnORMis a programming technique that promotes the
integration of software systems adhering to the object-oriented programming paradigm with
Relational Database Management System (RDBMS) systems. We decided to use the SQLite
format to be able to store the file dbpedia_ita.db locally and to do versioning during the
process to avoid starting from zero each time and save time. The structure of the different
tables of the database can be seen in Figure 5.3.

Figure 5.3: An UML diagram describing the structure of the database.

The Doc class models documents in the system. The purpose of this table is to store doc-
ument metadata and provide flags for different types of chunking that may be applied to the
document. Chunks are created using an overlap of 100 tokens for multilinual-e5-large and
bge-m3 and an overlap of 50 for the LaBSE. Each document has the following fields:

• id (str): A unique string identifier for each document that serves as the primary key. It
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is also marked as unique, so that there are no duplicate IDs.

• title (str): A string field that stores the title of the document.

• text (str): A string field that contains the document’s full textual content.

• is_subsampled (bool): A Boolean field indicating whether the document has been sub-
sampled to be included in the index during the test phase, with a default value of False.

• has_labse_chunks (bool): A Boolean field indicates whether the document has been
processed into chunks for the LaBSE model. The default is False.

• has_me5_chunks (bool): A Boolean field indicating whether the document has been
processed into chunks for the multilingual-e5-large model. The default is False.

• has_bge_chunks (bool): A Boolean field indicating whether the document has been
processed into chunks for the bge-m3 model. The default is False.

The Query classmodels search queries that can be associatedwith documents for document
retrieval. This table is used to represent queries that users or systems can issue against the docu-
ment corpus. It can differentiate between queries used for training and those used for testing.

• id (str): A unique string identifier for each query, used as the primary key. This ensures
that each query in the system is distinct.

• text (str): A string field that stores the text of the query.

• is_test (bool): A Boolean field indicating whether the query is part of a test set. By
default, this field is False.

The Qrel class represents a query-document relevance judgment, which is used for the eval-
uation. This table is essential for relevance assessments, as it links queries to documents and
assigns them a relevance score.

• id (int): An autoincrementing integer that serves as the primary key, ensuring that each
record in the table is unique.

• query_id (str): A foreign key that references the id field in the Query table. This estab-
lishes a relationship between a query and its relevance assessments.

• doc_id (str): A foreign key that references the id field in the Doc table, linking a specific
document to a query.
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• score (int): An integer field that represents the relevance score of the document for the
query. Higher scores typically indicate higher relevance.

• is_test (bool): A Boolean field indicating whether this relevance judgment is part of a
test set. The default is False.

The class Chunk represents chunks or segments of documents, often created during pre-
processing.

• id (int): An auto-incrementing integer that serves as the primary key for the chunk.

• corpus_id (str): A foreign key that references the field id in the Doc table. This asso-
ciates the chunk with a specific document in the corpus.

• text (str): This field stores the textual content of the chunk.

• is_labse (bool): A Boolean field indicating whether this chunk was created using the
tokenizer from LaBSE model. The default is False.

• is_me5 (bool): A Boolean field indicating whether this chunk was created using the
tokenizer from the multilingual-e5-large model. The default is False.

• is_bge (bool): A Boolean field indicating whether this chunk was created using the tok-
enizer from the bge-m3 model. The default is False.

The database schema establishes several relationships between the tables:

• The table Doc is linked to the table Chunk through the field corpus_id, representing
the association between a document and its processed chunks, creating a one-to-many
relation between the 2 tables.

• The table Qrel connects queries from the table Query with documents from the table
Doc through foreign keys query_id and doc_id. This allows for relevance judgments
linking queries to documents. Specifically, this table is used to create a many-to-many
relation inside the database.

We selected this schema because we think it is well suited for the semantic search system,
taking inspiration from the structure of the Dbpedia-Entity-v2 dataset from Hasibi et al. [3].
The design supports training and testing tasks, chunking with various models, and relevance
judgments to facilitate ranking and evaluation, also including the different models.

43



5.2.4 Wilcoxon signed-rank test

In NLP research, statistical tests are essential to validate whether improvements in model per-
formance are statistically significant or due to random chance. This chapter focuses on the
Wilcoxon signed-rank test, that is, a non-parametric rank test for statistical hypothesis testing
used to compare the locations of two populations using two matched samples, in our case the
results of two models on the Dbpedia-Entity-v2 test set [3].
The choice of the Wilcoxon signed-rank test has been made since the non-normal distribu-

tion is often observed in NLP model performance metrics. Unlike parametric tests, which as-
sume a normal distribution of the data, non-parametric tests like theWilcoxon signed-rank test
do not require this assumption. This flexibility makes the Wilcoxon test particularly suitable
for our evaluations, since we tested the data’s normality, and it was not always the case.

We define the test hypotheses between two modelsX and Y as follows:

• NullHypothesisH0: There is no significant difference in performance between the two
models. Formally,

H0 : X − Y = 0.

This implies that any difference observed in performance is due to random chance.

• Two sided alternative HypothesisH1: There is a significant difference in performance
between the two models. Formally,

H1 : X − Y ̸= 0.

This suggests that the performance of one model consistently differs from the other.

In applying theWilcoxon signed-rank test, each data point in the two samples represents the
performance of the two models on a single instance from the Dbpedia-Entity-v2 test set. By
focusing on the relative differences between paired observations, theWilcoxon test allows us to
determine whether the observed differences in performance are statistically significant on our
data.

The test is conducted as follows:

1. For each test instance,we calculate thedifferencebetween theperformancemetric nDCG@10
of Model X andModel Y.

2. The differences are then ranked in ascending order, based on their absolute values. Zero
differences are discarded from the ranking and the ties are replaced with the average of
the respective ranks.
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3. After ranking the differences, 2 values are computed: T+ andT−, which are respectively
the sums of the ranks of positive and negative differences.

4. Finally, theWilcoxon signed-rank statisticW is calculated as the minimum between T+

and T−.

This test statisticW is then used to calculate the p-value in the following way:

1. First, we compute the mean

µW =
n · (n+ 1)

4
, (5.1)

where n is the number of samples minus the number of differences discarded.

2. Then we compute the standard deviation

σW =

√
n(n+ 1)(2n+ 1)−

∑k
i=1

t3i−ti
2

24
, (5.2)

where k is the number of tied ranks and ti is the number of samples that share the same
rank i.

3. The last step is to compute the z-statistic with the formula

z =
W − µW

σW

(5.3)

In our caseW is supposed tobenormally distributed, since the sample size is large (n = 400).
A very low p-value (typically p < 0.001) indicates that the differences in performance between
the twomodels are strongly statistically significant, allowing us to reject the null hypothesisH0

that the models perform similarly in the test set.
Using the Wilcoxon signed-rank test allows us to provide a robust statistical basis for com-

paring two selected models on the Dbpedia-Entity-v2 test set. By assessing whether observed
differences in retrieval performance are statistically significant, we can determine, for exam-
ple, if our fine-tuning approach yields genuine improvements in semantic search accuracy by
looking at the base model. The statistical significance of any performance gain is crucial for
validating that the observed model enhancements are not artifacts of random variability.

In our experiments, we applied this test to themainmetric in theDbpedia-Entity-v2 dataset:
nDCG@10.
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5.3 Vector Database

In our research, vector databases have proven to be a highly effective tool. These specialized
databases are designed to handle both structured and unstructured data types, including in-
tegers and text, while also managing their high-dimensional vector representations, thus their
embeddings. What distinguishes vector databases is their ability to facilitate efficient access and
search across these complex data structures.

The relevance of vector databases to our semantic search domain is due to three key advan-
tages. First, their efficiency is evident in their optimized design, which supports rapid searches
within high-dimensional spaces. Second, they offer impressive scalability, easily accommodat-
ing large datasets and handling high volumes of queries. Finally, they achieve high accuracy by
leveraging advanced algorithms that retrieve the most relevant and similar results.

5.3.1 Search Algorithm: Hierarchical Navigable SmallWorld
and Exact Search

In our project, we focussed on two specific search algorithms within the vector database: Hier-
archical Navigable Small World (HNSW) algorithm, first presented byMalkov et al. [37], and
exhaustive search.

Its older version, NSW, is a graph-based algorithm that finds approximate nearest neighbors
in a dataset. The general idea here is first to imagine many nodes in a network. Each node
will have short-, medium- and long-range connections to other nodes. When performing a
vector search, the algorithm begins at some pre-defined entry point. From there, it evaluates
connections to other nodes and jumps to the one closest to the one we hope to find. This
process repeats until our nearest neighbor is found.

HNSW is an approximate K-nearest neighbor search based on navigable small world graphs
with a controllable hierarchy (Hierarchical NSW,HNSW). It is fully graph-based, without any
need for additional search structures, which are typically used at the search stage of the most
proximity graph techniques. HNSW incrementally builds amulti-layer structure consisting of
hierarchical set of proximity graphs (layers) for nested subsets of the stored elements. Themax-
imum layer in which an element is present is randomly selected with an exponentially decaying
probability distribution. This allows producing graphs similar to NSW structures while addi-
tionally having the links separated by their characteristic distance scales. Starting search from
the upper layer together with utilizing the scale separation boosts the performance compared
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to NSW and allows a logarithmic complexity scaling. Thus, the HNSW algorithm provides a
smart solution for efficient similarity search in large datasets, since the hierarchical approach
makes HNSW highly efficient for both insertion and search tasks, which is particularly valu-
able when working with high-dimensional vector data. HNSW offers a viable alternative to
exhaustive search methods, which have become increasingly impractical in large datasets due
to the time required to calculate similarity scores across all entries. An overview of the search
process can be seen in Figure 5.4.

Figure 5.4: Hierarchical Navigable Small World (HNSW) graph structure demonstrating multi‐layered search with long‐range
and local connections for efficient K‐nearest neighbor search. This image is taken from Pinecone website.

Our implementation usedWeaviate†, a powerful vector database platform that offers robust
functionality, including local deployment through Docker, which proved to be particularly
practical for our work. Based on how models are trained, we used cosine similarity as our sim-
ilarity metric. We were able to compare both the HNSW and exhaustive search approaches,
as our dataset of 150,000 documents was manageable enough to allow both. Although the
exhaustive search produced the most accurate results, HNSW showed a substantial advantage
in speed. In chapter 6, we have reported the findings of both methods, providing a compre-
hensive comparison. Notably, in a production environment, HNSW would be the preferred
choice due to its scalability and efficiency.

†https://weaviate.io/
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6
Experiments and Results

6.1 Symmetric Results

In the task concerning the symmetric dataset, our approach was to perform feature extraction
across the selected models. This decision aimed to evaluate and compare the semantic repre-
sentation capabilities of both neural and non-neural models. The full results are presented in
Table 7.1 and Table 7.2 in the Appendix. Our discussion will center on our primary perfor-
mance metric: MRR@10.

By analyzing the histogram in Figure 6.1 of the results and considering the dataset structure
detailed in section 4.1, we observe that neural models consistently outperformed non-neural
ones. This outcome likely reflects the challenge non-neuralmodels face in capturing the dissim-
ilarmeanings of sentences that, while using similar keywords, have distinctly different concepts.
Keyword-based approaches, being limited to literal matches, struggle to interpret variations in
semantic content where the same terms may apply in varied contexts.

The results also show a remarkable consistency in the performance of neural models, regard-
less of their differences in the trainingmethodologies or underlying architectures. We hypothe-
size that this consistency is due to two key factors. First, the shortness of the queries minimizes
the likelihood of running into the limitations associated with a model’s context window, as
shorter text typically requires less contextual management. Second, the simplified nature of in-
dividual queries, as opposed to longer documents, allows for a more straightforward semantic
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Figure 6.1: An histogram giving a visual representation of the performance of the different models in the case of the exact
search for the symmetric case.

representation, leading tominimal performance variability betweenmodels. This suggests that
neural models may have a consistent advantage in scenarios where semantic understanding is
essential and contextual complexity is moderate, as observed in our symmetric dataset.

As illustrated in Figure 6.1, we evaluated twice the number ofmodels, half ofwhich included
the suffix ”_hy”, indicating hybrid search. Hybrid search combines the outcomes of a vector-
based searchwith BM25F– a keyword-based searchmethod from the BM25 family – by fusing
the two result sets. For this analysis, weused thedefault configuration forhybrid searchwithout
further exploration of hyperparameters, as our primary focus was on evaluating neural models.

The decision to include hybrid search was driven by its simplicity of implementation; it re-
quired only a single line of codemodification in the testing script forWeaviate’s vector database.
The results shown in Figure 6.1 suggest that the hybrid search slightly outperformed the stan-
dard vector-based approach. We hypothesize that this improvement may be attributed to the
structure of the dataset. Many semantically similar queries in the dataset often utilize overlap-
ping terms arranged in varied ways to convey equivalent meanings. Incorporating keyword-
based retrieval probably enhanced the system’s ability to capture these nuanced similarities,
thereby improving overall performance.
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6.2 Asymmetric results

Givenour twomain objectives, this section is divided into twoparts. Thefirst part addresses the
results of our fine-tuning process along with a detailed discussion of our fine-tuning method-
ology. Here, we analyze how effectively our approach adapts the model to our specific dataset,
focusing on the decisions and adjustments that optimize retrieval relevance.

The secondpart presents a comparative analysis betweenour fine-tunedmodels and theOpe-
nAI text-embedding-3-small model.

In these comparisons, we consistently use the nDCG@10metric as our primary measure, as
it captures the relevance of the top 10 retrieved documents, emphasizing how well each model
ranks relevant results at the highest positions. Table 7.3 and Table 7.4 in the Appendix pro-
vide the complete set of results for both parts of this section, offering a detailed view of model
performance across various configurations.

Figure 6.2: An histogram giving a visual representation of the performance of the different models in the case of the exact
search for the asymmetric case.
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6.2.1 Discussion on fine-tuning

Fine-tuning was performed only on a subset of the training dataset, as mMARCO is very large,
as discussed in section 4.2.
Referring to the documentation of sentence-transformer * library, we decided to choose

TripletLoss from the PyTorch library as the loss function for our model. This specific type
of loss function requires data to be organized into triplets composed of: a query, a relevant doc-
ument, and a non-relevant document. For this reason, each element of both the training and
validation datasets was processed to achieve this configuration. This procedure exponentially
increased the amount of data in the validation set, as all possible combinations between the
relevant and non-relevant documents in the table of the database described in subsection 5.2.3
had to be created.
We decided to limit the fine-tuning to only 5M training samples and use a validation set of

10k elements, which validates 5 times per epoch, to minimize the usage of virtual machines as
much as possible. We are aware that this method is not optimal, but performing a grid search
would have taken too much time, so it was conducted based on partial training.

We decided to focus solely on the learning rate as the hyperparameter to optimize, given the
limited computational resources and the need to avoid an excessively large grid search.
Looking at [38],wedecided to schedule the learning rate. Weused the function SequentialLR in

pytorch, linearly increasing the learning rate in the first 10% of the training phase and decreas-
ing cosinely in the remaining 90%, with the function CosineAnnealingLR. Linear increase
has been chosen to simulate a linear warm-up, and cosine annealing is frequently used by the
sentence-transformer library †. The plot of the full schedule is shown in Figure 6.3.
The learning rate is paired with the AdamW optimizer, which combines the classic Adam

algorithmwith weight decay. To avoid introducing an additional hyperparameter, we kept the
weight decay at its default value of 0.01.

The possible values of the hyperparameters used are presented in Table 6.1.
To perform the grid search, only one epoch was used instead of the total 10. Each epoch for

the LaBSE model lasts 3 minutes, while for the other two models, multilingual-e5-large and
bge-m3, it takes 10minutes per epoch. It should be noted that bfloat16was used as a data type,
which significantly accelerated the training. In fact, before switching data type, the times were
10 and 30 minutes, respectively, for the models mentioned above.

*https://sbert.net/
†https://sbert.net/
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Figure 6.3: Learning rate schedule plot, with the percentage of the used learning rate in y‐axis and over 100 iteration (example
with 10 hypothetical epochs with 10 iterations each).

The batch sizewas chosenwith the aimofminimizing computation time. This was achieved
bymanuallymonitoring the utilization of the availableGPUusing the command nvidia-smi
and conducting tests tomaximize its usage. Consequently, eachmodel has a different batch size,
as listed in Table 6.2, where the selected hyperparameters for all our models are detailed.

As mentioned in subsection 5.2.2, the number of parameters for each adapter is very small,
resulting in model files that occupy minimal memory. When initializing our custom embed-
ding model, it is sufficient to import the corresponding pre-trained model fromHuggingFace
and update only the adapter parameters with those obtained from our fine-tuning.

Model Adapter Learning Rate Adapter inner dim

LaBSE linear [5 · 10−6, 10−6, 5 · 10−5, 10−5, 5 · 10−4, None
10−4, 0.005, 0.001, 0.05. 0.01]

mult-e5-large linear [5 · 10−6, 10−6, 5 · 10−5, 10−5, 5 · 10−4, None
10−4, 0.005, 0.001, 0.05. 0.01]

bge-m3 linear [5 · 10−6, 10−6, 5 · 10−5, 10−5, 5 · 10−4, [512, 1024, 2048]non-linear 2.5 · 10−4,10−4, 0.005, 0.001, 0.05. 0.01]

Table 6.1: Hyperparameter tested for each model configuration.
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Model Adapter Learning Rate Batch size Adapter memory
LaBSE linear 0.005 256 2.25MB
mult-e5-large linear 0.001 128 4.00MB
bge-m3 linear 0.00025 128 4.00MB

bge-m3 non-linear 0.001 32 16.01MB(ReLU w/ 512 inner dim)

Table 6.2: Best hyperparameter selected for each model configuration.

The significant reduction in batch size for the bge-m3 model, after investigating the GPU
memory usage during training, is believed to be due to themodel’s large context window (8196
tokens). In fact, when very long documents were processed by the model, the allocated mem-
ory increased dramatically. To avoid this issue, we had to reduce the batch size to only 32 doc-
uments at a time.
Obviously, thememory usage of the adapter parameters varies depending on the embedding

size. For example, LaBSE is the lightest (with an embedding size of 768), while the adapters for
multilingual-e5-large and bge-m3 share the same size. However, when using a 2-layer adapter,
the memory usage increases accordingly due to the additional parameters.
The complete fine-tuning results with the hyperparameters listed in Table 6.2 can be viewed

in Table 7.3 and Table 7.4.
Similarly to the approach used in section 6.1, as we can see in Figure 6.2, we evaluated twice

the number of models, half of which included the suffix ”_hy”, indicating hybrid search. Hy-
brid search combines the outcomes of a vector-based search with BM25F – a keyword-based
searchmethod from the BM25 family – by fusing the two result sets. For this analysis, we used
the default configuration for hybrid search without further exploration of hyperparameters, as
our primary focus was on evaluating neural models.

We tested our models on the 400 queries of the Dbpedia-Entity-v2 test set, recording the in-
ference times using the fastest search method, which leverages the HNSW index. As explained
in subsection 5.3.1, this index is significantly more scalable for databases with a large number
of documents, at the cost of slight retrieval accuracy. As expected, the larger the model, the
longer the inference time, with a notable discrepancy compared to the OpenAImodel. The in-
ference times were measured locally on my personal machine, which is equipped with a laptop
GPU 1050Ti and a 9th-generation i5 processor. These times will inevitably improve on more
performant machines.

In the histogram in Figure 6.2, the results are statistically significant at 0.001% level in the
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comparisonbetween the fine-tuned andnon-fine-tunedmodels aremarkedwith the∗ (asterisk)
symbol, indicating where the p-value is less than 0.001.

Results from theWilcoxon signed-rank test showed that the fine-tunedmodel outperformed
its non-finetuned version for the twomodels LaBSE andmultilingual-e5-large, suggesting that
it retrieves more relevant documents within the top 10 results. This improvement is particu-
larly important in an RAG context, where retrieving high-quality supporting documents im-
proves the generation relevance score.

Our best model among all those presented is the multilingual-e5-large with a linear adapter,
fine-tuned by us, achieving an nDCG@10 of 53.89 and an average inference time of 47 mil-
liseconds per query.

As for thebge-m3model, unfortunately,wewereunable to improve its performancewith the
resources we had. This could be the subject of future investigations. We also decided to stop
trying to improve this model, as the results with multilingual-e5-large were quite promising.
We will discuss this in more detail in subsection 6.2.2.

6.2.2 multilingual-e5-large with adapter vs text-embedding-3-
small

We decided to test all our models with text-embedding-3-small. The only one worth testing
was our best model: multilingual-e5-large with an adapter.

Once again, we used the Wilcoxon signed-rank test to verify the significance of our results.
It turns out that our model is statistically better with a p-value < 0.05, which is indicated with
the $ (dollar) symbol. Although this is not an excellent result, considering that it was tested on
a relatively small test set (n = 400 samples), it is still a good outcome.
In the future, we could consider using our best fine-tuned model instead of the OpenAI

model, thus avoiding the costs associated with embeddings and API calls during usage. The
models we have presented are also capable of running on machines equipped only with CPUs,
although with significantly longer times for the computation of the query embedding. As for
the search in the database, it is still conducted through a Docker container that utilizes the
CPU.

From Table 6.3, we can observe that the inference times increase by an order of magnitude
when using OpenAI embeddings (615 ms compared to 47 ms for the multilingual-e5-large
model). This is due to both the API call to the client and the fact that the search must be
performed on embeddings with a size of 1536 instead of 1024. In a potential RAG application,
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Model Emebedding dimension Average search time
LaBSE linear 768 32 ms
multilingual-e5-large linear 1024 47 ms
bge-m3 1024 52 ms
text-embedding-3-small 1536 615 ms

Table 6.3: Average search times for the test set of 400 queries, based on the embedding dimension of each model.

this is highly relevant as we want the documents to be retrieved as quickly as possible, to then
be fed into a language model capable of extracting and reformulating the information present
in the documents. This second step takes more time because an LLM typically has manymore
parameters.
The cost of generating embeddings using the text-embedding-3-small model is 0.28 $ (via

batch processing tominimize API calls), as the 150,000 documents selected from theDbpedia-
Entity-v2 dataset consist of 13,782,932 tokens. However, it is important to note that each
user query incurs an additional API call. Although this cost is relatively low, as discussed in
chapter 3, it is not negligible.

The total cost of training the multilingual-e5-large model, including grid search (2 hours)
and training (1hour and40minutes) on a g5.xlargemachine costing1.258 $per hour, amounts
to 4.61 $.

On the other hand, embedding generation for other models was cost-free, as it was per-
formed in approximately one hour on my personal machine equipped with a 1050 Ti Mobile
GPU, as mentioned earlier.

Overall, these are very low costs, especially considering the improvement in the nDCG@10
metric and the significant reduction in document ranking errors achieved.
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7
Conclusion

The main objective of this thesis was to develop and evaluate a cost-effective semantic search
system for the Italian language by fine-tuning state-of-the-art multilingual embedding models,
specifically those featured in the MTEB benchmark leaderboard. The primary focus was to
create anoptimal semantic space for embeddingbothqueries anddocuments,with an emphasis
on asymmetric semantic search frameworks due to their relevance in future integrations with
RAG systems.

To achieve this goal, we compared state-of-the-artmodels (e.g. LaBSE,multilingual-e5-large,
bge-m3) with newly fine-tuned versions utilizing an adapter-based fine-tuning approach. In
particular, adapters were applied to query embeddings to enhance their alignment with docu-
ment embeddings, addressing the inherent semantic disparity between the two.

The models were trained and tested on diverse datasets, including Quora Question Pairs,
mMARCO, and Dbpedia-Entity-v2. Since two of these datasets were originally available only
in English, we leveraged a transformer-based model from Helsinki University for translation,
complemented by the Google Translate API to improve translation quality. Computational
resources were provided through Google Colab for the translation step and through AWS for
the fine-tuning stage.

We evaluated themodels usingmetrics such as nDCG@10 andMRR@10 and employed effi-
cient vector search algorithms such asHierarchicalNavigable SmallWorld (HNSW), alongside
exhaustive search, to ensure robust benchmarking. Despite resource constraints that limit the
database to 150,000 documents, the results provided valuable insights.
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Our fine-tuned models demonstrated statistically significant improvements over their base
versions for two out of three models. Specifically, adapter-enhanced multilingual e5-large and
LaBSE models outperformed their baseline counterparts with a p-value < 0.001. In particular,
the adapter-equippedmultilingualE5-largemodel alsooutperformedOpenAI’s text embedder-
3-small in our test set, achieving a p-value < 0.05. However, bge-m3 fine-tuning did not yield
improvements, highlighting potential limitations in its compatibility with the adapter-based
approach.
Although this thesis highlights the potential of adapter-based fine-tuning to improve seman-

tic search in Italian, several limitations emerged.
First, the relatively small size and limited diversity of the test dataset and the document

database could affect the generalizability of the findings. Expanding the experiments to include
larger datasets, such as the full Dbpedia-Entity-v2 or domain-specific corpora, could enable a
more comprehensive evaluation and help mitigate biases introduced by dataset constraints.
Second, the reliance on translation tools likeHelsinki’s neural translationmodel andGoogle

Translate API, though effective for this study, introduces potential artifacts or errors that could
distort semantic relationships. Future work could address this limitation by using prealigned
English-Italian datasets, trying to eliminate translation-related biases. Moreover, a domain-
specific dataset could be explored and those models could be evaluated to determine whether
they perform effectively only in general scenarios or are better suited for specific use cases, like
in legal or medical domains.
In addition, the study revealed model-specific limitations. For example, bge-m3 did not

show any improvement in adapter-based fine-tuning, suggesting compatibility issues. Further
investigation into the internal representations of such models could clarify why certain archi-
tectures fail to benefit from this approach.
Future research could build on this work in several ways. Exploring alternative fine-tuning

techniques, such as prompt-tuning or prefix tuning, might uncover more effective methods
for adapting models to specific tasks for Italian language. Investigation of failed fine-tuning
techniques might be further pursued. For example, by modifying the LoRA implementation
or trying to implement it manually, although the latter would require a lot of time.
Additionally, a reranking strategy could be implemented to increase the reliability of the

retrieved documents. This would further boost performance in our pipeline.
Furthermore, pre-processing stages like query rewriting could be integrated in the pipeline,

where we can prompt LLM to rewrite the queries providing further context to address any lack
of specific semantic load, thereby ensuring the optimal relevance of the generated answers.
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Another promising direction involves embedding the fine-tuned models into a complete
RAG pipeline. Such an integration would provide valuable insights into their performance
in real-world applications, particularly when tested on larger or specialized datasets, such as
legal or medical domains.
In addition, incorporating user-centered evaluation metrics would offer a more clear under-

standing of system effectiveness. Testing under adversarial conditions or with noisy queries
could further assess the robustness of the models.
Finally, making fine-tunedmodels and code publicly available could encourage community-

driven improvements and support the development of open-source alternatives to proprietary
embedding systems.
By addressing these limitations and exploring these future directions, subsequent studies

could advance semantic search capabilities for Italian and other languages, promoting more
accessible NLP solutions.
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Appendix

Model MRR@10 Recall@10
TF-IDF 35.25± 19.49 43.05± 24.52
BM25 37.49± 17.98 57.54± 24.43
LaBSE 46.88± 18.3 70.64± 20.74
LaBSE_hy 48.02± 18.26 72.09± 20.12
multilingual-e5-large 50.93± 17.8 76.36± 18.05
multilingual-e5-large_hy 51.34± 17.82 76.98± 17.72
bge-m3 51.43± 17.91 76.81± 17.81
bge-m3_hy 52.39± 17.79 77.74± 17.3

Table 7.1: Comparison of different models on various evaluation metrics for the symmetric case with exact search.

Model MRR@10 Recall@10
TF-IDF 35.25± 19.49 43.05± 24.52
BM25 37.49± 17.98 57.54± 24.43
LaBSE 46.51± 18.25 70.52± 20.79
LaBSE_hy 48.06± 18.23 72.44± 19.96
multilingual-e5-large 51.94± 17.97 77.08± 17.67
multilingual-e5-large_hy 51.45± 17.79 77.13± 17.64
bge-m3 51.76± 17.86 77.22± 17.59
bge-m3_hy 51.56± 17.69 77.59± 17.39

Table 7.2: Comparison of different models on various evaluation metrics for the symmetric case with HNSW search.
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