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Abstract

In this work, we consider the community detection problem on hypergraph networks. It of-
ten occurs that network information comes with additional attributes on nodes, which could
be used to improve our understanding of the network structure. We thus propose a proba-
bilistic generative model that is able to use the information about higher-order interactions as
well as the node attributes to infer the structure of the network. We demonstrate a variety of
cases where using ourmodel provides a significant advantage compared to themethods that do
not use any attribute information or the methods that infer network structure from attributes
alone. The proposed method is able to identify automatically if the attributes are informative
and discard them otherwise. We show the benefits of using our model on the link prediction
task when the given attribute is informative. The model comes with an efficient implemen-
tation that allows it to generalize to hypergraphs of large size both in terms of the number of
nodes and number of edges.
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1
Introduction

The notion of a hypergraph was first introduced in 1973 by Berge [1] as an extension to graph
approaches [2]. While a dyadic graph is a combinatorial structure that consists of vertices (or
nodes) and edges (or links) between these nodes, a hypergraph consists of vertices and hyper-
edges. The edges of a dyadic graph can connect only two nodes, whilst the hyperedges can con-
nect an arbitrary number of nodes of the hypergraph. The hypergraphs are also called higher-
order networks due to their ability to describe interactions of more than two nodes. In this
work, we use the words hypergraph, higher-order network, and network interchangeably un-
less otherwise specified.

The ability of hypergraphs to represent systems where group interactions are observed has
increased the interest of the machine learning community. Such systems include cellular net-
works [3], ecological systems [4], brain networks [5], human interactions [6], and drug recom-
bination [7]. The research in this area often focuses on studying the structure of higher-order
networks. These networks, however, often come with additional information about node at-
tributes that describe the properties of the nodes. Such properties could be the age, education,
or job title in human interaction networks or features of genes in biological networks. There-
fore, this work is dedicated to analyzing how to use the information about node attributes to
improve our understanding of higher-order networks.

Community detection is a powerful tool to study the mechanism driving the formation of
edges in the network. This is also the main focus considered in this thesis to address our goal
of modeling hypergraphs with the use of node attributes.
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We propose a probabilistic generative model that is capable of inferring the structure of hy-
pergraphs guided by the node attributes. We demonstrate that our approach is superior to
using only the hypergraph network information or only the attribute information in various
settings. Our proposed model can handle categorical or binary attributes and can be applied
to both weighted and unweighted hypergraphs. In addition, we demonstrate that the model
can handle overlapping communities as well as various network structures (assortative, disas-
sortative, and core-periphery). The computational complexity of our implementation is linear
in terms of the number of nodes and hyperedges of the hypergraph, whichmakes it efficient in
handling large hypergraph networks.
The code is publicly available at github.com/badalyananna/HyCoSBM. The main results

of our method are available as a preprint at [8].
The thesis is structured as follows:

• chapter 2 provides a reviewof the commonly usedmethods for community detection on
hypergraphs and themethods to incorporate node attributes into community detection
algorithms;

• chapter 3 describes in detail the models used in this thesis. The chapter starts with the
notation and mathematical definition of a hypergraph. The subsequent sections de-
scribe the Hy-MMSBM model used as a baseline and the HyCoSBM model, which is
our method to incorporate node attributes. The last section covers alternative methods
that were implemented but resulted in inferior performance;

• chapter 4 presents the main results obtained by our models on synthetically generated
data and real hypergraph networks. The last section shows the results obtained by alter-
native models;

• chapter 5 summarizes the main aspects of the work that have been carried out and gives
the outline of the possible future research directions.
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2
Related works

Mathematical frameworks that allow the representation of higher-order interaction, such as hy-
pergraphs, are an emerging topic in network science [9]. A variety of tools have been developed
for the analysis of higher-order networks, the most popular of them being community detec-
tion. The first part of this review is dedicated to the current methods available for community
detection on hypergraphs. In the second part, we describe themost commonmethods to incor-
porate node attributes in such community detectionmodels. In this part, we keep the notation
similar to the one used in the original paper, while starting from chapter 3, we introduce the
notation for the proposed method.

2.1 Community detection methods on hypergraphs

Community detection is one of the most popular tools for network analysis. There are several
types of network structures that a community detection algorithm can recover, such as assor-
tative, disassortative, and core-periphery. An assortative structure assumes that nodes within
one community interact mainly with the other nodes in the same community. A disassortative
structure assumes that nodes interact predominantly with the nodes from other communities.
A core-periphery structure presumes the presence of core nodes that have many connections
with the other nodes and periphery nodes that are only connected to a small number of core
nodes.

A plethora of methods have been developed to solve the community detection problem on
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dyadic graphs [10]. While there exist techniques to project a hypergraph into a dyadic graph
with the aimof applying established graphmethods for community detection, theymay induce
unwanted information loss [11]. Thus, a number ofmethods have been introduced to solve the
community detection or clustering problem directly on hypergraphs. Such methods include
non-parametricmethodswith hypergraphons, latent space distancemodels, latent classmodels,
tensor decompositions, flow-based models, spectral clustering, spectral embedding, and statis-
tical inference [12]. In this section, we discuss the most popular of these methods, namely
tensor decomposition, spectral clustering, and statistical inference.

2.1.1 Spectral clustering and tensor decomposition

One of the best-known algorithms for clustering on dyadic networks is theNormalized cut ini-
tially introduced for image segmentation by Shi andMalik [13]. It was shown that eigenvectors
of the normalized graphLaplacian corresponding to k smallest eigenvalues can be used to repre-
sent a graph in a k-dimensional Euclidean space. Algorithms similar to k-means can be applied
to partition these points. Zhou et al. [14] extended the classical spectral clustering approach
to hypergraphs. The authors approximate hypergraph normalized cut using real-valued relax-
ations. In line with the graph Laplacian, the authors introduced the hypergraph Laplacian,
which is based on the hypergraph normalized cut criterion. The hypergraph Laplacian is de-
fined as follows

L = I− 1
2
D−1/2HWHTD−1/2, (2.1)

where D is a diagonal matrix containing the node degrees, H ∈ R|V|×|E| is a binary incidence
matrix containing 1 if node v belongs to hyperedge e and 0 otherwise, andW is a diagonal ma-
trix containing hyperedge weights. Taking k smallest eigenvectors of the hypergraph Laplacian
allowed us to develop additional hypergraph embedding and transductive inference algorithms.

Ghoshdastidar et al. [15] propose a community detectionmethod for uniform hypergraphs
by introducing the notion of associativity maximization and formulating a problem as a ten-
sor trace maximization problem. The authors show that other methods, such as normalized
spectral clustering, non-negative tensor factorization, and hypergraph reduction by clique av-
eraging, become a special case of the proposed formulation. In addition, the authors provide
theoretical guarantees for the proposed algorithm under a planted partition model, which is a
specific type of a stochastic block model.

Another community detectionmethod onhypergraphs based on spectral clusteringwas pro-
posedbyAngelini et al. [16]. Themethod is basedon the generalizationof thenon-backtracking

4



matrix, which is defined for hypergraphs as

B(i→μ)(j→v) =

1 if j ∈ ∂μ \ i, v ̸= μ

0 otherwise.
(2.2)

Here, i, j = {1, . . . ,N} are node indices, μ, v = {1, . . . ,M} are hyperedges, ∂μ denotes a
set of nodes in a hyperedge μ. Thus, the Bmatrix shows the connections between each group
of hyperedges, and i → μ denotes the indices of nodes belonging to the hyperedge μ. The
size of the Bmatrix is k̂M× k̂M, where k̂ is the average number of nodes per hyperedge. The
eigenvectors corresponding to the largest q eigenvalues of the B matrix after the first one are
used to partition the nodes in q groups. This algorithm performs well only on extremely sparse
hypergraphs where the number of nodes is of the same order as the number of hyperedges.

Ke et al. [11] propose a community detection algorithm on hypergraphs based on the ap-
proximationof the low-rank tensor decompositionof thehypergraph adjacency tensor. The ap-
proximation is performed via regularized higher-order orthogonal iteration (reg-HOOI) algo-
rithm, which performs better compared to other tensor decompositionmethods likeHOSVD.
The results of the tensor decomposition are then used to perform k-means clustering to the
rows of the normalized factor matrix. In addition, the authors provide a theory for the degree-
corrected block model for hypergraphs that is used to generate hypergraphs and show consis-
tency in community detection of the clustering algorithms.

One of the limitations of these methods is that spectral clustering can be unreliable, espe-
cially when the difference between eigenvalues related to different communities is small, which
is true even on dyadic networks [10]. With hypergraphs, in addition to these issues, higher-
order decomposition of adjacency tensors can become prohibitively expensive, especially for
large networks. Another limitation of the methods based on spectral clustering is the assump-
tion of the assortative structure of the network. Lastly, these methods cannot detect overlap-
ping communities.

2.1.2 Statistical inference

Statistical inference uses the observation and ahypothesis of anunderlying structure to discover
properties of the graph, such as how the nodes are connected to each other [17]. It has become
a standard approach to use generative models that fit the data by maximizing the likelihood
of observing the graph given some model [10]. The simplest type of a model on graphs is the
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Erdős–Rényi randomgraphmodel, which assumes that any 2 nodes in the graph are connected
with probability p [18]. A simple but powerful extension to the random graph model is the
stochastic block model that has become the most popular generative model on networks [10].
Given a number of communities k the stochastic block model assumes that the probability
of the nodes in different communities being connected with each other is represented by a
symmetricmatrixw. In the case of an assortative structurewhere nodes interact onlywith other
nodes in the same community, thematrix becomes an identitymatrix. Such representation can
describe various types of structures, such as disassortative or core-periphery.

An example of such an approach on dyadic networks is a MULTITENSOR algorithm pre-
sented in [19]. In this work, De Bacco et al. proposed a mixed membership stochastic block
model for the inference of overlapping communities in directed multilayer networks. The
model assumed that outgoing and incoming memberships of each node i are described by vec-
tors ui and vi. An affinity matrix w(α) ∈ Rk×k shows the density of connections between com-
munities k for each layer α. Finally, the entries i, j of the adjacency matrixA for each layer α are
assumed to be extracted from a Poisson distribution with meanM(α) defined as

M(α)
i,j =

K∑
k,q=1

uikvjqw(α)
kq . (2.3)

To maximize the likelihood of observing all edges an efficient Expectation Maximization algo-
rithm is applied.

Contisciani et al. extended the MULTITENSOR approach to hypergraphs in [20]. In
this work, a hypergraph is represented as an adjacency tensor A with entries Ai1,...,id being the
weights of d-dimensional interactions. Themembership vector ui and affinity tensorw control
the Poisson distribution of hyperedge weights with a mean

λi1,...,id =
∑

k1,...,kd

ui1k1 . . . uidkdwk1,...,kd . (2.4)

With this formulation, we can see that the size of the affinity tensor w can become exponen-
tially large with the increase in the hyperedge size d. Thus, to reduce the dimensions of the w
parameter, the authors assume the assortative structure of the network. This makes it possible
to reduce the dimensions of w to D × K where D is the maximum hyperedge size and K is
the number of communities. However, evenwith this simplification themaximumnumber of
hyperedges has to be limited in practice due to the increasing computation complexity.
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Chodrow et al. [21] presented a probabilistic generative model for community detection
on hypergraphs based on a degree-corrected stochastic block model. An important feature of
the model is that hypergraphs are heterogeneous in hyperedge size and node degree. To fit
the model to the data, the authors introduce an approximate coordinate ascent scheme for
maximum likelihood estimation and formulate a modularity-like objective. The modularity
objectives are solved by adopting Louvain heuristics for graphs to hypergraphs. The Louvain-
like algorithms consist of 2 phases. In Phase 1, each node is initialized as a single cluster, and at
each iteration the node ismoved to the adjacent one if itmaximizes themodularity objective. In
Phase 2, the ”supernode” that unites all the nodes sharing the same label is formed. The phases
are repeated until no improvement can be reached. Similarly to other maximum likelihood
approaches, the resulting algorithm is not guaranteed to reach a global maximum.

Brusa and Matias [22] propose a stochastic block model for simple hypergraphs, that is hy-
pergraphs where the set of hyperedges consists of unique nodes. In contrast to the previously
discussed works, the authors assume the Bernoulli distribution of hyperedges, which can ac-
commodate only unweighted hypergraphs. The parameters of the model are inferred using a
variational Expectation-Maximization algorithm. However, due to computational considera-
tions, the introduced approach is applicable only to small hypergraphs.

To solve the computation complexity issues Ruggeri et al. [12] introduce the Hy-MMSBM
model. Similarly to MULTITENSOR, the distribution of hyperedge weights is controlled by
parameters u ∈ RN×K and w ∈ RK×K. This significantly reduces the computation complexity
compared toHypergraph-MT and allows inference of various network structures such as core-
periphery and disassortative. The computational efficiency and flexibility of the methodmake
it a viable option to use as a baseline for incorporating attributes. Thus, we describe this model
in detail in section 3.2.

2.2 Methodsto incorporatenodeattributes incom-
munity detection

There are works that focus on providing tools for the exploratory analysis of annotated hy-
pergraphs, such as [23], where the authors generalize the common methods used for dyadic
network analysis including centrality, assortativity, and modularity scores. However, to the
best of our knowledge, there have been few works in the literature that develop a community
detection model on annotated hypergraphs. Thus, we first review the important works on the
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methods that incorporate attributes in community detection models on dyadic networks and
then discuss the existing methods on hypergraphs.
There exist a number of works that provide a comprehensive survey on themethods used to

cluster attributed graphs [24, 25]. Chunaev [25] focuses on attributed social networks and clas-
sifies the existing methods of incorporating node attributes into community detection into 3
main categories namely early fusionmethods, simultaneous fusionmethods and late fusionmeth-
ods. Early fusion methods join network information with the attributes before applying a com-
munity detection procedure. An example of such an approach is a modification of the graph
adjacency matrix entries with weights that are obtained from the information about nodes.
The main benefit of this approach is that after obtaining a modified network any known algo-
rithm for the community detection can be applied. Late fusion methods carry out a separate
community detection process on the network part and attributes part and then merge the ob-
tained partitions. Similarly to the first method, this method can use the existing algorithms for
the main task. On the contrary, simultaneous fusion methods use network and attributes to-
gether in the community detection process and thus, require a separate implementation of the
algorithm. These methods usually modify the objective function of the existing community
detection algorithms to include the attributes term and in some sense they find a qualitatively
optimal solution while the methods described previously simply merge the attributes and net-
work together and the optimality of the merging procedure cannot be assessed properly.

Simultaneous fusion methods showed a significant improvement in the quality of detected
communities when the attributes are used on dyadic networks [26, 27]. Yang et al. [26] pro-
posed a method based on a generative model for networks. The network part is modeled by
assuming a Bernoulli distribution of the entries of the adjacency matrix of the graph. The
probability of observing the entry i, j of the adjacency matrix is

P{Ai,j = 1} = 1− exp(−
∑
c∈C

uic · ujc) ,

whereC is a set of all communities and u is a community membership parameter to be learned.
The attribute part is modeled by assuming a Bernoulli distribution of the attributes. The prob-
ability of observing the attribute kwith the node i is

P{Xik = 1} = 1
1+ exp(−

∑
c∈C βkc · uic)

. (2.5)

To join the 2 parts the authors assume conditional independence ofX andA given u and β and
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apply l1 regularization to the β parameter. The objective function then becomes

argmax
u≥0,β

LA + LX − λ|β|1 .

The function is maximized using the block coordinate ascent approach, that is updating ui
while keeping uj and β fixed and updating βwhile u is fixed. Thismethod, however, assumes an
assortative structure of the network, i.e. the nodes tend to interact only with the nodes from
the same community.

A similar approach is adopted byContisciani et al. [27] formultilayer networks. The entries
of the adjacency matrix for each layer are assumed to be extracted from a Poisson distribution
that depends on a community membership matrix u. The entries of the attributes matrix are
categorical and one-hot encoded; therefore, they are assumed to be extracted from a Multino-
mial distribution, which also depends on the umatrix. The probabilities are combined in line
with [26] and the final optimization problem is solved using an efficient EM algorithm. This
approach was shown to be flexible in predicting missing links and attributes as well as discover-
ing interpretable community divisions. In contrast to Yang et al. [26], the model can discover
the community structures other than assortative (i.e. disassortative, core-periphery). There-
fore, we adopt themain ideas from this approach in order to incorporate node attributes in the
community detection algorithm on hypergraphs.

Fanseu et al. [28] developed a community detection method on attributed hypergraphs
based on hypergraph convolution. This is an early fusion method that constructs a nonlin-
ear hypergraph adjacency matrix As using the information about attributes in addition to the
hypergraph structure. The convolution filter constructed using As is then applied to the node
attributes matrix X. The resulting matrix is normalized and the top k eigenvectors are used to
carry out k-means clustering. Although the definition of hypergraph Laplacian developed by
the authors is computationally more efficient than the one proposed by Zhou et al. [14], it
still suffers from the general limitation of the methods based on spectral clustering discussed
previously.

A simultaneous fusion method developed for text analysis was proposed by Du et al. [29].
Themethod is based on non-negative matrix factorization that joins the objectives for text clas-
sification and hypergraph clustering. The authors propose a block coordinate descent scheme
to minimize the joint objective function. Similarly to spectral clustering based methods, this
method allows only node clustering without considering alternative structures of the hyper-
graph network.
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The most recent work published by Li et al. [30] clusters attributed hypergraphs using k-
nearest neighbor augmentation to include the attributes information into the hypergraph. The
resulting augmented hypergraph is then partitioned using a random walk based model. This
approach is subject to the same limitations as other early fusion methods.
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3
Models

We have developed a model for community detection and inference in hypergraphs with the
possibility of incorporating information about node attributes. Our approach is based on sta-
tistical inference and uses a generative stochastic block model for hypergraph structure. We
add node attributes by encoding them into binary variables that are distributed according to
Bernoulli distributions. We then use a simultaneous fusion approach to maximize the joint
likelihood of both network structure and attributes. We model the network structure using
the Hy-MMSBM model [12], which we are going to describe in this section. Then, we pro-
pose amodel for the attributes and combine it with the one for the network structure to finally
describe our model, which we refer to as HyCoSBM. In the section 3.4, we present alternative
formulations of the model to incorporate attributes that were not as successful as HyCoSBM.

3.1 Notation

The hypergraph is represented as aH = (V,E,A), where

• V = {1, . . . ,N} is a set of nodes,

• E is a set of observed hyperedges with a hyperedge e ∈ E representing an arbitrary set of
two or more nodes inV,

• A is a vector containing the weights of edges, which are assumed to be positive integers.
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The set of all possible hyperedges is denoted as Ω. We further denoteAe as the weight of the
hyperedge e ∈ Ewith Ae = 0 if e ∈ Ω \ E.

To incorporate attribute information we represent the attributes on nodes as a matrix X ∈
RN×Z, where Z is the number of attributes, with entries equal to 1 if the node i has attribute
z and 0 otherwise. In principle, each attribute (i.e. job title) can have several discrete values
which are then one-hot encoded and stacked together.

3.2 Hy-MMSBM

The Hypergraph Mixed Membership Stochastic Block Model [12] (Hy-MMSBM) is a model
for detecting mixed-membership communities in hypergraphs. By using only the set of ob-
served hyperedges and their weights in input, it assigns membership vectors to nodes that de-
scribe how nodes are partitioned into overlapping groups. This means that each node can be-
long to several communities. The number of possible communities denoted asK is a hyperpa-
rameter of themodel, which can be selected usingmodel selection criteria. In our experiments,
we use cross-validation. The community structure is modeled using two main parameters:

1. u—anN×Kmembershipmatrix showing the extent to which a node i belongs to each
of the communitiesK. The matrix is non-negative.

2. w—aK×K affinity matrix controlling the likelihood that the nodes within one group
are to interact with the nodes from another group. If the nodes interact only with the
nodes in the same group, the affinity matrix becomes a diagonal matrix. This matrix is
also non-negative.

These two parameters control the Poisson distribution of hyperedge weights, which are pos-
itive and discrete quantities. Specifically, the likelihood of observing a hyperedge ewith weight
Ae is:

P(Ae|u,w) = Pois
(
Ae;

λe
ke

)
, (3.1)

where

λe =
∑

i<j:i,j∈e

uTi wuj =
∑

i<j:i,j∈e

K∑
k,q=1

uikujqwkq . (3.2)

The parameter ke is a normalization constant that depends only on the hyperedge size |e|. The
authors suggest the value of ke = |e|(|e|−1)

2

(N−2
|e|−2

)
which intuitively normalizes the number of

possible choices of nodes given the two existing nodes i and j.
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It is assumed that the hyperedges are conditionally independent, given the parameters u,w.
Hence, the probability of observing a hypergraph can be factorized into products of probabil-
ities of individual hyperedges as in Equation 3.1. Taking the logarithms and simplifying the
expressions, the authors derived the following expression of the log-likelihood:

L(u,w) = −C
∑
i<j∈V

uTi wuj +
∑
e∈E

Ae log
∑
i<j∈e

uTi wuj (3.3)

≥ −C
∑
i<j∈V

uTi wuj +
∑
e∈E

Ae
∑
i<j∈e

K∑
k,q=1

ρ(e)ijkq log

(
uikujqwkq

ρ(e)ijkq

)
, (3.4)

where the inequality is obtainedbyusing a standard variational approach via Jensen’s inequality
logE[X] ≥ E[log (X)] and introducing a probability distribution

∑
i<j∈e

∑K
k,q=1 ρ

(e)
ijkq = 1.

The equality is reached when
ρ(e)ijkq =

uikujqwkq

λe
. (3.5)

Therefore, maximizing Equation 3.4 is equal to maximizing Equation 3.3.

This can be performed efficiently using an Expectation-Maximization algorithm [32]. The
algorithm alternates between updating ρ and parameters (u,w). The following updates for u
and wwere obtained by setting the derivative with respect to each of the parameters to 0

wkq =

∑
e∈E Ae

∑
i<j∈e ρ

(e)
ijkq

C
∑

i<j∈V uikujq
uik =

∑
e∈E:i∈e Ae

∑
j̸=i∈e

∑K
q=1 ρ

(e)
ijkq

C
∑

j∈V,j̸=i
∑K

q=1 ujqwkq + λ(u)ik

. (3.6)

The authors show that with the efficient implementation, the complexity of the algorithms
is linear in terms of the number of nodesN and number of hyperedges |E| of the hypergraph.
Ruggeri et al. [12] conducted a number of experiments on synthetic datasets to show that
the accuracy of Hy-MMSBM in recovering community structure exceeded the state-of-the-art
approaches. The authors showed that the model is flexible in recovering both assortative and
disassortative community structures which could not have been previously studied. Moreover,
the computational efficiency of themodel makes it possible to use it on large hypergraphs. The
above-listed advantages of themodelmake it a good choice for a starting baseline to incorporate
node attributes.
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3.3 HyCoSBM

We propose HyCoSBM (Hypergraph Covariates Stochastic Block Model), which is capable
of using the information on node attributes for community detection and inference on hyper-
graphs. We call the structure of a hypergraph structural information and the node attributes
attribute information.

We model the two types of information probabilistically assuming the joint probability dis-
tribution conditioned on a set of latent variables θ. We denote the set of variables related to the
structural information θA and the set of variables related to the attribute information θX. It is
important to note that θA ∪ θX = θ, but θA ∩ θX ̸= ∅, which means that there should be at
least one shared latent variable so that it is possible to learn from both distributions. Finally,
we assume that the distributions are conditionally independent given the latent variables

P(A,X | θ) = PA(A | θA)PX(X | θX) . (3.7)

The factorization is analogous to the approaches on dyadic graphs presented in [27] and
[26]. Such an approach is advantageous as it allows for closed form solutions, as we will show
below. In addition, it also allows predicting both missing hyperedges and missing attributes,
which can be useful, for example, in case of corrupted data or prediction tasks.

3.3.1 Modeling hypergraph structure

To model the hypergraph structure we follow an approach analogous to the Hy-MMSBM
model described above. Thus, the latent variables controlling the distribution of hyperedge
weights are θA = {u,w}, where u is aN×K community membershipmatrix andw is aK×K
affinity matrix. The likelihood of the hypergraph is:

PA(A|u,w) =
∏
e∈Ω

Pois
(
Ae;

λe
ke

)
, (3.8)

where similarly to the Hy-MMSBMmodel

λe =
∑

i<j:i,j∈e

uTi wuj =
∑

i<j:i,j∈e

K∑
k,q=1

uikujqwkq . (3.9)
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The logarithm is up to constant terms:

logPA(A|u,w) =
∑
e∈Ω

− 1
ke

∑
i<j∈e

uTi wuj +
∑
e∈E

Ae log
∑
i<j∈e

uTi wuj (3.10)

The summationover the set of all possible hyperedgesΩ is in principle intractable. However,
using the same trick as in the Hy-MMSBMmodel [33], the first term in Equation 3.10 can be
rewritten in terms of C, the count of how many times each term uTi wuj appears in all possible
hyperedges, weighted by 1/ke. Specifically, C =

∑D
n=2

1
kn

(N−2
n−2

)
, with kn = n(n−1)

2

(N−2
n−2

)
in our

case. The log-likelihood is then simplified as:

logPA(A|u,w) = −C
∑
i<j∈V

uTi wuj +
∑
e∈E

Ae log
∑
i<j∈e

uTi wuj . (3.11)

3.3.2 Modeling attribute information

Tomodel node attributes,we assume that the communitymembershipsu regulate the attributes
on nodes. To allow this, we introduce a parameter β, which regulates the contribution of an
attribute z to community k. Thus, β is a K × Z non-negative matrix. Conceptually, the role
of the parameter β for the attributes matrix X is similar to the role of the matrix w for the hy-
peredge weights vector A. We model the probability of observing an attribute z on a node i
assuming an underlying Bernoulli distribution

πiz =
K∑
k=1

uik βkz . (3.12)

It is further assumed that the attributes are conditionally independent given the parameter
πiz. Therefore, the likelihoodof observing the covariatematrixX is theproduct of the following
probabilities

PX(X|u, β) =
N∏
i=1

Z∏
z=1

πxiz
iz (1− πiz)

(1−xiz) . (3.13)

To ensure valid values for the probabilities, i.e. πiz ∈ [0, 1] we introduce constrains uik ∈
[0, 1], ∀i, k and

∑K
k=1 βkz = 1, ∀z. After introducing these constraints, although the underly-

ing assumptions are the same as in the Hy-MMSBMmodel, the final model is different, as in
our case uik is constrained and represents the probability of a node i to belong to the commu-
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nity k.
This model allows inference using discrete and unordered attributes. Moreover, our defi-

nition of X allows stacking several discrete one-hot encoded attributes together, allowing for
several attributes per node. Formally, the dimension Z of the matrix X can be represented as
Z =

∑P
i=p zp, where P is a total number of unique attributes and zp is the number of discrete

values an attribute p can take. One can also considermodeling categorical attributes using only
one excluding attribute per node, i.e. each node can only be assigned one attribute value. This
formulation is discussed in section 3.4.

Another way to model different attributes would be adding new terms PX to the total like-
lihood, with PX encoding different types of distribution, e.g. Gaussian, Gamma, etc... This,
however, may increase the computational complexity of the model and may make the analyti-
cal derivations intractable. Thus, we do not explore this approach further.

3.3.3 Inference of latent variables

Given the probabilistic model in Equation 3.7 and having defined both of the underlying dis-
tributions in Equation 3.8 and Equation 3.13, we aim at inferring the set of latent variables
{u,w, β} to maximize the probability of observing both hyperedge weights A and attributes
matrixX. The standard approach of taking the logarithm of joint likelihood would lead to the
sum of the respective parts as follows:

logP(A,X | θ) = logPA(A | θA) + logPX(X | θX) . (3.14)

In practice, however, it has been shown that the performance of themodel might improve if
the contributions of theparts are properly balanced [27, 26, 31]. For this purpose, we introduce
a balancing parameter γ ∈ [0, 1] which balances the contribution of the network part and the
attributes part yielding the following log-likelihood

L(A,X | θ) = (1− γ)LA(A | θA) + γLX(X | θX) . (3.15)

As the value of γ cannot be known a priori, it can be learned using the standard techniques
for hyperparameter tuning. In our experiments, we use cross-validation, as also done for the
selection ofK.

Another reason for introducing the γ hyperparameter is that in our case the hypergraph part
is relatively larger in scale than the attributes part and the contribution of attributes is small if

16



γ is not tuned. It is important to highlight that the value of γ can be clearly interpreted only
in extreme cases when y = 1 meaning only attributes are used and y = 0 meaning only the
network part is used. As the hypergraph part is generally larger, using cross-validation often
yields high values of γ, i.e. γ = 0.99 to compensate for the difference, but this does not mean
that the network part is barely used.

Variational lower bound

Taking the logarithm of the partial likelihoods in Equation 3.8 and Equation 3.13 we get the
following expression for the total log-likelihood

L(A,X|θ) = −C
∑
i<j∈V

uTi wuj +
∑
e∈E

Ae log
∑
i<j∈e

uTi wuj

+
N∑
i=1

Z∑
z=1

xiz log

(
K∑
k=1

uik βkz

)
+

N∑
i=1

Z∑
z=1

(1− xiz) log

(
K∑
k=1

(1− uik) βkz

)
.

(3.16)

We use a standard variational approach to derive a lower bound for the summation terms
inside the logarithm in Equation 3.16. Introducing the probability distributions ρ(e)ijkl, hizk and
h′izk and using Jensen’s inequality logE[x] ≥ E[log x], we get the following lower bounds:

∑
e∈E

Ae
∑
i<j∈e

log
K∑

k,q=1

(
uikujqwkq

)
≥
∑
e∈E

Ae
∑
i<j∈e

K∑
k,q=1

ρ(e)ijkq log

(
uikujqwkq

ρ(e)ijkq

)
; (3.17)

N∑
i=1

Z∑
z=1

xiz log

(
K∑
k=1

uikβkz

)
≥

N∑
i=1

Z∑
z=1

xiz
K∑
k=1

hizk log
(
uikβkz
hizk

)
; (3.18)

N∑
i=1

Z∑
z=1

(1− xiz) log

(
K∑
k=1

(1− uik)βkz

)
≥

N∑
i=1

Z∑
z=1

(1− xiz)
K∑
k=1

h′izk log
(
(1− uik)βkz

h′izk

)
;

(3.19)

with equality reached when

ρ(e)ijkq =
uikujqwkq

λe
; hizk =

βkzuik∑
k′ βk′zuik′

; h′izk =
βkz(1− uik)∑
k′ βk′z(1− uik′)

(3.20)
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respectively. To derive Equation 3.19 we used the fact that uik ∈ [0, 1] and

1− πiz = 1−
K∑
k=1

βkzuik =
K∑
k=1

(1− uik)βkz .

This gives the lower bound on the total log-likelihood as

L(A,X|θ) := −C
∑
i<j∈V

uTi wuj +
∑
e∈E

Ae
∑
i<j∈e

K∑
k,q=1

ρ(e)ijkq log

(
uikujqwkq

ρ(e)ijkq

)

+
N∑
i=1

Z∑
z=1

xiz
K∑
k=1

hizk log
(
uikβkz
hizk

)
+

N∑
i=1

Z∑
z=1

(1− xiz)
K∑
k=1

h′izk log
(
(1− uik)βkz

h′izk

)
.

(3.21)

Optimization procedure

To ensure the constrains uik ∈ [0, 1], ∀i, k and
∑K

k=1 βkz = 1, ∀z are satisfied, we introduce
Lagrange multipliers λ(β) and λ(u) and obtain the following objective

Lconstr := L −
Z∑
z=1

λ(β)z

(
K∑
k=1

βkz − 1

)
−

N∑
i=1

K∑
k=1

λ(u)ik uik . (3.22)

To maximize this function, we use the Expectation-Maximization algorithm [32]. The al-
gorithm alternates between an expectation step updating the values of ρ(e)ijkl, hizk and h′izk while
keeping θfixed, and amaximization step thatmaximizes the lower boundwith respect to θ keep-
ing ρ(e)ijkl, hizk and h′izk fixed. The procedure is described in detail in Algorithm 3.1. The updates
for the variational parameters are given in Equations 3.20.

To derive updates for each parameter in θ, we set the derivative ofLconstr with respect to each
parameter to 0 and solve for it. The updates forw are straightforward to derive and are the same
as the Hy-MMSBM

wkq =

∑
e∈E Ae

∑
i<j∈e ρ

(e)
ijkq

C
∑

i<j∈V uikujq
, (3.23)

which is valid when γ ̸= 1.
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Algorithm 3.1HyCoSBM: EM algorithm
Inputs: hypergraph A, attributes matrix X, hyperparameters γ andK
Outputs: inferred (u,w, β)

u,w, β← init(u,w, β) : Randomly initialize the parameters
while convergence not reached

ρ, h, h′ ← update(ρ, h, h′) ▷ Equation 3.20
u← update(u) ▷ Solving Equation 3.26
if γ ̸= 1

w← update(w) ▷ Equation 3.23
end if
if γ ̸= 0

β← update(β) ▷ Equation 3.24
end if

end while

Solving for βupdateswe get the following expressionwhich includes theLagrangemultiplier

∂L
∂βkz

= γ
∑N

i=1 xizhizk
βkz

+ γ
∑N

i=1(1− xiz)h′izk
βkz

− λ(β)z = 0

βkz =
1

λ(β)z
γ

(
N∑
i=1

xizhizk +
N∑
i=1

(1− xiz)h′izk

)
.

By imposing the constraint
∑K

k=1 βkz = 1 we get the following update when γ ̸= 0.

1
λ(β)z

γ
N∑
i=1

K∑
k=1

(xizhizk + (1− xiz)h′izk) = 1

λ(β)k = γ
N∑
i=1

K∑
k=1

(xizhizk + (1− xiz)h′izk)

βkz =
∑

i(xizhizk + (1− xiz)h′izk)∑
i,k′(xizhizk′ + (1− xiz)h′izk′)

. (3.24)

Finally, we derive the update for u, which is the most complex derivation as it includes both
the hypergraph part and the attributes part. Setting the derivative ofLconstr with respect to u to
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0 we get the following equation

∂L
∂uik

= (1− γ)

−C ∑
j∈V,j̸=i

K∑
q=1

ujqwkq +
∑

e∈E:i∈e

Ae
∑
j̸=i∈e

K∑
q=1

ρ(e)ijkq
1
uik

+

+ γ

[∑Z
z=1 xizhizk
uik

−
∑Z

z=1(1− xiz)h′izk
1− uik

]
− λ(u)ik = 0

By setting

aik := (1− γ)C
∑

j∈V,j̸=i

K∑
q=1

ujqwkq + λ(u)ik ,

bik := (1− γ)
∑

e∈E:i∈e

Ae
∑
j ̸=i∈e

K∑
q=1

ρ(e)ijkq + γ
Z∑
z=1

xizhizk ,

cik := γ
Z∑
z=1

(1− xiz)h′izk .

we get the following equation to find the updates of u

∂L
∂uik

= −aik +
bik
uik
− cik

1− uik
= 0 (3.25)

aiku2ik − (aik + bik + cik)uik + bik = 0, 0 < uik < 1 (3.26)

As all the terms in the quadratic equation in 3.26 are non-negative, it can be easily verified
that the equation has two distinct and real solutions. Moreover, we can see that when γ ̸= 0
and γ ̸= 1, the only viable solution to the Equation 3.26 is the smallest root of the equation
which is guaranteed to be in the allowed range (0, 1). The largest root is always larger than 1,
thus we do not consider it here. Therefore, the Lagrange multiplier λ(u)ik is equal to 0 in this
case.

When γ = 1 the equation simplifies to

uik =
∑Z

z=1 xizhizk∑Z
z=1 xizhizk +

∑Z
z=1(1− xiz)h′izk

, (3.27)

which is also guaranteed to be within (0, 1), thus λ(u)ik = 0 also in this case.
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When γ = 0, the update is the same as with the Hy-MMSBM except for the Lagrange
multiplier

uik =
∑

e∈E:i∈e Ae
∑

j̸=i∈e
∑K

q=1 ρ
(e)
ijkq

C
∑

j∈V,j̸=i
∑K

q=1 ujqwkq + λ(u)ik

, (3.28)

which is activated to make uik = 1 whenever the value is exceeded. Therefore, our model can
be similarly powerful to the Hy-MMSBMwhen attributes are not used, but yielding a higher
γwith cross-validation would always guarantee improvement.

The EM algorithm is not guaranteed to converge to the global optimum. Thus, in practice,
we run the Algorithm 3.1 several times (20 times in our experiments) with different random
initializations and choose the result with the highest log-likelihood.

3.3.4 Implementation and complexity

The implementation of HyCoSBM algorithm is based on Hy-MMSBM as the main build-
ing blocks of the update formulas for u and w are the same. The algorithm scales favor-
ably with respect to both the number of nodes N and the number of hyperedges |E| due to
the efficient implementation using sparse binary incidence matrix B ∈ {0, 1}N×|E| to repre-
sent a hypergraph. Overall, the complexity is O

(
K(K + Z)(N + |E|)

)
with numpy pack-

age implementation in Python programming language. The implementation is available at
github.com/badalyananna/HyCoSBM.

3.4 Alternative formulations to model attributes

In section 3.3, we described themodel that allowsmultiple values for each type of the attribute
assuming their distribution is Bernoulli. Alternatively, one may want to allow exclusive at-
tributes, e.g. age, where only one value can be assigned to each node at a time. While the Hy-
CoSBM still allows for this and is more flexible to allow other formulations, we also considered
modeling attributes using a multinomial distribution, thus we call the modelMultinomial at-
tributes model. Here, we present the main steps of this approach and outline the main reasons
why we preferred the modeling approach described in section 3.3.
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3.4.1 Multinomial attributes model

In this case,X is aN×Zmatrix consisting of{0, 1} s.t.
∑Z

z=1 Xiz = 1, ∀iwhereZ is the number
of discrete values of the attribute. It is assumed that each entry of the matrix X is extracted
from a Multinomial distribution with parameter πiz =

∑K
k=1 uik βkz. Thus, the likelihood of

observing the matrix X becomes

PX(X|u, β) =
∏
i∈V

Mult (Xi; πi) , (3.29)

yielding the following log-likelihood of the attributes

LX(u, β) =
N∑
i=1

Z∑
z=1

xiz log(πiz) =
N∑
i=1

Z∑
z=1

xiz log

(
K∑
k=1

βkzuik

)
. (3.30)

Introducing a probability distribution hizk =
βkzuik∑
k′ βk′zuk′z

and using a standard variational ap-
proach yields that maximizing the log-likelihood in Equation 3.30 is equivalent to maximizing

LX(u, β, h) =
∑
i,z,k

xiz
[
hizk log(βkzuik)− hizk log(hizk)

]
. (3.31)

We need to enforce the following constraints on the parameters. For the community-
attribute interactions we need

∑Z
z=1 βkz = 1, ∀k, and for the community assignments∑K

k=1 uik = 1, ∀i and uik > 0, ∀i, ∀k. Therefore, we add Lagrange multipliers λ =

(λ(β), λ(u), μ(u)). Adding thehypergraphpart as described in subsection3.3.2. and theLagrange
multipliers, we get the following objective

L(U,W, β, ρ, h, λ) = (1− γ)

−C ∑
i<j∈V

uTi wuj +
∑
e∈E

Ae
∑
i<j∈e

K∑
k,q=1

ρ(e)ijkq log

(
uikujqwkq

ρ(e)ijkq

)
+ γ

∑
i,z,k

xiz
[
hizk log(βkzuik)− hizk log(hizk)

]
−
∑
k

λ(β)k

(
Z∑
z=1

βkz − 1

)
−
∑
i

λ(u)i

(
K∑
k=1

uik − 1

)
+
∑
i,k

μ(u)ik uik.

(3.32)
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We can see that now the constraint is not on the individual elements of uik but on the sum
over the dimension k, which increases the complexity of subsequent derivations. In addition,
there’s also a positivity constraint on uik.

While the updates for w remain unchanged, and the updates for β simplify to

βkz =
∑

i xizhizk∑
i,z′ xiz′hizk′

, (3.33)

the updates of uik could not have been derived in closed form. Therefore, we experimented
with 2 different approaches:

1. Solving for uik numerically.

2. Substituting w in the update equation for u to simplify subsequent derivations.

We now describe both of these approaches in detail.

Solving for uik numerically

The derivative ofL in Equation 3.32 with respect to uik is as follows

∂L
∂uik

=
1
uik

(1− γ)
∑

e∈E:i∈e

Ae
∑
j̸=i∈e

∑
q

ρ(e)ijkq + γ
Z∑
z=1

xizhizk

−
− (1− γ)C

∑
j∈V,j̸=i

K∑
q=1

ujqwkq − λ(u)i + μ(u)ik

and setting it to 0 yields

uik =
(1− γ)

∑
e∈E:i∈e Ae

∑
j̸=i∈e

∑
q ρ

(e)
ijkq + γ

∑
z xizhizk

λ(u)i − μ(u)ik + (1− γ)C
∑

j∈V,j̸=i
∑K

q=1 ujqwkq
. (3.34)
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Given the constraints λ(u)i −μ(u)ik we cannot solve the uik update in closed from. To simplify the
notation, we set

aik := (1− γ)C
∑

j∈V,j ̸=i

K∑
q=1

ujqwkq

bik := (1− γ)
∑

e∈E:i∈e

Ae
∑
j̸=i∈e

∑
q

ρ(e)ijkq + γ
∑
z

xizhizk ,

which gives

uik =
bik

λ(u)i − μ(u)ik + aik
(3.35)

To impose positivity constraint it is convenient to set uik ≥ α, where α ≥ 0 is an arbitrarily
small constant. Applying the positivity constraint further, we have

μik =


−λ(u)i − aik + bik

α if λ(u)i + aik ≤ 0

0 if 0 < λ(u)i + aik ≤ bik
α

−λ(u)i − aik + bik
α if λ(u)i + aik > bik

α .

(3.36)

This leads to the following function of uik in terms of λ(u)i which we call fik(λ(u)i )

uik = fik(λ(u)i ) =


α if λ(u)i + aik ≤ 0

bik
λ(u)i +αik

if 0 < λ(u)i + aik ≤ bik
α

α if λ(u)i + aik > bik
α .

(3.37)

We can now impose the summation constraint as

K∑
k=1

fik(λ(u)i ) = 1 ⇐⇒
K∑
k=1

fik(λ(u)i )− 1 = 0 (3.38)

Thus, we can solve for uik numerically by finding the roots of the Equation 3.38 using root-
finding algorithms.

In practice, however, this method was not guaranteed to converge to the solution, which
caused significant problems, especially for real datasets. Hence, we considered making some
modifications to the objective function, which we discuss below.
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Substituting w in the update equation

Similarly to the ideas presented in [27], we substitute the value of w present in the first part of
the total log-likelihood equation 3.32 with its update in Equation 3.23 as follows

−C
∑
i<j∈V

uTi wuj = −C
∑
i<j∈V

K∑
k,q=1

uikujqwkq

= −C
∑
i<j∈V

K∑
k,q=1

uikujq

∑
e∈E Aeρ(e)kq

C
∑

i<j∈V uikujq

= −
K∑

k,q=1

C
∑
i<j∈V

uikujq

∑
e∈E Aeρ(e)kq

C
∑

i<j∈V uikujq


= −

∑
e∈E

Ae

K∑
k,q=1

ρ(e)kq

K∑
k,q=1

ρ(e)kq = 1

= −
∑
e∈E

Ae

The term becomes a sum of all hyperedge weights and can be treated as a constant. The deriva-
tive with respect to the uik simplifies to

∂L
∂uik

=
1
uik

(1− γ)
∑

e∈E:i∈e

Ae
∑
j̸=i∈e

K∑
q=1

ρ(e)ijkq + γ
Z∑
z=1

xizhizk

− λ(u)i

Setting the derivative to 0 we get

uik =
1

λ(u)i

(1− γ)
∑

e∈E:i∈e

Ae
∑
j̸=i∈e

K∑
q=1

ρ(e)ijkq + γ
Z∑
z=1

xizhizk

 (3.39)
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By imposing the constraint
∑K

k=1 uik = 1 we get

K∑
k=1

uik =
K∑
k=1

1
λ(u)i

(1− γ)
∑

e∈E:i∈e

Ae
∑
j ̸=i∈e

K∑
q=1

ρ(e)ijkq + γ
Z∑
z=1

xizhizk


=

1
λ(u)i

(1− γ)
∑

e∈E:i∈e

Ae
∑
j ̸=i∈e

K∑
k=1

K∑
q=1

ρ(e)ijkq + γ
Z∑
z=1

xiz
K∑
k=1

hizk

 = 1

So the value of λ(u)i is:

λ(u)i = (1− γ)
∑

e∈E:i∈e

Ae
∑
j̸=i∈e

K∑
k=1

K∑
q=1

ρ(e)ijkq + γ
Z∑
z=1

xiz
K∑
k=1

hizk (3.40)

= (1− γ)
∑

e∈E:i∈e

Ae
∑
j̸=i∈e

K∑
k=1

K∑
q=1

ρ(e)ijkq + γ (3.41)

as
∑K

k=1 hizk = 1 and
∑Z

z=1 xiz = 1. Plugging λ(u)i back into the Equation 3.39 we get the
update for uik

uik =
(1− γ)

∑
e∈E:i∈e Ae

∑
j̸=i∈e

∑K
q=1 ρ

(e)
ijkq + γ

∑Z
z=1 xizhizk

(1− γ)
∑

e∈E:i∈e Ae
∑

j ̸=i∈e
∑K

k=1
∑K

q=1 ρ
(e)
ijkq + γ

. (3.42)

In practice, this methodwas unstable on synthetic datasets and that is why we have not fully
resorted to it. Instead, we applied the updates without substituting w and resorted to the root
finding technique as shown in the Equation 3.38 until the method stopped converging and
then switched to the updates with substitution as defined in Equation 3.42.

This showed a poor performance on some real datasets, which was inferior to the model
that did not use any attributes. Themain reason for such behavior could be because themodel
where the entries of themembershipmatrix u are normalized to be equal to 1 does not take into
account the degree of the nodes. We thus reformulated the model to apply degree correction,
which we discuss below.
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3.4.2 Multinomial attributes model with degree correction

Some nodes have more connections than other nodes in the network, which is expressed by
the node degree. While other models discussed above took this information into account by
varying the magnitude of the ui vector for each node, normalizing the ui vectors eliminated
this benefit. Thus, keeping the community membership matrix u with constraint over the
communities axis

∑K
k=1 uik = 1, ∀i, we introduce a vector φ ∈ RN, which takes into account

the difference in node degree.
This changes only the parameters related to the network part. The parameter λ(e) which

controls the Poisson distribution of hyperedge weights becomes

λe =
∑

i<j:i,j∈e

φi φj u
T
i wuj =

∑
i<j:i,j∈e

K∑
k,q=1

φi φj uikujqwkq . (3.43)

We, therefore, have a new parameter φ to update. Doing the derivation as shown previously,
we get the following updates for φ, u,w and ρwith β parameters unchanged

φi =

∑
e∈E:i∈e Ae

∑
j̸=i∈e

∑K
k,q=1 ρ

(e)
ijkq

C
∑

j∈V,j̸=i φj
∑K

k,q=1 uikujqwkq
(3.44)

uik =
(1− γ)

∑
e∈E:i∈e Ae

∑
j̸=i∈e

∑
q ρ

(e)
ijkq + γ

∑
z xizhizk

λ(u)i − μ(u)ik + (1− γ)Cφi
∑

j∈V,j̸=i φj
∑K

q=1 ujqwkq
(3.45)

wkq =

∑
e∈E Ae

∑
i<j∈e ρ

(e)
ijkq

C
∑

i<j∈V φiφjuikujq
(3.46)

ρ(e)ijkq =
φi φj uikujqwkq∑

i<j∈e
∑K

k,q=1 φi φj uikujqwkq
=

φi φj uikujqwkq

λe
(3.47)

Similarly to theMultinomial attributes model without degree correction, we can try solving
for uik in Equation 3.45 using root finding techniques. However, we are faced with a similar
problem of non-convergence and instability. Therefore, adopting the same techniques as for
the model without degree correction and substituting w, we can simplify the uik updates as in
Equation 3.42.

This model showed significant improvement over the model that didn’t use the degree cor-
rection; however, it still remained unstable due to the complicated optimization procedure.
Therefore, we resorted to the HyCoSBM because of its simplicity and stable results.
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We must also note that our initial experiments with synthetically generated data contained
an error in the data generation procedure, which resulted in unstable hypergraphs. Therefore,
we discarded the model with degree correction that used the Equation 3.42 for the uik updates.
Having discovered the error, we didn’t replicate the experiments with the current model on
synthetic data due to the lack of time. Considering the fact that on real datasets themodel with
degree correctionperformed similarlywell to theHyCoSBM, it could still be a valid choice, and
more research needs to be done in this direction. We discuss the experiments with the models
presented in this section in detail in section 4.3.

28



4
Experimental results

To demonstrate the validity of our approach, we have carried out two types of experiments:
experiments on synthetically generated data (section 4.1) and experiments on real datasets (sec-
tion 4.2). In this chapter, we give a detailed description of the datasets used and analyze the
performance of the HyCoSBM model comparing it to various baselines including the Hy-
MMSBM model described in section 3.2. The section 4.3 discusses the experiments with al-
ternative model formulations described in section 3.4.

4.1 Experiments on synthetic hypergraphs

This section is dedicated to the experiments with synthetically generated hypergraphs. First,
we describe the process of data generation to create synthetic networks. We then proceed with
comparing ourmodel to themodel that didnot use any attributes in input aswell as considering
using only attributes for the community detection task. We show that our model provides a
significant advantage compared to both baselines.

4.1.1 Synthetic data generation

We generate synthetic hypergraphs with a pre-defined community structure using the Hy-
MMSBM based sampler presented in [33, 34]. We tuned the parameters of the sampling al-
gorithms to generate networks where the inference with the Hy-MMSBM alone is non-trivial
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in order to better assess the usage of attributes.
The parameters used for network generation were set as follows:

• Number of nodesN = 500

• Number of hyperedges |E| = 2720

• Number of communitiesK = {2, 3, 5, 10}.

In addition, we set a dimension sequence that specifies the number of hyperedges of each
size as dim_seq = {2: 300, 3: 300, 4: 200, 5: 200, 6: 150, 7: 150, 8: 150, 9:

150, 10: 120, 11: 120, 12: 120, 13: 120, 14: 100, 15: 100, 16: 100, 17: 100,

18: 80, 19: 80, 20: 80}.
With the given parameters we created a membership matrix u ∈ RN×K and assigned a com-

munity to each node i uniformly at random so that uik = 1 if the node i belongs to the com-
munity k and uik = 0 otherwise. We generated networks with the assortative structure with
the nodes in one group interacting only with each other and thus set an affinitymatrixw to the
identity matrix IK ∈ RK×K. Finally, we generated 10 random networks of each configuration.
As the sampler is based on theMonte Carlo sampling technique, we increased the default num-
ber of burn-in steps to 100000 to ensure that the procedure converged. Each next sample was
generated from the same generator by applying 1000 more burn-in steps.

We then proceeded to generating attributes matching the community structure. In our
experiments, we set the number of communities equal to the number of attributes so that
K = Z. The matrix X is then generated by first setting it equal to u and then randomly shuf-
fling the proportion 1 − ρ of the attributes. The attributes were generated with ρ ranging in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. As in the case of the network, we generated 10 ran-
dom samples of attributes of each configuration.

4.1.2 Experimental setup

Our goal is to compare the performance of HyCoSBMwith the baseline model Hy-MMSBM
in the community detection task. Moreover, wewant to show thatHyCoSBMperforms better
than using attributes alone; that is, it is capable of efficiently using both structural and attribute
information. For this reason, we aim to compare the attributesmatrixX and communitymem-
bership matrices obtained by HyCoSBM andHy-MMSBM.

A natural choice in this case is using cosine similarity with the ground truth matrix ugt used
to generate the data. It is important to note that the communities in the inferredmatrixumight
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Figure 4.1: Community detection in synthetic hypergraphs. The graphs show a cosine similarity between the ground truth
membership matrix and the membership matrices inferred by HyCoSBM and Hy‐MMSBM algorithms in synthetic networks
withN = 500 and |E| = 2720. The number of attributes Z is equal to the number of communities K. Hyperparameter
γ is set equal to the proportion of non‐shuffled attributes. The Only attributes line shows the cosine similarity between the
attributes matrix X and the ground truth membership matrix ugt.

be permuted notmatching the ugt. A simple solution to this problem is permuting the inferred
matrix u until we get the best possible match with the ugt and compute the cosine similarity
between them.

TheHy-MMSBMmodel was run with each of the generated hypergraphs. TheHyCoSBM
model was run with each hypergraph attribute configuration pair, which resulted in a total of
100 runs per each ρ andK. The value ofK in each experiment corresponded to the number of
ground truth communities. The value of γ hyper-parameter was set equal to the proportion of
non-shuffled attributes ρ.

4.1.3 Results

The results are summarized in Figure 4.1. It is clearly seen that when the attributes match
the community structure by ρ > 0.4, the HyCoSBMmodel performs better than using only
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network information or only attribute information. We can see that the gap is particularly large
when the correspondence with communities is between (0.4, 0.8), which shows the strength
of our model in leveraging network and attribute information.

In cases when ρ > 0.8, we can see that as attributes already provide a good description
of community structure, the advantage in using the network part decreases. Thus, while the
HyCoSBM still performs better thanOnly attributes, the gap between them decreases.

When ρ < 0.4, theHyCoSBMperforms slightly worse than theHy-MMSBM, especially in
cases when the gap between the attributes and theHy-MMSBM is large. This shows that when
attributes absolutely don’t reflect the community structure, their usage provides no benefits,
and in practice we can solve the issue by cross-validating the appropriate value of γ, as we show
later with real hypergraphs.

Overall, the performance of HyCoSBM monotonically increases with the increase in the
quality of the attribute information and always remains higher than using the attributes alone.
It also remains higher than using only the network information when the attributes are infor-
mative. Thus, we can conclude that on synthetic datasets, the HyCoSBMmodel successfully
leverages both network and attribute information to improve community detection.

4.2 Experiments on real hypergraphs

Wehave carried out experiments on various real attributed hypergraphs to show the advantages
of using our approach in practice. This section is structured as follows: first, we describe the
experimental setup with real datasets and then provide the analysis and results for each of the
datasets used. The results are divided into two parts: one for the datasets and attributes where
the use of the HyCoSBMmodel showed positive improvement and the other for those where
the usage of themodel didn’t contribute positively to inference. The real datasets come from so-
cial, political, and biological domains to illustrate the wide applicability of our method. These
datasets include:

• Contact datasetswhere hyperedges represent groups of people that were in close proxim-
ity to each other at some point in time in different settings. The results for these datasets
are reported in subsections 4.2.2 and 4.2.3 as some of the attributes were informative
while others were not.

• Political datasets show co-sponsorship of bills or co-participation in a committee byU.S.
Congress members. The node attributes are political parties. As these attributes were
uninformative, we report the results in a dedicated subsection 4.2.3
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• Gene Disease associations where nodes of the hypergraph are genes, and the diseases are
represented by hyperedges. The results are reported in subsection 4.2.2

• Enron Email dataset shows senders and receivers of emails in a hyperedge. The results
are shown in subsection 4.2.2.

4.2.1 Experimental setup

Unlike the case of synthetic data, with real datasetswedonot have access to ground truth. Thus,
we evaluate the performance of various models on a hyperedge prediction task. We infer the
model parameters using only a portion of the hyperedges and use the AUCmetrics to evaluate
the ability of the model to predict the held-out hyperedges.

Given a set of hyperedges, the AUC metric is computed by comparing the probabilities as-
signed by the model to a hyperedge present in the set with the probabilities assigned to a ran-
domly generated hyperedge. For each hyperedge of a given size, we generate a hyperedge of the
same size uniformly at random and compute their Poisson probabilities. These probabilities
are then saved in a vector R1 for the observed hyperedges and a vector R0 for the randomly
generated ones. To compute the AUC, we then compare these vectors as follows

AUC =

∑
(R1 > R0) + 0.5

∑
(R1 == R0)

|R1|
,

where
∑

(R1 > R0) is thenumber of times theprobability of observing an existinghyperedge is
higher than the probability of observing a randomly generated one according to ourmodel, and∑

(R1 == R0) is the number of times these probabilities are equal. |R1| is the total number
of comparisons made, which is equal to the total number of hyperedges in the set. Therefore,
higher values of AUC indicate better predicting capabilities of the model. We also note that
due to the way the metric is scaled, the value near 0.5 is the lowest possible value, which means
that the probabilities outputted by the model are equal to a random prediction.

We choose the model hyperparameters K and γ with 5-fold cross-validation. In our
experiments, we varied the values of K from 2 to 30 and used the values of γ in
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.995, 1.0}. We added high values
of γ in order to better balance the contributions of the network and the attributes part, as the
former usually significantly exceeds the latter.
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The hyperedges are divided into train and test sets with the respective proportions of 80%
and 20%. After the splitting, it might happen that some nodes present in the test set are not
present in the train set anymore. This often happens with sparse datasets; therefore, in order
to get fair results, we eliminate the nodes not present in the train hyperedges from the test set.
Otherwise, the model that uses the attributes has a slight advantage compared to other models
as it contains the information about these nodes that comes from attributes. For each cross-
validation fold, the model is fit on the train set, and the AUC is computed on the test set. The
best hyperparameters are chosenbasedon the average over 5 cross-validation folds. These values
and their standard deviation are further reported as the best result.
To assess the improvement in using attributes withHyCoSBM,we compare themodel with

three baselines:

1. The Hy-MMSBM model defined in section 3.3. The model uses only the hypergraph
part and thus serves as a valid baseline.

2. The HyCoSBMmodel with γ = 0. This is equivalent to not using any attributes. This
case is different from theHy-MMSBMmodel due to the constraints on themembership
vectors ui, s.t. uik ∈ [0, 1], ∀k.

3. Fixing community memberships u to be equal to the attributes matrix X and inferring
only the affinity matrix w, which is equivalent to using only the attributes. In this case,
the HyCoSBM and the Hy-MMSBM are exactly the same in theory; however, in prac-
tice, HyCoSBM is more numerically stable, so we used it in our experiments.*

We assume an assortative network structure and set the model parameter assortative =
True, which initializes off-diagonal elements of the affinity matrix w to 0. This is done in all
experiments except the Enron Email dataset, which presumes a core-periphery structure of
the network. Due to the computational and time constraints, the range of K and γ in cross-
validationwas also reduced for the Enron Email dataset. Based on the previous results reported
in [12], we cross validated only withK = 2 and γ = {0.5, 0.9}.
In addition, we measure the similarity of community partitions detected either with the at-

tributes or with a partition obtained by another method. For this purpose, we compute the
cosine similarity measure by averaging the cosine similarity of themembership vectors for each
node i ∈ V. It is important to note that, unlike synthetically generated networks where the
number of communities was equal to the number of attributes, in the case of real data, the

*The numerical stability comes from the fact that HyCoSBM was tuned to handle small values of uik, while
Hy-MMSBM implementation does not consider these cases as the entries of uik do not reach values close to zero.

34



communities detected by one model may be different from another and also different from
the number of attributes. Therefore, in this case, when we compare the cosine similarities, we
pad the smaller vector with 0 until the sizes of the vectors are the same.
All the plots that showhypergraphs in this sectionwere obtained by projecting a hypergraph

into a dyadic graph using clique expansion. The plots were created by using the HGX library
[34].

4.2.2 Performance with informative attributes

This subsection shows the results where the use of attributes with the HyCoSBM model
showed improvement in the hyperedge prediction task measured by AUC.

Contact datasets

Contact datasets contain data about human close proximity interactions using the data ob-
tained from wearable sensor devices. The hyperedges represent the people that were within a
certain distance from each other at some point in time. We used four datasets of this type:

• High School shows the interactions of students in a high school. The students are nodes
of the hypergraph and each has 4 attributes: class, sex, has facebook, and has compiled
questionnaire;

• Primary School shows the interactions of students and teachers in a primary school. The
attributes are class and sex;

• Workplace shows the interaction of co-workers in a workplace with attributes being the
departments;

• Hospital shows the interactions of patients and staff in the hospital. The attributes called
status show the role of the person in the hospital, such as a patient, a doctor, a nurse, etc.

It has been previously shown that the models that use only the structural information per-
form well on the hyperedge prediction task on these datasets [12, 20, 21]. Therefore, we vary
the amount of the structural information available to the algorithm in order to estimate the per-
formance in real-world scenarios when we do not have access to the complete data. This allows
us to study how having information about attributes can compensate for the sparse structure
of the network. Therefore, we eliminate an increasing fraction of the hyperedges until the hy-
pergraph remains connected and perform 5-fold cross-validation on the remaining network.
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Figure 4.2: Hyperedge prediction in contact datasets with partial hyperedges. The graph charts illustrate the performance
of HyCoSBM and three baselines in the hyperedge prediction task measured by the AUC. The performance of HyCoSBM
that uses the attributes stays high, while the performance of the methods that do not use attributes drops as the availability
of hyperedges declines.
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Figure 4.3: Communities detected in High School dataset with 100% of hyperedges used and the attribute Class. In the first
row, we can see the classes used as attributes and their labels. In the second raw, the communities detected by HyCoSBM
and Hy‐MMSBM are shown.

The results of this experiment are illustrated in Figure 4.2. We can clearly see that while the
performance of HyCoSBM stays at approximately the same level as the proportion of hyper-
edges available to the algorithm is being reduced, the performance of Hy-MMSBM and Hy-
CoSBM with γ = 0 drops significantly. The difference is particularly large for High School
and Primary School datasets where having only 10% of hyperedges, HyCoSBM outperforms
Hy-MMSBM by approximately 0.17 and 0.11 points of the respective AUC scores.

Even in the case when all hyperedges are available, we can see that the AUC score of the Hy-
CoSBMmodel is higher than the others, and it remains the highest also when the hyperedges
are removed on Hospital andWorkplace datasets. On Hospital dataset, the AUC score of Hy-
CoSBM is larger than Hy-MMSBM by 0.02, and onWorkplace, the difference is almost 0.06.
Moreover, the value of γ = 0.995 in the later case indicates a strong use of the attributes by the
model.

When the performance ofHyCoSBM is similar to themodels that do not use any attributes,
the detected communities are nevertheless different. For example, in the High School dataset,
the cosine similarity between the matrix X based on attribute class and the community mem-
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bership matrix u inferred by HyCoSBM is 0.95 while the cosine similarity u inferred by Hy-
MMSBM with the same attribute matrix is only 0.54. The communities detected by these
models with all hyperedges available in theHigh School dataset are shown in Figure 4.3, where
we can see that the communities inferred byHyCoSBM are almost analogous to the classes. In
contrast, Hy-MMSBM finds a finer partition with a much larger number of communities K,
which still performs similarly well in terms of AUC.

The difference in correlation with attributes between the communities detected by Hy-
CoSBM and Hy-MMSBM together with the same AUC indicates the existence of competing
network divisions as similar AUC means similar ability to explain network partitions. This
has previously been observed in network datasets [35, 36, 37]. When using HyCoSBM with
attributes, the partition is drawn closer to the one defined by the attributes.

It is important to note that although the communities detected by ourmodel correlate with
the attributes, they are not identical. As shown in Figure 4.4, HyCoSBMfinds 5 communities
and using 100% of hyperedges they look very similar to the attributes. We can notice, however,
that some nodes have mixed memberships. Looking at the results of the model where commu-
nity membership matrix u was set exactly to the attributes, we can see that the AUC is signifi-
cantly smaller, which indicates that mixed memberships discovered by HyCoSBM contribute
to the inference of better community structure. In High School dataset Figure 4.3, although
the communities detected by HyCoSBM are extremely similar to the attributes, the number
of communities is larger, 11 versus 9, which shows the existence of two smaller subgroups.

When the amount of structural information available decreases to 50% inWorkplace dataset
Figure 4.4, we can see that the communities are not as similar to the attributes, but the differ-
encewithHy-MMSBMthat doesn’t use attributes is evenmore pronounced, which shows that
HyCoSBMismore robustwhendata is partially available. Overall, while community detection
with HyCoSBM is being guided by attributes, it produces superior results to the models that
use only attributes or no attributes at all.

Gene Disease associations dataset

Our next application is to a biological domain. The gene disease associations dataset represents
genes as nodes of a hypergraph and diseases as its hyperedges that show a combination of genes
observed together with the disease. For each gene (node), we have its Disease Pleiotropy Index
(DPI), which shows how likely the node is to be associated with several types of diseases. The
index is a number between (0, 1)with a higher index meaning a larger number of disease types
associated with the gene. To use the index as an attribute, we consider each index value discrete
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Figure4.4: Communities detected in theWorkplacedataset and respectiveAUC. The first row shows the attributes and their
labels. On the left, we show the labels for each department and the AUC of the models shown below. In the second row, we
see the communities detected by HyCoSBM and Hy‐MMSBM using 100% of hyperedges, and in the third row, using 50%
of the hyperedges.
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Figure 4.5: Cosine similarity and AUC in the Gene disease associations dataset. Part A shows the cosine similarity between
the communities extracted from attributes (DPI) inferred by HyCoSBM and Hy‐MMSBM. Part B shows the AUC achieved by
HyCoSBM, Hy‐MMSBM, and HyCoSBM with membership matrix u fixed to attributes.

and thus obtain Z = 25. The structure of the dataset is highly sparse as there are only 3128
hyperedges per 9262 nodes, and many nodes are present only in one hyperedge.

It has been previously shown that the hyperedge prediction on this dataset improves when
using hyperedges of all sizes [12] rather than limiting the models to use only hyperedges up
to size 25 [20]. Therefore, using all the hyperedges, we further assess if the inference of the
network structure can improve with the use of attributes.

The AUC score achieved by HyCoSBM outnumbers the score achieved by Hy-MMSBM
showing an increase from0.84 to 0.90 as illustrated in Figure 4.5. Thismeans that the attribute
DPI is informative, and the usage of the attribute with HyCoSBM provides a significant im-
provement in the link prediction task. The cosine similarity of the community membership
matrix u inferred by HyCoSBM with the attributes is also high (0.65). As in the case with
the High School dataset, the communities inferred by HyCoSBM do not correspond exactly
to the attributes, and the model finds finer divisions than the DPI attribute as K = 30 while
Z = 25. In contrast, the cosine similarity of the communities inferred by Hy-MMSBM with
the attribute matrix is near 0, which means the models are finding different partitions.

Enron Email dataset

Enron Email dataset shows employees in a company that send and receive emails. Nodes of the
hypergraph are employees and hyperedges show the employees that appeared as a sender or a
receiver in an email. This dataset is reported to have a core-periphery structure, which means
that there are groups of central nodes called core that tend to interact with many other nodes
and have a high degree. On the other hand, periphery nodes interact only with the core nodes.
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The attribute of the dataset indicates if the node is a core or a periphery node.
While it may seem evident that giving the presumed network structure improves inference,

our experiments have shown that HyCoSBM doesn’t simply copy the membership matrix u
but is capable of finding an affinity matrix w that matches the structure of the dataset. The
AUC score on the hyperedge prediction task reached 0.987, which is a dramatic improvement
over Hy-MMSBM with the AUC of 0.915. HyCoSBM with the membership matrix u fixed
to attributes performed worse than HyCoSBMwith AUC = 0.951.

We can see the membership matrices u and the affinity matrices w inferred by HyCoSBM
and Hy-MMSBM in Figure 4.6. In the figure, we show HyCoSBM trained with γ = 0.9.
It is clearly seen that while Hy-MMSBM divides the nodes into two groups and recovers the
assortative structure of the network, HyCoSBMfinds the core-periphery structure. Moreover,
while all nodes belong to the community0, the lighter bluenodes,which correspond to the core
nodes, also have membership in the community 1. This is not visible because the respective uik
values for those nodes are of order 10−6. The matrix w shows that all nodes in group 0 interact
mostly with this small portion of the group 1 and vice versa which is precisely the definition of
a core-periphery structure.

Wehave also trained theHyCoSBMmodelwithmembershipmatrixufixed to the attributes.
The resulting affinity matrix w, which can be seen in the lower right corner in Figure 4.6, also
shows the core-periphery structure. Thismatrix tells us that nodes in the core group intensively
interact with themselves and only marginally with nodes in the periphery group. Periphery
nodes do not interact with themselves and interact only with core nodes. While this structure
also attains high values ofAUC,HyCoSBMperforms significantlybetter. This lets us conclude
that even in cases when we have the information on the possible network structure, using this
information as attributes helps ourmodel to recover a different structure, which could not have
been inferred otherwise.

4.2.3 Performance with uninformative attributes

We have observed in the previous subsection that the attributes contributed positively to the
inference of the network structure. However, it cannot be expected that any type of attribute
used by the model will help in improving inference. There can be cases when the attributes
are weakly correlated with the community structure like in the example with synthetic exper-
iments when the ρ was near 0.1. Therefore, in this section we show that when the attribute
is uninformative we are able to detect this via cross-validation. We observed such uninforma-
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Figure 4.6: Inferred u andw parameters by HyCoSBM, HyMMSBM, and HyCoSBM with u = attributes on the Enron Email

dataset. Both models have been trained withK = 2. HyCoSBM has been trained with γ = 0.9. The matrix u inferred by
Hy‐MMSBM has been normalized to sum to 1. The matrix u inferred by HyCoSBM contains small values for the community
1 which are not visible in the chart.
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tive attributes inContact datasets of human interaction and Political datasets of co-voting and
co-participation of the members of U.S. congress.

Contact datasets

We described these datasets in detail in subsection 4.2.2. We note here that the attributes pre-
sented in that section (class for High School and Primary School datasets or department for
Workplace dataset) already represent a community structure. Thus, the fact that they proved
informative was expected. Some of those datasets contain other attributes, and in this section,
we demonstrate the behavior of HyCoSBMwith those attributes.

TheHigh School dataset contained additional attributes, namelyhas compiled questionnaire,
had facebook and sex, and the Primary school dataset contained the attribute sex. All of these
attributes are binary and contain only two possible values. Therefore, we did not expect them
to be helpful in the community detection task.
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The results illustrated in Figure 4.7 prove our initial hypothesis. It is clearly seen that when
we use the attributes other than class as an input to our model, the performance of HyCoSBM
stays the same as that of Hy-MMSBM and HyCoSBM with γ = 0 with the performance
dropping as the number of hyperedges available decreases. Moreover, we can see that fixing the
membership matrix u to the attributes matrix X results in the value of AUC = 0.55, which is
near the random prediction value of 0.5. This further supports our claim that the attributes
has compiled questionnaire, had facebook and sex are uninformative.

Political datasets

Political datasets include the following co-voting and co-participation datasets of U.S. congress
members

1. House Bills is the dataset that shows co-voting in the House of Representatives. The
nodes are the representatives, and the hyperedges show the representatives that voted
for a particular initiative.

2. House Committees is the dataset that shows the participation of the members of the
House of Representatives in the committee. The hyperedges show the representatives
that participate together.

3. Senate Bills dataset shows the co-voting of senators in the U.S. Senate.

4. Senate Committees dataset shows the co-participation of senators in a committee.

The attribute in all four datasets is the political affiliation of a member, which can take two
values: a Democratic party or a Republican party.

Dataset HyCoSBM Hy-MMSBM
K γ AUC K AUC

House Bills 22 0.0 0.952± 0.003 25 0.952± 0.001
House Committees 13 0.1 0.985± 0.015 24 0.972± 0.011
Senate Bills 23 0.0 0.929± 0.006 19 0.923± 0.003
Senate Committees 23 0.0 0.972± 0.01 21 0.963± 0.023

Table 4.1: AUC scores on co-voting and co-participation datasets of U.S. congress members by HyCoSBM and Hy-MMSBM.
The results show the best average AUC and respectiveK and γ obtained via 5‐fold cross‐validation.

The results of performing a link prediction task on these datasets are summarized in the
Table 4.1. We can clearly see that HyCoSBM performs almost identically to Hy-MMSBM,
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and the best γ chosen by cross-validation is equal to 0 in three datasets out of four. Therefore,
we conclude that the attribute is not conducive to explaining the co-voting and co-participation
patterns in the U.S. Congress.

4.2.4 Summary

The results for all runs of experiments with real datasets, as well as the dataset statistics, are
summarized in Table 4.2. Overall, we can see that, with almost all datasets, when HyCoSBM
was used with informative attributes, the best cross-validation value for γ was higher than 0.5.
The only exception is theHospital dataset with the attribute status where the best γ selected via
cross-validation was 0.2. However, even with the small γ, the performance on the hyperedge
prediction task exceeded Hy-MMSBM.

The improvement achieved by the use of attributes is particularly pronounced on sparse hy-
pergraphs. We have seen this with contact datasets with only 20% of hyperedges, Enron Email,
and Gene Disease datasets. On hypergraphs with a large number of hyperedges, the network
part is sufficient to achieve good results; however, using attributes helps to find partitions that
are closer to the attributes, as shown on contact datasets with 100% of hyperedges.

4.3 Experiments with alternative models

In section section 3.4, we discussed alternative models to incorporate node attributes in hyper-
graph inference models. In this section, we show the experimental results achieved with those
models that illustrate the reasons they were discarded.

In Figure 4.8, we compare the results of the experiments on Contact datasets with partial
hyperedges between HyCoSBM, Hy-MMSBM, Multinomial attributes, and Multinomial at-
tributeswith degree correctionmodels. We can see that theMultinomialmodelwithout degree
correction performsworse than othermodels that use attributes. In particular, on theHospital
dataset it underperforms even compared to the Hy-MMSBM model which does not use any
attribute information. We can see that the reason for such behavior is the weak performance
of the underlying model for inference on hypergraphs, as in the case when γ = 0, theMultino-
mialmodels performed significantlyworse than all othermodels. Therefore, while introducing
attributes helped to substantially improve the performance of the model, it was not enough to
compensate for the initial disadvantage. Similar behavior of the Multinomial model can be
seen also on other datasets where it performed slightly worse than other methods with γ = 0.
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On the other hand, considering the Multinomial attributes model with degree correction
we can see that this model performs similarly well to HyCoSBM both with the attributes and
when γ = 0. The experiments with the Gene Disease dataset, however, uncover more surpris-
ing results. We recall that using the HyCoSBM model with DPI attribute we improved the
AUC score on this dataset from 0.84 to 0.90. TheMultinomial model with degree correction
achieved the same AUC score as HyCoSBM, however, the best γ selected via cross-validation
was equal to 0. Thismeans that theMultinomialmodelwithout degree correction achieved the
same improvement as HyCoSBMwithout using any attributes. This could be partially caused
by the fact that conceptually theDPI index and the node degree aremeant to represent a similar
phenomenon, that is, how likely the gene (node) is to be associated withmany types of diseases
(be present in many hyperedges). Therefore, we can see that the base model for community
detection with degree correction is more powerful than the base model used by HyCoSBM,
which may sometimes make it difficult to identify if the improvement comes from the use of
attributes or from the introduction of degree correction.

We can conclude that the degree correction can be a powerful extension of the hypergraph
inference model. As the optimization procedure with the Multinomial model was not giving
stable results, a good solution could be to apply degree correction to the HyCoSBM, but we
have not explored this topic further. The main challenge here is that when we add a parameter
φ to the membership matrix u, these two parameters compete with each other for the scale,
which did not happenwith theMultinomial model as the values of ui were constrained to sum
to 1. This may lead to a model that is not identifiable and stable as sometimes the values of the
inferred parameters may be pushed to 0 causing numerical instability. Therefore, we leave this
topic as a possible future research direction.
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5
Conclusion

In thiswork, we presented theHyCoSBMmodel, a probabilistic generativemodel to study and
analyze the structure of higher-order networks with the help of node attributes. The model is
capable of recovering overlapping communities guided by the available attribute information.
We have demonstrated that the model is able to efficiently incorporate both hypergraph and
attribute information and find partitions that are more expressive when both types of informa-
tion are combined.

The algorithm behind the HyCoSBM model is based on the Expectation Maximization
method that maximizes the likelihood of observing both a hypergraph and attributes on its
nodes. The likelihood of observing a hypergraph was modeled by adopting the ideas from the
Hy-MMSBMmodel [12] and adding constraints on the parameter u. The likelihood of observ-
ing node attributes was modeled by assuming the Bernoulli distribution of the entries of the
attribute matrix. The contribution of these two terms is regulated by the γ parameter. Other
choices can be made for modeling both likelihoods differently from the examples we explored
in detail in this thesis. However, these choices may impact analytical tractability and computa-
tional efficiency. The examples we considered tackle both these problems effectively and lead
to the results discussed in this thesis. Other choices may instead limit the practical ability to
implement the model on real datasets.

We have demonstrated that our approach provides an advantage compared to the models
that do not use attributes during inference, such as the baseline model Hy-MMSBM and Hy-
CoSBMwith γ = 0. We have also shown that HyCoSBM does not simply copy the attributes
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and performs better than using attributes alonewith both synthetically generated and real data.
The HyCoSBM model was applied to four datasets in various domains, including social,

political, and biological. We have shown that the model provided a particular advantage for
social proximity datasets, a gene disease dataset, and a dataset with a clear core-periphery struc-
ture (Enron Email). In the cases where themodel performed similarly well to the baselines that
did not use attributes, we demonstrated that the model can be used to infer the community
structure that is more similar to the attributes. It was also shown that as not all attributes are
beneficial in improving our understanding of the networks’ structure, our model was able to
successfully discard such uninformative attributes in co-voting and co-participation political
datasets.
In addition, we discussed possible alternative methods that can be used to model attributes.

We have shown that restricting amodel to have only one covariate and assuming theirMultino-
mial distribution leads to difficulty in obtaining closed-form solutions for the updates. More-
over, even when wemanage to obtain approximate solutions to the optimization problem, the
inferred community structure is inferior to themodels that did not use any attribute. The prin-
cipal reason for such behavior is that themodel that constrains themembership vectors to sum
to 1 does not take into consideration node degrees.
We thus developed a degree correctedmodel that showed similar performance toHyCoSBM

onreal datasets butwasunstable on synthetically generatedhypergraphs. An interesting feature
of this model is that, in some cases, it performs similarly well to HyCoSBM but without the
use of attributes. We, therefore, conclude that degree correction was a powerful modification
to the original model, and its usage with and without attributes should be explored further.
The reason could be that allowing for more heterogeneity in the node-level parameters via an
additional φ may provide similar benefits to those obtained using more information. In fact,
there could be multiple local minima for the log-likelihood cost function considered in this
probabilistic formulation. Hence, there could be multiple valid community partitions that
explain the observed data similarly well. Using the degree informationmay help in considering
valid alternative partitions than those obtained by using node attributes. However, to better
substantiate this hypothesis, more experiments are needed. A more extensive investigation of
the effects of degree correction is an interesting avenue for future work.
We have shown the case of the Enron Email dataset, where the attributes helped to recover

the core-periphery structure of the network. We notice, however, that due to the time con-
straints, we could not have carried out a full-scale experiment with this dataset. Therefore,
completing this experiment, as well as studying the role of attributes in networks with a struc-
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ture different from assortative remains a possible future research direction.
Another possible direction of future research could be considering different types of at-

tributes, such as numerical andmodeling them using normal distribution. This would require
efforts in deriving closed formupdates andmaintaining low computation complexity. Another
possible extension is adding the attributes on hyperedges to the model. In addition, one could
consider eliminating some assumptions that were made in the HyCoSBMmodel, such as the
conditional independence of the hypergraph part and attributes part given the latent variables.
This approach may be implemented either with the same latent variables or by introducing
a different set. However, an efficient implementation of updates still remains a principal is-
sue with this approach. Lastly, another extension to this model could be modeling multilayer
hypergraphs with several types of connections represented as layers or dynamic hypergraphs
where interactions between nodes change over time. It would be interesting to evaluate the
role of attributes in these contexts.
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