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Abstract

The current thesis is the result of the candidate’s work over a six-month period at KU

Leuven under the supervision of the supervisor and co-supervisors, within a collaboration

between the Human Movement Bioengineering Laboratory Research group at the Uni-

versity of Padova (Italy) and the Human Movement Biomechanics Research group at KU

Leuven (Belgium).

At the clinical level, gait analysis can provide clinical and functional informaion that

can have different application, such as identifying functional impairments associated with

a pathological gait patterns. Three-dimensional motion capture (MoCap) is now widely

accepted as a method for studying human movement: it consists of a series of precise

measurements that are processed by biomechanical models to yield curves related to kine-

matics and indirect dynamics, such as joint angles and relative forces and moments.

These results are generally considered reliable, and used for clinical decision making upon

speciőc interventions to restore a more functional gait of the pathological individuals

spanning from rehabilitation treatments to surgery. Despite this, it requires a controlled

environment and highly skilled operators. In addition, it was observed that subjects may

change their movement strategy when walking on a controlled environment (i.e., a tread-

mill) instead of an open őeld overground.

To overcome the need for a laboratory environment, several methods were developed

to analyze motion, and one promising approach is represented by inertial measurement

units (IMUs) wearable sensors: consisting of accelerometers, gyroscopes, and magnetic

sensors. The use of these has increased in the last decade due to the low production costs,

their small size, and their portability, allowing studies in everyday life situations. Inertial

capture (InCap) systems have become an appealing alternative to 3D MoCap systems due

to the ability of IMUs to estimate the orientation of 3D sensors and body segments.
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Moreover, the gold standard to measure ground reaction forces (GRFs) is based on

force plates (FP) often integrated with MoCap systems in motion analysis laboratories.

However, with the increasing interest of using "wearable" approaches in motion analysis,

several methods were developed to measure GRFs using movable devices such as wearable

sensors: for instance, methods based on insoles that directly measure GRFs, or methods

based on IMUs that measure the motion of body segments and estimate GRFs using mus-

culoskeletal models, and őnally machine learning based methods [1].

Musculoskeletal modeling and simulation provide an ideal framework for investigat-

ing in silico quantities such as musculoskeletal loading, muscle forces, and joint contact

forces that cannot be measured in vivo [2]. OpenSim, an open-source software that allows

modeling, analysis, and simulation of the musculoskeletal system, was used in this study.

The aim of this thesis is to develop a workŕow to estimate the GRFs based on a novel

musculoskeletal model combined with IMUs derived kinematics, and to evaluate its accu-

racy compared to the gold standard in terms of kinematics, dynamics, and GRFs.

The project was organized as follows: őrst, a customized model was developed that has

spherical contact geometries placed on the feet that can record force values. Following a

speciőc workŕow that used OpenSim Moco package [3] it was possible to obtain values

in terms of kinematics, dynamics, and GRFs to be compared with the reference ones. In

particular, OpenSim Moco is a open-source tool developed to solve optimization problems

by using the direct collocation algorithm [4]. As reference data, this project focuses on

the InCap approach derived measurements; however, to validate the developed method,

MoCap data were also used and results were evaluated and analyzed.

The thesis is divided into őve chapters: the őrst provides a detailed description of gait

analysis, including the procedure, guidelines, and instruments used to collect all the nec-

essary data to study human locomotion. In this őrst chapter characteristics of muscu-

loskeletal modeling can be found, with a focus on the steps required to obtain kinematics

and dynamics information. Moreover, it gives an overview of available GRFs estimation

methods and OpenSim Moco. The second chapter describes the experimental setup, in-

cluding all procedures and methods used to achieve the objectives. Here it is present a

detailed description of the musculoskeletal model used.
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Finally, in the latest chapters, the obtained results are reported graphically and also

in terms of Root Mean Square Error (RMSE), correlation coefficient, and maximum dif-

ferences, as well as a general discussion of the project and conclusions.
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Sommario

La presente tesi è il risultato del lavoro del candidato svolto per un periodo di sei mesi, con

l’aiuto del relatore e dei supervisori, grazie alla collaborazione tra il gruppo di ricerca del

Laboratorio di Bioingegneria del Movimento dell’Università di Padova (Italia) e il gruppo

di ricerca Human Movement Biomechanics dell’Università KU Leuven (Belgio).

A livello clinico, l’analisi del cammino è un test utilizzato quale supporto alla deci-

sione per i clinici che può avere svariate applicazioni, in particolare l’identiőcazione delle

limitazioni funzionali aassocciate a un percorso patologico al őne di stabilire la necessità

di effettuare un trattamento di riabilitazione piuttosto che un intervento chirurgico. La

Motion capture tridimensionale (MoCap) è ormai un metodo ampiamente accettato per

lo studio del movimento umano: consiste in una serie di misurazioni precise che vengono

elaborate da modelli biomeccanici per ottenere curve relative alla cinematica e alla di-

namica indiretta, come gli angoli delle articolazioni, le forze e i momenti articolari.

Questi risultati sono considerati generalmente affidabili, e in base a queste curve si decide

come intervenire sul soggetto speciőco per pianiőcare eventuali interventi di riabilitazione

e chirurgici. Nonostante ciò, questo approccio richiede un ambiente controllato e operatori

altamente qualiőcati. Inoltre, è stato osservato che i soggetti possono cambiare la loro

strategia di movimento quando camminano in un ambiente controllato (ad esempio, un

tapis roulant) anziché in un ambiente libero.

Per superare la necessità di un laboratorio controllato, sono stati sviluppati molteplici

metodi al őne di analizzare il movimento, e uno degli approcci più promettenti è rapp-

resentato dai sensori indossabili inerziali (inertial measurements units, IMUs): composti

da accelerometri, giroscopi, e magnetometri, l’utilizzo di questi è aumentato nell’ultimo

decennio grazie ai loro costi di produzione contenuti, la loro piccola dimensione, e la loro

portabilità, permettendo studi in situazioni di vita quotidiana.
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La Inertial capture (InCap) è diventata una interessante alternativa al 3D MoCap,

grazie alla capacità degli IMUs di stimare l’orientazione di sensori 3D e segmenti.

Inoltre, il gold standard per misurare le forze di reazione al terreno (ground reaction

forces, GRFs) è basato sull’utilizzo di pedane di forza (force plates, FP) spesso integrate

con sistemi MoCap in laboratori di analisi del movimento. Tuttavia, con il crescente in-

teresse nell’uso di approcci "indossabili" nell’analisi del movimento, sono stati sviluppati

diversi metodi per misurare le GRFs utilizzando dispositivi mobili come i sensori indoss-

abili: per citare qualche esempio, metodi basati su solette che direttamente misurano le

GRFs, metodi basati su IMUs che misurano il movimento di segmenti di corpo e stimano

le GRFs utilizzando modelli muscoloscheletrici, ed inőne metodi basati sul machine learn-

ing [1].

La modellazione e simulazione muscoloscheletrica forniscono un quadro ideale per lo

studio in silico di quantità come carichi muscoloscheletrici, forze muscolari, e forze di

contatto articolari che non possono essere misurate in vivo [2]. In questo studio è stato

utilizzato OpenSim, un software open-source che permette la modellazione, l’analisi, e la

simulazione del sistema muscoloscheletrico.

Lo scopo di questa tesi è quello di sviluppare un ŕusso di lavoro atto a stimare le

GRFs basato su un nuovo modello muscoloscheletrico in combinazione con una cinematica

derivata da IMUs, e di comparare l’accuratezza di tale approccio con il gold standard in

termini di cinematica, dinamica, e GRFs.

Il progetto è stato organizzato come segue: innanzitutto, è stato sviluppato un modello

personalizzato che presenta delle geometrie sferiche di contatto posizionate sui piedi in

grado di registrare valori di forza. Seguendo uno speciőco workŕow che utilizza il pacchetto

OpenSim Moco [3] è stato possibile ottenere valori di cinematica, dinamica, e GRFs da

confrontare con i corrispettivi valori di reference. In particolare, OpenSim Moco è un tool

open-source sviluppato per risolvere problemi di ottimizzazione utilizzando l’algoritmo di

collocazione diretta [4]. Come dati di reference, questo progetto si focalizza sull’approccio

InCap; tuttavia, al őne di validare il metodo sviluppato, sono stati usati dati MoCap e

sono stati analizzati i risultati ottenuti.
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La tesi si divide in cinque capitoli: il primo fornisce una descrizione dettagliata

dell’analisi del cammino includendo procedure, linee guida, e strumentazione usata per

collezionare tutti i dati necessari al őne dello studio della locomozione umana. In questo

primo capitolo è possibile trovare le caratteristiche della modellazione muscoloscheletrica,

con un approfondimento sui passaggi necessari ad ottenere informazioni di cinematica e

dinamica. Inoltre, il capitolo fornisce una panoramica sui metodi di stima delle GRFs

disponibili e di OpenSim Moco. Il secondo capitolo descrive il setup sperimentale, in-

cludendo tutte le procedure e i metodi utilizzati. Qui è inoltre presente una descrizione

dettagliata del modello muscoloscheletrico utilizzato.

Inőne, negli ultimi capitoli, sono riportati i risultati ottenuti graőcamente ma anche

in termini di Root Mean Square Error (RMSE), coefficiente di correlazione, e massime

differenze, assieme alla discussione generale del progetto e alle conclusioni.
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Chapter 1

Introduction

1.1 Human motion analysis

Motion analysis aims to study the movement of any object; it involves the use of math-

ematical and computational methods to analyze, model, and understand the motion of

objects in the real world. This can encompass a wide range of applications, from analyzing

the motion of vehicles, robots, or industrial machinery to understanding the motion of

celestial bodies in space. Motion analysis can also be used in őelds such as engineering,

physics, and computer science to study and optimize the motion of various systems. The

techniques used in motion analysis can include mathematical modeling, numerical simu-

lation, and experimental measurement. The goal is to gain a better understanding of the

dynamics of motion and how different factors, such as forces, masses, and control inputs,

affect the motion of objects.
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Human motion analysis, a branch of motion analysis, refers to the study of the

movement of the human body. It involves the use of techniques from various őelds such as

biomechanics, computer vision, and machine learning, to analyze, model, and understand

human motion [5]. The goal of human motion analysis is to gain a better understanding

of how the human body moves, how it is controlled, and how it responds to different

stimuli. This knowledge can be used in a variety of applications, such as sports training,

rehabilitation, animation, and human-computer interaction. By analyzing human motion,

it is possible to identify areas for improvement, track progress, and ultimately optimize

performance in a wide range of activities.

The main objectives of human motion analysis are:

• To obtain the motion of selected point, subsequently the movement of body parts,

joints, and the entire human body;

• To derive the muscular activity;

• Finally, know the loads acting on tissues during speciőc motor tasks.

Moreover, this approach aims to offer descriptive details regarding both physiological and

pathological cases; by this, is possible to designing therapeutic routes, assessing functional

limitations, tracking the effectiveness of rehabilitation therapy, and documenting the usage

of aids and prosthesis.
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1.1.1 Basic human body movements

To understand in detail how motion analysis works, it is necessary to introduce the basic

movements that the human body can make.

The main axes and planes that describe human body movements are depicted in [Fig. 1].

Figure 1: Anatomical coordinate axes and planes [2].

The main axes are:

• X, the antero-posterior axis;

• Y, the vertical axis;

• Z, the medio-lateral axis.

20



With these axes, it is possible to identify the main planes:

• (X, Y), the sagittal plane, which divides the human body into two symmetrical

parts (right and left);

• (Y, Z), the frontal or coronal plane, which divides the body into two asymmetrical

parts (anterior and posterior);

• (X, Z), the transverse plane, which divides the body into two asymmetrical parts

(upper and lower).

The principal movements of the human body are performed around the principal axes

and lie in the principal planes; in particular, these movements are classiőed into:

• Flexion / extension, around the Z axis in the sagittal plane;

• Adduction / abduction, around the X axis in the frontal plane;

• Internal / external rotation, around the Y axis in the transverse plane.

Other movements are possible and result from the combination of the latter.

In order to better understand the movements previously introduced, [Fig. 2] represents

these applied to the hip joint.

Figure 2: Hip joint movements [6].
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1.1.2 Kinematics of the musculoskeletal system

The information obtained from the human motion analysis refers to a model of the mus-

culoskeletal system: the anatomical segment is kinematically deőned by the movement

of its bone component [2].

By assumption, the various anatomical segments composing the human musculoskeletal

system are considered as rigid body: thereby, during the motion the constituent parti-

cles of the segment under investigation do not deform or change their relative positions

under the inŕuence of applied forces [2].

Therefore, a system of reference deőned using signiőcant geometric points is always main-

tained in the same relationship with respect to the body itself. A rigid body can be

deőned by the position of its three points, where two of them are required to determine

the axis around which the body could spin, while the third point precludes rotation as

long it is not parallel to the other two.

To determine the position of any other point of the rigid body it is necessary to know

its relative position with respect to the three points chosen to establish the rigid body’s

position.

This relative position is expressed with respect to a so called local reference system, a

reference system integrated in the rigid body which can be deőned as follows:

1. The origin is one of the chosen three points;

2. The őrst axis corresponds to the line connecting the origin and one of the other

two points;

3. The second axis is directed perpendicular to the plane identiőed by the chosen

three points;

4. The third axis is perpendicular to the two other axes.
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The local reference system just deőned has twelve (12) parameters that locate it in

space: the three (3) coordinates of the cartesian axis sysyem origin and the nine (9)

director cosines of the (x, y, z) axes (three per axis) [2]. In particular, the director

cosine uniquely describe the orientation of the local system with respect to the global

one, but they are not independent from each other since the axes of the reference systems

are orthogonal to each other.

Moreover, by applying the fundamental equation of trigometry, the rigid body has six (6)

degrees of freedom (DOFs) where three (3) of them are the free coordinates necessary to

deőne the translation and three (3) for the orientation in space (i.e., the rotation with

respect to the global reference system) [Fig. 3] [2].

Figure 3: The global (GLO) and the local (LOC) system of a rigid body and its six (6)
degrees of freedom [2].

Joint kinematics After deőning the global and the local reference system of the rigid

body, the following step is to determine the relative motion between two consecutive

segments of the human body.

To determine the position of an anatomical segment in the GLO it is considered the

LOC rigidly associated with rather than the segment itself. After locating the LOC

with the rigid body in space, the "relative" coordinates of any point belonging to it are

known: to obtain these coordinates in the GLO it is necessary to apply a roto-translation

transformation [2].
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The formula that expresses this operation, in particular a rigid transformations of

points at each instant of time, is as follows:

where Pg and Pl are the position vectors of the generic point P of the bone segment

expressed respectively in the GLO and LOC systems, the rigid translation is represented

by the translation vector Og, and the transformation of the coordinates of a point from a

local and "rotated" reference system to the coordinates of the same point in a global and

"őxed" reference system is given by the rotation matrix A:

A generic rotation matrix allows to obtain the position of the LOC through three (3)

independent rotations of the GLO; this algebraically corresponds to multiplying three (3)

rotation matrices, each of which describes the elementary rotation performed [2].

To have signiőcant results, it would be advisable that the axes around which these ro-

tations occur coincide with the functional joint rotation axes: the so called anatomical

reference system is another usually used reference system, it is characterized by planes

approximating the anatomical planes of the human body and whose axes are often used

to represent the three (3) translational and rotational joint DOFs [2].

Anatomical components of motion As explained before, the analysis of skeletal

kinematics is based on the study of the relative position instant by instant of two rigid

bodies that represent two body segments [2].

By supposing two adjacent body segments (i.e., one proximal and the other distal), con-

nected by a rotational joint, each segment is associated with a LOC integrated with it,

which makes it possible to őnd its position in space. In correspondence with the joint, a

system of functional axes is deőned around which the distal segment performs the relative

movements with respect to its proximal segment described below and shown in [Fig. 4].
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Figure 4: Knee joint angles deőned by rotations occurring on the three joint coordinate
axes [7].

• The ŕexion/extension movement occurs along the medio-lateral axis of the prox-

imal segment, therefore is perpendicular to its sagittal plane;

• The adduction/abduction movement occurs around the antero-posterior axis of

the proximal segment, and it is oriented in a direction perpendicular to the longi-

tudinal axis of the distal segment;

• The internal/external rotation movement occurs around the longitudinal axis of

the distal segment.

In literature, the joint angles α, β, and γ are used to quantify the extent of these

movements, respectively ŕexion/extension, adduction/abduction, and internal/external

rotation.
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1.1.3 Dynamics of the musculoskeletal system

A human movement is a complex act resulting from the presence of internal (i.e., muscular

and articular) and external (i.e., gravity, reaction to the ground) forces which presupposes

the interaction of different systems in order to maintain balance and to allow the carrying

out of motion [2].

Consequently, it is necessary to complete the analysis of human motion with the calcula-

tion of dynamic variables such as moments and joint powers: this can be done through

the solution of the Dynamic Problem. In particular, it allows in its Direct approach to

obtain the resulting movement (i.e., displacements and rotations) from the application of

a system of external forces, and in its Inverse approach to calculate the forces associated

with a certain movement. In motion analysis, the Inverse dynamic approach is the most

used one, which starts from the knowledge of kinematic variables and, through algebraic

nonlinear equations, calculates forces and moments.

By the assumption of attributing the movement of an anatomical segment to its bone

component, and modeling it as a rigid body, also the inertial properties (i.e., mass and

moments of inertia) of the entire anatomical part can be attributed to it. In this ap-

proach, the entire human body is schematized as a chain of rigid segments connected by

ideal friction-free joints located at the level of joint centers. If a part of the structure is

considered, which is ideally isolated from the rest of the body at point O, generating at

its extreme forces and moments that the rest of the body exerted on it.

By assuming that these segments are subject in a certain instant to a linear acceler-

ation a on the center of gravity, an angular acceleration α and an external force Fe, the

dynamic equilibrium equations referred to point O are the following:

dΓ

dt
=

∑
M

dQ

dt
=

∑
F
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The dynamic problem can be traced back to a static problem by considering the forces

and moments of inertia as external forces and moments applied to the system. In this

way, the equations of static equilibrium are:

∑
M = 0

∑
F = 0

The solution of these equations presupposes the knowledge of anthropometric, kinematic,

and inertial data (i.e., dimensions, mass, position of the center of gravity and moments of

inertia of each segment): part of the anthropometric data is collected during the prelimi-

nary stages of the acquisition, the rest are calculated with the use of data and tables. In

particular, the kinematic variables (i.e., the position of the markers and the estimation of

the joint centers) are calculated following the acquisition of evidence using motion capture

systems; this will be explained in following paragraphs.

27



1.2 Gait Analysis

Gait analysis is a subőeld of human motion analysis that speciőcally focuses on the

study of walking and running.

Walking is a common and fundamental form of human locomotion: it involves a rhythmic

and alternating movement of the legs, arms, and trunk, as well as the coordinated use of

various muscle groups [8]. The goal of normal human ambulation is to facilitate travel

from one location to another while minimizing effort and maintaining adequate stability

across a wide variety of walking conditions [9]. The musculoskeletal system, which is

managed by the nervous system, interacts in a highly coordinated, complex manner with

the bones, muscles, ligaments, and joints to enable human movement [10]. Furthermore,

the locomotor system receives instructions from the central nervous system through the

peripheral neural system; the latter is able to transfer the forces required for the body to

move and carry out all daily tasks [10].

The aim of gait analysis is to understand the normal patterns of human walking and

running and to identify any deviations from these patterns that may indicate the presence

of a problem, such as a gait disorder, injury, or a medical condition.

1.2.1 Gait cycle

As explained above, normal human ambulation is designed to make it easier to move

from one point to another while exerting the least amount of effort and keeping enough

stability under a number of different walking circumstances.

The following sequence [11] can be used to summarize the action of walking:

1. Registration and activation of the gait command inside the central nervous system;

2. Transmission of gait signals to the peripheral nervous system;

3. Muscular contraction;

4. Creation of forces at joints;

5. Control by skeletal segments of joint moments and forces;

6. Generation of ground reaction forces (GRFs).
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The most basic method to analyze the walking is to divide the entire cycle into

two parts, the initial part deőned stance phase and the subsequent swing phase [Fig.

5].

The stance phase is the part of the gait cycle when the reference limb is in contact with

the ground, and accounts for approximately the őrst 60% of the gait cycle during nor-

mal walking. The swing phase begins when the reference limb is not in contact with

the ground. This phase covers up roughly the őnal 40% of the gait cycle during normal

walking. Duration of stance and swing phases are used as common temporal measures of

each phases’ length of the gait cycle [9].

By convention, the starting point of the gait cycle, deőned as the initial contact (IC, 0%

of the gait cycle) occurs at the instant in time when the foot őrst contacts the ground: in

healthy walking the heel makes the őrst contact, and traditional methods describing the

gait cycle refer to this event as heel strike (HS) [9].

Figure 5: Normal gait cycle periods and timing [9].
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The end of stance phase and the beginning of swing phase are deőned by toe-off (TO)

as the foot leaves contact with the ground. The end of the current gait cycle (100% of

gait) is determined by the initial contact of the same limb.

Stance phase As previously explained, the point at which the foot comes in contact

with the ground is called the initial contact (IC), that typically correspond to the HS in

healthy walking; this event is served as the starting point of stance phase and the entire

gait cycle (0% of gait). [9].

• Loading response (0% - 10% of gait), the period that starts at IC and lasts until

the contra-lateral foot leaves the ground, is a double limb support phase which

the impact of initial contact is adsorbed and weight is transferred quickly onto the

leading limb;

• Midstance (10% - 30% of gait) begins when the contra-lateral foot leaves the

ground and lasts until the ipsilateral heel leaves the ground. During this phase, the

body weight moves forward to be aligned over the foot in contact with the ground;

• Terminal stance (30% - 50% of gait) starts when the ipsilateral heel leaves the

ground and ends at the time of the contra-lateral foot initial contact with the ground.

During this phase, the body weight continues its progress such that the heel rises

as weight moves over the forefoot;

• Preswing (50% - 60% of gait) occurs, it is the őnal phase of stance and lasts from

the instant of contra-lateral foot IC until the ipsilateral foot TO.

Swing phase

• Initial swing (60% - 73% of gait), the őrst part of swing, represents the time from

when the foot leaves the ground to ipsilateral foot alignment with the contra-lateral

ankle;

• Midswing (73% - 87% of gait) occurs from ankle and foot alignment instant of

time to the swing leg tibia becomes vertical;

• Terminal swing (87% - 100% of gait), the őnal portion of swing phase, takes place

from the time the tibia reaches the vertical position until HS of the swing foot with

the ground [12]. During this, the reference limb completes its forward movement.
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1.2.2 Muscle control during the gait cycle

Understanding how muscles behave during the gait is very important to assess normal and

pathological gait; in fact, during walking, the muscles in the legs and feet work together

to produce movement [13].

The primary muscles involved in walking, depicted in a simpliőed version in [Fig. 6]

include:

• Gluteus maximus: this muscle is the largest and most powerful muscle in the

buttocks. It works to extend the hip joint during the stance phase of walking,

which helps to propel the body forward. As the heel strikes the ground, the gluteus

maximus contracts eccentrically to control the forward motion of the body, and then

contracts concentrically to extend the hip and push the body forward. The gluteus

maximus also plays an important role in stabilizing the pelvis during single-leg

stance;

• Gluteus medius: This muscle is located in the side of the hip and plays an impor-

tant role in stabilizing the pelvis during single-leg stance. As the weight of the body

shifts over the stance leg, the gluteus medius contracts concentrically to prevent

the opposite hip from dropping. This muscle also helps to control the internal and

external rotation of the hip during walking;

• Quadriceps: the quadriceps muscles are located in the front of the thigh and

consist of four muscles: rectus femoris, vastus lateralis, vastus medialis, and vastus

intermedius. These muscles work together to extend the knee joint during the stance

phase of walking. As the foot strikes the ground, the quadriceps muscles contract

eccentrically to control the ŕexion of the knee, and then contract concentrically to

extend the knee and push the body forward;

• Hamstrings: hamstrings are a group of three muscles located in the back of the

thigh: biceps femoris, semitendinosus, and semimembranosus. These muscles work

to ŕex the knee joint during the swing phase of walking and also play a role in

slowing down the forward movement of the leg during the stance phase. As the foot

leaves the ground, the hamstrings contract eccentrically to control the extension of

the hip and knee, and then contract concentrically to ŕex the knee and prepare the

leg for the next step;
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• Gastrocnemius and soleus: these muscles are located in the calf and work to-

gether to plantarŕex the ankle joint during the push-off phase of walking. As the

foot pushes off the ground, the gastrocnemius and soleus contract concentrically to

lift the body up and propel it forward. These muscles also play an important role

in absorbing shock during the stance phase of walking;

• Tibialis anterior: this muscle is located in the front of the shin and is responsible

for dorsiŕexion of the ankle joint during the swing phase of walking. As the leg

swings forward, the tibialis anterior contracts concentrically to lift the foot and

prevent it from dragging on the ground. This muscle also helps to control the foot

during the stance phase of walking by eccentrically controlling the plantarŕexion of

the ankle.

Figure 6: Different motion and simpliőed muscle groups of the lower limb [14].
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1.2.3 Space-time parameters

During the gait analysis, some space-time parameters can be evaluated to characterize

quantitatively the gait of each subject; in particular, these can be obtained by recording

the task by means of different devices, through which some events of the gait (i.e., HS

and TO) must be identiőable [2].

The main temporal parameters are:

1. Stride duration [s]: the temporal interval between the two heel-contacts of the

same foot;

2. Stance duration [s]: the time interval between HS and TO of the same foot;

3. Swing duration [s]: the time interval between TO and the next HS of the same

foot;

4. Step duration [s]: the time between ipsilateral and contralateral heel contact;

5. Single support duration [s]: the time in mono-podalic support, and begins when

the ipsilateral foot comes off the swing phase;

6. Double support duration [s]: the time in bi-podalic support, and the support is

on both feet;

7. Cadence [step/min]: the number of steps at the minute.

Similarly, it is possible to evaluate spatial and space-time parameters:

1. Step length [m]: the distance between a point of contact of one foot with the

ground (i.e., the heel) and the same point of contact with the ground of the other

foot;

2. Speed of the step [m/s]: the linear velocity along walking direction measure on

one or more steps.

Using these parameters, it is possible to evaluate the differences between a healthy

and a pathological subject; in fact a gait alteration can characterize the presence of a

pathology or motor dysfunction.
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1.3 Motion capture instrumentation

Since motion analysis in recent years has been validated as a valid technique in the study

of various movements including walking, several tools are now available to quantitatively

measure the path, which can be used both alone and in combination to get different

information and a complete picture of the motion under investigation.

In particular, the instrumentation used in gait analysis typically includes:

1. Motion capture (MoCap) systems: These systems use cameras and markers

placed on various parts of the body to track the movement of those body parts

during gait;

2. Force plates (FP): These plates are embedded in the ŕoor and measure the forces

generated by the feet during walking;

3. Wearable instrumentation: such as electromyography (EMG), pressure sensors,

inertial measurement units (IMUs), and others. These provide a non-invasive way to

monitor movement and muscle activity, and can be used in a variety of applications.

Together, these instruments provide a detailed analysis of gait, which can be used to

diagnose and treat a variety of conditions related to movement and posture.

A brief explanation of the instrumentation used in this work will be present in the

following paragraphs.

1.3.1 MoCap system

Motion capture system allows the simultaneous analysis of multiple parameters and mea-

surements controlled in real time by specialized staff; it is possible to perform studies with

high repeatability and precision [2]. Moreover, it is a non-invasive system and it is not

limited regarding energy.

However, MoCap also has negative aspects, such as the cost of the instrumentation and

the inability to study the subject’s daily activities outside the laboratory.
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Stereophotogrammetric systems Stereophotogrammetry is a highly sophisticated

technique used in biomechanics to measure the movement of the human body [15].

This method uses multiple photographs of a subject from different angles and applies

specialized software to create a 3D model of the subject’s body. Moreover, the system

involves the use of markers placed in anatomical points deőned by appropriate proto-

cols to make the studies comparable to others. By means of two or more cameras, it is

possible to reconstruct the position of each marker in three dimensions at any instant of

time; then, the software is able to evaluate displacement, speed, acceleration, and joint

angles of each body segment [15]. [Fig. 7] below shown the study of gait by means of this

system:

Figure 7: Gait analysis by means of stereophotogrammetry [15].

The positive aspect of this technique lies in the fact that the measurements are reliable,

as they come from a video-recorded analysis processed with appropriate software, which

makes this a gold standard tool for motion analysis [15].
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However, despite its potential beneőts, stereophotogrammetry has some limitations:

the technique can be time-consuming and expensive, and requires specialized equipment

and expertise to implement effectively [15]. In addition, an accurate calibration is also

required for the quality of the measured data: őrstly, it is necessary to carry out a calibra-

tion procedure to deőne the calibration volume, the absolute reference system (origin and

axes of the laboratory system), the internal and external parameters of the cameras [2].

Furthermore, it is also limited by the fact that it captures only the external movement

of the body, and does not provide information about the internal musculoskeletal system

[15].

Although these tools guarantee a high accuracy in the measurement of the coordinates

of the markers, the kinematic variables relating to the joints obtained from them can be

affected by various types of errors; these can be classiőed into:

• Instrumental errors: these can be systematic (i.e., an inaccurate calibration), or

random (i.e., electronic noise);

• Incorrect placement of markers on the anatomical landmarks: identifying

the landmark can be complicated and requires specialized and experienced staff;

• Soft tissue artifacts (STA): caused by sliding of the skin, deformations, move-

ment of the underlying muscles, and the presence of adipose tissue.

Gait protocols In order to reduce as much as possible the errors introduced by the

misplacement of markers on landmarks different protocols for motion analysis have been

developed; these aim to create a standardized and repeatable method of carrying out the

analyzes, positioning of the markers, calculating the variables of interest and the methods

of presenting the results obtained [2].

In general, a protocol uniquely deőne the anatomical landmarks where apply the markers

to follow a predisposed biomechanical model; deőne the anatomical structures of reference

by identifying the correspondence between the position of the markers and the underlying

body segment; deőne the procedures from data acquisition, but also for data processing

and analysis; őnally, make kinematic and dynamic parameters clinically interpretable [2].
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Over the years, many protocols for motion analysis have been developed depending

on the speciőcs of analysis and use.

The most important are:

• Davis protocol: this protocol involves a comprehensive assessment of a patient’s

gait, including a physical exam, a review of medical history, and various tests and

measurements;

• CAST protocol: also known as the "Calgary Cambridge Foot and Ankle Protocol",

this protocol is designed to provide a comprehensive assessment of foot and ankle

function during gait, with a focus on identifying the underlying causes of foot and

ankle pain and dysfunction;

• IOR Gait protocol: also known as the "Istituto Ortopedico Rizzoli Gait Protocol",

this protocol is designed to provide a comprehensive assessment of gait in patients

with a wide range of orthopedic and neurological conditions, including cerebral palsy,

spina biőda, and osteoarthritis.

Force plates Force plates are a type of sensor used in biomechanics to measure the

forces exerted by a person’s body during activities such as walking, running, or jumping

[2].

These consist of a ŕat surface that is sensitive to pressure and a set of sensors that

detect the forces acting on the surface; moreover, these are able to measure the three (3)

X, Y, and Z components of the forces and the moments associated with them, making

it possible subsequently to estimate the magnitude, direction, and point of application

(center of pressure, CoP) of the forces [2].
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Sensors integrated in these platforms are able to collect forces thanks to load cells

consisting of:

• Resistive strain gauges sensors: with this technology, force plates have four (4)

load cells able to vary their resistance according to the deformation to which are

subjected. The relation resistance/deformation is shown below:

R = ρ ∗ (
L

A
)

where R is the resistance, ρ is the resistivity of the material, L is the length of the

strain gauge, and A is the constant section of it. If the strain gauge is fed with a

current of intensity I, it is able to produce a voltage:

V = R ∗ I

which represents an electrical signal that can be digitized and subsequently con-

verted into the corresponding applied force value;

• Piezoelectric sensors: here, force plates have three (3) load cells containing a

piezoelectric crystal which is able to behave like a capacitor to which a potential

difference is applied to. In this way, if the two faces of the force plate are con-

nected through an external circuit, an electric current called piezoelectric current is

generated, and can be digitized to obtain the corresponding force value.

Whatever technology is used, each cell collects the force applied along the three (3)

axes of a predeőned reference system, and returns a result in three (3) dimensions [2].

By using the statics equations, it is possible to obtain the point of application and the modulus

of the őnal resulting force in the three (3) spatial directions.
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The coordinate system of the platform is determined by the alignment of the resistive

or piezoelectric sensors on each pylon, which are aligned with the x, y and z axis of the

platform, as shown in [Fig. 8].

Figure 8: The coordinate system of a force platform and its sensors [2].

Ground reaction forces (GRFs) A ground reaction force (GRF) is a force that

acts on a body as a result of the body weight resting or hitting the ground.

For instance, by considering a person standing on the ground the person is exerting a

force on the ground, but for the principle of action and reaction also the ground is

exerting an equal and opposite reaction force on the person; this reaction force is known

as the GRF [16].

In motion analysis, GRFs are studied with respect to the different directions and events

of the stance; in particular, these can be broken down into three components:

1. Anterior/posterior component: this refers to the force that is exerted in the

front-to-back direction (i.e., X axis). When walking forward, for instance, the

ground exerts an anterior force on the foot, which helps to propel forward; vice-

versa, when braking to a stop, the ground exerts a posterior force on your foot

which helps to slow down;

2. Vertical component: this refers to the force that is exerted in the up-down direc-

tion (i.e., Y axes). When jumping, for instance, the ground exerts an upward force

on foot which helps to lift off the ground; vice-versa, when landing after the jump,

the ground exerts a downward force on foot which helps to absorb the impact;
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3. Medio/lateral component: this refers to the force that is exerted in the side-to-

side direction (i.e., Z axis). When changing directions during a run, for instance,

the ground exerts a medio-lateral force on foot, which helps to move in the desired

direction.

Figure 9: Ensemble averages of the ground reaction force (GRF) on the treadmill (GRF
medial-lateral (A), GRF anterior-posterior (B), and GRF vertical (C)); and overground
(GRF medial-lateral (D), GRF anterior-posterior (E), and GRF vertical (F)) walking
conditions [17].

[Fig. 9] shows an example of GRFs data for the medial/lateral, anterior/posterior, and

vertical direction collected by healthy subjects during two different tasks, the treadmill

and a normal overground walk, at various speeds [17].
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1.4 Inertial measurement units (IMUs)

Inertial measurement units (IMUs) have become increasingly popular in recent years

for human motion analysis due to their small size, low cost, and portability.

IMUs are typically composed of miniaturized electronic devices that come with a full set

of micro electro-mechanical systems (MEMS) sensors to determine the change in relative

orientation of a body or body segment over time [18].

These sensors include:

• Accelerometers

• Magnetometers

• Gyroscopes

By combining the measurements from these sensors, an IMU can provide information on

the movement, orientation, and position of the sensor in 3D space [18].

Figure 10: IMUs for biomechanical applications have been incorporated into MoCap suits
(i.e., the XSENS MVM suit) [19].

41



One of the main advantages of IMUs is their ability to capture motion in real-time and

in a variety of environments: unlike traditional motion capture systems, IMUs are less

affected by occlusion and can still capture motion even when body parts are obstructed

from view. Additionally, IMUs can be attached directly to the body or clothing [Fig.

10], which allows for a more natural and unrestricted range of motion during activities.

This makes IMUs particularly useful in sports science and biomechanics research, where

athletes can perform their usual activities without being restricted by wires or markers

[18].

A brief overview of IMUs sensor technology is shown below.

Accelerometers Accelerometers are based on different technologies, but the operating

principle is the same: these are based on the detection of the inertia of a mass subjected

to acceleration. The mass is connected to an elastic element and its position over time is

acquired by a sensor. In the presence of an acceleration the mass, which has its own inertia,

moves from its rest position in proportion to the acceleration. The sensor transforms

this displacement into a digitizable electrical signal [2]. Accelerometers can be classiőed

according to the operating principle of the position sensor:

• Strain gauge accelerometer

• Piezoresistive and piezoelectric accelerometer

• Linear Variable Differential Transformer (LVDT) accelerometer

• Capacitive accelerometer

Generally, accelerometers are monoaxial; to have a triaxial accelerometer is necessary to

arrange 3 monoaxial units in order to form a cartesian triad.
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Magnetometers The magnetometer is an instrument that measures the local magnetic

őeld along three predetermined axes [2]. The earth’s magnetic őeld has a component

parallel to the earth’s surface that always points towards magnetic north, consequently

its projection on the horizontal plane can be used to determine the orientation of a

magnetometer in space. The design of many magnetometers integrates three magnetic

sensors, whose axes form a Cartesian triad. From the projections along the axes, it is

possible to trace the horizontal component of the earth’s magnetic őeld, as long as the

inclination of the sensor’s case is estimated using a gravity sensor.

In motion analysis, the measurement of the earth’s magnetic őeld is necessary to allow

monitoring in the three dimensions of the orientation of the sensors; without, it would

not be possible to identify the local reference system of the sensors in the global reference

system of the earth, in which the measurements are analyzed.

Gyroscopes A gyroscope is a rotating physical device in which, due to the conservation

law of angular momentum, tends to keep its rotation axis oriented in a őxed direction,

providing direct measures of the angular velocity in the local coordinate system of the

sensors in the three planes [18].

In [Fig. 11] the principal elements of a gyroscope are displayed: essentially, it consists

of a toroid-shaped rotor that rotates around its axis, when the rotor is rotating its axis

tends to remain parallel to itself and to oppose any attempt to change its orientation.

In the biomechanical őeld, gyroscopes can be applied to any part of the body, and thanks

to their portability they are often used for recording walking for long periods: for instance,

from the measurement of the angular velocity, useful data can be obtained for clinical and

sporting purposes, such as the length of the walking cycle, the length of the stride, the

stance and swing time, useful for both clinical and sporting purposes.
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Figure 11: Elements of a gyroscope [20].

Despite all the beneőts of using IMUs, there are also limitations for human motion

analysis.

Firstly, one limitation is the potential for sensor drift or error accumulation over time,

which can lead to inaccurate measurements. Sensor drift occurs when the sensors gradu-

ally become misaligned, resulting in a gradual loss of accuracy over time. To avoid this,

researchers have developed algorithms for sensor fusion and calibration to improve the

accuracy of IMU measurements and reduce the effects of sensor drift; in particular, these

algorithms combine measurements from multiple sensors to improve the overall accuracy

of the IMU data [18].

Another limitation of IMUs is their difficulty in distinguishing between different types of

motion using only IMU data. For example, it can be difficult to distinguish between walk-

ing, running, or jumping based solely on IMU data. To address this limitation, researchers

have explored combining IMU data with other types of sensors, such as electromyography

(EMG) or force sensors, to provide a more comprehensive analysis of human motion [18].
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1.5 Musculoskeletal modeling

Musculoskeletal models for biomechanical simulations have become increasingly popular

for analyzing human movement. In addition to joint kinematics and kinetics, muscu-

loskeletal models allow researchers to evaluate other biomechanical variables that cannot

be experimentally measured in vivo, such as muscle lengths and forces. Moreover, these

models can be scaled and customized to make the musculoskeletal model subject-speciőc

[2].

Hypothesis In this approach, the entire human body is described by a multi-body ar-

ticulated system: the inertial characteristics of the masses are known, the individual

anatomical segments are approximated to rigid bodies rotating about a joint axis and are

identiőed by means of anatomical landmarks. Moreover, the masses of the segments are

assumed to be concentrated on the center of mass of the segments, and the lengths of

these segments are deőned as distances between anatomical landmarks [21].

Various software have been developed to model and analyze human movement (i.e.,

AnyBody, OpenSim, and Human Body Model), and there is always an increase in literature

reporting motion analyzes based on these software systems.

This paragraph will cover an overview of the functionality of the software used in this

project, focusing on the main steps necessary to create and analyze dynamic simulations

of movement and underlining the main workŕow when using MoCap and IMUs data.

45



1.5.1 OpenSim

OpenSim is an open-source software that allows modeling, analysis and simulation of the

locomotor system: before the birth of this, it was very difficult to perform simulations

outside the laboratory where they were developed, the results were therefore difficult to

reproduce, and researchers were forced to spend a lot of time to implement new simula-

tions and the related tools to analyze them.

The őrst version of the software was developed in 2007 by the American Society of Biome-

chanics Conference, to which an Application Programming Interface (API) was added in

the next version, to allow users to have access to the program components and modify

them.

With the development of these new software various musculoskeletal systems were

born, in particular for the lower limbs, through which various parameters can be estimated

(i.e., the length of muscle őbers, speed, acceleration) in both physiological and pathological

conditions.

Musculoskeletal models To create a motion simulation, őrst of all the deőnition of a

dynamic model of the musculoskeletal system and its interactions with the environment

is necessary.

The elements of the musculoskeletal system are modeled by differential equations describ-

ing the dynamics of muscle contraction, the geometry of the musculoskeletal system and

the dynamics of body segments [21]. These equations characterize the time-dependent

behavior of the musculoskeletal system in response to neuro-muscular excitation.

The body segments, such as trunk, pelvis, and femur, require the deőnition of body seg-

ment parameters (i.e., the mass, inertia, and center of mass location): in the model, body

segments are connected to each other by joints, which describe the degrees of freedom

(DOF) or relative motion of the segments with respect to each other.
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Consequently, an OpenSim musculoskeletal model consists of:

• Bodies: rigid segments representing bone components or other elements of the

model like platforms;

• Joints: connect the bodies to each other;

• Forces: the muscles that extend between the bodies, but also forces estimated by

contact geometries;

• Constraints: to lock degrees of freedom of the model.

The OpenSim library provides musculoskeletal models already developed, which are mainly

divided into models representing the lower limbs and upper limb. In addition, these differ

from each other in the presence of one limb or both, in the number of degrees of freedom

available and in the muscles represented.

Once the dynamic model of the musculoskeletal system has been formulated, the

OpenSim software guides users to create a dynamic simulation through these main steps.

a. Scaling The őrst step is to scale the generic model in order to attribute to the

model the mass and anthropometric characteristics of a particular subject, from which

the experimental data were collected.

The scaling process changes the dimensions of the bodies present in the model, the masses,

the tensor of the moments of inertia and the lengths of the muscle őbers and tendons,

while it does not modify the characteristic curves or the maximum isometric forces of the

muscles [2].

There are two techniques for scaling the size of model bodies:

• Measurement-based scaling: the scale factor is determined by comparing the

distance between the markers and the model with the position of the experimental

markers present on the subject;

• Manual scaling: some predetermined scaling factors are used, in case of no static

acquisition of the subject with markers available.

Thus, the masses of the bodies are scaled so that the total mass equals the speciőc mass

of the subject.
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The two methods used for scaling the masses are to preserve the mass distribution,

and based on scale factors; in any case, the inertia tensor is recalculated based on the

new dimensions and masses.

The scaling operation in OpenSim is carried out through the Scale Tool: őrstly, it

is necessary to set a Subject_markerSet.xml, which contains a set of virtual marker

position coordinates (x, y, z) representing exactly the markers that are applied on the

subject during the experimental test; as input, the tool requires a Subject_static.trc

őle which contains the trajectories of the experimental markers obtained by following a

static test (i.e., a test in which the subject remain still for few seconds in a known static

position), and the musculoskeletal model chosen for the simulation Subject_model.osim.

As output, the tool returns a new model which is the one used as input but scaled in

relation to the subject simulation that speciőc motion furnished as input in the .trc őle.

A schematic representation of the process just described is shown in [Fig. 12].

Figure 12: Scaling Tool operating workŕow [22].

b. Inverse Kinematics (IK) With the term "kinematics" we refer to the study of the

motion of an object without considering the forces and the moments that are produced

during the entire motion [2].

In particular, Inverse kinematics is the process of determining the parameters of a subject

that satisfy the achievement of a desired movement; in the case of biomechanical simula-

tions, this procedure is applied to make the musculoskeletal model perform a determined

movement.

In motion analysis, the purpose of inverse kinematics is to őnd a set of generalized coordinates

(i.e., the joint angles and the positions of the body segments) for the musculoskeletal model

that best reproduces the kinematics of a subject’s movement.
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OpenSim determines this match by solving a weighted least squares optimization prob-

lem with the goal of minimizing the marker error: each marker has an associated weight

that speciőes how strongly that marker error term should be minimized in the least squares

problem [22].

The algorithm calculates the quadratic error:

where N is the number of markers, M is the number of model DOFs, wi is the i-th

marker weight, wj is the j-th coordinate weight, xexp
i is the i-th experimental marker

position, xmod
i is the i-th virtual marker position (which depends on the coordinate value

q), qexpj is the j-th experimental coordinate value, and qmod
j is the j-th virtual coordinate

value. Finally, this error is minimized for all possible coordinates q:

minq(err)

The result obtained from this minimization is a set of coordinates, which over time describe

the position of the virtual markers and the joint angles of the model, in order to follow

the real movement of the subject [22].

The tool used in OpenSim through the inverse kinematics approach is called In-

verseKinematics Tool: by entering the appropriately scaled model and a .trc őle con-

taining the trajectories of the experimental markers (Subject_motion.trc), the tool gives

as output a .mot őle Subject_motion_ik.mot which contains the value of the angle at

each instant for each DOFs of the system.

A schematic representation of the process just described is shown in [Fig. 13].

Figure 13: InverseKinematics Tool operating workŕow [22].
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c. Inverse dynamics (ID) Inverse dynamics operates the joint angles, angular veloc-

ities, and angular accelerations of the model, along with the external forces and moments

applied to resolve the reaction forces and moments in each joint [22].

To determine these, the equations of motion are solved iteratively to satisfy the condition

of dynamic equilibrium:

where N are the DOFs of the system, q, q̇, q̈ are vectors containing respectively posi-

tions, velocities, and accelerations, M(q) is the matrix of masses of the system, C(q, q̇) is

the vector of centrifugal and Coriolis forces, G(q) is the vector of gravitational forces, F

is the vector of ground reaction forces, and τ is the vector of unknown generalized joint

forces.

The tool used in OpenSim is called InverseDynamics Tool: it requires the muscu-

loskeletal model, the kinematics of movement Subject01_walk1_ik.mot (which can be

őltered, if necessary), the initial and őnal instants of the simulation, and optionally the

external loads őle Subject01_walk1_grf.xml applied to the model.

The tool returns a őle Subject01_walk1_InverseDynamics_force.sto, containing for

each degree of freedom the value of the moment associated with that articulation for each

instant of time.

A schematic representation of the process just described is shown in [Fig. 14].

Figure 14: InverseDynamics Tool operating workŕow [22].
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In this project, these three main functions of OpenSim have been used and brieŕy

introduced; however, the software has other functions, such as Static Optimization Tool,

Computed Muscle Control Tool, and others, speciőc to each type of task and study in the

area of motion analysis.

In addition, in recent versions of the software, tools for placing IMUs and calculating the

InverseKinematics using data from them have been implemented; in particular, these two

tools will be explained in the following sections.
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1.6 Ground reaction forces estimation methods

For functional evaluation and biomechanics investigations, measuring three-dimensional

ground reaction forces (GRFs), moments (GRMs), and centers of pressure (CoP), as well

as other biomechanical parameters, is a topic of signiőcant interest.

Gait Analysis calls for the measurement of walking kinematics and its boundary condi-

tions, which are represented by GRF, GRM, and CoP [23]. Using an optoelectronic system

(OS) along with two or more ŕoor-mounted force plates (FP) represents the state of art

for measuring biomechanical parameters in popular activities, such walking or running.

These systems are simple to combine with additional acquisition tools like electromyogra-

phy, video recording, or force sensors, supplying trustworthy data sets for a multifactorial,

integrated functional evaluation [23].

However, despite its high reliability, repeatability, and accuracy, the use of an OS has

several drawbacks:

1. Due to its complexity, it needs dedicated spaces and a controlled environment,

provided for instance by a motion analysis lab;

2. Consequently, measurements of open-őeld tasks are not permitted;

3. The OS system is expensive and requires specialized staff to use it;

4. Finally, it was noted that subjects might alter their gait when walking on FP or

treadmill [24].

In order to overcome (1.) and (2.), to measure GRFs, GRMs, and CoP several methods

were developed by using wearable sensors: examples of applications were exposed by

Razak et al. in their work [25].
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Generally, methods based on wearable sensors can be classiőed into these categories

[1]:

• Methods based on matrix and/or pressure sensors used as insoles;

• Methods based on wearable load cells for direct 3D GRF measurements;

• Methods based on the kinematic data obtained by OS;

• Methods based on inertial measurement units (IMUs), that measure motion of

body segments and estimate GRFs by using a biomechanical model and/or machine

learning approaches.

Nevertheless, the őrst three classes of methods go beyond the scope of the present work;

additional information about those approaches can be found in Razak et al. [25] and

Shahabpoor and Pavic et al. [26] works.

1.6.1 Methods based on biomechanical modeling

To estimate GRF by using inertial measurements, data modeling is needed; in particular,

most of the methods proposed in literature are based on inverse dynamics approaches

that require biomechanical modeling [1].

With respect to walking and running tasks, a őrst attempt to record kinematics of a gait

cycle outside a motion lab was conducted by Ohtaki et al. [27]: here, three inertial units

were used placed to distal position of shank and thigh with Velcro-straps, as shown in

[Fig. 15], to study only the kinematics of the sagittal plane.

Figure 15: Inertial units structure and placement, and biomechanical model [27].
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Furthermore, under the premise of left-right symmetry in normal gait, only the motion

of the left leg was collected, and the kinematics of the right leg were acquired; measuring

the single leg motion allowed to improve mobility by eliminating sensors on the other

leg and reducing power consumption. Conclusively, data was collected on a notebook

computer carried in a backpack while subjects completed the task.

After data collection and comparison with data obtained from the gold standard (OS

and FP), joint angles were calculated by integrating angular velocities of the segments

composing the model, in particular pelvis, thigh, and shanks, as depicted in [Fig. 15].

The total ground reaction force was determined by an inverse dynamic analysis based

on the recursive formulation of force and moment balance equations. To conclude, the

method presented by Ohtaki et al. [27] provided the collection of temporal parameters

according to foot movement, kinematic data and GRF in a non-controlled environment,

even though some deviations from OS results were found.

However, limitations of this approach were observed, such as a much simpliőed biome-

chanical model used with standard anatomical parameters, one-dimensional sensors, and

the analysis was limited to the sagittal plane. Additionally, the analysis was limited to the

single support phase, since in the in double support phase where both feet are touching

the ŕoor, the kinematic chain is indeterminate and equations of motion cannot be solved

[26].

Neugebauer et al. proposed a different approach in their work [28]. Here, the authors

used a statistically based model to estimate only the peak of the vertical component of

GRF during walking and running tasks.

Yet, the proposed method still had limitations, mainly due to the sensors used and the

biomechanical model.

A more complex approach is the one proposed by Yang et al. [29]: the authors designed

a method to estimate lower limb forces and moments while walking by using IMUs able

to track kinematics data and detailed three-dimensional biomechanical model, depicted

in [Fig. 16].
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As an advancement, this method aims to measure three-dimensional walking motion;

that means kinematics in frontal and transverse planes were considered with sagittal plane.

Figure 16: Biomechanical model and the respective free body diagrams of: (a) trunk, (b)
foot, (c) lower leg, (d) upper leg [29].

This approach was found to be innovative in that it allowed the evaluation of the

maximum GRF without the need of FP; nevertheless, the estimation of GRF during

double-support phase was still the weakness of Yang et al. work, forcing the authors to

evaluate it through a statistical approach.

To overcome the indeterminacy problem in the double support phase, Karatsidis et

al. [30] developed a method based on [29] by adding a distribution algorithm based on

a smooth transition assumption function built on empirical data to avoid indeterminate

solutions to Newton’s equation. Still, this approach presented some limitations, such as

poor accuracy due to the fact that the smooth transition assumption was based on data

from healthy subjects and may not be applied for other tasks. In addition, the biome-

chanical model chosen was based on standard anthropometric data, which means other

populations such as obese or elderly may not be represented.
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In conclusion, this overview of estimation methods of GRFs with IMUs based on biome-

chanical modeling shown that estimating GRF during double support phase represents

the most critical challenge when only relying on kinematic data; moreover, a more ad-

vanced anatomical biomechanical model is necessary in order to best estimate kinematic

and GRF, and has to be the more suitable possible to represent every scenario, from sport

to clinical applications.

1.6.2 Methods based on machine learning

Machine learning represents a modern approach for the estimation of GRF; in fact, these

approaches are based on the assumption that there exists a correlation between the ac-

celeration measured somewhere on the human body and the ground reaction forces [1].

In the case of a biomechanical model, this correlation is represented by the biomechanical

model itself.

The main advantage represented by these methods is that machine learning does not re-

quire an a-priori knowledge of the model, but they build up their model based on Artiőcial

Neural Network (ANN) algorithms trained by a large amount of data in order to establish

a relationship between input and output quantities [1].

These approaches are not discussed in the present project, as it is focused on the estima-

tion of GRFs by using a method based on a biomechanical model.
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1.7 OpenSim Moco

1.7.1 Premise

Musculoskeletal simulations have allowed the study of movement disorders in detail, and

are used in many different applications, from the analysis of patients with movement

disorders to the design of wearable devices for rehabilitation purposes.

In general, these simulations are categorized by whether the motion under investigation

is prescribed from experimental data or completely predicted by the simulation itself.

However, tracking motion is a third category, őtting between prescribing and predicting,

where deviations between the model kinematics and reference data are part of the cost

function instead of being exactly prescribed [31].

Most musculoskeletal simulations are posed as optimal control problems ; that means

these investigate the parameters and time-varying controls of a system that minimize

a cost, such as energy consumption, to the system dynamics, expressed as differential-

algebraic equations [4]. To solve optimal control problems, biomechanists often use the

single shooting method, which involves őnding solutions to the initial value problem for

different initial conditions until one őnds the solution that also satisőes the boundary

conditions of the boundary value problem [32].

Yet, more rapid alternatives exist; the direct collocation method avoids the need of

time-stepping integration and permits an easily conőgurable trade-off between accuracy

and computational cost compared to the previous method [4].

In direct collocation, states and control of the system are approximated as polynomial

splines over a mesh of time points, and an optimizer solves for the knot points that lead the

splines to obey the system dynamics [33]. Indeed, the dynamics are enforced by requiring

the time derivative of the state splines to match the derivative from the system differential

equations at speciőed time points; in fact, this method is called direct collocation because

the spline derivatives are collocated with the exact derivatives [34].

Further explanations about direct collocation will be provided in the following paragraphs.
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The advantages of direct collocation are numerous to lead researchers using this

method for prescribing, tracking, and predicting motions; despite of that, very few biome-

chanics laboratories have been able to apply this technique in their researches, since it

requires arduous bookkeeping of variables and efficient calculation of the objective and

constraint function required by optimization algorithms [4]. For instance, OpenSim does

not currently employ direct collocation.

To improve the accessibility of optimal control methods in musculoskeletal biome-

chanics, Dembia et al. introduced OpenSim Moco with their work [4]: it represents an

easy-to-use, customizable, and extensible software tool for solving optimal control prob-

lems with OpenSim musculoskeletal models [Fig. 17].

Figure 17: Overview of OpenSim Moco [4].
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1.7.2 What is Moco?

Moco is the acronym for Musculoskeletal Optimal COntrol, which adequately explains the

utility of Moco. In particular, this tool solves optimization problems where control vari-

ables are minimized so as to obtain certain musculoskeletal activity values in an OpenSim

model [3].

Figure 18: Operating scheme of OpenSim Moco [35].

[Fig. 18] brieŕy shows how Moco works, what inputs it requires, how this tool has to

be conőgured, and what results can return.

For what is concerned about the inputs, Moco always works with an OpenSim muscu-

loskeletal model that includes all the important information regarding mass properties,

muscles, and kinematic constraints. Additionally, motion data can be introduced, depend-

ing on the type of problem; particularly, if the motion is prescribed, an InverseDynamic

problem (MocoInverse) needs to be implemented, and if there is information about the

motion but is not certainly deőned, a Tracking problem (MocoTrack) needs to be im-

plemented [3]. Finally, if there is no information about motion, a generic MocoStudy

problem is the one to adoperate.

These possible problems will be further described in the following paragraphs.
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1.7.3 The optimal control problem

As previously explained, most of musculoskeletal simulations are posed as optimal control

problems, including Moco strategy: in particular, Moco deals with őnding those control

variables that, under certain dynamical restrictions, are able to minimize a cost function

as much as possible [3].

The most generic cost function in Moco is the following one:

min
∑
j

wjJj(t0, tf , y0, yf , λ0, λf , x0, xf , p, Sc,j)

where Jj corresponds to the j-th cost term, wj is its associated weight, t0 and tf the initial

and the őnal instant of time, y is a vector containing generalized coordinates and speed

through time, x is a vector containing time histories of control variable, λ is the vector

with kinematic constraints multipliers, p is a parameter which works as an exponent, and

Sc,j consists on the integral of the j-th cost goal:

Sc,j =
∫ tf

t0

sc,j(t, y, x, λ, p)dt

Control variables are those whose function is to regulate the behavior of the system by

minimizing the objective function, while state variables are those which describe the

evolution of the system [3]. Still, some auxiliary state variables may appear in the cost

function: these can be either the muscle activation or the muscle őber length [3].

Once deőned the cost function to minimize, constraint must be described. As every

dynamical system, the Moco problem is regulated by the equations of motion, which

result to be the most important system constraint:

u = q̇

M(q, p) ∗ u̇+G(p.q)T ∗ λ = fapp(t, y, x, p)− finertial(q, u, p)

where u is the second derivative of the generalized coordinates, M(q, p) is the mass matrix,

GT is the transpose Jacobian matrix of constraints, λ is the vector containing Lagrange

multipliers, fapp is the vector applied forces (in particular, gravity and muscle forces), and

finertial is the vector containing inertial forces (centripetal, giroscopic and Coriolis forces)

[3].
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If auxiliary state variables exist, they follow their own dynamic equations, which can

be explicit or implicit, depending on if their őrst derivative is respectively cleared or

belongs to a term equal to zero:

explicit : ż(t) = fżex(y)(t, y, x, λ, p)

implicit : 0 = fżim(t)(t, y, żim(t), x, λ, p)

Subsequently, kinematic constraints must be deőned; these determine the relations be-

tween generalized coordinates, and are expressed as equations containing a combination

of these coordinates equal to zero:

φ(q, p) = 0

Boundaries are another set of constraints to be deőned to impose upper and lower limits

to determined expressions involving every variable in the problem:

VL,k ≤ Vk(t0, tf , y0, yf , λ0, λf , x0, xf , p, Sb,k) ≤ VU,k

where Sb,k is the integral through time of sb,k, a term belonging to the k-th boundary

constraint goal:

Sb,k =
∫ tf

t0

sb,k(t, y, x, λ, p)dt

Lastly, path constraints might be described as those which enforce constraints along the

trajectory:

gL ≤ (t, y, x, λ, p) ≤ gU

When every constraint has been described, the next step is to deőne boundaries associated

with every variable involved in the problem.
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Firstly, limits imposed to initial and őnal values of states and controls must be set:

y0,L ≤ y0 ≤ y0,U

yf,L ≤ yf ≤ yf,U

x0,L ≤ x0 ≤ x0,U

xf,L ≤ xf ≤ xf,U

then, initial and őnal instant of time:

t0,L ≤ t0 ≤ t0,U

tf,L ≤ tf ≤ tf,U

following with the states and controls themselves:

yL ≤ y(t) ≤ yU

xL ≤ x(t) ≤ xU

lastly, time-invariant parameter p:

pL ≤ p ≤ pU

Now that cost function, constraints, boundaries, and variables have been described, all

terms can be expressed in the generic formulation of the optimal control problem faced

by Moco, as shown in [Fig. 19].
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Figure 19: Generic formulation of the optimal control problem faced by Moco [4].

1.7.4 Direct collocation method

As previously introduced, the method used by Moco to solve the optimal control problem

is the direct collocation method; the optimal control is a trajectory optimization

problem continuous in time (as it introduces integrals in the objective function). To solve

it, Moco makes use of these algorithms which transform the optimal control problem into

a non-linear discrete optimization problem, by discretizing the trajectory optimization

problem into a determined number of control points, named nodes [35].

One of the main advantages about using this method is that dynamic constraints are taken

into account in the cost function, as they include control variables which must minimize

the goal; this allows őnding a solution for the optimization problem easier [35].
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Moco can use two different collocation methods to solve the optimal control problem:

the trapezoidal method, and the Hermite-Simpson’s method.

Trapezoidal method The trapezoidal direct collocation method uses the trapezoidal

quadrature rule to discretize the continuous problem in N-control points and approximate

the integrals as summations of discrete variables, evaluated in those control nodes:

∫ tf

t0

f(τ, x(τ))dτ ≈

N−1∑
i=0

trapi =
N−1∑
i=0

1

2
∗ (ti+1 − ti) ∗ (fi + fi+1)

where N is the total number of control points, and f(τ, x(τ)) is any function belonging

to an integrand in the optimization problem [35].

Naturally, the following condition needs to be respected in each control point:

f(ti) = f̃ i

In control points, the value of the continuous function and its approximative spline must

be the same [35].

The process to obtain control and state variables can be explained as follows: őrst of all,

the spline used to approximate the control trajectories is a linear polynomial expressed

as below:

u(t) ≈ uk +
τ

hk

∗ (uk + uk+1)

where τ and hk are expressed as:

τ = t− tk

hk = tk+1 − tk

For what concerned states, the dynamic equations can be represented in function of the

őrst derivative of state variables:

ẋ = f

If trapezoidal quadrature rule is used, the following relation is obtained:

x ≈ xk + fk ∗ t+
τ 2

2hk

∗ (fk + fk+1)

Finally, by applying the trapezoidal method, the non-linear discrete optimization problem

depicted in [Fig. 20] appears:
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Figure 20: Non-linear discrete optimization problem obtained by using the trapezoidal
method, where ν is generalized acceleration,and νB a very large quantity [4].

Hermite-Simpson method This algorithm is the one used as default by Moco; it

allows more accurate results than the previous method, since it introduces additional

collocation points at the mesh interval midpoints, resulting to a total of 2N + 1 grid

points in which the trajectory is discretized [35]. With this strategy, control trajectories

are approximated by quadratic splines, while state trajectories are approximated by cubic

splines.

To apply this method, it is necessary to deőne the Simpson’s rule of quadrature őrstly:

∫ tf

t0

f(τ, x(τ))dτ ≈

N−1∑
i=0

simpsoni =
N−1∑
i=0

hi

6
∗ (fi−1 + 4 ∗ fi + fi+1)

The value of the state variable in the midpoint belonging to the instant tk+ 1

2

is obtained

with the Hermite interpolant:

hermitek+ 1

2

= xk+ 1

2

=
1

2
∗ (xk + xk+1) +

hk

8
∗ (fk − fk+1)

The following two equations to obtain the control and state variables through time are

shown below:

u(t) =
2

h2
k

∗ (τ −
hk

2
) ∗ (τ − hk) ∗ uk −

4

h2
k

∗ (τ) ∗ (τ − hk) ∗ uk+ 1

2

+
2

h2
k

∗ (τ) ∗ (τ − hk) ∗ uk+1
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x(t) = xk+ fk(
τ

hk

)+
1

2
∗ (−3fk+4fk+ 1

2

− fk+1)+ (
τ

hk

)2+
1

3
∗ (2fk− 4fk+ 1

2

+2fk+1)∗ (
τ

hk

)3

As a result, the formulation of the optimal control problem after applying the Hermite-

Simpson collocation method is shown in [Fig. 21].

Figure 21: Optimal control problem formulation by applying the Hermite-Simpson
method [4].
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1.7.5 Design and implementation

Researchers can use Moco to solve optimal control problems by deőning a library of cost

and constraint modules, which are implemented through conőgurable software classes [4].

In particular, the problem under investigation is described by the MocoProblem class,

while to solve the problem MocoSolver is used.

Moco classes are avaiable via C++, MATLAB, Python, and XML text őles, allowing

every OpenSim user to őnd the most familiar interface. Developers package MocoProblem

and MocoSolver together into a MocoStudy ; a brieŕy overview of MocoStudy is depicted

in [Fig. 22].

Figure 22: Overview of MocoStudy [4].
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Solver Moco provides two solvers as subclasses of MocoSolver :

1. MocoCasADiSolver uses the third-party CasADi library, an open-source package for

algorithmic differentiation, a bridge to nonlinear program solvers IPOPT, SNOPT,

and others [36, 37, 38].

2. MocoTropterSolver uses a direct collocation solver developed by [4] authors called

Tropter.

By default MocoSolver uses the CasADi library to transcrive the continuous optimal

control problem deőned by MocoProblem into a őnite-dimensional nonlinear program;

CasADi can also provide the derivatives of the cost and constraint functions using either

őnite differences or algorithmic differentiation, but Moco uses only the őrst method to

avoid the complexity of adapting the OpenSim codebase to support algorithmic differen-

tiation [4].

1.7.6 Tool for standard problems

At present, Moco provides two tools for solving standard problems, depending on the

presence of information about the motion under investigation [4]. [Fig. 23] provides a

summary of these, in particular in terms of inputs required and results obtained.

Both MocoInverse and MocoTrack require a model and kinematic data as inputs, and

produce controls and actuators states as outputs; however, these tools solve different

optimal control problems. In addition, the tools build internally a MocoStudy with solver

settings that allow fast and reliable convergence on problems under investigation [4].
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Figure 23: Solving prescribed, tracked, and predicted motion with OpenSim Moco [4].

MocoInverse In MocoInverse, the model’s kinematics is completely prescribed, so the

objective is to obtain the forces which produce this motion with the control variable

present in the cost function and the actuator states [3].

This tool provides a faster option when the motion should be enforced exactly, or when

measured external forces need to be applied directly to the model [4].

MocoTrack This is the type of problem faced in this project.

Here, information about the motion performed by the model exists, and normally consists

in experimental data collected by sensors. Nevertheless, kinematics becomes unknown, so

it is one of the variables to obtain with controls and states [3]. The cost deals with the

equations of motion while minimizing as much as possible the deviation of the resulting

motion from the experimental data [35]. Since the motion is now part of the objective

function, it takes longer to compute in comparison with MocoInverse; however, this tool

permits using contact models, which is the main aim of the following project.
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Chapter 2

Methods

The current chapter will go over the methods, techniques, and operations utilized for the

experimental portions of this thesis. In speciőc, the data needed to begin the work, the

programs and algorithms used, the protocols used, and the necessary alterations made

will be covered.

2.1 Data acquisition

The goal of this thesis is to develop a method for researchers to measure human move-

ment and musculoskeletal function outside of the traditional motion capture laboratory.

Consequently, using the data collected by wearable sensors as input for musculoskeletal

modeling represents a new strategy for the estimation of various movement parameters

(i.e., muscle activations and joint contact forces) which does not require a controlled en-

vironment. Moreover, to eliminate the use of force platforms (FP) to obtain information

regarding the forces acting during walking, in this thesis coupled with data from IMUs

a model is used that predicts contact geometries on the feet capable of recording force

values during analysis. Finally, these two elements will be implemented in a MocoTrack

analysis.
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The őrst step was to obtain the results using the gold standard for capturing human

motion as input for the Motion capture (MoCap) system combined with in-ground em-

bedded force plate systems. Secondly, the same approach was applied to obtain results

using the Inertial capture (InCap); these results were compared with some reference data

depending on the method under investigation (i.e., results obtained from InCap data were

compared with InCap input data).

In order to construct a working dataset, 3D MoCap data were collected at the Move-

ment & Posture Analysis Laboratory Leuven (MALL), at the Department of Movement

Science, KU Leuven, Leuven, Belgium. Ten healthy adults with no musculoskeletal or

neurological disorders volunteered for the study (4 males and 6 females; age: 59.7 ±7 yr;

height: 1.55 ± 0.52 m; weight: 66.5 ± 24.0 kg) and performed multiple walking trials.

[Tab. 1] displays an overview of the subjects’ attributes and gait information. It should

be noted that the total number of gait trials is not the same across participants, because

it reŕects the variation in the number of valid trials per participant.

Body
weight
(kg)

Height
(m)

Gender
BMI

(kg/m^2)

n° of
walking
trials

Average
gait

speed
(m/s)

H01 87.6 1.81 M 26.25 3 1.65
H02 77.5 1.69 F 26.96 5 1.22
H03 76.5 1.70 F 26.30 4 1.33
H04 55.6 1.62 F 20.96 6 1.34
H06 68.0 1.58 F 26.84 4 1.08
H07 78.5 1.85 M 23.08 5 1.46
H08 71.2 1.63 F 26.72 4 1.44
H011 66.5 1.76 M 21.63 3 1.19
H012 87.5 1.78 M 27.77 6 1.29
H014 63.4 1.60 F 25.39 4 1.12

Table 1: Summary of 10 healthy subject characteristics and gait data.
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A full-body Plug-in-Gait marker set was used to place the retro-reŕective markers

which were supplemented with 3-marker clusters on the upper and lower arms and legs,

as well as anatomical markers on the sacrum, medial femur epicondyles, and medial malle-

oli, for a total of 65 markers.

Ground-reaction forces and marker trajectories were then recorded using 3 ground-embedded

force plates (AMTI, Watertown, USA,1000Hz) and a 10-camera motion capture system

(100 Hz, Vicon, Oxford, UK).

On the other hand, 3D Inertial capture (InCap) was used to synchronously measure

using an Xsens IMC system (Xsens Awinda, Xsens Technologies BV, Enschede, Nether-

lands) sampled at 60 Hz and processed by the matching software Xsens MVN Analyze

2018 (Xsens Awinda, Xsens Technologies BV, Enschede, Netherlands). 17 IMU modules

were mounted on the head, sternum, pelvis, upper legs, lower legs, feet, shoulders, upper

arms, forearms and hands.

The individuals were told to move barefoot at their own, personal walking rhythm.

Each participant stood upright while their segment dimensions were recorded and later

entered into the XsensMVN program before starting trials: these measures included the

length of the foot, the lengths between the ankle, knee, hip, and top of the head from

the ground, the width of the pelvis, and the shoulders. The individual was in a neutral

stance throughout the calibration of the IMC system, which was then followed by a

walk calibration. Then, using a sensor-to-segment calibration technique, XsensMVN 2018

determines the kinematics of 23 body segments by relating the 17 sensor orientations [39].

In order to scale the generic musculoskeletal model, participants were next required

to complete a static calibration trial that was captured by the MoCap system. The

opto-reŕective markers employed in this trial identiőed key anatomical landmarks.

The subjects conducted 3D motion analysis following the calibration of both motion

capture devices. While performing a number of walking trials, the two motion capture

systems simultaneously and synchronously captured ground reaction forces and moments

as well as 3D body movements. The synchronization was based on the manufacturer’s

guidelines with a speciőc trigger at the start/stop recording time.
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2.2 Musculoskeletal model

The musculoskeletal model used results from the model employed in the article "Mod-

eling toes contributes to realistic stance knee mechanics in three-dimensional predictive

simulations of walking" [40] modiőed ad hoc for the purposes of this work.

Falisse et al. [40] started from a model that existed in the OpenSim library, known

as the "Full body running model" developed by Hamner et al. [41]. [Fig. 24] displays the

musculoskeletal model used in [40].

In particular, the model presented thirty-one (31) degrees of freedom: six (6) pelvis-

to.ground DOFs, three (3) hip DOFs, one (1) knee DOF, one (1) ankle DOF, one (1)

subtalar DOF, one (1) metatarsophalangeal-toe DOF, three (3) lumbar DOFs, three (3)

shoulder DOFs, and one (1) elbow DOF; moreover, ninety-two (92) muscles actuating the

lower limb and lumbar joints and eight (8) ideal torque motors actuating the shoulder

and elbow joints were added to the model [40].

Since the purpose of the article involved using such a model in order to simulate a

movement (i.e., walking) and then estimate the necessary parameters, the authors added

six (6) contact spheres for each foot, three of which referred to the body calcaneus

(named calcn in OpenSim) and the remaining ones to the body toes (named toes in

OpenSim) [40]. Moreover, the moving knee ŕexion axis of the generic model was őxed

to its anatomical reference position in order to increase computational speed [40]. Then,

passive stiffness (exponential) and damping (linear) were added to the lower limb and

lumbar joint, to model ligaments and other passive structures.

Furthermore, the authors used the Raasch’s model to describe muscle excitation-

activation coupling, and a Hill-type muscle model to describe muscle-tendon interaction

and dependence of muscle force on őber length and velocity [42, 43]. The skeletal motion

was modeled with the Newtonian rigid body assumption and smooth approximations of

compliant were described by Hunt-Crossley foot-ground contacts [40].

More details about the musculoskeletal model can be found in the cited work [40] and

related ones.
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Figure 24: Musculoskeletal model used in [40] with focus on contact spheres placement.
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Starting from the model just illustrated, the musculoskeletal model used in the present

project has been developed: őrst, in terms of degrees of freedom (DOFs), two more

DOFs were added to the knee joint, thus allowing the joint to perform the movements of

adduction-abduction and intra-extra rotation in addition to ŕexion-extension.

Secondly, reserve actuators were added to each joint: in particular, reserve actuators

are torques added on each joint to augment the actuator’s force, in order to enable the

simulation to run [22]. Thanks to these, it was possible to carry out the analyses and

obtain consistent results from a dynamic point of view.

A further modiőcation was made regarding the muscle groups present on the previous

model: since this work aims to study only the movement of a single leg (particularly, the

right leg), the muscle groups of the leg not under investigation were eliminated; thanks

to this modiőcation, computational time was drastically reduced, allowing us to arrive at

convergence signiőcantly faster.

Moreover, according to the protocol chosen, markers were added to the model; [Fig. 25]

depicts the correct placement of markers [44]. It should be noted that the anatomical

parts under investigation are the lower limbs, so for this purpose the marker set added to

the model includes thirty-őve (35) markers placed on the legs and trunk, leaving out the

upper limbs.
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Figure 25: Full Plug-in-Gait marker set, front and back view [44].
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Finally, the main change was made with regard to contact geometries: a new conőgu-

ration of spheres was designed so that the forces recorded by the spheres themselves could

be better estimated. [Fig. 26] shows in detail the spheres placement on the foot.

Figure 26: Contact spheres placement on foot. In particular: A) right view, B) left view,
C) plantar view.

These őve (5) spheres were designed in order to estimate and record values of force

exerted by the ground during a task. The <ContactGeometry> class was added to the

musculoskeletal model where within it the geometric characteristics of the spheres were

deőned, such as position, reference body, and radius; in particular, all the spheres were

deőned with respect to the calcn_r body, presenting different position coordinates based

on their speciőc positioning but with reference to the calcaneus frame. Moreover, three

(3) different radii were assigned to three groups of spheres such that the size of each sphere

was adapted to the anatomical measurements of the foot. [Tab. 2] below shows the radii

with reference to the numbered spheres in [Fig. 26].
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Sphere n° Radius (m)
1-2 0.032
3-4 0.021
5 0.016

Table 2: Values of radius used for each contact sphere.

In addition to geometric characteristics, mechanical characteristics designed so that

they can best estimate forces were also assigned to each sphere. Speciőcally, the parame-

ters selected for the following study are as follows:

• Stiffness constant: the rigidity of the sphere;

• Dissipation coefficient: the amount of energy that is dissipated or lost in a system

due to friction or other forms of resistance;

• Static friction coefficient: the amount of force required to initiate sliding motion

between two surfaces in contact with each other;

• Dynamic friction coefficient: the amount of force required to maintain relative

motion between two surfaces in contact with each other;

• Viscous friction coefficient: the amount of frictional force that arises between

two objects in relative motion through a viscous ŕuid (i.e.,air or water);

• Transition velocity

More detail in terms of chosen values can be found in [Tab. 3] below.

Properties Value
Stiffness constant 10000000 (N/m^2)

Dissipation coefficient 2 (s/m)
Static friction coefficient 0.8

Dynamic friction coefficient 0.8
Viscous friction coefficient 0.8

Transition velocity 0.2 (m/s)

Table 3: Values of properties used for each contact sphere.

For the same reason explained above, the spheres were placed only on one foot (specif-

ically, on the right foot).
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To summarize, the new model developed for this project and named generic_model.osim

presents:

1. Thirty-őve (35) DOFs (pelvis-to-ground: 6 DOFs, hip: 3 DOFs, knee: 3 DOF,

ankle: 1 DOF, subtalar: 1 DOF, metatarsophalangeal-toe: 1 DOF, lumbar: 3 DOFs,

shoulder: 3 DOFs, and elbow: 1 DOF);

2. Forty-nine (49) muscles actuating the right leg and the lumbar joint;

3. Reserve actuators applied to every joint to enable the simulation to run;

4. Thirty-őve (35) markers placed on the lower limbs and the trunk;

5. Five (5) contact spheres placed on the right foot.

[Fig. 27] depicts the musculoskeletal model introduced above.
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Figure 27: Musculoskeletal model used in this thesis with focus on contact spheres place-
ment.

81



2.3 Operative workflow

The operative workŕow that was developed and followed in this thesis is shown in [Fig.

28]: it represents a two-way scheme to highlight the different procedures used for the

two strategies, but ultimately to arrive at the same results of interest (Moco workŕow),

preceded by a common section (common workŕow). All the steps and procedures for the

two approaches are detailed in two separate sections.

Figure 28: General workŕow developed for this research project. Focus on the two main
procedures will be provided in the following paragraphs.
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2.3.1 Common workŕow

The őrst portion of the workŕow shown in [Fig. 28] is named the common workŕow : it con-

sists of deriving from the generic model shown in the previous paragraph (generic_model.osim)

the model based on the anthropometric measurements of the subject under study.

For this, the generic model is scaled by means of the OpenSim Scaling tool, using a .trc

őle from MoCap as a reference; in particular, this őle contains the positions of the markers

applied to the subject collected during a static position, called T-pose. An example of

T-pose contained in a .trc őle is shown in [Fig. 29].

By analyzing in more detail the scaling operation performed on the generic model, the

following points emerge:

1. Customized scale factors were used, obtained by comparing distances between

markers on the model and experimental marker positions provided in a .trc őle;

2. Customized static pose weight were used so as to assign less contribution to

markers that are part of a cluster during the scaling operation.

Figure 29: Example of T-pose [45].
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However, the Scaling Tool does not take into account any contact geometries present

on the model; if any, their position relative to the body to which they are assigned re-

mains unchanged. This could be a source of errors, since variation in the anthropometric

measurements of the model results in a certain change in the measurements of the body to

which the geometries are assigned (i.e., the foot). In this case, it was necessary to change

the position of the spheres placed on the right foot so that they are also positioned cor-

rectly in the new scaled model.

For this purpose, the Matlab function őxContactSpherePosition.m was implemented:

providing it with the generic model and the newly scaled model as input, the function

calculates new scaling parameters related to the spheres on the foot thus adjusting their

positions, providing as output a new model with the "őxed" positions of the spheres.

The common workŕow steps previously illustrated can be depicted as in [Fig. 30];

the result is the model scaled to the subject’s measurements prepared for the next steps,

called scaled&őxed_model.osim.

Figure 30: The common workŕow.
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2.3.2 Moco workŕow

The following section will explain in detail the steps shown in the second part of [Fig.

28]. The Matlab script used and described below can be found in Appendix A.

The purpose of this thesis is to use data from InCap strategy to estimate the parameters of

interest, so as to eliminate the use of the MoCap apparatus; however, in order to validate

the method, results from MoCap data were also obtained and analyzed.

InCap Moco workŕow The data of each walking trials acquired by the InCap measure-

ment system was available in the .mnvx format. However, the conversion to OpenSim’s

őle format was needed: it was performed by means of custom-built Matlab script devel-

oped to load the Xsens data from .mvnx őles and save them in the .mat format, where

a structure array was created to store values of acceleration, orientation, and magnetic

őeld data for each sensor, and all the information about the static calibration, segments’

and joints’ names.

Another Matlab function was then used to create an OpenSense őle for kinematic anal-

ysis in OpenSim. In particular, it transforms the rotation matrices into quaternions to

create a single, time-synchronized storage .sto őle type for orientations. The output őle

walk_00x_orientations.sto contains orientations for each sensor, where each column cor-

responds to an IMU sensor represented as a Frame (X, Y, Z coordinates), named as

<bodyname>_imu. Each sensor was associated with the respective body segment; in this

study, only the lower limb and trunk were taken into consideration, while upper body

segments were avoided to lower computation costs.

All the sensors used are listed in [Tab. 4].

Body name Sensor attached
T8 torso_imu

Pelvis pelvis_imu
RightUpperLeg femur_r_imu
RightLowerLeg tibia_r_imu

Rightfoot calcn_r_imu
LeftUpperLeg femur_l_imu
LeftLowerLeg tibia_l_imu

Leftfoot calcn_l_imu

Table 4: List of sensors used and their respective body segments.
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Once all the input data have been stored and saved in the correct way, OpenSim

OpenSense Tool can be used to analyze kinematics data measured by IMUs.

Firstly, a static calibration was performed to connect and register each IMU sensor with

a body segment of the OpenSim model created for each subject by the common workŕow

previously introduced. This step can be performed either directly from the OpenSim

GUI or by using the OpenSim package on Matlab and a specially created function called

OpenSense_CalibrateModel_fx.m, both leading to the same result; in the present

project the second option was used since it is faster, but for the purpose of explanation

the procedure on OpenSim GUI is more illustrative.

[Fig. 31] depicts the őrst option’s settings.

Figure 31: Example of IMU Placer Tool settings.

The tool used is the IMU Placer Tool: as input, it requires the model and the

orientations őle .sto previously generated to őnd the initial orientation of the IMU frame

relative to the OpenSim model’s body segments. To align the forward direction of the

IMU data and the model’s one, it was set the IMU forward direction following the z-axis

of the pelvis_imu sensor. Moreover, since the reference system of Xsens is different from

the OpenSim one, a rotation of -90° along the x-axis was performed to align the y-axis of

the IMU Xsens and OpenSim reference systems [Fig. 32].
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Figure 32: On the left is the coordinate system of an IMU sensor [39], and on the right is
the OpenSim ground frame.

As output, [Fig. 33] shows the new model updated with IMU sensors correctly oriented

with respect to each body segment.

As the next step, the inverse kinematics was calculated using the data collected from

IMUs. Similar to the above, two approaches are available, one using OpenSim GUI and the

other the tool implemented on Matlab; again, in the present study the tool implemented

on Matlab was used, but for the purpose of explanation the procedure using OpenSim

GUI will be illustrated, and [Fig. 34] shows the tool settings.

The IMU Inverse Kinematics Tool was used to őnd the set of joint angles for

each time step of the walking motion, which minimizes the discrepancies between the

experimental IMU orientations and the calibrated model’s IMU frame. As input the

calibrated model and the sensor orientations őle were needed, specifying the Euler angles

rotations to adopt to correctly transform from the IMU space to OpenSim.
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Figure 33: IMU Placer Tool model updated with IMUs with the correct orientation on
each body segment. Notice that, to avoid confusion, all muscles and contact geometries
have been hidden.

88



At őrst, the same rotations as the one used in the previous step for the IMU placer tool

were adopted (i.e., a rotation of -90° along the x-axis). However, the output motion őle

containing the joint angles and/or translations calculated by the IMU IK Tool, revealed

that the forward direction of the inertial capture system was not the same as the motion

capture one: in fact, there was an angle between the IMU forward direction (in particular,

along the z axis of the pelvis sensor) and the MoCap forward direction.

Figure 34: Example of IMU InverseKinematics Tool. It should be noted that the same
rotations as for the IMU Placer Tool are used. On the right, it is shown that each sensor
has the same weight to resolve the IK problem.

In order for the two reference systems to coincide, especially the forward direction,

a further modiőcation on the angles between the two systems was necessary: from the

IK őle just calculated by the Tool, the őrst calculated pelvis_rotation angle is called the

heading angle, and it speciőcally represents the angle between the two forward directions

(i.e., z axis of the pelvis sensors) existing between the two reference systems.

Once known, a new IK őle was calculated using the heading angle value in addition to

the previous information.
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To summarize, the rotation angles speciőed in the section łData Transformationž of

the IMU Inverse Kinematics Tool [Fig. 34], precisely are:

1. A rotation of -90° around the x-axis for each subject;

2. A rotation of a speciőc angle (heading angle) around the y-axis, as result in the

conversion of the quaternions previously described. This angle is different for every

walking trial of each subject.

The new output will contain őnal the joint angles and/or translations calculated by

the IMU IK Tool.

MoCap Moco workŕow As mentioned earlier, although the focus of this thesis is on

the use of inertial sensors, data from MoCap system were also processed and analyzed.

The data used initially consisted on the .c3d őles for each walking trial, a standard

format that contains all the information needed to read, display, and analyze 3D MoCap

data with additional analog data from force plates, electromyography, accelerometers,

and other sensors. Instead of using custom-built Matlab scripts, Nexus 2.12 was used to

export Track row Column (.trc) and motion (.mot) formats containing respectively the

marker trajectories coming from the camera system and ground reaction forces from the

force plates. In addition, a .csv őle was exported containing the time instants of the main

gait events (i.e., Heel-strike, Toe-off).

Each subject’s walking trial őle (.c3d) was analyzed prior to the export process to verify

that the acquisition was valid. It had to be ensured that each marker was properly labeled,

that there were no gaps in any marker trajectories, and, most importantly, that each foot

was perfectly inside the force platform, with the ground reaction forces correctly detected.

After this operations, the joint angles for the scaled musculoskeletal models were

calculated using the InverseKinematics Tool previously introduced, in order to obtain

the .mot őle containing all the information regarding the motion.
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Moco setup The following section will explain the Moco approach chosen for this study.

First, it is necessary to deőne states and controls that Moco considers in the musculoskele-

tal model used. In particular, the DOFs of the joints on the model, both angular values

and velocities, were deőned as states. Regarding controls, the muscles present on the

model in terms of activations and őber lengths, and the value of the added reserve actu-

ators were assigned.

The two tables shown in [Fig. 35] list respectively the names of states and controls used.

As previously mentioned, data from the MoCap and InCap approaches are used in

the following project, in particular IK őles. Yet, .mot őles previously produced with the

appropriate tools require further modiőcation to be employed on Moco: in particular, a

storage (.sto) őle must be used, and in order to correctly assign angle and velocity values

to the states it is necessary to change the column names of that őle.

This modiőcation was made through a purpose-created Matlab script (changeNames.m)

shown in Appendix A, for both IK őle from MoCap and InCap approaches.

The OpenSim Moco Tool, as mentioned earlier, can be used via several program-

ming languages; in this project, Matlab R2022a was used.

First, it was necessary to provide the inputs required by MocoTrack in order to obtain the

desired solution: in particular, a musculoskeletal model and a őle containing the motion

to be tracked were needed. For this purpose, the Matlab ModelProcessor and TablePro-

cessor commands were used, respectively; particularly, ModelProcessor command accept

a base model and allow easily modiőcations to the model [22]. The same can be applied

regarding the TableProcessor command with respect to IK őle given as input. Both mod-

iőcations regarding model and IK őle are performed by operators (i.e., ModelOperators

and TableOperators).
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Figure 35: List of states, on the left, and controls, on the right, names. To avoid confusion,
only the name of the individual states (and controls) has been reported, but they should be
considered in terms of respectively angular values and velocities for states, and activations
and őber lengths for controls.
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In the present work, the following modiőcations to the model and the IK őle were

applied:

• ModOpIgnoreTendonCompliance(): turn off tendon compliance for all muscles

in the model;

• ModOpReplaceMusclesWithDeGrooteFregly2016(): replace muscles of other

types (particularly, Millard2012EquilibriumMuscles and Thelen2003Muscles) in the

model with muscles of this type;

• ModOpIgnorePassiveFiberForcesDGF(): turn off passive őber forces for all

DeGrooteFregly2016Muscles() in the model;

• ModOpScaleActiveFiberForceCurveWidthDGF(): scale the active őber force

curve width for all DeGrooteFregly2016Muscles in the model;

• TabOpLowPassFilter(): apply a low-pass őlter to the trajectory.

After the inputs were set correctly, weights were set for the two (2) cost functions

implemented by Moco. Regarding the latter, the following cost functions were applied in

the present project:

1. MocoTrackingGoal: the default MocoTrack cost function, minimize the error

between provided reference data and the associated model quantities (i.e., joint

angles, joint velocities, marker positions, etc);

2. MocoControlGoal: minimize the sum of the absolute value of the controls raised

to a given exponent, integrated over the phase [22].

For both, speciőc weight sets had to be set in order to obtain movement tracking as close

as possible to the original input data and estimated muscle activations as close as possible

to those measured.
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Regarding the őrst cost function, global weights of value ten (10) were set for all

DOFs; however, in order to obtain deviations from the input data as small as possible,

much higher weights (in particular, value two hundred (200)) were set on the DOFs of the

leg under investigation (i.e., the right leg).

The same reasoning was applied for the weights concerning the MocoControlGoal cost

function: a value of ten (10) was set as the weight assigned globally to all controls, while

muscle groups of interest to the results were set custom weights as shown in [Fig. 36].

Figure 36: List of muscles and respective weights used in MocoControl Goal. It should be
noticed that the reciprocal of the wi value shown in the őgure was used, assigning these
controls a weight of 1/wi.

Next, the settings required by the MocoProblem built into the MocoTrack package

were set for the purpose of solving the problem. Here, in addition to entering the start

and end times of analysis (particularly, heel-strike and toe-off of the right foot was set

respectively as start and end times), three particular commands have been added:

• set_allow_unused_references(): if true, this setting allows extra data columns

contained in the states reference that don’t correspond to model coordinates;

• set_track_reference_position_derivatives(): if true, this setting is enabled

to őll in the missing coordinate speed data using the derivative of splined position

data;

• set_apply_tracked_states_to_guess(): if true, this setting set the value of

the apply_tracked_states_to_guess property.
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The next step was to set bounds, that is, ranges of values within states and controls

produced as output by Moco must be. In this study, only bounds for states were applied,

so as to impose an additional constraint to limit deviations from the data provided as

input.

Finally, by invoking the MocoSolver solver present in the MocoTrack package, it was

possible to launch the MocoTrack analysis, obtaining as output the Moco_solution.sto őle

containing the tracked motion (in particular, the values of joint angles and their respective

velocities), and the values of muscle activations and length of muscle őbers.

Forces extraction As introduced earlier, the force values that the ground exerts on

the foot during walking are collected by the őve (5) spheres placed on it.

As the Moco analysis produced a new motion (tracked), force values were generated

and recorded within the contact geometries placed on the right foot. Through Moco’s

createExternalLoadsTableForGait() function, these values can be extracted: it is

necessary to provide the newly evaluated model states and the name of the spheres in

order for this function to produce a Moco_GRF_solution.mot őle containing ground

reaction forces and moments estimated with respect to the global reference system.

CoP evaluation However, the force values recorded by the spheres are collected with

respect to the origin of the reference system, thus implying that the forces do not act on

the foot. For this reason, it was necessary to use the Zero Moment Point (ZMP) to

calculate the coordinates of the center of pressure.

The ZMP is a concept in robotics and control theory that is used to determine the stability

of a humanoid robot or any other object: it is deőned as the point on the ground where

the sum of all forces is equal to zero, and the sum of all moments around that point is also

equal to zero [46]. This approach is important for maintaining balance and stability, as it

indicates the location where the center of mass should be located to prevent it from falling

over. For this reason, the ZMP method was exploited in this thesis for the estimation of

the point of application of the GRFs, because it represents the point on the ground where

the resultant tangential moments of the active forces are equale to zero.
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The position of ZMP can be calculated using the conditions:

Mz = 0

Mx = 0

where x is the walking direction, z is the lateral direction, and y is the vertical direction.

Basically, ZMP computations use a force and moment balance to transform a set of forces

and moments applied at any point on the system to a dynamically equivalent set applied

at the ZMP, which is a globally deőned point on the ground [46].

Given a set of forces and moments (Fp,Mp) applied at the pelvis (rp), the equivalent

forces and moments (FZMP ,MZMP ) applied at the ZMP (rZMP ) results as:

FZMP = Fp

MZMP + rZMP × FZMP = Mp + rp × Fp

Since the FZMP and MZMP are applied at the ground, MZMP consists of only the

vertical component, such that MZMP = (0,MZMP , 0) and rZMP = (XZMP , 0, ZZMP ),

where XZMP and ZZMP are deőned as below:

XZMP = f(MZp, FXp, FYp) = Xp +
(MZp − YpFXp)

FYp

ZZMP = g(MXp, FZp, FYp) = Zp −
(MXp + YpFXp)

FYp

By using these equations, the resultant active moment at ZMP along the y-axis is obtained

as follows:

MYZMP = g(FXp, FYp, FZp,MXp,MYp,MZp) = MYp +
FXpMXp

FYp

+
FZpMZp

FYp

In this study, the assumption made to apply this method was that Fp(FXp, FYp, FZp)

and Mp(MXp,MYp,MZp) represent the set of forces and moments equivalent to the

estimated GRFs and GRMs by the spheres; in this way, it was possible to get the center

of application of the results obtained, correctly positioned in space.
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Figure 37: The Moco workŕow, both for InCap and MoCap approaches.
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Chapter 3

Results

All the results obtained using the InCap workŕow introduced in the previous chapter

(Methods) will be displayed here for a őrst visual comparison. In this study, referring to

[Tab. 1], two (2) subjects were evaluated (in particular, H01 and H02) for a total of eight

(8) walking tasks studied. To allow a more accurate comparison of the results, the average

and the respective standard deviation (std) were calculated across all subjects, with each

subject distinguished by the average over the speciőc number of trials of each participant’s

leg under investigation (particularly, the right one); by this, a clearer graphical comparison

of the outcomes was possible.

The calculation was computed in Matlab R2022a: őrstly, given that the displayed time

duration might be expressed as percentage of the portion of gait cycle under investigation

(in this study, the stance phase), all movements were time normalized with the Matlab

function TimeNormalize.m as one hundred and one (101) data point at one (1) %

intervals of the gait cycle; once this adjustment, it was possible to calculate the mean and

the std of the data.

Moreover, in order to better organize the results obtained and the reference data with

which to compare them, Matlab objects deőned as follows were created:

results(n×m× l)

where n represents the number of rows in each matrix (equal to 101, since all results were

normalized), m the number of columns in each matrix varying according to the type of

comparison (IK: 15, ID: 15, GRF: 10), and l the number of tasks analyzed. By this, six

(6) matrix were obtained for IK, ID, and GRF comparisons.
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As a legend for the graphs, red always indicates the reference data, and blue always

refers to the results obtained from the InCap approach.

The x-coordinate corresponds to the stance phase of the gait cycle as a percentage, and

the ordinate axis represents the value of the variables under analysis:

• Degrees (°) for joint angles (IK);

• BW for ground reaction forces;

• meters (m) for center of pressure coordinates;

• Nm/kg for joint moments (ID).

For the IK and ID results, the graphs are presented in such a way that the rows correspond

to a joint and the columns to a type of movement. The őrst row is dedicated to the hip,

the second to the knee, and the third to the ankle. As for the columns, the őrst is

dedicated to ŕexion/extension (FE), the second to abduction/adduction (AA), and the

third to intra/extra rotation (IE). Regarding the results obtained from the spheres and

the respective reference data, the anterior/posterior (AA), vertical (V), and medio/lateral

(ML) components will be plotted with regard to the forces.

In addition to the graphs, some coefficients were calculated in order to provide more

resources to evaluate the accuracy of the results obtained.

Speciőcally:

1. The Pearson’s correlation coefficient was used to measuring the linear correla-

tion between reference and results;

2. The Root Mean Square Error (RMSE) value, as well as the maximum and

median differences;

3. The Maximum value of the difference between reference and results.

These values will be listed in speciőc tables for IK, ID, and GRF comparisons.

The same graphs and coefficients for MocoTrack MoCap results were also evaluated;

these can be found in Appendix B.
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3.1 Kinematics: reference vs. MocoTrack InCap

The comparison of the joint angle values obtained from the MocoTrack analysis and

the values computed with IMU orientations was done using the plot_distribution.m

Matlab function (particularly, it represents data in terms of mean and std). [Fig. 38] shows

the comparison of the following lower limb joints: hip, knee, and ankle; ŕexion/extension,

adduction/abduction, and internal/external rotation are all taken into account (except

for the ankle, which only has dorsi/plantar ŕexion DOF).

Figure 38: Kinematics comparison: in red are the InCap data, while in blue are the
tracked Moco results obtained with InCap data as input. The continue lines represent
the mean (± std) across the 2 subjects both for InCap and Moco results.
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From a graphical perspective, the sagital plane (speciőcally, the ŕex/extension degree

of freedom) appears to be well plotted in the Moco results, while the other planes show

deviations from the input data.

The Pearson correlation between each subject and joint angle was calculated and it

was also reported the mean and standard deviation for the correlation coefficients, RMSE,

and maximum difference [Tab. 5].

mean ± std

Correlation
coefficient

RMSE
[°]

Maximum
difference

[°]
Hip
FE

0.99 ± 0.003 1.65 ± 0.41 4.41 ± 0.77

Hip
AA

0.96 ± 0.015 0.98 ± 0.15 3.59 ± 0.045

Hip
IE

0.99 ± 0.001 0.87 ± 0.15 2.83 ± 0.33

Knee
FE

0.93 ± 0.026 10.94 ± 0.85 16.78 ± 2.05

Knee
AA

0.74 ± 0.1353 2.36 ± 0.16 5.19 ± 0.65

Knee
IE

0.85 ± 0.1013 5.12 ± 2.76 11.88 ± 6.85

Ankle
DP
Flex

0.92 ± 0.005 3.20 ± 1.02 11.86 ± 2.98

Table 5: Average value (± std) of the correlation coefficient (Pearson value), root mean
square error (RMSE), and maximum value of the difference between each joint angle of
the reference (InCap approach) and MocoTrack result. It is the average between subjects
(inter-subjects), each one characterized by the average of their walking trials (intra-
subjects).

Average RMS differences between InCap data and MocoTrack results were in a range of

values 1-6° for all joint angles except knee ŕexion/extension (around 11°). Still concerning

the knee joint, this presented the lowest correlation value with regard to abd/adduction

(r = 0.74), while in terms of maximum differences, values around 11° were also found with

regard to the dorsi/plantarŕexion of the ankle [Tab. 5].
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3.2 Ground reaction forces: measured vs. estimated InCap

The estimated GRFs extracted from the values recorded by the contact spheres placed on

the right foot are compared in [Fig. 39] with the forces recorded by the force platforms

in the MoCap system. Both are represented with respect to the global reference system.

Figure 39: GRFs comparison: in red are the MoCap measured values, while in blue are the
Moco estimated results obtained with InCap data as input. The continue lines represent
the mean (± std) across the 2 subjects for both measured and estimated results.
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From the graphical representation shown in [Fig. 39], it is possible to appreciate that

the estimated data exhibit a great deal of variability. Focusing on the mean values, in

terms of the anterior/posterior and vertical components the values obtained turn out to

be comparable with those measured, while the same cannot be said for the medio/lateral

component.

Conőrming the őndings of [Fig. 39], in [Tab. 6] are reported the mean and standard devi-

ation for the correlation coefficients, the root mean square error (RMSE), and maximum

difference values.

mean ± std

Correlation
coefficient

RMSE
[BW]

Maximum
difference

[BW]
AP

Force
0.93 ± 0.047 0.10 ± 0.019 0.26 ± 0.078

V
Force

0.75 ± 0.013 0.25 ± 0.061 0.71 ± 0.3421

ML
Force

-0.20 ± 0.240 0.06 ± 0.027 0.13 ± 0.008

Table 6: Average value (± std) of the correlation coefficient (Pearson value), root mean
square error (RMSE), and maximum difference between the measured GRFs by the Mo-
Cap system (particularly, by the force plates) and the estimated one by using the contact
geometry model and IMUs data. It is the average between subjects (inter-subjects),
each one characterized by the average of their walking trials (intra-subjects).

Moco solution showed an average (± std) RMSE of the vertical, anterior/posterior, and

medio/lateral ground reaction forces of 0.25 ± 0.0061 BW, 0.10 ± 0.019 BW, 0.06 ± 0.027

compared to measured data [Tab. 6]. In addition, a strong correlation was found for the

anterior/posterior and vertical components (respectively, r = 0.93 and r = 0.75), while a

negative correlation emerged for the middle/lateral component (r = -0.2) [Tab. 6]. Finally,

mean values of maximum differences between measured and estimated data for the three

components of ground reaction forces result in respectively 0.26 for the anterior/posterior

component, 0.71 for te vertical component, and 0.13 for the medio/lateral component

[Tab. 6].
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3.3 Center of pressure: measured vs. estimated InCap

In the second chapter (Methods), it had been discussed about the problem of estimating

the CoP of the estimated ground reaction forces for the inertial-based approach. This

represents one of the limitations found in the present approach: a discrepancy was found

between the coordinates measured by the CoP force platforms and those calculated by

the zero moment point method from ground reaction forces and moments values esti-

mated from the contact spheres. [Tab. 7] shows these differences in terms of correlation

coefficient, and root mean square error (RMSE).

mean ± std
Correlation
coefficient

RMSE
(m)

CoP
AP

Force
0.93 ± 0.07 0.067± 0.09

CoP
ML

Force
-0.02 ± 1.37 0.038 ± 0.035

Table 7: Average value (± std) of the correlation coefficient (Pearson value), and root mean
square error (RMSE) between the measured center of pressure by the MoCap system
(particularly, by the force plates) and the ZMP evaluated by using InCap estimated
results over all subjects. It is the average between subjects (inter-subjects), each one
characterized by the average of their walking trials (intra-subjects).

[Tab. 7] revealed a strong correlation (r = 0.93) between the CoP trends in the ante-

rior/posterior direction, but a poor negative correlation (r = -0.02) in the medio/lateral

direction. However, RMSE values show how obvious discrepancies exist between measured

data and the ones calculated from estimated values [Tab. 7].
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3.4 Dynamics: reference vs. MocoTrack InCap

Finally, [Fig. 40] shows joint moments for the hip, knee, and ankle joints during the

overground walking, obtained from the OpenSim InverseDynamics Tool. As explained

above, in red are the outcomes from the MoCap approach that used the kinematics and

GRFs measured by the stereophotogrammetric system as input, while in blue the inertial

derived kinematics and estimated GRFs by Moco with the point of application obtained

via ZMP calculations.

Figure 40: Dynamics comparison: in red are the MoCap system results, while in blue are
the inertial-based ones using estimated GRFs. The continue lines represent the mean (±
std) across the 2 subjects both for MoCap and InCap + estimated GRFs results.

106



As might be expected, in [Fig. 40] the blue curves turn out to be more approximate

and variable; this may be due to the variable estimation of ground reaction forces and

ground reaction moments. In terms of peak values, it is apparent from [Fig. 40] that some

are overestimated (i.e., hip ŕexion/extension and abd/adduction) while others appear to

be in line with the data provided as reference depending on what force is used to estimate

joint moments: for instance, moments calculated from the medio/lateral component will

lead to results more divergent from the reference results.

To conőrm the description previously made just from the visual comparison, in [Tab.

8] are reported the mean and standard deviation for the correlation coefficient, and the

root mean square error (RMSE) between reference and obtained data.

mean ± std
Correlation
coefficient

RMSE
[Nm/kg]

Hip
FE

Moment
-0.18 ± 0.348 72.71 ± 34.11

Hip
AA

Moment
0.40 ± 0.050 42.10 ± 25.34

Hip
IE

Moment
0.51 ± 0.001 4.11 ± 3.57

Knee
FE

Moment
0.30 ± 0.003 45.11 ± 12.17

Knee
AA

Moment
0.50 ± 0.017 24.40 ± 14.81

Knee
IE

Moment
0.60 ± 0.298 3.88 ± 1.54

Ankle
DP
Flex

Moment

0.63 ± 0.053 50.65 ± 2.99

Table 8: Average value (± std) of the correlation coefficient (Pearson value), and root mean
square error (RMSE) between each joint moment of the reference (MoCap approach) and
InCap + estimated GRFs result. It is the average between subjects (inter-subjects),
each one characterized by the average of their walking trials (intra-subjects).
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Furthermore, [Tab. 8] highlights the big difference between all ŕexion/extension mo-

ments of all DOFs. As for Pearson’s coefficient, all the moments obtained are found to

be moderately correlated with their respective reference values, resulting in a coefficient r

varying in the range of r = 0.4 - 0.6. The only exception concerns the hip ŕex/extension

moment, for which a negative correlation value of r = -0.18 was reported [Tab. 8].

In addition, high values of RMS differences emerged for moments mostly in the sagittal

plane: the average (± std) RMSE of the hip and knee ŕexion/extension moments and the

ankle dorsi/plantar ŕexion moment are respectively 72.71 ± 34.11 Nm/kg, 45.11 ± 12.17

Nm/kg, and 50.65 ± 2.99 Nm/kg [Tab. 8]. Finally, high RMSE values were also found

for hip and knee abd/adduction, respectively, of 42.10 ± 25.34 Nm/kg, and 45.11 ± 12.17

Nm/kg [Tab. 8].
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Chapter 4

Discussion

The őndings illustrated in the previous chapter (Results) allow some considerations to be

made about the use of IMUs coupled with models that have contact geometries in the

analysis of human movements, particularly in estimating the ground reaction forces.

The goal of this thesis was to develop an approach that, from data derived from iner-

tial wearable sensors IMUs, would allow the most correct estimation of ground reaction

forces by eliminating the use of force platforms for their detection.

In general, optical motion capture systems with skin-mounted reŕective markers are used

to capture human motion kinematics. However, such a system allows the study of move-

ments in a controlled environment (i.e., a motion laboratory) limiting the applications of

motion analysis. For this reason, the approach presented in this thesis is an interesting

development in order to obtain viable alternatives to the gold standard represented by

the MoCap system.

Regarding the results, in order to be as illustrative as possible in the discussion of

these, this chapter will be divided as follows:

• Discussion of Kinematics results;

• Discussion of Ground reaction forces results;

• Discussion of Center of pressure results;

• Discussion of Dynamics results;
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In addition, as mentioned in the previous chapter (Results), the same results in terms

of [Fig.] and [Tab.] are reported in this thesis by comparing reference data from the

gold standard (speciőcally, MoCap system) and data processed through the operative

workŕow [Fig. 28] described above that use data from optical-based approach as input.

These results can be found in Appendix B. However, the following comments can generally

be considered the same for the results shown in Appendix B, with a few exceptions due

to the differences present between the two data collection approaches.
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4.1 Discussion of Kinematics results

As for the results obtained using the OpenSim Moco tool to track a movement provided

as input, it can be stated that the joint angles obtained from this approach using IMUs

data were consistent with the provided ones.

The RMS differences were all between 1-6°, except for knee ŕexion/extension where

the values obtained are approximately 11° [Tab 5]. In addition, the maximum differences

found on all DOFs had similar values for the hip joint, while for the knee and ankle

joints higher values have been reported in a range of 11-16° [Tab. 5]. In order to justify

these values, Moco developers [4] state that using MocoTrack automatically implies that

the "tracked" motion has deviations from that provided as input: this is because Moco

employs an optimization algorithm that minimizes a cost function in order to obtain a so-

lution. However, these deviations must be contained within a certain range for the results

obtained to be considered clinically employable: an error of less than 2° is acceptable in

most clinical applications, while errors of 2° to 5° are also acceptable but require speciőc

interpretation [17].

Such values obtained and listed in [Tab. 5] may őnd justiőcation in the low weight as-

signed during this study to that DOFs during the Moco setup illustrated in the previous

chapter (Methods): particularly, these thesis represents a őrst approach involving the use

of this tool for such analyses, so a speciőc set of weights was preferred with regard to the

pelvis and hip joint, leaving lower weights for the other joints. This choice was also justi-

őed by the computational time required for the analyses: increasing the weights assigned

to the DOFs of the model results in a directly proportional increase in the time required

by the solver to reach convergence.

Finally, the strong correlation values obtained along with the graphical representation

provided in [Fig. 38] demonstrate that the tracked result obtained are well correlated

with the provided ones as input and identiőed here as reference (speciőcally, data from

InCap approach).
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4.2 Discussion of Ground reaction forces results

The purpose of this thesis is to validate a new method involving the estimation of ground

reaction forces based on a biomechanical model that has speciőc contact geometries suit-

able for recording values of forces acting on them. To this, the OpenSim Moco tool was

coupled with the goal of tracking a motion provided as input from IMU measurements.

Because this approach is totally novel, nothing has been found in the literature with which

to compare and justify the results obtained. Thus, the following considerations arise from

observations regarding the results obtained and critical sense of the candidate.

From the visual comparison provided by [Fig. 39], it is possible to establish how the

approach presented provides an interesting starting point for developing a new workŕow

reliable as the gold standard for studying a wider range of movements in uncontrolled

environments that require speciőc equipment. This is conőrmed by the great values

obtained for the coefficients presented in [Tab. 6] for the anterior/posterior and vertical

components of GRFs: in fact, a strong correlation can be seen for both components (r =

0.93 and r = 0.75, respectively), and an average (± std) RMSE of 0.10 ± 0.019 BW, and

0.25 ± 0.061 BW.

The only negative point is the estimation of the medio/lateral component: it can be

visually seen a discrepancy from the red curve representing the force values measured

by the MoCap system and the blue curve representing the force values estimated by the

spheres [Fig. 39]; this graphical consideration is conőrmed by the values shown in [Tab.

6], which establish a negative correlation between reference and estimated data (r = -0.20)

and a maximum difference value (mean ± std) of 0.13 ± 0.008 BW.

The reason for such a poor estimation of GRFs (in particular, of the medio/lateral

component) can be totally attributed to the geometric conőguration of the contact spheres

and their mechanical properties: during the development of the musculoskeletal model

chosen for the present project and illustrated in the second chapter (Methods), several

conőgurations were tested in order to őnd the optimal one suitable for the purposes

described above; for clarity, only the őnal conőguration chosen that turned out to be the

best among those tested was reported. However, from this preliminary study, it was found

that a single change in a property of the spheres is responsible for a signiőcant change in

terms of estimated forces.
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To give an example, changing the size of the spheres (in particular, their radius)

resulted in overestimated values of forces recorded by the spheres due to the inversely

proportional relationship between force and area of application (speciőcally, the smaller

the area the greater the force recorded). In order to provide a visual representation of

what has just been explained, [Fig. 41] shows the estimated forces (in red) of a single

subject’s walk (speciőcally, H01 walk_5) employing the musculoskeletal model presented

by Falisse et al [40] previously introduced that speciőcally has six (6) contact spheres with

different positioning, size, and mechanical properties from those employed in the present

project.

Figure 41: Graphic comparison between MoCap measured GRFs (in blue) and estimated
GRFs (in red) by using the [40] model. The x-axis shows the time instants of the stance
phase (speciőcally, from HS to TO).

From [Fig. 41], it is quite evident from the graphical point of view how changes made

to the spheres directly result in changes in the estimated forces recorded by them.
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For the considerations made above, the rough estimation of GRFs, particularly the

poor estimation of the medio/lateral component, őnds justiőcation: although the con-

őguration used including position, geometry, and mechanical properties is the best one

obtained in the preliminary study of the present work, it is not to be considered deőni-

tive; on the contrary, it should be represented as a starting point of future analyses to

improve the estimation of all three components of GRFs, improving both graphically the

similarity with the reference curves and from the point of view of coefficients to obtain

smaller errors and stronger correlations.
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4.3 Discussion of Center of pressure results

In the previous section, it was explained how changes concerning the contact spheres

cause important variations in the estimated values of forces and moments. This variabil-

ity strongly inŕuences the estimation of the center of pressure.

As explained in the second chapter (Methods), the createExternalLoadsTableFor-

Gait.m Matlab function contained in the OpenSim Moco package returns values of ground

reaction forces and moments centered in the origin of the global reference system. In or-

der to obtain the point of action of these forces, deőned as the center of pressure (CoP),

the zero moment point (ZMP) method was employed [46]. However, it is evident that

providing inaccurate values to the ZMP method equations in order to calculate the ante-

rior/posterior and medio/lateral CoP components yield results that are not in line with

the same components collected by the force plates in the MoCap system. Such discrepan-

cies are reported in [Tab. 7], where high RMSE values can be seen for both components.

Surprisingly, the correlation coefficient for the anterior/posterior component appears to

be remarkably strong (r = 0.93) [Tab. 7].

Although the components obtained cannot be considered comparable with the gold stan-

dard and consequently employable, based solely on the values reported in [Tab. 7] it

would appear that the calculated CoP is reported outside the normal area of application

(i.e., in this study, the right foot). [Fig. 42] intends to provide a graphical visualization

of a single walk (speciőcally, H01 walk_5) in order to show how the CoP calculated from

the values of GRFs and GRMs is correctly positioned in the application area.

Taking into account all the considerations made earlier about the correlation between

contact spheres and force estimation, it is evident that the results obtained in the present

study cannot be considered reliable and clinically applicable. However, as shown in [Fig.

42], these results represent a starting point for future studies to estimate forces, moments,

and consequently their point of application more and more effectively.
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Figure 42: Visual representation of the estimated GRFs (in green) coupled with the
evaluated CoP components with the ZMP method for subject H01, walk_5. In particular,
(a) represents the forces at 25% of stance phase, while (b) the same at 75% of stance phase.
To avoid confusion, all muscles, contact geometries, and markers placed on the model have
been hidden.
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4.4 Discussion of Dynamics results

Further conőrmation of the considerations made earlier is evident by considering the dy-

namics results obtained using the ground reaction forces and moments data estimated

from the spheres and their positioning calculated by the zero moment point method.

Graphically, [Fig. 45] clearly reports how the results from the estimated GRFs are

highly variable: in particular, regarding the moments of hip ŕexion/extension (hip FE)

and internal/external rotation (hip IE), it is possible to őnd anomalous peaks at the be-

ginning with strongly overestimated values. This overestimation can be attributed to the

inaccurate estimates of GRFs, GRMs, and CoP components, which, when added together,

produce such errors. The same reasoning can be applied for the same degrees of freedom

of the knee, were similar scenarios are depicted in the second row of [Fig. 45].

As conőrmation of the graphs shown in [Fig. 40], the correlation coefficient (Pearson

coefficient) and root mean square error (RMSE) were calculated and reported in [Tab. 8].

As expected, [Tab. 8] highlights the differences illustrated above, reporting mean (± std)

RMSE values of 72.71 ± 34.11 BW for hip FE moment, and 42.10 ± 25.34 BW for hip

abd/adduction (hip AA) moment. As before, the same higher values of RMSE were found

regarding knee FE moment (45.11 ± 12.17 BW), knee AA moment (24.40 ± 14.81 BW),

and őnally ankle dorsi/plantar ŕexion (ankle DF) moment (50.65 ± 2.99 BW) [Tab. 8].

As for the Pearson’s coefficient, all the moments obtained are found to be moderately

correlated with respect to the reference values (in particular, the coefficient r varies in

the range of r 0 0.4-0.6); the only exception concerns the hip FE moment, for which a

negative correlation value was reported [Tab. 8].

The results just discussed represent yet another conőrmation that the present project

cannot be considered completed; on the contrary, further testing and development are

needed in order to reduce the peaks present in [Fig. 40], consequently increasing the

correlation between reference data and data obtained by minimizing the errors present.
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Chapter 5

Conclusions and further developments

In this thesis, a new method for estimating ground reaction forces was developed based

on a biomechanical model and data from an IMU-based approach. The ultimate goal is

to develop a reliable and clinically employable alternative to the gold standard for the

study of motion analysis, represented by the combination of retro-reŕective markers and

a stereophotogrammetric system, known as the motion capture (MoCap) system [2].

The results presented in the dedicated chapter (Results) clearly show how the ap-

proach developed in this project is promising: through a conőguration of contact geome-

tries designed speciőcally for the present study involving spherical elements with speciőc

geometrical and mechanical characteristics ([Fig. 26], [Tab. 2], [Tab. 3]), it was possible

to estimate all three components of ground reaction forces, the anterior/posterior, the

vertical, and the medio/lateral components (shown in [Fig. 39]) and the ground reaction

moments. In order to make the presented approach as least "optical-based" as possible,

data from wearable IMU sensors were used in the present project, which provide an in-

teresting alternative to the gold standard for motion detection during a speciőc task [18].

Finally, the OpenSim Moco tool allowed the two previously described tools to be coupled

as inputs, allowing via the MocoTrack package to track a motion and detect the GRFs

derived from it by reducing the problem to an optimization problem and using direct

collocation as the solution method [4]. In addition to the main objective of this thesis

(particularly, the estimation of GRFs), in the results chapter (Results), the results ob-

tained were presented compared with the respective reference values of joint angles ([Fig.

38], [Tab. 5]), coordinates of the center of pressure ([Tab. 7]), and joint moments ([Fig.

40], [Tab. 8]).
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Conclusions based on the results obtained and the discussion of these presented in the

dedicated chapter (Discussion) can be drawn: the workŕow developed and illustrated in

[Fig. 28] represents a new method for the estimation of ground reaction forces that sees

the use of a biomechanical approach that expands the variety of existing methods [1].

Although the results obtained have proved promising, many factors must be considered.

In particular, the results estimated from the spheres have some discrepancies from the

values measured from the force platforms; these discrepancies are directly responsible for

errors in the subsequent calculation of center-of-pressure coordinates and joint moments.

This shows how, despite the promising results, further improvements in this direction

suitable for enhancing the reported estimated values are needed, since the gold standard

devices still appear to be the most reliable.

To summarize, the approach developed and the results presented represent the begin-

ning of a new method for estimating ground reaction forces.

Future developments and improvements will lead to validation of this method as an alter-

native to the gold standard, represented by direct measurements of such values, that will

be reliable and clinically applicable. Among these, a sensitivity study devoted entirely to

contact spheres is necessary, since through this it is possible to understand in depth how

changes in geometrical and mechanical characteristics introduced during the discussion

of the results lead to tangible changes in terms of estimated force values; based on this

important study it will be possible to deőne the best conőguration as a combination of

geometry, position, number, and mechanical characteristics of the balls that produces the

most reliable results. A further development concerns the model: in order to make it as

comparable as possible with the human musculoskeletal system, it is necessary to add

additional degrees of freedom to the joints (i.e., to the ankle joint) with the ultimate goal

of employing such a model coupled with the developed method in the study of move-

ments of patients with diseases that impair normal walking, such as osteoarthritis, and

neurological diseases. Finally, after the previous improvements, since the OpenSim Moco

package turns out to be open-source and therefore completely customizable, a new Moco

package may be developed ad-hoc so as to better optimize solver performance, analysis,

and results.
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Appendix A: Code used
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1. changeNames.m

The script reported in the following page was used to change the state names for both

InCap and MoCap approach.

In addition, the following script is for the subject H01, suitable for the change of names of

walk_5_ik, walk_8_ik, and walk_11_ik. The code remains unchanged for the subject

H02, for the change of names of walk_7_ik, walk_9_ik, walk_10_ik, walk_12_ik, and

walk_14_ik.
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Change joint names with path to joint
close all; clear all; clc;

walk = 5; % CHANGE HERE TO SWITCH WALK! For HS1 = [5 8 11]

IK_path = 'C:\Users\lbot9\OneDrive - KU Leuven\Tesi_Ludovica\Moco_elaboration\H01\MoCap\IK\';
IK_file_mot = strcat('walk_', num2str(walk), '\walk_', num2str(walk), '_ik.mot');
IK_file_sto = [IK_path, strcat('walk_', num2str(walk), '\walk_', num2str(walk), '_ik.sto')];

[data, names, table] = readMOTSTOTRCfiles_v1(IK_path, IK_file_mot);
names_path = {'time', ...
    '/jointset/ground_pelvis/pelvis_tilt/value', ...
    '/jointset/ground_pelvis/pelvis_list/value', ...
    '/jointset/ground_pelvis/pelvis_rotation/value', ...
    '/jointset/ground_pelvis/pelvis_tx/value', ...
    '/jointset/ground_pelvis/pelvis_ty/value', ...
    '/jointset/ground_pelvis/pelvis_tz/value', ...
    '/jointset/hip_r/hip_flexion_r/value', ...
    '/jointset/hip_r/hip_adduction_r/value', ...
    '/jointset/hip_r/hip_rotation_r/value', ...
    '/jointset/knee_r/knee_flexion_r/value', ...
    '/jointset/knee_r/knee_adduction_r/value',    ...
    '/jointset/knee_r/knee_rotation_r/value', ...
    '/jointset/ankle_r/ankle_angle_r/value', ...
    '/jointset/subtalar_r/subtalar_angle_r/value', ...
    '/jointset/hip_l/hip_flexion_l/value',    ...
    '/jointset/hip_l/hip_adduction_l/value', ...
    '/jointset/hip_l/hip_rotation_l/value', ...
    '/jointset/knee_l/knee_flexion_l/value', ...
    '/jointset/knee_l/knee_adduction_l/value',    ...
    '/jointset/knee_l/knee_rotation_l/value', ...
    '/jointset/ankle_l/ankle_angle_l/value', ...
    '/jointset/subtalar_l/subtalar_angle_l/value', ...
    '/jointset/back/lumbar_extension/value', ...
    '/jointset/back/lumbar_bending/value',  ...
    '/jointset/back/lumbar_rotation/value', ...
    '/jointset/acromial_r/arm_flex_r/value', ...
    '/jointset/acromial_r/arm_add_r/value', ...
    '/jointset/acromial_r/arm_rot_r/value', ...
    '/jointset/elbow_r/elbow_flex_r/value',    ...
    '/jointset/elbow_r/pro_sup_r/value', ...
    '/jointset/acromial_l/arm_flex_l/value', ...
    '/jointset/acromial_l/arm_add_l/value',...
    '/jointset/acromial_l/arm_rot_l/value', ...
    '/jointset/elbow_l/elbow_flex_l/value', ...
    '/jointset/elbow_l/pro_sup_l/value'};
generateMotFile_v1(data, names_path, IK_file_sto)
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2. MocoTrack_InCap.m

Only the script regarding Moco analysis using InCap data is reported since this is the

focus of this thesis; however, the code remains almost unchanged for the MoCap approach.

The reported script is for the subject H01, suitable for analyses of walk_5, walk_8, and

walk_11 of it. The code remains unchanged for the subject H02, for the analyses of

walk_7, walk_9, walk_10, walk_12, and walk_14.
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Subject HS1 InCap
close all;
clc;
clear all;

walk = 11; % CHANGE HERE TO SWITCH WALK! For HS1 = [5 8 11]

main_path = 'C:\Users\lbot9\OneDrive - KU Leuven\Tesi_Ludovica\Moco_elaboration\H01\InCap\';

frames = [main_path, strcat('Frames\walk_', num2str(walk), '_frames.mat')]; 
ik = [main_path, strcat('IK\walk_', num2str(walk), '\walk_', num2str(walk), '_ik.sto')]; 
model = [main_path, 'HS1_scaled_calibrated.osim'];

MocoTrack
% Load the Moco libraries.
import org.opensim.modeling.*;
load(frames);

% Define the optimal control problem.
% ==================================
track = MocoTrack();
track_file = strcat('Moco results\walk_', num2str(walk), '\HS1_InCap');
track.setName([main_path, track_file]); 

% Set the weights for the terms in the objective function.
% ==================================
controlEffortWeight = 10;
stateTrackingWeight = 10;

% Reference data for tracking problem.
% ==================================
tableProcessor = TableProcessor(ik);
tableProcessor.append(TabOpLowPassFilter(6));
modelProcessor = ModelProcessor(model);
modelProcessor.append(ModOpIgnoreTendonCompliance());
modelProcessor.append(ModOpReplaceMusclesWithDeGrooteFregly2016());
modelProcessor.append(ModOpIgnorePassiveFiberForcesDGF());
modelProcessor.append(ModOpScaleActiveFiberForceCurveWidthDGF(1.5));
track.setModel(modelProcessor);
track.setStatesReference(tableProcessor);
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% Customized weight for MocoTrackingGoal.
% ==================================
track.set_states_global_tracking_weight(stateTrackingWeight);
w = 200;
weights = MocoWeightSet();
% pelvis 
weights.cloneAndAppend(MocoWeight("/jointset/ground_pelvis/pelvis_tilt/value", w));
weights.cloneAndAppend(MocoWeight("/jointset/ground_pelvis/pelvis_list/value", w));
weights.cloneAndAppend(MocoWeight("/jointset/ground_pelvis/pelvis_rotation/value", w));
weights.cloneAndAppend(MocoWeight("/jointset/ground_pelvis/pelvis_tx/value", w));
weights.cloneAndAppend(MocoWeight("/jointset/ground_pelvis/pelvis_ty/value", w));
weights.cloneAndAppend(MocoWeight("/jointset/ground_pelvis/pelvis_tz/value", w));
% hip_r
weights.cloneAndAppend(MocoWeight("/jointset/hip_r/hip_flexion_r/value", w));
weights.cloneAndAppend(MocoWeight("/jointset/hip_r/hip_adduction_r/value", w)); 
weights.cloneAndAppend(MocoWeight("/jointset/hip_r/hip_rotation_r/value", w));
% hip_l
weights.cloneAndAppend(MocoWeight("/jointset/hip_l/hip_flexion_l/value", w));
weights.cloneAndAppend(MocoWeight("/jointset/hip_l/hip_adduction_l/value", w)); 
weights.cloneAndAppend(MocoWeight("/jointset/hip_l/hip_rotation_l/value", w));
track.set_states_weight_set(weights);

% MocoProblem settings.
% ==================================
track.set_allow_unused_references(true);
track.set_track_reference_position_derivatives(true);
track.set_apply_tracked_states_to_guess(true);
track.set_initial_time(f.f_HS_R(1));
track.set_final_time(f.f_TO_R);
study = track.initialize();
problem = study.updProblem();

% Customized weight for MocoControlGoal.
% ==================================
effort = MocoControlGoal.safeDownCast(problem.updGoal('control_effort'));
effort.setWeight(controlEffortWeight);
% glu_med
effort.setWeightForControl("/forceset/glut_med1_r", 1/0.9);
effort.setWeightForControl("/forceset/glut_med2_r", 1/0.9);
effort.setWeightForControl("/forceset/glut_med3_r", 1/0.9);
% glu_min
effort.setWeightForControl("/forceset/glut_min1_r", 1/0.9);
effort.setWeightForControl("/forceset/glut_min2_r", 1/0.9);
effort.setWeightForControl("/forceset/glut_min3_r", 1/0.9);
% hamstrings
effort.setWeightForControl("/forceset/semimem_r", 1/2);
effort.setWeightForControl("/forceset/semiten_r", 1/2);
effort.setWeightForControl("/forceset/bifemlh_r", 1/2);
effort.setWeightForControl("/forceset/bifemsh_r", 1/2);
% leg posterior group

2



effort.setWeightForControl("/forceset/soleus_r", 1/0.9);
effort.setWeightForControl("/forceset/med_gas_r", 1/4);
effort.setWeightForControl("/forceset/lat_gas_r", 1/7);
% thigh anterior group
effort.setWeightForControl("/forceset/rect_fem_r", 1/3); 
effort.setWeightForControl("/forceset/vas_med_r", 1/3);
effort.setWeightForControl("/forceset/vas_int_r", 1/3);
effort.setWeightForControl("/forceset/vas_lat_r", 1/3);

% Bounds
% ==================================
problem.setStateInfo('/jointset/ground_pelvis/pelvis_tilt/value', ...
    [-9.5*pi/180, 9.5*pi/180]);
problem.setStateInfo('/jointset/ground_pelvis/pelvis_list/value', ...
    [-9.5*pi/180, 9.5*pi/180]); 
 
problem.setStateInfo('/jointset/ground_pelvis/pelvis_tx/value', [-2, 2]);
problem.setStateInfo('/jointset/ground_pelvis/pelvis_ty/value', [0.75, 1.25]);  
problem.setStateInfo('/jointset/ground_pelvis/pelvis_tz/value', [-1, 1]);

problem.setStateInfo('/jointset/hip_l/hip_flexion_l/value', [-30*pi/180, 60*pi/180]);
problem.setStateInfo('/jointset/hip_l/hip_adduction_l/value', [-30*pi/180, 30*pi/180]);
problem.setStateInfo('/jointset/hip_l/hip_rotation_l/value', [-30*pi/180, 30*pi/180]);

problem.setStateInfo('/jointset/hip_r/hip_flexion_r/value', [-30*pi/180, 60*pi/180]);
problem.setStateInfo('/jointset/hip_r/hip_adduction_r/value', [-30*pi/180, 30*pi/180]);
problem.setStateInfo('/jointset/hip_r/hip_rotation_r/value', [-30*pi/180, 30*pi/180]);

problem.setStateInfo('/jointset/knee_l/knee_flexion_l/value', [-60*pi/180, 9.5*pi/180]);
problem.setStateInfo('/jointset/knee_l/knee_adduction_l/value', [-15*pi/180, 10*pi/180]);
problem.setStateInfo('/jointset/knee_l/knee_rotation_l/value', [-5*pi/180, 20*pi/180]);

problem.setStateInfo('/jointset/knee_r/knee_flexion_r/value', [-60*pi/180, 9.5*pi/180]);
problem.setStateInfo('/jointset/knee_r/knee_adduction_r/value', [-15*pi/180, 10*pi/180]);
problem.setStateInfo('/jointset/knee_r/knee_rotation_r/value', [-5*pi/180, 20*pi/180]);

problem.setStateInfo('/jointset/ankle_l/ankle_angle_l/value', [-20*pi/180, 29*pi/180]);
problem.setStateInfo('/jointset/ankle_r/ankle_angle_r/value', [-20*pi/180, 29*pi/180]);
problem.setStateInfo('/jointset/subtalar_r/subtalar_angle_r/value', ...
    [-20*pi/180, 29*pi/180]);
problem.setStateInfo('/jointset/subtalar_l/subtalar_angle_l/value', ...
    [-20*pi/180, 29*pi/180]);

problem.setStateInfo('/jointset/back/lumbar_extension/value', [-20*pi/180, 20*pi/180]);
problem.setStateInfo('/jointset/back/lumbar_bending/value', [-20*pi/180, 20*pi/180]);
problem.setStateInfo('/jointset/back/lumbar_rotation/value', [-20*pi/180, 20*pi/180]);

% To modify solver settings uncomment 
% solver = study.initCasADiSolver();
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% To print the Moco setup uncomment
% study.print('Moco_setup.xml');

% Solve the problem
% ==================================
Moco_solution_MoCap = study.solve();
solution_file = strcat('Moco results\walk_', num2str(walk), '\Moco_solution_InCap_', ...
    num2str(walk), '.sto'); 
Moco_solution_MoCap.write([main_path, solution_file]);

GRF extraction
import org.opensim.modeling.*;

% Create MocoStates file
% ==================================
[data, names, table] = readMOTSTOTRCfiles_v1([main_path, ...
    strcat('Moco results\walk_', num2str(walk), '\')], ...
    strcat('Moco_solution_InCap_', num2str(walk), '.sto')); 

C2 = [repmat({''}, 120,1) ;repmat({'/fiber_length'},78,1)];
names_new = strcat(names', C2);
names_new(121:145,:) = [];
names_new(end-3:end, :) = [];
names_new = names_new';
data_new = data;
data_new(:, 121:145) = [];
data_new(:, end-3:end) = [];
states_file = strcat('Moco results\walk_', num2str(walk), '\Moco_states_InCap_', ...
    num2str(walk), '.sto'); 
generateMotFile_v2(data_new, names_new, [main_path, states_file]); 

model = Model(model);
model.initSystem();
statesTraj = StatesTrajectory();
states = statesTraj.createFromStatesStorage(model, [main_path, states_file]); 

% Extract ground reaction forces
% ==============================
contact_r = StdVectorString();
contact_l = StdVectorString();
contact_r.add('SmoothSphereHalfSpaceForce_s1_r');
contact_r.add('SmoothSphereHalfSpaceForce_s2_r');
contact_r.add('SmoothSphereHalfSpaceForce_s3_r');
contact_r.add('SmoothSphereHalfSpaceForce_s4_r');
contact_r.add('SmoothSphereHalfSpaceForce_s5_r');
model = modelProcessor.process();
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externalForcesTableFlat = opensimMoco.createExternalLoadsTableForGait(model, ...
    states, contact_r, contact_l);
GRF_file = strcat('Moco results\walk_', num2str(walk), '\Moco_solutionGRF_InCap_', ...
    num2str(walk), '.mot'); 
STOFileAdapter.write(externalForcesTableFlat, [main_path, GRF_file]);

CoP evaluation with ZMP method
clear data; clear data_new; 
clear names; clear names_new;
clear table; clear C2;

% Load Moco estimated forces and calcn pointKinematics file
% ==============================
calcn_origin = 'HS1_PointKinematics_calcn_origin_pos.sto';
GRF = strcat('Moco_solutionGRF_InCap_', num2str(walk), '.mot'); 

[data, names, table] = readMOTSTOTRCfiles_v1([main_path, strcat('Moco results\walk_', ...
    num2str(walk), '\')], GRF); 
[data1, names1, table1] = readMOTSTOTRCfiles_v1([main_path, strcat('Moco results\walk_', ...
    num2str(walk), '\calcn_origin\')], calcn_origin); 

data_norm = TimeNormalize_v1(data, 101);
data1_norm = TimeNormalize_v1(data1, 101);

% ZMP method to evaluate px, pz and My
% ==============================
data_norm(:, 5) = (data_norm(:, 16)./data_norm(:,3)) - ...
    (data1_norm(:, 3).*(data_norm(:, 2)./data_norm(:,3))) + ...
    data1_norm(:, 2); %px 
data_norm(:, 7) = (data_norm(:, 14)./data_norm(:, 3)) - ...
    (data1_norm(:, 3).*(data_norm(:, 4)./data_norm(:, 3))) + ...
    data1_norm(:, 4); %pz 
data_norm(:, 15) = data_norm(:, 15) + ...
    ((data_norm(:, 4).*data_norm(:, 16))./data_norm(:, 3)) + ...
    ((data_norm(:, 2).*data_norm(:, 14))./data_norm(:, 3)); %My
data_norm(:, 14) = 0; %Mx
data_norm(:, 16) = 0; %Mz

data_norm(isinf(data_norm)|isnan(data_norm)) = 0;

% Filter data
% ==============================
fs=100;
[b, a] = butter(2, 20/fs*2, 'low');
data_filt = filtfilt(b, a, data_norm);
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% Generate the complete estimated GRF file
% ==============================
generateMotFile_v1(data_filt, names, [main_path, strcat('Moco results\walk_', ...
    num2str(walk), '\estimated_GRF_InCap_', num2str(walk), '.mot')]);
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Appendix B: MocoTrack MoCap results
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1. Kinematics: reference vs. MocoTrack MoCap

Figure 43: Kinematics comparison: in red are the MoCap data, while in blue are the
tracked Moco results obtained with MoCap data as input. The continue lines represent
the mean (± std) across the 2 subjects both for InCap and Moco results.
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mean ± std

Correlation
coefficient

RMSE
[°]

Maximum
difference

[°]
Hip
FE

0.95 ± 0.068 4.91 ± 4.73 17.47 ± 20.15

Hip
AA

0.86 ± 0.170 2.65 ± 2.62 9.84 ± 10.15

Hip
IE

0.98 ± 0.001 1.33 ± 0.37 4.76 ± 0.83

Knee
FE

0.84 ± 0.184 8.15 ± 3.03 26.79 ± 18.52

Knee
AA

0.78 ± 0.188 4.01 ± 0.61 10.73 ± 5.23

Knee
IE

0.66 ± 0.386 6.64 ± 3.73 9.78 ± 5.15

Ankle
DF

0.92 ± 0.072 5.32 ± 3.85 13.59 ± 5.32

Table 9: Average value (± std) of the correlation coefficient (Pearson value), root mean
square error (RMSE), and maximum of the difference between each joint angle of the
reference (MoCap approach) and MocoTrack results. It is the average between subjects
(inter-subjects), each one characterized by the average of their walking trials (intra-
subjects).
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2. Ground reaction forces: measured vs estimated MoCap

Figure 44: GRFs comparison: in red are the MoCap measured values, while in blue are the
Moco estimated results obtained with MoCap data as input. The continue lines represent
the mean (± std) across the 2 subjects for both measured and estimated results.
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mean ± std

Correlation
coefficient

RMSE
[BW]

Maximum
difference

[BW]
AP

Force
0.89 ± 0.015 0.11 ± 0.014 0.34 ± 0.084

V
Force

0.74 ± 0.077 0.25 ± 0.015 1.05 ± 0.234

ML
Force

-0.42 ± 0.06 0.07 ± 0.031 0.15 ± 0.042

Table 10: Average value (± std) of the correlation coefficient (Pearson value), root mean
square error (RMSE), and maximum differences between the measured GRFs by the
MoCap system (particularly, by the force plates) and the estimated one by using the
contact geometry model and motion capture data. It is the average between subjects
(inter-subjects), each one characterized by the average of their walking trials (intra-
subjects).
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3. Center of pressure: measured vs. estimated MoCap

mean ± std
Correlation
coefficient

RMSE
[m]

CoP
AP

Force
0.66 ± 0.45 0.029 ± 0.030

CoP
ML

Force
0.34 ± 0.89 0.019 ± 0.020

Table 11: Average value (± std) of the correlation coefficient (Pearson value), and root
mean square error (RMSE) between the measured center of pressure by the MoCap system
(particularly, by the force plates) and the ZMP evaluated by using MoCap estimated
results over all subjects. It is the average between subjects (inter-subjects), each one
characterized by the average of their walking trials (intra-subjects).
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4. Dynamics: reference vs. MocoTrack MoCap

Figure 45: Dynamics comparison: in red are the MoCap system results, while in blue are
the optical-based ones using estimated GRFs. The continue lines represent the mean (±
std) across the 2 subjects both for MoCap and Mocap + estimated GRFs results.
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mean ± std
Correlation
coefficient

RMSE
[Nm/kg]

Hip
FE

0.76 ± 0.330 29.59 ± 7.05

Hip
AA

0.60 ± 0.564 26.44 ± 8.55

Hip
IE

-0.04 ± 0.002 5.04 ± 0.31

Knee
FE

0.75 ± 0.340 22.85 ± 4.19

Knee
AA

0.65 ± 0.490 16.31 ± 0.58

Knee
IE

0.58 ± 0.581 5.28 ± 1.94

Ankle
DF

0.65 ± 0.493 44.92 ± 3.85

Table 12: Average value (± std) of the correlation coefficient (Pearson value), and root
mean square error (RMSE) between each joint moment of the reference (MoCap approach)
and MoCap+ estimated GRFs result. It is the average between subjects (inter-subjects),
each one characterized by the average of their walking trials (intra-subjects).
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