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Introduction

The main aim of mathematical epidemiology is to gain a better understanding of
the spreading of infectious disease. In order to achieve this goal, when approaching
an epidemic, two fundamental and challenging problems need to be solved.
Firstly, a good modelling of the epidemic’s transmission mechanism has to be
found. Secondly, those features that are most influential in the spread have to be
identified. Only after overcoming those challenges, scientists are able to make reli-
able predictions and evaluate the effectiveness of control strategies. Unfortunately,
this whole procedure is easier said than done: both due to the lack of available
data and to computational limits, scientists have often been forced to oversimplify
their models through approximations and unrealistic assumptions.

One of the most common simplifications is to assume homogeneous mixing of the
population, which means that at any time each individual can come into con-
tact with any other individual of the population. Even more sophisticated non-
homogeneous network models often present a strong limitation, since it is common
to assume that the network is static, i.e. that there is no temporal evolution on
humans’ contact. Complications do not arise only when addressing modelling of
the spreading, because measuring infection dynamics over time also pose signif-
icant challenges. For instance, still nowadays many studies aim to describe the
evolution of an epidemic by the so-called basic reproduction number Ry, which is
defined as “the average number of secondary infections that one single case would
produce in a completely susceptible population”. Unfortunately, recent papers
(see, for example, [1]) have highlighted the weakness of this approach. One pos-
sible solution is to consider the more general concept of replacement number R,
which is defined as “the average number of secondary infections produced by a
typical individual who becomes infective at time t”. However, even studies based
on the replacement number often lead to distorted predictions since they estimate
R, from the generation interval G'T', which is “the time between the infection time
of an infected individual and the infection time of his infector”, without taking
into account the time-variation of GT' ([5]).

The main aim of this thesis is to implement and analyze an in-vitro epidemic model
which takes into account both the non-homogeneous mixing of the population and
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the time-evolution of humans’ contacts. Particularly, the analysis are focused on
founding similarities and discrepancies between the mathematical properties of
our and more classical models, and on confirming the fact that, even in a simple
abstract model, some epidemiological quantities are strongly biased.

The first three chapters address different epidemic models, following both a chrono-
logical order and an ascending level of complexity.

In Chapter 1 we present some examples of compartmental models, originally intro-
duced by W. O. Kermack and A. G. McKendrick in 1927 ([19]) and still represent-
ing a landmark for mathematical epidemiology. The rationale behind these model
refers in splitting the population in labeled compartments, assuming the existence
of an ODEs’ system which rules the flows between them.

Chapter 2 is devoted to the stochastic epidemic models introduced by L. Allen
([2]-[3]-[4]). They are compartmental models either, with the exception that here
the spreading is randomly described by Markov chains. We start from a discrete
time model, and then we generalize the results in continuous time, underlying an
almost equal behaviour in both the cases.

Chapter 3 introduces epidemic models in static networks. In the first section we
describe a generating function approach which has been extensively studied, for
example, by M. Newman ([11]). This approach links the early stage of an epidemic
with percolation. In the second section, we discuss the relation between network
models and deterministic models, following the work by F. Brauer ([7]-[8]). Par-
ticularly, we prove that under certain hypothesis on the graph and in the limit of
infinite population, network epidemic models can be approximated with the more
classical deterministic models. We end this chapter by deriving the N —intertwined
epidemic model which has been studied in detail by P. Van Mieghem ([26]). In this
model, each node of the graph follows a dynamic given by a 2—states continuous
time stochastic process, which can be faced with usual Markov theories by making
a mean field approximation.

In Chapter 4 we propose our original model, which is an epidemic model in a
simple dynamic network. In the first section we give the mathematical description
of the model, whereas in the second section we focus on its implementation. The
last section is dedicated to simulations performed by different choices on the graph
topology or on model’s parameters. We start discussing the homogeneous case, in
which each contact rate \;; is equal to a constant c¢. Here we underline relations
between some of the main epidemiological quantities, but also their dependence
on the constant ¢. Three interesting results are discussed:

e The basic reproduction number reaches a steady-state which doesn’t corre-
spond to a stop on the growing of the speed of the spreading.

e There is a different time-evolution of the generation time w.r.t the topology
of the graph.
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e When the contact rate is sufficiently large, the probability of an outbreak
overlaps with the final size.

A first insight on the heterogenous case is also given: what we found is that the
discrepancies with the homogeneous case are mainly quantitative.

Finally, Appendix A provides an insight of all the mathematical tools exploited
more or less explicitly during the dissertation. A brief recap on Markov chain
theory and graph theory is provided, with particular emphasis on Poisson processes
and on computations for specific graphs, which are the key instruments in our
model. Then, we make an excursus on some non-standard Linear Algebra’s notions
that are used in Chapter 2. Finally, Appendix B contains the whole Python code
we wrote in order to implement our model and make simulations.
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Chapter 1

Compartmental models in
epidemiology

Mathematical epidemiology has a long history, going back to the smallpox model of
Daniel Bernoulli in 1760. A massive development of this research area has occurred
between 1900 and 1935, especially thanks to the work of Karmack and McKendrick
on compartmental models ([19]), which are the simplest way to describe the spread
of infectious disease. The idea behind those models is to split the whole population
in labeled compartments, then assume that in some way people may progress
between them. The most classical example, when referring to compartmental
models, is the STR model, in which a population is made of susceptible, infectious
and recovered individuals: the aim of this chapter is to provide the main definitions
and results of such a model, and then discuss some of its possible generalizations.
We will follow very closely [7] and [22].

1.1 The SIR model without vital dynamics

Let us consider a population of N = N(¢) individuals and suppose for the moment
that it is closed (SIR model without demography), i.e. that there are neither ar-
rivals nor departures from the population, which size N(t) = N is consequently
constant. From an epidemiological point of view, this simplificaton could be jus-
tified thinking that the time duration of the disease that we are considering is
sufficiently small to avoid considering births and deaths. As we anticipated, the
whole population is splitted in three compartments:

e Susceptible: individuals who have no immunity to the infectious agent, so
might become infected if exposed.

e Infectious: individuals who are currently infected and can transmit the
infection to susceptible individuals who they contact.

e Recovered: individuals who are recovered from the disease and are conse-
quently immune to the infection. Since those individuals could neither infect
nor been infected from other individuals, they don’t affect in any way the
transmission dynamics: for this reason, many authors call “Removed” the
individuals of this compartments.
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For the sake of brevity, we will indicate with S, I and R respectively the number
of susceptible, infectious and recovered individuals. Those quantities must be
integers, of course, but we can assume that the size of the population N is large
enough to treat them as continuous variables. In this way, we can explain how S, [
and R change over time in terms of a system of differential equations:

4 = _BSI
4 = BSI — I (1.1)
@ =1

Here (3 is the transmission rate (per capita) and 7 is the recovery rate, so that
the mean infectious period can be explicitly calculated: let us consider the cohort
of members who were all infected at one time and let u(s) denote the number of
these who are still infective s time units after having been infected. If a fraction
~ of these leaves the infective class in unit time, then

/

o= —yu= (1.2)
=u(s) = u(0)e (1.3)
Thus, the fraction of infectives remaining infected after s units time after having

been infected is ™% so that the lenght of the infective period is distributed
. . +oo _ S 1
exponentially with mean [;" e 7%ds = %.

Since it holds that: !
R(t) = N—-1I(t)—S(t) VteR, = (1.4)
dR dl dS
= - (5 + E) (1.5)

the third equation in Syst. (1.1) is ridondant, to confirm the fact that R has no
effect on the transmission dynamics.

Before trying to solve the above system, we can learn a great deal with the following
qualitative approach. We firstly observe that the model makes sense only so long
as S(t) and I(t) are strictly positive: if either S(t) or I(t) reaches zero, we consider
the system to have terminated. We have that:

S < 0VteRy (1.6)
I' > 088>12 (1.7)
g
which jointly implie that [ ultimately decreases approaching to zero:
I = t£+moo I(t)=0 (1.8)

More precisely, we can have those two cases:
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e Sp:=5(0) < 3: I(t) monotonically decreases to zero (no epidemic)
e 5y .= S(O) > 2

then decreases to zero (epidemic)

: I(t) first increases to a maximum attained when S = 3 and

=

If (almost) everyone is initially susceptible, i.e. Sy ~ N, then a newly introduced
infected individual can be expected to infect other people at rate SN during his
infectious period which lasts % Thus, this first infective individual can be expected
to infect:

BN

fy
individuals. The number Ry is called basic reproduction number, and it is undoubt-
edly one of the key parameter when analyzing the spread of an infectious disease,
as we will see soon. !

Ry (1.9)

1.1.1 Qualitative analysis of the model
From Syst. (1.1), we deduce that:

Lm1y s (1.10)
which can be easily integrate to find the orbits (curves in the (.S, I)-plane):
1(S) = -8 + %ln(S) +e (1.11)
Another way to describe the orbits is to define the function
V(S,I)=8+1— Lin(S) (1.12)

s

and note that each orbite is a curve implictly given by the equation V(S,I) = ¢
for some constant c.
An explicit expression of the constant ¢ is given by:

Cc = V(So, ]0) = SO + Ig - %ln(So) (113)

ITo avoid ambiguity, we have to provide some clarifications. The basic reproduction number
Ry is precisely defined as “the average number of secondary infections that occur when one
infective is introduced into a completely susceptible host population”. Obviously, once that the
virus starts spreading, the host population can’t be considered fully susceptible anymore: this
means that Ry is well defined only at the time invasion. Thus, it has become necessary to
define the so-called replacement number R = R, as “the average number of secondary infections
produced by a typical infective during the entire period of infectiousness”. The quantities Ry and
R are equal at the beginning of the spread of an infectious disease, when the entire population
(except the infective invader) is susceptible, whereas after the invasion it clearly holds that
R < Ry.
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which allows us to rewrite Eq. (1.11) as:

B\ So

Even if Eq. (1.14) is an exact solution, it gives I as a function of S and not as
a function of t: particularly, it doesn’t give any indication of the time taken to
reach any particular points on the orbits. Unfortunately, despite the simplicity of
the SIR model, it is impossible to obtain an exact solution for I(¢): it is therefore
necessary to find an accurate numerical solution. The simplest approach to achieve
this goal is the Euler’s method, that we will now briefly mention.

Assuming to have a sufficiently small time interval At, we make the approximation

45 ~ 85 where AS = S(t+ At) — S(t). If we now solve for the number of

susceptibles a time At in the future, we obtain:

I(S) = Io+ Sy — S + Lin (§> (1.14)

S(t+ At) = S(t) — BS(t)I(t)At (1.15)
and similarly for the number of infectious:
I(t+ At)=1(t)+ BS()I(t)At — ~vI(t)At (1.16)

To get approximating solutions of the basic STR model, it is now enough to decide a
suitable time step At, and then specify the parameter values and initial conditions
Io, So.

Going back to the phase portrait, it is important to observe that orbits never reach
the [—axis, which means that S(¢) > 0 V¢ € R;. Thus:

Seo :=lim S(t) > 0 (1.17)
t—o0
which implies that part of the population escapes infection.

Now, for a given orbit V(S,I) = ¢ we have V(Sy, Iy) = V (S, 0); if we keep
considering Sy ~ N, Iy ~ 0, this relation implies

gl _ AN
N—Eln(SO) = S 51 (Se) & (1.18)
In ( S
& g = % & (1.19)
< Ry (1 — Sﬁ"’) = In(Sy) — In(S) (1.20)

which is a rewriting of the key parameter R in terms of the final size relation.
Since the left hand-side of Eq. (1.20) is finite, the right hand-side is finite too: this
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confirms the correctness of the limit in Eq. (1.17), which we informally proved
before. However, the real importance of this relation lies in the fact that, contrary
to the contact-rate 3, the quantities Sy and S, may be estimated with a quite
good accuracy by serological studies. From these data one can then estimate R
using Eq. (1.20). It is important to underline that, however, this estimate of Ry
is a retrospective one, which can be determined only after the epidemic has run
its course.

An alternative approach to avoid extracting S from data, is to approximate the
second equation in Syst. (1.1) with:

I'= (BN — )1 (1.21)

From this approximation, which is valid only in the early period of the spreading,

we immediately get:
I(t) = I - ePN=1 (1.22)

which means that, initially, the number of infectives grows exponentially with
initial exponential growth rate

r=~v(Ry—1) (1.23)

Since r may be determined experimentally when an epidemic begins, and N, v may
be measured as well, also § can be indirectly calculated as

T+
N

B = (1.24)
At this point a brief excursus is needed. Even if both Ry and r provides a strength’s
measure of the spreading, they are significatively different. While R is an unitless
quantity, and consequently it doesn’t provide any information about time, r is
basically a measure of how fast the spreading runs in time. A natural question
which then arises is the following one: how Ry and r can be linked? The answer
besides in the concept of generation time (GT), which is “the amount of time
between an individual is infected by an infector, and the time that the infector
was infected” ([13]). Indeed many authors have provided mechanical ways to link
those three quantities, as for example with the relation ([1]):

Ry=1+7r-GT (1.25)

Many problems arise with those relation, either practical and theoretical. Firstly,
in order to obtain precise relations, often many limiting assumptions have to be
made. For instace, it is often assumed that GT doesn’t vary in time, which is a too
strong assumption, as we will see even in our simple model. Secondly, in practice,
generation times are difficult to calculate since a detailed contact-tracing is needed.
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In order to avoid this problem, one introduce the so-called serial interval which is
defined as the time between when an infector and an infectee become symptomatic.
Often this notion is used interchangeably with G'T', leading to misunderstanding of
how these intervals link r with Ry ([6]). In Chapter 4 we will suggest that also in
our simple and in-vitro model this inference is quite difficult. We now shall return
to the main discussion.

We have already sad that Ry is one of the key parameter when analyzing the spread
of a disease: the reason of its importance lies in the following theorem, which is
merely a rewriting of what we have just proved.

Theorem 1.1.1. Let (S(t),I(t)) be the solution of the Syst. (1.1), and let us
define the susceptible/infectious fraction: s(t) := %,i(t) = %

If Ry <1, then i(t) decreases to 0 as t — +oo. If Ry > 1, then i(t) first increases
up to a mazimum value iyqee = io + 5o — 3 (1 +In(Ro)), and then decrases to 0 as

t — +oo. The susceptible fraction s(t) is a decreasing function and the limiting

value s 18 the unique root in O,% of the equation

i+ S0 — Soo + £ 1In (Sﬁ> - (1.26)
B S0

The results in theorem are epidemiologically reasonable: if enough people are
already immune so that a typical infective initially replaces itself with no more
than one new infective, the infectives decrease and there is no epidemic. On the
contrary, if a typical infective initially replaces itself with more than one new
infective, then infectives initially increase so that an epidemic occurs. The speed
at which an epidemic progresses depends on the characteristics of the disease.

1.2 Some generalizations of the SIR model

The simplicity of the SIR model that we have just introduced is exactly its
strenght. Sometimes it is however useful to make the model more complicated,
in order to give a better representation of the reality. Aim of this section is to
introduce and briefly describe the most common generalizations of the basic SIR
model.

1.2.1 SIR model with vital dynamics

If the outbreak’s duration is quite long, we can take into account births and deaths
in our model. If B is the number of births per unit time and p is a natural?

2Tt is important to observe that we are not considering the possibility that someone dies due
to the disease. The fatality of the disease would indeed make the model much more complicated.
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mortality rate, such a model is described by:

S _
‘fl—t =B —pSI —puS
db = BST — I — pul (1.27)
Cil—lf =~ —uR
Generally, it is assumed that the birth rate depends on the total population size,
ie. B=A(N). If A(N) # uN, this model allows the total population size to grow

exponentially or die out exponentially, since it holds:
N'=A(N) — uN (1.28)

At this point, it is necessary to introduce some basic definitions and result to
describe the qualitative behavior of solutions of this differential equation, since is
not possible to solve it analytically.

Definition 1.2.1. The carrying capacity of the population is the limiting popu-
lation size K, satisfying
ANK)=uK, N(K)<pu (1.29)

The condition A’(K) < p assures the asymptotic stability of the equilibrium
population size K. It is reasonable to assume that K is the only positive equilib-
rium, so that

AN)>uN YVO< N < K (1.30)

Frequently it is assumed that A(0) = 0: in this case we require A’(0) > u, otherwise
there wouldn’t be any positive equilibrium and the population would die out even
in the absence of disease. From what we have just sad, we immediately deduce
the following limit:

lim N(t) = K (1.31)

t—4o00

It is easy to verify that in the new settings the reproduction number R satisfies

_ BK

Ry =
B+

(1.32)

because a single infective introduced into a fully susceptible population of size K
causes SK new infections in unit time, and the mean infective period corrected
for natural mortality is ;ﬁv In literature, it is often assumed that births balance
deaths, i.e. A(N) = uN. This choice implies that the population is constant, i.e.
N(t)=N < N' =0.

We will now try to make a qualitative analysis of the model given by Syst. (1.27)
with B = A(N) = uN. The first stage of the analysis is to note that the model is
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well posed, in the sense that it has a unique solution which remains non-negative
(so that it has epidemiological meaning). That is, since S = 0 = 5" > 0 and
I =0= 1> 0 we have that S,I > 0 Vt > 0. Moreover, N = K = N’ <0 so
that N < K Vt > 0. Summing up, it holds that the solution always remains in
the biologically realistic region {(S,I,N)|S > 0,1 > 0,0 < N < K} if it starts
in this region. Our approach will now consists in identifying equilibria and then
determining the asymptotic stability of each equilibrium.

To find equilibria (Ss, I») we set both the right sides in the first two equations
of Syst. (1.27) equal to zero. Starting from the second of the resulting equations,
we find out two alternatives:

1. I, =0= 5, = # = K. It is a disease-free equilibrium.

2. Spo =1 = [ = AN

s % It will give an endemic equilibrium provided
that v 4+ u < K.

We now linearize about an equilibrium (S, o) by letting y = S —Su, 2 = I — I,
writing the system in terms of y, 2z and retaining only the linear terms in Taylor
expansions. We obtain:

(1.33)

Y = —(Blo + )y — Sz
2= By + (5500 —H— 7)2

which means that the coefficient matrix of the linearized system is:

/= |: Bfoo BSOO_,LL_V] (134)

We then look for solutions whose components are constant multiplies of e* < A
is an eigenvalue of J. The condition that all solutions of the linearization at an
equilibrium tend to zero as t — oo is that Re(\) < 0 VA € o(J).

At the disease-free equilibrium, the coefficent matrix becomes:

JPF = {g 8 K__ﬁf_ v] (1.35)

whose eigenvalues are p and SK — p — . Thus, the disease-free equilibrium is
asymptotically stable if SK < u+ v, and it is unstable otherwise.
At the endemic equilibrium, Eq. (1.34) becomes:

JEN::{_(Béz;+M> —%v;—uq (1.36)
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Since the following holds:

{det (JEN) = (v + ) Bl > 0

Tr (JEN) = —(Bls + 1) <0 (137)

we have that Re(\) < 0 VA € o(JFYN), thus the endemic equilibrium, if there is
one, is always asymptotically stable.

What we have sad can be written in a more confortable way in terms of the
reproduction number

Ro= K _ K (1.38)
ptv S
If Ry < 1, then the system has only the disease-free equilibrium which is a (global)
asymptotically stable equilibrium, i.e. the disease die out.
On other hand, if Ry > 1, then the disease-free equilibrium is unstable but there
is an endemic equilibrium which is asymptotically stable, which means that the
disease will be endemic. As we did in the previous section, we now collect all the

results that we have exposed in a single theorem.

Theorem 1.2.2. Let (S(t),I(t)) be the solution of (1.27) where it is assumed that
the population remains constant, i.e. B = uN. Let us define the susceptible/in-
fectious fraction: s(t) = i]\?,i(t) = %
If Ry = fTN'y < 1 orig:=1i(0) = 0, then solution paths approach the disease-free
equilibrium (s,1) = (1,0).

If Ry > 1, then all solution paths with 1g > 0 approach the endemic equilibrium
: Nt 1 1 _ (2 R 1
given by (S, i.) = (%7,“ (m - N_5)> = <R—07M <5—]§} - (#H)RO))

1.2.2 Models with different compartments

Even if the SIR model is the most used compartmental model, some well-known
diseases show different dynamics. For this reason, in literature there are many
variations of the SIR model: we will now present some of them without getting
into the details.

Some viruses, like the flu one, can change their genes very easily: just as our
immune system kill off one version of the virus, another emerges that our immune
system doesn’t recognize. This means that an infectious individual who recovers
from the disease becomes another time susceptible, instead of getting immunity.
In terms of compartmental models, what we have just described is the so-called
STS model. Here, the whole population is splitted in only two compartments:

e Susceptible: individuals who might become infected for the first time if
exposed and individuals who are recovered from the disease and could con-
sequently being infected another time.
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e Infectious: individuals who are currently infected and can transmit the
infection to susceptible individuals who they contact.

The simplest SIS model is given by the following system:

{% — —BSI+~I

(1.39)
db = BST — 1

Since N = S+ [ is constant, the system reduces in a logistic differential equation:

%Z(BN—’V)I<1—N1_1>=H(1—%> (1.40)

B

where 7 := N —~v and K := N — % This equation, jointly with the initial
condition Iy can be easily solved with separation of variables getting

Kl
I(t) = 1.41
( ) [0 + (K — 10)67” = ( )

= lim I(t) — {K, if Iy > 0 and provided r, K > 0

. (1.42)
t—+o0 0,ifr, K <0

Thus, if Ry := ﬂTN < 1 then all solutions with non-negative initial value approach
the limit zero as ¢ tends to co, while if Ry > 1 then all solutions with non-negative
initial values except the constant solution I = 0 approach the limit N — %

Also the SIS model has a version with vital dynamics and birth rate depending on
the size population N. This model is determined by:

(1.43)

45— A(N) — BST — pS +~I
4 = BST — I — pl

The qualitative analysis of this model is very similar to the one we made for the

SIR model with demography. In this case Ry = % where K is the carrying

capacity of the poulation, and the main result is that:

e Endemic equilibrium, which exists if Ry > 1, is always asymptotically stable.
e If Ry < 1 the system has only the disease-free equilibrium which is asymp-
totically stable.

A middle ground between SIS and SIR model is the so-called SIRS model,
in which we assume that, after an infectious period, an individual recovers and
get a temporary immunity to the virus. When this temporary immunity fails,
the individual comes back to the susceptible class. In this case we have only to
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introduce the rate of loss immunity (per capita) p, then add a term —pR in the
equation involving R and a term +pR in the one involving S, no matter what
variations of the STR model we are considering. Both in the STR and in the SIS
model, we are not telling the whole story. We already know that the infection of a
disease begins when an infectious agent is successfully transmitted from one host
to another. What we didn’t mention before is that, after pathogens enter the body
of the new host, they take a period of time to overcome the immune response of the
body and to replicate, and only when the pathogens become sufficiently numerous
the host becomes capable of transmitting pathogens to others. This motivates the
following definition.

Definition 1.2.3. The time interval between when an individual is infected and
when he or she becomes infectious is called latent period

The following model will take into account the presence of a new compartment
E comprehending all the individuals in their latent period.
The SETR model without vital dynamics is described by the following ODEs’
system:

& — _pSI

48— BSI — eE

ar (1.44)
a EE — ’Y]

&=

where €71 is the mean value of the latent period, which is exponentially distributed.
While N = S+ E+ 1+ R and N’ = 0, once again the equation involving R is
useless. Let us consider a solution (S, £, I) of Syst. (1.44) and define, as we have
: . s E(t) . I

already done before, the respective fractions s(t) := %,e(t) = %,z(t) = %
Thus, what could be proved is that the tetrahedron in the (s,e,i)-phase-space
given by

T={(s,e,i) | $s>0,i >0,s+e+i<1} (1.45)
is positively invariant and unique solutions exist for all £ > 0, i.e. that the model
is mathematically and epidemiologically well posed. Moreover, the following qual-

itative result holds.

Theorem 1.2.4. If Ry := BTN < 1, then e(t) and i(t) decrease to zero as t — oo.
Otherwise, if Ry > 1, then e(t)+i(t) first increases up to a mazimum emaz+imas =
= ey + i+ Sg— —g—ln(so) and then decreases to zero as t — oo. The susceptible
fraction s(t) is a decreasing function and the limiting value s, is the unique root
in the interval (0, %) of the equation

(%)
€0+i0+80—800+T:0 (146)
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In the same way as before, we can take into account births and deaths also in
the SEIR model. We omitt the details for the sake of brevity
Let us now make a consideration concerning vital dynamics. If a mother infected
(or recovered) gives birth, she transfers some IgG antibodies across the placenta
to her fetus, so that her newborn infant has temporary passive immunity to an
infection. Only when these passive antibodies are gone, the infant becomes suscep-
tible to the disease, moving from the passively immune state M to the susceptible
state S with rate (per capita) 0. Infants who do not have any passive immunity,
because their mothers weren’t infected, enter directly in the class S of susceptible
individuals, so they can immediately be infected. We want to take into account
this feature in a SEIR model with vital dynamics, constant population (u = rate
of births = rate of mortality) and temporary immunity. The result is the so-called
MSEIR model, which dynamics is described by the following system.
(DL = (N = S) = (3+ )M

% =0M — BSI + pR

48 — BST — (e + p)E (1.47)

dt
@& =B —(v+pl

(=71~ (p+ 1R

It is convenient to convert this system in differential equations for the fractions in

the epidemiological classes by dividing all the quantities for the population size N

and eliminating the linear-dependent equation involving s by using the fact that
s =1—m — e —1 —r. The differential equations for the M SEIRS are:

= ple+i+r)—om
E—Bi(l-m—e—i—7)—(c+pe

i , (1.48)
G =ce—(y+p)
G=vi—(p+pr
A suitable domain is clearly
D ={(m,e,i,r) |m=>0,e>0,i >0,r>0,m+e+i+r <1} (1.49)

which is positively invariant because no solution paths leave through any bound-
ary. While the right sides of the equations in Syst. (1.48) are smooth, initial
value problems have unique solutions on maximal intervals; but since solutions
cannot leave D, they exist for all positive times. Thus, the MSEIRS model is
mathematically and epidemiologically well posed. The correct expression for the
reproduction number is now

BNe
(v + p) (€ + )

Ry = (1.50)
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The MSEIR model always has a disease-free equilibrium given by m = e =1 =
r = 0 and consequently s = 1. If Ry > 1 there is also a unique endemic equilibrium
in D given by

( 1

wer = g (1
en _ S(y+m) (p+1) <
(0+) [(p+p) (v+etp)+ve]

11_ RLD) (1.51)

en Se(ptp) ( _ L)
= G+ (o) (vt ) +e Ro

Ten — dey (1 _ L)
L (0+u) [(p+p) (v+etp)+ve] Ro

which together implie that s = RLO A qualitative behaviour of the MSFEIRS is
described by the following result.

Theorem 1.2.5. If Ry < 1, then the disease-free equilibrium (m,e,i,7) = (0,0,0,0)
s globally asymptotically stable in D. Otherwise if Ry > 1, then the disease-free
equilibrium 1is unstable and the endemic one (M, e 15 asymptotically
stable, and the system is said to be uniformly persistent, in the sense that

eEn ,en Een
7Z ’/," )

lim i(t) > ¢ 3¢ >0 (1.52)

t—o0

for all initial points such that ey + 19 > 0.

We end this section by saying that the models we presented are only few of
the many ones which can be defined and studied. For instance, many model we
have not treated could be defined without adding new compartmens to the five
we have used: SI,SEI,SEIS,MSIRS are example of such models. Moreover,
when a particular disease requires it, any useful compartment could be created
and implemented in preexisting model. Talking about the infamous COVID-19, it
taught us the importance of quarantine and isolation measures when no vaccine is
available: it is not surprising that in literature we find a model SEQIJR, where a
class @ of quarantined members and a class J of isolated members are introduced.
On other hand, to protect against infection like the annual influenza, vaccination
is a form of treatment available and commonly used: in [7] we find a SIT R model
in which a fraction per unit time of infectives is selected for treatment, and the
treatment reduces infectivity by a certain factor.
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Chapter 2

Stochastic epidemic models

In Chapter 1 we have seen compartmental models in their original form, which is
a deterministic one. This feature makes those models quite simple to treat both
analytically and computationally. The downside is that those models couldn’t be
very realistic, since likelife phenomena as inter-human contacts are often ruled by
randomness. Those considerations have led mathematicians to develop stochas-
tic counterparts of the epidemiological models we have presented in the previous
chapter. The aim of this chapter is to formulate two Markov-chain based epidemic
models and illustrate some techinques to analyze them. The most interesting
things about those models, is that under the same hypothesis they can show a
different asymptotical behaviour from their deterministic counterpart. We will

follow closely the works done by L. J. S. Allen in [2], [3], [4] and [7].

2.1 Discrete time epidemic models

2.1.1 SIS Model

We start with a discrete time markov chain (DTMC) model based on the SIS.
Again the state variables are the number of susceptible and infectious individuals
S = S(t) and Z = Z(t): here the choice of the calligraphic letters is to stress the
fact that those are now random variables. We assume that the population size N
is constant, so that it holds S(t) = N — Z(t), i.e. there is only one independent
random variable Z(t). In order to have a discrete-time Markov chain, we split the
time interval R, in a countable number of small disjoint intervals:

Ry = [ J[nAt, (n+ 1)At] (2.1)

neN

and we focus on the extremes of those intervals, i.e. we choose t € NAt :=
{nAt : n € N} = {0,At,2At...}, where At > 0 is sufficiently small (we will be
more precise about that in a moment). The stochastic process {Z(t)}sena¢ has an
associate probability function,

pi(t) == P (Z(t) = ) (2.2)
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where ¢ € {0, ..., N}. Obviously, for every fixed ¢t € NA¢ it holds

Y omy=1 (2.3)

Let us denote with p(t) = (po(t), p1(t), ..., pn(t)) the probability vector associated
to Z(t). The stochastic process has the Markov property iff

P(Z(t+At)=i|Z(t)=7,...,Z(At) =1i1,Z(0) =ip) =P (Z(t+ At) =35 | Z(t) = 1)
For the sake of brevity, we will use the following standard notation
pij(t,t+ At) =P (Z(t+At) =7 | Z(t) = 1) (2.4)

Since the deterministic STS model is autonomous, its stochastic counterpart is
time homogenous: thus, the left hand-side of Eq. (2.4) does not depend on ¢. We
will use the shorter notation p;;(At) to underline this fact. We have just sad that
At must be sufficiently small. What we meant was that At is so small that the
number of infected individuals changes by at most one during the time interval
At, that is

i+ 1, with probability p; ;41 (At)
Z(t) =1i=Z(t+ At) = < i, with probability p;(At) (2.5)
i — 1, with probability p;;—1(At)

where no other transitions can happen, i.e. p;;11+p;i+pii—1 = 1. It is important to
observe that there are four events which can cause the transition: a new infection, a
birth, a death or a recovery. Using the rates introduced in Syst. (1.43) considering
A(N) = N, we can calculate explicitely the probability of a transition in a time-
interval At:

Bi(N —i)At, j=1i+1
(u+7)iAt, j=i—1
L—[(B(N =) +p+7)i]At, j=i
0, j€{0,....,N}\ {i,i+1,i—1}

To relate this model with a birth-death process and to lighten the discussion, we
will use the following notation:

b(i) := Bi(N — i), d(i):= (u—+7)i (2.7)

What we are saying is that b(i)At is the probability that the number of infectious
increases from ¢ to ¢ 4 1 in the time interval At, and d(i)At is the probability that
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the number of infectious dicreases (due to a death or a recovery) from i to i — 1
in the time interval At. We can use this shorter notation to rewrite Eq. (2.6) as

b(i)At, j=i+1

d(DAt, j=i—1

L —[(b(7) + d(i))] At, 7 =1

0, j€{0,..., NI\ {i,i+1,i—1}

pij(At) = (2.8)

Since all those quantities must be probabilities, an explicit inequality involving At
holds:

max_{[b(i) + d(i)] At} < 1 (2.9)

1€{0,...,N}

Using the Markov property jointly with the preceding transition probabilities we
can find an explicit relation between the probability vector p(t + At) and the
probability vector p(t):

pi(t+At) = pia()b(i — 1AL+ pi(t) (1 — [b(i) + d(i)]AL) + pia(t)d(i + 1) At
= pz(t) (Pi1(D)b(i = 1) — pi(t) [b(0) + d(D)] + pisad(i + 1)) At

From what we have just sad we deduce the form of the transition matrix

We rename this matrix M(At) € My41(R). It is important to observe that we
have used the compact notation: (b4 d)(i) instead of (b(i) + d(i)). The data of
the transition matrix M (At) jointly with an initial probability vector p(0) fully
determine the dynamics of the stochastic process {I(t)}iena:r (see App. A.1.1).
Particulary, given t = nAt:

p(t + At) = p(0)M" T (At) (2.10)

Since the probability vectors p(-) € RVt and M(At) € My,1(R), the right hand-
side of Eq. (2.10) belongs to R¥™! as the left hand-side does, so the equality is
well-defined.

The following theorem establish a link between the solution of the stochastic SIS
model and its deterministic counterpart.

d(V)At 1— (b+d)(1)At b(1)At 0 - 0 0

0 d(2)At 1— (b+d)(2)At b2)At - 0 0

0 0 0 o . d(N—:l)At 1- (b+d):(N— 1)At
0 0 0 0 - 0 d(N)At

0
0
0
b(N — 1)At
1— d(N)At]
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Theorem 2.1.1. Let I(t) and Z(t) be respectively the solution of the differential
Syst. (1.43) and the random variable representing the number of infectious in-
dividuals at time t in the SIS stochastic model. Then the following inequality
holds:

E(Z(t)) < I(t) Yt € Ry (2.11)

Proof. We can find a difference equation for the first moment of Z(t) starting from
the difference equation which links p;(t + At) and the probability vector at the
preceding step p(t):

WE

EZ(+an)) = ) ip(t+ Al
_ iv;ipi_l(t)b(i 1A+ i\;ipi(t) _ f;ipi( b(i) At —
- fgim(t)d@mt + NE; ipia (Dd( + 1AL
= +sz (i)At — Npy(t) At—sz

We now write 3i(N — i) instead of b(i) and (u+y)i instead of d(7) in order to get:

N-1

E(Z(t+At) —E(Z() = > pi(t)Bi(N —zAt—sz (1 + )it

_ Z i) Bi(N — i) At — pi(t) (1 + 7)iAL]

= " [m(®)i (BN — (u+ 7)) — pi(t)i28] At

0

= (BN — (u+7)EZ(t))At — BE(T*(t)) At

(2

which ultimately implies:

E(Z(t+ AZi —E(Z()) (BN — (u+)E(Z(t)) — BE(Z?(t))

(BN = (n+MEZ(1) — BE(Z(t)  (2.12)

IA

As At — 0 Eq. (2.12) becomes:

d[E(i(t)) < (BN = (u+7)EIZ(1) — BEX(Z())

(
= AN -EZ@®)EZ®) — (u+7)EZ(?)) (2.13)




2.1. DISCRETE TIME EPIDEMIC MODELS 27

What we see now is that the right hand-side of Eq. (2.13) is exactly the same as the
differential equation for I(¢) in Syst. (1.43), if in the deterministic S5 model we
replace [(t) with E(Z(t)) and S(t) with N —E(Z(¢)). Thus, the differential inequal-
ity precisely implies the thesis, i.e. the mean of the random variable Z(¢) in the
stochastic SIS epidemic process is less then the solution /(t) to the deterministc
differential equation of the deterministic SIS model in Syst. (1.43). O

Remark 2.1.2. With the same procedure as the one we used in the proof, we
could find difference equations for higher order moments. However, whereas E(Z(t)
depends on the second moment, higher order moments depend on even higher order
moments. Therefore, these equations cannot be solved unless some additional
assumptions are made regarding the higher order moments.

The following result shows how different the asymptotic behaviour of the
stochastic STS model is from the asymptotic behaviour of its deterministic coun-
terpart.

Theorem 2.1.3. Let be p(t) the probability vector associated to Z(t) where t = nAt
for some n € N. Then it holds:

lim p(t) := lim p(nAt) = (1,0,0,...,0) (2.14)
t——+o0 n—-+o0o
i.e. the population approaches the disease-free equilibrium regardless of the mag-
nitude of the basic reproduction number.

Proof. Looking at the transition matrix M we see that the zero state is an ab-
sorbing state, i.e. begenning from state 0 no other state can be reached. Thus,
{0} € {0,..., N} is a finite closed class, which implies that it is also a recurrent

class:
Po(To < 0) =1 (2.15)

where T; is the random variable representing the first passage time to state i. The
class of all the states different from zero {1,..., N} is a communication class, i.e.
Vi,j € {1,..., N} there exists a path included in {1,..., N} and with a strictly
positive probability which link them. Thus, from Th. A.1.11 it is enough to show
that one state of this class is transient to establish that all the class is made of
transient states. Let us consider for instance the state 1. Since a9 = d(1)At > 0
and 0 is an absorbing state, it holds:

[Pl(Tl <OO) :1—[P1(T1:OO) <l—po<l1 (216)

which exactly means that 1 is a transient state, then that {1,..., N} is a transient
class.
Using the reverse implication of the potential matriz criterion (Th. (A.1.12)), we
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(n)

find the following property: if M™ = (a;;”) is the nth power of the transition
matrix M, then it holds

lim af}) =0 (2.17)

n—oo
for any state ¢ and any transient state j. Since the set of stochastic matrices is
closed under the multiplication in My1(R), we have that M := lim,_,, M™ is
stochastic, thus we must have lim,,_, agg) =1 Vi€ {0,..., N}. Summing up the
limit transition matrix becomes:

100 00
100 -+ 00
100 -+ 00
M>= . . . .. (2.18)
100 -+ 00
100 -+ 00

Thus the probability of absorption is given by:

lim P(Z(nAt) = 0Z(0) = i) = (M®)y, =1, Vi € E (2.19)

n—oo

and the limit distribution (which is also a stationary distribution) is given by:

tli)rglop(t) = (o]}, a5, ..., ay) = (1,0,0,...,0) (2.20)
which is exactly the thesis. O]

2.1.2 SIR model

In the DTMC SIR model we have two independent random variables Z(¢) and
S(t) which represent respectively the number of infectious/susceptible individuals
at time t. Since we keep assuming that the population size is constant, the random
variable of the number of recovered individuals R is clearly dependent from Z,S.
Thus, we have a bivariate process {Z(t),S(t)}2, with joint probability function
given by

P(si) (t) = P(S(t) = s, Z(t) = i) (2.21)

Since in this section we are still considering a discrete-time Markov chain, we
should have specified that the times ¢ are of the form nAt for n € N, as in
the previous section. What is more interesting is that this process is again an
homogenuous markov chain. In order to define the transition probabilities, we have
to choose At > 0 so small that at most one change! in state occurs during the time

INo matter if it is a birth, a death, a new infection or a recovery
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interval At. With this extra assumptions, we can define transition probabilities
which are denoted as follows:

P(s+hits) (A1) = P ((AS, AT) = (k, j) [ (S(t), Z(2)) = (s,7)) (2.22)

where k, j are integers and AS, AZ are respectively the variations in the number
of susceptible/infectious individuals which occurs in the time interval At, i.e.

AS = S(t + At) — S(t), AT :=TI(t+ At) — I(t) (2.23)

The explicit computation of those probabilities is based on the STR deterministic
formulation, but first we can immediately observe that as long as k,j ¢ {—1,0,1}
we have that psiy.i1,;(At) = 0 whatever s, i are. The probability that one transition
from § — 7 happens during At can be computed as follows:

Ps—1+1(At) = P{One infective contact during At | (S(t),Z(t)) = (s,4)}
= BsiAt (2.24)

In the same way, the probability that a transition Z — R happens in At, assuming
that at the beggining of the time interval the number of infectious is equal to i, is
given by viAt. In the same way all other transition probabilities can be computed
in order to have this compact expression:

(Bsint, (k,j) = (—1,1)

viAt, (k,j)=(0,-1)

pilAt, (k,j7)=(1,-1)

u(N — s —1i)At, (k,j)=(1,0)

1 — [Bsi+ i+ p(N —s)] At, (k,5)=(0,0)
0, (k,j) ¢ {-1,0,1} x {-1,0,1}

It is important to note that in the computation of this probabilities we have take
into account the fact that births compense deaths: for instance, a death of an
immune individual is accompained by a birth of a susceptible one. As in the SIS
stochastic model, At must be chosen sufficiently small so that all the entries in Eq.
(2.25) belong to [0, 1]. In this case, the transition matrix is quite complicated, so
we avoid to write it down. Applying the Markov property, it is however possible
to get a difference equation satisfied by the probability p,;(t + At):

Psthitsi(At) = (2.25)

Psi(t +Al) = pepr1i—1(H)B(s + 1)(i — DAL + py i () (i + 1) AL +
+ Psorip(Opli + DAL+ +ps_1i (@) (N — (s — 1) — i) At +
+ pes(t){1 = [Bsi+ vi+ u(N — s)] At} (2.26)
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From Eq. (2.26) we can find out difference equation for the mean and higher order
moments just substituting ps;(t + At) in those expressions:

E(Z(t+At) = Y ipe(t+ At) (2.27)
E(S(t+ At)) = 3 sps,i(t + At) (2.28)

Since those equations cannot be solved explicitely due to their dipendence on
higher order moments, we will not go into more detail. Even if we don’t have a
friendly expression neither for the transition matrix nor for the difference equations
regarding moments, an important qualitative result can be deduced.

Theorem 2.1.4. Let be p(t) the probability vector associated to the jointed state
variable (S(t),Z(t)) which means that the entries of the vector p(t) are all the
probabilities p(s ;) (t) with s,i € {0,..,N} and 0 < s+i < N:

p(t) == (pvoy (), pv—1,1) (), D(N=1,0) ()5 s D(N—i,) (1), DN —ii—1) (), ...
s DIN=i,0) (1) -, DA, N=1) (1), s D1,0) (1), Do,y (1) -, P00y (1)) (2.29)

Then it holds:

. 1, (s,i) = (N,0)
lim p(t) =(1,0,0,...,0,0) = _ 2.30
t—>+oop( )= ) {O, otherwise ( )

i.e. asymptotically all sample paths are absorbed into the disease-free state (N, 0)
regardless of the magnitude of the basic reproduction number.

Proof. Looking at the transition probabilities in Eq. (2.25) we observe that (N, 0)
is an absorbing state, since starting from this state the only non-zero transition
probability is the one with both the increments k,j equal to zero, which is con-
sequently equal to 1. The set of all the other states is a finite communication
class, and the state (N — 1, 1), which belongs to this class, is transient since the
transition (N — 1,1) — (N, 0) has probability pAt > 0. Thus we can split the set
of all states in the disjoint union of one transient class and one absorbing recurrent
state. The conclusion follows from exactly the same reasoning that we made in
the proof of Theorem 2.1.1. O
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2.2 Continuous time epidemic models

Another stochastic approach to epidemic models is to consider a continuous time
Markov chain (CTMC) where the time ¢ € R, is continuous and the states
S(t),Z(t), R(t) are discrete, i.e. they belong to E = {0, ..., N}.

2.2.1 SIS Model

In the CTMC SIS model the stochastic process depends on the collection of
discrete random variables {Z(t)},er, and their associated probability functions
p(t) = (po(t),...,pn(t)). The stochastic process has the markov property in the
sense that:

P(Z(t+At) =4 | Z(t) =i, Z(tn-1) = in_1, .., L(to) = i0) = P(Z(t+At) = 5 | Z(t) = 7)

for all 7g, ...,7,-1,%,7 € E, all 0 <ty <t; <..<t<t+ At and all n € N. Since
the right hand-side of the last expression depends only in the time interval At and
not on t, the markov chain is said to be homogenous. Let then be

S(AL) = (o (Ab);jer (2.31)

where

i (At) = P(Z(t + At) = j | Z(t) = i) (2.32)

S(t) is called the transition semigroup of the stochastic process {Z(t)}icr, (see
App. A.1.2), and apart from the o(At), it is exactly the same transition matrix
we found for the DTCM S1.5 model. Moreover, it satisfies the following properties:

ZN—H Qij (At) = 1, VAt € |R+

S(fti1 At) = S(t)S(AL), Vt, At € R, (2.33)
S(0) =1

We can easily see that the semigroup is also continuous at the origin, i.e.

lim S(h) = S(0) =1 (2.34)

At—0+

This assumption implies continuity at any time ¢, i.e.

At—0t

which is enough to state the following analytical result:
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Theorem 2.2.1. For any state 1 € E there exists

G = M A (2:36)
and for any pair i,j of different states there exists
e Qi (AL

%= [ A (237

If we let now ¢;; := —¢; we obtain a matrix Q = (¢i;)ijer € My+1(R) which is

called the infinitesimal generator of the process (see App. A.1.2). It is quite easy
to calculate the local characteristics ¢;; in order to get the explicit expression for
@, which is the following

0 0 0 0 0 0
d(1) —(b+d)1)  b) 0 - 0 0 0

0 d2)  —(bid@) b2) -~ 0 0 0

0 0 0 0N 1) (bt d)(N 1) N
| 0 0 0 0 - 0 d(N) —d(N) |

Directly from the expressions of the local characteristics we can deduce that

0 1 S350

A0 At (2.38)

i.e. @ is the derivative at 0 of the matrix function ¢ + S(t). Since |E| < oo, @ is
both stable and conservative, i.e.

G = — Qi < 00, ¢ = Z qij (2.39)

jeBE\{i}

thus, we can pass to the limit in the following equation

S(EA—S() o S(A) -1 S(AH -1 . Ao
At = S) At At S =
ago 450 g~ os (2.40)

dt
which are the so-called Kolmogorov’s backward/forward differential systems (see
Eq. (A.11)). One consequence of Eq. (2.40) is that it holds

WO — e ($)b(i— 1) + piaa ()d(i + 1) — pa(t) [b(G) + d(i)], i =1,.., N
e — py(t)d(1)
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which can be expressed in matrix form as:

dp(t)
dt

We are now able to establish a relation between CTMC SIS model and its deter-
ministic counterpart:

= Qp(t), p(t) = (po(t), ... pn(1)) (2.41)

Theorem 2.2.2. Let be I(t) and Z(t) respectively the solution of the SIS deter-
manistic model and the random variable of the CTMC SIS model. Then yields:

E(Z(t)) < I(t), Vt€R, (2.42)

Proof. We multiply by i the first equation of Syst. (2.41), then we sum on i. What
we get is:

@ = ;pz 1(t)ib(i — 1) +;pz+1 id(i +1) — sz (0)]
= sz sz
= Z{pz i[BN — =] = pi(t)i*5}
= [BN = E(Z(t) — BE(Z*(t))
< BN = EZ@®)EZ()) — (1 +7)EE()) (2.43)

Reasoning as the theorem for the DTCM SIS model, the conclusion follows. [

The most important result of this section is that, once again, the distribution
of Z(t) converges to the disease-free equilibrium:

Theorem 2.2.3. Let be p(t) the probability vector associated to the number of
infectious individual at time t, namely Z(t). Thus the following convergence holds:

lim p(t) = (1,0,0,...,0,0) (2.44)

t——+o0

i.e. the population approaches the disease-free equilibrium regardless of the mag-
nitude of the basic reproduction number.

Proof. The vector m = (1,0,0,...,0,0) is an an eigenvector of 0-eigenvalue for Q:

Q=0 (2.45)
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where () is the infinitesimal generator of the process which we have defined above.
Let us now define Vi € {1,..., N 4+ 1}

N+1
R(Q) = Y a;
J=L1j#i
= di—1)+0b(i—1) (2.46)
and
K, = {z€C:|z—qu <Ri(Q)}
= {zeC:z2+0b+d)i—1)| < (d+b)(i—1)} (2.47)
The Gershgorin’s circle theorem A.2.2 tells us that
N+1
o(Q) c | Ki(Q) (2.48)
i=1

where (@) is the spectrum of Q. In particular Eq. (2.47) implies that
2] <0, Vzea(@Q)NC (2.49)
but since the submatrix Q of Q obtained by deleting the first raw and the first

column of @ is non singular (i.e. det(Q) > 0) it follows that all the eigenvalues
different from zero are negative or they have negative real part. Thus 7 is the only
one eigenvector of (), and it represents a stationary distribution. Furthermore,
since the Markov chain is a finite state space HMC, we can always assume that it
has an uniform structure, thus it has the same absorption probabilities than the
correspondent discrete-time Markov chain has (see [9] pp. 364-365). This conclude

the proof. n

2.2.2 SIR model

The CTMC STR model can be derived in the samy way in which we have derived
the S1.5 model, taking into account that the SIR epidemic process is a bivariate
stochastic process {(S(t),Z(t)} while R(t) = N —S(t) — Z(T). We define firstly a
joint probability function associated to the pair (S,Z):

sy (1) = P{(S(t), Z(t)) = (s, 1)} (2.50)

The Kolmogorov’s backward differential system admits implies the following dif-
ferential equation:

dps,i) (1)
dt

= st ®B(s + 1)(i — 1)+ praasn(Or(i+ 1) +

+ Pis—ii+n)Op(i +1) + pie—rn (N — s +1—1i) —
Pis,i) () [Bsi + i + (N — s)] (2.51)
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From this equation we can deduce differential equations for the moments of S and
7Z. However, as it happens in the discrete time case, in those equations each succes-
sive moments depends on higher order moments, so it is necessary to make more
assumptions on higher moments and to introduce closure techniques to approxi-
mate the solutions to these equations. The STR model is actually a Markovian and
time-homogeneous process. In particular, the disease-free (N,0) is an absorbing
state.

2.3 Main properties of stochastic epidemic mod-
els

We have already proved that the asymptotic behaviour of stochastic models al-
ways coincides with the disease-free equilibrium. However, many other interesting
properties distinguish stochastic models from their deterministic counterpart: the
probability of an outbreak, the final size distribution and the expected duration
of an epidemic are three of those properties.

2.3.1 Probability of an outbreak

When studying the spreading of a disease, it is important to see if an outbreak
actually occurs, i.e. the number of infectious individuals escalates. This event
doesn’t always happens: for instance, the reader can think about a STR model in
which the first infectors recover before infecting other susceptible individuals. The
aim of this section is to use a simple random walk or a birth and death process
on the set £ = {0,1,2,...} to estimate the probability of an outbreak. Let then
be X (t) the random variable for the position on E at time t in a random walk
model. According to previous models, here 0 is an absorbing state whereas all the
remaining states are transient. If X (¢) = z, then in the next time interval there
is either a move to the right x — z + 1 with probability p or a move to the left
x — x — 1 with probability ¢. Since |E| = |N|, either the process approaches the
absorbing state or approaches to infinity. In particular, the following result holds:

Proposition 2.3.1. Let X(t) = zg > 0, then

lim P{X Lpsq 2.52
i {X(t) =0} = (%> b (2.52)

For the proof we refer to [3] and [4]. The above identity is also valid for birth and
death process in which b(i) = i and d(i) = i, where the infinitesimal probability
to increment/decrement by 1 a population of size i in a time interval At are
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respectively given by SiAt and diAt. In this case, Eq. (2.52) holds with j replacing
p and ¢ replacing q. We will use this fact to approximate the probability of an
outbreak in DTMC and CTMC SIS and SIR models, where we call outbreak the
persistence of the infectious population. Suppose, as usual, that the initial number
of infected individuals iy is very small compared to the size of the population
N >> 0. Thus, the birth and death functions in the previous models are given by

b(i) = Bi(N —i)~ BNi (2.53)
d@@) = (u+7)i (2.54)

Moreover we observe that the ratio % = ’g—}” is equal to Rio. Thus, Eq. (2.52)
becomes
1, Ry <1

P(Z(t) =0) ~ (RL)O oo (2.55)

Therefore the probability of an outbreak O is obtained by passing at the comple-
mentary event:

o)~ 0= (2.56)
P ~ 0 2.56
1-— <Rio> , Ryp>1

It is important to underline that estimates in Eq.(2.56) apply both to SIS and
SIR stochastic models but only for a range of times (which strongly depends on N
and ig), because eventually lim;_, ., P(Z(t) = 0) = 1 because zero is an absorbing
state.

2.3.2 Final size of an epidemic

In the deterministic framework it is possible to compute explicetely the final size
of an epidemic, which is the number of all individuals who go through the disease
during the whole duration of the epidemic. For instance, in the STR model with
vital dynamics we can calculate the final size, since it is equal to Ry, = N — S,
and we have an explicit description of S in terms of the parameters S, u,~ and
K. In the stochastic STR model things are much more complicated, since there is
a distribution associated with the final size of the epidemic. Let us denote (s, 1)
the ordered pairs of value for the susceptible and infected individuals in the CTMC
STR model. We are interested to make a study at the end of the epidemic, i.e.
when Z(t) = 0: when this happens, the random variable of susceptible individuals
ranges from 0 to N — Z(0) = N — i and the set {(s,0)};° is absorbing:

N—ip

lim ZO Pso)(t) =1 (2.57)
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Let us now describe an approach to find the distribution {P,} of the ultimate size

of the epidemic, where
P, = lim py_,o(t) (2.58)

t—+o00

indicates the probability that n of the initial susceptibles become infected at some
stage during the epidemic. We recall that the embedded markov chain of
a CTMC is a regular homogeneuous DTMC with same values of those of the
original CTMC but transitions which represent the conditional probabilities of
jumping from state ¢ to state j (see App. A.1.2). If Q) = (g¢;;) is the infinitesimal
semigroup of the CTMC associated to a process {X(t)}cr,, then the transition
matrix T' = (t;;) of the respective embedded chain is given by

ty = W if g >0, # (2.59)
and if we define
iy =P ((X(t) =7 3t | X(0) =1) (2.60)
then the forward Kolmogorov equations for the jump chain give the relation
Tk = bip + Z itk (261)
j;ék‘:tjk>0

Since all quantities in the right hand-side of this equation are positive, it is quite
easy to use this relation to calculate the probability of reaching the absorbing state
k starting from the state .. An embedded markov chain for the CTMC STR model
with 4y initial infectors and without vital dynamics (i.e. u = 0) takes place on the
finit region

xv = {(s,4) :s=0,1,...,N,i=0,1,..., N — s} (2.62)
For (s,7) € xn the only non-zero one-step transition probabilities are given by:
Bsi S
L(s,i),(s—1, = : T = = Ps 2.63
e P
U(ssi) (sii—1) = = =1-—ps (2.64)

Bsi+~i  s+p
where p = % Moreover, it holds:
T (s41,i—1),(N—io,i0)Ps+1 T T(s,i+1),(N—io,io) (L — Ds), 12 2
T (s,),(N—io,io) = (et 01) o .( _H) (=i ) (2.65)
T(s,i+1),(N—ig,io) (1 = Ps), 1 =10,1
where on the right hand-side 75, = 0, V(s,7) ¢ xn. In particular,

(5.0).(N=iodo) = 1M pso = Pr—s (2.66)
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In matrix notation, this means that given the initial distribution p(0) for the states,
then the distribution for the final size of the epidemic can be found from the first
N + 1 entries of

lim p(0)7" (2.67)

t—o0
where the states of T" are in the following order:

(s,9) € {(N,0),(N —1,0), ..., (0,0), (N — 1,1),(N — 2,1), .., (0, 1), ..., (0, N')}

i.e. the first N + 1 states are the absorbing ones.

Example 2.3.2. Suppose that the (constant) size of the population is equal to
N = 3. Thus, the states of the region x3 are ten:

xs = {(3,0),(2,0),(1,0),(0,0), (2, 1), (1,1),(0,1), (1,2), (0, 2), (0,3)}

and the first four states of this list are the absorbing ones. The transition
matrix of the embedded chain has the following form

1 0 0 0 0 0 0O 0 0 0
0 1 0 0 0 0 0O 0 0 0
0 0 1 0 0 0 0O 0 0 0
0 0 0 10 0 0O 0 0 0
p_ 0 1-p 0 0 0 0 0 p 0 0
0 0 1-p, 0 0 0 0 0 p O
0 0 0 1-po 0 0 0 0 0 0
0 0 0 0 0l—pr 0 0 0 p
0 0 0 0 0 0 1-p 0 0 0
0 0 0 0 0 0 0 0 1—py O]

and it is a stochastic matrix, since 1 — py = 1. Given the initial distribution p(0),
which is a vector with ten entries, we need to calculate the first four entries of
lim;_, ;o p(0)T" since the remaining are all equal to zero. Now, for one moment we
treat T just as a linear application which sends a vector space (V, B) in itself. Thus
V = R' and we can take the canonical basis B = {ey, ..., e10}. In this notation it
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is straighforward to see what happens reiterating 7"

€1
€2

€3

€4

€5
€6
€7
€g
€9

€10

S Is = s s s+ 1=+ I8 1= |

T2 T3
el —> €1 — ...

T2 T3
€9 + (1 —p2)€5 — €9 + (1 —p2)€5 — ...
T2 T3
es+ (1 —p1)es —> ez + (1 —pr)es + (1 —p1)2€8 —e3+ (1 —p1)es +
T4 T5
(1—p1)?es + (1 — p1)°paes = ez + (1 — pr)es + (1 — p1)’es + (1 — p1)*paes — ..
2 3 4
€4+67£>€4+67+695€4+€7+69+p166+€10g64+67+69+p166+€10
T5 TG
p1(2 —p1)es = es +er + eg + preg + e10 + p1(2 — pr)es + pi(2 — p1)paes — ...
O
T2 T T4
(1 —pr)es = (1 —p1)pees = 0 — ...
T2 T3 T4 75 | T6
eg — preg + €10 = p1(l — p1)es + pres = p1(2 — p1)paes = 0 — ...
T T3
poes — 0 — ...
T2 T3 T4 TS
pies +e10 — p1(1 —p1)es + pres = p1(2 — p1)pees = 0 — ...

T2 73 T4
pieg — pipaes — 0 — 0

which means that we don’t really have to compute lim,_,,, 7" since the limit con-
verges by time ¢t = 2N — 1. The limit matrix 7 is then equal to 7°, so that

1 0 0 0 00 0O0O0O0

0 1 0 0 00 0O0O0O0

0 0 1 0 00 0O0O0O

0 0 0 1 00 0O0O0O O
oo [0 1=p2 (1=p1)’p2 p1(2=pr)p2 0 0 0 0 0 0 (2.68)

0 0 1—p P1 00 0O0O0O0

0 0 0 1 00 0O0O0O0

0 0 (1-p)? pm@—p) 000000

0 0 0 1 00 0O0O0O

0 0 0 1 000000
Thus, if we start with a initial probability distribution p(0) = (p1(0), p2(0), ..., p10(0)),

then the final size epidemic can be calculated from v = p(0)7° which has the fol-
lowing expression:

V; =

p1(0), i=1

p2(0) + (1 — p2)ps(0), @ =2

p3(0) + (1 — p1)?p2ps(0) 4+ (1 — p1)pe(0) + (1 — p1)?ps(0), i =3

pa(0) + p1(2 — p1)paps(0) + p1ps(0) + p7(0) + p1(2 — p1)ps(0) + po(0) + p1o(0), i =4
0, 5<i<10
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Now we use the fact that P, = v,y for n € 0,1,2,3. For instance, if we take
ip = 1 (so that sy = 2) thus p(0) = (0,0,0,0,1,0,0,0,0,0) and in this case the
probability of a final size epidemic equal to n € {0, ..., 3} is equal to

0, n=20

1— =1
j - b2, 1 (2.69)
(1 —p1)2p27 n=2

p1(2—p1)p2, n=3

which is actually a distribution. In many real disease the reproduction number
Ry stands between 2 and 3: in our example, this happens if, for instance, v = 1
and § = %. For this value we have p; ~ 0.4 and ps ~ 0.6. With those value the
distribution of the final size can be explicitely computed:

0, n=0
0.4 =1
po~{ " (2.70)
0.2, n=2
04, n=3

2.3.3 Persistence time of an epidemic

While we saw that all stochastic models converge to the disease-free equilibrium,
it is not clear how many they need to reach it, i.e. it is not clear what is the first
time 7" € Ry such that Z(7') = 0. In this section our aim is to derive a system of
equations that can be solved in order to find the expected time until absorption for
the stochastic ST.S model. The most interesting fact is that, while the convergence
to the disease-free equilibrium holds regardless of the value of Ry, depending on
N,y and R, the persistence time of an epidemic can be very short or very long.
Let then be T; the random variable describing the time until absorption beginning
with ig = ¢ infectors, where ¢ = 0,1,..., N, and let denote with 7; its expected
value: 7; := E(7;). A first trivial observation is that no persistence occurs if there
are no infectors, i.e. 79 = 0. Using the first step analysis we see that the mean
persistence time in the DTMC SIS model with time step of lenghts At satisfies
the following differential equation:

Ty = b(i) AL (Tipy + At) + d(i) At (i1 + At) + (1 — [b(i) + d(i)] At) (1, + At)

Simplyfing and multiplying by At~! both the sides of the expression, it can be
rewritten as:

dii1 — [b(i) +d(0)] 7 + b(i) T30 = —1 (2.71)
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It is important to observe that, even if we are treating the DTMC SIS model, Eq.
(2.71) holds also for the CTMC SIS model: indeed, in continuous time, 7; satisfies
the same equation as 7; expect for an extra term o(At). Multiplying by At~! and
taking the limit At — 0, we find again Eq. (2.71). We can express what we have
just sad in matrix form. Let be 7 = (74, ..., 7x). Then Eq. (2.71) is equivalent to:

D= (1,1,...,1) (2.72)
where: ~ .
—[b+d] (1) d(2) 0 0 0
b(1) —[b+d(2) 0 0 0
0 b(2) 0 --- 0 0
D= : : Do : (2.73)
0 0 0 - 0 d(N)
i 0 0 0 --- 0 —d(N)_

Since this matrix is an irreducibly diagonally dominant matrix (see Def. A.3.5), it
is not singular ([24],[25]): the solution 7 to Eq. (2.72) is unique. Since the matrix
is also tridiagonal (see Def. A.3.7), we can find explicitely the solution using the
Thomas algorithm (see App. A.3.2):

1 =N b(1)eb(b=1) -
;- {@ 2k2 gy 0 =1

. 2.74)
i—1 | d(1)---d(s) N b(1)---b(h—1) . (
1 +Zk25 [b(l)mb(s) h=s+1 W] , 1= 2,...,N
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Chapter 3

Network models in epidemiology

The next step in the modelling of an epidemic is to consider network models. In
these models, contrary to what happens in deterministic and stochastic models,
the whole population is made of single individuals instead of compartments and
this fact allows to consider interactions different from the classical homogeneous
mixing, in which every person enters in contact with any other individuals of the
population. Individual-level models make analysis difficult and simulations compu-
tationally intensive, but they offer a totally different way of describing biological
populations which seems to fit better epidemiological data taken from the real-
world. Since there are many different approaches to construct network models
in epidemiology, we present here only some of them. The first section presents
the so-called generating function approach, which basically links the early stage
of an epidemic to percolation: for this part we refer to [7],[8],[11] and [23]. In
the second section we will establish a relation between network model and simple
deterministic model, that is always due to F. Brauer ([8]). Finally, in Sec. 3, we
will derive the so called N —intertwined model which has been largely studied by P.
Van Mieghem ([12],[26]): here the model is described by (a family of) continuous
time processes that can be studied with usual Markov chain theory under a mean
field approximation. We refer to App. A.2 for the main definitions and results on
graph theory.

3.1 Network model for the early stage of an epi-
demic

In the simplest epidemic network models, nodes of the (undirected and unweighted)
graph represent individuals and an edge (7,j) depicts an interaction between i
and 7 that could potentially lead to transmission of infection. This is enough to
understand how important the topology of the network is: for instance, an isolated
node could not spread the virus, while a node with high degree can infect many
people becoming a so-called super-spreader. If an edge (i,j) represents a contact
between two individuals, we could argue that the graph should be dynamic, since
interactions between people change over time and the changing pattern of social
contacts can have an huge impact on transmission. However, the importance of the

43
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dynamic aspects of network structure depends on the timescale over which disease
dynamics are of interest. For rapidly spreading infections, it is common to assume
that the network is static, since it suffices for the description of the spreading. In
more general situations, network static models are also useful to describe the first
phase of the spreading. Since this assumption leads to considerable simplifications,
much of the recent work has focused on static network settings.

From now on we will consider a configuration model, i.e. a graph G = (V, F) in
which every node i € V' has a predetermined degree k; (see App. A.2.4). Moreover,
we will take GG as a static graph, assuming that we are describing just the beginning
of the spreading. This allows us to do not give much importance at the kind of
model (SIR,SIRS,SEIR) we are taking into account.

3.1.1 Excess degree distribution

From now on we indicate with {py} the degree distribution, i.e. the fraction of
nodes having degree equal to k: clearly, it holds Y.~ py = 1.

When a disease is introduced into a network, we think of it as starting from a single
infective node 7. This node is chosen randomly from V', so that it has a random
degree k;,, and it represents the only individual who becomes infected without
any infective transmission. In word, we are assuming that the first infector has
been infected by a contact outside of the population. Moreover, we assume that
individuals make contacts independently of one another and, for the moment, that
every contact leads to a transmission.

The distribution py tells us the probability that a vertex chosen randomly from
V' has exactly k neighbours. Suppose instead that we take a vertex ¢ and follow
one of its edges (assuming it has at least one) to the vertex j at the other end
of the edge. What is the probability that j has degree k? In some way we are
conditioning the probability for j of having k neighbours to the fact of being linked
to ¢. This is enough to understand that this new probability we are searching for
couldn’t be equal to py again: for instance, an isolated node j can’t be reached by
following an edge in this way, so if j is isolated the probability we are trying to
compute would be 0 # py. For the general formula we proceed as follows: first of
all, let us call k; the the degree of the vertex i. We have

> ki=2m, meN (3.1)

Now, since we start from ¢ and then we follow the edge (7,j), when analyzing
the behaviour of 7 we know that 2m — 1 edges remain, and k of them are clearly
attached to a vertex with degree k. We know that py is the fraction of vertex with
degree k, where the set of all nodes is V', and for the sake of brevity we can rename
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|V| = N. Thus, the probability of our edge (i, j) attaching to any vertex of degree

k is equal to:
k
N 3.2
om—1 P (3:2)

Now, in the limit of large network size, m becomes very large and 2m — 1 can be
approximated with 2m, and since the degrees are pre-assigned the average degree
< k > is equal to the arithmetic mean % Yoiki = QW’” This allows us to rewrite
Eq. (3.2) in a more useful way:

k kpx,
N Np =
om P T k>

(3.3)

Thus, the probability that we reach a vertex of degree k upon following an edge
in this way is proportional to kp, instead of pg. This result has a funny, coun-
terintuitive consequence: since the right hand-side of Eq. (3.3) is the probability
for a node reached following an edge of having k neighbours, we can compute the
average degree of a neighbor as

kps, <k*>>
k = 4
; < k> k (3.4)

If we want to make a comparison between the average degree of a neighbor and
the average degree of a typical node in V', we found that:
< k? > 1 o}

—<k>= B> — <k>?) =
k <><k><< - <>) < k>

(3.5)

where we indicated with o7 the variance of the degree distribution. Since both o7}
and < k > are positive numbers, it follows that the average degree of a neighbor
is greater or equal to the one of a typical node of the graph: in colloquial terms
“your friends have more friends than you do”. From now on, we will be interested
not in the total degree of the vertex at the end of an edge, but in the number of
edges attached to that vertex other than the one we arrived along. This quantity
is called the excess degree of the vertex, and it is just one less than the total
degree. Of course the excess degree is greater or equal to zero, since, by definition,
a vertex reached by following an edge must have at least total degree equal to 1.
We will indicate with {g;} the distribution of the excess degree, i.e. ¢ it is the
probability, for a vertex j reached by following an edge (i,7), of having k other
neighbors different from 1.

Proposition 3.1.1. The following formula for g, holds:

(k? + 1)pk+1
= A 3.6
qk k> ( )
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Proof. Let j be a node of V reached by following an edge (7, j). The probability
that j has excess degree equal to k is exactly equal to the probability that it has
total degree equal to k+1. Using Eq. (3.3) with £+ 1 instead of k we conclude. [J

Let us now define the generating function of the degree distribution {py} as :
g(t) =t (3.7)
k=0

Now, p <1, Vk € N, thus the series is dominated by the geometric series -, th:
this prove that the series converges for 0 < ¢ < 1 and could be differentiated term
by term. Thus

p= 0 (38)
The generating function has the following properties:
1. g(0) = po
2. g(1)=1
3. 4 (t)>0
4. ¢"(t) >0
5. <k>=4¢(1)

which can be proved by direct computations. We can define the generating function
also for the distribution of the excess degree:

g(t) _ § :Qk;tk _ § : ( = k)>k+1 tk
k=0 k=0
— hon 4y gt
— t =27 3.9
; < k> < k> (3.9)

From this generating function we can extract an explicit formulation of the mean
excessive degree < k, >:

ko> = S kg= Y e
k=0 k=0 < k >
- i h(h = 1)pn = ! i (h?pn — hpn)
< k> — < k> pt
k?
- =2 gy (3.10)
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The importance of the mean excessive degree is that it coincides with the mean
number of secondary cases by patient zero, which is the basic reproduction number
as usually defined. For this reason, from now on we will rename < k. >= §'(1) =

Ry

3.1.2 Probability of an outbreak

As we did for stochastic models, we want now to calculate the probability that an
outbreak actually occurs, or equivalently the probability that the infection die out
without developing into a major epidemic. It is important to underline another
time that all those analysis are confined to the initial stage of the spreading, in
which the portion of infectious individuals remains small compared to the whole
population: with epidemic we mean a situation in which the growth of infectious
becomes exponential in this stage. The main result in this sense is given by the
following

Theorem 3.1.2. If Ry < 1, then the probability that the infection will die out is 1.
On other hand, if Ry > 1 there is a g-fized point zo, > 0, i.e. an element satisfying

G(200) = 2o (3.11)

and there is a positive probability 1 — g(zs) that the infection will persist and lead
to an epidemic.

Proof. Let ig € V be the first infectors and let us suppose that k;, is its corre-
spondent degree. Suppose that iy infects a contact with degree £ through and
edge of E. Let z, be the probability that this infections dies out within the n—th
generation. Now, we observe that the infection starting from the first infectors
dies out in n th generations if, and only if, each secondary infections die out in
n — 1 generations: let us denote with 2* | the probability of this event. Thus, z,
can be decomposed as follows:

= (3.12)
k=0

which means that the probability that the infection dies out in n—th generation
starting from the first infector is the sum over all possible degree k of the probabil-
ity that all secondary infections starting from nodes with degree equal to k£ die in
n — 1 generations, weighted with the probability of having an excess degree equal
to k. Eq. (3.12) can be rewritten in terms of the generating functions as

- . g/(Zn—1>
Zn = §(2n-1) = . (3.13)
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Since we have proved that g has first and second derivatives strictly positive, it
follows from Eq. (3.13) that z, is an increasing sequence, thus it has a limit z.
which is the probability that the infection will die out eventually. Since z., is the
limit as n — oo of the solution of the difference equation:

{Z” = 9(zn) (3.14)

ZOZO

it follows that z,, must be an equilibrium for the difference equation, that is, a
fixed point for §(z). Let now be w the smallest positive fixed point of g, i.e.

w=1inf{t € (0,1): g(t) =t} (3.15)
Since g is itself increasing, the following chain holds:
t<gt) <glw)=w, V0<2<w<1 (3.16)

In particular, since zp = 0 < w and z,_; < w, it holds by induction that:

a = g(a) <gw) =w
zn = g(a) <jw)=w
Zoo < W (3.17)

which ultimately implies that z,, = w since z, is a fixed point. Now, since {q}
is a distribution, it holds that §(t) = ¢ has a root t = 1. Now, let us define

F(t) = g(t) — ¢ (3.18)

We can prove that the second derivative of f is positive in the open interval (0, 1):

< k> < k>

(1) = ( g(t) > _ 9% ik(k —1)(k — 2)pet™ > 0 VE € (0,1)

thus, f'(t) = §'(t) — 1 is a strictly increasing fuction on (0,1) and it has at most
one zero in this interval, i.e. it there are at most two roots of g(t) = t in [0, 1].
Now, if Ry < 1, f(t) has a negative first derivative f'(t):

P =G -1<71) —1=Ry—1 (3.19)

and the equation ¢(t) = ¢ has only one root t = 1. On other hand, if Ry > 1, the
function f(t) is positive for ¢ = 0 and negative near ¢ = 1 since it is zero at t = 1,
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and its derivative f'(t) is positive both for ¢ < 1 and ¢ near 1. Thus, equation
g(t) =t has a second root z,, < 1. The probability that the disease outbreak will
die out eventually is the sum over k of the probabilities that the initial infection
in a vertex of degree k will die out, and this is

Zpkzoo = g<Zoo) (320)

This can be expressed equivalently by saying that, if Ry > 1, there is a probability
equal to 1 — g(2) that an epidemic occurs. O

3.1.3 Transmissibility

Until now we have assumed that each contact between an infectious and a sus-
ceptible leads to an infection. In the real world this does not happen, and there
is just a probability that a contact causes an infection. Moreover, the aim of
preventive interventions such as the use of mask are exactly made in order to de-
crease this probability. From now on we will continue to assume that there is a
network whose degree distribution is fully described by the generating function g,
but in addition we will consider that there is a probability of transmission equal
to a. The following definition will be useful:

Definition 3.1.3. Suppose i, j are two vertex of G, linked trough the edge (7, j) €
E. If the link corresponds to an infection, we say that (i, ) is occupied.

The importance of this definition besides in the fact that, at any time, the
cluster of vertices connected to the first infectors 7¢ through path made by occupied
edges represents exactly the size of the epidemic at that time. The probability that
a node of degree k infects exactly m < k of its neighbours is given by:

k k m k—m
T = (m)a (1—a) (3.21)
Now, let us indicate with h(z, a) the generating function for the distribution of the
number of infections caused by a randomly chosen node of V', which is also equal to
the distribution for the number of occupied edge attached to that node. Observe
that h depends on «, since it is not necessary to consider the transmissibility fixed
during the computation. As we did for g, even for A admits an explicit rewriting
in terms of the generating function for the distribution of the degree g:

Proposition 3.1.4. The generating function h admits the following expression:

h(t,a) =Y g(l+alt—1)) (3.22)
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Proof. By definition, the generating function h(t) is the sum over all possible
m € N of t™ weighted with the probability that a random chosen node is exactly
linked to m occupied edges; now, since the degree of the random chosen node is
unknown, this probability is in turn equal to the sum on all degree k of pyr¥,; i.e:

h(t,a) = iipkrﬁltm

m=0 k=0
0 00 k . o
= > Dol ) )" (1-a) (3.23)
m
m=0 k=0
Now, we recall that according to the binomial theorem, it holds:
n - n k, n—k
T+ = T 3.24
=3 (1) (3:24)

we can apply this result to Eq. (3.23) in order to get:

h(t,a) = ipk (1+alt—1)"=g(1+alt—1) (3.25)

With direct computations, we get the following corollary
Corollary 3.1.5. The generating function h has the following properties:
1. h(0,a) = g(1 — 1)
2. h(l,a) =1
3. W(t,a)=ag (1+at—1))

Proof. Property 1 follows just by a substitution in Eq. (3.25). We have that
h(1,a) = g(1) and we have already seen that g(1) = 1 since py is a distribution.
Property three follows by direct computations. O

Along the lines of the previous section, we might calculate the generating func-
tion A(t,a) for the distribution of the number of infections caused by a vertex
reached by following an edge starting from a random chosen vertex. Again, we
need to use the concept of excess degree. What we obtain is given by the following:

Proposition 3.1.6. The generating fuction for secondary infections iL(t, a) satis-
fies the following equality:

h(t,a) = §(1+a(t — 1)) (3.26)
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Proof. The probability that a node j reached by following an edge starting from a
random chosen node 7, infects exactly m other nodes is obtained by summing on
all possible degree k of the secondary node j the probability that a node of degree
k infects m of its neighbours, namely ¥ weighted by the probability g, that j has
actually degree k. Briefly:

— Z Z qk'rfntm (327)
m=0 k=0
We now proceed similarly to what we have done for Proposition 3.1.4:

ht, o) = Z[qu( ) (1 — )k m]

m=0 [ k=0
00

= Z (14 at—1))
= ( alt—1)) (3.28)

As we did for h, some easy properties can be deduced from h.
Corollary 3.1.7. The generating function h satisfies the following properties:
1. h0,a) = §(1 —a)
2. h(1,a) = h(1) =
3. W (t,a) =al/(1+a(t—1))

Again, the importance of the generating function for the excess degree besides
in the fact that it is strictly related to the basic reproduction number, because

Ry =ag' (1) =1 (1,a) (3.29)

The calculation of the probability that an infection will die out before becoming

a real epidemic follows the same arguments of Th. 3.1.2. The following theorem
holds:

Theorem 3.1.8. If Ry = ag'(1) = W'(1,a) < 1, the probability that the infection
will die out is 1. On other hand if Ry > 1 there are a h—fized point zo(a) > 0
and a positive probability 1 — h(zs(av), ) > 0 that the infection will persist and
lead to an epidemic.
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Remark 3.1.9. It is important to observe that there isn’t a sharp distinction for
different values of Ry, as there was in the deterministic case. For instance, if Ry > 1
it is not sure that an epidemic will happen, since there is a positive probability
h(zs0 (), ) that the spreading will stop before having a real outbreak.

The theorem motivates the following definition:

Definition 3.1.10. We will call critical transmissibility the quantity «,. defined
as

(3.30)

The importance of a. is that it is the transmissibility that makes the basic
reproduction number equal to 1: thus, if the mean trasmissibility a of an epidemic
can be decreased low the a., then the epidemic can be prevented. This result is
quite interesting for the study of preventive actions to avoid acute outbreaks.

3.1.4 Final size of the epidemic

Let us begin with another generating function: we define f(¢,«) to be the gen-
erating function for the distribution of outbreak sizes corresponding to a random
chosen vertex, where with outbreak sizes we mean the number of vertices who
become infected during an epidemic started from a first infectors 7g. As usual,
we are interested also in generating function of secondary properties, so we define
also f (t, ) as the generation function for the sizes of the clusters of connected ver-
tices reached by following a randomly chosen edge attached to ig. The following
importan result holds:

Proposition 3.1.11. Let be f(t,o) and f(t,o) the generating functions above
defined. Then the following rewriting in terms of the generating function h(t,a)
and h(t,«) yields:

Ji(t,a) = t-
flt,a) = t-

(3.31)
(t, @), @) (3.32)

papRie
—~
Sk Sy
=
o
:_/
2

Proof. Tt is enough the prove Eq. (3.32), since the proof for the other equation
is analogous. The epidemic starts following an edge attached to the so-called
patient-zero ig, so that we can argue that 7y infects an element j which forms the
generation one. The member of generation one has degree k with probability gy
and turn causes independently a new set of m infections distributed according to
f. If in the final count we want to take into account also the initial infections
caused by j, we must increase the exponent of the series by 1 and we do that
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simply multiplying by ¢. In formulas:

fta) = t) [zqk(i)am<1—a>km] (it o))

m=0 Lk=0
-y [Z o <:1) <af(t, a))m (1- a)k—m]
=ty (1 +a(f(t,a) - 1))k
k=0
= tg(1+a(f(t,a) — 1) (3.33)
which implies the thesis. [

The importance of this proposition is that it makes possible an explicit compu-
tation of the mean size of the disease outbreak, i.e. the mean number of individuals
who take the virus during the epidemic.

Theorem 3.1.12. The final size of the epidemic depends on Ry = ag'(1) since
there are three possible situtations:

1. If Ry < 1 almost surely an epidemic will not occur, and the final size is given
by

ag'(1)

1 - Ry

1+ (3.34)

2. If Ry =1 a discontinuity on the final size of the outbreak occurs.

3. If Ry > 1 the fraction of the indiwiduals affected by the infection is equal to
the probability that the outbreak will develop into a major epidemic which

1 — h(ze0, @) (3.35)

where 2z >0 is a B—ﬁxed point.

Proof. By construction the mean size of the disease outbreak is f'(1,«). We can
calculate explicitely this quantity by differentiating both the expressions for f and
f in the previous proposition. Differentiating Eq. (3.32) gives

flt,a) = B(f:(tla),oz)—I—ti/(f(t,oz),a)f'(t,a) =
Y _ h(f(t7 a)v a)
= fl(t,a) = (a3 (3.36)
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whereas implicit differentiation of Eq. (3.31) jointly with Eq. (3.50) gives

f(t.a) = h(f(t,a),a) +th(f(t,a).a)f (t,a),a)

— W(f(t,a),0) + ({1, ), o) — L 1E2). )

1— tﬁ’(f(t,a),oz)

(3.37)

Now, f is a probability generating function so that

7 _ h(f(1,a,a) =h(1,a) =1
fﬁa%_hi{ﬂﬂL@ﬂU:E@aﬁzl (3.38)

thus the mean size of the outbreak reduces to

(1
F1,a) = AT
1-1(1,a«)

ayg'(1)
1—ag(1)
ag'(1)
14— 3.39
1— Ry (3:39)

It is important to observe that this expression is consistent if Ry < 1. For Ry =1
there is a discontinuity (phase transition) that has the epidemiological meaning of
the appareance of a giant component which leads to a major epidemic. If Ry > 1
we exclude the giant component of the graph in the definition of f(¢,«) so that

f(1,a) < 1. Now, we have that

= 1+

f(1,a) = h(f(1,a),a) (3.40)
therefore f(1,a) < 1 is a h—fixed point, i.e. it is the second root ze(a) of
h(t, o) =t (3.41)

We can thus apply Th. 3.1.8 to deduce that, in this case, there is a positive
probability h(zs, ) that there will be only a small disease outbreak whereas 1 —
h(zso, @) is the probability that the infections will persist and lead to epdiemic.
For the same reason, if Ry < 1 we have that f(1,a) = 1, thus z.(a) = 1 and the
probability of an epidemic is equal to zero.

Let us now suppose to have an epidemic, i.e. Ry is above the threshold quantity
1. We define F'S(«) as the fraction of the graph affected by the infection, i.e. the
final size of the epidemic. It holds:

fl,a) =1—-FS(a) (3.42)
from which we can rewrite the final size as
FS(a)=1-f(1,a) =1—h(f(1,a),0) =1 — h(zs(a),a) (3.43)

which implies the thesis. O



3.2. RELATION WITH DETERMINISTIC MODELS 95

3.2 Relation with deterministic models

Until now we have used only a branching process without referring to any com-
partmental model, because we confined our attention to the early stage of the
spreading. Aim of this section is to expand the time interval we want to study,
and immerse a simple compartmental model on a network. To avoid complications,
we will consider the basic STR model on a static configuration network, in which
the probability that a node has degree k is equal to py where Y .- pr = 1. The
degree generating function is then the same as the one introduced in the previous
section:

g(t) = > pit* (3.44)
k=0

and it is well defined when 0 <t < 1. We assume that at any time each node of
the network can be in three possible states: susceptible, infectious or recovered.
The transition from the susceptible to the infectious class happens with a certain
rate § when a susceptible individual is linked through an edge of the network
to an infected node. On other hand, the transition from the suscpetible to the
removed class occurs at a rate . If we denote with s(t), i(t) and r(t) respectively
the fraction of susceptibles, infectious and recovered individuals, it is easy to found
a differential equation satisfied by 7

(1) = ai(t) (3.45)

Since s(t) + i(t) + r(t) = 1, Vt € Ry we only need to found an equation for s in
order to fully describe the model. We underline that ris the only one deterministic
quantity of the three mentioned. From an epidemiological point of view, it is
reasonable to assume that the more contacts we have the more we expose ourselves
to being infected. From a mathematical point of view this means that the hazard
of infection for a suscpetible node i is proportional to its degree, that we shall
indicate with k;. If we denote with ¢;(¢) the probability that a neighbour of the
suscpetible node 7 is infective at time ¢, we obtain the following expression for the
’s hazard of infection at time t:

Ai(t) = kiBgi(t) (3.46)

Let us now change the notation and consider ¢ as a randomly chosen node. We are
interested in computing the probability that, at time ¢, ¢ belongs to the susceptible
class. In order to do that, we introduce 6(t) as the probability that a random
neighbor of 7 hasn’t transmitted the infection to i at time ¢. It is easy to deduce that
the event “i is susceptible at time ¢” coincides with the intersection of the events
“j hasn’t transmitted the infection to 7 where j are all the potential infective
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neighbours of 7. Then, the probability that the random chosen node 7 is still
suscpetible at time ¢ is given by 0(t)*. If we now want to know what is the
fraction of susceptible at time ¢, namely s(¢) we should average over all nodes the
probability that a node is still susceptible at time t, i.e.

s(t) =Y _mb(t)" = g(0(t)) (3.47)

In order to proceed we now make the following observation. The fact that a random
neighbor j of a susceptible individual 7 hasn’t transmitted to him the infection at
time t can be splitted in three disjoint subevent:

1. The random neighbor j is still susceptible at time ¢. This happens with a
probability ¢g(t).

2. The random neighbor j is infective at time ¢, but he hasn’t transmitted the
virus to ¢. We have already introduced this event and we called ¢;(t) its
probability.

3. The random neighbor j is recovered at time ¢, and during the period in which
he was infective he didn’t infect i. This happens with a probability ¢g(t).

The following equality follows:

0(t) = os(t) + ¢1(t) + dr(t) (3.48)

On other hand, the probability that the random neighbor j has transmitted to
i the virus at time t is equal to 1 — 6(t). The following proposition provides a
differential relation involving 6.

Proposition 3.2.1. Let be 0(t), o, 5 and g(t) as above defined. Thus the following
differential equation holds:

g'(0(t))
g(1)

Proof. We have already observed that r satisfies Cond. (3.45). Since infected
neighbors recover at rate «, the flux from ¢; to ¢ satisfies an analogous relation:

Pr(t) = agr(t) (3.50)

Since edges which link an infectious and a susceptible node transmitt infections at
rate 3, we can argue that the flux from ¢; to (1 — 6(t)) is given by:

(1=0(t)) = Bor < 0'(t) = —Pi(t) (3.51)

0'(t) = —B6(t) + B +a(l-0) (3.49)
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To obtain ¢ we need to study separately each flux into and out of its correspondent
compartment. Firstly, we have an incoming flux from ¢g to ¢; which is represented
by the neighbours of ¢ who get the infections. Secondly, we have two outgoing flows:
the flux from ¢; to (1 — @), which happens with rate 5, and the flux from ¢; to
¢r, which happens with rate a. The total outgoing flux from ¢; is then equal to
(v + B)¢;. In order to determine precisely the incoming flux from ¢g to ¢, we
proceed as follows. Let us consider a random neighbor j of i: Eq. (3.3) tells us
that the probability that j has degree equal to k is equal to %. If we now assume
that j has degree k, it follows that it has k& — 1 neighbours who can potentially
be infectious (the k—th neighbor is i, that is susceptible by hypothesis). Thus,
as we have already seen, the probability that j is susceptible is given by §*~1. In
order to get the probability that a random neighbor of ¢ is susceptible, we need to
average over all k the probability that a neighbor of i with degree k is susceptible,

l.e.:
[ee]

os(t) => ji’;e(t)’“ = g/;i(lt)» (3.52)

Now, from Eq. (3.50-3.51) we deduce that the flux from ¢; to ¢ and the one
from ¢; to (1 — @) are proportional with a proportional constant equal to £. By

3-
construction we have that

(1 —0(0),0r(0)) = (0,0) (3.53)
which then implies

or(t) = = (1 -0(t)) (3.54)

™I e

from which the thesis follows:
0't) = —Bei(t)
= —B10(t) — ¢s(t) — or(?)]

= o000+ 570 a1 - o) (3.55)

]

Remark 3.2.2. The previous proposition enables us to give a formal definition of
the STR model on a static configuration network, in the sense that it is fully
described by the following differential system:

0'(t) = =p0(t) + BLT + a (1 - 6(t))

s(t) = g(0(t)) (3.56)
() = ai(t) |
s(t) +i(t) +r(t) =1
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The following theorem establish a relationship between the STR model on a
static configuration network (Syst. 3.56) and the simpler SIR model without vital
dynamics given by Syst. (1.1).

Theorem 3.2.3. Let be G = (V, E) a network which has the following property:

|ki— <k>—0a <k>>o00, VieV (3.57)

1.e. G 1is a graph in which all the degrees are close to the average degree < k >
when < k > gets higher, i.e. when N := |V| grows. Then the SIR model in the
network G can be approrimatively reduced to a deterministic SIR model, in the
sense that the following equation for the fraction of susceptible individuals holds :

s'(t) =B < k> s(t)i(t) (3.58)
Proof. From the above computations it follows
s'(t) = —B4'(0(t)¢r(t) (3.59)

We now prove the theorem making the extra assumumption that every individual
of the population has the same number of contact equal to C' < N — 1. Thank to
this hypothesis, it follows that

s = 3 pb) = (1) = 6(1)° & (3.60)
o Do) = ﬁ?yw (3.61)

which jointly with Eq. (3.59) implies

Cs(t)

() = -85

or(t) (3.62)

We now let C' — oo, which clearly implies that N — oo, in such a way that
B =pC (3.63)
remains constant and therefore bounded as C' grows, which basically happens iff
g=0(C), C— (3.64)

Now, if we start from a node i, the probability that an edge that links ¢ with one
of its random susceptible neighbors j doesn’t correspond to an infection is equal
to 6. We have already seen that at each time ¢ the quantity 6(¢) is decomposable
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in three factors, ¢g, @7, pg. When C; N — oo those factors approache respectively
their correspondent fractions of individuals:

(05(1), ¢1(t), dr(t)) = (s(t), i(t), r(t)) (3.65)

Thus, it follows that 6(t) converges to 1 when C' tends to co. An easy consequence

of those facts is that the ratio ¢>91(g> is approximatively equal to i(t) when the

contacts get higher. We can resume all what we have just sad by saying that

s'(t) ~ —Bs(t)i(t) (3.66)

when the number of contacts per-node (thus, the number of nodes) get very high.
The same conclusion holds in the general case, by adapting the proof and substi-
tuting C' with the more general expression < k >. O

3.3 Markov chain epidemic model on a network

Another possible approach to epidemic models on networks is to make use of
Markov chains. We end this section by describing one example of this approach,
which consists in deriving a continuous-time SIS model on network and then
making a mean-field approximation in order to solve it. We will limit the discussion
to the derivation of some results on such a model, whereas for more detailed
analysis we refer to [26].

Let us a consider that the virus spread in a undirected static graph G = (V, E)
which is fully described by a simmetric adjacency matrix A = (a;;); jey where:

g b LI EE (3.67)
Y 7 0, otherwise

We associate to each node i € V' a state function X;(¢) € {0,1}, where X;(t) =1
means that at time ¢ node 7 is infectious and X;(¢) = 0 means that at time ¢ node
7 is healty. If an infectious node ¢ is linked to a susceptible one j, we assume that
the arrival of the infection through the edge (i, j) is a Poisson process with rate g
which is independent from the specific edge (i, 7). At the same time, the infectious
node ¢ recovers according to another Poisson process, independent to the previous
one, with rate §. Since we are considering a S1.5 model, it holds:

P(X;(t) = 1)+ P(X,(t) =0) =1, Vi€ V,Vt € R, (3.68)

By separately observe each individuals of the population ¢ and applying the usual
Markov chains’ tools, we deduce that the infinitesimal generator Q;(t) of the two-
state continuous time Markov chain {X;(t)}icr, is equal to:

Qilt) = [_qq _qq} (3.69)
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It is easy to deduce that the element ¢} is exactly equal to the recovery rate ¢.
For the element ¢ we proceed as it follows. At any time, the node ¢ is linked to
a some other nodes. The probability that one of those nodes infects ¢ at time ¢
is proportional both to the transmissibility of the virus # and to the number of
neighbours of ¢ that are actually infected at time ¢. Summing up we end with the
following expression:

N
qli = ﬁ Z aij]l{xj(t)zl} (3.70)
j=1

Directly from the meaning of the infinitesimal generator, it follows that:
P(X(t+ At) =1|X(t) = 0) = ¢. At + o(At) (3.71)

The crucial consequence of Eq. (3.70) is that ¢} are random variables, and not
number as in ordinary Markov chain theory. If we want to applicate continuous-
time Markov chain theory, we can replace the actual random infection rate ¢} by
an average infection rate, which is a real number. This is basically a mean field
approximation. In formula, this means that we replace ¢ with its average E (¢}).
We can also have an explicit expression for the average:

N
E(g) = B ayE (1¢x,0-1))
j=1

N
= B ayP(X;(t) =1) (3.72)
j=1
This leads to this expression for the effective infinitesimal generator:
Qult) = [‘[E(S(qﬁ [Efq(;)} (3.73)

Let us now denote v;(t) := P (X;(¢t) = 1), i.e. wv;(t) is the probability that the
node ¢ is infectious at time ¢. It clearly holds that the probability that i is still
susceptible at time ¢ is given by P (X;(¢) =0) = 1 — v;(¢).

Lemma 3.3.1. Let us denote with S = S(t) and Q = Q(t) respectively the tran-
sition matriz and the infinitesimal generator related to a continuous-time markov
chain process { X (t) }ier, . If we define the probabilities:

pi(t) = P (X(t) = k) (3.74)
the following differential equation for py holds:

Po(t) = —awpe(t) + D aups(t) (3.75)
=Lk
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Proof. 1f p(t) is the probability vector for the state of the process at time t, we
know that it holds:

p(t+h) =p(t)S(h) (3.76)
from which we can deduce that
pr(t+h) = > pit)S(h) < (3.77)
- pe(t+h) —pu(t) Zj\; p;(t)Sjk(h) it
h B h h
_ Zj:l,j;ékl;j(t)sjk(h> ) Skk(T;L) —1 (3.78)

which in the limit for o — 0 becomes the differential equation we are looking
for. O

Applying this result to our process, we obtain a differential equation for v;(t)
which is non linear:

vi(t) =3 Z ag;v;(t) — vy(t) (5 Z ag;v;(t) + 5) (3.79)

Now, we can proceed in this way for each node of the grap, so that we obtain a
system of differential equations analogous to Syst. (3.79):

(i (t) = B0, arjui(t) — vr(t) (B0, arjui(t) + 6
vy(t) =B Zjvzl az;v;(t) —va(t) ( B Zﬁvzl az;v;(t) + 6

: (3.80)
vi(t) = B0 agu(t) — wilt) (B0, asjos(t) +9)
Lo () = B anjus(t) — p(t) (5 SOy ansvs(t) + 5)
It is now convenient to introduce the following shorter notation:
V(t) = (v1(t), v2(t), ..., vn(t))" (3.81)

The Syst. (3.80) can be rewritten in matrix form as:

V() = BAV(t) — diag(vi(t)) (BAV (t) + 6u) (3.82)
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where v is the column vector which N entries are all equal to 1. We can obviously
rewrite V'(¢) as V(t) = diag(v;(t))u in order to obtain:
V'(t) = BAV(t) — diag(v(t)) (BAV(t) + ou)
— (BA—S1)V(t) — Bdiag(ui(t) AV (1)
= (Bdiag(1l —v;(t))A — 1)V (¢) (3.83)
It is important to underline that this model can be easily modified in order to take
into account significant generalizations. As an example, one can think about non
constant infection and curing rates described by the vectors 8 = (B, 2, ..., Bn)

and A = (01,0, ...,0x). To consider this generalization it is enough to rewrite Eq.
(3.82) as

V() = Adiag(B;)V (t) — diag(vi(t)) (Adiag(8;(t))V (t) + A) (3.84)

Assuming that the steady-state exists, one can calculate the steady-state proba-
bilities of infection for each node. Since the steady-state v;, implies:

0 (lisoe = 0 (3.85)

we have that for all nodes 5 € V' it holds:

o] N
B Z QijVjoo — Vioo (5 Z A;jVjoo + 5) =0 (3.86)
=1 j=1

from which it can be proved that it holds

1
1 +7 Zj:l aijvjoo

where 7 = % is the effective transmissibility of the virus. The right hand-side in
Eq. (3.87) is equal to the steady-state probability in the two-state Markov chain.
We can observe that Eq. (3.87) has a trivial solution v;o, = 0 for all i € V', which
means that eventually all nodes will be healty. On other hand if the recovery rate ¢
is equal to 0, then all v;,, are equal to 1, i.e. almost surely all nodes will eventually
be infected. A part from trivial solutions, the non-linearity gives a second solution
which can be interpreted as the fraction of time that a node is infected while there
is a long-living epidemic, i.e. while the system is in a metastable state. The main
results in [26] is that this second solution has an explicit expression as a continuous
fraction:
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Theorem 3.3.2. For any effective spreading rate T > 0, the nonzero steady-state
infection probability of any node v can be expressed as:

Vico =

1
_ - (3.88)
]_ _|_ Tdi — T ijl 1+de_7_2{€\771 asy .
= _kq

1+7dg—7 E(IZV:1

where d; = Z;VZI a;j 1s the degree of node i. Particularly, the exact steady-state

infection probability of any node v is bounded by

1
OS’UZOO<1—

=T 1+ 14, (3:89)

Let y(t) be the (average) fraction of infected nodes in the network at time ¢:

y(t) = % [Z :n-{Xj(t):l}] = %Z’Uj(t) (3.90)

and let us define

1
y nzv (3.91)

i.e. Yoo is the fraction of infected node in the steady-state. Summing Eq. (3.79)
over all i is equivalent to right multiplication of V(¢) by the all one vector u’,

because
N

> vty =u"V(t) (3.92)

i=1
then we find:

duV (t)

dt = o’ (diag(1 — v;())BA — 1) V(2)

= B’ —V(#)AV(t) — suV(t) (3.93)
which allows to deduce a relation for y, € [0,1) in terms of V:
Nyoo = u' Voo = 7(u — Voo )T AV, (3.94)
Now, if D is the vertex containing the degrees of the nodes, the following hold:

u'A= D" (3.95)
D =T'u := diag(dy, ..., dn)u (3.96)
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From those relations, and introducing the Laplacian @ :=I' — A one can express
Yoo as a quadratic form in terms of Laplacian:

Yoo = % ((u = VIV + VIQVL) (3.97)
where it can be proved that V. follows the governing equation:
Vo = 7diag(1l — vi00) AV (3.98)

In epidemic models often the existence of an epidemic treshold 7. is mentioned.
If the effective spreading 7 = % > 7., the virus persists and a non-zero fraction
of nodes are infected, whereas if 7 < 7. the epidemic dies out. The fundamental
result in this model is that there exists a treshold value 7. such that for 7 < 7¢
there is only the trivial steady-state solution V., = 0 whereas there is a non-zero
second solution for each 7 > 7.. The most interesting thing is that this treshold
quantity 7. depends on the spectral radius of the graph A, which is the largest
absolute value of the eigenvalues of its adjacency matrix. This fact has a pratical
consequence that we now discuss.

Let us suppose that a a network GG with adjacency matrix A is given. Moreover,
let § and 0 be respectively the infection rate and the nodal curing rate. Thus,
if ¢ is kept above S\, we can mantain the network virus-free. This fact is quite
important when it is reflected in real-world network which are actually modifiable
by several prevetion measures, because it gives a measure of how those measures
must decrease the spectral radium in order to prevent an outbreak.



Chapter 4

SIR model on a dynamic network

All the models that we have presented in previous chapters are static, in the sense
that they don’t take into account human dynamics. This simplification is very
useful especially for two reason:

e From a computational point of view, epidemic models which consider time-
evolving humans’ interactions bring heavy computations even for small pop-
ulation.

e Modelling humans’ interactions is very challenging, and until few years ago
it was almost impossible due to the lack of available data.

However recent events are changing the situation: on the one hand recent tech-
nologies are mading the processing power everyday stronger, on the other hand
specific apps and the smartphone’s geolocation are paving the way for contact
tracing. For this reason, the field of epidemic models on dynamic network is now
under the interest of many scientists, even though we are still far from having stan-
dard approaches and formal mathematical theories. In this chapter we present one
simple and original dynamic model for the description of an epidemic and then we
show the results of some simulations on those models, trying to investigate rela-
tionships and behaviours of key epidemiological quantities, even looking to their
variations to varying of parameters and choices on the construction of the model.
A particular attention is given to the generation time which is one of the concep-
tual corner-stones of mathematical epidemiology: by its classical definition, it is
the time interval between the infection of a secondary case and the infection of
its infector. Along with the already mentioned basic reproduction number, the
generation time allows for the characterization of the dynamics of an epidemic.

4.1 Theoretical formulation

We have already presented the SITR model without demography: while referring
the reader to Sec. 1.1 for its formal mathematical description, we now want to do
a short summary of the main aspects of this model.

We consider a closed population of N individuals divided in three time-dependent
subgroups: susceptibles, infectious and recovered. The key property of this model
is that only two possible transitions can occurr:

65
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1. § — [. After an “infectious contact” with an infectious individual, a sus-
ceptible one contracts the disease and becomes infectious himself.

2. I — R: An individual who has been infected for a while recovers and gets
immunity against the disease.

We want to recall that the population size N is constant due to the fact that we
are not, considering birth or death in our population.

The main simplification of this model is that it is assumed that every person is
moving and has equal chance of contact with each and every person among the
population (homogeneous mizing).

To make more realistic our study we also saw that compartmental model can be
considered in network, however again a strong limitation arises: in those models it
is often assumed that the contact that we have with our neighbours doesn’t change
in time.

To give a further generalization of STR model, we embed it in a dynamical random
network in which the nodes represent the individuals of the population and each
edge (1, j) stands for a (potential) contact between the nodes i and j. Let us now
be more precise.

We assume that at time ¢t = 0 only one node 7y of our starting graph becomes
infected from external individuals. Then, we assume that each edge of the graph
starts activating/deactivating according to a Poisson process HPP: when the con-
tact between an infected individual 2 and a susceptible one j is activated, the virus
can spread through this link with a probability that is proportional both to the
duration of the contact and to the transmissibility of the virus, whereas ¢ can’t
infect 7 when the edge which link them is deactivated. Moreover, we consider
that each infectious recovers with a constant recovery rate: when recovered, an
individual gains immunity from the virus so he stops influencing the spreading.
While the following pictures (Fig. 4.1-4.2-4.3-4.4) give a visual representation of
model’s functioning, the rest of the section is devoted to the mathematical descrip-
tion of its main ingredients: the network and the spreading’s process.
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Figure 4.1: Beginning of the model.
All the edges are deactivated (blue),
the only infectious is in red whereas
the others (suceptibles) are in
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Figure 4.3: The spreading starts.
Edges keep activating/deactivating
and the virus spreads, so that a new
infectious (red node) appears.

L
N

Figure 4.2: The contacts’ dynamics.
Some edges (the green ones) activate:
from on now the virus can spread through
them.

/

Figure 4.4: Spreading and recovers.
The number of infectious grows, but some
of them recover becoming black: now
they stop influencing the spreading.

We want to be allowed to describe in a more realistic way the human’s inter-
action, taking into account several significative facts:

1. Every individual ¢ of the population has a different network of acquitances,
which is the set of people with which i could enter into contact.

2. The real contact between ¢ and any node belonging to the network of acqui-
tances of ¢ starts and stops randomly in time with a rate ;.
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To develop a structure with these properties, we start from a simple random net-
work G = (V, E), where V' = {1,..., N} is the set of nodes of G (individuals of
the population) and E C {(i,7) | ¢,7 € V,i # j} is the set of edges of G (mutual
knowledge between two nodes, i.e. possibility to have an effective contact between
those two individuals of the population). In order to integrate our model with a
dynamical random process whose purpose is to emulate human’s contacts, we use
a Poisson process which can activate/deactivate in time any edge (real contact)
between two nodes (individuals) of the existing graph (population) G. To be more
precise, we proceed in this way: for all (7,j) € E we introduce the edge’s value:

o"(t) € {—1,1} (4.1)

where —1 stands for “deactivate” and 1 stands for “activate”. At the same time,
we call i1 the deactivation rate between any couple of in-contact nodes whereas for
each contact (i, j) € £ we indicate with )\;; its activation rate.

We are now able to define a random process H*/ = {H%}, <\ suitable to describe
the time-dynamics of each edge of the graph GG. The definition is the following:

HY = S, (i) Yn €N (4.2)

where: {S,,(%)}nen indicates the homogeneous Poisson process (HPP) of intensity
* and «;; is defined as:
1—0"(1)

Oéij (t) = 5 )\ij +

1+ o%I(t)
2

u (4.3)

It should be noted that the above equation simply means that the parameter c;,
which determines the dynamic of the edge (4, j), is equal to A;; when the edge (i, j)
is not activated, and it is equal to p when (7, j) is activated.

Assuming that the family {H"}; jjep is made of independent HPP, we can make
use of Th. A.1.17 to build up a new HPP H = {H,,},,en which describes the whole
interactions’ system:

0=, ()= Y HI= 3 Siay) (4.4)
(

i,j)€EE (i,))EE

Every time that the process H rings, one has to know which one of the competing
processes H*’ has caused the ring. The answer to this question is provided by Th.
A.1.18: denoting with J the index of the HPP responsible for the first event, the
following holds:
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We finally need to embed the SIR model in our setting-up.
To this end, we assign to each node i a time-dependent function representing the
state of the node 7 at the time t:

w'(t) € {~1,0,+1} (4.6)

where -1, 0 and 1 stands respectively for “Susceptible”, “Recovered” and “Infec-
tious”. Just before starting the simulation, we select randomly one node 1 € V' =
{1,..., N} and we initialize

wi(0) =1
{wi(o) =-1Vi#i (4.7)

which means that the spread of a virus starts due to a single infectious individual
in a fully susceptible population.

When the simulation starts running, those nodes’ values change according to the
contacts’ dynamics we introduced in the last paragraph: we will now explain it in
more details.

Firstly, we let run the process H defined above, and we indicate with ¢, the time
of the first ring, which from now one will be considered the origin. Thank to Th.
A.1.18 we establish randomly which one of the edge (i, j) € E has been activated
with this ring (the ring could not corresponds to a deactivation because, before
to, no edge is activated). Now that we know which contact (7, ) is taking place,
we update the edges’ values 0’7 and, as a consequence, the parameters «;; of H;
then, we wait for the second ring which will happen at time t; = t; — tg = Ag:
before checking again which event has been responsible of the ring, we decide
randomly (with probabilities which are valid less than o) if some of the following
has happened:

1. S — I: During the time A a susceptible individual ¢ has been infected, i.e.
wi(ty) = —1 N w'(ty) = 1. The probability of this event is equal to:

P(I) = o ¢(i, D) - Ag (4.8)

where o € Ry is the disease’s infection rate and ¢(i, Ag) indicates the number
of neighbors of the node i at the beginning of the time-period A,.

2. I — R: During the time Ay an infectious individual j has recovered, i.e.
wi(ty) = 1 2% wi(t;) = 0. The probability of this event is equal to:

P(R) = BAg (4.9)

where 8 € R, is the disease’s recovery rate.
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After we eventually modify some nodes’s values, we then establish which edge
(i,7) € E has been activated/deactivated during Ay (and we update the parame-
ters ay; just in the same way as before). We conclude the procedure iterating this
procedure step by step until we reach the results we expected.

It is important to stress again that in this model we are assuming that there are
no births and there is no possibility that a recovered individual is infected another
time so that each simulations will end with the disease’s disappearance (no possi-
bility of an endemic disease).

Until now we described a procedure which is valid for any choice of the under-
lying graph G; however, in order to do our simulation, we focus on two possible
topologies. Firstly, we take G = G(V,p) as a random Erdds-Renyi graph (see
App. A.2.2) where we choose p >> 10;ng so that the graph G = G(N, p) is almost
surely connected, i.e. that there is a path between every pair of nodes (thinking
about human relationships in a closed population, it seems quite reasonable).
Secondly, we take G as a scale-free network, i.e. a network characterized by the
presence of hubs, which are nodes with a number of links that greatly exceeds the
average. From an epidemiological point of view, those hubs represent the pres-
ence of super-spreaders of the virus, which only a scale-free network can allow
to consider. Precisely, we considered G = G(N,m) as a Barabasi-Albert graph
where we start with m isolated nodes and then, the network develops following
the steps illustrated in App A.2.3. The following pictures (Fig. 4.5-4.6) show an
example on how much those graph can differ one from the other, even when they
both have the same number of nodes (10*) and approximatively the same average
degree < k >~ 14.

Plot of the degree distribution for an ER graph Log-Log plot of the degree distribution for a BA graph
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Figure 4.5: The degree distribution Figure 4.6: The degree distribution of
of an Erdds-Renyi graph presents a a Barabasi-Albert graph (in log-log) is
bell-shape (truncated in zero) with a line, with many values below and few
typical values very close the average.  that greatly exceed the average.
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4.2 Implementation

We implement our model with Python using “NetworkX”, which is a package for
the creation, manipulation and study of the structure, dynamics and functions of
complex networks. As the reader can see in the App. B, the code is quite long
and it is splitted in several functions that we piece together at the end of the code
in the so-called “main”. In this section we report a pseudo-code of our algorithm,
which purpose is to illustrate in a plain and simple way the functioning of it. For
the sake of brevity we omitt the parts of the code that describe precisely how we
calculate GT and Ry or other quantities that we will investigate in the next section
such as the final size of the epidemic and the probability of a real outbreak: for
these parts of the code we refer to App. B, whereas we present here only the
mathematical idea behind them.

Taking into account all the events (infections and recovers) we create a matrix
A = (a;j); jer where:

a; = Time in which i gets infected (4.10)
a;; = Time in which ¢ infects j (4.11)
and a;; = “None” if ¢ hasn’t infected j Now, if 4 is the first infectors, i.e. a;,;, = 0,

one can compute the number of individuals infected by ig simply counting how
many numbers appear in the 7g—th raw of the matrix, and Ry is the mean value of
this number, obtained by simulating the model many times. In order to get GT,
we can compute, for each node i, the times between when it is infected a; and
when it infects any other individuals:

Qi — Qg4 VJ L Qg 7é None (412)

Putting together all those values over all nodes ¢ and taking the mean value one
get (one relization of) GT'. With similar arguments one can compute also the final
size and the probability of an outbreak. The computing of the time-evolution of
generation time and basic reproduction number can be obtained by a discretization
of the results in entire days, so that G7; and R; with j € N are respectively the
reproduction number and the generation time at day j, i.e. computed only from
individuals who get infected at day j.

We underline that in the pseudocode we will use a notation that is consistent with
the one we introduced in the previous section.
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Algorithm 1 Simulate the spreading of an infection in our model.

Require: G, \;;, 1, a, B,
Ensure: ', 0%, t, GT, R,
Choose randomly i € V
w1
Wi —1 Vi
o« —1V(i,j) € E
Qijj %”(t)/\w + wu i (’L,j) ek
A =2  jer i
Let us wait the first time in which an HPP H with intensity A rings, and choose
r randomly in (0, 1).
* % K
Initialize an auxiliary index: 7 < 0
while » > 0 do
r <— r — P{The j-th element of E has caused the ring}
j—7+1
end while
* % K
The j-th element of F, let us call it (1, j), has caused the ring, so o 1
Update A taking into account the change of o7
t<+0
Initialize the counter of events: i <— 0
Compute ¢ the current number of infectious
while Number of infectious individuals > 0 do
Ay H(A)
for Node n in V' do
if n is infected, i.e. W™ = +1 then
With probability SA; make it recovered: w™ < 0
else if n is susceptible, i.e. NV™ = —1 then
Count ¢(n) the number of neighbors of n that are actually infected
Make n infected with probability a - ¢(n) - A,
else
Do nothing
end if
end for
With the same procedure between x x , establish which element of E has
caused the ring. Let us suppose that this element is (E,j)
if the edge (i, ) is activated, i.e. ¢/ =1 then
Deactivate the edge: |
else B
Activate the edge: o7 «+ +1
end if
Update A
t—t+ A
11+ 1
end while
Compute GT and compute R as the number of nodes have been infected from
the first infectors
return W', 0™, t, GT, R,
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4.3 Simulations

Since we are interested in the mean behaviour of the model, we let run the algo-
rithm several times: for each choice we want to look for key quantities of the model,
as the reproduction number Ry, the generation time GT but also the expected du-
ration of the epidemic E(7'), the correspondent final size of epidemic F'S := %(T)
and the probability of a real outbreak P(O). First of all, we establish that the unit
time correspond to 1 day. Finally, we choose the main parameters as it follows:

e ;1 = 24 : this means that the average number of deactivation of an activated
edge per day is equal to 24 whereas the corresponding average interevent
time is equal to id = 1h. In words, what we are saying is that the average
duration of a contact is of 1h.

e o = 1 : if an individual has only one infected neighbour and the contact
between them lasts for a time At, the transmission of the virus occurs with
probability aAt which is equal to At under this hypothesis. This means that
a one-day-long contact is enough for the virus to being transmitted.

e 3=0.06~ %5 : with the same reasoning as the one we used for «, this choice
implies that 15 days are enough for the removal of the virus.

The choice of the contacts’ rates \;; have to be treated separetely, as it is the most
difficult choice. Indeed, contrary to the above parameters, it still lacks an easy
method to describe effectively humans’ interactions. Moreover, such a method
should depend not only on the structure of the population, but also on the infec-
tions itself: for instance, the contacts’ rates in a network used for describing an
airborne transmission need to be very different from those of a network describing
sexual transmission.

In our case we are thinking about a non-letal airborne disease, so relevant contacts
are both casual and frequent contacts. For this reason, we will consider contacts’
rates in [0, 10] which means that a contact between two linked nodes could occur a
number of times per day between 0 (no contact) or 10 (a number of contact which
is so high to be irrealistic, but useful in order to analyze the behaviour of some
quantities).

4.3.1 Erdos-Renyi graph

We start our discussion by considering an Erdés-Renyi graph G = G(100,0.14)
where the parameter p has be chosen in order to give a realistic average degree
< k >= 14, whereas the clustering coefficient (see App. A.2.1) C is equal to
0.137. We start from the simplest case to analyze, which is the homogeneous one,
in which each edge (4, j) has the same contact rate, i.e. A\;; = c. We want to see
the main differences with different choices of ¢ € [0, 10]. The behaviour of Ry and
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GT w.r.t. c are represented in Fig. (4.7-4.8-4.9).
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Generation time as function of ¢
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Figure 4.7: Reproduction number Figure 4.8: Generation time as func-

tion of the contacts rate on Erdds-Renyi
graph: it decreases exponentially ap-
proaching the 0 as the contacts get very
frequent.

as function of the contacts rate on
Erdés-Renyi graph: after a first
growing, it reaches a steady-state
approximatively at ¢ ~ 3.

RO as function of GT

45

* —%
ar ¥
35+ s
37 *
g 25
2 \* .
151
1 \*
05
0 2 4 6 8 10 12
GT
Figure 4.9: Reproduction number as

function of the generation time on Erdds-
Renyi graph: for low values of Ry it seems
a linear relation, but when R gets high
a precise relation is hard to be found.

We can see that, when the constant rate gets higher, it is easiest and fastest
to spread the virus since Ry increases whereas G'I" decreases. What is most in-
teresting about those quantities is the way in which they change w.r.t. c¢. As we
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can see for Ry the growth seems to be logarithmic and a steady-state is reached
approximatively in ¢ ~ 3: here Ry stops growing and keep itself constant around
the value of Ry ~ 4. On the contrary, generation time presents an exponential
decreasing behaviour, and a steady-state doesn’t appear whereas it seems that GT
would approach to 0 as ¢ gets higher. This fact may suggest that, especially for
spreading in small population, GT could be a better descriptor than Ry since it
isn’t affected from the competition-effect which boxes Ry quite far from < k >.
An univocal relation between Ry and GT is hard to be found: when Ry < 3 a good
fitting between the reproduction number and the generation time could be given
by a linear relation between, whereas when R, reaches its steady-state a precise
relation can’t be argued anymore.

In order to have a more precise view of what happens to the (beginning of a)
spreading when reaching the steady-state of Ry, we can see how it evolves differ-
ently with ¢ = 1.5,3.5 and ¢ = 10.

Fractions of infectious evolving in time Fractions of infectious evolving in time
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Figure 4.10: Realizations of the Figure 4.11: Zoom of the spreading on
spreading (in terms of the fraction the early stage. Both the exponential
of infectious at time t) with rate and the peak’s height gets higher as
different generation times and the generation time decreases, even when
basic reproduction number on the basic reproduction number reaches
Erdés-Renyi graph. the steady state.

What we see from Fig. 4.11 is that, even when Ry is kept constant, if GT' contin-
ues decreasing the exponential rate r of the fraction of infectious grows, i.e. the
spreading gets faster. Moreover, higher contacts’ rates correspond also to higher
peak height, which means an higher number of contemporary infectious. This fact
seems to confirm the above hypothesis: in small populations, when the strenght
of the spreading grows too much, R loses its effectiveness as descriptor of the epi-
demic, since it stops catching some fundamental properties of the spreading. On
other hand, generation time isn’t affected from those limitations, and it seems to
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be a preferable descriptor. It is also important to underline that those limitations
make very difficult to establish a mathematical relation between G'T" and R,.
Other interesting facts arise when looking at the final size fractions of the epidemic
and at the probability of outbraks P(O). In Fig. 4.12 we compare those quantities
between them and between the theoretical probability for stochastic models given
by Eq. (2.56) which we shall denote Q(O) to avoid confusion.
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Figure 4.12: Comparison between F'S,P(O) and Q(O) on Erdés-Renyi graph. The
theoretical probability always underestimates the computed one, which overlaps
with the final size when the contacts’ rate is high enough (¢ > 1).

First, we can observe that generally all those quantities are increasing w.r.t. the
contacts’ rates ¢, which is epidemiologically reasonable. Secondly, we see that the
theoretical probability for stochastic models, doesn’t apply for network models
since it is much smaller than the computed probability P(O). In our opinion the
reason again besides in the behaviour of Ry in our model (and more in general,
in network models): since it has an upper bound that stochastic models doesn’t
take into account, the value that we compute for Ry is so much lower then its
theoretical value in stochastic models that a breakdown Eq. (2.56) occurs.

The most interesting thing is that the fraction of individuals who have taken the
virus during the epidemic (FS), from ¢ = 1.5 perfectly overlaps with the probabil-
ity of an outbreak P(O). Since from ¢ = 1.5 outbreak occur most of the times, one
could argue that the probability of an outbreak coincides with the final size of the
epidemic conditioned to the fact of having a real outbreak. This fact suggests that
point 3 in Th. 3.1.12 might be true even for more sophisticated networks as the
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one we introduced. It is also important to underline that the results of our model
is quite consistent with common network model, and not with simpler model, since
if Ry <1 (¢ =0.1) an outbreak (almost surely) doesn’t occur, but when Ry > 1
there is also a positive probability of not having an outbreak. Another important
quantity that we want to investigate is the average time that the virus needs to
complete its spreading, i.e. the average time before that either all individuals are
being infected or there are no more infected in the population. Let E(7T) be this
quantity. Then E(T") behave according to Fig. 4.13

180 Average epidemic duration as function of ¢

ool ! —% = B0 |
i
Jj \'
s8orT!
T
il
\
7oLE )
I i
1
60
] \
c L
S— H
< 507 \
|
408 A
A\
30 | |
\
\
20+ X
X
10+ i T
0 : =
0 2 4 6 8 10

Figure 4.13: E(T) as function of ¢ on Erdds-Renyi graph. The peak is reached
when the contacts’ rate is high enough to cause real epidemic, but is sufficiently
small that the speed’s of the spreading doesn’t grow too much.

Here we can see that there is a non-monotonic behaviour with a critical point
reached by ¢ = 0.5. Particularly we see that for very low values of ¢ (¢ >~ 0.1) the
spreading have a short life since most of the times a real outbreak doesn’t occur;
then, when c¢ increases the final size gets higher, many outbreak occurr and the
epidemic begins to have a quite long course. When ¢ exceeds 0.5, even if the final
size keep growing, the generation time becomes so small that the epidemic gets
faster and faster. Even when R, reaches its steady-state, the increasing of con-
tacts’ rates with the corresponding decreasing of GT', brings E(T") to every lower
levels.

The last property that we want to investigate is the time-evolution of the basic
reproduction number and the generation time. In Chapter 1 we have already men-
tioned the concept of R; which is the average number of susceptibles that would
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be infected by an individual who gets the infection at time ¢. We have also already
observed that in simplest deterministic model R; < Ry. On other hand we denote
GT; as the generation time which computations is restricted to individuals which
gets infection at time ¢. In order to do this analysis we are considering ¢ = 0.5.

Temporal evolution of the reproduction number Temporal evolution of the generation time
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Figure 4.14: R; to varying of ¢ on Figure 4.15: GT; to varying of ¢t on Erdds-
Erdés-Renyi graph. The behaviour Renyi graph. There is a first contraction
is basically decreasing: from ¢ ~ 70 around the peak, and then an increasing
strong fluctuations occurr. occurr.

Apart from the physiological noise, that is given by the high randomness of the
model and the limited number of the simulations, we can see an interesting different
behaviour in the evolution of those quantities. The reproduction number basically
decrease monotonically in time, and the reason is that, as time goes on, the number
of susceptible decreases so that the average number of infections that a node can
cause decrease too. Particularly, R; is alway below the basic reproduction number
Ry as it happens in classical epidemiological theories. Generation times presents
a totally different behaviour, since it presents a non-monotonic behaviour: from
day 0 to approximatively day 25 (which is typically around the epidemic’s peak)
it slightly decreases, thus it starts growing until a maximum of approximatively
14 days. The first decreasing behaviour could be explained by the contraction of
susceptibles and the competition among infectors: infectors are induced to more
likely infect an individual ¢ in a short time frame since the probability of con-
tacting a susceptible later on is lower and since they are in competition with all
others potential infectors of i (see [5]). After the peak, some infectors recovers, the
competition loosens and infecting starts requiring more time. The U-turn around
t ~ 70 is much more counterintuitive and difficult to explain: indeed, it is probably
due to the statistical fluctuations that occurr when ¢ becomes large, because most
of the individuals get the infection in the first days of the spreading and only few
of them spread the virus when ¢ is around 70.
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4.3.2 Barabasi-Albert graph

We now want to make the same analysis with a different choice in the topology
of the graph. From now on, we will consider G = G(100,7) as a Barabasi-Albert
graph, in which the parameter m = 7 has be chosen in order to obtain an average
degree almost equal to the one of the Erdds-Renyi graph that we have consid-
ered in the previous section; the clustering coefficient is here significatively higher:
C ~ 0.23. The behaviour of Ry and G'I" w.r.t. to c are presented in the following
figures.
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Figure 4.16: Reproduction number Figure 4.17: Generation time as function
as function of the contact rate on of the contact rate on Barabaasi-Albert
Barabasi-Albert graph. Again, graph. Again it decreases exponentially
after a first growing, it reaches approaching the 0 as the contacts gets
a steady state. more and more frequent.

Here the same considerations as the ones we did in the previous section hold: Ry
reaches a steady-state whereas GT decreases exponentially approaching to zero
as the contacts’ rates gets higher and higher. Moreover, we can see that here Ry
remains below the level of 4, whereas in the random network it exceeded this level.
More in general we can see that, for each choice of the constant ¢, the generation
time and the basic reproduction number are respectively higher and lower in the
scale-free network than in the Erdds-Renyi graph. The reason is that, even if the
two graph are build in such a way that they have the same average degree, the
median degree in the scale-free network is lower than the one in the random one.
Indeed, in the first case we have few nodes with high degree while the remaining
have a degree smaller than < k >, in the second case we have a kind of symmetry
in which each nodes has basically the same degree that is close to the average one.
Speaking of the relation between the reproduction number and the generation
time, also with the Barabasi-Albert graph it seems linear for low values of Ry.



80 CHAPTER 4. SIR MODEL ON A DYNAMIC NETWORK

05

Figure 4.18: Reproduction number as
function of the generation time on
Barabasi-Albert graph: for low values of
Ry it seems a linear relation, but when
Ry gets high a precise relation is hard to
be found.

On the contrary, it is difficult to determine a precise relation between these quan-
tities when Ry reaches the steady state while G'T" keeps decreasing.

Again it is interesting to investigate the speed of the spreading, i.e. the growth of
the number of infectious individuals until the reaching of the peak. We take three
indicative cases which are the ones determined by ¢ = 1.5,3.5,10. As we can see
in Fig. 4.20, higher values of ¢ correspond both to higher exponential rate and to
higher height of the peak in the fraction of infectious. However, differently from
Fig. 4.11, here the growth seems to be less regular, especially for small values
of ¢, in the sense that at the beginning the number of infectious keep it self very
plain, and then at a certain point it starts growing very fast. Epidemiologically
this means that in the first days (i.e. in the days in which most probably the
virus hasn’t reached any hubs) the spreading is very slow, whereas, when the virus
inevitably reaches a super-spreader (¢t ~ 10 for the blue line and t ~ 4 for the
orange one), the growth becomes faster and faster, reaching a peak in very small
time-intervals.

Pictures (Fig. 4.21-4.22) give a more precise idea of how different can be the
spreading with different choices on the first infectors. We investigate for two con-
tacts’ rates value (¢ = 1.5 and ¢ = 10) the two most extreme cases, in which iq is
either the node with highest or minimum degree. As we can see, the difference is
very clear when c¢ is small and, in terms of prevenction measures, this fact suggests
that clusters and super-spreaders are the factors which overall must be controlled
while they are the most dangerous factors in the spreading.



4.3. SIMULATIONS

Fractions of infectious evolving in time

GT=2.54 and R0=3.17
——— GT=1.12and R0=3.86 |
GT=0.46 and R0=3.83

o
©

e o o
> N ®
2

Fraction of infectious
o
(&

04
| \

03 } \
| o

02} [ Bl
| s

o1t | | NG ]
) i

o | e
0 10 20 30 40 50 60 70 80

Time (day)

Figure 4.19: Realizations of the
spreading (in terms of the fraction
of infectious at time ¢) with
different generation times and
basic reproduction number on
Barabasi-Albert graph.
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Figure 4.21: Spreading with ¢ = 1.5
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the basic reproduction number reaches
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Figure 4.22: Spreading with ¢ = 10

and different first infector 7. The differ-
ence of the spreading when 7y has max-
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ishes.

The difference in the spreading caused by different choices of the first infector be-
comes increasingly blurred, until it is completely lost when the contacts’ rates get
sufficiently higher. In our opinion this blurring-effect is simply caused to the fact
that, when the contacts are very frequent, the virus spreads very fast and with
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an high probability it reaches hubs in small time intervals, even if it starts from
a node with low degree. Speaking of the probability of an outbreak and the final
size, we give here a representation of the realizations of those quantities in the
Barabasi graph (Fig. 4.23).
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Figure 4.23: Comparison between F'S,P(O) and Q(O). As in Erdds-Renyi graph
the theoretical probability always underestimates the computed one, which again
overlaps with the final size when the contacts’ rate is high enough (¢ > 1)

Also in this case we have very-similar behaviours with both the topologies, even if
it is important to underline that for small values of ¢ the probability of an outbreak
is significatively greater in the Erdos-Renyi graph. In our opinion the explanation
of this fact is the same of the blurring-effect on the first infectors choice caused
by the increasing of the contacts’ rates, and it besides in the intrinsic property
of the scale-free network of having most of the nodes with a degree lower than
the average one. What we mean is that, in scale-free network, there is an high
probability to have a first infector which has a low-degree, and this fact jointly
with a low contact rate makes difficult the spreading of a virus. This behaviour
is less evident in the random-network because there the typical degree of the first
infectors is very close to the average degree, and in particular it is in general higher
than the degree of a first infectors in a scale-free network. As we have seen for
the fraction of infectious, even for the probabilities of outbreak a blurring-effect
occurs: in the two different topologies those probabilities get closer and closer as
the contact rates increases.

The duration of the epidemic also mantains its properties in scale-free network,
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and another time it confirms the suggestion that (in general) the virus spreads
slower in the scale-free network, as we can see from Fig. 4.24.
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Figure 4.24: E(T) as function of ¢ on Barabasi-Albert graph. The peak is reached
when the contacts’ rate is high enough to cause real epidemic, but is sufficiently
small that the speed’s of the spreading doesn’t grow too much.

However, it seems that the height of the peak (the highest mean duration of epi-
demic) is higher in the random-network, in correspondence to ¢ = 0.5. This is
probably due to the fact that for Barabasi-Albert graph the peak isn’t actually
reached with our choices of contacts’ rates. Indeed the peak is reasonably reached
with another value of ¢ €]0.5, 1], because, as we have already noted, with the scale-
free topology the spreading is slower, so that the contact rates correspondent to
the peak in the random-network doesn’t suffices for the reaching of the peak in a
Barabasi-Albert graph.

We want now end this section by analyzing the time evolution of G'I" and R, as we
did in the previous case, and to achieve this goal we present the pictures of R, and
GT; to varying of t (Fig. 4.25-4.26). While the behaviour of R; doesn’t present so
much difference between the random and the scale-free network, since in both the
case it has a general decreasing behaviour, the evolution of G7T} is more interesting.
As in the Erdds-Renyi graph, also in this case GT first contracts and then restarts
growing, however the speed of contraction is significatively greater for scale-free
network (local minimum reached for ¢ ~ 15 on Barabasi-Albert graph, for t ~ 20 on
Erdos-Renyi graph) whereas the contraction is stronger on the Erdos-Renyi graph
(local minimum close to 6.5 on Barabasi-Albert graph, close to 6.2 on Erdos-Renyi
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graph). This fact could be explained by the differences in the competition among
infectors that are caused by the topology: in the scale-free network the competition
occurrs basically at the beginning of the spreading, when the hubs get infected and
compete among themselves; when the epidemic’s peak is going to be reached, hubs
start recovering and the competition effect vanishes because the remaining infec-
tors are the ones with very low degrees. On the contrary, in Erdés-Renyi graphs,
the degrees’ symmetry makes the competition last longer, so that the contraction
is much more evident. When ¢ gets around 70, fluctuations occur and the gener-
ation time reaches an huge value of 26 day: again we think that the explanation
besides on the unrealiability of the GT" (and R) values when ¢ increases too much.

Temporal evolution of the reproduction number Temporal evolution of the generation time
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Figure 4.25: R, to varying of ¢ Figure 4.26: GT; to varying of t on
on Barabasi-Albert graph. The Barabasi-Albert graph. There is a first
behaviour is basically decreasing contraction around the peak, and then
consistenly with what happened an increasing occurr. The last period is
on Erdds-Renyi graph. dominated by fluctuations.

4.3.3 Other simulations with heterogeneous contacts’ rates

Another interesting analysis to do in our model, is to investigate how it behaves in
the heterogeneous case, where the word heterogeneuous means that the parameters
Ai; are no more constant but they are sampled by a probability distribution.

We will focus on the differences between the average epidemiological quantities in
the homogeneous case and in the heterogeneous ones. In order to get a consistent
comparison, we have to fix the mean number of contact between two linked nodes.
We decide to consider this mean, namely < \;; >, in {0.1,1,3,10}. We think real
contacts as divided in three categories:
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1. Many frequent contacts
2. Many sporadic contacts

3. A few of average contacts

and we construct explicitely a distribution in order to fit this tripartition. Partic-
ularly, given a mean < \;; > we consider the S distribution which is obtained by
composing an s—shape function with an uniform r.v. in order to have

Let then f be defined as
2 < )\ij >
= —"— 4.14
O (4.14)

and consider U([—10,10]) as the uniform random variable which takes values in
the close interval [—10, 10], so that its mean is 0. Let us define the r.v. S as

S == f(U([-10,10)) (4.15)

and let us compute explicitely mean and variance of S.
10 1 10 < )\7, >
E(S) = flo) 1 / Ay
_10 20 10 J_jp1+e=*
)\i' 1 =10
= < 15 = l— 11’1(€2w + 1):| =< /\ij > (416)

2 x=-—10

varw) = [ HEE (g2

0 20
10
- %Z)>2 /_10 1+ 2€_i + e~ do =1 (4.17)
- 57 (e )|
~ % < Nij >2 (4.18)

Which allows to calculate also the variance of S to varying of < \;; >:

0.009, <\ >=0.1
0.9, <Xj;>=1
8.1, <X\j>=3
90, < \; >=10

Var(S) = (4.19)
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As we see from the above computations, even when S and the homogeneous choice
Aij =< A;; > shares the same mean value, they are not at all equal, since the
variance is significatively different from one case to each other. The pictures Fig.
(4.27-4.28-4.29-4.30) represent a typical sampling from the S distribution with
different choice on the mean < \;; >.
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As we can see, mean values and variances are consistent with the ones that we
have just computed. Moreover, the shape of each of this samples is exactly the one
that we were looking for: most of the contacts’ rates belong to the two plates of
the sigmoid around 0 and 2 < \;; >. We start investigating the behaviour of the
main epidemiological quantities to varying of the mean contact rate < \;; >,and
with values taken from the S distribution. The following pictures (Fig. 4.33-4.34)
represent the growing (decreasing) of Ry (GT') w.r.t. < \;; > and in comparison

with the homogeneous case.
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Figure 4.33: Ry as function of < \;; >
on Barabasi-Albert graph.
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Figure 4.32: GT as function of < \;; >
on Erdés-Renyi graph. In the homoge-
neous case the spreading is (generally)
faster than in the heterogeneous.
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Figure 4.34: GT as function of < \;; >:
on Barabasi-Albert graph.

As we can see, even in the non-homogeneous case Ry and GT keep evolving in
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the same way: Ry grows until it reaches a steady-state which it doesn’t exceed,
whereas GT' decreases exponentially approaching the 0 (istantaneous diffusion)
when the average contacts’ rates goes to oo. Under the same average < \;; >,
both the strenght and the speed of the spreading are lower in the heterogeneous
case. Roughly speaking, this suggests that it is worse to have a population where
each individual enters in contact a moderate number of times with all his contacts
than have a population where each individual have mainly very frequent and very
sporadic contacts.

In the same way, simulations suggest that also other quantities behave in a very
similar way than in the homogeneous case, and the only difference is quantitative:
fixed the mean contact rate, probabilities of outbreak and final sizes are greater
in the homogeneous case, whereas the persistence time is longer when the contact
rates are sampled from a distribution. Also the distribution of GT isn’t so much
different in the two cases, even if it is observed that in the heterogeneous case it
present more outliers (and consequently, the variance is higher) and it is more right-
skewed, suggesting that a Gamma-distribution is preferable under this hypothesis.



Conclusions

We have presented four possible ways to model an epidemic, highlighting how
much each one of these approaches differs from the others.

We formally presented deterministic and stochastic models, which can be deeply
studied with mathematical rigor. The main pro of these models is their simplicity,
which allows to take into account highly detailed features such as demography;,
latent period and preventive measures; on the contrary, the main con is that they
are oversimplified since, for example, they assume homogeneous mixing of the pop-
ulation, which in the real life typically doesn’t occurr.

We also discussed the more recent epidemic models on static networks, underly-
ing that they have both advantages and disadvantages too: on the one hand they
reflect more closely the mixing of the population, on the other hand they can be
mathematically investigated only through approximations or strong assumptions,
and from a practical perspective they are mainly useful only for the early stage of
an epidemic.

We presented our simple in-vitro epidemic model on dynamic network, which aim is
both to consider a non-homogeneous mixing of the population and a time-evolution
of the human contacts. We first gave a formalization of the model, which is mainly
a Markovian epidemic process on a network in which edges activate/deactivate
according to the competition among a family of independent Poisson processes.
Then, we reported some results that we found during simulations of our model.
We showed that the basic reproduction number has an upper bound which is fairly
below the average degree of the graph. When it reaches this bound, it stops grow-
ing even if the average of the contacts keeps increasing so as the exponential rate
and the peak’s height of the number of infectious. On the contrary, generation
time presents an exponential decreasing behaviour w.r.t. the mean contacts rate,
and it seems to approach zero as the contacts get more and more frequent. We saw
that, when epidemic’s parameters are such that the probability of an outbreak is
high enough, it coincides with the fraction of individuals who have been affected
from the virus during the whole duration of the epidemic: this fact suggests that a
result which applies for static networks (Th. 3.1.12) could be generalized in a more
general framework. We investigated the temporal evolution of the basic reproduc-
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tion number and of the generation time: if the first is monotonically decreasing
regardless of the graph’s topology, the second one present a non-monotonic be-
haviour, with a contraction around the peak that is stronger and longer-lasting in
the Erdos-Renyi graph, suggesting that the competition effect could be biased by
the graph’s topology. In any case, both generation time and reproduction num-
ber are always far to have constant phases and, as suggested by [1] and [5], this
fact needs to be considered especially from those studies whose aim is to infer the
replacement number from the generation time.



Appendix A

Mathematical Tools

During the thesis we have silently used several mathematical notions. The aim of
Appendix A is to justify those notions or, at least, frame them in their specific
mathematics’ areas. Particularly, we will give a brief introduction to Markov
Chains and graph theory, with emphasis to the instruments that we used during
our work such as Poisson Process, Erdés-Renyi graph and so on. In the last
chapter of Appendix A, we will mention also other tools we used, especially from
Linear Algebra. Appendix B is dedicated to the Python Code which is completely
reported. We refer to [9], [15] for App. A.1, whereas we will follow [10] for App.
A.2. The first part for App. A.3 is take from [18], [24] and [25], whereas for the
algorithm for the resolution of tridiagonal system we refer to [21].

A.1 Markov chains

A.1.1 Markov chains in discrete time
Let us denote with E a finite or countable set.

Definition A.1.1. A sequence {X,, }en of E-valued random variables is a Markov
chain if for each n > 1 and xg, z1, ..., x,+1 € E the following holds:

[P (Xn+1 = xn+1|Xn = Ty, ...,X[) = IL‘O) = IP (Xn+1 = ZL'n+1|Xn = l‘n) (A].)

In words, a Markov chain is a stochastic process in which, given the present, the
future is independent to the past. In some case the quantity P(X, 11 = j| X, = 9)
is independent from n, and then we say that the chain is homogeneous. The most
important notion for an homogeneous markov chain is the one of transition matriz,
which is the matrix M = (a;)ijee € M g (R) where:

The reason of the importance of the transition matrix besides in the fact that
jointly with the initial distribution of the process, it determines the law of the
whole process:

P(Xn = 2, ..., Xo = 29) = P(Xo = xO)O‘woxl ERE C NS (A.3)

91
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A.1.2 Markov chains in continuous time

The concept of Markov chain can be generalized in a continuous time framework.
From now on we consider X = {X,},cr, an E—valued continuous time stochastic
process and we denote F = {F; },er, the sigma-algebra generated by X, i.e.

Fi=0(Xs:s<t), VteR, (A.4)

We remember the F is the smallest sigma algebra (with respect to the insiemistic
inclusion C) which makes measurable the process X.

Definition A.1.2. The process X is a Markov chain if for every x € F and
0 < s <t the following holds:

A continuous time Markov chain is said to be time-homogeneous when the
quantity P (X; = j| X = 4) depends on s, t only through the distance between them
t — s. For a time-homogeneous markov chain we can define for all ¢ € R, a linear
operator S; from R to itself as follows:

Sef (i) = E(f(X0)[Xo =) = ) f()P (Xe = j|Xo =) (A.6)
JEE
where f € R¥ and ¢ > 0. It is quite easy to show that {S;}ier, is a semigroup
because:
So = 1 .
Sirs = SpoS; (A.8)

Since it is a linear operator, S; can be expressed in matrix form as Sy = ((S;);;)
with

i,jEE
(St)ij =P (Xy = j|Xo =1) (A.9)

From now on, we will indicate with S the operator which sends ¢ to .S, so that
S(t) and S; are equivalent. This further notation is useful to avoid ambiguity and
to underline that the semigroup is actually a function of . When S is continuous
it can be shown that

LS =S0) S

0+ t N t

-1 Q (A.10)

exists. The left hand-side of this expression is a derivative of S(t) in ¢ = 0, however
for a markov chain one can show that S is differentiable for all ¢ > 0 and that it
holds:

(1) = S()Q = QS(t) (A.11)
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Consistently with this observation it can be proved that
St = etQ (A12)

The right hand-side in Eq. (A.10) is actually a matrix @) = (gij)ijer and it is
commonly called infinitesimal generator of the process X. Since S; is a stochastic
matrix, it clearly holds:
Z (St)ij = 1 — (St)u (A.13)
JEE\{i}

from which dividing both side for ¢ and letting ¢ approach to zero we deduce

Z ¢ = —¢i =0 (A.14)

JeB\{i}

hence () isn’t a stochastic matrix since the sum of the rows is zero and the elements
on the diagonal are negative. Since the elements g;; are effectively derivatives of
probabilities they are usually called rates of the transition from state ¢ towards
state j. The name rates reflects also the fact that for ¢ # j it holds:

whereas
P(X;=1iXo=1)=1—qt+ ot) (A.16)
where ¢; = —¢;;. Similarly to what we have seen before, the law of a continuous

time markov chain X = {X(¢)}cr, is fully determined by its initial distribution
jointly with the semigroup {S;}icr,, in the sense that for 0 < t; <ty < ... <t,
and xg, x1,...,x, € F it holds:

P (th = Tpyeeny XO = .’170) = [P(XO = $0)<St1)xox1 e (Stn,tn_l)xn_lxn (Al?)

In particular if we define 7, the distribution at time ¢, i.e. m(j) = P (X; =j) it
easily follows
m() =D P(Xe=i|Xo=j) =Y (Si)iym(i) (A.18)
i€E i€E
which turn implies

m'(t) = (t)Q

7(0) = mo

T = 7T[)St ~ { (Alg)

where we have denoted 7(t) as the function which sends ¢ to m;. Eq. (A.19) allows
to introduce the following, fundamental, notion.
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Definition A.1.3. A probability 7 on E is called a stationary distribution if for
every t > (0 one of the two following equations holds:

Sy =1 71Q =0 (A.20)

The importance of this concept is that, starting from a stationary distribution,
the probability distribution of the process remains unchanged as time progresses,
so it describes the limiting behavior of the markov chain. In general a stationary
distribution could not exists, however certain hypothesis guarantee positive results
in this direction.

Proposition A.1.4. If the states’ space E s finite then at least one stationary
distribution exists.

It is important to underline that this proposition it is no more true for infinite
countable sets. In order to give another positive results, we need some other
notions.

Definition A.1.5. A markov chain X is said to be irreducible if every couple of
different states i, € FE is linked through a path with a strictly positive prob-
ability: when this fact happens, it is common to say that states i,j communi-
cate. In formula, this means that exists an integer n and a path of lenght n
i = To,T1,...,T, = jJ such that z; # xp,q for evert £ = 0,...,n — 1 and with
Qo > 0

Theorem A.1.6. An irreducible markov chain has at most one stationary dis-
tribution m. When such w exists w(1) > 0 for evert i € E and for every initial
distribution o the distribution of the process approach w, i.e.

T = iMoo T0St (A.21)

We end this section with the concept of embedded markov chain. Before giving
the formal definition, we need to define and investigate the notions of sojourn time.

Definition A.1.7. We call sojourn time in the state i € E' the quantity:
7, =inf{t > 0: X(t) # i} (A.22)

under the hypothesis that Xy = ¢. It is the time spent in the state ¢ before jumping
to another state

The following result provides an interesting fact about the distribution of the
soujorn times for a markov chain.



A.1. MARKOV CHAINS 95

Theorem A.1.8. The soujorn times T; of a continuous time markov chain in a
state 1 € E are independent, exponential random variables with mean %

Let us now denote
Vij(t) = P (Xy = j| X¢ # 1, Xo = 1) (A.23)

Thus V;;(t) describes the probability that, if a transition occurs in a time interval
of lenght ¢, the process jumps, i.e. moves from a state ¢ to a different state j.
Using the definition of conditional probability, we have

P(Xi=4,X: #ilXo=14)  (Sh)y

Vii(t) = : , = A.24
( ) [P (Xt % ’llXO = Z) 1 — (St)“ ( )
In the limit A — 07 it holds
. qij
=] () = 22 A2
Vij et Vii(t) o (A.25)

which by the above mentioned properties of ¢;;, ¢; implies that
Z V=1 (A.26)
=1,
i.e. that the matrix V' = (Vj;); jer is a stochastic matrix provided that V;; = 0 for
all © € E/. Under this further hypothesis the matrix V' is the transition matrix for

the embedded Markov chain which is ultimately the chain derived from the initial
process X under the assumption that every transition coincides with a jump.

A.1.3 Transience and recurrence of the states

In many applications it is very important to classify the nature of the states of
a markov chain. In this section, unless otherwise noted, X is a continuous time
markov chain as defined in the previous section.

Definition A.1.9. Given a state ¢ € E we define the return time to state i as
T, =inf{t > 0: X; =i} (A.27)

where by convention T; = oo if X; # ¢ forall t € R,. It is easy to prove that it is
actually a stopping time.

Definition A.1.10. A state ¢ € E is recurrent if:
P:(T; <o0) =P (T, <oo|Xg=1i)=1 (A.28)
otherwise 7 is called transient. A recurrent state is called positive recurrent if
E(T;) < oo (A.29)

and otherwise it is called null recurrent.
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The property of transience and recurrence are both class property, in the fol-
lowing sense.

Theorem A.1.11. If i,j communicate, they are either both recurrent or both
transient.

For discrete time markov chains there exists a very useful tool to prove the
recurrence of a state, which is the following theorem

Theorem A.1.12. Let X = { X, }nen a discrete time markov chain and let us
define the potential matrix G associated to its transition matriz M as:

G=> M" (A.30)

n>0

which general term is given by
9ij = sz'j(n) = ZPZ- (Xn =1J) (A.31)
n=0 n=0
Then a state i € E is recurrent if and only if g; = 0.

A.1.4 Poisson processes

In the definition of our original model in Chapter 4, we made a massive use of
Poisson processes and their properties, so we end this section by doing a short
review of this arguments.

Definition A.1.13. A random point process on Ry is a sequence {T,}nen of
nonnegative random variables such that, almost surely,

2. 0< Ty < Ts...
3. lim,, oo 1), = +00

Random point processes are often used to describe the happening of events. For
instance, in our model the points of the Poisson process indicated the activation
(or deactivation) of a contact between two individuals. This empirical meaning
motivates the need of introducing the following two quantities.
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Definition A.1.14. The sequence {S,},>1 defined by
S,=T,—T,1 (A.32)

is called the interevent sequence. Those elements represent the time interval be-
tween two consectuive events of the process.

For any interval (a,b] C R, we define the number of events occurring in the time
interval (a,b] as

N(<a7 b]) = Z I]-(a,b}(,-rn) (A33)

n>1

The process { N, }ier, defined by
N, = N((0,) (A.34)
is called the counting process of the point process {71}, }nen-

The above mentioned Poisson process is nothing but a particular case of random
point processes, in which the interevent times are exponentially distributed, as we
now see.

Definition A.1.15. A point process N on R, is called homogeneous Poisson
process (HPP) with intensity A > 0 if

1. For all t; € Ry,i € {1,2,...,k}, such that 0 < t; < t5... < ) the random
variables N(t;,t;11] are independent.

2. For any interval (a,b] C Ry the random variable N (a, b] is a Poisson random
variable with mean A(b — a).

Directly from the definition one can deduce the following

Theorem A.1.16. Let N be an HPP with intensity A > 0. Then the interevent

sequence {Sy }n>1 1s i.i.d, with exponential distribution of parameter A. This turn
imply that:

1

P(S,>t)=1—e E(S,) = 3 (A.35)

In many applications there are several different poisson processes which com-

pete for the same singular process. For instance, in our model, we have that

all activations and deactivations of the edges contribute to the overall dynamic

of the network. The following result states that, under certain hypothesis, the

superposition of poisson processes is again a poisson process.

Theorem A.1.17. Let {N;};>1 be a family of independent HPP’s with respective
positive rates {\;}n>1. Then:
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1. Almost surely, two distinct HPP’s of this family have not point in common

2. If Y2 N i= X < oo then

N(t) =) Ni(t) (A.36)
i=1
defines the counting process of an HPP with intensity \

When considering a process N made by the competition of a family of HPP’s
{N,}i>1, one central question arises: given a ring (point) generated by N, how can
one establish which is the index ¢ such that the process N; is the one that has
actually caused the ring? The following theorem, usually known as Competition
Theorem provides an answer for that question.

Theorem A.1.18. Under the same hypothesis of the previous Theorem and as-
suming A < 0o, let us denote by Z the first event time of N and by J the index of
the HPP responsible for it, so that Z is the first event of the process Nj. Then:
Ai
PUzLZE@zPUz@HZE@:XKM (A.37)
In particular, J and Z are independent, Z is an exponential random variable with
mean % and the distribution of J is given by:

MJ:@:%,W21 (A.38)

We end this section by considering the so-called graphical construction of a
chain that is the procedure to associate to a generator () a continuous-time homo-
geneous Markov chain which admits ) as infinitesimal generator. This procedure
involves Poisson processes.

Let E be a countable space, and let Q = {¢;;}i jer be such that for all 4,j € E
with i # 7,

¢ € [0,00], q;; €[0,00) (A.39)
and
¢i <00, ¢ = Z ik (A.40)
keE\{j}
where ¢; = —q;;. It is important to observe that for a general infinitesimal gen-

erator of a continuous semigroup, only Cond. (A.39) are guaranteed. Let now
{Nij}ijeriz; be a family of independent HPPs with respective rates {g;;}ijer iz
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Moreover let X, be a given F—valued initial state independent of the above family
of Poisson processes. We construct explicitely a process as a jump process:

X, =X, Vte [Ty Trt1),s (A.41)
where {7, X, }nen is defined recursively as it follows:
1. Xy is already given and 79 = 0

2. If r, < o0 and X,, = Xm =1 € F, then 7,1 — 7, is the first event of the
competing HPPs {S;, N;; },ck j+ where

S;Ny(a,b] :== Ny(t +a, 7+ ] (A.42)

e lfg =0« 7,1 — 7, = 00, then the construction ends by setting
Xpiem = A and tau, ., = oo for all m > 1 and for an arbitrary element
A¢E

o If 7,1 — 7, < 00, X,y1 is the index k # i such that S, Ny is the first
among the competing HPPs to produce an event.

The process is defined by reiterating this procedure up to 7o, = lim,, .o, 7,. What
is important is the following result.

Theorem A.1.19. If 7. = oo almost surely, the process X is a continuous time
markov chain with infinitesimal generator Q).

A.2 Graph theory

The various networks presented in the previous chapters are different realizations
of the same mathematical object commonly known as a graph.

A.2.1 First definitions

Definition A.2.1. A graph G is assigned by giving a set V' of vertices (or nodes)
and a set F of edges (or links) between them. The mathematical symbol to indicate
a graph is then the following:

G=G(V,E) (A.43)

whereas a vertex is simply denoted by an index ¢ and the edge between two vertices
i,7 by the tuple (7, 7). Edges may have arrows, and in this case the graph is said
to be a directed graph. On other hand, if edges have not direction, GG is said to
be an undirected graph. One could assign to each edge a value: in this case, the
graph is said to be a weighted graph.
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From now on, unless we specify otherwise, the graphs that we will consider will
be undirected and unweighted graphs. The following definition is an useful notion
which allows to fully describe a graph with a particular matrix.

Definition A.2.2. Let G = G(V, E) be a graph and let us suppose that |V| =n
where n € N, so that V' can be seen as the discrete set: V' = {1,...,n}. The matrix
A= (aij)mev € Mn(IR) defined by

o _fuitageE (A4t
Y 0, otherwise '

is called the adjacency matriz of the graph G.

The diagonal elements of the adjacency matrix represent the presence of loops
which are edges between a vertex and it self. It is important to underline that an
adjacency matrix A is symmetric only in the case of undirected graph, because in
this case (i,7) € E is equivalent to (j,7) € E so that a;; = a;; forall i, j € V. The
natural generalization of adjancecy matrix for weighted graph is the following one.

Definition A.2.3. Let G = G(V, E) be a weighted graph, i.e. a graph in which
every edge (i,7) is associated to a quantity A;;. Then the weighted adjacency
matriz of G is the matrix A" = (af}); jev given by:

The same observation for loops and symmetry of the matrix holds. We now
provide some basic definitions for undirected and unweighted graph.

e The graph order is the number n of its nodes
e The graph size is the number m of its edges

In a graph of order n and with no loops the maximum number of edges is given

by Mpmaez = @ If we allow loops, we have to add a term n in the expression

of Mypae which then becomes @ If no edge is drawn, the graph is said to be
empty whereas if all edges are drawn it is said to be complete: those are the two

extreme cases for a graph.

e Given a vertex i its degree k; is the number of its edges. Any edge contributes
both to the degree of the vertex origin and to the degree of vertex destination,

so it holds:
> ki=2m (A.46)

where m = |F| is the size of the graph.
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The degree can be computed from the adjancency matrix as it follows:
j=1

By replacing a;; with ;% in the previous formula one gets the strenght of degree
in a weighted graph.

e In an undirected graph two vertices i,7 € V are connected if there exists a
path from i to j. A graph G = G(V, E) is said to be connected if every pairs
of nodes in V' are connected. Sometimes a graph isn’t connected but can be
splitted in a finite number of connected subgraphs which are usually called
connected component of G. A connected component C' = (V, E) which order
is near to the order of the starting graph G, i.e. |V| = O(|V|), is usually
called a giant component.

e If two nodes i,j of a graph G are connected, we can define the distance
between them d;; as the shortest number of edges one needs to travel to get
from i to j.

e The diameter D of a graph G is defined as the largest distance that one can
find between two nodes of the graph.

e The clustering coefficient C; of a vertex ¢ in an undirected graph G is given
by the average fraction of pairs of neighbours of ¢ that are also neighbours
of each other. C; can be explictly computed from the adjacency matrix A:

2
Ci=——— i Qi i (A.48)

e The clustering coefficient C' of a graph G is simply the average clustering
coefficient over the various vertices ¢ of the graph.

A.2.2 Erdos-Rényi model

Graph theory is a powerful instrument because graphs naturally appears in several
applications. However, it is often impossible to deduce from real-word phenomena
the specific structure of a graph. For this reason mathematicians have introduced
the so-called random graph models which are tools to generate graph randomly by
following certain schemes. The simplest random graph model is due to Paul Erdds
and Alfred Rényii and it follows a similar idea of the percolation.

Let us suppose to have a set V' of n vertices, which corresponds to @ possible
edges. Given a probability p € [0, 1] we establish that each of those potential edges
is drawn with probability p. Then the size of the graph G is a stochastic random
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variable, and we can only find an average size of the graph E(n) which is given by:

n(n —1)

E(n)=p 5 (A.49)
One could be interested in computing what is the probability P (G(n,m)) of gen-
erating a graph with exactly m edges. A straightforward computation gives the

following result
n(n—1)

P(G(n,m))=p"(1—p) = " (A.50)
The degree of each node is a random variable too, which has an average < k >
given by:

2F
< k >= (n)

=pn—1)~pn, n>>0 (A.51)

What is most interesting is the degree distribution. In order to compute it, we
need to avoid considering the correlation between the various degree in the graph,
so we assume that n is very large. To obtain a vertex of degree k£ we must have
exactly k links (whose probability is p) and, consequently, (n — 1 — k) unsuccesful
events (whose probability is 1 — p). Since it is not important what are the links,
we can choose them in (”_1) combinations, thus it follows that the probability pg

k
that a random chosen node has degree £ is given by:

I 1 n—1-k __ (n — 1)' n—1—
pr = ( i >pk(1 -t = m?k(l —p)n (A.52)

which is actually a distribution since, from the binomial theorem we have

n—1

Spi=@+1-p)t=1 (A.53)

=1

This discrete distribution is called a binomial distribution and it is usually ap-
proximated by the continuous Poisson distribution in the two limits n — oo and
p = p(n) — 0 so that np is kept constant:

n! e np)ke=rm
I (A54)

Pr=n =k k!

The mean value < k£ > of the above distribution is given by np so we can write

<k >I<: €—<k>
PE= (A.55)
It is easy to observe that, depending on p, the configuration of an Erdés-Renyi
graph can be very different. For instance, if p = 0, the graph is almost surely made



A.2. GRAPH THEORY 103

of n isolated nodes whereas if p = 1 the graph is almost surely a complete graph.
The most interesting thing is that, in the case in which n — oo and p = p(n) — 0,
there are threshold quantities for p(n) that determine phase transitions on the
configuration of the graph. Let us discuss it into more detail.

Definition A.2.4. Let G = G(V, E) be a graph of order n and P any graph
property. P is said to be a monotone property if the fact that G satisfies P implies
that every GG of order n which has G as subgraph satisfies P too.

From now on we denote G = G(n,p) the Erdés-Renyi graph with n nodes and
probability of drawing an edge equal to p.

Definition A.2.5. Let G = G(n,p) and P be respectively an Erdés-Renyi graph
with p = p(n) and a monotone property. A treshold function for P is a function
t: N — R such that

(A.56)

as n — Q.

The following theorem provides three threshold functions for key properties of
a random graph G = G(n,p).

Theorem A.2.6. Let G = G(n,p) and let us define Py, P, and Ps respectively
as the property for G of having at least one edge, the property of having a giant
component and the property of being connected. Then each property P; has t; as
treshold function, where

n-?, i=
tl(n) = n_l, 1 =2 (A.57)
log(n) 3

A.2.3 Barabasi-Albert model

Many real networks presents the characteristic of having few nodes with a number
of links that greatly exceeds the average whereas the remaining ones are slightly
connected. The Barabasi-Albert graph G = G(n,m) is specifically suited to re-
produce this property and it is generated by following three steps:

1. Initialization: The graph G is initialized by simply taking a subset of
ng > m nodes of G and keeping them isolated.

2. Growth: At each timestep a new node is added, and it is connected ran-
domly to m nodes already in the network.
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3. Preferential attachment: The probability that a link of the new node
connects to node ¢ depends on the degree of the node ¢, namely k;:

ki
p(k;) := p({A link of the new node connects to node i}) = (A.58)

Ej kj

The already mentioned hubs are the result of a rich-gets-richer phenomenon: due to
preferential attachment new nodes are more likely to connect to the more connected
nodes than to the smaller nodes. Hence, the larger nodes will acquire links at the
expense of the smaller ones, eventually becoming hubs. Since we started with ng
nodes, and at each time step we added only one vertex linking it with mg other
vertices, after t time steps we have the following expression for the order and the
size of the graph:

n = ng+t (A.59)
ok
m = E% = mot (A.60)

We now present the original derivation of the fact that those rules produce nat-
urally a scale-free network, i.e. a network in which the degree distribution is
power-law distributed: pr o< £77. Let us assume that the deegres k; are continu-
ous functions of the time and that new vertices enter the network at constant rate.
Since the change of connectivity in one time step is equal to mg, the variation in
time of the i—th degree is given by:

ok;
ot

= mop(k;) = (A.61)

ki
2t
whih together with the initial condition k(¢;) = m implies:

ka(t) = mo (if (A.62)

Directly from Eq. (A.62) one deduces that the probability P (k; < k) that a vertex
has degree lower than a fixed value k satisfies

2
myt
Since new vertices enter the network at constant rate, the distribution of the times
t is uniform so the density f; = const and the constant is determined by the
normalization:

/0 i =1 (A.64)
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1

which implies f, = 1 = Thus we can compute:

no+t"°
m2t m2t m2t 1
Plt,>—>|=1-P(t; <—2)=1- -2 A.65
<>k2) (<k2) k2 g+t (A.65)
From which P ( L o2y 1
i t _
(hi > k) _ 2mgt 1 o (A.66)

i.e. the degree distribution is a power law with exponent v = 3.

A.2.4 Configuration model

In Sec. 3.1 we have used another graph model in which the degree of each vertex
is fixed beforehand, i.e. the degrees’ vector ko= (k1, ..., ky) is a constant vector
belonging to R". This model is usually called configuration model and aim of this
section is just to introduce this kind of model, since several computations have
already been made in Sec. 3.1.

Despite of its simplicity, the configuration model is more flexible compared to
many random models such the Erdés-Renyi one. For instance, a particularly un-
realistic feature of the random graph G = G(n,p) is that its degree distribution
doesn’t have the heavy-tail that many real networks exhibit, and this problem can
be definitely avoided by generating a graph with pre-determined degrees. To be
more precise, one could think to configuration models as proper generalizations of
Erdds-Renyi graphs, since one can create the vector k by taking its entries k; from
a Poisson distribution.

The fact that the degrees are pre-determined doesn’t implies that a graph gen-
erated with a configuration model is a deterministic model: given a set of nodes
V ={1,...,n} and a degrees’ vector k, we only know that a vertex i has k; neigh-
bours, but those neighbours are chosen randomly respecting other degrees k;. From
an algorithmic point of view, the generation of a configuration graph proceeds as
it follows:

1. Initialization The n nodes are drawn and, for all i, k; half-edges (stubs)
are attached to vertex 1.

2. Drawing of the links Iteratively the stubs of each node are linked to other
stubs in order to create usual edges. The procedure finish when there are no
more stubs.

Specific properties of configuration models can be investigated with the generating
functions, as we did in Sec. 3.1, however we here present some basic computations
on such a model.
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Let 7,7 € V be two vertex and let k;, k; denote their degrees. We are interested
in compute the probability p;; that the two vertices are connected. A first easy
observation is that p;; = 0 whenever k;k; = 0, so we assume k;k; > 0. Now, if we
start from one of the k; stubs of i, we have 2m — 1 = Z?:l k; — 1 remaining hubs

in which we can arrive, and exactly k; of them are attached to the vertex j. So

kiky  kik;

“om—-1 2m

(A.67)

Dij

under the assumption that m >> 0. It follows that the higher the degrees are of
i and j, the greater is the probability that they connect under the configuration
model. Unless specified otherwise, configuration models allows both multiedges
and loops, which probabilities can be explicitely computed. For instance, given an
edge (i, j) the probability that a second edge between those two nodes appears is
given by:

(ki = 1)(k; — 1)

2m

so the probability that both the first and the second edge between i, j appears is
given by

(A.68)

Rk (ki = 1)(kj — 1) _ kik;(ki — 1)(k; — 1) (A.69)

2m 2m 4m?
The expected value of multi-edges in the entire network can then be computed:

kik;(ki — 1)(k; — 1) 11 = =
D g ! = 513 > kilki = 1)) ki — 1)
i#j i=1 j=1
_ 1 - 2 . 2
 2<k>2n? (il ki kl) (; kj kﬂ)

(<k2>—<k>)

2 < k >2
1/<k2>— <k>\2
- 5( <k> ) (A.70)

where we used the fact that 2m =< k > n and that < k™ >= 13" k™ With
same arguments one can compute also the probability of self loops:

Dii = Rk — 1) (A.71)

4m
and the expected number of self loops which turns to be

<k’>—-—<k>

A.T72
2<k> ( )
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A.3 Some results from Linear Algebra

A.3.1 Gershgorin’s Theorem
Let A = (a;;) € M,(C) a C—valued n-square matrix.

Definition A.3.1. Given an index ¢, the following region of the complex plane is
called the i- Gershgorin’s circle

Ci(A) ={z€C:|z—ayl < R;} (A.73)

where the radius R; is given by

i
The importance of the Gershgorin’s circles besides in the following theorem,
which is commonly known as Gershgorin’s Theorem.

Theorem A.3.2. Let A € M,(C) be a C—wvalued n-square matriz, and let us
denote with o(A) the spectrum of A, i.e. the set of eigenvalues of A. Then

1. For every X € o(A) there exists an index i such that A\ € C;(A)

2. If there exist an integer k < n and k Gershgorin’s circles Cy, (A), ..., C;, (A)
such that their union D is a connected region disjoint from the union of the
remaining n — k Gershgorin’s circles, then D contains exactly k elements of

o(A) (with their algebric multiplicity).

The importance of this theorem is that it gives bounds for the eigenvalues of
a matrix, and those bounds turn have several consequences. Since we have used
it in Sec. 2.2, we now present one of those consequences, which is the fact that
particular species of matrix are always non singular. We need three preliminar
definitions.

Definition A.3.3. A matrix A € M, (C) is said to be diagonally dominant if
jail > layl, Vi (A.75)
J#i
If the same property holds when replacing > with the stric inequality >, then A

is said to be a strictly diagonally dominant matrix.

Definition A.3.4. A matrix A € M, (C) is said to be reducible when there exists
a permutation matrix P such that the matrix PT AP is block upper triangular. If
such a matrix doesn’t exist, A is said to be irreducible.
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Definition A.3.5. A matrix A € M,,(C) is said to be irreducibly diagonally dom-
wnant if it is irreducible, diagonally dominant and there is at least one index ¢ such
that

Jaz| > lag] (A.76)

JFi

The above mentioned consequence of the Gershgorin’s Theorem is the following
result.

Theorem A.3.6. If A € M,(C) is either a strictly diagonally dominant matriz
or an irreducbly diagonally dominant matriz, then A is non-singular.

A.3.2 Tridiagonal systems

Let us end this section by presenting the so-called Thomas Algorithm which is an
efficient way of solving particular matrix systems which are the tridiagonal system.

Definition A.3.7. Let A € M, (C). A is tridiagonal if the only non-zero elements
are on the main diagonal, the first diagonal below this, and the first diagonal above
the main diagonal only, i.e.

a; =0 Vi,j st.i—j5¢{-1,0,1} (A.77)
Definition A.3.8. A tridiagonal system is given by the equation
Az =1 (A.78)

where A € M, (C) is a tridiagonal matrix, z € C" is a column vector which entries
are unknown and b € C" is another column vector.

The Thomas algorithm is based on LU decomposition, in which the matrix
system is rewritten as LUx = b where L,U € M, (C) are respectively a lower
triangular and an upper triangular matrix. The idea is to set Uz = p, then solving
first Lp = b for p and then Ux = p for x. The key instrument in order to do that
is the Gaussian elimination. We present the whole procedure step by step.

Thomas Algorithm We will denote r; the i—th row of the initial matrix A,
and we will indicate operations on the rows as usual algebraic operations. Let us
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write the system A.78 in an explicit form:

bl C1 0 0 0 0 0 I T1
(05} bg (&) 0 0 0 0 i) T2
0 as b3 C3 0 0 0 I3 T3
0 0 ag by 4 0 0 T4 Ty
0 0 o --- Ayp—2 bn,Q Cpn—9 0 Tp—2 T'n—2
0O 0 0 -+ 0 apng b1 cno1| |zpo Th_1
o o o0 --- 0 0 an, b, Ty T

Now, we first divide r; by by, i.e. 1 < % so that the first equation of the system
becomes:

T1+7%2 = P (A.79)
where v, := % and p; = % We now substitute ro with a linear combination of
itself and (the new) ry:

9 + QT

Py —— 21 (A.80)

by — asm

so that the second equation becomes:

To + Y2X3 = P2 (A81)
where v, = b2fjﬂl and py = %. We adopt the same procedure for the third
row: N

rg ¢ —2 193 (A.82)

bs — azv2
which allows us to rewrite the third equation as
T3 + Y3L4 = P3 (A83)

— c3 — r3—asp2
where 73 = p=gs; and p3 = 5=,

We can then reiterate this procedure again and again until we have reduced the
initial system in the following, equivalent, system

[1 » 0 0 071 o ] i o T

0 1 ~» 0 0 Ty P2

0O 0 1 ~ --- 0 T

A T I I (A.84)
0 0 1 Ypo1]| [Tn— Pn—1

10 0 0 1 ][ %n | | Pn |
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where

- no—
;=0 ’ = A.85
7 { o« ;-9 .. N F {# i=2 .. N (4.85)

bi—a;ivi-1’ bi—a;vi-1’

It is now elementary found with a backward recursion the explicit solution of =z,
which is given by:

pi — YiPir1, t=n—1n—2,..1



Appendix B

Python Code

#Import all the packages and the functions that we need
import multiprocessing

from multiprocessing import Pool
import numpy as np

import scipy

from scipy.stats import truncnorm
import matplotlib.pyplot as plt
import random

import networkx as nx

from nxviz import CircosPlot
import math

import statistics as st

#Generate the first time of an HPP of intensity _lambda
def Activation(_lambda) :

n=random.random()

event_time=-math.log(1.0-n) / _lambda

return event_time

#Given a dictionary and a value, return the key correspondent to that value
def get_key(dict,val):
for key, value in dict.items():
if val == value:
return key

#Given the states and the activation/deactivation’ rates of the edges,
compute the parameter of the competing process. If either the states or the
rates of edges aren’t given, inizialize them as all deactivated edges and
all equal to $1$ rates.
def parcompetition(G,edstates,edrates,mu):
if edstates=={}
for ed in G.edgesQ):
edstates[ed]=-

111
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if edrates=={}:
for ed in G.edges():
edrates[arco]=1
1=0
for ed in G.edges():
1=1+edrates[ed] *((1-edstates[ed])/2+ +mux*((edstates[ed]+1)/2)
return [1,edstates,edrates]

#Establish which activation/deactivation has caused the first ring
def firstevent(G,edstates,edrates,mu):

l=parcompetition(G,edstates,edrates,mu) [0]

effrates={}

effprob=[]

j=0

r=random.random()

for ed in G.edges():

if edstates[ed]==1:
effrates[ed]=[j,mu/1]

else:
effrates[ed]=[j,edrates[arco]/1]
j=ij+1
effprob=list(effrates.values())
prob=[]

for el in effprob:

prob.append(el[1])
=0
while r>0:

r=r-prob[j]

j=j+1
el=[j-1,prob[j-1]1]
edstates[get_key(effrates,el)]=edstates[get_key(effrates,el)]
return get_key(effrates,el)

#Given a node n, the states of the nodes and the activated edges,
return the list of n’s infected contacts
def infneigh(G,nodestates,acted,node):
listin=[]
for n in G.neighbors(node):
if nodestates[n]==1 and ((n,node) in acted or (node,n) in acted):
listin.append(n)
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else:
pass
return listin

#Given the states of the nodes, the list of activated edges,
the transmissibility and the recovery rate of the virus,
the current time and the time-interval from the last event,
establish which events happen and keep track of those events
def modnodestates(G,nodestates,nodestory,acted,Dt,alpha,beta,t):
for n in G.nodes():
if nodestates[n]==1:
r=random.random()
if r<Dtxbeta:
nodestates[n]=0
nodestory[n] .extend([’Recovered’,t])
else:
pass
elif nodestates[n]==-1:
1=infneigh(G,nodestates,acted,n)
m=len(1l)
r=random.random()
if r<alpha*mx*Dt:
nodestates[n]=1
i=random.choice (1)
nodestory[n] .extend([’Infected’,t])
nodestory[i] .extend([’Infect’,t])
else:
pass
return
#Compute the generation time from the nodes’ story
def compgentime(nodestory):
listgtimes=[]
for n in nodestory.keys():
1=len(nodestory[n])
if 1 <=2:
pass
else:
gentimes=[]
for t in range(3,1+1,2):
gentimes.append(nodestory[n] [t]-nodestory[n] [1])
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listgtimes.append(st.mean(gentimes))
if listgtimes==[]:
pass
else:
print(st.mean(listgtimes))
return(st.mean(listgtimes))

#Compute the number of infectious caused by the first infector i
def comprn(nodestory,i):

n=((len(nodestory.get(i)))/2)-1

print(n)

return n

#Given all the parameters, simulate an epidemic starting from a single
infected and until the end of the spreading
def epidemic(G,pos,i0,edrates,mu,alpha,beta):
nodestates=
edstates=
t=0
intert=0
acted=[]
nodestory=
n=len(G.nodes())
I=[1]
T=[0]
S=[n-1]
s=99
i=1
R=[0]
l=parcompetition(G,estates,edrates,mu) [0]
edstates=parocompetition(G,edstates,edrates,mu) [1]
edrates=parcompetition(G,edstates,edrates,mu) [2]
for node in G.nodes:
if node==i0:
nodestates [node]=1
nodestory[node]=[’Infected’,t]
else:
nodestates [node]=-1
nodestory [node]=[]
while s*i>0:
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modnodstates(G,nodstates,nodestory,edacted,intert,alpha,beta,t)
intert=Activation(l)
t=t+intert
edactive=firstevent (G, edstates,edrates,mu)
if edactive in acted:
acted.remove (edactive)
else:
acted.append(edactive)
l1=parcompetition(G,edstates,edrates,mu) [0]
i=list (nodestates.values()).count (1)
s=list(nodestates.values()).count(-1)
I.append(i)
S.append(s)
T.append(t)
R.append(n-s-i)
GT=compgentime (nodestory)
RN=comprn(nodestory,i0)
plt.plot(T, S, color=’r’, label=’S’)
plt.plot(T, I, color=’g’, label=’I’)
plt.plot(T, R,color=’"b’,label="R’)
plt.xlabel("Time in unit time")
plt.ylabel ("Number of individual in each compartment")
plt.title("Susceptibles,Infectious and Recovered")
plt.legend()
plt.grid()
plt.show()

return [nodestates,edstates,acted,t, GT, RN, s, nodestory]

#Choose which graph we will use
G=nx.erdos_renyi(100,0.14)
#G=nx.barabasi_albert(100,7)

#Collect all in one function
def main(Q):
i0=random.randint (0, 99)
edrates={} #Here we establish which rates we want
mu=24
alpha=1
beta=0.06
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h=epidemic(G,pos,i0,edrates,mu,alpha,beta)
t=h[3]

GT=h[4]

RN=h[5]

s=h[6]

return [t,GT,RN,s]

#In the following we present the code which allows to compute the
(mean) RN(t), GT(t) to vary of t from a list of nodes’ stories liststories
liststories=[{},...,{},...]

#Compute RN averaging only in a specified list of nodes
def comprrnlist(list,nodestory):
r=[]
for i in list:
if len(nodestory[i])<2:
pass
else:
h=(len(nodestory[i])/2)-1
r.append (h)
return st.mean(r)

#Compute GT only in (a neighbour of) a specified day d
def gtime(d,nodestory):
excl=[]
dict={}
if d==0:
output=compgentime (nodestory)
else:
for i in nodestory.keys():
if len(nodestory[i])<4 or d-7<nodestoryl[i] [1]<d+7:
excl.append (i)
list=list(set(list(nodestory.keys()))-set(excl))
for el in list:
dict[el]l=nodestory[ell
output=compgentime (nodestory)
return output



#Consider together all the stories and compute the average values

of GT(t)’s to varying of tpop=[]
for nodestory in liststories:
11=[]
a={}
for i in range (100):
if len(nodestory[i])<2:
pass
else:
11.append(nodestory[i] [1])
b=int (max(11))
for i in range(b+1):
d[i]=gtime(i,nodestory)
pop - append (d)

super_dict=
listvalues=[]
for 4 in pop:
listvalues.extend(list(d.keys()))
reallistvalues=list(set(listvalues))
for i in reallistvalues:
gt=[]
for d in pop:
if 1 in d.keysQ:
gt .append(d[i])
else:
pass
for el in gt:
if el==None:
gt.remove(el)
if gt==[]:
pass
else:
super_dict[i]=st.mean(gt)
print (list(super_dict.keys()))
print (list(super_dict.values()))

117
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#Consider together all the stories and compute the average values
of RT(t)’s to varying of t
pop=[]
for nodestory in listadizionariV:
11=(]
a=[]
for i in range(100):
if len(nodestory[i])<2:
pass
else:
a.append(nodestory[i] [1])
11.append (i)
b=int (max(a))
d={}
for num in range(b+1):
s=[]
for i in 11:
if num<=nodestory[i] [1] and nodestory[i] [1]<num+1:
s.append (i)

else:
pass
d [num] =s
p=
for el in d.keys():
if dlell==1[]:
pass
else:

plell=comprrnlist(d[el],dict)
pop - append (p)
listvalues=[]
super_dict=
for d in pop:
listvalues.extend(list(d.keys()))
reallistvalues=list(set(listvalues))
for i in reallistvalues:
ri=[]
for d in pop:
if 1 in d.keysQ:
ri.append(d[il])
else:
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pass
super_dict[i]=st.mean(ri)

print (list(super_dict.keys()))

print (list(super_dict.values()))
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