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1
I N T R O D U C T I O N

One of the open problems in particle physics is to determine the mass
ordering of the three fundamental neutrinos [3, 12]. Several experi-
ments in the years opened the possibility to do that by measuring
flavor oscillation with a large reactor neutrino experiment. JUNO [2,
6], currently under construction in South of China, is a detector built
for this main reason, is planned to be ready by 2020.

In the detector neutrinos are detected by the Inverse Beta Decay
(IBD) and photons are collected by thousands of Photomultiplier Tubes
(PMTs) [2, 6]. The energy resolution expected for JUNO, in order to
fullfill his main objective, is expected to be the highest ever achieved
in reactor neutrino experiments. the optimization of the problem is
non trivial and several kind of approaches need to be evaluated, even
in this phase of the experiment, with simulated data.

Supervised learning algorithms [10] provide several ways to tackle
the energy reconstruction challenge in an automated manner. Usu-
ally very little preprocessing of the data needed to feed the model
is required in order to get accurate results whereas optimizing the
problem in the traditional way could be very challenging (i.e. finding
the right set of hyperparameters in a multi-dimensional space).

Boosted Decision Trees (BDT) [5] are a very promising algorithm in
supervised learning, they group together several weaker predictors
(single regression trees) into stronger ones in a greedy manner and can
be trained very effectively thanks to a smart approach in optimizating
the objective function taking also into account the regularization term.

In this work will began explaining the motivations behind the ex-
periment and talk about the theoretical model used by the libraries.A
simple analysis on Monte Carlo data is then performed with the Cat-
boost [14] BDT library along with the Python scientific suite, several
models are built with different sets of features from the events and per-
formance at different energies is evaluated. After that we tackle other
problems such as building a classifier to reject outliers, seeing how
many training data are really needed and the effect of real phenomena
such as dark noise on the model. Possibilities of vertex reconstruction
are also explored at the end. Then, finally, conclusions are drawn.
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2
T H E J U N O E X P E R I M E N T

The Jiangmen Underground Neutrino Observatory (JUNO) [2, 6] is
an international cooperation experiment which is designed to study
neutrino physics. Its main purpose is to determine the mass hierar-
chy, which is a fundamental property of neutrinos and still an open
question. The focus of this section is to develop some background on
the scientific motivation behind the search for better reconstruction
methods and the JUNO experiment in general.

2.1 neutrino physics , and motivation

We know that neutrinos exist in three flavor eigenstates [12]

|νe〉 ,
∣∣νµ

〉
, |ντ〉

and three mass eigenstates of masses m1, m2, m3:

|ν1〉 , |ν2〉 , |ν3〉 .

They are related by the Maki-Nakagawa-Sakata-Pontecorvo (MNSP)
matrixνe

νµ

ντ

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


ν1

ν2

ν3


where the U matrix that can be expressed as follows:

U =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 Pν

where cij = cos
(
θij
)

and sij = sin
(
θij
)

are defined, and Pν = Diag{eiρ, eiσ, 1}
is the Majorana phase matrix.

Flavor oscillation can be expressed with the transition probabilities

Pα→β =
∣∣ 〈νβ|να(t)〉

∣∣2 =

∣∣∣∣∣∑i
U∗αiUβie−im2

i L/2E

∣∣∣∣∣
2

5



6 the juno experiment

For example the survival probability of ν̄e can be expressed as

P(ν̄e → ν̄e) = 1− sin2 2θ12 cos4 θ13 sin2 ∆m2
21L

4E

− sin2 2θ12 cos4 θ13 sin2 ∆m2
31L

4E

− sin2 2θ13 cos4 θ12 sin2 ∆m2
32L

4E

where oscillations are driven by the mixing factors θ12, θ13 and the
mass works as frequencies: ∆m2

21 = m2
2 −m2

1, ∆m2
31 ≈ ∆m2

32 = m2
3 −m2

2.
Measuring neutrino oscillation is crucial to shed light on the Neutrino

Mass Ordering (NMO) problem (Fig. 2.1), i.e. we know that m2 > m1

and ∆m2
31 � ∆m2

21 from other evidences, but we want to know if
m3 > m1,2 or m1,2 > m3.

Figure 2.1: The Neutrino Mass Ordering (NMO) problem

The discovery of a non null θ13 mixing factor by Daya Bay [1]
opened the possibility to measure MH by a large reactor neutrino
experiment, so Jiangmen Underground Neutrino Observatory (JUNO)
was proposed in 2008. Later approved in 2013, it is under design and
construction, with the primary goal to determine NMO. JUNO will
also measure other mixing parameters with world-leading precision,
and its superior detector properties also provide a great opportunity
to study neutrinos from other sources such as Supernova, the Earth’s
interior and the Sun, sterile neutrinos, dark matter and other exotic
searches.

2.2 juno structure and requirements

The JUNO experiment will be constructed in Jiangmen, China located
700 meters underground and about 53 km away from two nuclear
power plant. At its core the main detector is a 35.4 m a spherical ball
of acrylic filled with 20 000 tons of liquid scintillator immersed in pure
water. The primary component installed around the detector is the
Photomultiplier Tube (PMT). About 18 000 20-inch PMTs are installed
in the pool around the detector along with smaller ones (∼ 36 000) to
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increase effective coverage of the detector and cross-calibrate the large
ones. The structure is illustrated in Fig. 2.2.

Figure 2.2: JUNO detector structure

Antineutrinos are produced by
2 nuclear power plants (10 total
cores) located at the same dis-
tance from the detector in or-
der to maximize the total yield,
the energy peaks at around 4

MeV, with most of them at less
of 10 Mev. The main channel
for detecting antineutrinos is the
Invese Beta Decay (IBD) νe + p→
e+ + n, this is the reaction with
the largest cross section in a few

MeV range and with far the largest power to reject backgrounds. The
positron carries almost all the energy and forms the prompt signal,
the positron travels only a few centimeters, which can be ignored
compared to the size of the detector. Therefore, the positron track in
the liquid scintillator can be regarded as point-like light source at the
IBD vertex position.

In order to address its main purpose JUNO is expected to have over
6 years of total run time (∼ 105 collected events). The energy resolution

expected can be parametrized as σ
E =

√
A2

E + B2 + C2

E2 , where A, the
stochastic term, is determined by the photo electrons yield, B is a
constant term and C is a noise term, mainly given by PMT dark noise.
Taken into account all of these effects the projected energy resolution
of the JUNO detector is 3.0%/

√
E(MeV).

Figure 2.3: Expected reactor ν̄e spectrum, for no oscillation and for different
mass orders. Taken from [6]

The expected reactor νe spectrum at JUNO for different NMOs is
shown in Fig. 2.3. An excellent energy resolution is needed in order to
discriminate between the two hypothesis. The reconstruction problem
therefore needs to be addressed also with different techniques such as
neural networks and deep learning in order to take full advantage of
the experimental resolution of the detector.
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M A C H I N E L E A R N I N G A N D B O O S T E D D E C I S I O N
T R E E S

Boosted Decision Trees (BDT) [5] are used for supervised learning
problems, where we use the training data (with multiple features)
xi, for example the data for the event from the detector, to predict a
target variable yi, in our case the energy Erec of the event. We will
review some basic concept in supervised learning and then talk about
boosted trees and the Catboost library [14].

3.1 supervised learning introduction

In supervised learning the mathematical structure by which the pre-
dictions yi are made from the inputs xi is usually called the model. A
common example is a linear model, where the prediction is given as
y?i = ∑j θjxij, a linear combination of weighted input values.

The parameters are the unknown part that we need to learn from
data. In linear regression problems, the parameters are the coefficients
θj.

The task of training the model amounts to finding the best parame-
ters θj that fit better the training data xi and labels yi. In order to train
the model, we also need to define the objective function to measure how
well the model fits the training data and to provide a testing dataset
to see if it also generalize well.

A salient characteristic of objective functions is that they consist of
two parts: training loss and regularization term,

Obj(θ) = L(θ) + Ω(θ).

The training loss measures how predictive our model is with respect to
the training data. For example we will use for L the root mean squared
error (RMSE) function

L(θ) =
√

∑
i
(yi − y?i )

2.

The regularization term controls the complexity of the model and helps
preventing overfitting (we will go into details later). One of the prin-
ciples of machine learning is that a model should be as simple as
possible in order to performe well with unseen input data in a tradeoff
known as the bias-variance tradeoff.

9



10 machine learning and boosted decision trees

3.1.1 Decision tree ensemble

The model that we will take into consideration is built on decision trees
ensemble. A decision (regression) tree is shown in Fig. 3.1, input data
are split by feature and at the end of each leaf a real score is assigned.

Figure 3.1: A simple tree model. Taken from [5].

A decision tree ensemble takes the predictions from several trees to
make usually stronger predictions (Fig. 3.2).

Figure 3.2: A tree ensemble example. Taken from [5].

The predictions from the two trees in the example are added to-
gether. Predicted values can be written as

y?i =
K

∑
k=1

fk(xi), fk ∈ F

where K is the number of trees and f a function in the functional space
F of all the possible trees, and the objective function to optimize in
training is

Obj(θ) =
n

∑
i=1

L(yi, y?i ) +
K

∑
k=1

Ω( fk).

In order to optimize the objective function it is unfeasible to try to
optimize every tree at once, instead an additive strategy is used in
which at every step a new tree is bult and added to the model. So that
predicted values y?(t)i at every step t became
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y?(0)i = 0

y?(1)i = f1(xi) = y?(0)i + f1(xi)

. . .

y?(t)i =
t

∑
k=1

fk(xi) = y?(t−1)
i + ft(xi)

At each step a the new tree added is the one that optimizes the
objective function

Obj(t)(θ) =

√
n

∑
i=1

(yi − (y?(t−i)
i + ft(xi))2 +

t

∑
i=1

Ω( fi)

where we added the RMSE loss function defined before. Usually we
take a taylor expansion of our loss function

Obj(t)(θ) =
n

∑
i=1

[l(yi, y?(t−i)
i )+ gi ft(xi)+

1
2

hi f 2
t (xi)]+Ω( ft)+ constant

with gi and hi defined as

gi = ∂
y?(t−1)

i
l(yi, y?(t−i)

i )

hi = ∂2
y?(t−1)

i
l(yi, y?(t−i)

i ),

the derivatives of the loss function with respect to predicted values
calculated on the previous iteration. So after removing all of the
constant terms the function to minimize at every step for the new tree
become

n

∑
i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] + Ω( ft).

The regularization term Ω( f ) is a function that take care of the
complexity of the tree in our case. Before, we redefine f (x) as

ft(x) = wq(x), w ∈ RD, q : Rd → {1, 2, . . . , T}
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where w is the vector of scores on leaves, q a function assigning each
data point to each leaf and T the number of leaves. The complexity is
then definited as

Ω( f ) = γT +
1
2

λ
T

∑
j=1

w2
j

3.1.2 Structure score

After re-formulating the tree model, we can write the objective value
with the t-th tree as:

Obj(t) ≈
n

∑
i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] + γT +

1
2

λ
T

∑
j=1

w2
j

=
T

∑
j=1

[(∑
i∈Ij

gi)wj +
1
2
(∑

i∈Ij

hi + λ)w2
j ] + γT

=
T

∑
j=1

[(Gjwj +
1
2
(Hj + λ)w2

j ] + γT

where Ij = {i|q(xi) = j} is the set of indices of data point assigned
to the j-th leaf. The form of the last expression is quadratic in wj and
the best score wj possible for each tree structure q(x) and the best
objective reduction possible are, respectively:

w∗j = −
Gj

Hj + λ

obj∗ = −1
2

T

∑
j=1

G2
j

Hj + λ
+ γT

The last equation measures how good a tree structure is. Basically
for every instance the statistics gi and hi are pushed to the leaves
they belong to and added together. The latest score, which takes into
account also model complexity is then assigned.

3.1.3 Tree structure learning

Ideally, we should enumerate all the possible tree structures and pick
the one who scores better. In pratice this approch is intractable, one
level of the tree is optimized at a time instead. A leaf is split into
two, usually performing a scan from left to right on the sorted data
assigned to that leaf, and gain for the loss function is calculated as

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (G2
L + GR)

2

HL + HR + λ

]
− γ
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which is the difference between the score of the new right/left leaves
and the old leaf. The best split is the one who maximise gain. Note
also that if the gain is negative because of γ it is better not to add that
leaf (same as pruning in other tree implementation).

3.2 the catboost library

CatBoost [14] is the name of an implementation of boosted decision
trees algorithm by Yandex. It delivers state-of-art performance com-
pared to other solutions and its main focuses are in a different applica-
tion of BDTs in order to fight the prediction shift found in other solutions
for certain kind of distributions and in the support for categorical fea-
tures with a new faster approch [9]. Thanks to the optimization of the
library and to the approach in general there’s also no need to run the
software on expensive hardware or for a long time, a session of train-
ing with the dataset taken into consideration (5/6 features, 1 million
entries) takes only about 2/3 minutes on a standard laptop, this is a
great improvement compared to other machine learning approaches
such as neural networks.

The Catboost python library will be used in this work along with
other standard scientific libraries (numpy1, matplotlib2, scikit-Learn3, etc
. . . ), the main focus will be on the use of the class CatboostRegressor
for our reconstruction purpose, although we will build also a classifier
based on the class CatboostClassifier. The model comes with a set of
tunable parameters to change the tree structure and the training speed,
the set of the most notable ones are:

• iterations : The maximum number of trees that can be built
(default value is 1000), the final number could be less if training
is interrupted i.e. for overfitting

• learning_rate : Used to reduce the gradient step in the process
(default value automatically set based on the other parameters
and dataset properties).

• loss_function : the metric used in training4, Catboost also sup-
port custom metrics.

• depth : The maximum detph of the trees, maximum supported
number is 16 (default value is 6)

• l2_leaf_reg : The regularization coefficent for the quadratic
term, i.e. λ in the former introduction to BDTs (default value is
3).

1 http://www.numpy.org
2 https://matplotlib.org
3 https://sklearn.org
4 For a list of provided metrics see https://tech.yandex.com/catboost/doc/dg/
concepts/loss-functions-docpage

http://www.numpy.org
https://matplotlib.org
https://sklearn.org
https://tech.yandex.com/catboost/doc/dg/concepts/loss-functions-docpage
https://tech.yandex.com/catboost/doc/dg/concepts/loss-functions-docpage
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For overfitting detection, a training dataset will be splitted and
a small portion will be used for testing. Loss is calculated at every
iteration also on the testing dataset and if no improvement is done
after some step (i.e. 50) training is ended with the final model shrinked
to the one with the better score on testing data. To do this we use the
parameters od_type = "Iter" , od_wait = 50 in the model. This also
saves some time if no improvement could be made.
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4
B O O S T E D D E C I S I O N T R E E S F O R E N E R G Y
R E C O N S T R U C T I O N

BDTs are typically trained to address classification and regression prob-
lems. For example in our case we are trying to estimate Erec =

f (p1, p2, . . . ) as a function of input parameters pi, is therefore the
estimation of a continuous variable, a regression problem.

The goal of our model will be to reconstruct f given:

• The most informative set of input parameters.

• A good set of hyperparameters to tune the model of the CatBoost
library for the best performance.

• A training dataset with both input parameters and correspond-
ing output true values, which should also be large enough.

Monte Carlo samples are very flexible and give the opportunity to
produce a lot of training data therefore they are usually preferred
initially, whereas real calibration data, produced by positioning ra-
dioactive sources at fixed locations give limited statistics and should
really be used afterwards. The output from the simulation libraries,
thousands of waveforms from the PMTs, should be processed to pro-
duce a training dataset with only a small set of feature to feed the
model. An existing dataset has been provided [7] to address this prob-
lem, containing only features comprehensive of an event as long as the
labels associated with it (true energy Etrue, and position coordinates).

4.1 data structure and features

The training dataset consists of one milion Monte Carlo events stored
in a ROOT [4] tree with the following parameters:

energy (E0) True total energy of the positron (E0 = Ekin + mec2),
with flat energy distribution in the range [0.511 : 10.511] MeV. The
events are simulated with given kinetic energy between 0 and 10 MeV
(continuous).

position (x, y, z, r) True vertex of the event: x, y, z and radial
component.

total number of photo-electron (totalPE_lpmt,totalPE_spmt)
Total number of photo-electrons collected by large and small PMTs.

17
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(a) without FV cut (b) with FV cut

Figure 4.1: Total energy vs. total number of photo-electrons collected by
larger PMTs, in (b) a lot of outliners are removed simply removing
events with r > 17.2 m

It provides a good estimate of the total energy of the event (Fig. 4.1),
although some spatial dependence prevents good results without other
information.

hit time ( ht_1, ht_mean, ht_rms ) Hit time features: first hit time,
mean and RMS of the total hit time distributions. In order to get
comparable informations between the events we need to feed to the
model ht_mean-ht_1.

center of hits (coh_x, coh_y, coh_z) We can define the quantity

CoH =
1

RCDNPMT

NPMT

∑
i

Pin
p.e.
i

where RCD is the radius of the central detector, Pi the position of the
i-th PMT, np.e.

i the number of photo-electrons collected. We can use
as features the three coordinates or the radial one. It provides a good
estimate of the event position (Fig. 4.2). The dependence is roughly
linear from the center to about 15.5 meters then a knee is clearly
visible. This effect is caused mainly by total reflection of photons near
the edge between the acrylic sphere, filled with scintillator, and the
surrounding water in which the PMTs are located.

4.2 analysis

After splitting the whole dataset in 900k events for training and 100k
events for testing, we use a CatboostRegressor model with the follow-
ing set of initial parameters:

• learning_rate = 0.1

• iterations = 1000
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Figure 4.2: Radial component of the center of Hits vs. radius of the event

• depth = 10

• loss_function = ’RMSE’

• L2_leaf_reg = 14

The early stopping feature of the Catboost library also prevents
overfitting by halting the training and shrinking the model if no
improvement for the loss function is made in the testing datasets after
50 iteration. As input we take at first only the total number of photo-
electrons collected by PMTs and then we add the three component
of the center of hits and time informations (the difference between
first hit time and mean of the hits time distribution). Training time
on a traditional laptop is only 2-3 minutes for each run, which seems
reasonable.

(a) only the number
of photo-electrons:
RMSE = 0.4558

(b) adding C.o.H. coordi-
nates: RMSE = 0.4030

(c) adding time information:
RMSE = 0.2378

Figure 4.3: Model comparison using 900k events for training and 100k for
testing, the value for the loss function used (RMSE) is also shown

The results are shown in Fig. 4.3, the presence of a certain number of
outliners is evident. Further inspection reveals that in fact all of them
are from events with higher radius (r > 17 m), near the detector edge
and even inside the PMTs, it is convenient to get rid of that events
introducing the fiducial volume (FV) cut, rejecting events with r > 17.2
m; this leads to about 8 % loose of statistics. The cut is performed a
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priori knowing the real radius of the events, we will see later how to
build a model to discriminate this events using only the features. With
the remaining 917 561 events we train again the model (Fig. 4.4), the
result are now much better with 100 000 events left for testing. A lot
of outliners are removed and the model seems more reliable

(a) only the number
of photo-electrons:
RMSE = 0.3228

(b) adding C.o.H. coordi-
nates: RMSE = 0.2313

(c) adding time information:
RMSE = 0.1147

Figure 4.4: Model comparison after the introduction of the FV cut, 100k for
testing

4.3 performance of the model

To evaluate the performance (i.e. see if the target 3%/
√

E σ is achiev-
able with the trained model) we use 10 datasets of 2000 events each
simulated with fixed kinetic energy of the positron (in the range
[0 : 10] MeV), the FV cut is performed and prediction are made only
with the viable events. We fit the prediction for each dataset with a
gaussian distribution and then plot Evis vs. σ/Evis (Fig. 4.5) where

Evis = Ekin + Eγ = (E0 −mec2) + 1.022 MeV = E0 + 0.511 MeV.

It is clear that adding all the information leads to results comparable
with the most recent traditional recostruction algorithm, in this case
for example data are compared to the function

σ

Evis
=

√(
2.821√

Evis

)2

+ 0.59472 +

(
0.0
Evis

)2

,

in which the coefficients are taken from recent internal presentations
on energy reconstruction with conventional methods, for more details
on the parametrization see [2]. Note that the feature at 1.022 MeV for
the dataset at 0 MeV of kinetic energy are caused by the nature of
training data which never gets lower than Evis = 1.022 and so the
predictions gets overestimate.

To look more closely at the charateristics of the prediction, we
produce bias distributions ((Erec − Etrue)/Etrue) which are shown in
Fig. 4.6.

Some cosideration:
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Figure 4.5: Performance of the models compared to traditional method
(dashed line). Adding together Np.e., Coh components and time
informations the results are comparable with non-ML techniques.

(a) total number photo-
electrons, 6 MeV

(b) time model, 0 MeV (c) time model, 6 MeV

Figure 4.6: Some bias distributions

• With only the total number of photo-electrons the results of the
predictions are discrete, due to the nature of decision trees (a).
The effect on models with more features seems negligeble.

• Also at 0 MeV prediction have significant bias due to the spec-
trum of the training data (b).

• No bias is evident in the central region at 6-8 MeV (c).

To clearly show that there is no significant bias we plot the visible
energy vs. the related bias distribution center (picture 4.7). The bias
is always less than 1%, well below the sigma on the measuraments,
positive bias for the model with CoH without time could be explained
from the asimmetry of the graph 4.4 (b).
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Figure 4.7: Bias vs Evis plot, the first dataset at Evis = 1.022 is not shown
because is very biased (see Fig. 4.6 (b))

4.3.1 Tuning the model: GridSearchCV

There are a significant number of parameters in the model which can
be adjusted in order to achieve a better performance. It is important
also to cross-validate the model to see if it generalizes on testing data
as it should and prevents overfitting. The function GridSearchCV1 for
the Scikit-learn [8] Python package addresses this problem, giving the
opportunity to train the model with a pool of parameter and pick the
ones that generalize better with testing data. The dataset is splitted in
n sets and a model with parameters from the pool is trained n times
using n− 1 sets for training and 1 for testing, a score is given to each
model as the average of the results and the best model is choosen
between the pool of parameters. For the test we work with a smaller
dataset of 100k events, the number of iteration is fixed at 500 as well
as the loss function RMSE and we search between the parameters:

• depth: 4, 7, 10

• learning_rate: 0.01, 0.03, 0.1

• l2_leaf_reg: 1,4,9

From the run the best model seems to be the one with depth =

10, learning rate = 0.03 and leaf regularization = 4. Looking at the
output results from the run we can also point out that:

• The leaf regularization parameter doesn’t seem to matter that
much for our model (at least in our case, and in the range taken
into consideration).

• The depth should be high enough (i.e. > 7) but not to high (i.e.
< 12) to avoid a model to be too complex.

1 https://scikit-learn.org/stable/modules/generated/sklearn.model_

selection.GridSearchCV.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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• the learning rate should be choosen in combination with number
of iterations, so that the loss value for the testing dataset settle
at the end of the training to avoid overfitting.

Results of the parameters optimization do not differ that much from
our initial guesses or even from the default parameters, this shows
that the library work really well as it is or with minimal tweaking.

4.4 building a classifier for fv cut

A model to classify events in the fiducial volume from the experimental
data is needed in order to use the model with real data. It is also, in
theory, a good opportunity to test BDTs which are in general more
suited for classification problem rather than for regression [11].

One can build a classifier with the CatboostClassifier2 class of the
Python library, it handles automatically the conversion of the output
of the trees in probability (i.e. by logistic trasformation) and the tun-
able parameters are more or less the same as for the regressor (with
exception for the loss function).

For the model we use the following features:

• Total number of photo-electrons collected by larger PMTs

• Center of hits coordinates as well as the radial component.

• Hit time distribution mean.

The dataset is splitted in 990 000 events for training and 10 000 events
for testing. We train a CatboostRegressor model with 1000 iterations,
the depth set to 6 and learning rate set to 0.03, the loss function is the
classical binary logistic function 3 (LogLoss) for classification problems.
The final accuracy on the testing data is 98.77 % and the performance
on the fixed energies datasets are shown on table 4.2.

Accuracy without Cohr 98.40 %
Accuracy with Cohr 98.77 %

Table 4.1: An example of kernel trick: adding the radial component of CoH
improve the model because of the linear dipendence with the
radius (accuracy calculated on 10 000 test events).

It is also important to note that all of the inaccurate predictions
are for events on the edge of Fiducial Volume (FV) cut distributed
within σ ≈ 10 cm, and no significant outliner is present (Fig. 4.8).

2 https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_

catboostclassifier-docpage/
3 ` = −∑i ci log (pi) + (1− ci) log (1− pi) where i = 1, . . . , N are elements of the test

dataset, ci the class label (0,1) of the element for a binary classification problem, pi
the predicted probabilities.

https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboostclassifier-docpage/
https://tech.yandex.com/catboost/doc/dg/concepts/python-reference_catboostclassifier-docpage/
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Energy Accuracy
(MeV) (%)

0 96.60
1 98.70
2 98.95
3 98.70
4 98.90
5 98.65
6 98.90
7 99.25
8 98.85
9 99.00
10 99.30

Table 4.2: Accuracy performance on fixed energy datasets.

In conclusion the classifier should be very reliable and results are
virtually the same as with the a priori fiducial cut (although new
results of the reconstruction with only events classified by the model
are omitted, results are not spoiled by a few misclassified events at
the edge of the cut).

Figure 4.8: False prediction of the classfier for 10 000 testing events, no sig-
nificant outlier is present.

4.5 performance with smaller datasets

A common problem in machine learning application is to determine
how many events are enough to train the model to expected perfor-
mance. This will be especially important later on when the experiment
will be calibrated with real radiation sources placed in specific places
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into the detector, the question is: How large the statistic of the training
events should be for the model to be reliable?

When other common implementations such as neural networks
require a lot of data, decision trees should in theory be capable to
achieve expected performance with smaller datasets. The knowledge
of the density of events needed to achieve expected performance is
also important in the prospect of real data acquisition and energy
calibration of the detector.

Figure 4.9: Performance with smaller datasets compared to a traditional
recostruction algorithm

We train our model with subsets of 1000, 10 000, 100 000 events of
the larger datasets. The models are essentially the same as in the
former training except for a few tweaks. After training are then tested
also on the same datasets at fixed energy to see the performance
achievable every situation.

As shown in Fig. 4.9 performance comparable with the best model
in the first analysis (Fig 4.5) are achieved with the 100k dataset (≈ 4
events/m3), actually very low statistic. The performance for the other
two datasets are arguable but, considered the low amount of data that
was used for training, the results seems promising.

4.6 performance with dark noise

Dark noise is a real effect that should be taken into consideration when
dealing with real data. It is generated by PMTs unwanted firing because
of thermoemission from the first dynode and random fluctuations
(See [13]), so it essentially spoils the hit time distribution (Fig. 4.10)
and the other spatial informations.

This effect is not taken into account in the simulation and should
be added later on manually. A new dataset [7] contains 1 million
events with added dark noise along with 10 datasets of 2000 events
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Figure 4.10: An example of an hit time distribution with added dark noise

at fixed energies. The results of the analysis are shown in Fig.4.11:
the effect of the DN on the recostruction is considerable especially at
low energies and it could be a serious problem even for traditional
reconstruction algorithm, positive bias is also introduced and should
be further investigated. A solution to mitigate the problem could be
adding more informations from the raw output from the PMTs.

(a) Dark noise performance (b) Dark noise bias

Figure 4.11: Results of the dark noise analysis: the DN spoils the predictions
significantly and also adds some bias



5
B D T S F O R V E RT E X R E C O N S T R U C T I O N :
P R E L I M I N A RY R E S U LT S

The precision measurement of the vertex is also crucial in the JUNO
experiment. The Catboost library is very flexible and so the model
could be easily adapted to predict the radial component of the vertex
for example. The same set of features is used, the only change made
is the replacement of the labels of the event to reconstruct, R the true
radial component of the event vertex.

Training takes a few more iterations for the loss to settle (≈ 3000).
After the training, histogram of the distribution of Rrec − Rtrue for the
new model are plotted along with σ at different energies for the fixed
energies datasets.

(a) Model for radius reconstruction (b) Performance of the model

Figure 5.1: Results for BDTs implementation for vertex reconstruction (radial
component)

Results seems promising and show that σR ≈ 10 cm for higher
energies is already achieved. Further improvement could be made
adding more features to the input of the model, for example better
precision should be achievable with informations from the individual
PMTs, by now only integral informations was used for simplicity. More
work should focus on choosing an appropriate loss function for the
training (RMSE or MSE). Full vertex components recostruction is also
mandatory for a complete analysis.
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6
C O N C L U S I O N

The problem of energy reconstruction in the JUNO experiment was
addressed by the means of machine learning. The chosen algorithm,
Boosted Decision Trees (BDT), is definitely one of the promising imple-
mentations of this paradigm.

Several applications of BDT with the Catboost library [14] were made.
Training a model is really easy and not resource intensive as other
methods such as neural network. Some suggestion for tuning the
hyperparameters was also given in the analysis section.

The plots of the performances at different energies (Fig 4.5) show
that, after adding the needed informations from the detectors, BDT
works at least on par with the newest traditional (non machine learn-
ing) algorithm. There seems to be some bias left in the predictions
that needs to be investigated trying to use different loss functions,
although the bias is always way less than the experimental uncertainty
obtainable with the reconstruction. Target performance of 3.0% σ at 1

MeV seems definitely achievable by now.
A classifier is then built to remove problematic events at the edge of

the detector, reducing statistics only by 8 %. Using BDT for this task
seems really suited because all of the misclassified events falls really
close to the fiducial cut (Fig. 4.8).

The analysis on the minimal quantity of data needed shows that
in order to get the expected performance at least a dataset of 100 000
events is needed to be provided (corresponding to ≈ 4 events/m3).
smaller datasets give rather questionable results but the densities of
datas taken into consideration are quite low. Performance on the dark
noise should be compared with other method but the model seems
to work fine, although some positive bias is introduced and needs
further investigation (see Fig. 4.11).

Finally, considering vertex reconstruction, it has been shown that
BDTs give reasonable preliminary results, but further improvements
could definitely be done.
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