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A B S T R A C T

The present work will focus on possible effects due to Non Standard Interactions
(NSI) on the observables at stake in atmospherical and reactor neutrino experi-
ments. We worked within an Effective Field Theory approach, where NSI arise
from dimension six operators defined at a scale Λ much bigger than the Elec-
troweak scale (mEW). Through Renormalization Group Equation methods the
effects of these operators are studied below mEW. As an explicit proof of the cor-
rectness of our calculations, we checked the cancellation of the renormalization
scale dependence in physical amplitudes. We provided an explicit calculation of
the corrections to the oscillation probabilities and to relevant neutrino scattering
cross sections, due to NSI. A complete analysis of the most recent and future
experimental results is also provided.

3





C O N T E N T S

introduction 7

1 neutrino physics : introductive review 9

1.1 Going beyond the Standard Model 9

1.2 ElectroWeak Sector of the Standard Model 12

1.3 Neutrino Oscillation 15

1.4 The Effective Field Theory Approach 21

2 an eft approach to neutrino physics 27

2.1 The Effective Lagrangian at the scale Λ 27

2.2 The Effective Lagrangian at the scale mEW 30

2.3 Cancellation of the µ scale 40

2.4 The Effective Low Energy Scale Lagrangian 42

3 non standard neutrino interactions 57

3.1 Modified Pion and Muon decay 57

3.2 The IceCube Neutrino Observatory 61

3.3 NSIs at IceCube 64

3.4 The DUNE project 72

3.5 NSIs at DUNE 73

conclusions 81

a dimension six operators 83

b useful relations and conventions 85

b.1 Feynman Rules 85

b.2 Manipulation of Dirac Structures 86

b.3 Dimensional Regularization 88

c explicit calculations of one-loop matrix elements M 89

c.1 Cancellation of the µ scale 89

c.2 Current-Current diagrams 92

c.3 Penguin diagrams 95

c.4 Pion decay rate 97

d explicit calculations of scattering amplitudes 99

d.1 Trident production 99

d.2 Neutrino-electron elastic scattering 101

d.3 Neutrino-nucleus quasi-elastic scattering 103

bibliography 105

5





I N T R O D U C T I O N

It is nowadays universally acknowledged that the Standard Model of Particle
Physics represents the most experimentally and theoretically successful theory
describing the physics of fundamental interactions. Despite the great agreement
with experimental data and its impressive predictivity, there are still many open
issues left. As a consequence, it is widely believed that the Standard Model
needs an ultra-violet completion. In other words, it can be thought of as an Ef-
fective Field Theory of a more fundamental theory, valid beyond a certain scale
Λ � mEW. This New Physics scale Λ, according to the naturalness hypothesis,
should occur already below the TeV scale, which is being directly tested at the
LHC, but no signals were found during the first run, that achieved a center of
mass energy of 7 TeV.
Nevertheless, the existence of many hints in the flavor sector addressing to New
Physics effects represent a strong clue in the search of a high energy completion
of the Standard Model.

Among the others, the nature of neutrino masses and mixing represent one of
the most compelling. In the beginning, such peculiar properties were identified
as the only source of lepton flavor violation but it became clear that it was possi-
ble to introduce extra lepton flavor violation sources when introducing new and
dimension-six operators in the Lagrangian, using the tools provided by the Ef-
fective Field Theory approach. This methodology provides definite predictions
in a suitable energy range, where a perturbative expansion is applicable. In that
context, the New Physics effects are enclosed in the coefficients associated with
the higher dimensional operators, called Wilson coefficients. This enables to set
up a model-independent discussion; then a model-dependent analysis can be
used to derive the exact expression of such coefficients in specific models.
For what concerns neutrino physics, the introduction of those operators gives
birth to many new lepton flavor violating interactions, called Non-Standard Neu-
trino Interactions, which can affect neutrino oscillation experiments, modifying
the propagation of neutrinos in matter. Moreover, they also affect the production
and the detection processes, directly at the source and at the detector, producing
wrong flavor neutrinos, without oscillation.
This MSc thesis is inserted within this framework: its final aim will be to develop
constraints on the strength of those new interactions by analyzing the modifica-
tion to the observables at stake and verifying their compatibility with current
and predicted experimental results.

In order to achieve this goal, this work has been organized as follows. In the
first chapter, the reasons that motivate why and at what energies we are looking
for an UV completion of the SM, will be briefly reviewed. Consequently, after
having briefly recalled the main characteristics of the Electro-Weak sector of the
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8 introduction

Standard Model, especially focusing on its flavor structure, a complete overview
of neutrino physics main aspects will be provided, analyzing both theoretical
and experimental traits. Subsequently, the Effective Field Theory approach will
be outlined, introducing the relevant features of Renormalization Group Equa-
tion and matching procedure.
In the second chapter the effective New Physics Lagrangian at the scale Λ will
be introduced, considering a well-motivated basis of two leptonic and five semi-
leptonic operators in order to be able to take into account neutrino Non Stan-
dard Interactions but also to be compatible with another compelling hint of New
Physics, represented by B anomalies. Then, the low energy Lagrangian will be
derived by computing the quantum effects induced at the GeV scale, using the
key tool of Renormalization Group Equations.
Then, in the third and last chapter the main experimental results provided by
the IceCube Observatory will be discussed, along with an analysis of the future
DUNE project. Then, describing and parametrizing the observables at stake in
those experiments, modified by New Physics effects, bounds on the involved
Wilson coefficients will be obtained and compared with the present status of the
art.



1

N E U T R I N O P H Y S I C S : I N T R O D U C T I V E R E V I E W

At present time, the Standard Model (SM) of Elementary Particles represents
the most successful theory of fundamental interactions from both a theoretical
and an experimental point of view. It has been tested for the past decades at
increasing energies and precision, and its predictions were in agreement with
the experimental results in a large part of phenomena.
Nevertheless, nowadays it is widely acknowledged that the SM is not the most
complete theory of nature, when going to very high energies. In fact, despite the
present impossibility to experimentally test the presence of New Physics (NP)
signals, there are many hints that suggest that a Beyond the SM (BSM) theory is
required.

The most important justification for introducing BSM theories will be dis-
cussed in 1.1, in particular by analyzing the most promising channels for search-
ing for NP signals. Among them, the main focus will be on neutrino interactions.
In order to give a more complete picture of the theory describing those particles,
the flavor physics of Electroweak sector of the SM will be briefly reviewed in 1.2.
Consequently, the historical discovery of neutrino masses and oscillation will be
discussed from both an experimental and theoretical point of view in 1.3, point-
ing out the importance of an UV-completion of the SM . In the last section of the
chapter, 1.4, the Effective Field Theory (EFT) approach, the theoretical tool used
in the present work in order to investigate NP signals, will be introduced.

1.1 going beyond the standard model

Among the others, neutrino masses and mixing represent one of the most striking
and promising channel to investigate the presence of NP.
In the SM, in fact, neutrinos are considered as massless particles, preventing the
possibility for them to oscillate. By now a huge amount of experiments con-
firmed that neutrinos actually oscillate, so this lack of predictivity of the SM in
neutrino sector represents one of the possible ways to shed light on NP.
Moreover, new and non standard neutrino interactions (NSI) have been imple-
mented nowadays as a natural feature in many BSM neutrino mass models. Such
interactions are clearly subdominant but, since they produce modifications to
many observables like oscillation probability and its parameters, they represent
an important tool in order to put boundaries on the energy scale at which the
NP should arise.
Moreover, from an experimental point of view, many oscillation parameters are
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10 neutrino physics : introductive review

yet to be precisely understood: the Dirac CP-violating phase in the UPMNS, the
neutrino mass hierarchy and the octant of θ23. Hopefully, the upcoming gen-
eration of neutrino experiments should be sensitive to subdominant oscillation
effects, helping to test the various neutrino models recently proposed (1).
The present work aims to insert itself in that issue, by means of a model indepen-
dent way to parametrize NSIs, as will be highlighted in the following chapters.

In addition to neutrino masses and mixing, some of the most important clues
that might account for NP signals are briefly listed in the following.
They include both experimental issues, i.e. discrepancies between the SM predic-
tion and the experimental data, and more fundamental theoretical trademarks, i.e.
fine tuning problems affecting many parameters of the theory. There is a striking
difference in the nature of the two problems. The experimental one deal with
more pragmatic issues of the theory, which is unable to correctly predict some of
the observed phenomena. The theoretical one could also appear as philosophical
issues since they deal with aspect of the theory that do not fulfill the concept of
naturalness,1 which is hard to put into numbers.
Nevertheless, both of them must be resolved in order to obtain a most complete
theory of nature.

• Dark matter - The strong evidence that 25.6% of the total matter that consti-
tute our universe is non-baryonic, forces a completion of the SM in order
to take into account the potential new particle able to explain the amount
of Dark Matter in the universe (3).

• Baryon asymmetry - Cosmological observations strongly confirmed the ex-
ceeding presence of matter with respect to antimatter. In disagreement
with such observations, the SM is believed to satisfy an accidental symme-
try that is related to the conservation of the Baryon Number. The solution
of that friction requires a modification of SM.

• B anomalies - In the last few years, various experimental collaborations
observed indications of Lepton Flavour Universality Violation (LFUV) in
semileptonic B decays. Although such indications are not yet conclusive,
the overall pattern of deviations from the SM predictions is very coherent.
The anomalous data refer to a number of different interactions: charged-
current transitions b → c`ν̄ with τ/e and τ/µ LFUV and neutral-current
transitions b → s` ¯̀ with µ/e LFUV (42). Interestingly enough, global fit
analyses for the angular distributions of the B0 → K∗

0 µ+µ− decay reported
anomalies which are consistent with LFUV data. For this reasons, semi-
leptonic B decays are one of the most interesting testing-ground searching
for NP (4).

• Muon g − 2 - There exists a long lasting discrepancy between the experi-
mental value of the muon anomalous magnetic moment and the SM pre-
diction. From the most recent data, one gets a 3σ difference between the

1 The formulation of naturalness given by ’t Hooft reads that a theory is natural if, for all its
parameters p, small with respect to their fundamental scale Λ, the limit p → 0 corresponds to an
enhancement of the symmetry of the system (2).



1.1 going beyond the standard model 11

two values and this is conceivable as a direction for searching NP. Other-
wise, the main limit on the SM predictions results from the computation of
the Leading Order hadronic contribution to the muon g − 2 (5).

• Strong CP problem - The existence of a four dimension term arising in the
gluon sector of the SM Lagrangian, i.e. θQCDG̃a

µνGa µν, leads to CP viola-
tion in the strong sector. In order to take into account the cross-section of
CP violating processes, one should fix by hand the parameter of named
term, θQCD . 10−10, which is unnaturally small. Possible ways to dynami-
cally generate such a small coefficient have been proposed, most of which
requiring the existence of a new particle, the axion (6).

• Hierarchy problem - The Higgs sector of the SM Lagrangian contains one
independent parameter, the vacuum expectation value (vev), related to the
Higgs mass, of order v ' 102 GeV. From a theoretical point of view, one
would have expected a bigger value for this parameter, because the loop
correction to mh are quadratically, instead of logarithmically, divergent. For
this reason, a fine tuning is required in order to recollect the experimental
value. Possible solution have been proposed, involving Supersymmetry
and composite Higgs models.

• Flavor puzzle - The huge hierarchy in the mass spectrum of fermions, which
spans from the electron mass me ' 10−3 GeV to the top-quark mass mt '
170 GeV, is considered unnatural. A definite explanation of such a spec-
trum is yet to be proposed.

Taking all those unsatisfactory aspects in mind, it is clear why the SM does
not have the characteristic of a really fundamental theory.
In order to build the UV completion of the SM, and to take into account NP phe-
nomena, both experimental improvements and advanced theoretical tools are
required.

It is possible to underline two complementary strategies in order to experi-
mentally investigates possible effects of NP. The first one aims directly at pro-
ducing and detecting the supermassive particles that may eventually represent
the mediator of some more complete theory, while the second one deals with
the investigation of virtual modifications caused by NP in low-energy processes,
through high-precision experiments. NSI experiments fits into the second possi-
bility as greatly analyzed, for example in (7) and (8).

From a theoretical point of view, it is possible to identify two main approaches
in order to implement NP effects in a more complete model of particle physics.
One aims to directly build an explicit BSM theory, gaining in predictivity but
being very model-dependent and less general. The other one analyses the NP
effects within an EFT approach, which provides a more general description of
NP at low energies through a limited number of parameters, but is quite unable
to discern between the different high energies scenarios. NSI will be studied by
means of the EFT approach, as will be discussed in Chap. 2.
Following that last strategy, if one assumes that the SM correctly describes
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physics in the energy range up to the W boson mass, but it must be consid-
ered within an EFT approach up to energies of order of some scale Λ, it becomes
compelling to put boundaries on that new physics energy scale.

the Λ scale of new physics Without considering the long standing prob-
lem of including gravity interactions in the SM, since such an unification is put
by mutual consent at the Planck scale MP ' 1019 GeV, which clearly represents
an ultimate UV cutoff for the SM, there are many other theoretical and experi-
mental clues able to put boundaries on the scale at which NP should arise (9).
The first indication comes from the Renormalization Group evolution of the
gauge coupling of the SM. There exists, in fact, an energy scale where all the
running coupling constants seem to converge, nearly at ΛGUT ' 1014 GeV, in the
SM. Such a scale is called scale of Grand Unified Theory since suggests that the SM
gauge group would be embedded just in a simple group like SU(5) or SO(10),
where all gauge forces are unified (10). In that context NP effects should arise
approximately around that GUT scale.
Another indication in accord with that result comes from the see-saw mechanism,
which is able to explain the smallness of neutrino masses without any fine tuning
issues, as will be treated in 1.3. Without dealing with the details of the mecha-
nism, in order to obtain mν ' 0.1 eV, the energy scale of new physics must be
put around Λ ' 3 · 1014 GeV.
In addition to the mentioned evidences, there are also many cosmological sug-
gestions, related to inflation models, which confirmed that the scale of NP
should be around Λ ' 1014 ÷ 1016 GeV.

Such a scale is far beyond the achievable energies of experiments nowadays,
explaining why NP signals have not been seen yet. Nevertheless, as already
mentioned, NP effects could still give modification to low-energy processes.

1.2 electroweak sector of the standard model

Neutrinos are one of the main building blocks that constitute the SM. Due to
their small cross section, they have been discovered relatively late and most of
their characteristics, like masses and mixing parameter, are yet poorly under-
stood.
Nevertheless, in order to give an introductive overview of neutrino physics, the
EW sector of the SM will be discussed hereafter. Consequently, possible ways
of generating neutrino masses will be treated, along with oscillation probability
and the main consequences on Flavor Symmetries. In the end, a short overview
of the most important experiments at work nowadays will be provided.

the standard model The Electro-Weak(EW) sector of the SM is based on
the gauge group SU(2)L × U(1)Y.
The particle content consists of three leptons (electron, muon, tau) and the asso-
ciated neutrino; six quarks (up, down, charm, strange, top, bottom), one scalar
boson (Higgs) and three vector bosons (photon, Z, W).
The fields describing the matter content are organized in three generations of
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doublets and singlets according to their transformation properties under the
gauge group.
Denoting the field by P(T, Y) where T and Y are the representations under
SU(2)L and U(1)Y we get the subsequent matter content

Li
(

2,
1
2

)
ei

R (1, 1) Qi
(

2,−1
6

)
ui

R

(
1,−2

3

)
di

R

(
1,

1
3

)
φ

(
2,−1

2

)
,

(1.1)
where Li = (νi

L, ei
L) and Qi = (ui

L, di
L). The index i = 1, 2, 3 runs over the differ-

ent flavours that define each generation.

Therefore, the Lagrangian of the EW sector, in the interaction basis, reads:

LEW =−1
4

WµνWµν − 1
4

BµνBµν

gauge sector

+i ∑ f ( f̄ 6D f )

matter sector

+(Dµφ)†(Dµφ) + µ2(φ†φ)− λ(φ†φ)2

Higgs sector

−yij
e L̄iejRφ − yij

d Q̄idjRφ − yij
u Q̄iujRφ̃ + h.c.

Yukawa sector

,

(1.2)

where Wa
µ and Bµ are the vector fields in the interaction basis, Dµ f = (∂µ +

i
2 g2τaWa

µ + ig1YBµ) f and Dµφ = (∂µ + i
2 g2τaWa

µ − ig1YBµ)φ are the covariant
derivatives for the fermion and scalar field respectively.

The request of invariance under the gauge symmetry prevents the possibility
to write by hand a mass term for fermions and vector bosons. Those masses are
generated via the Spontaneous Symmetry Breaking mechanism by the appearance of
a non-zero vacuum expectation value (vev) of φ, being

v =

√
−µ2

λ
= 246 GeV . (1.3)

The vector boson masses arise from the Higgs kinetic term and are given by

M2
W =

1
4

g2
2v2 M2

Z =
1
4

v2(g2
2 + g2

1) Mγ = 0 . (1.4)

The Higgs mass arises from the Higgs potential and is given by

M2
φ = 2λv2 . (1.5)

The fermion masses, instead, arise from the Yukawa sector and are given by

M2
f =

1
2

v2y2
f . (1.6)

It is important to notice that, since the particle content of the SM does not
include the νR, it is impossible to generate neutrino masses by means of this
mechanism. Since it has been experimentally proven that neutrinos do have
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masses, this lack represents one of the main problems of the SM and one of the
most important hints of physics beyond SM.

The possible ways of generating neutrino masses that have been proposed
along the years will be treated in 1.3, along with their main consequences.

flavor symmetries In addition to the gauge symmetry, one might won-
der whether other symmetries, namely accidental symmetries, arise in the SM La-
grangian.
In an ideal case where the non-diagonal Yukawa couplings are turned off, i.e.
yij

f = 0, then LEW is invariant under a global flavor symmetry

GF(y f = 0) = U5(3) = U(3)Q × U(3)d × U(3)u × U(3)L × U(3)e . (1.7)

This means that both the Lepton and Baryon Numbers are conserved, along with
the Lepton Family Number (LFN) and Baryon Family Number (BFN).

This ideal situation is clearly broken in the real case where the Yukawa cou-
plings are non zero, i.e. yij

f 6= 0. In that case, being U(3) = SU(3)× U(1), all the
SU(3) are broken and the residual flavor group is

GF(y f 6= 0) = U(1)B × U(1)e × U(1)µ × U(1)τ . (1.8)

Therefore only the LFN and Baryon Number are now conserved. This fact can
be seen explicitly by diagonalizing the Yukawa couplings, which corresponds to
switch from the interaction basis to the mass basis.
In order to correctly diagonalize the Yukawa matrices, a biunitary transforma-
tion, involving two independent unitary matrices, is needed

yu = RuyD
u V†

u yd = RdyD
d V†

d ye = ReyD
e V†

e . (1.9)

Consequently, the effect on the fields is summarized by the following transfor-
mation laws

ui
L = Vuum

L di
L = Vddm

L Li
L = VeLm

L

ui
R = Ruum

R di
R = Rddm

R ei
R = Reem

R .
(1.10)

By performing these transformations the mass terms and the Yukawa sector be-
come diagonal. Instead, as a consequence, the charged current terms are modi-
fied, since the different components of the doublets are mixed.
It is important to notice that, since neutrinos have no mass in the SM, their
transformation law is completely arbitrary. Then, one is allowed to safely choose
Vν = Ve so that the transformation law for the two components of the lepton dou-
blet is the same and the mixing matrix reduces to the identity matrix, VPMNS = 1.
As a consequence, the Family Lepton Number is not broken.
Conversely, the transformation matrices for the components of the quark doublet,
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Vu and Vd, are not arbitrary and a priori are different, thus inducing the breaking
of the Baryon Family Number through a mixing matrix called VCKM = V†

u Vd

LCC
EW = − g√

2
W+

µ (ūiL V†
u Vd︸ ︷︷ ︸

(VCKM)ij

γµdjL −
g√
2

W+
µ (ν̄iL V†

e Ve︸ ︷︷ ︸
1

γµejL) (1.11)

The VCKM is the only source of flavor violation in the SM. It is also important to
notice that, at tree level, Flavor Changing arise only in Charged Currents (FCCC)
while Flavor Changing Neutral Current (FCNC) processes do not show up at
tree level.

It is even more important to stress that the whole discussion above is valid
only in the massless neutrino case. On the other hand, it is clear today that LFN
is not a symmetry of the SM, since various experiments confirmed that neutrino
oscillate. Such phenomenon require LFN breaking. The oscillation arises only if
neutrino masses are different from zero and one from another as will be analyzed
in due time.

1.3 neutrino oscillation

The phenomenon of Neutrino Oscillation was theoretically predicted in 1968 by
Bruno Pontecorvo (11), in order to take into account the possibility of lepton
flavor violation processes. For the first time, in that pioneering article, the possi-
bility for neutrinos to have non zero masses was proposed in order to generate
lepton flavor violation.2

However, given the small cross section associated to these processes, of the or-
der 10−45 ÷ 10−50 m2, the experimental proof was found only long after, in 1998,
while trying to solve an important astrophysical problem: the Solar Neutrino
Puzzle.

neutrino masses and mixing probability The existence of three dif-
ferent flavors of neutrinos (νe, νµ, ντ) participating in weak interactions, has been
stated in several experiments. In fact, in order to match the theoretical and ex-
perimental result for the decay width of the Z boson, the number of non sterile
neutrinos must be exactly three (12). As a consequence, once discarded the mass-
less neutrino hypothesis, it is straightforward to assume the existence of three
mass eigenstates (ν1, ν2, ν3).
Nevertheless, the absence of sterile neutrinos in the particle content of the SM,
along with the renormalizability prescription prevents the generation of neutrino
masses. Only by giving up one of this two assumptions it will be possible to
give mass to neutrinos, according to (13).

Adding sterile neutrinos νi
R(1, 0), it is possible to write another Yukawa term Particle content

2 It is important to notice that, according to what is the neutrino type (Dirac or Majorana), it would
be possible to violate both LFN (Dirac) and lepton number (Majorana) and to generate different
mass terms; that is another open problem that will not be analyzed in the present work.
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involving this new particle

LνR
Y = yij

ν L̄iνRjφ̃ + h.c. (1.12)

Via the Spontaneous Symmetry Breaking Mechanism the neutrinos acquire a mass
of the form 1.6. It is a Dirac mass, hence only the LFN will be violated after
diagonalizing the Yukawa matrix.
In fact, after introducing the sterile neutrino, the arbitrariety of choosing the
transformation law for νL is lost because of the diagonalization of the new
Yukawa coupling, yν = RνyD

ν U†
ν , in addition to 1.9. Then, further transforma-

tions must be defined

ei
L = Veem

L νi
L = Vννm

L νi
R = Rννm

R .

As seen in the case of the quarks, the charged current term will be modified by
these transformation and a mixing matrix will emerge for leptons too, leading
to the violation of LFN

LCC
EW = − g√

2
W+

µ (ν̄Li V†
ν Ve︸ ︷︷ ︸

(UPMNS)ij

γµeLj) + h.c.

The global flavour symmetry would be in this case

GF(mD
ν 6= 0) = U(1)B × U(1)L .

This method, which would seem the most natural one since it does not require
any additional theoretical assumption, it’s actually affected by a fine tuning is-
sue.
In fact, from experimental data, a mass limit of order mν < 1 eV must be re-
quired. However, being mν proportional to the Higgs v.e.v mν ' 175 GeV·yν, the
Yukawa coupling must be set by hand to a value, yν . 10−11, which is highly
artificious.
In conclusion, even if this method allowed the possibility of neutrino oscillation
and mixing, it seems unconvincing to give a Dirac mass to neutrinos from a
Yukawa term.

The other path that can be followed requires the introduction of a dimensionRenormalizability

d = 5 operator involving Majorana neutrinos, the Weinberg operator, which intro-
duces a massive scale, spoiling renormalizability:

LW
d=5 =

C
ΛW

L̄c
LφφcLL + h.c.

Via the Spontaneous Symmetry Breaking Mechanism neutrinos acquire a Majorana
mass of the form

mν =
C

ΛW
v2 (1.13)

and the experimental limit on that mass allows to find limits on the massive
scale ΛW ' 1014 GeV. This method is fine tuning free since no coupling must be
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set by hand in order to replicate experimental results.
In that case the global symmetry of flavor would be just

GF(mM
ν 6= 0) = U(1)B . (1.14)

The introduction of an effective operator, suggests the existence of a more gen-
eral theory and of a more massive mediator, with respect to which, the SM
represents just the low energy limit. Evidently, the construction of such a theory
requires many theoretical tools and therefore other simpler mechanisms have
been introduced.

Nowadays a third approach is commonly considered as a good alternative See-Saw Mechanism

option, in order to give mass to neutrinos. The basic idea underlying the See-Saw
Mechanism is to give (Majorana) mass to a heavy sterile neutrino NR emerging
at a very high scale (ΛN ' 1015) via Spontaneous Symmetry Breaking on a Yukawa
term. The mass of the light (SM) neutrino emerges in the diagonalization of the
mass term and it does not require any fine tuning of yν.
The Lagrangian describing this mechanism is

LSee-Saw = yν L̄LNRφ̃ + BN̄c
RNR + h.c.

The key concept of the See-Saw Mechanism is that B � v√
2
yν.

Since the mass eigenstates of the diagonalized mass matrix are
mNR = B

mνL =
y2

νv2

B

(1.15)

it is clear that it is possible to generate a mass mνL < 1 eV naturally, with yν ' 1,
thanks to the high energy scale B. Evidently since this mechanism generates
Majorana masses the flavour symmetry would be 1.14.

The exact absolute value of neutrino masses is nowadays still unknown. In
fact, experiments are sensible only to mass differences so that the mass hyerarchy
is yet obscure.
According with the experimental results, there are two options: normal hyerarchy
having m1 . m2 � m3 and inverted hyerarchy with m3 � m1 . m2.

∆m2
12 |∆m2

13| |∆m2
23|

8 × 10−5eV2 3 × 10−3eV2 3 × 10−5eV2

Table 1.1: Acknowledged values for neutrinos mass differences. Notice that for the oscil-
lations 1 ↔ 3 and 2 ↔ 3 only the absolute value is known, not the sign.

Whatever the mechanism neutrinos acquire mass with, the diagonalization
of the mass matrix will induce a mixing matrix in the charged current term,
(VPMNS)ij.
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If neutrinos are Dirac particles it is possible to parametrize this matrix using
three angles θ12, θ13, θ23 and a phase δ as following

UDirac
PMNS =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13 eiδ

0 1 0

−s13 e−iδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 ,

where cij = cos θij and sij = sin θij.
In case neutrinos are Majorana particles, two additional phases α1, α2 are present

UMajorana
PMNS = UDirac

PMNS

eiα1

eiα2

1

 .

It is important to state that the physical observables are not sensible to these two
phases, because they cancel when calculating the modulo-squared amplitude.

Taking into account this parametrization and using a quantum-mechanical
approach, the oscillation probability in vacuum, between two possible flavor
states, can be calculated

P``′ = |〈ν`′(0) | ν`(t)〉|2 .

Writing the relation between the mass and the interaction basis and evolving the
mass state, an expression for the flavor state is obtained

|ν`(t)〉 =
3

∑
i=1

e−iEitU`i |νi(0)〉 , (1.16)

the oscillation probability between two different flavor states becomes then

P``′ = δ``′ − 2 ∑
i>k

Re(U∗
i`′U`′kU∗

k`U`i)

(
1 − cos

(
∆m2

kiL
2E

))

+ 2 ∑
i>k

Im(U∗
i`′U`′kU∗

k`U`i) sin

(
∆m2

kiL
2E

)
,

(1.17)

where L = ct is the distance travelled by neutrinos in the time t, and E ' |~p|
their energy.

A couple of brief comments is needed:

• neutrino oscillation is possibile only if neutrinos are massive, so UPMNS 6= 1,

• neutrinos must be non-degenerate in the mass spectrum, so that ∆m2
ik 6= 0.

Taking that in mind, it is clear that improvements in the theoretical under-
standing of neutrino physics are required.
From the experimental side, there is an ongoing ambitious program that aims to
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precisely determines the mixing parameter, discern the correct mass hyerarchy and
prove the existence of a Dirac or Majorana phase.

neutrino oscillation experiments Experiments on solar neutrinos
provided the first testing ground for neutrino oscillation. In fact, that hypothesis
was invoked in order to solve the Solar Neutrino Puzzle3 and explain the observed
flux of electronic neutrinos on Earth. Subsequently, neutrino oscillation was also
verified in reactor experiments.
It is important to check neutrino oscillation through experiment involving neu-
trinos of different origins because they are sensible to different channel of oscil-
lation. In fact, in the case of solar neutrinos, having L ' 1 AU,

|∆m13|L
E

' |∆m23|L
E

� 1 (1.18)

and 1.17 reduces to an oscillation probability between 1 ↔ 2 only.
Analogously speaking, in the case of artificial neutrinos produced in reactor ex-
periments, as well as atmospheric neutrinos, having a relatively small L

∆m2
21L

2E
� 1 (1.19)

and 1.17 reduces to an oscillation probability between only two generations,
1 ↔ 3 or 2 ↔ 3.

Solar neutrino analysis began with the historical radiochemical experiments Solar neutrino sector

Homestake (14), Gallex (15), SAGE (16), which were sensible only to the number
of neutrinos but not to their energy, and Kamiokande, which could also provide
information on the direction of the neutrinos. Those experiment were sensible
only to charged current (CC) processes; for this reason only with the SNO ex-
periment, which could detect neutrinos through neutral current processes too, it
was possible to provide the definitive solution to the Solar Neutrino Puzzle (17).
The differences observed between the measurements of the neutrino flux ob-
tained in the various experiment was explained by taking into account matter
effect in the Sun (18).

Nowadays two solar detectors are at work, Super-Kamiokande and Borexino,
and also a reactor experiment, KamLAND, which is sensible to the 1 ↔ 2 oscil-
lation channel, assuming CPT is conserved.
Fig. 1.1 reports the allowed region in the (sin2 θ12, ∆m2

21) plane, according to so-
lar neutrino experiments (in black) and KamLAND (in blue). It is possible to put
in evidence the preferred values of ∆m2

21 by solar experiments and KamLAND{
∆m2

21 = 7.6 × 10−5 eV2 KamLAND

∆m2
21 = 4.96 × 10−5 eV2 Solar experiments

(1.20)

3 It dealt with the discrepancy between the Solar Standard Model prediction for the solar neutrino
flux and its measurements. A second issue dealt with the further discrepancy of the measured
flux from an experiment to another.
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Figure 1.1: Allowed region for the solar oscillation parameters, according to KamLAND
and Solar experiments. From (1).

Attempts to explain the observed discrepancy have been made, mostly in the
context of non-standard neutrino interactions.
Nevertheless, the best fit point for that global analysis corresponds to:

sin2 θ12 = 0.321+0.018
−0.016 ∆m2

21 = 7.56 ± 0.19 × 10−5 eV2. (1.21)

After the discovery of neutrino oscillation in the solar flux, many other exper-Atmosferic and artificial
neutrino sector iments analysing atmospheric and artificial neutrinos were built up, in order to

put constraints on the remaining parameters ∆m2
13, sin2 θ23 and θ13.

Atmospheric neutrino experiments, such as the Super-Kamiokande Collaboration
(19), are sensitive in higher range of energy then the solar ones, approximately
from 100 MeV to TeV. The best fit for some of the oscillation parameters, obtained
with Super-Kamiokande, are

sin2 θ23 = 0.587 |∆m2
23| = 2.5 × 10−3 eV2 (1.22)

Recently, many experiments have been designed in order to analyze the at-
mospheric neutrino flux such as ANTARES and IceCube (20), whose results are
compatible with 1.22, as reported in fig.1.2.

Afterwards, also many reactor experiments (both long and short-baseline)
have been realized in order to confirm the oscillation phenomenon. Among
the long-baseline experiments, T2K and NOνA are still at work nowadays. The
best fit obtained in those experiments for the artificial oscillation parameters are

sin2 θ23 = 0.532 |∆m2
23| = 2.545 × 10−3 eV2 (1.23)

In that case the constraints provided by different experiments are quite in agree-
ment.
For what concerns the short-baseline experiments, such as Daya Bay, RENO and
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Figure 1.2: Allowed region for the atmospheric oscillation parameters, according to the
most recent experiments. From (1).

Double Chooz, they were crucial in the determination of θ13, whose best fit value
is

sin2 θ13 = 2.155+0.075
−0.090 Normal Ordering

sin2 θ13 = 2.155+0.092
−0.092 Inverted Ordering

(1.24)

Despite the great sensitivity achieved in constraining most of the oscillation
parameters, three of them are still unknown: the octant of θ23, the value of the
phase δ and the mass ordering, i.e. the sign of ∆m2

23.
As already stressed, the possibility of non-standard neutrino interactions have
been strongly suggested after the introduction of a mass term for neutrinos. In
fact, NSI could strengthen the theoretical knowledge of the oscillation parame-
ters, giving corrections that might give hints on the value of the yet unknown
parameters. Moreover, NSI accounts for new interactions that breakingly change
the way neutrinos oscillates. If those interactions are described in an Effective
Field Theory approach, then solar, atmospheric and reactor experiments can pro-
vide important bounds on the energy scale of the theory and on the strength of
the couplings. Some of the phenomenological implications will be treated in
Chapter 3 where two among the most promising experiment will be analyzed.

1.4 the effective field theory approach

One of the most embraceable theoretical tool that actually allows to build an UV
completion of the SM is the EFT approach. In this scenario, the SM is considered
as a low energy approximation of a more fundamental theory, in which the aris-
ing heavier mediators have been integrated out.

Before starting to build the EFT Lagrangian, a more naive but explicative way
to understand such an important tool is necessary.
One of the main reasons behind the validity of introducing the EFT approach lies
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in the concept that all physical processes are characterized by different energy
scales. The quantum field theories describing those processes are valid under
some defined scale, over which a more general theory becomes significant. The
classic, and historical, example of Fermi Theory is quite explicative.

As it is known, QED describes very well the properties of electrons and pho-
tons at energies of the order of 1 MeV, without being affected by more massive
particles or more energetic interactions. QED is renormalizable and predictive in
this range of energy, but it’s not the full and complete theory of nature. EFT can
give insights of that complete theory, involving more massive mediators, without
losing predictivity and remaining approximately renormalizable under the energy
scale dictated by the mediators.
Coming back to the example, beyond the 1 MeV scale, at higher energy, where
more massive particles start to play a role, weak interaction processes need to be
implemented in the Lagrangian. The typical energy scale of weak interactions is
dictated by the vector boson masses, the mediator of that interaction, mEW ' 80
GeV. Many processes involving weak interactions, however, such as the muon
decay, take place at energies much smaller than mEW. When this condition is ful-
filled, the EFT, in this framework the Fermi Theory, defined by the Lagrangian

LFermi =
GF√

2
J+µ Jµ− =

GF√
2
(ēLiγµνLi)(ν̄Ljγ

µeLj) , (1.25)

is fully predictive and can be seen like a contact interaction. This might look like
a non-renormalizable interaction, since it involves massive couplings, but since it’s
defined only under a certain mass scale we can safely use it in processes whose
energy is under that mass scale. Moreover, you can safely assume that the com-
plete theory, at mEW scale, shall involve only renormalizable terms.
In fact, that’s exactly the case in exam. When considering processes whose en-
ergy scale is of the order of mEW, the complete Lagrangian must be recovered so
that, when integrating out the massive degrees of freedom from it, the Fermi The-
ory Lagrangian emerges. This means that the complete renormalizable theory
and the effective one have the same power of predictivity for processes whose
energy scale is much smaller than the mass of the heaviest mediator.
Taking that in mind, it is clear why, starting with (21), many authors began
to interpret the SM as an incomplete theory, an effective theory where heavier
fields where integrated out, that was only valid under the unknown scale Λ,
determined by some new mediator. That assumption allows to introduce new
interaction in order to take into account, and possibly solve, SM incomplete-
nesses.

For what concerns this work, NSI will be parametrized in an EFT approach,
which allows, after referring to the experimental results, to put boundaries on
the effective energy scale and coupling coefficients in order to obtain some hints
of the complete, renormalizable theory beyond the SM. The procedure followed
in order to build the Effective Lagrangian will be exemplified in chapter 2, while
the bounds on the coefficients will be analyzed in chapter 3.
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building the eft lagrangian The procedure to find this effective La-
grangian is quite general, since it’s independent of the supermassive particles
which are not dynamical degrees of freedom at energies below Λ.
The effective field theory valid below that energy scale should satisfy some fun-
damental requirements:

• its gauge group must be GSM = SU(3)C × SU(2)L × U(1)Y,

• all the SM degrees of freedom have to be incorporated as fundamental
fields,

• the low energy limit is the SM, ruling out the possibility of new particles
below Λ scale.

Fulfilling these requirements inevitably implies that the effective Lagrangian
can be written as an expansion in the Λ scale power

Leff = ∑
d>4

1
Λd−4 C(d)

i Q(d)
i , (1.26)

where Qd
i are all the possible operators of dimension d which are GSM invariant

and are built with the SM fields, while Cd
i , called Wilson coefficients, are the dimen-

sionless couplings that contain information about the couplings of the complete,
higher energy, theory.

This work will deal only with the d = 6 operators, which is quite a non restric-
tive assumption, since higher dimensional operator effects would be suppressed
by the inverse power of the scale. The complete set of those operators, derived
by (22), consists of 59 operators. They introduce new and flavour changing inter-
actions among the SM particles, induce SM coupling modifications and W and
Z masses corrections. The extent of these corrections, in comparison with the
experimental results, may give hints on the value of the Ci.
The complete list of operators can be found in the Appendix A.

renormalization group equation Starting with a theory defined at the
Λ scale, in order to recollect the theory at a lower energy scale µ described by
L(µ), the powerful tool of Renormalization Group Equation (RGE) is required.
The Ci can be determined by a general procedure called matching.

The RGE procedure starts when, going to one loop in the perturbation the-
ory, a fictitious scale µ appears in the dimensional regularization of divergent
integrals, in the form of a large logarithm

α ln
M
µ

∼ O(1) , (1.27)

that spoils the perturbative expansion of the parameter α. This scale must evi-
dently cancel in the calculation of physical quantities. The cancellation is possi-
ble when the theory is correctly renormalized, so that the scale µ appearing in
the one loop integral, will cancel with the renormalization scale arising in the RG
evolution, while calculating physical quantities.
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The renormalization procedure is more delicate since the operators Qi have in gen-
eral two kinds of divergences: the standard one, that can be fixed renormalizing
couplings and wave functions; and another type originating from the highest di-
mension of these composite operators with respect to the one of the SM.

Composite operators involve products of fields in the same space-time point.Composite Operators
Renormalization An example is the simple bare mass operator

M0 = ψ̄0ψ0(x) . (1.28)

In order to make Green’s function containing M0 finite, an additional operator
counterterm is required. The renormalized M reads

M =
1

ZM
M0 =

Zψ

ZM
ψ̄ψ , (1.29)

where ZM is the operator counterterm. In a more general case, like the one in
exam, where there are several composite operators Qi, a renormalization matrix
is required, causing an operator mixing, such as

Q0
i = (Z−1

Q )ijQj . (1.30)

Taking into account the coupling and the wave function renormalization as well,
one obtains the cancellation of all the divergencies along with the cancellation of
the µ scale. An explicit demonstration of the validity of that procedure will be
given in 2.2.
It is straightforward to see, following (23) that this counterterm can be absorbed
in the renormalization of the Wilson coefficients as well, so that

C0
i = ZC

ij Cj =
1

ZC
ij

Ci . (1.31)

This particular feature will produce, in general, a non diagonal anomalous di-
mension matrix γij. Knowing so, it is possible to write the renormalization
group equation for the Wilson coefficients

Ċi ≡ µ
d

dµ
Ci(µ) = γijCj(µ) , (1.32)

where

γij =

(
Z−1µ

d
dµ

Z
)

ij
. (1.33)

Using ordinary perturbation theory the differential equation 1.32 can be formally
solved, using as initial condition Ci(M), computed by matching the full theory
into the effective one, obtaining

Ci(µ) = P exp
[∫ g=µ

g=M
dg

γ(g)
β(g)

]
ij

Cj(M) , (1.34)
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where P denotes the coupling constant ordering of the anomalous dimension ma-
trix.
Choosing as initial condition Ci(M) is extremely important, since it allows to
solve the large logarithm problem. Considering the leading logarithmic approxi-
mation (LLA) of that general solution, in fact, one is able to sum up all the terms
like 1.27 end restore the perturbative approach, eliminating all divergencies.

In that procedure, what is important to stress is that the operator renormal-
ization produces an operator mixing thanks to the anomalous dimension matrix
γij. This means that operators that weren’t present at the scale Λ can, in general,
arise at different scales, thanks to the evolution of their coefficients. In fact, the
running of their coefficient may contain coefficients of other operators, that were
present at Λ scale. This particular feature will be exhaustively described in ??.

matching procedure As stated in (24), in order to obtain the theory at a
lower energy a procedure called matching must be followed.
To determine the values of the coefficients Ci one must compute the amplitudes
M at a given order in perturbation theory both using the theory modified by the
integration of heavy degrees of freedom and the EFT as follows

M = 〈 fn| L∗ |in〉 = ∑
i

Ci 〈 fn| Qi |in〉+ h.c. (1.35)

In general, in order to obtain Leff at the generic scale µ, one have to solve 1.32

in the LLA limit obtaining

Ci(µ) = Ci(Λ) + Ċi(Λ) ln
Λ
µ

. (1.36)

where the matching condition must be fulfilled.
Doing so, the Lagrangian is obtained summing over all the possible coefficients
and flavor structures, obtaining

Leff =
1

Λ2 ∑
i

∑
prst

Ci
prst(µ)Q

i
prst . (1.37)

Concluding, the employment of the RG improved perturbation theory allows
to consistently implement a perturbative procedure that leads to an effective
low-energy Lagrangian. This provides an easier framework for phenomenologi-
cal computations in substitution to the SM one.

In 2, the general procedure treated in the above presentation, will be specified
in the case of the Lagrangian chosen to take into account NSI effects. Starting
from a Leff(Λ), integrating out heavy degrees of freedom, performing matching
conditions and using RGE, the low energy scale Leff(0.1 GeV) is obtained.
In 3 such Lagrangian will be used to obtain bounds on the couplings, referring
to present and future experimental data.





2
A N E F T A P P R O A C H T O N E U T R I N O P H Y S I C S

As previously stated, under the scale Λ ∼ 1 TeV the effective Lagrangian that
describes NP effects would be of the form

Leff = ∑
i

1
Λ2 [Ci]prst[Qi]prst , (2.1)

where the [Qi]prst are dimension-six operators invariant under GSM and the [Ci]prst

their coefficients. The p, r, s, t are flavor indices, which will be omitted if not nec-
essary. It’s straightforward to notice that the flavor structure is completely not
determined a priori and flavor changing is always possible.

Such general Lagrangian, will be specialized by suitably choosing only the
operators contributing to NSI processes. As a consequence, the Leff(Λ) in the
mass basis will be obtained in 2.1. In 2.2, by making use of the RGE, the Wilson
coefficients are evolved in order to obtain the Lagrangian at a generic scale µ <

Λ. In particular, the phenomenological implication arising at mEW, studying
Leff(mEW), are discussed. Finally, in 2.4 we derived the low energy effective
Lagrangian Llow at the scale relevant to neutrino interactions.

2.1 the effective lagrangian at the scale Λ

This work will not tackle the study of the complete Leff, containing all the 59
operators. For the purpose of taking into account Non Standard neutrino Inter-
actions, in fact, it would be suitable enough to restrict the analysis to operators
which give a direct contribution to the observables of interest, like neutrino oscil-
lation probability or neutrino production and detection cross sections. As will be
treated in chapter 3, in fact, NSI can occur both at the source and at the detector
due to the non-orthogonality of flavor states. Therefore, the flavor conversion
νs/d

µ → νs/d
τ can be induced without oscillation.

Neutrinos are produced in the Sun in a series of processes under the name of
pp chain. The main contribution to their production (around 95%) is given by the
reactions

p + p → d + e+ + νe

p + e− + p → d + νe ,
(2.2)

but, due to the small energy of the neutrinos produced this way (Eν < 0.42 MeV),
they can hardly be detected. Most of the detected neutrinos are produced in the
Sun via electron capture processes or β-decays, which are more rare processes but

27
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the energy of the neutrinos produced is higher (Eν > 1 ÷ 10 MeV).

As seen in 1.3, also atmospheric neutrinos must be considered. They are more
energetic (Eν & 1GeV) and the main channel of production are semileptonic and
leptonic decay

π+ → µ+ + νµ

µ+ → e+ + νe + ν̄µ .
(2.3)

No matter how they are produced, the detection depends on the experiment
and usually involves electron scattering and charged and neutral semi-leptonic pro-
cesses as outlined in (25).

In most of NSI analysis only the operator Q``, which describes neutral and
charged leptonic currents, is considered. In this work, the analysis will be broad-
ened to a more general basis of operators. In particular, we will include the
following four fermions operators:

Purely Leptonic Operators

[Q``] ≡ (`γµ`)(`γµ`)

[Q`e] ≡ (`γµ`)(eγµe) ,

Semi-Leptonic Operators

[Q(1)
`q ] ≡ (`γµ`)(qγµq)

[Q(3)
`q ] ≡ (`γµτ I`)(qγµτ Iq)

[Q`edq] ≡ (`
j
e)(dqj)

[Q(1)
`equ] ≡ (`

j
e)εjk(qku)

[Q(3)
`equ] ≡ (`

j
σµνe)εjk(qkσµνu) .

(2.4)

Interactions involving the Higgs Bosons (ψ2φ3 and ψ2φ2D) were not included be-
cause they would have modified Z and W couplings, which are instead precisely
known from measurements.

Moreover, a further assumption is to assume that NP couples only to third
generations, but not to the first two, as the latter are strongly constrained ex-
perimentally. NP couplings to lighter generations shall emerge when rotating
to the mass basis. This assumption is realized in many concrete flavour models
(such as U(1) and U(2) flavour models) and in models where minimal flavour
violation or partial compositeness paradigms are assumed, according to (26).

A few comment on the structure and nature of the chosen operators is needed.

• All the operators are SU(3)C × SU(2)×U(1)Y invariant. Whereas for oper-
ators with a vector structure and for the scalar Q`edq this feature is almost
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self-evident, for the scalar and tensor operators Q(1),(3)
`equ instead, it gets re-

ally explicative to prove it. Those operators, in fact, have a (L̄R)(L̄R) struc-
ture, which at first sight does not seem SU(2) invariant. We then furnish a
proof for Q(1)

`equ since the one for Q(3)
`equ is completely analogous.

Q(1)
`equ = (`

j
e)εjk(qku) = (`(iτ2)qT)(e u)

under SU(2)−−−−−→ (e−igθiτi`(iτ2)e−igθiτ
T
i qT)(e u)

τ2τT
i =−τiτ2−−−−−→ e−igθiτi e+igθiτi︸ ︷︷ ︸

1

(`(iτ2)qT)(e u)

= (`(iτ2)qT)(e u) .

(2.5)

• The proposed set of operators provides a complete basis of four-fermions
operators producing (V − A) lepton currents. Although, it stands out quite
clearly an apparent asymmetry between leptonic and semi-leptonic opera-
tors.
The first difference is that, thanks to a Fierz transformation, one can pro-
duce both neutral and charged current from the fully leptonic Q``, while
one need to introduce Q(3)

`q to produce semi-leptonic charged currents.
Moreover, it is easy to show that a leptonic operator like it would even
be redundant, in fact

(`pγµτ I`r)(`sτIγ
µ`t)

τ I
jkτI

mn=2δjnδmk−δjkδmn
= 2Qptsr

`` − Qprst
`` . (2.6)

The same feature is not possible for the semi-leptonic case because of the
color structure.
The second difference is the absence of purely leptonic scalar and tensor
operators. A purely leptonic operator with a Q`edq structure would be
redundant, since it can be obtained from Qle via a Fierz transformation. In
fact

(`pγµ`r)(esγ
µet) = 2(`p et)(es `r) , (2.7)

where, again, the same feature is not possible for the semi-leptonic case
because of the color structure.
For what concerns the possibility of purely leptonic operators with a Q(1),(3)

`equ
like structure, that is ruled out by the conservation of the hypercharge, that
would be violated in a fully leptonic case

(`
j
e)εjk(`

k
e) Ytot = 1

(`
j
σµνe)εjk(`

k
σµνe) Ytot = 1 .

(2.8)

where we used the conventions on hypercharge already summarized in
1.1, Y = T3 − Q. Note that using an analogous convention one would have
obtained Ytot = −1 which, obviously, in any case represent a violation of
the conservation of hypercharge.
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Having considered those operators, the NP Lagrangian at the Λ scale becomes

L0
eff(Λ) =

1
Λ2

(
C`[Q``]3333 + C1[Q

(1)
`q ]3333 + C3[Q

(3)
`q ]3333 + Ce[Q`e]3333

+ Cs[Q`edq]3333 + Cs1[Q
(1)
`equ]3333 + Cs3[Q

(3)
`equ]3333

) (2.9)

The operators in 2.9 are in the interaction basis. In order to switch to the
mass basis the transformations in 1.10 must be performed, obtaining diagonal-
ized Yukawa matrices but eventually producing mixing in the other sectors, as
previously described.
It could be useful to define some suitable matrices, in order to lighten the nota-
tion

λu
ij = V∗u

3i Vu
3j λd

ij = V∗d
3i Vd

3j λe
ij = V∗e

3i Ve
3j λud

ij = V∗u
3i Vd

3j

Γd
ij = R∗d

3i Rd
3j Γu

ij = R∗u
3i Ru

3j Γe
ij = R∗e

3i Re
3j .

(2.10)

Finally, the Effective Lagrangian at scale Λ, in the mass basis, reads

L0
eff(Λ) =

Cl

Λ2 (ēLγµλeeL)(ēLγµλeeL) +
Cl

Λ2 (ν̄LγµλeνL)(ν̄LγµλeνL)

+
2Cl

Λ2 (ēLγµλeeL)(ν̄LγµλeνL) +
2C3

Λ2 (ēLγµλeνL)(ūLγµλuddL) + h.c.

+
C1 − C3

Λ2 (ēLγµλeeL)(ūLγµλuuL) +
C1 + C3

Λ2 (ēLγµλeeL)(d̄LγµλddL)

+
C1 + C3

Λ2 (ν̄LγµλeνL)(ūLγµλuuL) +
C1 − C3

Λ2 (ν̄LγµλeνL)(d̄LγµλddL)

+
Ce

Λ2 (ēLγµλeeL)(ēRγµΓeeR) +
Ce

Λ2 (ν̄LγµλeνL)(ēRγµΓeeR)

+
Cs

Λ2 (ν̄LV∗
e ReeR)(d̄RR∗

dVuuL) +
Cs

Λ2 (ēLV∗
e ReeR)(d̄RR∗

dVddL)

+
Cs1

Λ2 [(ν̄LV∗
e ReeR)(d̄LV∗

d RuuR)− (ēLV∗
e ReeR)(ūLV∗

u RuuR)]

+
Cs3

Λ2 [(ν̄LV∗
e σµνReeR)(d̄LV∗

d σµνRuuR)

− (ēLV∗
e σµνReeR)(ūLV∗

u σµνRuuR)]

(2.11)

2.2 the effective lagrangian at the scale mEW

In order to obtain Leff(mEW), the procedure exposed in 1.4 will be followed. This
means that the Renormalization Group Equations (RGE) for the Ci will be em-
ployed, in order to obtain an expression for the Wilson coefficients at the generic
scale µ. Notice that, because of the peculiarity of composite operators renormaliza-
tion, it will be possible to obtain a Lagrangian containing many new operators
that were not present at scale Λ. For this reason, many peculiar characteristics
will be carefully analyzed.
After doing so, the Effective Lagrangian at scale µ is obtained specifying the
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generic scale µ = mEW and integrating out the heavy degrees of freedom, namely
the Z and W bosons.

renormalization group evolution Following the procedure exposed
in 1.4 deals, first of all, with finding the solution to 1.32 using a suitable initial
condition, the equation reads

d
dµ

Ci ≡ Ċi = γijCj , (2.12)

and the solution, in the leading logarithm approximation, reads

Ci(µ) = Ci(Λ) + γijCj ln
Λ
µ

, (2.13)

where L0
eff(Λ) has been used as initial condition, which means that the only non-

zero coefficients at the Λ scale are the ones in 2.4.

The general and explicit solution for all 59 operators can be found in (27),
(28) and (29), in which the anomalous dimension matrix has been calculated
for every Wilson coefficient. Such solution has been used in the present work,
being careful to specialize the general case taking into account only the non zero-
coefficients and the possible flavor structures.
That procedure should be repeated for all the operators involved in the RGE
flow, but for our purposes we can consider only the operators of the form ψ2φ3,
ψ2φ2D and the leptonic and semileptonic four fermions operators. Doing so, it
is possible to obtain Leff at the generic scale µ simply performing

Leff =
1

Λ2 ∑
i

∑
prst

Ci
prst(µ)Q

i
prst , (2.14)

which will contain operators that were not present at the Λ scale.
It is important to stress that, without the presence of the matrix γij in 2.12 it
would be impossible to produce any operator mixing.

Let’s see explicitly how this procedure works by applying it to the leptonic
operator Q``.
First, the general expression of the equation must be evaluated at the Λ scale.
Doing so, all the operators that did not appear in 2.4 will vanish.
Then, the equation obtained must be solved for the different flavor structures,
which are: (3333), (33ss), (ss33), (3ss3) and (33st). It is interesting to notice that
this procedure not only produces the appearance of new operators but also of
new flavor structures, since at the Λ scale only the (3333) was allowed.
In the end, summing over the different flavor structures, being careful to consider
possible symmetries that may simplify the flavor structure, the complete solution
can be found.
The equation respected by Cll , having performed some simplifications, namely



32 an eft approach to neutrino physics

NC = 3, yl = 1
2 , yq = 1

6 and γ
(Y)
l

ab

= 1
2 [Y

†
e Ye ]

ab
and noticing that only the up

component of Y are non negligible, reads

Ċ ``
prst

∣∣∣∣
Λ
=

1
3

g2
1C ``

prww
δst +

1
3

g2
1C ``

stww
δpr +

1
3

g2
1C ``

wwst
δpr +

1
3

g2
1C ``

wwpr
δst

+
1
6

g2
1C ``

swwt
δpr +

1
6

g2
1C ``

pwwr
δst +

1
6

g2
1C ``

wrpw
δst +

1
6

g2
1C ``

wtsw
δpr

− 1
6

g2
2C ``

pwwr
δst −

1
6

g2
2C ``

swwt
δpr −

1
6

g2
2C ``

wrpw
δst −

1
6

g2
2C ``

wtsw
δpr

+
1
3

g2
2C ``

swwr
δpt +

1
3

g2
2C ``

pwwt
δrs +

1
3

g2
2C ``

wrsw
δpt +

1
3

g2
2C ``

wtpw
δrs

+ 6g2
2C ``

ptsr
− 3(g2

2 − g2
1)C ``

prst
+

1
3

g2
1C(1)

`q
prww

δst +
1
3

g2
1C(1)

`q
stww

δpr

− g2
2C(3)

`q
prww

δst − g2
2C(3)

`q
stww

δpr + 2g2
2C(3)

`q
srww

δpt + 2g2
2C(3)

`q
ptww

δsr

+
1
3

g2
1C e

prww
δst +

1
3

g2
1C e

stww
δpr .

(2.15)

That differential equation must be solved for the different flavour structure. In
this case, having studied a purely leptonic operator, one need to be aware of the
peculiar relation typical of this operators.
They are Fierz Identity, which implies (L̄aLb)(L̄cLd) = (L̄aLd)(L̄cLb) and the
fact that we’re dealing only with left leptons, which implies (L̄aLb)(L̄cLd) =

(L̄cLd)(L̄aLb).

Taking that in mind, the following solutions are obtained



C ``
3333

(µ) = C`` −
L

(4π)2 3
(

g2
2 + g2

1
)

C``

C ``
3ss3

(µ) = C ``
s33s

(µ) = − L
(4π)2 2

(
g2

2C`` + 2g2
2C3
)

C ``
33ss

(µ) = C ``
ss33

(µ) = − L
(4π)2

[(
2g2

1 −
2
3

g2
2

)
C`` +

2
3

g2
1C1 − 2g2

2C3 −
2
3

g2
1Ce

]
,

(2.16)
where, for the sake of lightening the notation, we defined L = ln Λ

µ .

Hence, after repeating this procedure for all the operators of interest, carefully
considering the peculiar properties of each one, summing them all, following
2.14, one finally gets the full Lagrangian at the generic scale µ. Such general La-
grangian can be specified at the wanted scale, being careful to integrate degrees
of freedom that are not dynamical.

In general we can split the Lagrangian in three sector, each one of which
accounting for a different group of operators, as following

Leff(µ) = δLL + δLSL + δLV . (2.17)
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Explicitly the Leptonic, Semi-leptonic and Vector Lagrangian read

δLL =
L

(4π)2Λ2

[
Q ``

3333
(3g2

1 − 3g2
2)C`` + Q ``

3ss3

(
−4

3
g2

2C`` − 4g2
2C3

)
+ Q ``

33ss

((
2
3

g2
2 − 2g2

1

)
C`` +

2
3

g2
1C1 −

2
3

g2
1Ce + 2g2

2C3

)
+ Q e

3333
(6g2

1Ce) + Q e
33ss

(
−4g2

1C`` +
4
3

g2
1C1 −

4
3

g2
1Ce

)
+Q e

ss33

(
−2

3
g2

1Ce

)
+ Q ee

33ss

(
−4

3
g2

1Ce

)]
(2.18)

δLSL =
L

(4π)2Λ2

[
Q(1)

`q
3333

(g2
1C1 − 9g2

2C3) + Q(1)
`q

33ss

(
2
3

g2
1C`` −

2
9

g2
1C1 +

2
9

g1
1Ce

)
+ Q(1)

`q
ss33

(
−2

3
g2

1C1

)
+ Q(1)

`q
33st

(
−1

2
[Y†

u Yu]s3δ3t −
1
2

δs3[Y†
u Yu]3t

)
C1

+ Q(3)
`q

3333

((
6g2

2 + g2
1
)

C3 − 3g2
2C1
)
+ Q(3)

`q
33ss

(
−2g2

2C3 −
2
3

g2
2C``

)
+ Q(3)

`q
ss33

(
−2

3
g2

2C3

)
+ Q(3)

`q
33st

(
−1

2
[Y†

u Yu]s3δ3t −
1
2

δs3[Y†
u Yu]3t

)
C3

+ Q `u
33ss

(
8
3

g2
1C`` −

8
9

g2
1C1 +

8
9

g2
1Ce

)
+ Q `u

33st

(
2[Yu]s3[Y†

u ]3tC1

)
+ Q `d

33ss

(
−4

3
g2

1C`` +
4
9

g2
1C1 −

4
9

g2
1Ce

)
+ Q qe

33ss

(
−4

3
g2

1C1

)
+ Q qe

ss33

(
2
9

g2
1Ce

)
+ Q ed

33ss

(
−4

9
g2

1Ce

)
+ Q eu

33ss

(
8
9

g2
1Ce

)
+ Q ee

33ss

(
−2

3
g2

1Ce

)
+ Q ee

ss33

(
−2

3
g2

1Ce

)
+ Q`edq

3333

(
8
3

g2
1 + 8g2

3

)
Cs

+ Q`edq
33st

(
−1

2
[Y†

u Yu]s3δ3tCs

)
+ Q(1)

`equ
3333

((
−11

3
g2

1 + 8g2
3

)
C(1)

s −
(
30g2

1 + 18g2
2
)

C(3)
s

)
+ Q(3)

`equ
3333

((
−2

9
g2

1 + 3g2
2 −

8
3

g2
3

)
C(3)

s +

(
−5

8
g2

1 −
3
8

g2
2

)
C(1)

s

)
+ Q(1)

`equ
33st

(
−1

2
[Y†

u Yu]s3δ3t − δs3[YuY†
u ]3t

)
C(1)

s

+Q(3)
`equ
33st

(
−1

2
[Y†

u Yu]s3δ3t − δs3[YuY†
u ]3t

)
C(3)

s

]

(2.19)
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δLV,H =
L

(4π)2Λ2

[
Q(1)

H`
33

(
+2g2

1C`` −
2
3

g2
1C1 +

2
3

g2
1Ce − 6λu

33y2
t C1

)
+ Q(3)

H`
33

(
−2

3
g2

2C`` − 2g2
2C3 + 6λu

33y2
t C3

)
+ QHe

33

(
−2

3
g2

2Ce

)
+ Q(1)

Hq
33

(
+

2
3

g2
1C1

)
+ Q(3)

Hq
33

(
−2

3
g2

2C3

)
+ QeH

33
(−12[YuY†

u Yu]stδstC
(1)
`equ)

+ QeHW
33

(−6g2[Yu]stδstC
(3)
`equ) + QeHB

33
(−10g1[Yu]stδstC

(3)
`equ)

]
.

(2.20)

Some comments are needed: first of all, it is important to notice that in the
evolution of Q`edq, Q(1)

`equ and Q(3)
`equ, the strong coupling g3 is involved. As it

is known, the strong force is asymptotically free and at low scales can become
highly non perturbative.
Most importantly it is important to stress that many new operators, even with
different chiral structure with respect to the Λ scale basis chosen emerge. They
account both for operators with an SM structure, that can linearly modify some
SM parameters, like GF, g1, g2, sin θW and y f and operators with a new structure
that produce new interactions.
For this reason, a closer look on δLV should be given, since it contains terms that
can produce new interactions, namely magnetic moment type interactions and give
contribution to modification of Z, W boson and Yukawa couplings at one loop.

δLV, H analysis In order to analyse the extent of the eventual modification to
SM parameters the operators in δLV must be rewritten in the mass basis, taking
φ = 1√

2
(0, v + h)T and rotating the field following the convention

W3
µ = sinθW Aµ + cosθW Zµ

Bµ = cosθW Aµ − sinθW Zµ

(2.21)

Operators that produce new magnetic moment-type interaction are in the formMagnetic-type couplings

ψ2Xφ and, according to (21) produce a Lagrangian containing

OeHB = e
v

Λ2 (ēLσµνeR)(−Aµν + 2 tan(θ)W∂µZν)

OeHW = e
v

Λ2 (ēLσµνeR)(Aµν − 2 tan(θ)W∂µZν)

− 2
g

cos θW

v
Λ2 (ēLσµνeR)(∂µZν − ig cos θWW+

µ W−
v )

+ 2
√

2g
v

Λ2 (ν̄σµνeR)(Dµ − ig cos(θ)W Zµ)W+
v + h.c. ,

(2.22)

where Dµ = ∂µ − ieAµ and Aµν = ∂µ Aν − ∂ν Aµ and where we didn’t show the
terms depending on the Higgs field.

Operators that produce a modification in the Yukawa couplings are in theYukawa coupling
modification
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form ψ2φ3. In our case only the leptonic operator is produced in the RGE flow
and, taking φ = 1√

2
(0, v + h)T reads

Heφ =
v3

Λ2 ēLeR + 3
v2

Λ2 (ēLeR)h + h.c. (2.23)

In particular the Yukawa coupling to leptons becomes

ye = ySM
e + 2

v2

Λ2 (−12[YuY†
u Yu]stδstC

(1)
`equ) . (2.24)

We listed for completeness those operators but, since they won’t give contribu-
tion to observable interesting for the study of NSI we will neglect them for now
on, for the sake of simplicity.

In the end, we analyze the part of the Lagrangian that produces modification EW couplings
modificationsto Z and W couplings, the only one that is actually relevant in the following. In

order to explicitly evaluate the extent of the corrections to Z and W couplings,
we list the involved operator

Q(1)
H`
33

=
v2

2
g2

cw
[(ν̄LγµλeνL) + (ēLγµλeeL)]Zµ + δLH

Q(3)
H`
33

= −v2 g2√
2
[(ν̄LγµλeeL)W+

µ + h.c.]− v2

2
g2

cW
[(ν̄γµλeνL)− (ēLγµλeeL)]Zµ + δLH

QHe
33

=
v2

2
g2

cW
[ēRγµΓeeR]Zµ + δLH

Q(1)
Hq
33

=
v2

2
g2

cw
[(ūLγµλuuL) + (d̄LγµλddL)]Zµ + δLH

Q(3)
Hq
33

= −v2 g2√
2
[(ūLγµλuddL)W+

µ + h.c.]− v2

2
g2

cW
[(ūγµλuuL)− (d̄LγµλddL)]Zµ + δLH ,

where cW = cos θW .

It is clear that it is possible to express δLV through three terms, accounting for
Z, W and H sector separately

δLV = δLZ + δLW + δLH . (2.25)

While δLH contains terms producing new interactions not present in the SM,
δLZ and δLW have the same structure of the Electro-Weak couplings, hence they
contains corrections to named couplings.

The total Lagrangian describing Electro-Weak sector can be rewritten in order
to take into account those corrections in a more explicit way, as a linear correction
to the EW couplings
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Ltot
Z,W =LSM + δLZ + δLW

= − g2

cW
∑

f
((gL

f + ∆gL
f )ij f̄ i

Lγµ f j
L + (gR

f + ∆gR
f )ij f̄ i

Rγµ f j
R)Zµ

− g2√
2
((gl + ∆gl)ijν̄

iγµej
L + (gq + ∆gq)ijūi

Lγµdj
L + h.c.)W+

µ ,

(2.26)

where gL,R
f , gl,q express the SM couplings, while ∆gL,R and ∆g`,q contain the NP

corrections.

The SM couplings read 
(gL

f )ij = (T3 − q f s2
W)δij

(gR
f )ij = (−q f s2

W)δij

(g`)ij = δij

(gq)ij = (VCKM)ij

(2.27)

The modified Z couplings read



(∆gL
e )ij =

L
(4π)2

v2

Λ2

[
+

g2
2

3
(C`` + 3g2

2) +
g2

1
3
(C1 − Ce − 3C``) + 3λu

33y2
t (C1 − C3)

]
λe

ij

(∆gL
ν )ij =

L
(4π)2

v2

Λ2

[
− g2

2
3
(C`` + 3g2

2) +
g2

1
3
(C1 − Ce − 3C``) + 3λu

33y2
t (C1 + C3)

]
λe

ij

(∆gL
d )ij =

L
(4π)2

v2

Λ2

[
−1

3
(g2

1C1 − g2
2C3)

]
λd

ij

(∆gL
u)ij =

L
(4π)2

v2

Λ2

[
−1

3
(g2

1C1 + g2
2C3)

]
λu

ij

(∆gR
e )ij =

L
(4π)2

v2

Λ2

[
− g2

1
3

Ce

]
Γe

ij

(2.28)
And the modified W couplings read

(∆gl)ij =
L

(4π)2
v2

Λ2

[
−2

3
g2

2(C`` + 3C3) + 6λu
33y2

t C3

]
λij

(∆gq)ij =
L

(4π)2
v2

Λ2

[
−2

3
g2

2C3

]
λud

ij

(2.29)

It is straightforward to notice that corrections to Z and W couplings provide a
non diagonal flavor structure, encoded in λ

f
ij and Γ f

ij matrices.
That provides two breaking difference with respect to the SM:

• A source of lepton flavor violation in the charged current, directly at tree
level, is introduced,

• A source of flavor violation in neutral current both for leptons (L and R
current) and quarks (only L current) emerge.



2.2 the effective lagrangian at the scale mEW 37

Moreover, it is important to notice also the introduction of a dependence on
the fictitious scale µ in the couplings, inside L = ln(Λ \ µ) . The cancellation of
named scale will be proved in section 2.3.

integrating out heavy degrees of freedom After having found, thanks
to Renormalization Group Evolution of the couplings, Leff(µ), the next step is
to integrate out heavy degrees of freedom, such as Z and W boson fields, since
they don’t represent dynamical quantities when running µ to mEW scale.
To do so, some suitable substitutions have to be done, just like in the Fermi
theory. In that context the vector (V = W, Z) propagator, under the Fermi approx-
imation became

iDαβ
F (k, mV) = i

−gαβ + kαkβ

mV

k2 − m2
V + iε

→ i
gαβ

m2
V

, (2.30)

which corresponds to a contact interaction.
The fields in the Lagrangian, as a consequence, are modified as follows

W+,−
µ →

gνµ

m2
W

Jν+,−
√

2
Zµ →

gνµ

m2
Z

Jν 0

2 cos θW
, (2.31)

where symmetry factors have been taken into account. Finally, 2.26 becomes

Ltot
Z,W ≈ − 2

v2 (Jµ 0
SM J0

µ SM + Jµ+
SM J−µ SM + 2Jµ 0

SM J0
µ NP + Jµ+

SM J−µ NP + h.c.) , (2.32)

where only linear terms in ∆g, have been taken into account.
It is clear that the Lagrangian contains now terms in the form of four fermions
operator, and the ones containing NP corrections might give contributions to
terms in δLL and δLSL.

Having done so, it is possible to write the effective Lagrangian at µ = mEW,
being sure that all the heavy degrees of freedom have been integrated out, at
tree level

Leff(mEW) =
1

Λ2 ∑
i

Ci(mEW)Qi . (2.33)

Given Lagrangian must be expressed in the mass basis using 1.10 relations.
Moreover some additional and useful relations for operators of flavor structure
3333, 33ss, ss33 and 3ss3 can be used in order to shorten the calculation such as

f̄ i
3Lγµ f i

3L = f̄ m
L γµλ f f m

L

f̄ i
3Rγµ f i

3R = f̄ m
R γµΓ f f m

R

∑
s

f̄ i
sγµ f i

s = f̄ mγµ f m
(2.34)

For operators whose flavor structure is 33st, instead, some more attention must
be employed, obtaining the following relations
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∑
st

(
[Y†

u Yu]s3δ3t + δs3[Y†
u Yu]3t

)
Vu,tiV∗

u,sj = y2
t (P3λu + λuP3)ij

∑
st
[Yu]s3[Y†

u ]3tR∗
u,sjRu,ti = y2

t λ33uδ3jδi3

(2.35)

Having used all this relations, and adding the contributions coming from 2.32

to the corresponding four fermions operators, the effective Lagrangian at the
mEW scale is obtained

Leff(mEW) =
1

(4π)2Λ2 ln
Λ

mEW
∑

i
ξiQi. (2.36)

The correct, modified, couplings ξi along with their corresponding operators
Qi are listed in the table 2.1.
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Table 2.1: Operators in Leff(mEW) and their coefficients ξi

Leptonic operators in Leff(mSM)

Qi ξi

(ēi
Lγµej

L)(ē
k
Lγµe`L) λkl`

e δij[ 4
3 e2(C1 − Ce − 3C3 − 4C``) − 12λ33y2

t (C1 − C3)(− 1
2 + s2

W)] +

λ
ij
e λk`

e (−3(g2
1 + g2

2)C``)

(ēi
Lγµej

L)(ν̄
k
Lγµν`L) λk`

e δij[ 4
3 e2(C1 − Ce + 3C3 − 2C``) − 12λ33y2

t (C1 + C3)(− 1
2 + s2

W)] +

λ
ij
e λk`

e (−6(g2
1 + g2

2)C``) + λ
ij
e δk`(−6λu

33y2
t (C1 − C3))

(ēi
Lγµej

L)(ē
k
Rγµe`R) δijΓk`

e (− 4
3 e2Ce) + λ

ij
e δk`[ 4

3 e2(C1 − 3C3 − Ce − 4C``) − 12λ33y2
t (C1 −

C3)s2
W ] + λ

ij
e Γk`

e (6g2
1Ce)

(ν̄i
Lγµν

j
L)(ν̄

k
Lγµν`L) δijλk`

e (−6λu
33y2

t (C1 + C3)) + λ
ij
e λk`

e (−3(g2
1 + g2

2)C``)

(ν̄i
Lγµν

j
L)(ē

k
Rγµe`R) λ

ij
e δk`[ 4

3 e2(C1 + 3C3 − Ce − 2C``)− 12λ33y2
t (C1 + C3)s2

W ] + λ
ij
e Γij

e (6g2
1Ce)

(ēi
Rγµej

R)(ē
k
Rγµe`R) Γij

e δk`(
4
3 g2

1Ce) + Γij
e Γk`

e ( 4
3 g2

1s2
WCe)

(ν̄i
Lγµej

L)(ē
k
Lγµν`L) (λ

ij
e δk` + δijλk`

e )(−12λ33y2
t C3)

Semi-leptonic operators in Leff(mEW)

Qi ξi

(ν̄i
Lγµν

j
L)(ū

k
Lγµu`

L) λ
ij
e δk`[ 8

9 e2(Ce − 3C3 + 2C`` − C1) − 12λ33y2
t (C1 + C3)(

1
2 − 2

3 sin2
W)] +

λ
ij
e λk`

u (g2
1 − 3g2

2)(C1 + C3) + λ
ij
e (λ

k3
u δ3` + δk3λ3`

u )(− 1
2 y2

t (C1 + C3))

(ν̄i
Lγµν

j
L)(d̄

k
Lγµd`L) λ

ij
e δk`[ 4

9 e2(C1 − Ce + 3C3 − 2C``) − 12λ33y2
t (C1 + C3)(− 1

2 +
1
3 sin2

W)] + λ
ij
e λk`

d (g2
1 + 3g2

2)C1 − (g2
1 + 15g2

2)C3 + λ
ij
e ((λ

†
ud)

k3V3`
CKM +

(V†
CKM)

k3λ3`
ud)(−

1
2 y2

t (C1 − C3))

(ν̄i
Lγµν

j
L)(ū

k
Rγµu`

R) λ
ij
e δk`[ 8

9 e2(Ce − 3C3 + 2C`` − C1) + 8λ33y2
t (C1 + C3) sin2

W ] +

λ
ij
e δk3δ3`(2y2

t λ33C1)

(ν̄i
Lγµν

j
L)(d̄

k
Rγµd`R) λ

ij
e δk`[ 4

9 e2(C1 + 3C3 − 2C`` − Ce)− 4λ33y2
t (C1 + C3) sin2

W ]

(ēi
Lγµej

L)(ū
k
Lγµu`

L) δijλk`
e (− 4

3 e2(C1 − C3)) + λ
ij
e δk`[ 8

9 e2(Ce + 3C3 + 4C`` − C1) −
12λ33y2

t (C1 −C3)(
1
2 −

2
3 sin2

W)] +λ
ij
e λk`

u ((g2
1 + 3g2

2)C1 − (g2
1 + 15g2

2)C3)+

λ
ij
e (− 1

2 y2
t (C1 − C3))

(ēi
Lγµej

L)(ū
k
Rγµu`

R) λ
ij
e δk`[ 8

9 e2(Ce + 3C3 + 4C`` − C1) + 8λ33y2
t (C1 − C3) sin2

W ] +

λ
ij
e δk3δ3`(2y2

t λ33C1)

(ēi
Lγµej

L)(d̄
k
Lγµd`L) δijλk`

d (− 4
3 e2(C1 + C3)) + λ

ij
e δk`[ 4

9 e2(C1 − Ce − 3C3 − 4C``) −
12λ33y2

t (C1 − C3)(− 1
2 + 1

3 sin2
W)] + λ

ij
e λk`

d (g2
1 − g2

2)(C1 + C3) +

λ
ij
e ((λ

†
ud)

k3V3`
CKM + (V†

CKM)
k3λ3`

ud))(−
1
2 y2

t (C1 + C3))

(ēi
Lγµej

L)(d̄
k
Rγµd`R) λ

ij
e δk`[ 4

9 e2(C1 − Ce − 3C3 + 4C``)− 4λ33y2
t sin2

W(C1 − C3)]

(ēi
Rγµej

R)(ū
k
Lγµu`

L) δijλk`
u (− 4

3 e2(C1 − C3)) + Γij
e δk`( 8

9 e2Ce)

(ēi
Rγµej

R)(d̄
k
Lγµd`L) δijλk`

d (− 4
3 e2(C1 + C3)) + Γij

e δk`( 4
9 e2Ce)

((ēi
Rγµej

R)ū
k
Rγµu`

R) Γij
e δk`( 8

9 e2Ce)

(ēi
Rγµej

R)(d̄
k
Rγµd`R) Γij

e δk`(− 4
9 e2Ce)

(ν̄i
Lej

R)(d̄
k
Ru`

L) (V∗
e Re)ij((R∗

dVu)k`( 8
3 g2

1 + 8g2
3)Cs + ((λu)k3δ3`)(− 1

2 y2
t Cs))

(ēi
Lej

R)(d̄
k
Rd`L) (V∗

e Re)ij((R∗
dVd)

k`( 8
3 g2

1 + 8g2
3)Cs + ((λu)k3δ3`)(− 1

2 y2
t Cs))

(ν̄i
Lej

R)(d̄
k
Lu`

R) (V∗
e Re)ij((V∗

d Rd)
k`((− 11

3 g2
1 + 8g2

3)C
1
s − (30g2

1 + 18g2
2)C

3
s ) +

((λu)k3δ3`)(− 1
2 y2

t C1
s ))

(ēLeR)(ūLuR) (V∗
e Re)((V∗

u Rd)((
11
3 g2

1 − 8g2
3)C

1
s + (30g2

1 + 18g2
2)C

3
s ) + (λ3k

u δ3` +

δk3λ3`
u )( 1

2 y2
t C1

s ))

(ν̄i
Lσµνej

R)(d̄
k
Lσµνu`

R) (V∗
e Re)ij((V∗

d Rd)
k`(− 2

9 g2
1 + 6g2

2 − 8
3 g2

3)C
3
s + ( 5

8 g2
1 − 3

8 g2
2)C

1
s + (λ3k

u δ3` +

δk3λ3`
u )(− 1

2 y2
t C3

s ))

(ēi
Lσµνej

R)(ū
k
Lσµνu`

R) (V∗
e Re)ij((V∗

d Rd)
k`( 2

9 g2
1 − 6g2

2 + 8
3 g2

3)C
3
s − ( 5

8 g2
1 − 3

8 g2
2)C

1
s + (λ3k

u δ3` +

δk3λ3`
u )( 1

2 y2
t C3

s ))

(ν̄i
Lγµej

L)(d̄
k
Lγµu`

L) λ
ij
e λk`

ud(−12g2
2C1 + 4(6g2

2 + g2
1)C3) + λ

ij
e δk`VCKM(−12λ33y2

t C3) +

λ
ij
e (λ

†
ud)

k3V3`
CKM + (V†

CKM)
k3λ3`

ud)(−y2
t C3)
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2.3 cancellation of the µ scale

As exposed in previous sections, the RG evolution of couplings introduces a de-
pendence on the fictitious scale µ. On the other hand, cross sections, and in
general all observable quantities, must be independent on any arbitrary scale.
Thanks to renormalization procedure, in fact, that µ dependence is just the one
needed to cancel µ scale emerging in regularized integrals in one loop diagrams.
That cancellation is checked explicitly in the following example, calculating the
W boson decay in leptons, W+ → e+L νL.

The involved diagrams are

W+

e+ ν

+

p

p1 p2

W+

e+ ν

kf

(2.37)

The amplitude for the formal tree level diagram, with a "one-loop" vertex,
reads

Ma = MSM + ∆M` = −i
g2√

2
ūi6 ε(gl + ∆gl)ijPLvj (2.38)

where

∆M` = −i
g2√

2
v2 L

(4π)2Λ2

[
−2

3
g2

2C`` − 2g2
2C3 + 6λu

33y2
t C3

]
(ūi6 εPLλe

ijvj). (2.39)

is the sector of the amplitude containing the µ dependence, through L.

The four fermions operators contributing to the total one loop diagram ampli-
tude are

(1)
2C``

Λ2 (ēLγµλeνL)(ν̄LγµλeeL)

(2)
2C3

Λ2 (ēLγµλeνL)(ūLγµλuddL)

(2.40)

and corresponds to two different one loop diagrams, with "tree level" vertices
and different fermions running in the loop.
Hence, the total one loop amplitude should be composed of two parts

Mloop = M(1)
loop +M(2)

loop (2.41)

The result of the computation of Mloop + ∆M` should not depend on the
renormalization scale µ, as will be proven in the following. For the detailed cal-
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culation of the one loop amplitude we refer to the Appendix C.

The one loop amplitude with operator (1) inserted, i.e. with leptons in the
loop, reads

M(1)
loop =

4i
(4π)2Λ2 C``

g2√
2
(ūi6 εPLλe

ijvj)
∫ 1

0
dx m2

W x(1 − x) ln
µ2

∆
(2.42)

An analogous calculation must be followed in order to obtain M(2)
loop, the one

loop amplitude with operator (2) inserted. In the assumption that the only non
negligible quark mass is that of the top, mt, this amplitude reads

M(2)
loop =

12i
(4π)2Λ2 C3

g2√
2

∫ 1

0
dx
[

λu
33

(
m2

t (x − 1) + 2m2
W x(1 − x)

)
ln

µ2

∆′

+ (1 − λu
33)(2m2

W x(1 − x)) ln
µ2

∆

]
(ūi6 εPLλe

ijvj) .
(2.43)

In conclusion, summing 2.42 and 2.43 one obtains

Mloop =
4i

(4π)2Λ2
g2√

2
(ūi6 εPLλe

ijvj)[(2C`` + 6C3)m2
WIµ

2 − 3m2
t λ33C3Iµ

1 +

+ 6m2
t C3λ33I3] ,

(2.44)

where

Iµ
1 =

∫ 1

0
dx (1 − x) ln

µ2

∆′

Iµ
2 =

∫ 1

0
dx x(1 − x) ln

µ2

∆

I3 =
∫ 1

0
dx x(1 − x) ln

∆
∆′ .

(2.45)

In the end, conveniently rewriting 2.38, the sum of the one loop and the RGE
Feynman Amplitudes reads

Ma +Mloop =
i

(4π)2Λ2 v2 g2√
2
(ūi6 εPLλe

ijvj)[(2g2
2C``+ 6g2

2C3)I2 − 6λ33y2
t C3I1 + 6g2

2C3λ33I3]

where

I1 =
∫ 1

0
dx (1 − x) ln

Λ2

∆′

I2 =
∫ 1

0
dx x(1 − x) ln

Λ2

∆

(2.46)

which does not depend on the fictitious scale µ, concluding the demonstration.
Similar procedures can be followed to prove the cancellation of the µ scale in any
other process.
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2.4 the effective low energy scale lagrangian

As outlined in the previous discussion, every physical process is characterized
by a specific energy scale. When introducing the EFT approach, the energy scales
of the processes define also the EFT valid in the considered range.
This peculiar characteristic was already sketched in paragraph 2.2 where, consid-
ering energy scales µ ≤ mEW, 2.17 was modified because Wµ and Zµ didn’t stand
for dynamical degrees of freedom anymore, at such energies.
In this sense, every energy threshold defined by the mass of a particle represents
a boundary between EFT Lagrangians where different degrees of freedom are
dynamical.

As seen in the previous sections, many interactions involving neutrinos are
characterized by really small energies, typically of the order of mµ and mπ,
i.e. Eν ∼ 0.1 GeV . For practical reasons, one can safely assume to put the low
energy boundary at a slightly higher energy, i.e. 2 GeV.
In order to correctly describe those processes within an EFT approach, it is cru-
cial to obtain a Lagrangian defined at such scale. Again, by means of RGE and
matching procedures, this low energy scale Lagrangian can be obtained by care-
fully integrate the heavy d.o.f. that are not dynamical anymore.
When running under the mEW scale, there are just one energy scale defined by
the masses of the bottom mb and that have to be crossed, in order to get to 2 GeV.
When going across those scales all the degrees of freedom that are not dynamical
anymore have to be integrated out, reducing the number of d.o.f..

One can define the effective Lagrangian at scale 2 GeV < µ < mb as

Leff =
1

Λ2 ∑
i

Ĉi(µ)Qi . (2.47)

In order to obtain Ĉi(µ) the matching between the Wilson coefficients at every
threshold must be fulfilled.
In table 2.2 the different effective field theories, characterized by different dy-
namical d.o.f, for the different energetic ranges, are listed.

Table 2.2: Energy thresholds in the range mEW ÷ 2 GeV

energy range EFT Lagrangian d.o.f

Λ > µ > mEW Leff =
1

Λ2 ∑i Ci(µ)Qi W, Z, u, d, c, s, b, t, e, µ, τ

mEW > µ > mb Leff =
1

Λ2 ∑i C̄i(µ)Qi u, d, c, s, b, e, µ, τ

mb > µ > 2 GeV Leff =
1

Λ2 ∑i Ĉi(µ)Qi u, d, c, s, e, µ, τ

The matching condition reads

C̄i(mb) = Ĉi(mb) , (2.48)

while the RGE flow for the Wilson coefficients in the different energy ranges
reads
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C̄i(µ) = C̄i(mEW)−
ai

(4π)2 ln
mEW

µ
mb < µ < mEW

Ĉi(µ) = Ĉi(mb)−
bi

(4π)2 ln
mb

µ
2 GeV < µ < mb

(2.49)

where the coefficients ai and bi must be determined using the matching proce-
dure.
Using 2.48 in 2.49, one obtains the expression for Ĉi(µ)

Ĉi(µ) = Ci(mEW)−
1

(4π)2

(
ai ln

mEW

mb
+ bi ln

mb

µ

)
︸ ︷︷ ︸

δCi(µ)

, (2.50)

rewriting δCi(µ) making explicit the µ dependence, one obtains

δCi(µ) =
1

(4π)2 ln
mEW

µ
δξi , (2.51)

with

δξi = − 1
ln µ

mEW

(
ai ln

mEW

mb
+ bi ln

mb

µ

)
. (2.52)

Putting 2.51 in 2.47, remembering the expression for Ci(mEW) used in 2.36, one
obtains

Leff =
1

16π2Λ2 ln
Λ

mEW
ΣiξiQi +

1
16π2Λ2 ln

mEW

µ ∑
i

δξiQi (2.53)

that is the effective Lagrangian at scale 2 GeV < µ < mc, once the coefficients ai,
bi are determined.
In order to identify the coefficients two main procedure can be followed.

The first one basically deals with exploiting the matching condition, imposing
the cancelation of the fictitious scale µ. The first step is to identify four fermion
processes that receive contribution only from a single Qi.
Then, the diagrams contributing to the process must be depicted. In general, one
expect the process to receive three contributions: (i) a truly tree-level contribu-
tion, that will be irrelevant for our purposes, (ii) a formal tree-level contribution
where the vertices are proportional to the unknown coefficients and are "at one
loop" i.e. there is an RGE modification of the vertex and (iii) a one-loop contri-
bution with the insertion of Λ scale operators in 2.4, i.e. "tree level" vertices.
Wanting to calculate the one loop corrections, it is important to stress that under
the mEW scale the two vector bosons that are still dynamical degrees of freedom
are the photon and the gluon. This means that the one-loop diagrams (with tree-
level vertices) can involve only the exchange of virtual photon or gluon and of
the fermions that are dynamical in the considered energy range. Evidently, all
the processes that cannot receive one-loop contributions, will have δξ = 0.
In the end, imposing

MRGE +Mloop = independent from µ , (2.54)
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it is possible to obtain conditions on the coefficients and completely determine
ai, bi and ci.

Diagrammatically, the matching condition reduces to the following pictorial
relation:

g

f f̄

ḡ

=

g

f f̄

ḡ

+

f̄

g ḡ

f

or

γ

ḡ g

f̄ f

γ

f

(2.55)
The other path deals directly with finding a solution to the RGE and is outlined

by (30). This solution can be achieved by computing the anomalous dimension
matrix for the Qi accounting for both QED and QCD corrections. Once again,
one chooses a process and calculates the one loop corrections emerging after in-
serting gluon and photon propagators. Calculating QED (and QCD) corrections
to a process essentially stands for the calculation of the anomalous dimension
matrix γ arising between the operators participating to such process.

In fact, as already stated in 1.4, the anomalous dimension matrix γ is defined
as

γij =
1

Zik

(
dZ

d ln µ

)
kj

, (2.56)

where Z is a renormalization factor that allows to eliminate divergencies (Q0
i =

(Z−1)ijQj) and µ is the renormalization scale.
Then, one can transfer the divergency of the operator Qi to its coefficient Ci so
that

µ
d

dµ
Ci(µ) = γijCj(µ) . (2.57)

Since such Z can be expanded perturbatively, at one loop one gets

Zij = 1 + Z(2)
ij +O(α2) . (2.58)

A simple consequence, directly from 2.56 and 2.58, is that

γij = εZ(2)
ij +O(α2). (2.59)

Concluding, in order to obtain the anomalous dimension matrix at one loop,
all one need to do is to calculate Z(2)

ij , simply evaluating the one loop 1
ε pole

terms.

Various examples of both procedures will be provided: it was chosen to fol-
low the first procedure for what concerns operators involving neutral current
because in that case, as we will see, only two types of one-loop corrections can
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arise in the calculations: electromagnetic current-current and electromagnetic pen-
guins both leptonic and hadronic. The second procedure outlined, instead, will
be applied to a charged current process, i.e. QED and QCD corrections to pion
decay.

current-current operators Current-current neutral operators can have
Vector or Scalar (and Tensor) vertices.
In order to solve 2.55, one needs to list all the one loop diagrams that produces
a correction to those kind of operators:

f

g ḡ

f̄

(1)

+

γ

f

g ḡ

f̄

(2)

+

γ
f̄

g ḡ

f

(3)

+

γ

f

g ḡ

f̄

(4)

+γ

f

g ḡ

f̄

(5)

γ

f

g ḡ

f̄

(6)

+ +γ

f

g ḡ

f̄

(7)

γ

f

g ḡ

f̄

(8)

+ γ

f

g ḡ

f̄

(9)

+
γ

f

g ḡ

f̄

(10)

+
γ

Vector operators are given by the product of two V − A currents and have the Vector vertices

form QCC = ( f̄ γµ M f PL/R f )(ḡγµ MgPL/Rg), where f and g are fermions, PL/R is
a projector and M f ,g is either λ f ,g or Γ f ,g.

Let’s consider the generic process f̄i f → ḡg, which receives contribution at
one loop with the insertion of Q itself and produces the diagrams from (1) to
(10).
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Diagrams (1) and (2) concern vertex corrections, while diagrams from (3) to
(6) correspond to wave function renormalization for every external leg. Because
QED is a renormalizable theory, using Ward Identity it is straightforward to
check that those diagrams give no contribution to the divergent part at all.
Moreover, for that same reason, QCD corrections will not be treated.

Hence, only diagrams from (7) to (10) give a non zero contribution to the one
loop amplitude1.

Being M(7) = M(8) and M(9) = M(10) the total one loop amplitude reads

Mloop = 2M(7) + 2M(9) . (2.60)

The complete calculations of such amplitudes can be found in Appendix C.

The expression for the M(7) amplitude, having isolated only the dependence
on µ, reads

Mµ

(7) =
i

16π2Λ2 (±4e2q f qgCi) ln µ2M f
ij M

g
ij(v̄γµPu)(ūγµPv) (2.61)

Since the only difference in the calculation of M(9) lies in the Dirac structure
of the numerator, it is easy to find its expression and isolate the µ dependence,
obtaining

Mµ

(9) =
i

16π2Λ2 (∓e2q f qgCi) ln µ2M f
ij M

g
ij(v̄γµPu)(ūγµPv) . (2.62)

Then, inserting 2.61 and 2.62 in 2.60, one obtains the sector of the one loop
amplitude with µ dependence

Mµ
loop =

i
16π2Λ2 (±6e2q f qgCi) ln µ2M f

ij M
g
ij(v̄ γµPu)(ūγµPv) . (2.63)

This represents the right part of the pictoric equation 2.55.
The left part takes into account the RGE modifications and must be evaluated in
the different energy ranges.
Using 2.49 in the range mb < µ < mEW one gets

Mµ
(RGE) =

i
16π2Λ2

a
2

ln µ2M f
ij M

g
ij(v̄γµPu)(ūγµPv) . (2.64)

Equating 2.63 and 2.64, in order to obtain the cancellation of the µ dependence,
one gets

a = ±12e2q f qgCi . (2.65)

1 Notice again that if one of the external leg is a neutrino, or in presence of a charged current, the dis-
cussion above changes. For this reason the special case of the operator Q3

`q = (ν̄γµPL`)(ūγµPLd)
will be treated in a different section.
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In the other energy ranges 2.63 is not modified, so that a = b.
This implies that 2.52 becomes

δξi = −a = ∓12e2q f qgCi , (2.66)

which allows us to compute the coefficients for every QCC operator.

Scalar operators need to be analyzed separately since the different vertex Dirac Scalar vertices

structure modifies the calculations with respect to the vector operators.
Scalar operators of the form QS = ( f̄ AiPL/R f )(ḡAiPR/Lg) are modified at one
loop by the insertion of QS itself, with vertex corrections, where the mediator
is the photon. It is not possible to construct Penguin operators since those QS
involve chiral currents, that don’t couple with the photon.
The main difference with respect to the Vector case is that the different Dirac
structures of the vertex do not assure the validity of the Ward identity. In this
case then, one needs to calculate the contributions from all (1) to (10) diagrams
2. This calculation can be found in the Appendix C.

Considering a generic process f̄ ′i f j → ḡ′kgl , that receives contribution only by
the insertion of QSi itself the involved diagrams are just the same that the one of
the vector case.
The sum of the part of all the amplitudes that depend on µ, for the different
vertex structures, reads

MQS =

[
q2

f + q2
f ′ + q2

g + q2
g′

2
I1 − 4(q f q′f + qgq′g) + (q f qg − q f qg′ + q f ′qg − q f ′qg′)

]
×

× iCS

16πΛ2 ln µ2(v̄PLu)(ūPRv)

MQ1
S
=

[
q2

f + q2
f ′ + q2

g + q2
g′

2
I1 − 4(q f q′f + qgq′g))C

1
S + (q f qg + q f ′qg′)i(C1

S − 12C3
S)

− (q f qg′ + q f ′qg)i(C1
S + 12C3

S)

]
1

16π2Λ2 ln µ2(v̄PLu)(ūPLv)

MQ3
S
=

[
q2

f + q2
f ′ + q2

g + q2
g′

2
I1C3

S + (q f qg + q f ′qg′)i(3C3
S −

1
4

C1
S)− (q f qg′ + q f ′qg)i(3C3

S +
1
4

C1
S)

]
×

× 1
16π2Λ2 ln µ2(v̄σµνPLu)(ūσµνPLv) .

2 Once again, the case where one of the legs is a neutrino will be treated with particular carefulness
in the following.
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Comparing the result with 2.64 in order to obtain the cancellation of the µ de-
pendence, since the result does not change in the different energy ranges, one
gets

δξ(QS) =− a(QS) = −2

[
q2

f + q2
f ′ + q2

g + q2
g′

2
I1 − 4(q f q′f + qgq′g)

+ (q f qg − q f qg′ + q f ′qg − q f ′qg′)

]
CS

δξ(Q1
S) =− a(Q1

S) = −2

[
q2

f + q2
f ′ + q2

g + q2
g′

2
I1 − 4(q f q′f + qgq′g))C

1
S

+ (q f qg + q f ′qg′)i(C1
S − 12C3

S)− (q f qg′ + q f ′qg)i(C1
S + 12C3

S)

]

δξ(Q3
S) =− a(Q3

S) = −2

[
q2

f + q2
f ′ + q2

g + q2
g′

2
I1C3

S+

(q f qg + q f ′qg′)i(3C3
S −

1
4

C1
S)− (q f qg′ + q f ′qg)i(3C3

S +
1
4

C1
S)

]

(2.67)

thanks to which one can calculate all the modifications to the couplings of scalar
operators.

penguin operators Penguin operators can have both hadrons or leptons
running in the loop.

Hadronic penguins operators are given by the product of a (V − A) hadronicHadronic penguins

current and a vector lepton current and have the form QH
P = (q̄γµ MqPq)( ¯̀γµ`)

where q are quarks and ` are leptons. Notice that they can involve only neutral
currents because of the photon coupling.

In that case, let’s consider the generic semi-leptonic process q̄iqj → ¯̀k`k.
The contributing one loop diagram is

q̄ q

¯̀ `

lγ

k

(2.68)

where, given the chosen operators at the Λ scale 2.4 and the necessity of the
leptons to couple with the photon, only charged leptons runs in the loop.
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The complete calculation of the one loop amplitude can be found in the Ap-
pendix C, and the final expression reads

Mµ, H
P =

i
16π2Λ2

(
−2

3
e2qlqeCP

)
∑

i
λe

ii ln µ2Mq
ij(v̄γρPu)(ūγµv) , (2.69)

where only the part with a µ dependence was outlined.

This amplitude is not modified in the different energy ranges. In fact, in the
ranges mb < µ < mEW, and 2 GeV < µ < mb all the leptons are dynamical d.o.f
and ∑i λe

ii = 1.

Taking that in mind, comparing the result with 2.64 one obtains

a = b = −4
3

e2qgCP . (2.70)

Using 2.70, 2.52 becomes

δξi =
4
3

e2qg . (2.71)

This result allows us to compute the coefficients for every semi leptonic QH
P op-

erator.

Leptonic penguins operators are given by the product of a (V − A) leptonic Leptonic penguins

current and a vector current. They have the form QL
P = ( ¯̀γµ M`P`)( f̄ γµ f ).

The same considerations made in the hadronic case hold.

In that case, let’s consider the generic process ¯̀ i`j → f̄k fk.
The contributing one loop diagram is

¯̀ `

f̄ f

lγ

k

(2.72)

where both quark and charged leptons run in the loop.

Let’s consider, for example, the case of charged leptons running in the loop.
While the complete calculation of the one loop amplitude can be found in the
Appendix C, the final expression, isolating the µ dependence reads
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ML
P =− 2ie2

16π2Λ2

[
2
3

qe(Ce
L ∑

i
λe

ii + Ce
R ∑

i
Γe

ii) + quCu
L ∑

j
λu

jj + qdCd
L ∑

k
λd

kk

]
×

× ln µ2Me
ij(v̄γµPu)(ūγµv) .

(2.73)

This amplitude is modified in the different energy ranges.
In the energy range mb < µ < mEW in fact, all fermions except the top are
dynamical. Hence, summing over i = 1, 2, 3; j = 1, 2 and k = 1, 2, 3, and equating
the result with 2.64 one gets

a = −4e2qg

[
2
3

ql(Ce
L + Ce

R) + quCu
L(1 − λu

33) + qdCd
L

]
. (2.74)

Analogously, in the energy range 2 GeV < µ < mb one has to sum over i = 1, 2, 3;
j = 1, 2 and k = 1, 2 obtaining

b = −4e2qg

[
2
3

ql(Ce
L + Ce

R) + quCu
L(1 − λu

33) + qdCd
L(1 − λd

33)

]
. (2.75)

Using 2.74 and 2.75, then 2.52 becomes

δξi = −4
3

e2qg

[
−2(Ce

L + Ce
R) + 2Cu

L − Cd
L − 2Cu

L(λ
u
33) + Cd

Lλ̂d
33 ln

mb

µ

]
, (2.76)

which allows to compute the coefficients for every leptonic and semi leptonic QL
P

operator.

Thanks to 2.66, 2.67, 2.71 and 2.76 one can calculate the coefficients for all
operators containing neutral currents. The results are listed in the table 2.3.
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Table 2.3: Neutral-Current operators in Leff and their coefficients δξi

Leptonic operators in Leff(mEW)

Qi δξi

(ν̄i
Lγµν

j
L)(ē

kγµe`) λ
ij
e δk`( 4

3 e2qg)[−2(C`` + Ce) + C1 + 3C3 + 2q`(CeΓ̂e
33) ln mc

µ − 2(C1 +

C3)(λ
u
33 + λ̂u

22 ln mc
µ ) + (C1 − C3)

ˆλd
33 ln mb

µ ]

(ēi
Lγµej

L)(ē
k
Rγµe`R) λ

ij
e Γ`k

e (−12e2Ce) + λ
ij
e δk`( 4

3 e2qg[−2(C`` + Ce) + C1 − 3C3 +

2q`(CeΓ̂e
33) ln mc

µ − 2(C1 − C3)(λ
u
33 + λ̂u

22 ln mc
µ ) + (C1 + C3)

ˆλd
33 ln mb

µ ])−
δijΓk`( 4

3 e2Ce)

(ēi
Lγµej

L)(ē
k
Lγµe`L) λ

ij
e λk`

e (+12e2Ce) + λ
ij
e δk`( 4

3 e2qg[−2(C`` + Ce) + C1 − 3C3 +

2q`(CeΓ̂e
33) ln mc

µ − 2(C1 − C3)(λ
u
33 + λ̂u

22 ln mc
µ ) + (C1 + C3)

ˆλd
33 ln mb

µ ])

(ēi
Rγµej

R)(ē
k
Rγµe`R) Γijδk`(− 4

3 e2Ce)

Semi-leptonic operators in Leff(mEW)

Qi δξi

(ν̄i
Lγµν

j
L)(ū

kγµu`) λ
ij
e δk`(− 4

3 e2qg)[−2(C`` + Ce) + C1 + 3C3 + 2q`(CeΓ̂e
33) ln mc

µ − 2(C1 +

C3)(λ
u
33 + λ̂u

22 ln mc
µ ) + (C1 − C3)

ˆλd
33 ln mb

µ ]

(ν̄i
Lγµν

j
L)(d̄

kγµd`) λ
ij
e δk`( 4

9 e2qg)[−2(C`` + Ce) + C1 + 3C3 + 2q`(CeΓ̂e
33) ln mc

µ − 2(C1 +

C3)(λ
u
33 + λ̂u

22 ln mc
µ ) + (C1 − C3)

ˆλd
33 ln mb

µ ]

(ēi
Lγµej

L)(ū
k
Lγµu`

L) λ
ij
e λk`

u (+8e2(C1 − C3)) + δijλk`
u (− 4

3 e2)(C1 − C3) +

λ
ij
e δk`(− 4

3 e2qg)[−2(C`` + Ce) + C1 − 3C3 + 2q`(CeΓ̂e
33) ln mc

µ − 2(C1 −

C3)(λ
u
33 + λ̂u

22 ln mc
µ ) + (C1 + C3)

ˆλd
33 ln mb

µ ]

(ēi
Lγµej

L)(d̄
k
Lγµd`L) λ

ij
e λk`

d (−8e2(C1 − C3)) + δijλk`
d (− 4

3 e2(C1 + C3)) +

λ
ij
e δk`( 4

9 e2qg)[−2(C`` + Ce) + C1 − 3C3 + 2q`(CeΓ̂e
33) ln mc

µ − 2(C1 −

C3)(λ
u
33 + λ̂u

22 ln mc
µ ) + (C1 + C3)

ˆλd
33 ln mb

µ ]

(ēi
Lγµej

L)(ū
k
Rγµu`

R) λ
ij
e δk`(− 4

3 e2qg)[−2(C`` + Ce) + C1 − 3C3 + 2q`(CeΓ̂e
33) ln mc

µ − 2(C1 −

C3)(λ
u
33 + λ̂u

22 ln mc
µ ) + (C1 + C3)

ˆλd
33 ln mb

µ ]

(ēi
Lγµej

L)(d̄
k
Rγµd`R) λ

ij
e δk`( 4

9 e2qg)[−2(C`` + Ce) + C1 − 3C3 + 2q`(CeΓ̂e
33) ln mc

µ − 2(C1 −

C3)(λ
u
33 + λ̂u

22 ln mc
µ ) + (C1 + C3)

ˆλd
33 ln mb

µ ]

(ēi
Rγµej

R)(ū
k
Rγµu`

R) Γij
e δk`( 8

9 e2Ce)

(ēi
Rγµej

R)(d̄
k
Rγµd`R) Γij

e δk`(− 4
9 e2Ce)

(ēi
Rγµej

R)(ū
k
Lγµu`

L) Γij
e δk`( 8

9
2
Ce) + δijλk`

u ( 4
3 e2(C1 − C3))(1 − λ̂e

33 ln mc
µ )

(ēi
Rγµej

R)(d̄
k
Lγµd`L) Γij

e δk`(− 4
9 e2Ce) + δijλk`

d ( 4
3 e2(C1 + C3))(1 − λ̂e

33 ln mc
µ )

(ēi
Lej

R)(d̄
k
Rd`L) −2(V∗

e Re)ij(R∗
dVd)[

13
9 I1 + 4 · 13

9 ]CS

(ēi
Lej

R)(ū
k
Lu`

R) −2(V∗
e Re)ij(R∗

dVd)[(
13
9 I1 + 4 · 13

9 )C1
S + 4

3 (C
1
S − 12C3

S)]

(ēi
Lσµνej

R)(ū
k
Lσµνu`

R) −2(V∗
e Re)ij(R∗

dVd)[(
13
9 I1 + 4 · 13

9 )C3
S + 4

3 (3C3
S − 1

4 C1
S)]
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qed and qcd corrections to pion decay The case of charged currents
operators differs from the one of neutral currents operators because different
diagrams need to be considered. In that section the general calculation will not
be performed, but we will specify the treatise by means of one explicative and
useful examples: the pion decay. This processes is of main interest in neutrino
physics since it represents one of the main channel of production of atmospheric
neutrinos.

In the case of the semi-leptonic pion decay the operators, and the related coef-
ficients, that contribute to the process ud̄ → µ−ν̄ at the Λ scale are:

C3

Λ2 Q3
`q → − C3

Λ2 (µ̄γµPLν)(ūγµPLd)

Cs

Λ2 Q`edq →
Cs

Λ2 (νPLµ̄)(dPRū)

C1
s

Λ2 Q1
`equ → C1

s
Λ2 (νPLµ̄)(dPLū)

C3
s

Λ2 Q3
`equ → C3

s
Λ2 (νσµνPLµ̄)(dσµνPLū)

(2.77)

and the sum of QED and QCD correction reads, factorizing the one loop factor
α

2π out of Z(2), one gets

d~C(µ)
d log µ

=

(
αem(µ)

2π
γem +

αs(µ)

2π
γs

)
~C(µ) , (2.78)

where ~C = {C3, Cs, C1
s , C3

s }.

QED corrections to the semi-leptonic pion decay arise from one loop diagramsQED corrections

having tree level vertices where the loop is generated from wave-function and
vertex corrections via the exchange of a virtual photon.

The involved diagram, for every vertex, are listed below:

d

µ ν̄

ū

A

γ
d

µ ν̄

ū

B

γ

d

µ ν̄

ū

C

γ
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d

µ ν̄

ū

D

γ
d

µ ν̄

ū

E

γ

d

µ ν̄

ū

F

γ

The wave-function corrections, i.e. diagrams with self energy in one of their Diagrams A, B, C

external legs, give the same contributions no matter what the vertex structure is.
Such diagrams are composite and the correction they bring with them is linearly
proportional to Z2 the wave-function counterterm of QED (31).

Mdiv
A,B,C = i

q2
f

2
αem

2π

CiQi

Λ2
1
ε

(2.79)

where an additional 1
2 term is due as a symmetry factor.

For what concerns diagram D the contributions is modified by the Dirac struc- Diagram D

ture of the different vertexes. The amplitude reads

MD = e2quqd
Ci

Λ2 (ūAiv)
∫ dDk

(2π)D µ4−D (v̄γρ(−6 k −6 p + mu)Bi(6 p′ + 6 k + md)γρu)
(k2 − λ2)[(k + p)2 − m2

u][(k + p′)2 − m2
d]

,

where kµ is the loop momentum, λ is the mass regulator of the photon, pµ and p′µ
are the external momentum and Ai and Bi stands for the different Dirac structure
of the vertex, associated to the Ci = {C3, Cs, C1

s , C3
s }, as follows:

(Ai)(Bi) = {(γµPL)(γ
µPL), (PL)(PR), (PL)(PL), (σµνPL)(σµνPL)} . (2.80)

Considering only the terms with a squared power of k, since the k0 are non
divergent and the k1 are zero when the integral is performed, one gets the results
listed in table 2.4.

Table 2.4: Matrix element for different vertex structures in diagram D

(Ai)(Bi) Mdiv
D

(γµPL)(γ
µPL) −quqd

αem
2π

C3Q3
`q

Λ2
1
ε

(PL)(PR) −4quqd
αem
2π

CsQ`edq

Λ2
1
ε

(PL)(PL) −4quqd
αem
2π

C1
s Q3

`equ

Λ2
1
ε

(σµνPL)(σµνPL) 0

For what concerns the diagram E, there is a dependence on the Dirac structure Diagram E
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of the vertex as well.
The amplitude reads

ME = e2quqµ
Ci

Λ2

∫ dDk
(2π)D µ4−D (v̄γρ(−6 k + 6 p + mu)Aiu)(ūγρ(6 k −6 p′ + mµ)Biv)

(k2 − λ2)[(k − p)2 − m2
u][(k − p′)2 − m2

d]
.

Considering only the terms with a squared power of k, since the k0 are not
divergent and the k1 are zero when the integral is performed, one gets the results
listed in table 2.5.

Table 2.5: Matrix element for different vertex structures in diagram E.

(Ai)(Bi) Mdiv
E

(γµPL)(γ
µPL) −4quqµ

αem
2π

C3Q3
`q

Λ2
1
ε

(PL)(PR) quqµ
αem
2π

CsQ`edq

Λ2
1
ε

(PL)(PL) quqµ
αem
2π

(
C1

s Q1
`equ−

1
4 C1

s Q3
`edq

Λ2

)
1
ε

(σµνPL)(σµνPL) quqµ
αem
2π

(
3C3

s Q3
`equ−12C3

s Q1
`edq

Λ2

)
1
ε

The structure of diagram F is quite analogous to the one of diagram E, forDiagram F

every vertex.
The amplitude reads

MF = e2quqµ
Ci

Λ2

∫ dDk
(2π)D µ4−D (v̄γρ(−6 k + 6 p + md)Aiu)(ūBi(6 k −6 p′ + mµ)γρv)

(k2 − λ2)[(k − p)2 − m2
u][(k − p′)2 − m2

d]
.

Again, considering only the terms with a squared power of k, since the k0 are
non divergent and the k1 are zero when the integral is performed, one gets the
results listed in table 2.6.

Table 2.6: Matrix element for different vertex structures in diagram F.

(Ai)(Bi) Mdiv
F

(γµPL)(γ
µPL) −qdqµ

αem
2π

C3Q3
`q

Λ2
1
ε

(PL)(PR) −qdqµ
αem
2π

CsQ`edq

Λ2
1
ε

(PL)(PL) −qdqµ
αem
2π

(
C1

s Q1
`equ+

1
4 C1

s Q3
`edq

Λ2

)
1
ε

(σµνPL)(σµνPL) −qdqµ
αem
2π

(
3C3

s Q3
`equ+12C3

s Q1
`edq

Λ2

)
1
ε

Then, from 2.59 one gets for the anomalous dimension matrix γem
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γem =


Q − qud − 4quµ − qµd 0 0 0

0 Q − 4qud + quµ − qµd 0 0

0 0 Q − 4qud + quµ − qµd −12qµd − 12qµu

0 0 − 1
4 qµd − 1

4 qµu Q + 3quµ − 3qµd



with Q = ∑i=µ,u,d
q2

i
2 and qij = qiqj.

Notice that such matrix is not diagonal, producing a mixing between the scalar
and tensor operators Q1

`edq and Q3
`edq.

QCD corrections to the semi-leptonic pion decay arise from one loop diagrams QCD Corrections

built via the exchange of virtual gluons coupled with the quark legs. Since the
structure of the gluon vertex is completely analogous to the one of the photon,
since both of them are neutral vector bosons, there will be only minor modifica-
tion with respect to the result found in the QED case.
In particular, the structure will be the same, and the only modification would
refer to charge coefficients, namely

e2qiqj → g2
SCF , (2.81)

where CF is the Casimir in the fundamental representation, which reads

CF = (ta)i
j(t

b)`mδ
j
`δ

ab = TF

(
NC − 1

NC

)
, (2.82)

where TF = 1
2 is the Dynkin in the fundamental representation and NC = 3 the

number of colors so that CF = 4
3 .

The involved diagram, for every vertex, are listed below:

d

µ ν̄

ū

G

g d

µ ν̄

ū

H

g

d

µ ν̄

ū

I

g

Analogously to the case of A, B and C diagrams, the contribution will be in- Diagrams G and H

dependent on the vertex structure. But, differently from the case of QED, as we
will see, in this case the sum of the contribution from A, B and C will be zero
when the vertex has a vertex structure.
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Let’s see it explicitly by calculating the contribution for the different diagrams
for the different vertex structures.

Using 2.81 in 2.79 the divergent amplitude, for every vertex reads

Mdiv
G,H = i

CF

2
CiQi

Λ2
αS

2π

1
ε

. (2.83)

Applying the same reasoning to diagram I, using 2.81 in MD the divergentDiagram I

amplitude, modified by the different Dirac structure, reads

MI = g2
SCF

Ci

Λ2 (ūAiv)
∫ dDk

(2π)D µ4−D (v̄γρ(−6 k −6 p + mu)Bi(6 p′ + 6 k + md)γρu
(k2 − λ2)[(k + p)2 − m2

u][(k + p′)2 − m2
d]

(2.84)

and the results for the different vertex structures are listed in table 2.7.

Table 2.7: Matrix element for different vertex structures in diagram I.

(Ai)(Bi) Mdiv
I

(γµPL)(γ
µPL) −CF

αS
2π

C3Q3
`q

Λ2
1
ε

(PL)(PR) −4CF
αS
2π

CsQ`edq

Λ2
1
ε

(PL)(PL) −4CF
αS
2π

C1
s Q3

`equ

Λ2
1
ε

(σµνPL)(σµνPL) 0

Then, from 2.59 one gets the anomalous dimension matrix γS, which reads

γS =


0 0 0 0

0 −3CF 0 0

0 0 −3CF 0

0 0 0 CF


where, as anticipated, the contribution to the vector vertex is zero. Moreover,

differently to γem, this anomalous dimension matrix is diagonal, so there is no
mixing between the different operators.
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N O N S TA N D A R D N E U T R I N O I N T E R A C T I O N S

As outlined in the previous sections, various experimental results confirmed that
neutrino have masses and oscillate between different flavors.
In the beginning, such peculiar properties were identified as the only source of
lepton flavor violation (LFV) in the SM. It became clear, however, that it is pos-
sible to introduce extra LFV sources when introducing new and dimension six
operators in the EW Lagrangian. Such interactions, called Non-Standard Neu-
trino Interactions (NSIs) can affect neutrino oscillation experiments, modifying
the propagation of neutrinos in matter.
Moreover, NSIs can also affect the production and the detection processes, di-
rectly at the source and at the detector, producing wrong flavor neutrinos, without
oscillation. Those peculiar properties will be treated in 3.1 where an instructive
example of a modification provided by NSIs is explicitly calculated.

On the experimental side, current oscillation data from solar and atmospheric
neutrino experiments leave room for the existence of sub-leading effects, induced
by NSIs. Future, high precision, experiments may shed further light on the
strength of such interactions.
For these reasons, we treat in 3.2 one of the most important neutrino observatory
at work nowadays, IceCube, in order to understand how the experimental data
are gathered and what are the challenges in getting the best out of the existing
data in order to parametrize NSIs.
However, it is also important to discuss what progress can be achieved in the
future, since that kind of studies helps planning new experiments and analyses.
For this reason, in 3.4 a clear overview of one of the most promising future exper-
iment, DUNE, will be held, in order to understand whether and when it would
be possible to detect NSIs.

Subsequently, the most important observables at stake in the named experi-
ments will be analyzed, first in the general parametrization found in literature,
involving εi parameters, then specifying the parameters with Ci, thanks to the
low energy Lagrangian obtained in Chapter 2.

3.1 modified pion and muon decay

In order to give an example of how one can obtain an observable from which
important hints on the coefficients of the various operators emerging at the Λ

57
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scale may be deduced, we calculate the decay rate of the π− → µ−ν̄µ and µ →
eν̄eνµ, which represent two of the main channels of production of neutrinos in
the atmosphere.
By the comparison between the modified and SM decay width, as long as with
the experimental results, one can put boundaries on the allowed values of the εi
and consequently of the Ci.

semi leptonic pion decay One of the main channel of production of at-
mospheric neutrinos is the pion decay: ūd → µ−ν̄. The energies involved are of
the order of mπ ∼ 0.1 GeV.
At those energies gS has grown so big that a perturbative approach is no longer
possible. For this reason, in order to calculate the decay width, it is no longer
possible to draw Feynman diagrams and writing down a Feynman amplitude.
One needs to follow an approach based on symmetries and Quantum Mechani-
cal tools.
First of all, in order to calculate the amplitude, one needs to specify the interac-
tion Lagrangian, and how the elements of the Hilbert space have been built up.
In fact, in general the amplitude reads

M =
〈
µνµ

∣∣Lint
∣∣π−〉 , (3.1)

where Lint is the interaction Lagrangian and |π−〉,
∣∣µνµ

〉
are respectively the ini-

tial and the final state.

The interaction Lagrangian must contain the low energy dimension six opera-
tors contributing to the process, whose coefficients have been extracted in 2.4.
Here, we will make use of another parametrization for those coefficients, but the
relation among the two will be given subsequently. The interaction Lagrangian
reads

Lint =
GF√

2
Vud

[
(1 + εL)(νγµPLµ̄)(ūγµPLd) + εR

S (νPLµ̄)(ūPRd)

+εL
S(νPLµ̄)(ūPLd) + εT(νσµνPLµ̄)(ūσµνPLd)

]
,

(3.2)

where the εi coefficients are related to the Ci, conveniently rescaling the GF de-
pendence, once one specifies the Λ scale Lagrangian.

The complete Lagrangian, a priori, should contain also a (νγµPLµ̄)(ūγµPRd)
term (32). This operator originates from the operator Qφud at the Λ scale, after
the running under the EW scale and the integration of the heavy degrees of free-
dom.
In the present work we chose to select only four fermion operators containing
(V − A) lepton currents: for this reason Qφud was not included in the Λ scale.
The choice of the operator basis at the Λ scale is arbitrary but well motivated.
In fact, the insertion of Qφud would have implied that all the ψ2φ2D operators
should have been included, producing a large basis to work with. Such a large
basis was far beyond the scope of the present work, but could be definitely
considered in the future. Moreover, since the renormalization of those kind of
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operators is moltiplicative and does not involve mixing, its exclusion does not
affect too much the final result and can be easily added, if necessary.
In addition, such contribution does not represent a new source of LFV, being
Lepton Flavor Universal. Then, it clearly represents quite a less interesting sce-
nario, with respect to the aim of the present work.

The complete calculation is performed in C, where we made use of PCAC
relations. In the end, the total decay width, integrated over the solid angle,
reads

Γ = ΓSM

∣∣∣∣1 + εL − (εL
S − εR

S )
m2

π

mµ(md + mu)

∣∣∣∣2 , (3.3)

where ΓSM has been factorized in order to compare the result to the one without
effective interactions and reads

ΓSM =
1

8π
(G2

F f 2
πV2

udm2
µ)

(
1 −

m2
µ

m2
π

)
mπ . (3.4)

muon decay Another important channel of production of neutrinos in the
atmosphere is the muon decay µ− → e−ν̄eνµ which occurs at energies of the
order of mµ ∼ 0.1 GeV.

Since only leptons are involved, the calculation of that amplitude can proceed
without the carefulness of the previous case. The perturbative approach is al-
lowed and one can follow the standard procedure, quoted in appendix C.

The interaction Lagrangian contains all the low energy dimension six opera-
tors contributing to the process, whose coefficients have been extracted in 2.4.
The interaction Lagrangian reads

Lint =
GF√

2

[
(1 + ε``)(νµγµPLµ̄)(ν̄eγµPLe) + ε`e(ν̄eγ

µPLνµ)(µ̄γµPRe)
]

, (3.5)

where the εi can be related to the Ci once the Λ scale Lagrangian is provided.

Using Feynman rules one obtains a Feynman amplitude that reads

M = −i
GF√

2
[(1 + ε``)(ū(pe)γ

µ(1 − γ5)u(pµ))(ū(pνµ)γµ(1 − γ5)v(pνe))

+ ε`e(ū(pe)γ
µ(1 + γ5)u(pµ))(ū(pνµ)γµ(1 − γ5)v(pνe))] .

(3.6)

By using Gammology relations, one gets the modulo-squared amplitude, aver-
aged over the spins of the initial state, which reads

1
4
|M|2 = 4G2

F(pµ · pνµ)(pe · pνµ)
[
|1 + ε``|2 + 4|ε`e|2

]
. (3.7)

The total decay width reads

Γ = ΓSM

[
|1 + εll |2 + 4|εle|2

]
(3.8)
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where ΓSM has been factorized in order to compare the standard expression with
the modified one and reads

ΓSM =
G2

F
192π3 m5

µ . (3.9)

We can see that the term εle does not sum coherently with the SM, for this reason
we can neglect it.

Before directly analyzing the different observables of interest, it is instructiveThe Fermi constant

to make a brief comment on the modification of the Fermi constant, in order to
have a more complete overview on the case in exam.
It is clear that all the observable processes in neutrino experiments„ are medi-
ated by weak interactions. For this reason, when modifying the cross sections in
order to introduce NSI effects, one should be aware that also the Fermi constant
GF itself receives a modification. This modification is directly related with the
modification to the muon decay amplitude and must be absorbed in the redefini-
tion of G0

F, the value of the SM, for this reason, given the Λ scale basis we chose,
it reads

G0
F = GF − δGF = GF

(
1 − v2

16π2Λ2

(
3C3y2

t λ22
e λu

33 log
(

Λ
mEW

)2
))

, (3.10)

where GF is the experimental value extracted from muon decay rate measure-
ments.
Numerically, this correction is below the 0.1% level and it is usually negligible.
Given the sensitivity that will be reached at DUNE though, a priori one should
include these modifications. In order to do so, a simple redefinition of G0

F should
be performed.
Actually, as we will see in the following, this modification gives no effect on the
observable RN at stake at DUNE. This, in fact, is usually defined through ratios
of NSI cross sections of weak processes so, since the numerator and the denomi-
nator undergo the same redefinition, in the end the correction simply cancels.
Only the observable Rt and Re undergoes a modification, since they involve a
ratio between NSI and SM quantities. For this reason, the redefinition of GF will
be implemented only in these quantities.

It is also interesting to analyze how other input parameters, such as the entriesThe CKM matrix

of the CKM matrix, undergo NSI modifications after the introduction of the Λ
scale of dimension-six operators. In particular, we will focus on the quantity
Vud which is involved in one of the processes at stake at DUNE, the neutrino
scattering off nuclei.
Since Vud is usually extracted from beta-decays rate measurements, one should
study the NSI modifications to this amplitude, as already seen in the case of
GF and the modified muon decay rate. Nevertheless, in this case there is a
huge difference: in our set up, in fact, Λ scale NP does not couples with first
generations, hence the neutron decay rate does not receive a direct modification.
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But, since beta-decays are mediated by weak interaction, Γβ actually receives a
modification through the redefinition of the input parameter GF

Γ0
β ∝ (G0

F)
2|V0

ud|2
3.10−−→ (GF − δGF)

2|V0
ud|2

∝ G2
F|V0

ud|2
(

1 − 2
δGF

GF

) (3.11)

then, one can redefine Vud in order to absorb this modification, obtaining

V0
ud ' Vud

(
1 +

δGF

GF

)
' Vud

(
1 +

v2

16π2Λ2

(
3C3y2

t λ22
e λu

33 log
(

Λ
mEW

)2
))

.
(3.12)

The only DUNE observable that will be affected by this redefinition will be
RN since it involves a ration between neutral and charged semi-leptonic weak
currents.

3.2 the icecube neutrino observatory

The IceCube Neutrino Observatory is nowadays the largest neutrino telescope
in the world. It is located near the Amundsen-Scott South Pole Station, and con-
sists of a cubic-kilometer detector made of instrumented ice, buried at a depth
of 2.5 km.
It contains two sub-detectors: (i) DeepCore, a denser portion in the center of
the main detector, which lowers the neutrino energy threshold in order to make
possible the study of neutrino oscillations; (ii) IceTop, which is located above
IceCube (IC). It is used as a calibration detector and to measure the flux and
composition of cosmic rays.

The main fields of interest that are studied at IC are: the measure of Cosmic
Rays and in particular of the anisotropy in the arrival directions of muons, using
IceTop; the search for sterile neutrinos and the measure of the atmospheric oscil-
lation parameters, using DeepCore; the indirect search for Dark Matter, posing
the most stringent upper limits yet for spin-dependent interactions of dark mat-
ter particles with ordinary matter.

In addition, many next generation experiments are scheduled to be held in
the next years at IC such as PINGU, the Precision IceCube Next Generation Up-
grade, which will allow to study neutrino oscillations at an energy threshold of
a few GeV, hopefully enabling the determination of many neutrino properties,
such as mass hierarchy (20).

the icecube detector IC is a Čerenkov detector: neutrinos are not electri-
cally charged but when they interact with the ice in the detector they produce
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charged secondary particles that emit Čerenkov light, traveling through the ice1.
The detector consists of 86 strings containing various photomultiplier tubes,
called Digital Optical Modules (DOMs) that can detect the Čerenkov radiation
produced by secondary particles. Of those strings, only 8 form DeepCore.

Figure 3.1: Detector geometry: the relative position of the strings is highlighted. From
(33).

Thanks to this topology it is possible to reconstruct the direction of the muon
with a resolution of 12° at 10 GeV. Moreover, from the the track length of the
muon, it is possible to measure its energy allowing to reconstruct the energy of
the neutrino. The energetic range DeepCore is allowed to measure spans from 5
GeV to the order of a TeV.

Nevertheless, many systematic uncertainties affect the collected data, among
them:

• Ice column scattering coefficients: scattering of light in the ice which could
spoil the determination of the incoming angle of neutrinos.

• Overall normalization: a parameter that scales the event rate expectation
freely. This absorbs overall normalization uncertainties due to total cosmic
ray flux.

• Oscillation parameter: the simultaneous fit for the standard oscillation pa-
rameters sin2 θ23 and ∆m23.

neutrino physics at icecube One of the main field of research at IC is
neutrino physics. In the energy range DeepCore is sensitive, it is possible to
observe atmospheric neutrino oscillations and even try to perform searches for
sterile neutrinos.
Moreover, since the effect of the NSIs is expected to grow with the distance
traveled through matter, the flux of atmospheric neutrinos detected by IC at the

1 The Čerenkov effect takes place when a charged particle travels through a medium with a greater
speed than the one of light in that medium. Electromagnetic radiation is emitted at particular
angle θ. For this reason this effect is widely exploited to detect high-energy charged particles.
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South Pole is ideal for such a study.

The measure of neutrino oscillation parameters at IC is based on the search
for a deficit among neutrinos traveling through Earth, thus with a Zenith angle
of 90°. In that set up, the disappearence probability for νµ peaks at ∼ 25 GeV,
but the oscillation signal is measurable up to energies of 100 GeV.

Table 3.1: Oscillation parameters measured at IceCube

∆m2
23 sin2 θ23

NH 2.310 × 10−3 eV2 0.514
IH −2.321 × 10−3 eV2 0.508

The measures of atmospheric oscillation parameters are comparable with those
obtained by MINOS, T2K and Super-Kamiokande.

Having observed in long lasting researches that the survival probability for
atmospheric muon neutrinos depends on the energy of the incoming neutrino,
one can use the data in Table 3.1 in order to obtain boundaries on the strength
of NSIs that might eventually modify this probability, taking into account all
the systematic uncertainties and the construction set up that are peculiar of this
experiment.
At the energies and oscillation lenghts taken in exam at IC, as will be fully ex-
posed in 3.3, the so called source and detector NSIs, are too subdominant so that
only matter NSI strength was analysed.

Moreover, in the case of atmospheric neutrinos, the presence of large NSI cou-
plings could spoil the excellent description given by classic neutrino oscillation.
For this reason there exist quite strong bounds on the magnitude of matter NSI,
from atmospheric neutrino data. The results obtained from IC data are depicted
in Figure 3.2.

IC data produce some of the most stringent bounds ever obtained for flavor-
changing matter NSIs, in full agreement with longer lasting experiment like
Super Kamiokande, such as

− 0.0067 < εm
µτ < 0.0081 (90%C.L.) , (3.13)

which shall probably be improved by one order of magnitude by PINGU.

Having said so, it is important to review how NSIs are parametrized in an
EFT approach. Then, it would be possible to calculate the modified survival and
oscillation probabilities and compare the result with the standard predictions.
A number of remarks on the detection prospects at Čerenkov detectors like Ice-
Cube will also be provided, specifying the overview with the experimental char-
acteristics of the DeepCore detector.
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Figure 3.2: Confidence limits from the analysis performed in (33), on the NSI parameter
εm

µτ . Dashed vertical red lines show the 90% credibility interval using a flat
prior on εµτ . The light blue vertical lines show the Super-Kamiokande 90%
confidence limit. The light green lines show the 90% credibility region from
(34).

3.3 nsis at icecube

Let us consider neutrino NSIs as generated by NP at a Λ scale and described
in a model independent way by an EFT approach. In the case in exam, we will
take into account only dimension-six four-fermion operators, both purely lep-
tonic and semileptonic.
These can be neutral current (NC) operators, which are usually called matter
NSIs since they modify neutrino propagation in matter, or charged current (CC)
operators which are referred to as production and detection NSIs since they modify
the flavor eigenstate at the source and at the detector, adding coherently to the
SM term.

modified oscillation probability In order to understand the mecha-
nism behind the production of wrong flavor neutrinos at the source and the de-
tector, and to parametrize the extent of matter NSI corrections, let us consider
the following example of an experiment, where a neutrino is produced in asso-
ciation with a lepton ` and another lepton `′ is detected.

ν`

¯̀
Source

Time Evolution−−−−−−−−→

ν`′

¯̀′
Detector

(3.14)

The generally accepted interpretation was to assume ν` → ν`′ oscillation. How-
ever, when introducing NSIs, which violate flavor symmetry directly at the
source and detector, there could be sources of flavor violation different from
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the oscillation.
For the sake of simplicity, let us consider the effective Lagrangian encoding all
NSIs, containing both CC and NC operators

LNSI =− 2
√

2GF[(δαβ + εαβ)( ¯̀γµPLν)(J+µ ) + ε
f L
αβ (ν̄αγµPLνβ)( f̄ γµPL f )

+ ε
f R
αβ (ν̄αγµPLνβ)( f̄ γµPR f ) + h.c. ,

(3.15)

where J+µ denotes the SM charged current, both leptonic and quarkonic, and the
sum over f runs over f = u, d, `.
The parameters ε

f
αβ, ε

f L
αβ and ε

f R
αβ parametrize the strength of NSIs. We will relate

them to Wilson coefficients, since we specified the operators that are present in
the low-energy effective Lagrangian.

In order to understand the effect of production and detection NSIs, let us con-
sider a Quantum Mechanic approach, denoting by |νs

α〉 the state of the neutrino
produced at the source and by

∣∣νd
α

〉
the neutrino detected. One can parametrize

these states, with respect to the flavor eigenstate, as

∣∣∣νp=s,d
α

〉
=

∑β(δαβ + ε
p
αβ)
∣∣νβ

〉√
∑β |δαβ + ε

p
αβ|2

, (3.16)

where εs
αβ = εαβ and εd

αβ = ε∗αβ are the strength of the CC term.

In order to further simplify the discussion, it is requested to make some as-
sumption.

• NSIs affect only generations 2 ↔ 3, which is clearly a non-restrictive as-
sumption when dealing with atmospheric neutrinos;

• The expansion at first order in ε
p
αβ is a good approximation, since the ε’s

are small quantities, surely less then 1;

• ε
p
αβ is real.

In order to obtain a more manageable expressions, the following relations
must be employed

up =
(1 + ε

p
µµ)√

|1 + ε
p
µµ|2 + |εp

µτ|2
, tp =

ε
p
τµ√

|1 + ε
p
µµ|2 + |εp

µτ|2
,

zd =
(1 + εd

ττ)√
|1 + εd

ττ|2 + |εd
µτ|2

, wd =
εd

τµ√
|1 + εd

ττ|2 + |εd
µτ|2

.

(3.17)

Following these requirements one gets∣∣νp
µ

〉
≡ up

∣∣νp
µ

〉
+ tp

∣∣νp
τ

〉
≈
∣∣νµ

〉
+ ε

p
µτ |ντ〉 ,∣∣νp

τ

〉
≡ wp

∣∣νp
µ

〉
+ zp

∣∣νp
τ

〉
≈ ε

p
µτ

∣∣νµ

〉
+ |ντ〉 ,

(3.18)
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which are clearly non orthogonal states.
In fact 〈

νs
α

∣∣∣νd
β

〉
= εαβ =

1 +O(ε2) α = β

εs
αβ + εd

αβ +O(ε2) α 6= β
(3.19)

where the standard case is recovered imposing ε → 0.

In order to check how NSIs (both CC and NC) affect the oscillation probability,
let us follow the procedure outlined in 1.3.

The expression for the modified Hamiltonian in the flavor basis is modified by
matter NSIs and is parametrized as follows:

H =
1

2E
U

(
m2

2 0

0 m2
3

)
U† +

(
Vµµ Vµτ

V∗
µτ Vττ

)
, (3.20)

where U is the well known PMNS matrix, the elements of the matrix that modi-
fies the Hamiltonian are

Vαβ = Vdεm
αβ where

Vd ≡
√

2GFnd(x)

εm
αβ ≡ n(x)

nd(x) (ε
R
αβ + εL

αβ) ,
(3.21)

nd(x) is the density at the detector and n(x) the density of the medium, which
one can assume to be approximately constant.

Since IceCube is sensible to atmospheric neutrinos only, the NSIs predicted in
our framework would affect only the second and the third generation. Moreover,
for long baselines as the ones taken into account at IceCube (the Earth diame-
ter), CC NSIs are actually negligible, but we incorporate them anyway in the
general expression of the modified probability. Being said so, since the relation
between the flavor and the mass eigenstates is the well known 1.16, it is possible
to calculate the νµ survival probability. Pµµ(L) is given by

Pµµ(L) =|usu∗
d + tst∗d|2 cos2

(
∆EL

2

)
+ |(usu∗

d − tst∗d) cos 2θ − (ust∗deiφ + tsu∗
de−iφ) sin 2θ|2 sin2

(
∆EL

2

)
− Im[(usu∗

d + tst∗d)((usu∗
d − tst∗d) cos 2θ − (ust∗deiφ + tsu∗

de−iφ) sin 2θ)] sin(∆EL) .
(3.22)

Analogously, the νµ transition probability can directly be obtained from Pµµ

via some simple substitutions. It reads

Pµτ(L) = Pµµ(L)ud→wd , td→zd , (3.23)
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where

∆E =

√(
∆m2

23
2E

cos 2θ0 + Vµµ − Vττ

)2

+ 4
∣∣∣∣−∆m2

23
4E

sin 2θ0 + Vµτ

∣∣∣∣2 (3.24)

sin 2θ =
2
∣∣∣−∆m2

23
4E sin 2θ0 + Vµτ

∣∣∣
∆E

(3.25)

cos 2θ =
∆m2

23
4E sin 2θ0 + Vµµ − Vττ

∆E
(3.26)

φ = arg
(
−∆m2

23
4E

sin 2θ0 + V∗
µτ

)
(3.27)

It is instructive to expand those expressions at first order in the ε parameter,
since it gives a much simpler and immediate expression. Conservation probabil-
ity reads

Pµµ(L) =
∣∣∣〈νs

µ(0)
∣∣∣νd

µ(t)
〉∣∣∣2

= 1 − sin2(2θ0) sin2 x

− 1
2

sin2(2θ0) sin(2x)[(εm
µµ − εm

ττ) cos(2θ0)− 2 Re(εm
µτ) sin(2θ0)]VdL

+
1
2

sin(4θ0)
sin2 x

x
[2 Re(εm

µτ) cos(2θ0) + (εm
µµ − εm

ττ) sin(2θ0)]VdL

− sin(4θ0) sin2 x Re(εs
µτ + εd

µτ)− sin(2θ0) sin(2x) Im(εs
µτ − εd

µτ) ,
(3.28)

while transition probability

Pµτ(L) =
∣∣∣〈νs

µ(0)
∣∣∣νd

τ(t)
〉∣∣∣2

= sin2(2θ0) sin2 x

+
1
2

sin2(2θ0) sin(2x)[(εm
µµ − εm

ττ) cos(2θ0)− 2 Re(εm
µτ) sin(2θ0)]VdL

− 1
2

sin(4θ0)
sin2 x

x
[2 Re(εm

µτ) cos(2θ0) + (εm
µµ − εm

ττ) sin(2θ0)]VdL

− sin(4θ0) sin2 x Re(εs
µτ + εd

µτ)− sin(2θ0) sin(2x) Im(εs
µτ − εd

µτ) ,
(3.29)

where

x =
∆m2L

4E
. (3.30)
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Via simple algebra it is straightforward to see now that, due to the non orthog-
onality of the source and detector states, the total probability is not unitary. In
fact

Pµµ(L) + Pµτ(L) = 1 − sin(4θ0) sin2 x Re(εd
τµ + εd

µτ)− sin(2θ0) sin(2x) Im(εd
τµ − εd

µτ)

6= 1
(3.31)

where

x =
∆m2L

2E
. (3.32)

Few more points need to be stressed:

• When neutrino interactions are described only by the SM, εi → 0, one
recovers the usual expressions of survival and oscillation probability, as
well as orthogonality and unitarity of probability:

Pµµ(L) = 1 − sin2(2θ0) sin2 x , Pµτ(L) = sin2(2θ0) sin2 x .

• Model-dependent bounds in several new physics scenarios indicate that
constraints on CC NSIs are typically much more stringent.

• In the limits ∆m2 � E/L and ∆m2 ∼ 0, the oscillation and survival prob-
abilities become x-independent. In the case of NSIs, Pµτ(L) 6= 0, even for
massless neutrinos, but it is constant in distance, hence it does not show
an oscillation pattern.

Having made this important premise, in order to produce bounds on the pa-
rameters of the Λ scale Lagrangian, we need to specify the expressions of the εi
parameters as they emerge in our setup. They read

• Source/Detector parameters

ε``αβ =
v2

16π2Λ2 (−12λe
αβy2

t λu
33C3) log

Λ
mEW

,

εs`
αβ =

v2

16π2Λ2 (−12λe
αβy2

t VCKMC3) log
Λ

mEW
.

(3.33)



3.3 nsis at icecube 69

• Matter parameters

εm u
αβ =

v2

16π2Λ2 λe
αβ log

Λ
mEW

[
16
9

e2(Ce − 3C3 + 2C`` − C1)

−12λ33uy2
t

(
1
2
− 4

3
sin2 θW

)]
,

εm d
αβ =

v2

16π2Λ2 λe
αβ log

Λ
mEW

[
8
9

e2(C1 − Ce + 3C3 − 2C``)

−12λu
33y2

t (C1 + C3)

(
−1

2
+

2
3

sin2 θW

)]
,

εm e
αβ =

v2

16π2Λ2 λe
αβ log

Λ
mEW

[
8
3

e2(C1 − Ce + 3C3 − 2C``)

−12λu
33y2

t (C1 + C3)

(
−1

2
+ 2 sin2 θW

)]
.

(3.34)

Then we need to specify the parameters that are present in these expressions, we
can safely put that yt ' λu

33 ' 1, v = 246 GeV and assume the scale of NP to be
Λ ' 1 TeV. As a result, the parameters εm

αβ, defined in 3.21, and εs,d
αβ defined by

3.19 become

• Source/Detector parameter

εs
αβ ' 6 × 10−3

(
1 TeV

Λ

)2

C3λe
αβ . (3.35)

• Matter parameter

εm
αβ ' 10−3

(
1 TeV

Λ

)2

[−(0.01)(Ce + C``) + (C1 + C3)]λ
e
αβ , (3.36)

where lower order corrections have been neglected.

Some comments are needed:

• the magnitude of the two NSI parameters is comparable, even if, as it will
be exposed in the following, their effect in the modified conservation and
transition probability is different,

• the Wilson coefficients associated to leptonic operators (C`` and Ce) are
suppressed with respect to C1,3 of a factor 10−2. Assuming that all the Ci’s
are of the same order (≈ O(1)), this means that semi-leptonic interactions
give a greater contribution to NSIs.

In any case, this parametrization is in agreement with the current experimental
bounds on the NP parameters εi, whose best fit is nowadays fixed by 3.13.
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In order to better understand the extent and the relevance of those parameters
in the modification of the observable at stake at IceCube, a specified overview
for the case of the IC detector properties is requested.

modified oscillation probability at icecube Having calculated the
general expression for the modified conservation and transition probability (3.28

and 3.29), it is instructive to specify such a general result in the case in exam, i.e.
with the energies and the experimental set up of the IceCube Observatory.

The IceCube detector, as already mentioned, investigates a flux of neutrinos
and antineutrinos along the Zenith direction, in the energy range Eν = [10, 200]
GeV. The parameters at stake are then

• the Zenith angle corresponds to cos θz = −1,

• the average potential along the Earth profile can be assumed to be Vd '
9 × 10−13 eV,

• then, VdL ' 62 that for L ' d⊕ = 1.27 × 104 km.

Having fixed this set of parameters, it is clear that, with reference to 3.29, the NC
NSIs are enhanced with respect to CC NSI of a factor VdL. Consequently, even
if the magnitude of εs/d

αβ (3.35) is comparable with εm
αβ (3.36), for long baseline

experiments, such as IceCube, we can neglect the effect of CC NSIs and focus
only on the matter NSI parameters εm

µµ, εm
ττ and εm

µτ.

Standard matter effects and NSIs can be distinguished using the energy and
arrival direction distributions of observed flavor-violating transitions. The neu-
trino flavor oscillations due to the well-established mass differences have been
observed from atmospheric neutrinos predominately at energies initially below
10 GeV and recently up to 56 GeV.
The observation of atmospheric neutrino oscillations at different energy ranges,
but at the same baseline-energy ratio (L/E) highlights the complementarity of
neutrino experiments at different energy ranges. Moreover, the signal predicted
for the dominant νµ → ντ NSIs, parametrized by the coupling εm

µτ, can be seen
over a larger range of energies, as shown in fig. 3.3.

The importance of the IceCube experiment in this case is that, its energy range
extends to higher energies than that of previous studies, thus giving greater sen-
sitivity. Moreover, with the future IceCube upgrade, PINGU, it will be possible
to perform a low energy study, Eν < 5 GeV, in order to further extend the sensi-
tivity of the experiment.

Another interesting issue is that, in general, Čerenkov detectors cannot distin-
guish neutrino from antineutrinos. In fact, the standard conservation probability
P0 is the same for both νµ and ν̄µ. The primary neutrino source for this type of
analysis is provided by atmospheric neutrinos and, at the South Pole, the flux
ratio νµ/ν̄µ ' 1 at 10 GeV but it increases with energy. It also slightly depends
on the Zenith angle, with small seasonal variations (35). It is striking to notice,
though, that when introducing NSI modifications, the conservation probability is
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Figure 3.3: νµ(left) and ν̄µ(right) survival probability at zenith angle cos(θz) = −1, corre-
sponding to vertically up going neutrinos that traverse the entire diameter of
the Earth, for standard oscillations (blue) and εm

µτ = 10−2 NSI modification
(red).

Figure 3.4: νµ(left) and ν̄µ(right) survival probability at zenith angle cos(θz) = −1, cor-
responding to vertically up going neutrinos that traverse the entire diameter
of the Earth, for standard oscillations (blue) and εm

µµ − εm
ττ = 10−2 NSI modi-

fication (red).

different from particle to antiparticle, in particular in its behavior around 50 GeV.

For completeness, it is interesting to show the modified NSI conservation prob-
ability when it is parametrized by the difference εm

µµ − εm
ττ. The magnitude of

NSIs with respect to the standard conservation probability, in the energy range
Eν = [5, 300] GeV, is shown in fig. 3.4.

It is instructive to make a comparison with the case where νµ → ντ NSIs are
parametrized by ε′ = εm

µµ − εm
ττ.

• Region of interest - In 3.3 NSI effects are visible in the full neutrino energy
range, while in 3.4 NSI effects are visible only in the oscillation minimum
around 25 GeV.

• Magnitude - The ratio PNSI/P0 in the energy range of interest for the conser-
vation probability, i.e. Eν ' 25 GeV, is larger when NSIs are parametrized
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by εm
µτ and analogously in the energy range of interest in the oscillation

probability, i.e. Eν > 100 Gev.

• νµ and ν̄µ - While PNSI parametrized by ε′ shows a little discrepancy between
the neutrino and anti-neutrino survival probability, which are actually dif-
ferent only in the Eν ' 25 GeV minimum, the discrepancy becomes quite
relevant for NSIs parametrized by εm

µτ.

Therefore, we can conclude that the optimal method for searching for an NSI
signal is to use a large range of neutrino energies, where one expects a combined
effect of the NSI survival probability in the low-energy region, Eν ' 25 GeV, and
an exclusively NSI oscillation signal in the high-energy region. In this context,
the scenario of NSI parametrized by εm

µτ seems more promising.
Moreover, it is an important result that the constraints derived in our setup, in
particular 3.36, are compatible with the best fit −0.0067 < εm

µτ < 0.0081 at a 90%
C.L., found by (33).

3.4 the dune project

In order to push even further the sensitivity and precision of neutrino experi-
ments, many next-generation projects have been planned. Among them, one of
the most promising is the DUNE project.

The Deep Underground Neutrino Experiment (DUNE) is an international project,
whose aim is to study neutrino physics BSM. The main fields of interest span
from the innermost of particle physics to the urgent issues of modern cosmol-
ogy. For these reasons DUNE will focus on the study of neutrino oscillation, the
observation of supernova neutrinos originating from black holes and the search
for proton decay.

The experiment, that is planned to start operating in 2027, will be made up of
two detectors: a near detector at the Fermi National Accelerator Laboratory in Illi-
nois and a far detector at the Sanford Underground Research Laboratory in South
Dakota. They will be placed in the world’s most intense neutrino beam. One
detector will record particle interactions near the source of the beam, in order
to provide constraints on the systematic uncertainties in oscillation studies; the
other will be installed more than 1,300 kilometers downstream the source and
1.4 km underground, protected from muons and cosmic rays. These detectors
will enable scientists to search for new subatomic phenomena and potentially
transform our understanding of neutrinos and their role in the universe.

the physics program The technologies and the configuration of the planned
detectors offer excellent sensitivity to a range of physics processes. Among the
other, the most important features are represented by the following items.

• The muon-neutrino beam produced at FermiLab has a peak flux at 2.5 GeV,
which, coupled with a baseline of 1, 300 km to the fare detector gives a very
good sensitivity to Non Standard neutrino effects.
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• The near detector located downstream of the neutrino beam at Fermilab
will enable high-precision long-baseline oscillation measurements, which
will allow a precise determination of the oscillation parameters still unde-
termined. Given the configuration, a huge number of events is expected,
providing data for a rich program of neutrino interaction physics.

• Liquid argon as a target material provides unique sensitivity to the electron-
neutrino (νe) component, relevant in many observables at stake.

With the facilities provided by Fermilab and the detectors provided by DUNE,
the DUNE Collaboration proposes to mount a focused attack on the puzzle of
neutrinos, with particular attention to neutrino oscillation parameters and NSIs.
For this reason this program represents one of the most interesting prospect in
neutrino physics.

3.5 nsis at dune

The unprecedented neutrino flux that will be studied at DUNE offers a huge
opportunity to greatly improve the current limits on Wilson coefficients. As will
be seen, in fact, the constraints that we will be able to produce on the parameters
of NP are 1 − 2 orders of magnitude more strict then the previous ones.
In the following the possible consequences of the DUNE neutrino experiment
on constraining NSI parameters are analyzed. In order to understand the extent
of such impact one needs to quantify the DUNE sensitivity to dimension-6 op-
erators in the EFT Lagrangian, by analyzing the expected number of events that
affect the observables at stake.

In general, the predicted number of events can be calculated using

N = time × #targets × efficiency ×
∫ E f

Ei

dEν
dφ(Eν

dEν
σ(Eν) , (3.37)

where the parameters involved have been chosen as follows

• the span of time considered for the operation is 3 years, which is a period
of time perfectly consistent with other long-baseline experimental runs,

• the target is calculated for 1.1 × 1021 proton on target, with a 120 GeV
proton beam,

• the neutrino energy is assumed to range from 0.25 GeV < Eν < 8.25 GeV,
since the contribution from higher energies would be negligible,

• the neutrino flux φ is simulated following (36),

• the cross section σ is to be calculated depending on the relevant observable
at DUNE for the trident production and neutrino scattering off electrons
and nuclei.

Since the cross sections could be, in principle, modified by NSI effects, the
comparison with the expected number of events could allow us to put constraints
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on some of the coefficients. For the following we assumed the number of events
predicted by (37).
Let us focus on the different processes separately. In general they would involve
leptonic (trident production, neutrino scattering off electrons) and semi-leptonic
(neutrino scattering off nuclei) processes. All the cross sections involved have
been calculated explicitly in Appendix D.

trident production Neutrino trident events are processes where a neu-
trino impacting on a heavy nucleus produces a lepton pair: ναN → νβe+e−N. For
what concerns the experimental side, the observable process are νµ → νµµ−µ+

and νe → νeµ
−µ+. The best choice is represented by νµ → νµµ−µ+, since the to-

tal SM cross section is bigger and consequently the number of events would be
more notable. The explicit calculation of the cross section is given in Appendix
D and the modification due to NSIs can be obtained by expanding the couplings
at first order.

The ratio between the SM and NSI-modified cross section reads

Rt =
σ(νµ → νµµ−µ+)

σSM(νµ → νµµ−µ+)
= 1 + 2

g2222
L ε2222

L + g2222
R ε2222

R
(g2222

L )2 + (g2222
R )2︸ ︷︷ ︸

δRt

, (3.38)

where g2222
L and g2222

R are the SM couplings to Z defined in 2.27 and ε2222
L,R are the

NSI couplings to (ν̄µγµPLνµ)(µ̄γµPLµ) and (ν̄µγµPLνµ)(µ̄γµPRµ) respectively.

Those couplings need to be specified in terms of Wilson coefficients after the
running of the Λ scale Lagrangian. In our context, having implemented the GF

modifications, they read

ε2222
L =

v2

16π2Λ2 log
Λ

mEW
λ22

e

(
4
3

e2(C1 − Ce + 3C3 − 2C``)

−12λ33y2
t (C1 + C3)

(
−1

2
+ s2

W

)
− 3C3y2

t λ22
e λu

33

)
,

ε2222
R =

v2

16π2Λ2 log
Λ

mEW
λ22

e

(
4
3

e2(C1 − Ce + 3C3 − 2C``)

−12λ33y2
t (C1 + C3)s2

W − 3C3y2
t λ22

e λu
33
)

,

(3.39)

where sub-leading terms have been neglected.

Then, one can translate the total number of events calculated with 3.37 to
forecast the NSI coefficients. Specifying all the parameters at stake, imposing
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y2
t = λu

33 = 1, λe
22 ' 0.1 and the scale of NP to be Λ = 1 TeV, the following

constraints were obtained

−0.039 <1.3 × 10−3
(

1TeV
Λ

)2

×

×
(

λ22
e

0.1

)
[(0.01)(Ce − 2C``) + (0.02)C1 + (0.1)C3)] < 0.039 ,

(3.40)

where higher order corrections have been neglected.
Assuming that all the Wilson coefficients are approximately of the same order,
it is straightforward to see that all the different parameters scale approximately
with the same power, so there is no enhancement of a particular class of them.
Moreover, the δRt predicted by the model, setting Λ = 1, λe

22 = 0.1 and Ci =

O(1) in 3.40, falls within the interval allowed by the forecast constraint, which
is in agreement with the bounds previously found in literature. In this case, in
fact, the number of events that can be seen at DUNE is not much greater than
the previous experiments’, producing bounds that are not stricter.

neutrino scattering off electrons Neutrino scattering off electrons
can be both a CC or NC process. For what concerns CC processes, like νµe− →
νeµ

−, they can be neglected since their threshold (Eν ' 10.9 GeV) is larger then
the neutrino energy in DUNE (0.25 ÷ 8.25 GeV). Only the cross section from NC
processes like νµe− → νµe− and its conjugate, then, would be calculated. The
explicit calculation for the cross section of interest can be found in Appendix D.
The interesting ratio, this time, differs form neutrino to anti neutrino events and,
after having implemented GF modifications inside ε2211

L , reads

Re = 2
xiσ

ν
NSI + x̄iσ

ν̄
NSI

xiσ
ν
SM + x̄iσ

ν̄
SM

= 1 + 2
(1 + 2xi)(g2211

L ε2211
L ) + (3 − 2xi)g2211

R ε2211
R

(1 + 2xi)(g2211
L )2 + (3 − 2xi)(g2211

R )2︸ ︷︷ ︸
δRe

, (3.41)

where xi stands for the abundance of neutrinos and antineutrinos in the beam,
which can be approximately taken to be xν = 0.9, x̄ν = 0.1, since the neutrino
beam consists of approximately 90% neutrinos and 10% antineutrinos. The NSI
coefficients ε2211

L,R need to be specified in terms of Wilson coefficients after the
running of the Λ scale Lagrangian. In our context, having added the contribution
from the GF modification, they read

ε2211
L =

v2

16π2Λ2
1
2

[
λ22

e

(
4
3

e2(C1 − Ce + 3C3 − 2C``)

−12λ33y2
t (C1 + C3)

(
−1

2
+ s2

W

))
− 9

0.87
C3y2

t λ22
e λu

33

]
log

Λ
mEW

,
(3.42)

ε2211
R =

v2

16π2Λ2
1
2

[
λ22

e

(
4
3

e2(C1 − Ce + 3C3 − 2C``)− 12λ33y2
t (C1 + C3)s2

W

)]
log

Λ
mEW

,

(3.43)
where sub-leading terms have been neglected.
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Then, specifying all the parameters at stake, imposing y2
t = λu

33 = 1, λe
22 ' 0.1

and the scale of NP to be Λ = 1 TeV, and comparing the result with the total
number of events calculated with 3.37, one obtains the following forecast on the
NSI coefficients:

−8.0 × 10−4 < 2.6 × 10−3
(

1 TeV
Λ

)2 (λ22
e

0.1

)
×

× [(−0.4)(C1 + 3C3) + (0.05)(Ce − C``)] < 8.0 × 10−4 ,
(3.44)

where higher order corrections have been neglected.
Given those stringent constraints, we can safely assume that DUNE is expected
to dramatically improve the existing constraints, which are listed by (1). This is
due the great number of events that DUNE will be able to observe, according to
(37), thanks to its improved sensibility.
Moreover, it is straightforward to see, assuming that all the Wilson coefficients
are approximately of the same order, that the semi-leptonic parameters C1 and
C3 are enhanced with respect to the leptonic coefficients C`` and Ce of a factor
10. Semi-leptonic processes will then seem to give a stronger contribution to NP.
What it is interesting to notice is that, the dependence of the predicted δRe with
respect to the Λ scale of NP, highlights an important feature. In fact, as can be
seem in fig. 3.5, the prediction of our model is in agreement with the experimen-
tal forecast only for Λ ≥ 4 TeV. For smaller energy, it falls outside the allowed
interval, even if abundantly inside the more loose bounds found in literature
until now.
This further confirms the strictness of DUNE bounds, which allow to put more
stringent bounds on the Λ scale of NP.
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Figure 3.5: Dependance of δRe with respect to the Λ scale of NP, following 3.44 where
we set λe

22 = 0.1 and Ci = O(1). The red region corresponds to the forecast
bounds that are expected from the DUNE experiment. It can be seen that the
predicted value of δRe in our setup falls inside the allowed region for Λ ≥ 4
TeV.



3.5 nsis at dune 77

neutrino scattering off nuclei Neutrino scattering off nuclei are typ-
ically CC processes like ναN → e−α N+ and NC processes like ναN → ναN.
The observable that is usually considered in those cases is the ratio among CC
and NC quantities, which, in the SM framework can in turn be expressed in term
of only the CC cross section as showed in (38). It reads

RSM
N =

xσNC + x̄σ̄NC

xσCC + x̄σ̄CC = (gν
L)

2 +
x̄σCC + xσ̄CC

xσCC + x̄σ̄CC︸ ︷︷ ︸
r−1

ν

(gν
R)

2 , (3.45)

then, the observable of interest at DUNE reads

RN = RSM
N (1 + δRN) (3.46)

where

δRN = −δVud − εCC + 2
gν

Lεν
L + r−1

ν gν
Rεν

R

(gν
L)

2 + r−1
ν (gν

R)
2

, (3.47)

where, in the case of a beam of neutrinos, rν has been estimated to be ' 2.5 and
x = 0.9.
In order to take into account δVud and εCC the coefficients can be re-expressed in
the relation

gν
Lεν

L = (gνu
LLενu

LL + gνd
LLενd

LL)− (gνu
LL + gνd

LL)
2(εCC

L + δVud) ,

gν
Rεν

R = (gνu
LRενu

LR + gνd
LRενd

LR)− (gνu
LR + gνd

LR)
2(εCC

L + δVud) ,
(3.48)

where ε
νq=u,d
L,R are NSI the couplings to (ν̄αγµPLνβ)(q̄γµPL,Rq), while εCC

L is the
NSI coupling to (ν̄αγµPL`β)(d̄γµPLu) and δVud was extracted in 3.12.
Once again, we give the explicit expression for those couplings in terms of the
Wilson coefficients that emerged in the running from the Λ scale Lagrangian:

ενu
LL =

v2

16π2Λ2 log
Λ

mEW

λ22
e
2

[
8
9

e2(Ce − 3C3 + 2C`` − C1)− 12λ33
u y2

t (C1 + C3)

(
1
2
− 2

3
s2θW

)]
,

ενd
LL =

v2

16π2Λ2 log
Λ

mEW

λ22
e
2

[
4
9

e2(C1 + 3C3 − 2C`` − Ce)− 12λ33
u y2

t (C1 + C3)

(
−1

2
+

1
3

s2θW

)]
,

ενu
LR =

v2

16π2Λ2 log
Λ

mEW

λ22
e
2

[
8
9

e2(Ce − 3C3 + 2C`` − C1) + 8λ33
u y2

t (C1 + C3)(s2θW)

]
,

ενd
LR =

v2

16π2Λ2 log
Λ

mEW

λ22
e
2

[
4
9

e2(C1 + 3C3 − 2C`` − Ce)− 4λ33
u y2

t (C1 + C3)

]
,

εCC
L =

v2

16π2Λ2
1
2

log
Λ

mEW
[λ22

e λ11
ud(−12g2

2C1 + 4(6g2
2 + g2

1)C3) + λ22
e Vud(−12λ33

u y2
t C3] ,

δVud =
v2

16π2Λ2

(
3C3y2

t λ22
e λu

33 log
(

Λ
mEW

))

where sub-leading terms have been neglected.
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Then, specifying all the parameters at stake, imposing y2
t = λu

33 = 1, λe
22 ' 0.1

and the scale of NP to be Λ = 1 TeV, and comparing the result with the total
number of events calculated with 3.37, one obtains the following constraints on
the NSI coefficients

−9.6 × 10−5 < 2.9 × 10−3
(

1TeV
Λ

)2 (λ22
e

0.1

)
×

× [(−0.5)(C1 + C3) + (0.005)(Ce + 2C``)] < +9.6 × 10−5
(3.49)

where higher order corrections have been neglected.

Given those stringent constraints, we can safely assume that DUNE is expected
to dramatically improve the existing constraints, even better that in the case of
neutrino scattering off electrons. Moreover, it is straightforward to see that, as-
suming all the Wilson coefficients to be approximately of the same order, the
semi-leptonic parameters C1 and C3 are enhanced with respect to the leptonic
coefficients C`` and Ce of a factor 102. As already observed in the previous cases,
semi-leptonic processes will again seem to give a stronger contribution to NP,
even more decisive that in the previous case.

What it is important to stress in this case, as was already done in the case of
scattering off electrons, is that, in order to accomplish the new predicted bounds,
it will be necessary to consider a slightly greater Λ scale of NP. In fact, as can be
seen in fig. 3.6, δRN falls inside the allowed region for Λ ≥ 5.5 TeV.
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Figure 3.6: Dependance of δRN with respect to the Λ scale of NP, following 3.49 where
we set λe

22 = 0.1 and Ci = O(1). The red region corresponds to the forecast
bounds that are expected from the DUNE experiment. It can be seen that
the predicted value of δRN in our setup falls within the allowed region for
Λ ≥ 5.5 TeV.
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Given this discussion, it is clear that DUNE is going to dramatically improve the
constraints on the parameters at stake in the its observables, giving us a deeper
knowledge of neutrino NSIs in the prospect of searching for NP BSM.
Even if the assumption that the DUNE errors will be dominated by statistics
is clearly very optimistic, one can reach an O(104) relative precision for ν cou-
plings to muons and light quarks, and for some semi-leptonic operators. This is
beyond the direct reach of the LHC or near-future colliders, as well as beyond
the indirect reach of electroweak precision measurements at LEP, as stated by
(37). Without the DUNE input, the expected precision is typically an order of
magnitude worse.
Obviously, with less optimistic assumptions about the systematic errors achiev-
able in DUNE, projections are degraded, but this must be just an encouragement
for future efforts to reduce experimental and theoretical sources of these errors.





C O N C L U S I O N S

The nature of neutrino masses and mixing represents one of the most compelling
hints in the flavor sector of the Standard Model, addressing to New Physics.
In the beginning, neutrino peculiar properties were identified as the only source
of lepton flavor violation in the SM, but it became clear that it was possible
to introduce extra lepton flavor violation sources when introducing new and
dimension-six operators in the Lagrangian, using the tools provided by the Ef-
fective Field Theory approach. Such interactions, called Non-Standard Neutrino
Interactions (NSIs) can affect neutrino oscillation experiments, modifying the
propagation of neutrinos in matter. NSIs can also affect the production and the
detection processes, directly at the source and at the detector, producing wrong
flavor neutrinos, without oscillation.
On the experimental side, current oscillation data from solar and atmospheric
neutrino experiments leave room for the existence of sub-leading effects, induced
by NSIs, as it has been proved in a great number of experimental analyses, for
example using data from the IceCube Telescope, one of the most promising ex-
periment at work nowadays. Future, high precision, experiments may shed fur-
ther light on the strength of such interactions as motivated in the analysis of the
DUNE project, that should start operating in 2027.

In the present MSc thesis we analyzed the most interesting observables at
stake in NSI experiments in a model-independent way, assuming New Physics
to originate at a scale Λ ' 1TeV.
In order to perform such a study, we have started by building the NP Lagrangian
at the scale Λ in terms of 2 six-dimensional leptonic and 5 six-dimensional semi-
leptonic operators. Then, we have derived the low-energy effective Lagrangian
extensively: we have addressed running effects from Λ to the EW scale by em-
ploying one-loop RGEs in the limit of exact electroweak symmetry, and, after in-
tegrating out heavy degrees of freedom, we have described the evolution down
to 1 GeV using RGEs dominated by the electromagnetic interaction.
In the last part of our work, we have studied the most relevant phenomenolog-
ical consequences of the derived Lagrangian. In particular, we focused on the
observables at stake in two of the most promising among the present and future
neutrino experiment, IceCube and DUNE.

For what concerns the IceCube experiment we focused on the modification
to oscillation probability. Specifying the Wilson coefficients enclosed in the NP
parameters εm and εs/d, we could be able to state that the coefficients associated
to leptonic operators (C`` and Ce) are suppressed with respect to C1,3 of a factor
102. Assuming that all the Ci’s are of the same order (' O(1)), this means that
semi-leptonic interactions give a greater contribution to NSIs. Moreover, we were
able to confirm that our parametrization was in agreement with the current ex-
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perimental bounds on the NP parameters and constituted a stricter bound with
respect to the ones found in the literature. Moreover, we chose to analyze the
ratio PNSI/P0 in the energy range of interest, specifying all the parameters accord-
ing to the experimental set up, in order to be able to understand the extent and
the relevance of those parameters in the modification of the observables at stake
at IceCube.

Regarding the DUNE project, we also parametrized the modifications to the
observables at stake, due to NP corrections. For what concerns trident produc-
tion observable, we were able to state that this observable is not going to increase
our knowledge on the NP parameters, since the constraints are of the same or-
der of the ones found in the literature. Studying scattering off electrons and off
nuclei observables instead, has been much more instructive. The rate of events
that we expect will produce stricter bounds on the NP parameters than the ones
found until now. In particular, they both impose to increase the chosen scale of
NP, of a factor 2-3, assuming Λ & 5 TeV.
In the end, all the three observables showed a predominance of the effect of the
semi-leptonic coefficients with respect to the leptonic ones, implying that semi-
leptonic interactions give a greater contribution to NSIs.

The chosen Λ scale Lagrangian was able to successfully describe NSIs. More-
over, even if the constraints given by IceCube were promising, it is very likely
that DUNE will be the first probe of effective neutrino couplings, at least in
scattering off electrons and nuclei.
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D I M E N S I O N S I X O P E R AT O R S

In this section we list the SU(3)× SU(2)× U(1) invariant dimension-six opera-
tors that can be used to build any EFT Lagrangian.

X3 φ6 and φ4D2 ψ2φ3

QG f ABCGAν
µ GBρ

ν GCµ
ρ Qφ (φ†φ)3 Qeφ (φ†φ)( ¯̀ perφ)

QG̃ f ABCG̃Aν
µ GBρ

ν GCµ
ρ Qφ� (φ†φ)�(φ†φ) Quφ (φ†φ)(q̄purφ̃)

QW εI JKW Iν
µ W Jρ

ν WKµ
ρ QφD (φ†Dµφ)∗(φ†Dµφ) Qdφ (φ†φ)(q̄pdrφ)

QW̃ f I JKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2φ2 ψ2Xφ ψ2φ2D

QφG φ†φGA
µνGAµν QeW ( ¯̀ pσµνer)τ IφW I

µν Q(1)
φ` (φ†iDµφ)( ¯̀ pγµ`r)

QφG̃ φ†φG̃A
µνGAµν QeB ( ¯̀ pσµνer)φBµν Q(3)

φ` (φ†iDI
µφ)( ¯̀ pτ Iγµ`r)

QφW φ†φW I
µνW Iµν QuG (q̄pσµνTAur)φ̃GA

µν Qφe (φ†iDµφ)(ēpγµ`r)

QφW̃ φ†φW̃ I
µνW Iµν QuW (q̄pσµνur)τ I φ̃W I

µν Q(1)
φq (φ†iDµφ)(q̄pγµqr)

QφB φ†φBµνBµν QuB (q̄pσµνur)φ̃Bµν Q(3)
φq (φ†iDI

µφ)(q̄pτ Iγµqr)

QφB̃ φ†φB̃µνWµν QdG (q̄pσµνTAur)τ IφGA
µν Qφu (φ†iDµφ)(ūpγµur)

QφWB φ†τ IφW I
µνBµν QdW (q̄pσµνdr)τ IφW I

µν Qφd (φ†iDµφ)(d̄pγµdr)

QφW̃B φ†τ IφW̃ I
µνBµν QdB (q̄pσµνdr)φBµν Qφud (φ†iDµφ)(ūpγµd)

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Q`` ( ¯̀ pγµ`r)( ¯̀sγµ`t) Qee (ēpγµer)(ēsγµet) Q`e ( ¯̀ pγµ`r)(ēsγµet)

Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Q`u ( ¯̀ pγµ`r)(ūsγµut)

Q(3)
qq (q̄pγµτ I`r)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Q`d ( ¯̀ pγµ`r)(d̄sγµdt)

Q(1)
`q ( ¯̀ pγµ`r)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Qqe (q̄pγµqr)(ēsγµet)

Q(3)
`q ( ¯̀ pγµτ I`r)( ¯̀sγµτ I`t) Qed (ēpγµer)(d̄sγµdt) Q(1)

qu (q̄pγµqr)(ūsγµut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R)

Q`edq ( ¯̀ j
per)(d̄sqj

t)

Q(1)
quqd (q̄j

pur)εjk(q̄k
s dt)

Q(8)
quqd (q̄j

pTAur)εjk(q̄k
s TAdt)

Q(1)
`equ ( ¯̀ j

per)εjk(q̄k
s ut)

Q(3)
`equ ( ¯̀ j

pσµνer)εjk(q̄k
s σµνut)
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B
U S E F U L R E L AT I O N S A N D C O N V E N T I O N S

b.1 feynman rules

In this section we list all the Feynman rules that were used in the calculation of
Feynman amplitudes.

• Photon Propagator:

k
µ ν =

−igµν

k2 + iε
(B.1)

• Charged boson Propagator:

k
µ ν =

−igµν

k2 − M2 + iε
(B.2)

• Gluon Propagator:

k
µ, a ν, b =

−iδabgµν

k2 + iε
(B.3)

• Lepton Propagator:

p

=
i

6 p − m f + iε
(B.4)

• Quark Propagator

p

i j
=

iδi
j

6 p − m f + iε
(B.5)
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86 useful relations and conventions

• Boson Vertex

µ

f

f̄

= iq f γµ (B.6)

• Yukawa Vertex

fL

f̄R

= iy f (B.7)

• Gluon Vertex

µ, a

f , i

f̄ , j

= iq f γµ(ta)i
j (B.8)

b.2 manipulation of dirac structures

In this section we review the properties of Pauli and Dirac matrices in order to
obtain useful relation to manipulate Dirac structure.

pauli matrices

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i

i 0

)
σ3 =

(
1 0

0 −1

)
(B.9)

[σi, σj] = 2iεijkσk {σi, σj} = 2δij (B.10)

∑
i
(σi)ab(σi)cd = 2

(
δbcδad −

1
2

δabδcd

)
(B.11)

dirac matrices In the Dirac representation they read
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γ0 =

(
1 0

0 −1

)
γi =

(
0 σ

−σ 0

)
γ5 =

(
0 1

1 0

)
(B.12)

Contractions



{γµ, γν} = 2gµν

[γµ, γν] =
1
2

σµν

γµγνγµ = −2γν

γµγνγργµ = 4gνρ

γµγνγργσγµ = −2γσγργν

γµγαγν = gµαγν − gανγµ − gµνγα + iεµανσγργ5

(B.13)

Traces



Tr[γµγν] = 4gµν

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ)

Tr
[
γµγνγργσγ5] = −4iεµνρσ

Tr
[
γµγνγ5] = Tr

γµγν...︸ ︷︷ ︸
odd

γ5

 = Tr

γµγν...︸ ︷︷ ︸
odd

 = 0

(B.14)

fierz identities Let ΓS = 1, ΓV = γµ, ΓT = σµν, ΓA = γµγ5 and ΓP = γ5.
Then ∑i gi(Γi)αβ(Γi)γδ = ∑j ĝj(Γj)αδ(Γj)γβ, where (i, j) = {S, V, T, A, P} and the
gi are related to the ĝj by



ĝS

ĝV

ĝT

ĝA

ĝP


=

1
4



1 4 12 −4 1

1 −2 0 −2 −1
1
2 0 −2 0 1

2

−1 −2 0 −2 1

1 −4 12 4 1





gS

gV

gT

gA

gP


(B.15)

spinor identities

(v̄γαγβPL/Ru)(ūγαγβPL/Rv) = 4(v̄PL/Ru)(ūPL/Rv)− (v̄σαβPL/Ru)(ūσαβPL/Rv)

(v̄γαγβPL/Ru)(ūγαγβPR/Lv) = 4(v̄PL/Ru)(ūPR/Lv)

(v̄γαγβPL/Ru)(ūγβγαPL/Rv) = 4(v̄PL/Ru)(ūPL/Rv) + (v̄σαβPL/Ru)(ūσαβPL/Rv)

(v̄γαγβPL/Ru)(ūγβγαPR/Lv) = 4(v̄PL/Ru)(ūPR/Lv)

(v̄γαγβγδPL/Ru)(ūγαγβγδPL/Rv) = 16(v̄γαPL/Ru)(ūγαPL/Rv)

(v̄γαγβγδPL/Ru)(ūγαγβγδPR/Lv) = 4(v̄γαPL/Ru)(ūγαPR/Lv)
(B.16)
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b.3 dimensional regularization

In this section we summarize all the relation that have been used in the calcula-
tion of dimensional regularized integrals which appear in the calculation of loop
amplitudes.

feynman parametrization

1
AB

=
∫ 1

0
dx

1
[Ax + B(1 − x)]2

1
ABC

=
∫ 1

0
dx dy dz δ(x + y + z − 1)

2
[xA + yB + zC]3

(B.17)

regularized integrals

I0,2 =
∫ dDk

(2π)D µ4−D 1
(k2 − ∆ + iε)2 =

i
16π2

(
2
ε
+ ln

4πµ2

∆
− γ +O(ε)

)
I1,2 =

∫ dDk
(2π)D µ4−D k2

(k2 − ∆ + iε)2 =
2i

16π2 ∆
(

2
ε
+ ln

4πµ2

∆
+ γ − 1 +O(ε)

)
I1,3 =

∫ dDk
(2π)D µ4−D k2

(k2 − ∆ + iε)3 =
i

16π2

(
2
ε
+ ln

4πµ2

∆
− γ +O(ε)

)
(B.18)



C
E X P L I C I T C A L C U L AT I O N S O F O N E - L O O P M AT R I X
E L E M E N T S M

c.1 cancellation of the µ scale

The explicit cancellation of the µ scale is checked explicitly in the following
example, calculating the W boson decay in leptons, W+ → e+L νL.
The involved diagrams are

W+

e+ ν

+

p

p1 p2

W+

e+ ν

kf

(C.1)

The amplitude for the formal tree level diagram reads

Ma = MSM + ∆M` = −i
g2√

2
ūi6 ε(gl + ∆gl)ijPLvj (C.2)

where

∆M` = −i
g2√

2
v2 L

(4π)2Λ2

[
−2

3
g2

2C`` − 2g2
2C3 + 6λu

33y2
t C3

]
(ūi6 εPLλe

ijvj). (C.3)

The four fermions operators contributing to the one loop diagram amplitude
Mloop = M(1)

loop +M(2)
loop are

(1)
2C``

Λ2 (ēLγµλeνL)(ν̄LγµλeeL)

(2)
2C3

Λ2 (ēLγµλeνL)(ūLγµλuddL)

(C.4)

The result of the computation of Mloop + ∆M` should not depend on the
renormalization scale µ, as will be proven in the following.
All conventions on Feynman rules, Feynman parametrization, trace calculation
and solutions of renormalized integrals are listed in the Appendix B.

89
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Let kµ be the loop momentum and pµ the W momentum such that p2 = m2
W ,

i.e. W is on shell; using Feynman rules, the one loop amplitude with operator
(1) inserted reads

M(1)
loop =

2C``

Λ2
g2√

2
(ūiγ

µPLλe
ijvj)ε

ν ∑
e

λe
ij

∫ d4k
(2π)4

Tr
[
γµPL(6 k + me)γνPL(6 k + 6 p)

]
(k2 − m2

e )(k + p)2 . (C.5)

The integral diverges for large k like k2, hence it must be dimensionally regular-
ized.
In order to do so the integration measure must be modified so that

∫ d4k
(2π)4 →

∫ dDk
(2π)D µ4−D ≡

∫
k

µ4−D. (C.6)

Using Gammology the trace can be easily calculated, so the numerator becomes

N(1)
µν = 4[gµρgνσ − gµνgρσ + gµσgνρ + iεµρνσ]kρ(k + p)σ , (C.7)

while, using Feynman parametrization and shifting the loop momentum k →
k + px, the denominator becomes

1
(k2 − m2

e )(k + p)2 =
∫ 1

0
dx

1
[k2 − ∆]2

with ∆ = (m2
e − p2x)(1 − x) . (C.8)

Given shift eventually modifies the numerator. Moreover, some properties are
used in order to further simplify the numerator, such as

• only even powers of kµ give non zero contribution, all the terms of the form
kα pβ or k · p cancel,

• contraction of symmetric and anti-symmetric indices gives
εµρνσkρkσ = 0,

• use of Dirac equation, which makes pµ pν = 0 when contracting with ūi
and vj for the conservation of momentum pµ

e + pµ
ν = pµ

• use of properties of the metric like kµkν = k2

D gµν

In the end, after all these manipulations, the regularized integral becomes

I (R)
` =

∫ 1

0
dx 2gµν


∫

k
µ4−D

(
2
D

− 1
)

k2

(k2 − ∆)2

I1,2

+p2x(1 − x)
∫

k

1
(k2 − ∆)2

I0,2

 (C.9)

Working in the MS scheme in the leading logarithms approximation, the solu-
tion of I1,2 and I0,2 are well known. Plugging then C.9 into C.5 one obtains

M(1)
loop =

4i
(4π)2Λ2 C``

g2√
2
(ūi6 εPLλe

ijvj)
∫ 1

0
dx m2

W x(1 − x) ln
µ2

∆
(C.10)
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Where the assumption that lepton masses are negligible with respect to m2
W

have been made, so that ∆ → m2
W(x − 1).

An analogous calculation must be followed in order to obtain M(2)
loop, noticing

that λud = λuVCKM

M(2)
loop =

3 · 2C3

Λ2
g2√

2
(ūiγ

µPLλe
ijvj)ε

ν ∑
u

λu
ijVCKM×

×
∫ d4k

(2π)4

Tr
[
γµPL(6 k + mu)γνPL(6 k + 6 p) + md

]
(k2 − m2

u)((k + p)2 − m2
d)

,
(C.11)

which can be simplified by noticing that

• The numerator in the integral of C.11 is just the same as C.7, the one in
C.5,

• The denominator is different but the shift is the same and the the Feynman
parametrization gives
∆′ = p2x(x − 1) + m2

u(1 − x) + m2
dx,

• In the end, the renormalized integrals are formally the same as C.9.

Plugging all this information in C.11, assuming that all quark masses are neg-
ligible with respect to m2

W , with the exception of the top mass mt, thanks to
the strong hierarchy between the CKM matrix elements (λuVCKM)33 ∼ λu, one
obtains

M(2)
loop =

12i
(4π)2Λ2 C3

g2√
2

∫ 1

0
dx
[

λu
33

(
m2

t (x − 1) + 2m2
W x(1 − x)

)
ln

µ2

∆′

+ (1 − λu
33)(2m2

W x(1 − x)) ln
µ2

∆

]
(ūi6 εPLλe

ijvj) .
(C.12)

In conclusion, summing C.10 and C.12 one obtains

Mloop =
4i

(4π)2Λ2
g2√

2
(ūi6 εPLλe

ijvj)[(2C`` + 6C3)m2
WIµ

2 − 3m2
t λ33C3Iµ

1 +

+ 6m2
t C3λ33I3] ,

(C.13)

where

Iµ
1 =

∫ 1

0
dx (1 − x) ln

µ2

∆′

Iµ
2 =

∫ 1

0
dx x(1 − x) ln

µ2

∆

I3 =
∫ 1

0
dx x(1 − x) ln

∆
∆′ .

(C.14)
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In order to check explicitly the cancellation of µ, C.2 should be rewritten using
some useful relations

m2
W =

v2g2
2

4
, m2

t =
v2y2

t
2∫ 1

0
dx (1 − x) =

1
2

,
∫ 1

0
dx x(1 − x) =

1
6

L = ln
Λ
µ

=
1
2

ln
Λ2

µ2 .

(C.15)

In the end, summing C.2, rewritten using C.15, and C.13 the µ dependence
cancels, and the total amplitudes reads

Ma +Mloop =
i

(4π)2Λ2 v2 g2√
2
(ūi6 εPLλe

ijvj)[(2g2
2C``+ 6g2

2C3)I2 − 6λ33y2
t C3I1 + 6g2

2C3λ33I3]

where

I1 =
∫ 1

0
dx (1 − x) ln

Λ2

∆′

I2 =
∫ 1

0
dx x(1 − x) ln

Λ2

∆

(C.16)

do not depend on the fictitious scale µ, concluding the demonstration.
Similar procedures can be followed to prove cancellation of µ scale in any other
process.

c.2 current-current diagrams

With reference with the one loop diagrams listed in 2.4, we give an explicit cal-
culation of the amplitude involved in the determination of the RGE parameters.
With reference to diagram (7), which is equivalent to (8), the associated ampli-
tude reads

M(7) =(−ieq f )(−ieqg)i
Ci

Λ2 M f
ij M

g
ij

∫ dDk
(2π)D µ4−D −igνρ

k2 − m2
γ

×

×
(k − p)α(k − p)β(v̄γµγαγρPu)(ūγµγβγνPv)

(k − p)4 ,

(C.17)

being q f /g the charge of the fermion, kα the momentum of the photon, mγ the
mass regulator of the photon and pα the external momentum.
Since the external momentum is arbitrary and we expect the result to be di-
mensionless, one is allowed to put pα = 0 in order to simplify the calculations.
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Moreover, using the property kαkβ = k2

D gαβ and the relations of the Appendix B,
plus Feynman parametrization with A = (k2 − m2

γ) and B = k2, one obtains

M(7) = ±4e2q f qg
Ci

Λ
M f

ij M
g
ij

∫ 1

0
dx

∫
k

1
(k2 − m2

γx)2

I0,2

(v̄γµPu)(ūγµPv) (C.18)

where the + sign stands if QCC has a chiral structure (LL)(RR) or (RR)(LL),
while the − sign stands when QCC is (LL)(LL) or (RR)(RR), as a consequence
of the spinor current contractions properties.
All is left to do is the integration of I0,2, which is a well known regularized
integral, and consequently the integration over dx.
Considering only the part of the amplitude that shows a µ dependence, one
obtains

Mµ

(7) =
i

16π2Λ2 (±4e2q f qgCi) ln µ2M f
ij M

g
ij(v̄γµPu)(ūγµPv) (C.19)

The calculation of M(9), which is equivalent to diagram (10), is completely
analogous and the associated amplitude reads

M(9) =(−ieq f )(−ieqg)i
Ci

Λ2 M f
ij M

g
ij

∫ dDk
(2π)D µ4−D −igνρ

k2 − m2
γ

×

×
(k − p)α(k − p)β(v̄γνγαγµPu)(ūγµγβγρPv)

(k − p)4

(C.20)

where the only difference lies in the Dirac structure of the numerator.
Using the relations listed in App. B, and following the same steps that led to the
calculation of M(7), one obtains

Mµ

(9) =
i

16π2Λ2 (∓e2q f qgCi) ln µ2M f
ij M

g
ij(v̄γµPu)(ūγµPv) . (C.21)

Then, inserting C.19 and C.21 in 2.60, one obtains the sector of the one loop
amplitude with µ dependence

Mµ
loop =

i
16π2Λ2 (±6e2q f qgCi) ln µ2M f

ij M
g
ij(v̄ γµPu)(ūγµPv) . (C.22)

Comparing this result with the RGE amplitude it is possible to extract the coeffi-
cients needed for the RGE flow.

Scalar operators need to be analyzed separately since the different vertex Dirac Scalar vertices

structure modifies the calculations with respect to the vector operators.
Scalar operators of the form QS = ( f̄ AiPL/R f )(ḡAiPR/Lg) are modified at one
loop by the insertion of QS itself with vertex corrections, where the mediator
is the photon. It is not possible to construct Penguin operators since those QS
involve chiral currents, that don’t couple with the photon.
The main difference with respect to the Vector case is that the different Dirac
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structures of the vertex do not assure the validity of the Ward identity. In this
case then, one needs to calculate the contributions from all (1) to (10) diagrams.

Let’s consider a generic process f̄ ′i f j → ḡ′kgl , that receive contribution only by
the insertion of QS itself. The involved diagrams are just the same that the one
of the vector case.

Diagrams (1) and (2) have the same structure, the only difference is repre-
sented by the different charges q f , f ′ and qg,g′ . The amplitude reads:

M(1,2) = qpq′p
Ci

Λ2 (ūAiv)
∫ dDk

(2π)D µ4−D (v̄γρ(−6 k −6 p + mu)Bi(6 p′ + 6 k + md)γρu
(k2 − λ2)[(k + p)2 − m2

u][(k + p′)2 − m2
d]

.

where kµ is the loop momentum, λ is the mass regulator of the photon, pµ and
p′µ are the external momenta, the p in q2

p stands for f or g alternatively, and
Ai and Bi stand for the different Dirac structure of the vertex, associated to the
Ci = {Cs, C1

s , C3
s }, as follows:

(Ai)(Bi) = {(PL)(PR), (PL)(PL), (σµνPL)(σµνPL)} . (C.23)

Solving for the different Dirac structures, one finds for the part proportional
to ln µ of M(1) +M(2)

MQs ,Q1
s
= −4(q f q′f + qgq′g)

i Ci

16π2Λ2 ln µ2(v̄AiPu)(ūAiPv)

MQ3
s
= 0 .

(C.24)

For what concerns the diagrams from (3) to (6), the contribution is indepen-
dent on the Vertex structure, since it is directly proportional to the wave function
counterterm Z2.
The part proportional to ln µ of the sum of the four diagram reads

MQi = i
q2

f + q2
f ′ + q2

g + q2
g′

2
CiQi

16π2Λ2 I1 ln(µ)(v̄AiPu)(ūAiPv) , (C.25)

where an additional 1
2 term is due as a symmetry factor and I1 is the result of

the integration over x of the non divergent part.

Diagrams (7) and (8) have the same structure, just like the vector case, but are
modified by the vertex structure. Their amplitude reads:

M(7),(8) = qpqp′
Ci

Λ2

∫ dDk
(2π)D µ4−D v̄γρ(−6 k + 6 p + mu)Aiu)(ūγρ(6 k −6 p′ + mµ)Biv

(k2 − λ2)[(k − p)2 − m2
u][(k − p′)2 − m2

d]
.

It is important to notice that, in the calculation, a mixing between Q1
`equ and Q3

`equ
arises.
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The amplitude for diagrams (9) and (10) is completely analogous and reads:

M(9),(10) = qpqp′
Ci

Λ2

∫ dDk
(2π)D µ4−D v̄γρ(−6 k + 6 p + md)Aiu)(ūBi(6 k −6 p′ + mµ)γρv

(k2 − λ2)[(k − p)2 − m2
u][(k − p′)2 − m2

d]
.

The part proportional to ln µ of the sum of amplitudes (7) to (10) reads

MQS =(q f qg − q f qg′ + q f ′qg − q f ′qg′)
iCS

16πΛ2 ln µ2(v̄PLu)(ūPRv)

MQ1
S
=

[
(q f qg + q f ′qg′)

i(C1
S − 12C3

S)

16π2Λ2 − (q f qg′ + q f ′qg)
i(C1

S + 12C3
S)

16π2Λ2

]
×

× ln µ2(v̄PLu)(ūPLv)

MQ3
S
=

[
(q f qg + q f ′qg′)

i(3C3
S −

1
4 C1

S)

16π2Λ2 − (q f qg′ + q f ′qg)
i(3C3

S +
1
4 C1

S)

16π2Λ2

]
×

× ln µ2(v̄σµνPLu)(ūσµνPLv) .

(C.26)

Then, summing C.24, C.25 and C.26 one gets

MQS =

[
q2

f + q2
f ′ + q2

g + q2
g′

2
I1 − 4(q f q′f + qgq′g) + (q f qg − q f qg′ + q f ′qg − q f ′qg′)

]
×

× iCS

16πΛ2 ln µ2(v̄PLu)(ūPRv)

MQ1
S
=

[
q2

f + q2
f ′ + q2

g + q2
g′

2
I1 − 4(q f q′f + qgq′g))C

1
S + (q f qg + q f ′qg′)i(C1

S − 12C3
S)

− (q f qg′ + q f ′qg)i(C1
S + 12C3

S)

]
1

16π2Λ2 ln µ2(v̄PLu)(ūPLv)

MQ3
S
=

[
q2

f + q2
f ′ + q2

g + q2
g′

2
I1C3

S + (q f qg + q f ′qg′)i(3C3
S −

1
4

C1
S)− (q f qg′ + q f ′qg)i(3C3

S +
1
4

C1
S)

]
×

× 1
16π2Λ2 ln µ2(v̄σµνPLu)(ūσµνPLv) .

Comparing this result with the RGE amplitude it is possible to extract the coeffi-
cients needed for the RGE flow.

c.3 penguin diagrams

With reference to the diagram in 2.4, the one loop amplitude reads Semi-leptonic penguin
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MH
P =(−ieql)(−ieqe)

iCP

Λ2 ∑
i

λe
ii

(
−

igµν

l2

) ∫ dDk
(2π)D µ4−D Tr

[
(γρ6 k)γνP(6 k + 6 l)

]
(k2 − m2

`)(k + l)2
×

× Mq
ij(v̄γρPu)(ūγµv) ,

(C.27)

where l is the momentum of the photon and k, k + l the momenta running in the
loop.

Using Gammology properties and Feynman parametrization with ∆ = l2x(1−
x) + m2

l ) one gets

MH
P = 4e2qlqe)

CP

Λ2 ∑
i

λe
ii

∫ 1

0
dx

∫
k

µ4−D x(1 − x)
(k2 − ∆2)2 Mq

ij(v̄γρPu)(ūγµv) , (C.28)

Concluding, imposing l2 = 0 and solving the integral in dx, after the usual
integration of I0,2, one gets

Mµ, H
P =

i
16π2Λ2

(
−2

3
e2qlqeCP

)
∑

i
λe

ii ln µ2Mq
ij(v̄γρPu)(ūγµv) , (C.29)

where only the part with a µ dependence was outlined.
Comparing this result with the RGE amplitude it is possible to compute the co-
efficients for every semi leptonic QH

P operator.

With reference to the diagram in 2.4, associated to the generic process ¯̀ i`j →Leptonic penguin

f̄k fk, we calculate, for example, the case of charged leptons running in the loop.
In that case, the one loop amplitude reads

ML
P =− (ieqg)(ieq`)

(
−

igµν

l2

)
C`

Λ2 ∑
i

λe
ii

∫ dDk
(2π)D

Tr
[
γρ6 kγνP(6 k + 6 l)

]
(k2 − m2

f )((k + l)2 − m2
f )
×

× Me
ij(v̄γµPu)(ūγµv) ,

(C.30)

where l is the momentum of the photon and k and k + l the momenta running
in the loop.

Using Gammology properties, Feynman parametrization and consequently in-
tegrating in dx the integral becomes

∫ dDk
(2π)D

Tr
[
γρ6 kγνP(6 k + 6 l)

]
(k2 − m2

f )((k + l)2 − m2
f )

→ 4
6

i
16π2 ln

µ2

m2
f

. (C.31)
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It is straightforward to notice that the integral result does not depend on the
chirality (P), nor on the nature of the fermion running in the loop1.

Summing all the contributions, considering only the dependence on µ, one
gets

ML
P =− 2ie2

16π2Λ2

[
2
3

qe(Ce
L ∑

i
λe

ii + Ce
R ∑

i
Γe

ii) + quCu
L ∑

j
λu

jj + qdCd
L ∑

k
λd

kk

]
×

× ln µ2Me
ij(v̄γµPu)(ūγµv) .

(C.32)

This time the amplitude is modified in the different energy ranges and one needs
to be vary careful when comparing this result with the RGE amplitude.

c.4 pion decay rate

In the following we state the procedure to calculate the Pion decay rate.

In order to calculate the decay width of the pion into leptons we can generally
state that the matrix element reads

M =
〈
µνµ

∣∣Lint
∣∣π−〉 , (C.33)

where Lint is the interaction Lagrangian and |π−〉,
∣∣µνµ

〉
are respectively the

initial and the final state.
The interaction Lagrangian reads

Lint =
GF√

2
Vud

[
(1 + εL)(νγµPLµ̄)(ūγµPLd) + εR

S (νPLµ̄)(ūPRd)

+εL
S(νPLµ̄)(ūPLd) + εT(νσµνPLµ̄)(ūσµνPLd)

]
,

(C.34)

Along with the definition of the interaction Lagrangian, in order to deal with
|π−〉 which is not an asymptotic state, one needs to define the elements of the
Hilbert space

|ψ〉 = |leptons〉 |hadrons〉 , (C.35)

so that ∣∣π−〉 = |0〉L |π〉H ,
∣∣µ−ν

〉
=
∣∣µ−ν

〉
L |0〉H . (C.36)

Then, in order to calculate C.33, one needs to define how the operators act on
the states.
For what concerns the leptonic part, one can simply use the well known Feyn-
man rules based on the annihilation and creation operators, since at low energies
the perturbative approach is preserved.
For the hadronic part, instead, one needs to use symmetry properties, for exam-
ple, imposing the parity transformation of a vector.

1 When considering quark running in the loop one needs to carefully consider the color, multiplying
by three.
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This approach leads to some well known relation, the so called Partially Con-
served Axial Current (PCAC) relations, which must be implemented in the cal-
culations.
They read

〈0|L ū(0)γµd(0) |π(p)〉 = 0 , 〈0|L ū(0)γµγ5d(0) |π(p)〉 = i fπ pµ ,

〈0|L ū(0)γ5d(0) |π(p)〉 = −i fπ
m2

π

md + mu
.

(C.37)

By making use of C.37 one obtains

M =− i fπ
GF√

2
Vud

[
(1 + εL)pµ(ū(pµ)γµ(1 − γ5)v(pv))

− (εL
S − εR

S )
m2

π

md + mu
(ū(pµ)(1 − γ5)v(pv))

]
.

(C.38)

Then, using the Dirac equation ū(pµ)6 pµ = ū(pµ)mµ the amplitude becomes

M = −i fπ
GF√

2
Vud mµ

[
1 + εL − (εL

S − εR
S )

m2
π

mµ(md + mu)

]
(ū(pµ)(1 − γ5)v(pv)) .

(C.39)
The differential decay width reads

dΓ =
1

32π2
|pν|
m2

π
∑
spin

|M|2

=
1

16π2
|pν|
m2

π

G2
Fm2

πV2
ud f 2

π(m
2
π − m2

µ)

∣∣∣∣1 + εL − (εL
S − εR

S )
m2

π

mµ(md + mu)

∣∣∣∣2
(C.40)

and, integrating over the solid angle, the total decay rate is obtained.



D
E X P L I C I T C A L C U L AT I O N S O F S C AT T E R I N G A M P L I T U D E S

In the following we expose explicit results of scattering amplitudes of those pro-
cesses that are of interest in neutrino physics experiments and will be of partic-
ular interest since they represent the main observables for the determination of
NSI constraints at DUNE.

d.1 trident production

Trident events are processes where a neutrino impacting on a nucleus produces
a lepton pair in the final state.

νµN → νµµ+µ−N (D.1)

The process is rather difficult and involve the exchange of a virtual photon. The
complete and general amplitude can be estimated by applying Feynman rules to
the following Feynman diagram

νµ νµ

µ+

µ−N

(1)

Z0

µ−

γ∗

νµ µ−

νµ

µ+N

(2)

W−

µ+

γ∗

but, since at DUNE are involved low energy neutrinos, the vector boson prop-
agator can be neglected and the Feynman diagram reduces to
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νµ

µ+N

µ−

νµ

(1)

k
p2

k′
µ+

p1q

γ∗

νµ

µ−N

νµ

µ+

(2)

k
p2

k′
µ−

p1q

γ∗

which corresponds in good approximation to the process

νµγ∗ → νµµ+µ− (D.2)

Using Feynman rules one gets the following expression for the matrix element

M =
GF√

2
e ū(p2)εµγµ

[
1

p2 − q − mµ
γαgR(1 + γ5)

+ γαgR(1 + γ5)
1

−p1 + q − mµ

]
ενγνv(p1) · ū(k′)γαgL(1 − γ5)u(k)

(D.3)

the unpolarized squared amplitude, obtained by calculating traces of gamma
matrices, reads

|M|2 =4e2G2
F(g2

L + g2
R)

(p1 · q)(k · q)(p2 · k′)
[(p1 − q)2 − m2

µ]
2 +

(p2 · q)(k′ · q)(p1 · k)
[(p2 − q)2 − m2

µ]

+
(2p1 · p2 − p1 · q − p2 · q)(p1 · k)(p2 · k′)− (p1 · p2)(p1 · k)(q. · k′)

[(p1 − q)2 − m2
µ][(p2 − q)2 − m2

µ]

− (p1 · p2)(p2 · k′)(q · k) + (q · p1)(k · p2)(k′ · p2) + (q · p2)(p1 · k)(p1 · k′)
[(p1 − q)2 − m2

µ][(p2 − q)2 − m2
µ]

(D.4)

where the terms proportional to m2
µ were neglected.

Then, the differential cross section can be evaluated, being the flux vrelE1E2 =

k · q and, leaving unspecified the phase space, it reads

dσ =
1

(2π)5(k · q)
|M|2δ4(k + q − k′ − p1 − p2)

d3 p1

E1

d3 p2

E2

d3k′

E′ (D.5)

Integrating D.5 as done in (39), one can obtain the following expression in the
logarithm approximation of the total cross section

σ ' G2
F

9π2 αem(g2
L + g2

R)s log
s

4m2
µ

' 1s/MeV2 (D.6)

where s = (k + q)2 is the center of mass energy and the numerical value is in
units of 10−46cm2.
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d.2 neutrino-electron elastic scattering

Low energy neutrinos (and antineutrinos) interact with electrons through an
elastic scattering process whose sole effect is a redistribution of the total energy
and momentum of the involved particles. The process reads

ναe− → ναe− (D.7)

and the general expression of the matrix element is similar for the different
species of neutrinos α interacting with the electron.
Let’s consider first of all the process of interest at DUNE which is the one for
α = µ which is mediated by the neutral Z boson. The amplitude for this process
is obtained using Feynman rules from the diagram

νµνµ

Z0

e−e−

k k′

p p′

−→ e−

νµ νµ

e−

p′

k′k

p

where, for low energy neutrinos the effects of the Z propagator can be neglected.
We will refer then to the diagram on the right. The matrix element for this
process reads

M =
GF√

2
[ū(k′)gν

Lγµ(1 − γ5)u(k)][ū(p′)(ge
Lγµ(1 − γ5) + ge

Rγµ(1 + γ5))u(p)]

(D.8)
Summing over the final spin, averaging over the initial electron spin and perform-
ing the traces over gamma matrices one gets to the following squared amplitude

|M|2 = (16G2
F)

2(gν
L)

2[(ge
L)

2(k · p)2 + (ge
R)

2(k′ · p)2] (D.9)

where the term proportional to lepton masses have been neglected.
Consequently the differential cross-section is simply given by

dσ =
1

4Eνmevrel

1
(2π)2 |M|2δ4(k + p − k′ − p′)

d3k′

2Eν

d3 p′

2Ee
(D.10)

Easily integrating the phase space and expressing it in terms of a conventional
scaling variable y = Ee/Eν = [0, 1] we get

dσ

dy
=

8G2
F

π
meEν(gν

L)
2[(ge

L)
2 + (ge

R)
2(1 − y)2] (D.11)
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and integrating over y the total cross section becomes

σ(νµe) =
G2

Fs
4π

[
(ge

L)
2 +

1
3
(ge

R)
2
]

. (D.12)

where s = 2meEν is the center-of-mass energy squared of the collision.

Notice that, the cross section for the anti-neutrino process

ν̄µe− → ν̄µe− (D.13)

can be inferred in complete analogy, in fact the matrix element reads

M =
GF√

2
[ū(k′)gν

Lγµ(1 − γ5)u(k)][ū(p′)(ge
Lγµ(1 + γ5) + ge

Rγµ(1 − γ5))u(p)]

(D.14)
which correspond to shifting ge

L → ge
R. The cross section then becomes

σ(ν̄e) =
G2

Fs
4π

[
(ge

R)
2 +

1
3
(ge

L)
2
]

. (D.15)

For what concerns the scattering involving electron neutrinos, α = e, one need
to consider both the neutral and the charged current. But, thanks to a Fierz
transformation it is possible to rewrite the charged current as a neutral one.
The total amplitude, which corresponds to the sum of the neutral and charged
current reads

M =
GF√

2
[ū(k′)gν

Lγµ(1 − γ5)u(k)][ū(p′)((ge
Lγµ(1 − γ5) + ge

Rγµ(1 + γ5))u(p)]

+
GF√

2
[ū(k′)gν

Lγµ(1 − γ5)u(k)][ū(p′)γµ(1 − γ5)u(p)] .

(D.16)

Summing the neutral and the charged current then, can be seen as a shift of
gL → gL + 1 and the total cross section can be inferred from D.12 and reads

σ(νee) =
G2

Fs
4π

[
(ge

L + 1)2 +
1
3
(ge

R)
2
]

. (D.17)

Consequently, the cross section for the conjugated scattering can be obtained in
analogy to the νµe scattering.

It is now possible to make a comparison between the different neutrino-electron
elastic cross sections in order to get a better acknowledgment of the phenomenon.
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Table D.1: Total neutrino-electron elastic scattering cross-section. The numerical values
are in units of 10−46cm2 and given by (40).

Process Total cross-section

νe + e− G2
Fs

4π [(ge
L + 1)2 + 1

3 (ge
R)

2] ' 93s/MeV2

ν̄e + e− G2
Fs

4π [(ge
R)

2 + 1
3 (ge

L + 1)2] ' 39s/MeV2

νµ + e− G2
Fs

4π [(ge
L)

2 + 1
3 (ge

R)
2] ' 15s/MeV2

ν̄µ + e− G2
Fs

4π [(ge
R)

2 + 1
3 (ge

L)]
2 ' 13s/MeV2

d.3 neutrino-nucleus quasi-elastic scattering

At the energies at stake at DUNE Eν . mN so, in this energy regime the deep
inelastic scattering is excluded. The interaction is in a quasi-elastic regime and
involves proton and neutron can be both NC and CC

νµn → νµn νµn → µ−p (D.18)

and analogously for the antineutrino.
The observable at DUNE will be the ration between the NC and CC cross section
but, since as showed by Lewellyn-Smith(38) it is possible to express this ratio
only in term of the CC cross section we provide an explicit calculation of that
one only.
The Feynman diagram reads

u
u
d

d
u
d

νµ µ+

W−

p n

from it is possible to calculate the matrix element, which is build taking into
account the relevant form factors that are related to the inner hadronic structure.
In this case, being at low energy, we can assume the form factors do not vary
with the transferred momentum and we take them to be constant. The matrix
element, containing the most general Lorentz structure then reads

M =
GFVud√

2

[
ūn(γµ(gV − gA)−

iF2

2M
σµνqν)up

]
[v̄νγµ(gV − gA)ve] (D.19)

where F2 is the anomalous nucleon isovector magnetic moment, defined as F2 =

µp − µn = 3.706.
Then, the differential decay width reads

dσ =
1

4Eνmµvrel

1
(2π)2 |M|2δ4(k + p − k′ − p′)

d3k′

2Eν

d3 p′

2Eµ
(D.20)
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by expressing it in terms of the angular variation one gets, following (41)

dσ

d cos θ
=

G2
F|Vud|2

π

[
(g2

V + 3g2
A + (g2

V − g2
A)

pe

Ee
cos(θ)

]
Ee pe (D.21)

and integrating over the angle a standard expression for the total cross section is
obtained

σCC ' G2
F|Vud|2

π
(g2

V + 3g2
A)Ee pe ' 30 × s/MeV2 (D.22)

and evaluated in unit of 10−46cm2.
The expression for the conjugated process is just analogous with the only excep-
tion that gA → −gA.
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