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Abstract

The present work aims to evaluate the mixed-mode fracture behavior of a wide range of
materials. The topic belongs to the field of Fracture Mechanics and pre-cracked specimens
are studied. A crack, even if small, is a defect that can strongly affect the integrity of a
component and his behavior, if stressed. For this reason, a crack can not be ignored and
cracked components need a specific evaluation. The analyses presented in this study are
characterized by mixed-mode loading configurations, which are a combination of mode I
and mode II. They are respectively the opening mode and the in-plane shear mode. Only
static configurations are considered, therefore no fatigue problems are faced. The analyses
are based on simulations made with the F.E. software Abaqus. The main purpose is to
predict the failure load of a specimen and the stress intensity factors when the fracture
occurs. The ASED criterion is applied to obtain these results. This is an energetic cri-
terion recently found, and ASED stands for Average Strain Energy Density. To validate
the criterion it was necessary to compare predictions with experimental results. In order
to have a proper comparison, the data used come from literature and the simulations are
designed to be adherent to the real tests. A large range of materials is taken into account,
to explore the field of application of the ASED criterion, with the fundamental hypothesis
of linear elastic behavior. The materials studied belong to the class of Rocks, Polymers,
Ceramics, and Steels.
Furthermore, other theoretical criteria are used to study the fracture. In order: Max-
imum Tangential Stress criterion (MTS), Generalized Maximum Tangential Stress cri-
terion (GMTS), Minimum Strain Energy Density criterion (SED), and Maximum Energy
Release Rate criterion (G).
For what concerns the ASED criterion, the precision of this method is in some cases as-
tonishing. About the other criteria, it is not possible to establish which one is the best
because for each class of materials they show different performances.
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Sommario

L’obiettivo principale dello studio qui presentato è valutare il comportamento a frattura
di diversi materiali sottoposti ad una configurazione di carico di tipo misto. L’argomento
si inserisce nell’ambito della Meccanica della Frattura ed i componenti studiati presentano
una cricca.
Una cricca, anche se piccola, influisce pesantemente sull’integrità di un pezzo. Per questo
motivo non può essere ignorata e un componente criccato deve essere studiato con un
approccio dedicato.
Le analisi esposte in questo studio presentano una configurazione di carico mista, una
combinazione di modo I (apertura per trazione) e modo II (scorrimento nel piano dei lem-
bi della cricca). Sono state considerate solo configurazioni statiche. L’analisi si basa su
simulazioni ottenute tramite il software Abaqus. L’obiettivo principale è predire il carico
di rottura e i fattori di intensificazione di tensione su provini criccati al momento della
rottura. Per ottenere questi risultati è stato usato il criterio chiamato ASED, Averaged
Strain Energy Density. Per validare il criterio è necessario un confronto con la realtà: i
dati utilizzati sono stati trovati in letteratura e le simulazioni sono state pensate in modo
da replicare perfettamente gli esperimenti reali. Se così non fosse, non sarebbe possibile
un veritiero confronto.
Al fine di esplorare al meglio il campo di applicabilità del criterio, sono stati testati
materiali appartenenti a diverse categorie, ipotizzando che presentassero un campo di de-
formazione lineare elastico. Le classi studiate sono rocce, polimeri, ceramici e acciai.
Inoltre, sono stati usati altri criteri teorici per predire l’angolo di iniziazione della cricca.
Questi criteri sono nell’ordine: il criterio Maximum Tangential Stress (MTS), Generalized
Maximum Tangential Stress(GMTS), Minimum Strain Energy Density(SED), e infine il
criterio Maximum Energy Release Rate(G).
Per quanto riguarda il criterio ASED, i risultati sono sorprendenti: il criterio è estrema-
mente preciso. Riguardo agli altri criteri invece non è stato possibile definire il migliore,
in quanto, a seconda del materiale considerato, si comportano diversamente.
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Introduction

Fracture Mechanics is one of the most recent fields of Mechanics. It is the science that
studies the structural integrity of components weakened by defects like cracks or other
types of flaws. Fracture Mechanics is applied both to static and fatigue problems.
Specimens that are not ideally perfect need to be studied with a dedicated approach. This
is a necessity arisen after too many tragedies occurred: when fundamental components
of structures or machines broke down without expectation, the consequences can be the
worst.
According to classic mechanics, speaking of structural resistance, the components are usu-
ally considered in perfect conditions, without any defects or discontinuity at both micro
and macro-level. This assumption, in the majority of cases, is wrong. There are several
ways in which a crack or a flaw can arise in a component: the main reason is related
to the wrong use of the component or the wrong design of it. The result is the same,
the component is not appropriate for his task and, therefore, the use will damage it.
Eventually, cracks can origin also during the production process. With some traditional
processes, like casting, if the process parameters are not properly controlled, it is likely
to detect cracks in the pieces, mostly originated during the cooling phase. Also, modern
techniques, like additive manufacturing, are well known for the difficulty to guarantee the
quality of the component: to superpose layers of material means to introduce material
discontinuities and flaws. Recently, a new approach of design has become common: Dam-
age Tolerant approach, this is how it is called, imposes to consider since the beginning a
component damaged, even if, inspecting it, no cracks are detected. This is precautional
because if no cracks are detected it could be a matter of sensibility of the instrument used
for the investigation. In this way, it is possible to predict when the component needs
structural maintenance, to avoid rupture. This short overview shows how it is frequent
to deal with cracks, that is the first reason why it is relevant to study Fracture Mechanics.

Furthermore, there are situations that it is not possible to handle without Fracture
Mechanics. This is the case of components with a shape that presents notches of con-
siderable dimensions, like holes, edges, or buttonholes. With a classical approach, it is
possible to predict the structural limit of these specimens through a parameter called
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Figure 1: Infinite plate with a hole

elastic stress concentration factor, Kt. The factor is the ratio between the peak stress
registered at the tip of the notch and the gross stress, the uniform tension registered in
a generic section of the component far from the defect: Kt = σp/σg. There are several
handbooks, the most famous is the Paterson one, where to find Kt according to the notch
type and the loading scheme. Kt is an indicator of how much the notch affects the stress
field. A typical example is a hole in an infinite plate. In fig 1, it is shown the trend of
the stress (the component σy is considered). Along a direction perpendicular to the load,
the stress increases while approaching the hole, until it reaches a maximum value, called
the peak stress. It is demonstrated that if the hole becomes an ellipse, the peak stress is
larger. Thanks to the following correlation (eq.(1)) found by Inglis in 1815, it is known
the relation between the ratio a/ρ and the Kt factor, where ρ is the radius at the edge of
the ellipse, and a is the semi-longitudinal length of the notch. With a circular hole a/ρ = 1.

Kt = 1 + 2

√
a

ρ
(1)

With this knowledge, it is possible to forecast that the sharper is the ellipse, the larger
is Kt. When the ellipse is enough thin to be considered as a crack, with ρ→ 0, Kt tends
to ∞.
Here the classic mechanics fails. With Kt = ∞ it is impossible to do any static check,
nor for brittle neither for ductile materials. A static structural check is based on the
comparison between the stress level in the component and the so-called limit stress of it,
σL. This is the ideal structural limit of the component, calculated with one of the several
criteria available in the literature. One of the most used is the Von Mises criterion. For
brittle materials, if Kt → ∞ the peak stress is ∞. And, therefore, the basic condition
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σp ≤ σL is never verified. When dealing with ductile materials, the theory is different:
the failure occurs when the process zone around a notch tip is completely invested with a
uniform stress field, equal to the yielding stress. This phenomenon is called ’redistribution
of stress’, and it entails that a ductile material never undergoes brittle fracture. But in
the reality, a ductile material can break in a brittle way, with apparently no explanation
unless referring to Fracture Mechanics.
Even for fatigue problems, classic mechanics fails. When studying the fatigue life of a
component it is necessary to define some parameters that give information on the shape,
the loading configuration, the material surface, and some other aspects regarding the
component, to characterize it properly. One of these parameters is the shape factor Kf .
The shape factor depends on the parameter q according to eq. (2). But when the notch
tip radius tends to zero, q tends to zero, as shown in fig. 2, and Kt tends to∞, as already
explained. This means that eq. (2) has no solutions and Kf is not determined. The
consequence is that it is not even possible to determine the fatigue life of the component.
In conclusion, with a cracked component, a specific approach is needed also for fatigue
problems. This is another confirmation that Fracture Mechanics is important, even if in
this study only static configurations are considered.

Kf = 1 + q(Kt − 1) (2)

Tensile Strength

ρ [mm]

q

Figure 2: Notch sensibility

The present work is a study of the mixed-mode fracture behavior of pre-cracked speci-
mens. The specimens are singular edge notch specimens (SEN), with a crack. As showed
in fig. 3, the most common types of notches are the U-notches, the V-notches, and the
so-called ideal cracks. The last ones present an opening angle 2α = 0, differently from

3



the V-notches, and a tip radius ρ that tends to zero.

Figure 3: Different types of notches: an ideal crack, a V-notch and a U-notch

The specimens are subjected to the Asymmetric Four-Point Bending Test, (AFPB), which
is a particular configuration that enables to obtained combined mode I and mode II frac-
tures. There are three ways in which a crack deforms (fig. 4): the first one is the opening
mode, called mode I. In these situations, the load is perpendicular to the crack plane and
the crack is subjected to traction. The second mode is the in-plane shear mode, where
the forces are parallel to the crack. The last one, mode III is the out-of-plane shear mode,
where forces are transversal to the crack. In this study mode III is not considered.

Figure 4: Crack deformation ways: opening, in-plane shear, out-of-plane shear
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In the present work, the fracture is studied with different theoretical criteria able to
predict the fracture behavior of cracked specimens. The criteria are the ASED criterion,
the MTS criterion, the GMTS criterion, the SED criterion, and the G criterion. They
will be throughout described in the next section. These criteria are applied to several
materials, belonging to the classes of Rocks, Polymers, Ceramics, and Steels. They are
materials completely different from each other, to rank the performances of each criterion
in different situations. Nevertheless, to apply the theoretical criteria, the materials have
to respect some hypotheses: they have to be homogeneous and isotropic, they have to
show a linear elastic behavior, and to present brittle fracture. Steels are ductile materials,
but they will be studied at low temperatures when they become brittle.
The main purpose of this thesis is to validate the ASED criterion. This criterion can
predict the failure load of a component. ASED stands for Average Strain Energy Density
because the strain energy density is the parameter that this criterion uses to monitor the
deformation of the crack, till the fracture. The energy is average in a control volume
centered in the crack tip. The prediction is based on the following proportion:

Pf :
√
Wc = P :

√
W (3)

Pf is the failure load, Wc is the critical value of the strain energy density and it corres-
ponds to the failure. It is a material property. The terms P and W are respectively the
load applied to the specimens and the average strain energy density corresponding to a
comparative case. This means that to predict the failure load of a cracked specimen it is
sufficient to know the material properties of the specimen and to simulate a comparative
case: the results of the analysis are used in eq. (3). In this study, the simulations are
made with the FE software Abaqus. In the simulations, the specimen is modelized with
the appropriate geometry and material properties. Also, the crack is modelized in the
right position. Then the model is stressed with a loading configuration that in this case
is an AFPB test configuration. The intensity of the applied load is an arbitrary choice.
For simplicity, the total load is 1N . Then it is sufficient to run the analysis: one of the
outputs of the simulation is the average strain energy density W , to use in eq. (3). This
is how it is possible to predict the failure load with the ASED criterion, without testing
the material with experimental tests.
The purpose of the thesis is not merely to use the criterion to predict failure loads for a
long series of specimens, but also to validate it. The validation is based on the comparison
between the simulation’s results and experimental results: in the field of this work, it was
not possible to carry out laboratory tests. It is necessary to use data already obtained by
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other scientists. In the literature, several studies on AFPB tests are available, on several
materials. The first step of the work is to find these experimental test reports. Then it is
possible to simulate the same specimens used for the lab tests to predict the failure loads.
At this point the comparison is possible.

The validation of the ASED criterion is fundamental for several reasons. The relevance
of the topic derives from the necessity of verifying the structural resistance of a component
without testing it. Real tests are expensive and not always feasible. It could also happen
that an experimental test does not simulate properly the reality, and therefore the results
are useless. For all these reasons and more, finding reliable theoretical criteria able to
predict the fracture behavior of a component is important. The ASED criterion is one of
the most recent, but in the last century, several criteria were formulated. Each criterion
proposes a different parameter as an indicator of the crack deformation state. The criteria
are stress-based or energy-based, according to the parameter used. This parameter should
be defined in the most general way and it has to be easy to obtain. Then, it is necessary
to find the critical value of this parameter that represents the failure of the component.
The ASED predictions are compared not only with the experimental results but also with
other criteria predictions. From the side of stress-based criteria, the MTS and the GMTS
criteria were used. They both use as the fracture parameter the tangential stress at the
crack tip. Then it has been used the SED criterion, based on the strain energy density. It
seems similar to the ASED criterion, but according to this one, the strain energy density
is not average in a control volume. The last one is called G Criterion and it is based on
the energy release rate, G.
The secondary purpose of this thesis is to see which criterion is the best for studying
different classes of materials. They are also important because with these criteria it is
possible to predict the initiation angle of the crack. The specimens used are pre-cracked
but subjected to stress, the crack propagates until the rupture. When the crack starts
propagating from the tip of the pre-crack, it takes a direction that depends on the mixed-
mode. In the case of pure mode I the crack keeps opening from the crack tip in the same
direction, but with pure mode II, the direction is close to 70°. The initiation angle can
not be obtained with the ASED criterion, but it is an important aspect to consider when
studying the propagation of a crack.

To conclude, the results for what concerns the ASED criterion are satisfactory and
encouraging. ASED predictions are in general extremely precise, with the majority of
materials tested. This criterion considers the fracture toughness KIc a material property,
therefore, a constant. With this assumption, it is not unexpected that the predictions for
the failure load corresponding to pure mode I fracture are almost perfect. The discrepancy
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Figure 5: Initiation angle of a crack, general scheme

between prediction and real load is tiny. But the discrepancy increases while approaching
pure mode II.
In the present work there are also materials for which the ASED criterion does not work.
But in these cases, additional problems were observed: for example, if the scientists who
carried out the test were not able to define the proper value of KIc, this is an uncertainty
that affects the ASED predictions. These particular situations will be described properly
in the following chapters.
For what concerns the other criteria, they are all well-known criteria, which validation is
undeniable. But it is interesting to observe that for each class of materials they work dif-
ferently. Even if with every material it is possible to recognize similarity, the best criterion
is never expected. For example, it is always true that the MTS and the GMTS predictions
are close to each other, and it is assumed that the GMTS criterion is the most accurate.
Nevertheless, it is not always the best in fitting the reality, as it will be shown. This
study was not needed to validate these criteria, which are milestones of Fracture Mechan-
ics, but it allows us to discover more about their behavior with different types of materials.

The work structure is presented hereafter:

• Chapter 1: In the first chapter, the theoretical background is described. The thesis
field is Linear Elastic Fracture Mechanics. This theory is described thoroughly. Also
the theoretical criteria are presented.

• Chapter 2: the second chapter presents the numerical procedure followed. It is
focused on the FE model used for the simulation in Abaqus, in particular on the
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boundary conditions and the mesh used.

• Chapter 3: it is the kernel of the thesis. After a description of the loading configur-
ation used, AFPB, all the materials tested are listed. The results of the application
of the ASED criterion and the other ones are presented and discussed.

• Chapter 4: the last chapter contains the report of how some Zirconia specimens were
tested with an AFPB fixture. Data obtained are then used to apply the theoretical
criteria.

• Conclusion and recommendations: in the last section, some interesting observations
on the thesis results are discussed.
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Chapter 1

THEORETICAL BACKGROUND

Linear Elastic Fracture Mechanics (LEFM) is the framework of the present study. In the
first section of the following chapter, an overview of LEFM theory and applications is
presented.
With LEFM, the integrity of a crack specimen is measured with parameters called stress
intensity factors. Even before the formulation of LEFM, scientists and researchers tried
to identify the most indicative parameter to monitor in order to predict the behavior of
a cracked specimen.
Several theoretical criteria were proposed during the last century. In this chapter, a
detailed description of some of them is proposed. The criteria used in the present work are
the following: the ASED criterion, the most recent one; the MTS criterion and a variation
of it, the GMTS criterion, both based on the stress field study; the SED criterion and the
G criterion, that are energy-based criteria.

1.1 Linear Elastic Fracture Mechanics

In the field of Fracture Mechanics, it is possible to study a crack with several approaches.
In the present work, only linear elastic materials are considered: this means that in the
proximity of a crack there is not a plastic zone or, eventually, it is negligible. Under this
hypothesis, it is possible to use Linear Elastic Fracture Mechanics to study the way cracks
lead to the failure of loaded specimens. Otherwise, other approaches should be preferred,
as EPFM, Elastic-Plastic Fracture Mechanics.

Regarding the LEFM theory, the stress field near a crack tip can be described with
the equations proposed by G.R. Irwing and M.L. Williams in 1957. Under some strict
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hypothesis, the stress field assumes the form presented in eq. (1.1) ([1]).

σx =
K1√
2πr

cos
θ

2

(
1− sinθ

2
sin

3θ

2

)
+ ... (1.1a)

σy =
K1√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+ ... (1.1b)

τxy =
K1√
2πr

sin
θ

2

(
cos

θ

2
cos

3θ

2

)
+ ... (1.1c)

{
σz = 0 plane stress

σz = ν(σx + σy) plane strain
(1.1d)

Figure 1.1: A generic crack subjected to Mode I loading

Fig. 1.1 clarifies the terms used in eqs. (1.1). The parameter K1 is called stress intensity
factor. More details on this parameter will be presented later. The equations are incom-
plete because the stress field presents also some non-singular terms that, by now, it is
possible to ignore.
According to the classic mechanics, a flaw on a specimen is a concentrator of stress. The
stress is higher if the flaw is sharper. Therefore, considering a sharp crack, near the tip
the tension should increase to infinity. This is shown in fig. 1.2, where the stress compon-
ent σy is plotted according to eqs. (1.1) both on a normal scale and a logarithmic scale.
The stress field presents an asymptote to ∞ (fig. 1.2a). It is an impossible condition to
reach: a real material will break in a brittle way if the stress reaches the tensile strength
at a certain distance from the crack tip, therefore it can never present stress components
that tend to ∞. The above-mentioned distance, rp, characterizes the plastic zone. If
the distance is short, the plastic zone is small and the material plastic behavior can be
ignored. In fig. 1.3 the stress trend of an ideally linear material is compared with a real
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material (the dashed curve). The distance rp represents the plastic deformation zone. If rp
is similar to ry, it is possible to consider the real material behavior perfectly linear. This
is the situation in which LEFM theory can be applied, with all the advantages connected
to it. In particular, in a linear elastic field, the principle of superposition is valid.
As said before, eqs. (1.1) can be used under some hypothesis: first of all the cracked spe-
cimen should be loaded in a pure mode I configuration. This means that only plane fields
can be considered, plane stress field or plane strain field. Besides, a limit on the plastic
zone should be considered. To apply the LEFM theory the radius that characterized the
plastic zone should be closed to the crack tip. The last condition is about the stress field
far from the crack: the gross stress should be smaller than half of the tensile strength of
the specimen (σg ≤ 0.5σt), else the stress field would be excessively intensive to ignore
the plastic zone.
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Figure 1.2: Stress field near the crack tip according to LEFM
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Figure 1.3: Comparison between a linear material stress field and a real material one.

According to equations (1.1), the tension field is represented in the diagrams in fig. 1.2.
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As said before, the tension has a vertical asymptote when too close to the tip, as to say
that the field is singular. Using a logarithmic scale, the trend appears as a straight line
with a slope of 0.5. This is an important aspect to highlight. Irwing tension field is
characterized by the ratio of 1/r0.5 in the first term of each equation. The exponent 0.5

represents the singularity of the field and it is a property of LEFM theory. In the next
chapters, it will be explained that to classify a crack with his singularity factor means to
choose how to consider the stress field around it, if perfectly linear or elastic-plastic.

The parameter K1 is the most important one when dealing with cracks because it
gives the measure of the intensity of the damage. It depends on the tension applied to
the specimen and from the crack’s initial length. It is measured in [MPa/

√
m]. The

definition of K1 is:
K1 = 2π lim

x→0
σyy(r, θ = 0)r0.5 (1.2)

Looking to fig. 1.2a it is clear that the limit gives an indeterminate form. If x → 0 it
is not possible to determine the value of σy. For this reason, there are correlations to
calculate K1 with the following generic form:

K1 = ασg
√
πa (1.3)

The components of (1.3) are:

• α, the shape factor. It depends on the geometry of the cracked specimen and the
loading configuration.

• σg, the gross tension, it is the tension in a section of the specimen far from the flaw.

• a, the crack initial length.

To find α there are several handbooks and manuals available, one of the most famous is
the handbook used in the present work: Stress Intensity Factors Handbook, by Murakami
[2]. Anyway, there are also several empirical correlations to calculate K1 in specific situ-
ations.

LEFM can be used both for static problems and fatigue problems. In the present
work, only static problems are studied, therefore, in this chapter, there is no focus on the
fatigue approach. According to LEFM theory, if the static load on a specimen increases,
the stress intensity factor increases too. When K1 reaches a critical value the crack has
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overwhelmed the specimen and the fracture occurs.
The critical value above-mentioned is called Fracture Toughness, KIc, and it is a property
of the material. The fracture toughness depends on the following factors: the first one is
the temperature. It is easier for a crack to propagate when the temperature is low; the
second one is material tensile strength, or more in general, the material characteristics;
the last one is the thickness of the specimen that affects tension and deformation fields,
and, as a consequence, the fragility of the specimen.

In the previous section, it was shown how important it is to study the fragility of
cracked specimen loaded with realistic configurations. In the present work all the spe-
cimens studied are subjected to mixed-mode loading configuration, mode I + mode II
combinations. When an in-plane load is applied to the specimens, the description of the
stress field is more complicated and new terms must be added to equations (1.1). The
result is the following stress field, proposed by William in 1959. Eqs. (1.4), represents
the mode I + mode II stress field for a generic notch. It is valid also for V-notches, with
an opening angle of 2α 6= 0. The equations show some new terms: Williams’eigenvalues,
λ1 and λ2 depend on the opening angle of the notch.

σx =
K1

(2πr)1−λ1
cos

θ

2

(
1− sinθ

2
sin

3θ

2

)
− K2

(2πr)1−λ2
sin

θ

2

(
2− cosθ

2
cos

3θ

2

)
+ ... (1.4a)

σy =
K1

(2πr)1−λ1
cos

θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+

K2

(2πr)1−λ2
sin

θ

2
cos

θ

2
cos

3θ

2
+ ... (1.4b)

τxy =
K1

(2πr)1−λ1
sin

θ

2

(
cos

θ

2
cos

3θ

2

)
+

K2

(2πr)1−λ2
cos

θ

2

(
1− sinθ

2
sin

3θ

2

)
+ ... (1.4c)

{
σz = 0 plane stress

σz = ν(σx + σy) plane strain
(1.4d)

Again, non-singular terms are ignored. In equations (1.4) there is another protagonist,
K2. This is the second stress intensity factor and the same considerations made for K1

are valid.
When dealing with ideal cracks, with opening angle 2α = 0, the Williams’eigenvalues are
both equal to 0.5. Eqs. (1.4) assume the following form, for what concerns σx, σy and
τxy. These are the equations to which this study will refer to when considering a cartesian
reference frame.

Ki

(2πr)1−λi
→ Ki

(2πr)0.5
i = 1, 2 (1.5)
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σx =
K1√
2πr

cos
θ

2

(
1− sinθ

2
sin

3θ

2

)
− K2√

2πr
sin

θ

2

(
2− cosθ

2
cos

3θ

2

)
+ ... (1.6a)

σy =
K1√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+

K2√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
+ ... (1.6b)

τxy =
K1√
2πr

sin
θ

2

(
cos

θ

2
cos

3θ

2

)
+

K2√
2πr

cos
θ

2

(
1− sinθ

2
sin

3θ

2

)
+ ... (1.6c)

1.2 The ASED Criterion

The first and the main criterion used in this thesis is the ASED criterion. This is an energy-
based criterion. It was first used for V-notches, with an opening angle different from 0, by
Lazzarin and Zambardi in 2001 [3]. It can be used both for static and fatigue problems.
Dealing with the fatigue analysis of notched components, this criterion presents several
advantages: the value of ASED can be calculated for notches with different opening angles
and subjected to different loading conditions, mode I, or mixed-mode (mode I+mode II).
Therefore, using ASED it is possible to compare different notches to understand which
one is the most critical. This was not possible using a stress approach because only similar
notches under similar loading configurations can be compared together.
In the present work, static loads are considered, hence, hereafter, only static aspects are
presented.
According to this criterion, the fracture occurs when the average strain energy density
near the crack tip reaches a critical value: W = Wc.
In this section the parameter W is obtained step by step, starting with the strain energy.
Something similar is presented in the article [4], by Razavi, Aliha, and Berto, where a clear
and incisive description of how to apply the ASED criterion to rock materials is proposed.
In particular, it explains how to obtain analytically the ASED. The strain energy is the
energy released after deformation and it is the area subtended by the load-deformation
curve (fig.1.4). The integer in (1.7) is the general form of the strain energy, but if the
material has a linear elastic behavior, the relation becomes the (1.8), much easier.

U =

∫ x1

0

Pdx (1.7)

U =
1

2
P1x1 (1.8)

The strain energy density is simply the strain energy calculated for a unit of volume
(see (1.9)). For a generic tri-axial stress field the result is in eq. (1.10), using cylindrical
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Figure 1.4: Load-displacement curve with strain energy area dashed

coordinates.

W =
U

V ol
=

∫ ε1

0

σdε (1.9)

W =
1

2
σrrεrr +

1

2
σθθεθθ +

1

2
σzzεzz +

τrθ
2G

(1.10)

To calculate the average strain energy density, it is sufficient to average the strain energy
density just obtained, in a control volume. According to the ASED criterion, the control
volume is a circle or a cylinder, depending on the model type, 2D, or 3D. The radius
is a material property, and the volume is centered in the crack tip. Fig. 1.5 shows a
generic crack, with an opening angle that ideally tends to zero, with the circular control
volume. The radius depends on the tensile strength and the mode I fracture toughness
of the material. There are two different equations available depending on the stress and
deformation fields on the component:

Rc =
(1 + ν)(5− 8ν)

4π

(KIc

σt

)2
plane strain (1.11)

Rc =
(5− 3ν)

4π

(Kc

σt

)2
plane stress (1.12)

The idea of using a control volume is not completely new. According to the Irwing and
Williams equations reported in the previous section, the stress field is singular near the
crack tip. Hence, to evaluate a crack and the material behavior it is not possible to focus
only on the proximity of the crack tip. To avoid the plastic zone around the tip, several
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Figure 1.5: Control volume centered in the crack tip

criteria established that the material conditions of a cracked specimen (like the stress
field components or the strain energy density) have to be evaluated at a proper distance
from the tip. The innovation of the ASED criterion is to define not only a distance but a
control volume in which the strain energy density is averaged.
After calculating the strain energy density, it is possible to obtain ASED as W/Vc, where
Vc is the control volume. The result, considering an in-plane loading combination, is
presented in eq. (1.13).

W =
e1
E

(
K2

1

R
(1−λ1)
c

)
+
e2
E

(
K2

2

R
(1−λ2)
c

)
(1.13)

It is immediate to extend this approach to extra plane loading combinations by the addi-
tion of the term related to K3, the mode III stress intensity factor. The terms e1 and e2
are geometric constants that depend on the geometry of the crack and the Poisson’s ratio.
Dealing with an ideal crack, with opening angle of 2α = 0, e1 = 0.133 and e2 = 0.34. The
exponents λ1 and λ2 depend on the notch configuration and they are already discussed
in the previous section. They are called Williams’eigenvalues and for an ideal crack, they
are both equal to 0.5.
With (1.13) it is possible to obtain analytically the value of ASED. But using a FE soft-
ware like Abaqus, the one used in this work, it is also possible to get ASED as an output
of the analysis, if, previously, the control volume is defined.
The last step of the formulation of the ASED criterion is the comparison between the
calculated ASED and the critical value of it, corresponding to the rupture. The critical
value is a material property equal to:
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Wc =
σ2
t

2E
(1.14)

where σt is the tensile strength and E the Young modulus. Actually, this is true only if
the material is ideally brittle.
The power of this criterion is that there is proportionality between the strain energy dens-
ity and, through the stress intensity factor, the load applied to the specimen. Therefore,
it is possible to predict the fracture load with the following crucial relation:

Pf = P

√
Wc

W
(1.15)

It is sufficient to simulate a comparative case with a cracked specimen subjected to a
particular loading configuration. The applied total load is arbitrary, and it is the term
P (1.15). The term W is obtained as an output of the simulation. At this point, all
the terms present in equation (1.15) are available, and it is possible to predict the load
that lead the specimen to the fracture. This is an incredibly powerful result. In the next
chapter, the ASED criterion will be applied to several specimens of different materials to
demonstrate that the method can be extremely precise in predicting failure loads.
Moreover, as just said, stress intensity factors depend on the stress and therefore on the
applied load. With the predicted load is possible to calculate also the toughness of the
specimen, to characterize properly the fracture behavior of a component.
In the present work, the ASED criterion is applied to brittle materials that are tested
with the loading configuration called Asymmetric Four-Point Bending (AFPB). Further
details on this configuration will be propesed later (3.0.1). Nevertheless, the criterion can
be applied also to different shapes of specimens. Some examples are reported in paper
[5], by Razavi, Ayatollahi, and Berto.

1.3 The MTS Criterion

The second criterion used in the present work is the Maximum Tangential Stress Criterion.
This criterion was first proposed by Erdogan and Sih in 1963 [6]. According to the MTS
criterion, the fracture propagates along the direction where σθθ is maximum. The rupture
will occur when the tangential stress reaches a critical value at a distance from the tip
called critical distance rc. Usually, rc delimits the plastic zone around the tip but more
in general it defines the so-called process zone, characterized by dislocation motion and
other defects. It is a non-linear deformation region.
Using cylindrical coordinates, the stress field around the crack tip can be described with
equations (1.16). Fig. 1.6 helps to understand the terms. To perform the MTS criterion
it is sufficient to consider the singular terms of the field, ignoring the first non-singular
term and the higher-order terms of the equations.
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σrr =
K1√
2πr

cos
θ

2

(
1 + sin2

θ

2

)
− K2√

2πr

(
−5

4
sin

θ

2
+

3

4
sin

3θ

2

)
+ ... (1.16a)

σθθ =
K1√
2πr

cos
θ

2

(
1− sin2 θ

2

)
− K2√

2πr

(
−3

4
sin

θ

2
− 3

4
sin

3θ

2

)
+ ... (1.16b)

τrθ =
K1√
2πr

sin
θ

2
cos2

θ

2
+

K2√
2πr

(
1

4
sin

θ

2
+

3

4
sin

3θ

2

)
+ ... (1.16c)

Figure 1.6: William stress field in a cycilidrical reference system

To find the maximum of σθθ, it is necessary to set an optimization problem as shown in
the following group of equations (1.17): the first condition is necessary to find a stationary
point. In the second line, the imposition on the second derivative sign is the sufficient
condition to ensure that the point is a maximum, not a minimum neither a point of flex.

∂σθθ
∂θ

= 0

∂2σθθ
∂θ2

< 0

(1.17)

It is possible to solve the problem numerically, using software like Matlab, but the first
equation of the previous system is equivalent to eq. (1.18), easy to solve analytically
to find θ0, the initiation angle. Furthermore, being one of the most famous and precise
criteria, the MTS is also implemented in Abaqus. This means that it is possible to ask
the software the initiation angle of a propagating crack according to the MTS criterion
during an analysis.

K1fsinθ0 +K2f (3cosθ0 − 1) = 0 (1.18)
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In (1.18) K1f and K2f are the stress intensity factors calculated near the crack tip in a
cracked specimen that undergoes a particular loading condition when the fracture occurs.
If the way of crack-deformation is pure mode I, K2f = 0 and θ0 = 0. When the loading
condition is really close to pure mode II and K1f tends to 0, typical values for θ0 are
around 70°.
If θ0 has been found, it is possible also to calculate the toughness KIc related to the
configuration under consideration. It is well known that, in a pure mode I configuration,
KIc = σc

√
2πrc, where σc is the critical value of σθθ and rc the critical distance above

mentioned. Substituting this equation in the eq. (1.16c), it is possible to find the value
of the fracture toughness of the specimen if the stress intensity factors and the angle θ0
are known. Eq. (1.19) shows how:

KIc = cos2
θ0
2

(
K1fcos

θ0
2
− 3

2
K2fsinθ0

)
(1.19)

It is worth to precise that the parameter K1f and K2f are the stress intensity factors
related to a mixed-mode loading configuration when the fracture occurs. If the applied
load respect the pure mode I fracture deformation, K1f = KIc, mode I fracture toughness,
while K2f = 0.
The MTS criterion is not the only one able to predict both the initiation angle and the
KIc. Three other criteria will be presented, and, in the next chapter, they will be com-
pared through two plots for each material studied: the first one is the comparison of
the initiation angles find out in different mixed-mode loads. The second one compares
the trend of the normalized stress intensity factors K1/KIc and K2/KIc. For the MTS
criterion, the toughness is calculated according to eq. (1.19) and a similar correlation will
be proposed for each criterion.

1.4 The GMTS Criterion

It is known that the MTS criterion is one of the most used criteria to predict the initiation
angle of a crack. But the predictions are not always precise. The limitation of the classical
MTS is that it considers only the singular terms of William’s stress field. But it is shown
that ignoring the non-singular term of the field can affect significantly the precision of the
prediction. For this reason, a new criterion was recently proposed (firstly by Smith et al.
in 2001, [7]), called Generalized Maximum Tangential Stress Criterion, or Modified MTS
Criterion.
The complete equation for the tangential component of the stress field is presented below
in (1.20): after the singular terms, there is the first non-singular term called T − stress.
In the complete equations, there are also higher-order terms, but they are negligible.
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σθθ =
K1√
2πr

cos
θ

2

(
1− sin2 θ

2

)
− K2√

2πr

(
−3

4
sin

θ

2
− 3

4
sin

3θ

2

)
+ Tsin2θ +O(r1/2) (1.20)

The GMTS, as the MTS criterion, states that a crack initiates along the direction where
the tangential stress, calculated using 1.20, is maximum. Therefore, equations (1.18) and
(1.19) are transformed in the following:

K1fsinθ0 +K2f (3cosθ0 − 1)− 16Tf
3

√
2πrccosθ0sin

θ0
2

= 0 (1.21)

KIc = cos2
θ0
2

(
K1fcos

θ0
2
− 3

2
K2fsinθ0

)
+
√

2πrcTfsin
2θ0 (1.22)

Eq.(1.21) is useful to find θ0 while with (1.22) the fracture toughness is obtained.
T-stress is difficult to calculate analytically. In very simple loading configurations T-stress
is easy to obtain along with particular directions like 0°. In the article [8] some typical
solution are presented. To avoid the propagation of uncertainty it is better to obtain
T-stress directly from the software Abaqus.
The critical distance rc has already been described, it is the distance from the crack tip
that delimits the process zone. As already said, to respect the LEFM theory, the plastic
zone around the tip should be small. This means that the critical distance should be
short: typical magnitude for rc is 10−5m. To evaluate it, there are several correlations
available in the literature. In the present work the Schmidt’s correlation was usually used
[9], [10], [11]:

rc =
1

2π

(KIc

σt

)2
(1.23)

As for the MTS criterion, it is not necessary to solve an optimization problem because
eq. (1.21) is resolvable analytically.
Usually, in the literature [7],[9], [10], [11], another approach is used to express the equa-
tion to find θ0, that implies the use of normalized expressions:

KIc = cos2
θ0
2

(
K1cos

θ0
2
− 3

2
K2sinθ0

)
+BαKeffsin

2θ0 (1.24)
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with the terms proposed below (1.25). The parameter a is the initial crack length.

Keff =
√
K2

1 +K2
2 (1.25a)

B =
T
√
πa

Keff

(1.25b)

α =

√
2rc
a

(1.25c)

The T-stress affects both the toughness and the value of θ0 of a component. The sign
of T-stress depends on the geometry and loading configuration. A negative T-stress
means increasing the mixed-mode fracture toughness and the value of the initiation angle.
Instead, the magnitude gives an idea of the severity of the flaw in the specimen.

1.5 The SED Criterion

The SED criterion is the fourth theoretical criterion used in the present work. The ac-
ronym SED stands for strain energy density, the same parameter calculated to perform
the ASED criterion. This criterion was first formulated by Sih, in 1973 [12]. This is an
energetic criterion, like the ASED criterion. The parameter used to study the onset of
the fracture is the strain energy density factor S. It is simply the strain energy dens-
ity, already calculated in the previous section, multiply for the critical distance rc. This
distance usually represent the core region, a small region around the crack tip where the
material is not perfectly elastic but it shows flaws and dislocations.
Factor S can be written with the following equation:

S = rc
∂W

∂V
= a11(θ)K

2
1 + a12(θ)K1K2 + a22(θ)K

2
2 (1.26)

The angular functions a11, a12 and a22 are obtained as follows. The parameter κ changes
if the specimen stress and deformation fields are plane. In the present work, only thick
specimens were analyzed. Therefore it is always used the plane strain model. The para-
meter ν is the Poisson’s ratio.

a11(θ) =
1

16G
[(1 + cosθ)(κ− cosθ)] (1.27a)

a12(θ) =
1

16G
sinθ[2cosθ − (κ− 1)] (1.27b)

a22(θ) =
1

16G
[(κ+ 1)(1− cosθ) + (1 + cosθ)(3cosθ − 1)] (1.27c)
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{
κ = 3− 4ν plane strain

κ = (3− ν)/(1 + ν) plane stress
(1.27d)

The SED criterion states that the crack will initiate along the direction of the minimum
strain energy density factor. The fracture will occur if, along this direction, at a distance
from the crack tip equal to rc, the factor S reaches a critical value Sc.
The critical value of the S factor depends on the loading configuration and it is considered,

as rc, a material constant. To find the stationary value of
∂S

∂θ
it was used the software

Matlab that offers several built-in functions to minimize a function. Once the value of
θ0 is found, it’s possible to calculate also the fracture toughness of the specimen with
equation (1.28).

KIc =

[
8

κ− 1

(
1

16
(κ− cosθ0)(1 + cosθ0)K

2
1 +

1

8
sinθ0(2cosθ0 − (κ− 1))K1K2+

1

16
(κ+ 1)(1− cosθ0) + (1− cosθ0)(3cosθ0 − 1)K2

2

)]0.5 (1.28)

1.6 The G Criterion

The G criterion is the last theoretical criterion used in the present work. The G criterion
states that the crack will propagate in the direction along which the energy release rate
G is maximum, and the fracture will occur when G reaches a critical value. More details
will be discussed later. But first, the parametric form of G is presented below. In order
to apply the criterion, eq. (1.29) is implemented in Matlab to find the maximum of G.
Once the initial angle is defined, it is possible to calculate the fracture toughness with
eq. (1.30). Abaqus can calculate the initiation angle according to this criterion, which is
called also MERR, Maximum Energy Release Rate [13]. It is also possible for the MTS
criterion. While for the MTS criterion Abaqus results are in good accordance with the
values of θ0 obtained analytically, with the MERR criterion the software is less precise.
Therefore both the numerical solutions and Abaqus solutions are considered. Even from
the point of view of the numerical implementation of the G criterion, there are more
troubles: it seems that the function has several stationary points, and it is necessary to
indicate to Matlab the right interval in which looking for the maximum. Else, Matlab
gives unreliable angular values.

G =
4

E

(
1

3 + cos2θ

)(
1 + θ/π

1− θ/π

)−θ
π [

(1 + 3cos2θ)K2
1 + 8sinθcosθK1K2 + (9− 5cos2θ)K2

2 ] (1.29)

KIc =

(
2

3 + cos2θ0

)(
1 + θ0/π

1− θ0/π

)−θ
2π [

(1 + 3cos2θ0)K2
1 + 8sinθ0cosθ0K1K2 + (9− 5cos2θ0)K2

2 ]0.5

(1.30)
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It is worth to discuss the origin of this criterion. The G criterion is a generalization of
the so-called Griffith-Irwing’s criterion [14] and G is literally the elastic energy release
per unit crack extension. Griffith, in 1920, stated that a crack will propagate if "the
release of available stored elastic strain energy due to crack extension is larger than the
energy required to create new crack surfaces" [15, pp. L–39]. This means that according
to Griffith, the parameter to monitor is the superficial potential energy. While Griffith
considered only ideally brittle material, Irwing extended the criterion to ductile materials.
It is clear that the MERR criterion, or G criterion, is directly derived from the Griffith
approach.
The parametric form described above is the result of the necessity of describing G for
deflected crack: there are other correlations in the literature which links G to stress
intensity factors [14]. But it is well known that under combined mode I and mode II
loads, a crack will propagate outside the crack plane, with a deflection angle that depends
on the loading configuration. Hence, the classical correlations are not useful and the
parametric form for G was derived using path-independent integrals, like Rice’s integral
[16], that doesn’t consider the motion of the crack.
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Chapter 2

NUMERICAL PROCEDURE

The present work is based on the numerical procedure described hereafter. As already
explained in the previous chapters, the heart of the thesis is the comparison between the-
oretical predictions and experimental results to validate several criteria dealing with the
fracture behavior of cracked specimens. To apply the criteria it is necessary to simulate
an AFPB test with a FE software. It is sufficient to stress a little the specimen, without
lead it to the rupture. The results of the analysis are then scaled and used to predict the
behavior of the specimen when the fracture occurs.
In a few words, the method consists of the following steps. The first one is a review
job. It was necessary to look in the literature for datasets obtained through experimental
tests carried out for other purposes. The articles under consideration have to respect
some restrictions: first of all, they have to deal with the static fracture of pre-cracked
AFPB specimens, loaded under mixed-mode (I + II) conditions. Failure loads and stress
intensity factors depend on the geometry of the specimen and the loading configuration.
Therefore, it would be a mistake to use data obtained through tests different from the
AFPB, the one chosen for this work. To prepare the simulations, a large amount of in-
formation is needed: the articles used have to be detailed enough to provide the necessary
inputs for the numerical procedure.
As disclosed before, the numerical procedure is based on the simulation of the behavior of
cracked specimens with precise boundary conditions through FE software. Data obtained
from the analysis are then processed to perform theoretical criteria and predict the frac-
ture behavior of the specimens.
A detailed description of the FE model and the procedure to process data are presented in
the next sections. The FE model has to respect the characteristics of the real tests. This
is the reason why it was said that a large quantity of information about experimental tests
has to be available: above all, failure loads for each configuration have to be registered.
Furthermore, the specimen’s dimensions, the test’s parameters, and the material’s prop-
erties have to be provided.
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Once this information is collected, it is possible to begin with the simulation part. The
FE software used in this work is Abaqus.

2.1 The FE Model

2.1.1 Geometry and Material

First of all, the simulation requires the construction of a good model. The geometry of
specimens used in AFPB tests is simple, they are classic SEN specimens, as shown in
fig. 2.1; for this, they are modeled as rectangular bars. The three dimensions, length,
width, and thickness, have to be known. The part is modeled in 2D with the hypothesis of
plane strain field. All the specimens studied have an average thickness of 10mm, hence a
plane stress field was not applicable. For what concerns the material, ideal isotropic and
linear-elastic materials are considered. Therefore, it is enough to provide Abaqus with
the Young modulus and Poisson’s ratio of the material used.
As shown in fig. 2.1, on the model it is sketched a simple partition: it has several func-
tions. First of all, to model the crack as described later, it is necessary to draw it with a
partition. Then, centered in the crack tip, the circular control volume is sketched. There
is usually a cross in it to facilitate the construction of the swept mesh inside it. In the
end, extra edges are created far from the crack to guarantee a nice structured mesh at
the extremity of the specimen.

2.1.2 Definition of the Crack in the FE Model

In Abaqus, the crack is modeled as a seam: that means that the crack is ideal, sharp,
with an opening angle equal to zero. Abaqus is provided with different models to evaluate
a crack. For the aim of this work, the model used is Contour Integrals.
Particular attention was paid to the singularity of the crack. The work is based on the
LEFM theory and the model of Williams (section 1.1) for the stress field: the singularity
of the stress field is 1/

√
r. To respect this point, a proper characterization of the crack

should be done in the software: first, the nodes of the mesh’s elements next to the crack
tip should be collapsed in one, which will be perfectly overlapped with the tip itself. This
is easier to understand looking at fig. 2.6a. The elements used are 8-nodes biquadratic
plane strain elements, but the mesh description will be proposed later on.
Second, mid-side nodes of the sides of these elements linked to the tip should move to the
quarter points of the sides, towards the tip. In this way, it is possible to have suitable
degenerated quad elements around the tip. In fig. 2.1 the geometric model in Abaqus
is shown. In this case, the crack starts from the bottom side of the specimen and it is
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Figure 2.1: Geometric model in Abaqus

highlighted in red.

2.1.3 Boundary Conditions

The proper definition of the boundary conditions is fundamental to perform the ASED
criterion correctly.
The first thing to know is that, in the simulations, specimens are loaded with a force of
1N . In this condition, the specimen is not lead to the fracture. Anyway, the analysis is
useful in predicting the fracture behavior of the material because, as told at the beginning,
the theory used in this thesis for the evaluation of the crack is the LEFM theory. This
means that the Principle of Superposition is valid. Therefore, what happens to the spe-
cimen with a load of 1N can be appropriately scaled to what happens when the fracture
occurs. The consequence is that the prediction of the failure load with the ASED criterion
is based on the simple equation already proposed in section 1.2: Pf = P

√
Wc

W
. From the

FE software, it is possible to know the value of the strain energy density averaged in the
control volume when a load of 1N is applied (W ). It is necessary to calculate the critical
value of the strain energy density (Wc), but it depends only on material properties and it
is easy to obtain. Therefore the only unknown variable in the equation is the failure load
(Pf ).
After discussing the intensity of the load applied, it is worthly to focus on the boundary
conditions. In this regard, it is useful to outline the setting of an AFPB test fixture, as
shown in fig. 2.2.
The specimen is kept in the right position using 4 rollers. Two of them on the upper
side and two on the lower side. In the FE model, the lower rollers are represented as
constraints to fix the specimen in the space. Dealing with a 2D model, to guarantee the
static equilibrium, only 3 d.o.f., degrees of freedom, have to be blocked. For these sim-
ulations, displacements along X and Y-axis on the left support and displacements along

27



Figure 2.2: AFPB test’s scheme

Y-axis on the right support are disabled.
For what concerns the load, the specimen is loaded from the top to the bottom, and the
force is split into two components which points of application are located at the place
of the upper rollers. These forces are treated as concentrated loads. Their intensity is
calculated to have a bending moment equal to zero on the symmetry plane of the sample,
to preserve the static equilibrium.
The distances called L1, L2, L3, and L4 in fig. 2.2, are not random. Changing these dis-
tances it is possible to vary the value of the mixed-mode coefficient Me. Me is calculated
with the eq. (2.1) and it indicates the influence of mode I in the fracture mechanism
concerning mode II. Me is included in [0, 1], where 0 corresponds to pure mode II and 1

to pure mode I.

Me =
2

π
arctg

(K1

K2

)
(2.1)

Dealing with 4-points bending tests, to obtain pure mode I it is necessary to simulate a
Symmetric Four-point bend test. The scheme of this configuration is shown in fig. 2.3a.
Distances have to respect these constraints: L1 = L2 and L3 = L4. The crack is in the
symmetry plane of the sample.
To obtain mode II the Asymmetric Four-Points bending configuration has to be simu-
lated. This time L1 = L4 and L2 = L3. The crack is in the symmetry plane. (fig. 2.3b).

To simulate mixed-mode (I+II) there are two possibilities. The first one is the solution
used for example with Takkab Granite, (section 3.1.3). In this case, to change the value
of Me, it is sufficient to change the distance of a boundary condition. In fig. 2.4a L4

changes to vary the mixed mode. Starting with the configuration L1 = L4 (mode II),
L4 decreases gradually and the constraint is closer to the crack. This means that the
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(a) SFPB, Mode I (b) AFPB, Mode II

Figure 2.3: Loading configurations

influence of mode I will be stronger in the fracture mechanism.
Another way to obtain mixed modes is to move the specimen, and therefore also the
crack’s plane, instead of the boundary conditions. Loads and constraints are kept in the
same position in every simulation. But the crack moves towards the closer load of a dis-
tance called S (fig. 2.4b). The longer is S the higher is the coefficient Me. S can be
calculated, if not provided, using eq. (2.2). This should be always possible because stress
intensity factors registered during tests should be available. F1 and F2 in the equation
are the geometry factors used to calculate SIFs.

S = W

(
F2

F1

)(
K1

K2

)
(2.2)

Special attention should be paid to the loading distances L1, L2, L3 and L4. The most
important thing is that L1 has to be "far enough" to the crack tip. This information
is translated in the following condition: it is appropriate to never let L1/W < 0.5.
Otherwise, the intensity of mode I in the fracture mechanism will be high even with
the AFPB configuration. In this eventuality, mode II will not be obtained because K1

will not be zero, either approximated to zero. These considerations are reported in the
papers [11] and [17]. Even in this work, similar problems were found in the analysis of
Indiana and Westerly granite (sections 3.1.5 and 3.1.6).

2.1.4 Output Requests

As already explained, the input required to perform the ASED, MTS, GMTS, SED and G
criteria can be obtained through simulations. In particular, to perform the ASED criterion
it is necessary to calculate the Average Strain Energy Density. From the software, it is
possible to obtain the output requests called ELSE and EVOL in the circular control
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L4>L4’>L4’’

Me<Me’<Me’’

(a)

(b)

Figure 2.4: Loading configurations to simulate mixed modes

volume sketched in the partition. ELSE is literally the Total Elastic Strain Energy in the
Element, while EVOL is the Current Element Volume. They are both required for all the
elements in the control volume. To calculate ASED it will be sufficient to divide ELSE
by EVOL.
These are not the only useful outputs. From Abaqus, Stress Intensity Factors at the crack
tip can be extracted. The software is provided with different algorithms to calculate the
SIFs. In the interest of this work, both Maximum Tangential Stress and Maximum Energy
Release Rate were used, because the software gives also the prediction of the direction
along which the crack will start, according to these criteria. These directions will also be
obtained numerically, to have a double-check of the results. The last output necessary
in the procedure is the T-stress. This is the first non-singular term of the stress field,
according to William’s theory, and it is used in the GMTS criterion. To apply the criterion,
it is needed the T-stress when the fracture occurs and it is obtained multiplying T-stress
from the simulation with 1N load (that is an output request) for the predicted failure
load.
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2.1.5 The Mesh

The element type used in the analysis is CPE8: 8 nodes plain strain element. These
elements are suitable for the type of analysis, primarily because of the hypothesis of plain
strain field, and secondly because quadratic elements are in general more stable and easy
to manage. To have a nice mesh, the partition shown in fig. 2.1 was sketched to delimit
different mesh control areas. For example, in the extreme parts of the sample, a simple
structured mesh with quad elements was required. In the middle area, the geometry is
more complex and the most convenient mesh is the free one, with algorithm of construction
Medial Axis and quad elements.
The most important area is the control volume. The control volume has the shape of
a circle, for this, it is required a swept mesh with quad dominated elements. With the
characterization of the crack’ singularity described in the previous section, these quad
elements will degenerate in triangulare elements in the first contour around the tip. To
improve the seeding, a cross was sketched inside of the control volume, perpendicular to
the crack. In the four edges of the cross, a single bias seeding is requested. The element
size in the control volume has to be chosen carefully.
It was appropriate to do a sensitive analysis of the mesh. The resulting mesh is shown in
fig. 4.16, while in fig. 2.6b an enlargement of the control volume is presented.

X

Y

Z Figure 2.5: Typical mesh appearance

2.1.6 Mesh Sensitivity Analysis

A sensitivity analysis was performed to understand the importance of the mesh seeding
to the aim of this work. The analysis was performed with the FE model build to study
Takkab Granite fracture behavior. First, mode I was analyzed, with three different mesh.
For an overall analysis, all the output requests were observed: this means ASED, K1,
the directions of crack’s initiation according to the MTS and the G criteria, and the T-
stress. The results of this sensitivity analysis are the expected ones: it is well known
that the value of ASED is not mesh-dependent. In fact, with gross meshes, the value
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(a) Collapsed elements’nodes near the
crack tip.

(b) Enlargement of the swept mesh in the
control volume.

Figure 2.6: Details of the mesh’s elements near the crack tip.

does not change. Instead, stress intensity factors are known to be sensitive to the finesse
of the mesh, and this is what is seen in the tab. 2.1, where there is a tiny difference
between the three values of K1. No differences were registered in the directions and for
the T-stress. T-stress is less sensitive to the mesh than stress, but not strongly mesh-
independent as the strain energy density. For this reason it worth checking them too.
To have a double-check, a sensitivity analysis was performed also on the model when the
mixed-mode coefficient is Me = 0.7. The same considerations can be done: the ASED
is strongly mesh-independent while stress intensity factors are more sensitive. For what
concerns directions and the T-stress there are negligible differences.

MESH SENSITIVITY ANALYSIS WITH Me=1

MESH PATTERN

X

Y

Z X

Y

Z

X

Y

Z

ASED [mJ/mm3] 1.44E − 09 1.44E − 09 1.38E − 09
K1 (1N) [MPa

√
mm] 0.044705 0.044700 0.052663

T − stress [MPa] 0.0016044 0.0016044 0.00031365

Table 2.1: Mesh sensitivity analysis, pure mode I
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MESH SENSITIVITY ANALYSIS WITH Me=0.7

MESH PATTERN

X

Y

Z X

Y

Z numerical/vc2

X

Y

Z

ASED [mJ/mm3] 1.98E − 10 1.98E − 10 1.81E − 09
K1 (1N) [MPa

√
mm] 0.01264900 0.012648000 0.060940

K2 (1N) [MPa
√
mm] 0.00644950 0.00644910 0.0023022

T − stress [MPa] 0.000507780 0.000507280 0.0016746

Table 2.2: Mesh sensitivity analysis, Me = 0.7

2.2 Data Processing

2.2.1 The ASED Criterion Application

Once all necessary data are available, it is possible to work with the criteria. The de-
scription of the steps to perform the ASED criterion is presented here. As already said,
from Abaqus simulations, ELSE and EVOL can be extracted. This means that ASED,
the Average Strain Energy Density, can be calculated as ASED = ELSE/EV OL. The
common symbol for the average strain energy density is W , and from here on out it will
be called in this way. To obtain the failure load in each configuration, the critical value
of the strain energy density is calculated, as Wc = σ2

t /2E. The last equations are already
discussed in section 1.2, where the criterion is presented. The load used in the simulations
to simulate the comparative case is unitary, for simplicity, and the failure load is obtained

with: Pf =

√
Wc

W
. In this way, the first important parameter of the study, the failure

load, is provided.
At this point, it is sufficient to compare failure loads predicted with the ASED criterion
with the experimental ones presented in the paper used as a reference for each material.
Sometimes in the articles, failure loads are not provided directly, but there are the stress
intensity factors registered when the fracture occurs for every mixed-mode loading config-
uration. In this case, failure loads can be obtained with the general equations here below
(eq. (3.3) and (3.4)), where M and Q are respectively the bending moment and the shear
on the crack plane. As said before, the geometry factors F1 and F2 can be found in the
literature.
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K1 =
M

tW 1.5
F1(a/W ) (2.3)

K2 =
Q

tW 0.5
F2(a/W ) (2.4)

The procedure behind this thesis is based on the fact that the fracture toughness of the
material is a material property, a constant. This means that also simulating the model,
the fracture toughness obtained should be the same that is presented in the paper as a
property of the material. It is important to check this equality because if the KIc ob-
tained through the simulation is different, it means that there are mistakes and the results
obtained are not valid.
As said before, the simulations present a total applied load of 1N , therefore the specimen
is far from the rupture. For pure mode I, the value of the first stress intensity factor K1

obtained, does not correspond to the facture toughness KIc. To calculate the fracture
toughness there are several ways. One of the possibilities is to use a correlation that links
KIc to the failure load predicted for mode I with the ASED criterion. Usually, in the
papers, specific correlations and geometry factors suitable for the tests under consider-
ation are presented. But it is always possible to use the theory of Murakami [2]. Most
of the time, mode I is obtained with the Symmetrical Four-Points Bending test (SFPB),
sometimes with a Three-Points Bending test (3PB). For the SFPB, equations from the
masterpiece of Murakami are presented here below. For the nomenclature of the para-
meters, see fig. 2.7:

Figure 2.7: SFPB scheme from Murakami handbook

K1c =
3Pl

tW 2

√
ΠaF

( a
W

)
(2.5)
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F
( a
W

)
= 1.122− 1.121

( a
W

)
+ 3.740

( a
W

)2
+ 3.873

( a
W

)3
− 19.05

( a
W

)4
+ 22.55

( a
W

)5
(2.6)

Otherwise, to calculate KIc, it is possible to take advantage of the relation between stress
intensity factors and applied load. This is valid not only for KIc, but also for the stress
intensity factors corresponding to mixed-mode with Me < 1, when the fracture occurs.
They will be indicated as K1f and K2f . In eqs. (3.3) and (3.4) the following relation is
indicated:

K1 ∝M K2 ∝ Q (2.7)

But both the bending moment M and the shear Q depends directly on the load applied.
It is possible to establish the following proportion:

K1 : P = K1f : Pf K2 : P = K2f : Pf (2.8)

keeping in mind that if Me = 1, K2 = 0 and K1f ≡ KIc. Using eqs. (2.8) it is possible
to calculate the stress intensity factors when the failure occurs without further difficult
steps, as the calculations of the geometry factors. The terms K1 and K2 are given as
results of the simulation, P is the load applied, that for simplicity is 1N and Pf has been
obtained applying the ASED criterion.
The values of K1f and K2f will be used to apply the other theoretical criteria.

2.2.2 The MTS, GMTS, SED AND G Criteria Application

These theoretical criteria were already described in chapter 1. To recap, they can predict
the direction along which the crack initiates and the value of KIc. Basically, the only
inputs that they need are the stress intensity factors, when the fracture occurs. They are
obtained with the procedure described in the previous section. Material properties are
necessary, but it is supposed that at this point of the analysis they are well known. The
GMTS criterion needs also the T-stress. To calculate the T-stress when the specimen
fails it is sufficient to multiply the T-stress obtain from Abaqus, with 1N load, by the
failure load predicted, taking advantage of the proportionality T − stress ∝ P . This is
exactly the method used to calculate K1f and K2f , and it is an advantage related to the
LEFM theory.
All criteria are based on optimization problems: to obtain the initiation directions it is
necessary to calculate the singular point of a function. For the MTS and the GMTS
criteria, it is necessary to find the maximum of the tangential stress, while for the G
criterion the energy release rate has to be maximalized. In the end, for the SED criterion,
it is necessary to find the minimum of the strain energy density factor. To solve these
problems, the software Matlab was used. Actually, as already explained in the previous
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chapter, for the MTS and the GMTS criteria there are explicit equations to find the angle.
For the other two criteria, it is possible to use a built-in function of Matlab to minimize
a function numerically.
Abaqus can predict the initiation angle of a crack according to the MTS and the G
criteria. These values are registered on purpose to compare them with the ones obtained
from Matlab to see if the codes are working appropriately. This is a method to notice
errors.
Once the four criteria are applied, it is possible to present the comparison. The results
are presented in two plots: in the first one, the initiation angles are plotted for each Me,
from pure mode I to mode II. For all the material the four criteria predicted angle trend
are presented, but sometimes also the experimental values are available: this happens
when, during the experimental tests, the scientists registered the initiation angles of the
crack for each specimen, using visual instruments and a goniometer. In this case, it is
possible to compare the reality with the criteria to see which one is the best in fitting the
real trend.
In the second plot, a comparison between the stress intensity factor is shown. The SIFs
are normalized, this means that the plot has K1/KIc in the X-axis and K2/KIc on the
Y-axis. The SIFs used are obtain when the fracture occurs. In this plot not only the four
criteria are presented but also the ASED predictions and the experimental results. There
is more than one level of interest in this comparison: it is interesting first of all to see the
difference between the ASED trend and the experimental one. Then it is also interesting
to see how close are these four criteria between each other and between the ASED and
experimental trends.
For every class of materials, more than one material was tested. This makes it possible
to understand when a criterion is better than the other and to draw useful conclusions.
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Chapter 3

RESULTS AND DISCUSSION

3.0.1 Asymmetric Four-Point Bend Configuration

The loading configuration used for this work is the Asymmetric Four-Point Bending config-
uration. Some details about this configuration have already been reported in the previous
sections, in particular in sec. 2.1.3, where the Boundary Conditions of the FE model in
Abaqus were described. As said before, in the present work, the experimental test results
were found in the literature, and only articles regarding AFPB configurations were con-
sidered.
Schemes of the configuration have already been shown. Here it is proposed again the
scheme for both the Symmetric Four-Point Bending configuration and the Asymmetric
one. The shear and moment diagrams are showed (fig. 3.2).
With the SFPB configuration mode I fracture is obtained. In this case the two loads
P1 and P2 are equal. The same result could be obtained with the Three-Point Bending
configuration, shown in fig. 3.3. It is easier to use the SFPB, in the field of this work,
because once the fixture with 4 rollers is attached to the traction/compression machine, it
is better to use the four points configuration for all the specimens. In fig. 3.1 the fixture
with the four rollers is shown. For what concerns the AFPB configuration, the loads have
to be calculated to have bending moment M = 0 along the crack plane. The relation is:

P1 · L1 = P2 · L2 (3.1)

P1 + P2 = P , that for the FE simulation is P = 1N , as already said. During the tests
the specimen is lead to fracture and P ≡ Pf , the failure load.
What was not discussed till now, is why this particular configuration is considered. There
are different possibilities to perform a similar study. In the literature several works on
Brazilian Disks (BD) or Cracked Semi-Circular Bending Specimens (CSCB) are available.
For example, in paper [18], by Majidia et al., the ASED criterion is applied to CSCB spe-
cimens that are obtained by welding two Aluminium alloys. In other papers, as [19] and
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Figure 3.1: Four-points bending test configuration

P1 P2

(a)

P1 P2

(b)

Figure 3.2: Diagrams of the shear and the bending moment for both SFPB and AFPB configur-
ations

Figure 3.3: Three-Points Bending Configuration
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(a) CSCB (b) BD

Figure 3.4: Cracked Semi-Circular Bending specimen and Brazilian Disk specimen

[20], Brazilian Disks made of ceramic materials are tested with Diametral Compression.
But the AFPB presents some undeniable advantages. First of all the specimen used is
simple to manufacture and it does not require particular attention. It is basically a Single
Edge Notch Specimen (SEN), a rectangular bar with a crack. It is visible in the fixture
in fig. 3.1
The second advantage is related to the possibility of obtaining mixed-mode fractures
(mode I +mode II only). With other specimens, the mixed-mode is affected by construct-
ive details like the inclination of the flaw. This problem does not concern the AFPB
test. It is also possible to simulate the pure mode II, that it is not expected, generally.
Actually, with AFPB, particular attention is needed in the choice of the loading distances
L1 and L2: if the loads are too close to the crack plane, even when performing mode II
the contribution of the opening mode is not negligible, and the mixed-mode coefficient
Me is not 0. But with proper distances, Me could be pretty close to zero.
In the following sections, several materials are analyzed with the same configuration,
(AFPB). Sometimes there are differences, for example, the crack can be cut on the bot-
tom side or on the upper side of the specimen, with a consequence on the sign of the
initiation angle. All the eventual peculiarities will be exposed at the right point.
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3.1 Rocks

3.1.1 An Overview

In the following sections the first class of material is analyzed: for the category of Rocks
and Granites the materials studied are Yemeng black granite, Takkab granite, Dehbid
marble, Indiana limestone, and Westerly granite.
Before starting, it is important to do a short overview of the more difficult aspects to
manage during the study of Rocks.
To apply the ASED criterion, it is necessary to replicate every aspect of the experimental
tests, to compare for each mixed-mode coefficientMe the right failure load. Unfortunately,
to prepare the FE analysis, some approximations must be introduced in the model. This
will for sure affect the accuracy of the results. For example, one of the main uncertainty
was introduced when defining the material. This was already discussed in the previous
chapter. The model used is an isotropic material with elastic behavior, so that only
Young modulus and Poisson’s ratio have to be defined. This is an ideal model, especially
considering rocks and granite, naturally non-homogeneous materials. Furthermore, one of
the biggest problems in the work is to define the material properties. To apply the ASED
criterion, tensile strength, Young modulus, Poisson’s ratio, and fracture toughness (mode
I) are required. Luckily, for Yemeng black granite and Takkab granite, the experimental
results were associated with papers in which it was possible to find all the properties. For
the other materials, it was more difficult. Material properties were found in the literature,
but it is well known that they depend on several factors, hence different values were
proposed. An average value of these uncertain properties was used. This will certainly
add approximation to the comparison. Finally, for almost all the rocks considered, more
than one experimental test was carried out. The wisest thing to do was to compare ASED
predictions to the average trend of failure loads reported for each material. For the values
of K1 and K2, it was the same. There are some materials in particular where the failure
loads do not follow a real trend. This condition will be discussed in detail later on.
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3.1.2 Yemeng Black Granite

The first rock tested is the Yemeng black granite, a Chinese rock. The experimental res-
ults were provided in the article [11], by Wang, Zhu, and Liu. They tested with an AFPB
set the rock with different mixed-mode combinations, ranging from mode I to mode II.
For the construction of the FE model, the same dimensions of the experimental tests were
used:

L=200 mm
w=40 mm
t=18 mm

The crack length a is 14mm. The mechanical properties, reported in [11], are:

ν=0.21
E=82000 MPa

KIc=2.418 MPa
√
m

σt=16.6 MPa

The radius of the control volume was evaluated as Rc = 6.78mm.
In fig 3.5b, the configuration used for the AFPB tests in [11] is showed. The crack starts
from the lower side of the specimen.
Once the part in Abaqus is prepared, different loading mode combinations were chosen
to simulate different fracture modes.
Due to the fact that the AFPB tests were conducted 3 times for every mixed-modes, an
average trend for failure load, K1f , and K2f was used for the comparison with ASED
predictions.
The result of the comparison is shown in fig. 3.6 and tab. 3.1. The predictions are quite in
good accordance with the failure loads values presented in [11]. The worst accordance is
observed for pure mode II. This is quite typical because the ASED criterion fails also with
other materials for mode II. As shown in the table, the discrepancy between experimental
and predicted failure loads increases for Me approaching zero (mode II). The conclusion
is that with Yemeng black granite, the ASED criterion works fine.
The discrepancy ∆% is the relative error betwenn the two failure loads, and it is obtained
as:

∆% =
PfASED − PfEXP

PfASED
· 100 (3.2)

Different criteria were used to predict KIc and the crack’s initiation angle. It is interest-
ing to compare them also with the ASED predictions and the real values of the angles
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(a)

(b)

Figure 3.5: Yemeng granite: mixed-mode configuration used for the experimental tests in Ref.
[11].

registered during the lab tests. The criteria used have been presented in the previous
chapter and they are the MTS, GMTS, SED, and the G Criterion. In the following plot
(3.7 and 3.8) the comparison for normalized stress intensity factors and initiation angles
are presented. In both cases, the GMTS criterion is in better accordance with the exper-
imental trend, but the MTS is not so far. This is because the GMTS is the only criterion
that considers also the first non-singular term of the stress field near the crack tip. The
GMTS derives from the MTS criterion. Therefore, they show similar trends, because
T-stress has a small magnitude (that is why it is usually ignored). From the plot in fig.
3.7, it is clear that the worst results are obtained with the SED criterium. Precisely, it
seems that the SED criterion overestimates the stress intensity factors.
A last interesting observation can be done. To calculate the failure loads, simulations
with Abaqus are needed. It is necessary to know the strain energy density in the control
volume. To do this the parameter called ELSE is calculated for all the mesh elements
that belong to the control volume. It is also possible to plot it: the contour plots of ELSE
in the control volume have a typical appearance shows in figure 3.9. It was observed that
depending on the distance between the boundary conditions or more in general on the
dimension of the specimen, the contour plots show differences. In general, the contours
are symmetrical to the crack for pure mode I. Approaching mode II, the zone where ELSE
is small (the blue part) assumes a shape called peanut shape, perpendicular to the load
direction.
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Figure 3.6: Yemeng granite: failure loads comparison. Experimental data were taken from Ref.
[11]

FAILURE LOADS

ASED EXP [11]

Me K1 K2 Pf K1 K2 Pf ∆%
MPa

√
m MPa

√
m N MPa

√
m MPa

√
m N

1 2.418 0 2071 2.79 0 2392 −15.49
0.6213 1.654 1.12 7505 1.73 1.17 7862 −4.72
0.5203 1.344 1.261 8027 1.38 1.29 8224 −2.46
0.3828 0.97 −1.414 8637 0.95 1.39 8479 1.83
0.2973 0.781 1.548 9287 0.72 1.42 8540 8.05
0.2009 0.545 1.669 9841 0.47 1.45 8542 13.20
0.0018 0 1.807 23116 0 1.49 19064 17.53

Table 3.1: Yemeng granite: predicted and real failure loads

43



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K1/K1c

0

0.2

0.4

0.6

0.8

1

1.2

K
2
/K

1
c

COMPARISON BETWEEN DIFFERENT CRITERIA

EXP

ASED

MTS

GMTS

SED

G

Figure 3.7: Yemeng granite: normalized stress intensity factors comparison. Experimental data
were taken from Ref. [11]
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Figure 3.8: Yemeng granite: initiation angles comparison. Experimental data were taken from
Ref. [11]
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For Yemeng granite it is interesting to notice in fig. 3.9 that for pure mode II (fig. 3.9g)
the peanut shape is not well defined because the blue part seems to be grabbed to the
crack. This depends on the distances called S1 and S2 in the figure 3.5b, which are small
in proportion with the width of the specimen. In the following sections, other contour
plots will be shown, to see the differences. In addition, being Yemeng granite the first
material studied, the following check was made. As already said, Abaqus can provide the
initiation angle of the crack according to both the MTS criteria and the MERR criteria.
This last one coincides with the so-called G criterion. To verify that the Matlab codes
work properly and that they are reliable, the comparison between prediction from Abaqus
ans numerical results are shown in the tables here below. They are compared also with
the experimental values of the angles. For both criteria Abaqus predictions and Matlab
solutions are in very good accordance, but they both overestimate the experimental values

MTS

Me Abaqus Matlab EXP [11]
◦ ◦ ◦

1 0 0 0
0.6213 46.37 46.37 42.37
0.5203 52.13 52.08 52.07
0.3828 58.16 58.2 54.03
0.2973 61.27 61.22 62.77
0.2009 64.44 64.47 65.37
0.0018 70.48 70.53 66.90

(a)

MERR

Me Abaqus Matlab EXP [11]
◦ ◦ ◦

1 0 0 0.00
0.6213 48.96 50.02 42.37
0.5203 55.44 56.19 52.07
0.3828 62.21 62.76 54.03
0.2973 65.7 65.94 62.77
0.2009 69.19 69.29 65.37
0.0018 75.71 75.23 66.90

(b)

Table 3.2: Yemeng granite: comparison between initiation angles obtained numerically and
predicted with Abaqus
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(a) Me=1 (b) Me=0.6213

(c) Me=0.5203 (d) Me=0.3828

(e) Me=0.2973 (f) Me=0.2009

(g) Me=0.0018

Figure 3.9: Yemeng granite: ELSE contour plots in the model
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3.1.3 Takkab Granite

For this granite rock, the same procedure adopted for Yemeng granite was followed. It
is an Iranian granite extracted in the region of Takkab. The experimental results were
taken from the papers [4] and [21]. The dimensions of the FE model and the properties
of Takkab granite are the following:

L=220 mm
w=40 mm
t=20 mm
ν=0.28

E=45000 MPa
KIc=1.39 MPa

√
m

σt=12.2 Mpa

The radius of the control volume is Rc = 3.67mm. Considering the properties, this granite
is quite similar to the Yemeng material. There is a difference between the specimens,
concerning the previous material. The crack starts from the upper side of the rectangular
SEN specimen and to simulate mixed modes it is sufficient to change the dimension called
L3 in the picture 3.10.
The comparison between failure loads predicted with the ASED criterion and the real
values obtained with the experimental tests is presented in fig. 3.11 and tab. 3.3 The

Figure 3.10: Takkab granite: mixed-mode configuration used for the experimental tests in Ref.
[4]

results are the expected ones: a proper agreement between predictions and reality for
mixed-mode loading configurations, a higher discrepancy for pure mode I and pure mode
II, especially for the latter one. For Takkab granite too, it was interesting to compare
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Figure 3.11: Takkab granite: failure loads comparison. Experimental data were taken from Ref.
[4]

FAILURE LOADS

ASED EXP [4]

Me K1 K2 Pf K1 K2 Pf ∆%
MPa

√
m MPa

√
m N MPa

√
m MPa

√
m N

1 1.52 0.00 1073 1.394 0.000 936 -14.68
0.7 1.16 0.59 2889 1.140 0.582 2711 -6.58
0.51 0.93 0.71 3676 0.710 0.697 3506 -4.85
0.31 0.46 0.86 4749 0.465 0.866 4555 -4.27
0.24 0.48 0.89 4942 0.347 0.930 4970 0.56
0.21 0.30 0.88 4974 0.303 0.876 4695 -5.93
0 0.00 0.90 5219 0.000 0.813 4480 -16.49

Table 3.3: Takkab granite: predicted and real failure loads
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theoretical criteria to predict the trend of the normalized values K1/KIc and K2/KIc and
the initiation angle of the growing crack.
The GMTS criterion is again one of the best, but it is remarkable how proper is the G

criterion in fitting the experimental trend. Once more, as with Yemeng granite, the SED
criterion is the most far from the real curve, overestimating the values.
It is strange to notice the little drop in the curve of the SED and the G criterion for the
initiation angle whenMe = 0.24. BetweenMe = 0.21 and 0.24, there’s not a considerable
difference, however, the angle must increase while approaching mode II. This is better
predicted by the other two stress criteria and also by Abaqus both for the MTS and the
G criterion. Simply to compare the ELSE magnitude in the control volume with the
Yemeng granite, figure 3.14 is presented. The contour plots are obviously upside down
concerning Yemeng ones because the crack starts from the opposite side. The peanut
shape in fig. 3.14g looks more defined.
This is one of the first materials tested, therefore it was thought convenient to investigate
deeper what happens near the crack tip, where Linear Elastic Fracture Mechanics is not
valid. This is a plastic deformation area and it is usually identified with a distance called
rc.
This distance is what is used to apply the GMTS criterion. For Takkab granite the
distance is calculated as rc = 2.08mm, considering the properties of the material described
above. The contour plots of the Von Mises stress are reported for each mixed-mode.
Keeping in mind that the material is considered perfectly linear and that the tensile
strength is 12.2MPa, the plastic zone is highlighted with the color blue. It is visible the
peanut shape mentioned before. This time the peanut is perpendicular to the crack for
pure mode I. The dimensions of the peanut were calculated. For pure mode I the radius
of the region is around 1.84mm, almost equal to the Schmidt prediction, used for the
GMTS criterion. The peanut zone becomes bigger while increasing the contribution of
mode II, until a maximum value around 3mm.
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Figure 3.12: Takkab granite: normalized stress intensity factors comparison. Experimental data
were taken from Ref. [4]
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Figure 3.13: Takkab granite: initiation angles comparison
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(a) Me=1 (b) Me=0.7

(c) Me=0,51 (d) Me=0,31

(e) Me=0,24 (f) Me=0,21

(g) Me=0

Figure 3.14: Takkab granite: ELSE contour plots in the model
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(a) Me=1 (b) Me=0.7

(c) Me=0,51 (d) Me=0,31

(e) Me=0,24 (f) Me=0,21

(g) Me=0

Figure 3.15: Takkab granite: plastic zone contour plots
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3.1.4 Dehbid Marble

Dehbid marble is another Iranian rock with mechanical properties similar to the Takkab
granite. The study on this material presents some singularities, compared to the previ-
ous. The first peculiarity was about the radius of the control volume: considering the
following mechanical properties, the radius is Rc = 9.7mm, which means quite a large
control volume.

L=220 mm
w=40 mm
t=16 mm
ν=0.27

E=35000 MPa
KIc=1.35 MPa

√
m

σt=7.35 MPa

The paper used to find mechanical properties of the specimens tested and the failure loads
is reference [22], by Aliha and others.
The configuration of loads and boundary conditions is the same used for Takkeb granite.
The comparison between failure loads is showed in fig. 3.16 and tab. 3.4.
There is a huge problem with mode I and mode II. Concerning mode II the discrepancy
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Figure 3.16: Dehbid marble: failure loads comparison. Experimental data were taken from Ref.
[22]

is less surprising because this happened also with other materials. Hence the focus was
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FAILURE LOADS

EXP [22] ASED

Me K1 K2 Pf K1 K2 Pf ∆%
MPa

√
m MPa

√
m N MPa

√
m MPa

√
m N

1 1.39 0.00 386 1.70 0.00 961 -148.921
0.698 1.10 0.55 2193 1.19 0.61 2401 -9.47397
0.622 0.88 0.58 2229 1.02 0.69 2788 -25.0979
0.505 0.88 0.85 3413 0.77 0.76 3222 5.58496
0.315 0.45 0.82 3429 0.44 0.82 3645 -6.29499
0.188 0.20 0.95 4187 0.26 0.84 3813 8.941464
0.028 0.00 1.16 6145 0.04 0.85 3947 35.77409

Table 3.4: Dehbid marble: predicted and real failure loads

to improve mode I discrepancy.
Different attempts were made with no success. Trying to increase the control volume
(considering smaller tensile strength) did not give the desired improvement. Neither
changing the Young modulus because both Wc (critical energy density) and W (energy
density) are proportional to E, hence the failure load does not change. Once it was
checked that the reason behind the incongruity was not related to the properties used,
the configuration was studied. The configuration used to simulate mode I, which gave as
failure load 961N is the same used for Takkab granite. A possible option is to use the
geometrical rules of the Murakami SFPB specimen, but in this case, the failure load is
around 766 N, therefore this wasn’t the configuration used in paper [22] to find the first
failure load. The last attempt was made with a 3PB configuration, that gave Pf = 599N ,
really far from the experimental value. The possibility that the data was registered
wrongly is to exclude because experimental tests were carried out three times for each
Me. In conclusion, it is still an open question to know what configuration was used to
break the Dehib marble specimen under mode I loading condition, but this is not a valid
reason to affirm that the ASED criterion failed. For the other tested Me predictions fit
excellently the real values.
The other criteria were performed with the following results. Observing fig. 3.17 there
are no surprises. As usual, the GMTS criterion is the best fitting the experimental trend,
followed by the MTS. The G criterion proposes lower values compared with the real trend,
while the SED criterion is the opposite, the values are higher and wrong. With regards
to the direction of propagation of the crack in fig. 3.18 the four criteria are quite in good
accordance, also with what is predicted by Abaqus both for MTS and MERR directions.
An experimental comparison is not possible since data were not available.

54



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K1/K1c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
2
/K

1
c

COMPARISON BETWEEN DIFFERENT CRITERIA

EXP

ASED

MTS

GMTS

SED

G

Figure 3.17: Dehbid marble: normalized stress intensity factors comparison. Experimental data
were taken from Ref. [22]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Me

0

10

20

30

40

50

60

70

80

(-
)d

ir
 [
°

]

CRACK INIZIATION ANGLE

MTS

GMTS

SED

G

Figure 3.18: Dehbid marble: initiation angles comparison
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3.1.5 Indiana Limestone

This is a rock from America, studied by Ingraffea in [23]. The material properties con-
sidered comes from A Standard Rock Suite for Rapid Excavation Research, Krech, Hende-
rson and Hjelmstad [24]. In that book, different rocks are analyzed and the properties
are recorded for three different samples of each one. To perform the ASED criterion, the
average values were used.

L=381 mm
w=127 mm
t=63.5 mm
ν=0.27

E=30130 MPa
KIc=0.87 MPa

√
m

σt=5.23 MPa

In this case the control volume radius is Rc = 7.9mm. The experimental results available
for the study are not the expected ones: both for K1f , K2f and the failure loads it is not
possible to observe a real trend, on the contrary of the other materials.
The reason why the plot in 3.21 is so different from the other materials is because

EXPERIMENTAL RESULTS [23]

Me K1 K2 K1 K2 Pf
psi
√
in psi

√
in MPa

√
mm MPa

√
mm N

0.0250 28.92 736.34 1.01 25.77 14694
0.0396 45.35 727.90 1.59 25.48 14525
0.0394 43.09 696.11 1.51 24.36 13891
0.0386 41.04 676.03 1.44 23.66 13490
0.2925 390.04 788.36 13.65 27.59 15732
0.3183 493.47 903.41 17.27 31.62 18028
0.4132 389.80 513.86 13.64 17.99 10254
0.4307 423.24 527.11 14.81 18.45 10518
0.4152 425.48 557.23 14.89 19.50 11119
0.4430 480.59 575.40 16.82 20.14 11482
0.6034 553.55 397.67 19.37 13.92 7936
0.5840 665.21 509.34 23.28 17.83 10164
0.5525 619.03 524.60 21.67 18.36 10468
0.5340 585.87 526.41 20.51 18.42 10505
1.0000 785 0 27.475 0 4716

Table 3.5: Indiana limestone: experimental results
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Figure 3.19: Indiana limestone: experimental failure loads. Exp data were taken from Ref. [23]

Figure 3.20: Indiana limestone: mixed-mode configuration used for experimental tests [23]

of the author’s choices. To the aim of this study, the specimens considered are pre-
cracked and in mixed-mode loading conditions, the crack propagates from the pre-crack
tip. Ingraffea tested also non-pre-cracked specimens and specimens where the crack starts
not precisely from the notch tip due to a previous load trial under pure mode I. It is
comprehensible that proposing a comparison between ASED predictions and real values
is more difficult. However, the FE model was prepared with the scheme in fig. 3.20 (inches
were then converted in mm, simply to have a better sensibility in the dimensions). To
perform mixed mode conditions the distance lc shown in fig.3.20 assumes these values:
lc = 0.9375, 0.625, 0.5, 0.25 [in].
ASED predictions give, as first results, the failure loads trend presented in fig. 3.21.

The failure load decreases approaching pure mode II. This is not realistic. One possible
explanation is in the loading scheme: the load application point at the left of the crack tip
is probably too much close to the crack itself. It means that the influence of pure mode
I is still too important in the mixed-modes tested and for this reason, the failure loads
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ASED Pf

Me Pf
N

1 4921
0.5437 14178
0.3688 13028
0.2706 12376
0.0225 10709
0.0243 10383

Table 3.6: Indiana limestone: ASED predictions for failure loads
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Figure 3.21: Indiana limestone: ASED predictions for failure loads

turn out to be smaller (because with pure mode I it is easier to propagate a pre-existing
crack). Indeed the lowerMe obtained is not rounded to 0, which means that pure mode II
can not be simulated appropriately. In the paper [11], it is explained that if lc/W < 0.5,
the pure mode II won’t be simulated. For this reason, the authors suggest maintaining
lc/W > 1.5. In the studied cases, this condition is never respected. Even Ingraffea himself,
in [23], observed how difficult was to evaluate correctly pure mode II and mixed-mode.
In confirmation of this idea, the ELSE contour plot was checked. The peanut shape in
fig. 3.22 is almost unrecognizable, and it is a typical effect of an unsuitable choice of
lc for FE simulations. To complete the study, here below it is showed in the same plot
the predicted trend of failure loads and the real values (3.23a). As a mere excercise, the
theoretical criteria are performed and the results are presented in plots 3.23b and 3.23c.
These plots have no value in terms of validation of the criteria.

58



Figure 3.22: Indiana limestone: ELSE contour plot in the model, for lc = 0
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(a) Failure loads comparison [23]
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(b) Normalized stress intensity factors
comparison [23]
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(c) Initiation angles comparison

Figure 3.23: Indiana limestone: theoretical criteria results.
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3.1.6 Westerly Granite

The last rock was studied by Ingraffea with Indiana Limestone in the same papers and
it is called Westerly granite. The properties of this rock and the specimen tested are
presented here:

L=381 mm
w=127 mm
t=63.5 mm
ν=0.21

E=19300 MPa
KIc=2.019 MPa

√
m

σt=9.52 MPa
Rc=14.3 mm

For this rock, the same considerations made for Indiana limestone are valid. The specimen
used for experimental tests was the same (3.20). Both the failure loads and the normalized
stress intensity factors do not present a real trend, because different tests were carried
out in different conditions (pre-cracked or non-pre-cracked specimens, etc.)
Hereafter the ASED predictions are presented in fig. 3.25. It is undeniable that these are
not valid predictions, and the plot with the comparison between theoretical criteria and
real results confirm it.

EXPERIMENTAL RESULTS [23]

Me K1 K2 K1 K2 Pf
psi
√
in psi

√
in MPa

√
mm MPa

√
mm N

0.0252 73.68 1861.63 2.58 65.16 37149
0.0241 75.08 1980.54 2.63 69.32 39522
0.3812 939.33 1376.77 32.88 48.19 27473
0.5365 1052.31 938.04 36.83 32.83 18719
0.4193 1053.62 1361.67 36.88 47.66 27172
0.4374 1168.82 1424.61 40.91 49.86 28428
0.4965 1188.34 1201.60 41.59 42.06 23978
0.4400 1206.14 1457.98 42.21 51.03 29094
0.5742 1289.57 1019.31 45.14 35.68 20340
0.5116 1292.25 1245.99 45.23 43.61 24864
0.5771 1419.90 1111.95 49.70 38.92 22189

1 1824 0 63.84 0 10958

Table 3.7: Westerly granite: experimental results
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Figure 3.24: Westerly granite: experimental failure loads. Experimental data were taken from
Ref. [23]
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Figure 3.25: Westerly granite: ASED predictions for failure loads
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ASED Pf

Me Pf
N

1 12126
0.5437 33843
0.3688 31075
0.2706 29545
0.0225 25637
0.0243 24868

Table 3.8: Westerly granite: ASED predictions for failure loads
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(a) Failure loads comparison [23]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K1/K1c

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

K
2
/K

1
c

COMPARISON BETWEEN DIFFERENT CRITERIA

EXP

ASED

MTS

GMTS

SED

G

(b) Normalized stress intensity factors
comparison [23]
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(c) Initiation angles comparison

Figure 3.26: Westerly granite: theoretical criteria results.
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3.2 Polymers

3.2.1 An Overview

The second category of materials studied is Polymers. Only polymers that present a
brittle fracture at room temperature are used. No elastomer or ductile polymers were
considered. In detail, the materials are two types of PMMA, a rigid polyurethane foam,
and a type of resin epoxy.
PMMA’s complete name is Polymethyl methacrylate, commonly known as Plexiglass,
which belongs to the thermoplastic class. Two types of PMMA were tested because it
was the object of several studies and therefore data are abundant in the literature.
For what concerns the polyurethane foam, the properties and the fracture behavior of
this material depend on the density of the foam. It was quite difficult to predict failure
loads with the ASED criterion.
The last material studied is a common epoxy, for which the predictions were not promising.
The experimental data available for the epoxy were obtained with the hypothesis of plane
stress field even if the specimen was quite thick. This was a wrong approach to the purpose
of applying the ASED criterion. Furthermore, epoxy was also tested when blended with
multiwalled nanotubes of graphene. The material obtained is a composite, that is hardly
homogeneous or isotropic. An attempt was made to apply the theoretical criteria on this
composite, with poor results, therefore they have not been reported in the section.

3.2.2 PMMA-1st type

The first material studied was PMMA. The experimental tests used as reference were
presented in [25].
The dimensions and properties of the FE model are the following:

L=110 mm
w=20 mm
t=5 mm
ν=0.4

E=2000 MPa
KIc=1.87 MPa

√
m

σt=80 MPa

In the paper abovementioned [25] the Young modulus and the tensile strength were not
specified. Looking for these properties in other papers, some average values were taken.
For Poisson’s ratio it was thought convenient to take a standard value for polymers that
is 0.4. Some of the articles used are reported in the references [26] [27] [28] [29].
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(a) (b)

Figure 3.27: PMMA-1st: configurations used for experimental tests in Ref. [25]

The crack length is a = 10mm, hence a/W = 0.5. With these properties the radius of
the control volume was calculated as Rc = 0.11mm. The loading configuration used for
the AFPB tests is presented in fig. 3.27. In the following two tables, experimental results
for AFPB tests and ASED predictions are presented.
The comparison, presented in fig. 3.28 is encouraging. The ASED criterion fits properly

ASED PREDICTIONS

Me K1 K2 Pf
MPa

√
m MPa

√
mm N

1 1.8598 0 191
0.9 1.7487 -0.3864 457
0.7 1.3580 -0.7431 729
0.5 0.9891 -0.9213 914
0.4 0.6426 -1.0210 1021
0.2 0.3307 -1.0708 1078
0.0 0.0191 -1.0882 1101

Table 3.9: PMMA-1st: ASED predictions

the experimental trend, without overestimating the failure loads, which is more precau-
tional. The comparison between the other four criteria is presented in the next figures.
Both for stress intensity factors and initiation directions the results are the expected ones.
It was also possible the comparison with the real propagation angles because they were
registered. The MTS and GMTS criteria are the best in fitting the experimental trend. It
is interesting to notice that the ASED criterion is almost overlapped with the G criterion.
In conclusion, the comparison between reality and theoretical criteria is convincing.
As previously done for Takkab granite, it is interesting to investigate the plastic zone
near the crack tip for polymers, this type of PMMA was chosen. According to Schmidt,
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EXPERIMENTAL RESULTS [25]

Me K1 K2 Pf dir
MPa

√
m MPa

√
m N ◦

1 1.912 0 352 0
1 1.75 0 259 0
1 1.845 0 306 0
1 1.969 0 281 0

0.831 1.782 0.484 506 30.8
0.835 1.576 0.417 767 27.4
0.703 1.564 0.789 874 44.2
0.681 1.443 0.791 852 40.00
0.510 1.053 1.02 1142 62.50
0.513 1.060 1.017 1063 60.00
0.333 0.773 1.339 1439 61.50
0.334 0.761 1.317 1547 67.50
0.188 0.384 1.265 1446 70.20
0.194 0.420 1.336 1429 70.00
0.063 0.153 1.53 1226 70.80
0 0.000 1.769 2082 69.20

Table 3.10: PMMA-1st: experimental results
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Figure 3.28: PMMA-1st: failure loads comparison. Experimental data were taken from Ref. [25]
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Figure 3.29: PMMA-1st: normalized stress intensity factors comparison. Experimental data were
taken from Ref. [25]
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Figure 3.30: PMMA-1st: initiation angles comparison. Experimental data were taken from Ref.
[25]
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Figure 3.31: PMMA-1st: plastic zone contour plot, mode I

the rc calculated to apply the GMTS criterion is 0.09mm, quite small compared to the
plastic radius obtained for the granite. The tensile strength considered is about 80MPa.
The contour plots showing the Von Mises ideal stress are presented in fig. 3.32. Only the
areas where the stress is above the tensile strength are highlighted. The peanut shape
presents the expected characteristics. It is perpendicular to the crack for pure mode I
and parallels to it for pure mode II. His dimension increases while approaching mode II.
The value of the radius is around 0.067mm, which is a bit different from the Schmidt
prediction. Anyway, they are quite similar. In fig. 3.31, there is a zoom of what happens
at a distance of around 1µm from the tip. The stress increases to extremely high values.
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(a) Me=0.86 (b) Me=0,68

(c) Me=0,52 (d) Me=0,36

(e) Me=0,19 (f) Me=0,01

Figure 3.32: PMMA-1st: plastic zone contour plots
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3.2.3 PMMA-2nd type

Another set of data for PMMA specimens was available in the article [30], by Bhattachar-
jee, and Knott. The same mechanical properties of the previous study were used, but the
specimen and the loading configuration are slightly different. Furthermore, through the
experimental tests, a smaller KIc was registered. This is explained by the authors because
KIc seems to depend on the cross-head speed of the test machine. This is possible but the
application of the ASED criterion is based on the assumption that the fracture toughness
is a material property. Using the same properties of the previous type of PMMA but
changing the toughness will probably lead to mistakes.

L=110 mm
w=20 mm
t=6 mm
ν=0.4

E=2000 MPa
KIc=1.03 MPa

√
m

σt=80 MPa

The first difference in the configurations (fig. 3.33) is that the crack is on the lower side.
Besides, they executed mode I loading configuration with an SFPB test, while, with the
1st PMMA, they used a 3PB test. This could also affect the fracture toughness, but the
value here considered, KIc = 1.03MPa

√
m is still unusual.

With these data Rc = 0.033mm. It is remarkably a smaller radius compared to the first

(a)

(b)

Figure 3.33: PMMA 2nd: configurations used for experimental tests in Ref. [30]

type of PMMA. Results for the comparison between failure loads predicted by the ASED
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Figure 3.34: PMMA-2nd: failure loads comparison. Experimental data were taken from Ref. [30]

and the experimental ones are summarized in the following tables and figures.
It is a terrific result. By the way, every parameter was double-checked without detecting

any mistakes. Even performing the other criteria, the plots are not satisfactory at all. The
experimental trend is totally outside the scatter zone where the criteria’s curves are. The
problem regards only fig. 3.35, not the initiation angles. The comparison for directions
looks like it was expected to be, which means that there are not a problem with the
configuration used.
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EXPERIMENTAL RESULTS [30]

Me K1 K2 Pf dir
MPa

√
m MPa

√
m N ◦

1 0.963 0 150 0
1 1.092 0 170 0

0.88 2.562 0.498 690 24
0.86 1.881 0.415 614 30
0.83 1.989 0.545 771 41
0.80 2.363 0.776 1130 47
0.72 1.279 0.601 850 48
0.63 1.514 0.989 1414 55.00
0.54 0.907 0.797 1502 62.00
0.35 0.782 1.292 1790 63.00
0.27 0.604 1.331 1970 65.00
0.19 0.423 1.389 2093 70.00
0.10 0.250 1.634 2600 72.00
0 0.000 1.936 2930 72.50

Table 3.11: PMMA-2nd: experimental results

ASED PREDICTIONS

Me K1 K2 Pf
MPa

√
m MPa

√
mm N

1 0.59 0.00 200
1.0 1.02 0.00 115
0.9 1.00 0.10 209
0.9 0.98 0.16 225
0.8 0.94 0.23 265
0.8 0.90 0.28 305
0.7 0.81 0.36 393
0.6 0.70 0.43 475
0.5 0.51 0.52 572.35
0.4 0.37 0.56 619.43
0.3 0.29 0.57 639.56
0.2 0.20 0.59 655.90
0.1 0.11 0.60 667.40
0.0 0.01 0.60 673.20

Table 3.12: PMMA-2nd: ASED predictions
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Figure 3.35: PMMA-2nd: normalized stress intensity factors comparison. Experimental data
were taken from Ref. [30]
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Figure 3.36: PMMA-2nd: initiation angles comparison. Experimental data were taken from Ref.
[30]

72



3.2.4 Epoxy Resin

The last polymer studied is an epoxy resin, the epoxy resin ML-506 (Bisphenol F), which
AFPB test results are presented in [17]. In that paper, not only pure epoxy was analyzed:
AFPB tests were carried out on specimens made of epoxy with a small percentage of
fibers. The fibers are multiwalled nanotubes of graphene. ASED was performed also on
these composites with bad results. The hypothesis behind the method were not respec-
ted. Therefore the results are not included in this section. Pure epoxy properties and
specimen’s dimensions are presented hereafter.

L=110 mm
w=20 mm
t=10 mm
ν=0.3

E=3150 MPa
KIc=1.62 MPa

√
m

σt=68.35 MPa
a=10 mm

Rc=0.15 mm

The configuration is shown in fig. 3.37. The comparison is shown in fig. 3.38 and

Figure 3.37: Epoxy: configurations used for experimental tests in Ref. [17]

tab. 3.13 is quite good. As usual, the ASED predictions are worse near mode II, but, on
the whole, the discrepancy is under control. For what concerns the MTS, GMTS, SED,
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FAILURE LOADS

ASED EXP [17]

Me K1 K2 Pf K1 K2 Pf ∆%
MPa

√
m MPa

√
m N MPa

√
m MPa

√
m N

1.00 1.62 0.00 216 1.62 0.012 215 -0.23
0.70 1.25 0.64 941 1.41 0.72 1050 10.37
0.50 0.83 0.87 1181 1.02 1.022 1408 16.10
0.29 0.51 0.97 1240 0.65 1.31 1804 31.30
0.01 0.09 1.02 1822 0.012 1.49 2727 33.16

Table 3.13: Epoxy: predicted and real failure loads
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Figure 3.38: Epoxy: failure loads comparison. Experimental data were taken from Ref. [17]

and G-criterion, they were performed with the following results: looking at fig. 3.39, the
SED criterion is the one that fits better the experimental trend. The MTS is closed to
the GMTS curve but they are unexpectedly not the closest to the real values. The G
criterion is, as usual, predicting lower results. With regards to the initiation angles, the
four criteria are quite close, but the real values of the angles were not registered, hence it
is not possible the comparison with the reality.
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Figure 3.39: Epoxy: normalized stress intensity factors comparison. Experimental data were
taken from Ref. [17]
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Figure 3.40: Epoxy: initiation angles comparison
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3.2.5 PUR-rigid foam of polyurethane

The next material is a rigid foam of polyurethane. Mechanical properties, loading con-
figuration, dimensions of the specimens, and experimental results come from the articles
[31] [32], by Costantinescu, Marsavina, Linul. With this material, the ASED criterion
does not work properly. The main reason is related to the type of material. It is a foam,
therefore it is hardly considered a homogeneous material.

L=140 mm
w=25 mm
t=12.5 mm
ν=0.4

E=281 MPa
KIc=0.341 MPa

√
m

σt=3.86 MPa
a=12.5 mm

For what it is written in the articles, PUR foams were tested with three different values
for the density, 300, 145, 100 kg/m3, with three different cross-head speeds (from which
depends also KIc) and with three different configurations: the values of the lengths called
b1 and b2 can change and for this study b1 = 45mm and b2 = 55mm were chosen.
Experimental tests were performed several times for each mixed-mode.

Figure 3.41: PUR: mixed-mode configuration used for the tests in Ref. [31]

Results are shown in fig. 3.42. In the plot, all the experimental attempts are visible for
each Me. ASED predictions better fit the lower experimental values. This plot is tricky,
it does not enable us to believe that ASED works with this material but at the same time,
the comparison is quite satisfactory. In the paper mentioned above, the results weren’t
that satisfactory too. The authors explained how difficult was to manage the material
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EXPERIMENTAL RESULTS [31]

Me K1 K2 Pf
MPa

√
m MPa

√
m N

1.00 0.327735 0.000853 51
1.00 0.346456 0.000921 54
1.00 0.352696 0.000921 55
0.84 0.328895 0.08317 958
0.84 0.345297 0.087739 1010
0.84 0.35389 0.089581 1031
0.84 0.367189 0.095957 1105
0.67 0.253465 0.146289 1684
0.67 0.27696 0.159008 1831
0.67 0.316857 0.18264 2103
0.67 0.329372 0.190824 2197
0.48 0.178786 0.189528 2182
0.50 0.235188 0.237609 2736
0.50 0.251658 0.253909 2924
0.49 0.27205 0.276585 3185
0.23 0.085284 0.220934 2544
0.23 0.086068 0.223628 2575
0.23 0.112155 0.293362 3378
0.22 0.110655 0.308741 3555
0.02 0.009343 0.339227 3906
0.02 0.008593 0.343728 3958
0.02 0.012481 0.341955 3937
0.02 0.012583 0.36545 4208

Table 3.14: PUR: experimental results

ASED PREDICTIONS

Me K1 K2 Pf
MPa

√
m MPa

√
mm N

1 0.32 0.00 60
0.76 0.25 0.10 1173
0.68 0.22 0.12 1394
0.55 0.17 0.14 1651
0.37 0.10 0.16 1841
0.16 0.04 0.17 1931
0 0.00 0.17 1950

Table 3.15: PMMA-2nd: ASED predictions

77



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Me

0

500

1000

1500

2000

2500

3000

3500

4000

4500

P
f[
N

]

FAILURE LOADS

EXP

ASED

Figure 3.42: PUR: failure loads comparison. Experimental data were taken from Ref. [31]

during the tests. As it is clear from fig. 3.42, there is a large span between prediction and
reality. For pure mode I the prediction is almost perfect. For the mixed-modes near mode
I the fitting is not so gross and the predicted loads are lower than the real ones, and this is
good from a precautional point of view. Near mode II predictions are completely wrong.
The comparison for the other criteria for the stress intensity factors and propagation angle
is the following:
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Figure 3.43: PUR: normalized stress intensity factors comparison. Experimental data were taken
from Ref. [31]
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Figure 3.44: PUR: initiation angles comparison
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3.3 Ceramics

3.3.1 An Overview

The third material category studied is the class of Ceramics. Three different materials were
tested: the first one is Alumina, analyzed thanks to the data related to two experimental
works, presented by different authors. Then Soda Lime Glass is tested. It is commonly
known as ’window glass’. The last material is a type of Zirconia, Ce-TZP.
The literature research phase was quite hard. There are some kinds of ceramics like
Zirconia or Alumina that are considered ’super materials’, because they are not metals
but they present characteristics, like strength, that are sometimes better compared with
metals. For this reason, the fracture of ceramics is investigated thoroughly, and ceramics
studies are abundant in the literature. But it was easier to find reports about different
specimens, like Brazilian Disks. Besides, the material properties were not always provided.
This was a problem especially for the tensile strength because the tensile test is not suitable
for ceramics, but to apply the ASED criterion it is needed.
In general, it is possible to conclude that with every material the ASED criterion works
fine. This is probably related to the brittle behavior of ceramics, which hardly present
ductile aspects. Among the four classes of materials, this is probably the one that gave
better results.

3.3.2 Alumina-1st type

For this material there were several articles and experimental tests reports available in
the literature. The first paper taken in consideration is by Suresh et al. [33]. The authors
present the results of the AFPB fracture tests carried out on alumina specimens in two
different sizes, that will be called ’longer specimen’ and ’shorter specimen’.
The material is a standard commercial alumina (Al2O3). Alumina’s mechanical properties
are presented below.

ν=0.23
E=350000 MPa

KIc=3.32 MPa
√
m

To apply the ASED criterion, the fracture toughness KIc, the Young modulus E and the
tensile strength σt are needed. For this example σt is missing because in [33] was not
reported. To look for this value in the literature could be hard because it depends on
an amount of factors, hence it is not expected to find a proper value. Moreover, tensile
strength is obtained through a tensile test. But with ceramics it is not common to lead a
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tensile test till fracture because they are fragile materials, they do not present a ductile
behavior at all. More frequently tests like three-point bending are carried out, and for this
reason it is more likely that the articles provide the parameter called flexural strength.
Actually, in an ideal case, flexural strength and tensile strength should be quite similar.
The difference between flexural strength and tensile strength increases in proportion with
the amount of impurities in the specimen. Flexural fracture is less easier to occur in this
eventuality, beacuse a smaller portion of material is exposed to the maximum stress.
This was a brief introduction to the problematic choice of a proper σt to use to prepare
the FE model and to apply the theoretical criteria.

LONGER SPECIMEN
As first attempt a value of σt = 69MPa was used. It is a standard value found in the
literature for a generic type of Alumina. With all the properties needed it is possible to
calculate the radius: Rc = 0.72mm.
The specimens are common rectangular SEN bars, which dimensions are:

L=78.7mm
w=10.2mm
t=4.8mm

The crack length is a = 4.2mm , and a/W = 0.4. A scheme of the specimen and the
loading configuration is shown below. This is the model simulated in Abaqus, with the

Figure 3.45: Alumina 1st: mixed-mode configuration used for experimental tests in Ref. [33]

loading distances that are A = 34.3mm and B = 24.1mm. The load applied is 1N , dis-
tributed correctly in two concentrated loads to have the bending moment equal to zero in
the symmetry plane. Moving the crack, it is possible to simulate different mixed-modes.
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When the crack is in the symmetry plane, pure mode II is simulated. To perform pure
mode I, it is sufficient to change the loading span to obtain a SFPB configuration.
In table 3.16, the comparison between experimental results and ASED predictions is
presented. Actually, in the paper only the trend of K1 over K2 was available. To get

FAILURE LOADS

ASED EXP [33]

Me K1 K2 Pf K1 K2 Pf ∆%
MPa

√
m MPa

√
m N MPa

√
m MPa

√
m N

1 3.54 0.00 392 3.45 0 383 -2.42
0.70 2.76 -1.40 2824 2.36 1.29 2721 -3.80
0.66 2.56 -1.54 3120 2.54 1.67 3522 11.41
0.59 2.29 -1.70 3444 2.14 1.75 3691 6.70
0.47 1.76 -1.93 3921 1.53 1.94 4092 4.16
0.31 1.13 -2.11 4286 1.01 2.55 5378 20.31
0.18 0.63 -2.19 4453 0.36 2.34 4935 9.78
0.06 0.22 -2.23 4516 0 3.07 6475 30.26

Table 3.16: Alumina-1st: predicted and real failure loads

the failure loads, equations (3.3) and (3.4) were used. These equations are presented in
the paper and the geometry factors F1 and F2 are needed. In the paper, there are table
and graphs providing those factors, and these were used in this work. In (3.3) and (3.4)
failure load is not directly inserted but it is obviously related to σ and τ , the stress field
components.

K1 = σ
√
πaF1

( a
W

)
= 6τ

S

W

√
πaF1

( a
W

)
(3.3)

K2 = τ
√
πaF2

( a
W

)
(3.4)

As told before, to simulate different mixed-modes it is necessary to move the crack towards
the left of the specimen by a distance called S. This distance, if not provided by the
authors and testers, can be calculated:

S =
F2

F1

K1

K2
W (3.5)

It is clear that the method produce some errors especially for mode II. By the way, being
the value of σt chosen with no accurancy, these are not bad results. They are easier
to understand in the picture 3.46. The predicted curve follows in a quite good way
the real one. Observing fig. 3.47 it can be noted that the MTS and GMTS fit better
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Figure 3.46: Alumina-1st: failure loads comparison. Experimental data were taken from [33]

the experimental trend, that is actually really close to the ASED predictions. For what
concerns the directions, unfortunately during the test were not registered the initiation
angles of the cracks. For this reason it is possible the comparison between the prediction
of the four criteria, but it is not possible to say which is the most reliable. They are all
pretty close to each others, especially for the smaller values of Me.

Just to try, another attempt was made using the flexural strength instead of the tensile
strength. The main reason is that the flexural strength is provided in paper [33], while
the tensile strength was found in the literature, it is a proper value, but it is unlikely the
correct one. The flexural strength is σ3pb = 331 MPa. Using this value it os obtained
Rc = 0.03 mm, but the ASED predictions are not satisfactory with this control volume.
The table 3.17 presents the comparison between experimental results and ASED predic-
tion for this case.
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Figure 3.47: Alumina-1st: normalized stress intensity factors comparison. Experimental data
were taken from [33]
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Figure 3.48: Alumina-1st: initiation angles comparison
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ASED EXP

Me Pf Pf ∆%
N N

1 284 383 25.83
0.70 2102 2721 22.75
0.66 2330 3522 33.83
0.59 2590 3691 29.83
0.47 2985 4092 27.05
0.31 3296 5378 38.71
0.18 3442 4935 30.25
0.06 3498 6475 45.97

Table 3.17: Alumina-1st: predicted and real failure loads using the flexural strength

SHORTER SPECIMEN
For this new simulation the material is the same, already presented previously, but the
dimensions of the specimen change:

L=50.8mm
w=9.9mm
t=4.8mm

The crack length is a = 4.2mm , and a/W = 0.4. In the loading configuration now
A = 19.8 mm and B = 9.9 mm. As already exposed, for Alumina tensile strength was
not indicated and it was an hard task to decide what value was the proper one. As for
the longer specimen, the tensile strngth was considered as σt = 69MPa. The comparison
for the failure loads is shown in tab. 3.18 and fig. 3.49.

FAILURE LOADS

ASED EXP [33]

Me K1 K2 Pf K1 K2 Pf ∆%
MPa

√
m MPa

√
m N MPa

√
m MPa

√
m N

1 3.26 0.00 343 3.11 0.00 328 -4.58
0.65 2.33 -1.45 1417 2.69 1.81 1941 27.00
0.53 1.88 -1.70 1671 1.97 2.01 2156 22.49
0.35 1.17 -1.93 1930 1.09 2.23 2392 19.29
0.06 0.20 -2.07 2093 0.00 3.25 3486 39.96

Table 3.18: Alumina-1st, shorter specimen: predicted and real failure loads
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Figure 3.49: Alumina-1st, shorter specimen: failure loads comparison. Experimental data were
taken from [33]

Also the other theoretical criteria were applied, with satisfactory results. The comparison
are shown in fig. 3.50 and 3.51.
Simply to see the difference, another attempt of study of these specimens was made

with the flexural strength σ3pb = 331mm instead of the tensile strength. Once again
the comparison for the failure loads is worse then the previous case. With this value
Rc = 0.027mm.

ASED EXP

Me Pf Pf ∆%
N N

1 280 328 14.89
0.64 1184 1941 38.99
0.53 1412 2156 34.52
0.35 1651 2392 30.97
0.06 1804 3486 48.24

Table 3.19: Alumina-1st, shorter specimen: predicted and real failure loads using the flexural
strength
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Figure 3.50: Alumina-1st, shorter specimen: normalized stress intensity factors comparison.
Experimental data were taken from [33]
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Figure 3.51: Alumina-1st, shorter specimen: initiation angles comparison
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3.3.3 Alumina-2nd type

The data used for the second type of Alumina tested comes from another paper, [34].
In this paper the AFPB test’s results for Alumina and Soda Lime Glass are presented.
The properties declared for the Alumina used are presented below. It is a polycrystalline
material, with large grain size (5−201, µm). The loading configuration is the same shown
in fig. 3.45

L=32 mm
w=3.2 mm
t=3 mm
ν=0.23

E=348000 MPa
KIc=4.4 MPa

√
m

σ3pb=261 MPa

The crack length is a = 1.6 mm and a/W = 0.5. The loading distances are provided,
using the same name of the previous material, they are respectively A = 10 mm and
B = 5 mm. To calculate Rc this time it was used directly the value of the flexural
strength, presented in the paper. It is obtained Rc = 0.09 mm.
Experimental data were also provided in [34], but evidently the author had more than
one test for the same configuration. To present data in a easier way and to make more
comprehensible the comparison with the predictions, average values for each mixed-modes
configuration were calculated. The results for the comparison between experimental fail-
ure loads and ASED predictions are in tab. 3.20. They are also plotted in fig. 3.52.
This time the ASED predictions fit perfectly the experimental trend. This allow us to

FAILURE LOADS

ASED EXP [34]

Me K1 K2 Pf K1 K2 Pf ∆%
MPa

√
m MPa

√
m N MPa

√
m MPa

√
m N

1.00 4.53 0.00 86 4.40 0.00 85 1.72
0.83 4.20 -1.12 319 3.87 1.06 320 -0.31
0.50 2.53 -2.51 731 2.07 2.07 636 12.92
0.35 1.70 -2.81 818 1.50 2.68 812 0.65
0.13 0.61 -3.00 875 0.70 2.73 826 5.64
0.00 0.00 -3.03 883 0.00 2.77 839 5.03

Table 3.20: Alumina-2nd: predicted and real failure loads

think that this time it is really worthly to use the flexural strength instead of the tensile
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Figure 3.52: Alumina-2nd: failure loads comparison. Experimental data were taken from Ref.
[34]

strength, even if with the previous alumina, this solution did not work. A possible ex-
planation is in the way the flexural test was carried out. It is possible that the flexural
strength is really similar to the tensile strength, even if obtained through a different test.
The other theoretical criteria were performed with predictions of the ASED one. Results
are presented in fig. 3.53 and 3.54. Referring to fig. 3.53, it can be noticed that also in
this case the MTS and GMTS criteria are the closest to the real and the predicted trend
of the normalized SIFs. But near pure mode II, that means on the left area of the figure,
the G criterion seems the best. Instead, the SED criterion is definitly far from the scatter
zone of the results.

As said before, it was assumed that the flexural strength proposed in the paper [34] is
quite similar to the tensile strength. Being a brittle material, in the stress-strain curve, it
is not recognized the yielding stress. Therefore it is assumed that the plastic zone around
the tip presents a stress value higher than the tensile strength, which should be around
261MPa. To verify this hypothesis, the plastic zone around the tip is plotted. As usual,
the radius of such zone increase approaching mode II. But the most important thing is
that for mode I rc = 0.04mm. This is quite the same value predicted with Schmidt to
apply the GMTS criterion. The prediction was rc = 0.045mm. The conclusion is that
the choice of using flexural strength is valid.
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Figure 3.53: Alumina-2nd: normalized stress intensity factors comparison. Experimental data
were taken from Ref. [34]
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Figure 3.54: Alumina-2nd: initiation angles comparison
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(a) Me=1

(b) Me=0.83 (c) Me=0.50

(d) Me=0.35 (e) Me=0.13

(f) Me=0

Figure 3.55: Alumina-2nd: plastic zone contour plots
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3.3.4 Soda Lime Glass

In the same paper of the previous material [34], another material is analyzed. Soda lime
glass was chosen as an example of an homogenous and isotropic material. The properties
are the following.

L=37 mm
w=4 mm
t=4 mm
ν=0.23

E=73300 MPa
KIc=0.62 MPa

√
m

σ3pb=76.9 MPa

The crack length is a = 2 mm and a/W = 0.5. The loading distances are A = 15 mm

and B = 5 mm. Using the flexural strength to calculate the radius it is obtained
Rc = 0.019 mm. Next tables show, as in the previous case, experimental results com-
pared with the ASED predictions for the failure loads. The plot of the comparison is
also attached. Also with this material ASED predictions fit really well the trend of the

FAILURE LOADS

ASED EXP [34]

Me K1 K2 Pf K1 K2 Pf ∆%
MPa

√
m MPa

√
m N MPa

√
m MPa

√
m N

1.00 0.62 0.00 19.46 0.62 0.00 22.31 -14.61
0.84 0.58 -0.15 37.49 0.52 0.14 41.03 -9.44
0.49 0.34 -0.35 88.97 0.25 0.25 74.60 16.16
0.37 0.25 -0.38 97.79 0.16 0.28 83.92 14.19
0.20 0.13 -0.41 104.64 0.08 0.29 87.65 16.24
0.00 0.00 -0.42 107.47 0.00 0.33 98.84 8.03

Table 3.21: Soda Lime Glass: predicted and real failure loads

experimental points. This seems another confirmation that with the flexural strength the
proper Rc could be obtained.
With the predicted failure loads and the model in Abaqus is possible to predict also the
SIFs to apply the other energetic and stress-based criteria. Experimental data for the
crack initialitation angle weren’t available but the comparison was led in anycase. This
time the criterion that is closer to the experimental curve is the G criterion. The second
is the GMTS that follows in a better way the shape of the curve, but gives higher value.
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Figure 3.56: Soda Lime Glass: failure loads comparison. Experimental data were taken from
Ref. [34]
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Figure 3.57: Soda Lime Glass: normalized stress intensity factors comparison. Experimental
data were taken from Ref. [34]
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Figure 3.58: Soda Lime Glass: initiation angles comparison

3.3.5 Zirconia

A dataset of experimental results for Zirconia was available in the paper by Tikare and
Choi [35]. As usual, AFPB was the technique used to track failure loads, with different
mixed-modes, of Ce− TZP , tetragonal zirconia blended with Cerio. Material properties
were not found in the paper, except for the toughness. Looking for the properties in the
literature adds uncertainity to the investigation. Probably, with known properties of the
tested material, the ASED predictions could be more precise.
The properties used and the specimens dimensions.

L=40 mm
w=3 mm
t=4 mm
ν=0.31

E=200000 MPa
KIc=8.2 MPa

√
m

σ3pb=700 MPa

The loading configuration is similar to the one of the previous materials and the loading
ditances are:

A=15 mm
B=5 mm
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FAILURE LOADS

ASED EXP [35]

Me K1 K2 Pf K1 K2 Pf ∆%
MPa

√
m MPa

√
m N MPa

√
m MPa

√
m N

1 8.69 0.000 388 8.26 0 383 1.40
0.83 7.96 2.22 1912 7.87 2.61 1916 -0.18
0.74 7.17 3.09 2687 7.14 3.79 2782 -3.51
0.64 6.06 3.91 3410 6.25 5.03 3692 -8.28
0.58 5.47 4.23 3696 5.62 5.69 4177 -13.01
0.42 3.80 4.89 4279 3.87 6.3 4624 -8.07
0.30 2.68 5.17 4527 2.53 7.31 5366 -18.52
0.16 1.39 5.36 4699 0.96 8.03 5894 -25.43
0.00 0.00 5.43 4763 0 8.64 7833 -64.46

Table 3.22: Zirconia: predicted and real failure loads

a=0.75 mm
a\W=0.25

Experimental results were presented in in a plot with K1f over K2f . Taking the coordin-
ates of each point, failure loads can be extracted using equations found in [35]. For pure
mode I a SFPB specimens was used, and the theory of Murakami [2] for the geometry
factors and failure loads was applied.
As it is shown in fig. 3.59 for some values of the ratio Me predictions fit really well the
experimental points. But especially for pure mode II the difference is huge. The hope is
that it is a problem related to the wrong choice of properties. There is also to add that to
extrapolate failure loads from SIFs which values are presented in a plot is a big source of
imprecision. Anyway, the MTS , GMTS, SED and G criteria were tested with the results
shown in the pictures.
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Figure 3.59: Zirconia: failure loads comparison. Experimental data were taken from Ref. [35]
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Figure 3.60: Zirconia: normalized stress intensity factors comparison. Experimental data were
taken from Ref. [35]
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Figure 3.61: Zirconia: initiation angles comparison

It is strange that this time experimental trend for normalied SIFs is almost perfectly
fitted by the SED criterion. Actually, also in the paper the fact that the best criterion is
this one is observed, but no explanations are produced.
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3.4 Steels

3.4.1 An Overview

For the last class of materials, a large range of steels was tested. They are in order, En3B,
1Cr-Mo-0.3V with large grain size and small grain size, C-Mn weld, HY100, HY130.
As explained largely in the previous sections, the ASED criterion works fine only with
materials that present brittle fracture. This type of fracture is characterized by the ab-
sence of plastic deformation before the failure occurs. The cracks are unstable and they
propagate even without a sensible increase of the applied stress. A typical mechanism of
rupture for brittle materials is called cleavage, and it consists of the rupture of the atomic
bonds along crystallographic planes. This affects also the aspect of the fracture surface
on a cracked specimen: the surface is smooth and shiny. Typical examples of materials
that fail in a brittle way are ceramics.
The opposite model of a fracture is the ductile fracture, which is typical of steels and
metals in general. The ductile fracture is characterized by an important plastic deforma-
tion previous to the rupture. In a tensile test, for example, it is possible to see the necking
of the material. This type of fracture absorbs a large quantity of energy compared to the
brittle one. Even the fracture surface is different because it usually shows the dimples,
the prints of the grain that are detached from the specimen during the fracture.
To apply the ASED criterion, it is necessary to calculate the critical value of the strain

Figure 3.62: Stress-strain curves for ductile and brittle materials
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energy density.

Wc =
σt
2E

(3.6)

where σt is the tensile strength of the material. From the plot 3.62 it is clear that for a
brittle material it is immediate to obtained Wc, but not for a ductile one.

Therefore, in the following sections, it is possible to study steels with the ASED
criterion thanks to a peculiar phenomenon typical of the metals, called ductile to brittle
transition. A ductile material becomes brittle if the temperature reaches an extremely low
value that is called transition temperature. Testing the materials at low temperatures is
the only way to apply the ASED criterion with good results. For this reason, the first four
types of steel are tested at −196°C. If the steel is tested at room temperature, the ASED

Figure 3.63: Ductile to brittle temperature for steels

criterion gives bad results, or it is not even applicable. There is another possibility. To
menage a ductile material it is possible to apply the Equivalent Material Concept (EMC),
which consists of creating a fake material that behaves like the original one but with an
ideally brittle attitude. More details about this method will be proposed in the following
sections.
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3.4.2 En3b

General Information
For the next materials (En3b, 1Cr-Mo-0.3V, C-Mn weld ) the experimental results and
the information about the specimens are presented in the article [36], by Maccagno and
Knotts. All the materials are tested with Asymmetric Four-Point Bend specimen which
dimensions are:

L=100 mm
w=20 mm
t=10 mm
a/W=0.5

The tests are performed for different values of β the equivalent crack angle, that is an
indicator of the mixed-mode:

β = arctg

(
K1

K2

)
(3.7)

The values used are β=90°, 75°, 60°, 45°, 30°, 15°, 0°, where β = 90° is pure mode I and
β = 0° is pure mode II. To promote the continuity with the previous materials, the angle
β is not used as an indicator of the mixed-mode, but it is used to find the mixed-mode
coefficient Me, as usual.
The most important information to have about these tests is that they were led at a
temperature of −196°C in order to promote the brittle fracture for cleavage. As a matter
of fact, steels usually have a transition from ductile to brittle when they are in a cool
environment, beyond the transition temperature.
In fig. 3.64 the specimens used and the loading configuration are sketched.

(a) (b)

Figure 3.64: Steels: specimens and loading configuration scheme used in Ref. [36]

The first material studied belonging to the class of steel is the steel denominated En3b.
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Material Composition

Material C Mn Si S P Ni Cr Mo V
En3b 0.11 0.3 0.07 0.01 0.02 0.14 0.08 0.02 -

Table 3.23: En3b: material composition

It is a mild steel that undergoes a heat treatment (heated to 1200°C for 4 hours) and then
cooled slowly till room temperature. The composition is shown in table 3.23.
The material properties are:

ν=0.3
E=200000 MPa

KIc=24.9 MPa
√
m

σy=700 Mpa
σt=700 Mpa

With these values, calculating Rc with the standard equation for plane strain cases gives
Rc = 0.34mm.
At this temperature (−196°C) σy = σt, and this is the proof that the ductile to brittle
transition has occurred.
The expectation is, for this reason, that the ASED criterion works very well.
The experimental results for this material are reported in the table 3.24. It is important
to notice that the tests were not carried out as scheduled: for Me = 0.190, not even
close to mode II, the failure load reaches 50000N . With a load of such an intensity, it is
not possible to ignore plastic phenomena, especially on the load application points that
will undergo a plastic deformation with the possibility of cracking. Therefore it was not
possible to carry out further tests.
In the next tables, the ASED predictions are shown. To compare them with the exper-
imental results and calculate the discrepancy in percentage points, average values of the
experimental failure loads are calculated.
Results are even more clear in fig. 3.65. The comparison is satisfactory: as expected, the
ASED criterion works perfectly with the steel because of the low temperature.
Also, the other criteria are performed with this data to obtain the predictions of the ini-

tiation angle of the crack. The results of these comparisons are presented in the following
plots 3.66 and 3.67. In these pictures, good accordance between criteria and experimental
results is shown. The best criterion in fitting the real trend of the normalized stress in-
tensity factors is the SED criterion. This is quite news because usually the MTS and the
GMTS criteria are the best. The SED criterion is good also with the initiation angle, but
in this case, all the criteria are quite close to each other.
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EXPERIMENTAL RESULTS [36]

Me K1 K2 Pf dir
MPa

√
m MPa

√
m N ◦

1 22.6 0 5700 0
1 25 0 6100 0
1 27.1 0 6600 0

0.827 23.3 6.5 14300 25.2
0.826 21.7 6.1 13000 30
0.666 20.9 12.1 29900 40.2
0.663 21.7 12.7 28100 41.5
0.500 16.8 16.8 38400 49.00
0.530 16.8 15.3 31900 50.00
0.332 12.8 22.3 51400 52.00
0.333 12.8 22.2 50700 51.00
0.316 11.2 20.7 36500 54.50
0.344 16.7 27.8 44200 53.80
0.228 7.5 20 38800 61.50
0.190 7.8 25.3 50000 63.20
/ / / / /
/ / / / /

Table 3.24: En3b: experimental results

ASED PREDICTIONS

Me K1 K2 Pf
MPa

√
m MPa

√
mm N

1 25.13 0.00 6282
0.85 23.46 5.76 14650
0.96 18.69 1.10 25282
0.52 13.80 13.12 31972
0.35 8.86 14.70 36111
0.19 4.81 15.43 38103
0 0.28 15.72 39050

Table 3.25: En3b: ASED predictions
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FAILURE LOADS

ASED EXP [36]

Me Pf Pf ∆%
N N

1 6282 6133 -2.43
0.85 14650 13650 -7.32
0.67 25282 29000 12.82
0.52 31972 35150 9.04
0.35 36111 45700 20.98
0.19 38103 / /
0.01 39050 / /

Table 3.26: En3b: predicted and real failure loads
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Figure 3.65: En3b: failure loads comparison. Experimental data were taken from Ref. [36]
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Figure 3.66: En3b: normalized stress intensity factors comparison. Experimental data were
taken from Ref. [36]
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Figure 3.67: En3b: initiation angles comparison. Experimental data were taken from Ref. [36]
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Figure 3.68: En3b: plastic zone contour plots

For En3b the plastic radius is investigated. To perform the GMTS criterion, the crit-
ical radius is obtained with the Schmidt relation as 0.02mm. The contour plot of the Von
Mises stress shows good accordance with this value. For mode I the peanut shape has a
maximum radius of around 0.16mm
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3.4.3 1Cr-Mo-0.3V-Large Grain Size

The second steel tested is presented with two different microstructures, the first with a
large grain size and the second with small grain size. The one with a large grain size
undergoes a stress relief process at 650°C for hours before testing. The averaged grain
size is 400 µm. The composition is:

Material Composition

Material C Mn Si S P Ni Cr Mo V
1Cr-Mo-0.3V 0.15 0.6 0.21 0.03 0.02 0.24 1 0.95 0.32

Table 3.27: 1Cr-Mo-0.3V-Large Grain Size: material composition

The material properties are:

ν=0.3
E=200000 MPa

KIc=23.85 MPa
√
m

σy=650 Mpa
σt=710 Mpa

With these values Rc = 0.36mm is obtained.
In tab. 3.28, the experimental results of the AFPB tests are presented. Then, in 3.29 and
3.30, the ASED predictions and the comparison is shown.

As shown in fig. 3.69, the fitting is good, except for pure mode II, but it is quite
typical for the ASED criterion. Probably the plastic deformation is interfering too much
with the fracture, even if the temperature is low since the failure loads are high.
Even the MTS, the GMTS, the SED, and the G criterion are applied with success. The
results are presented in the following plots.
Predictions for the angle are in good accordance with the reality, especially for the MTS
and the GMTS criteria. The comparison for the normalized stress intensity factors is less
interesting due to the strange trend of the experimental points.
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EXPERIMENTAL RESULTS [36]

Me K1 K2 Pf dir
MPa

√
m MPa

√
m N ◦

1 21.8 0 5500 0
1 25.9 0 6400 0

0.833 23.5 6.3 13700 26
0.838 18.4 4.8 10600 29
0.688 19.9 10.6 18900 50.5
0.531 19.1 17.3 31300 48.5
0.334 11 19 41900 64
0.335 10.7 18.4 40700 56.00
0.137 6.5 29.8 59400 62.00
0.222 9.3 25.6 41700 60.00
0.060 2.9 30.9 57700 67.50
0.058 2.7 29.5 58900 67.00

Table 3.28: 1Cr-Mo-0.3V-Large Grain Size: experimental results

ASED PREDICTIONS

Me K1 K2 Pf
MPa

√
m MPa

√
mm N

1 24.03 0.00 6012
0.85 22.43 5.50 14019
0.67 17.87 10.03 24185
0.52 13.19 12.54 30577
0.35 8.47 14.05 34530
0.19 4.59 14.74 36432
0 0.27 15.02 37336

Table 3.29: 1Cr-Mo-0.3V-Large Grain Size: ASED predictions

107



FAILURE LOADS

ASED EXP [36]

Me Pf Pf ∆%
N N

1.00 6012 5950 -1.04
0.85 14019 12150 -15.38
0.67 24185 18900 -27.96
0.52 30577 31300 2.31
0.35 34530 41300 16.39
0.19 36432 50550 27.93
0.01 37336 58300 35.96

Table 3.30: 1Cr-Mo-0.3V-Large Grain Size: predicted and real failure loads
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Figure 3.69: 1Cr-Mo-0.3V-Large Grain Size: failure loads comparison. Experimental data were
taken from Ref. [36]
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Figure 3.70: 1Cr-Mo-0.3V-Large Grain Size: normalized stress intensity factors comparison.
Experimental data were taken from Ref. [36]
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Figure 3.71: 1Cr-Mo-0.3V-Large Grain Size: initiation angles comparison. Experimental data
were taken from Ref. [36]
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3.4.4 1Cr-Mo-0.3V-Small Grain Size

The same steel presented before, 1Cr Mo 0.3V, is now analyzed with a smaller grain size,
which is about 50 µm.
If the chemical composition does not change, it is not possible to say the same for the
mechanical properties, that depends on the microstructure.

ν=0.3
E=200000 MPa
KIc=24 MPa

√
m

σy=570 Mpa
σt=570 Mpa

With these properties Rc = 0.48mm.
Experimental results, ASED predictions and the comparisons arehown in the following
tables. 3.31, 3.32 and 3.33.

EXPERIMENTAL RESULTS [36]

Me K1 K2 Pf dir
MPa

√
m MPa

√
m N ◦

1 23.6 0 5800 0
1 24.4 0 6200 0

0.837 25.6 6.7 13800 27.2
0.652 22 13.4 31900 44.5
0.661 21.9 12.9 30600 37.5
0.518 14.4 13.6 30400 47.5
0.527 14.7 13.5 30200 49
0.258 8.2 19.1 42700 55.20
0.065 3.3 32.1 49500 65.00

Table 3.31: 1Cr-Mo-0.3V-Small Grain Size: experimental results

For what concerns the ASED criterion, the predictions are as usual worst near pure
mode II, but still good. They are even better than the previous case, which was the same
steel with larger grain size.
About the other criteria, the same observations done for the previous case are valid: with
the normalized stress intensity factors, the experimental trend is included between the
SED predictions and the MTS and GMTS trend. For the initiation angles, the best is the
MTS and the GMTS criterion.
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ASED PREDICTIONS

Me K1 K2 Pf
MPa

√
m MPa

√
mm N

1 24.57 0.00 6155
0.85 22.84 5.60 14303
0.67 18.16 10.19 24623
0.52 13.38 12.72 31087
0.35 8.59 14.24 35074
0.19 4.66 14.93 36988
0 0.27 15.22 37900

Table 3.32: 1Cr-Mo-0.3V-Small Grain Size: ASED predictions

FAILURE LOADS

ASED EXP [36]

Me Pf Pf ∆%
N N

1.00 6155 6000 -2.59
0.85 14303 13800 -3.64
0.67 24623 31250 21.21
0.52 31087 30300 -2.60
0.35 35074 42700 17.86
0.19 36988 / /
0.01 37900 49500 23.43

Table 3.33: 1Cr-Mo-0.3V-Small Grain Size: predicted and real failure loads
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Figure 3.72: 1Cr-Mo-0.3V-Small Grain Size: failure loads comparison. Experimental data were
taken from Ref. [36]
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Figure 3.73: 1Cr-Mo-0.3V-Small Grain Size: normalized stress intensity factors comparison.
Experimental data were taken from Ref. [36]
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Figure 3.74: 1Cr-Mo-0.3V-Small Grain Size: initiation angles comparison. Experimental data
were taken from Ref. [36]

3.4.5 C Mn-weld

The material composition is in the following table:

Material Composition

Material C Mn Si S P Ni Cr Mo V
C Mn-weld 0.06 1.56 0.41 0.038 0.021 - - - 0.-

Table 3.34: C Mn-weld: material composition

The material properties are:

ν=0.3
E=200000 MPa

KIc=21.55 MPa
√
m

σy=850 Mpa
σt=850 Mpa

With these values, calculating Rc with the standard equation for plane strain cases gives
Rc = 0.17mm.
Because of the welding, the microstructure is altered. When dealing with welded speci-
mens, to get a valuable result it is important to control the pre-crack tip position and the
equiaxiality of the grain in the re-heated zone. For this material, not all the mixed-mode
combinations were tested. Probably the microstructure affected the tests equivalent to
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β=15°, 0°. From the tensile test, the authors of the paper did not register a great dif-
ference between the behavior of this steel at room temperature and −196°C. In Abaqus

EXPERIMENTAL RESULTS [36]

Me K1 K2 Pf dir
MPa

√
m MPa

√
m N ◦

1 20.4 0 5200 0
1 22.7 0 6200 0

0.838 20.8 5.4 13800 22.8
0.830 28.9 7.9 20200 24.2
0.670 23.5 13.4 31800 42
0.671 23.9 13.6 35900 41.5
0.540 19.6 17.3 45500 49
0.532 22.7 20.5 54000 49.50
0.333 16.9 29.3 71900 59.00
/ / / 110700 61.00

Table 3.35: C Mn-weld: experimental results

also the configuration for β=15°, 0° were tested, even if it is not possible the comparison
with the experimental values of the failure loads.
The application of other criteria lead to these graphs. The comparison is not good at all

ASED PREDICTIONS

Me K1 K2 Pf
MPa

√
m MPa

√
mm N

1 21.38 0.00 5249
0.85 19.96 4.91 12246
0.67 15.97 8.98 21220
0.52 11.82 11.26 26904
0.34 7.61 12.64 30441
0.19 4.13 13.27 32146
0 0.24 13.53 32955

Table 3.36: C Mn-weld: ASED predictions

for stress intensity factors.
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FAILURE LOADS

ASED EXP [36]

Me Pf Pf ∆%
N N

1.00 5249 5700 7.91
0.85 12246 17000 27.97
0.67 21220 33850 37.31
0.52 26904 49750 45.92
0.34 30441 91300 66.66
0.19 32146 / /
0.01 32955 / /

Table 3.37: C Mn-weld: predicted and real failure loads
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Figure 3.75: C Mn-weld: failure loads comparison. Experimental data were taken from Ref. [36]
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Figure 3.76: C Mn-weld: normalized stress intensity factors comparison. Experimental data
were taken from Ref. [36]
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Figure 3.77: C Mn-weld: initiation angles comparison. Experimental data were taken from Ref.
[36]
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3.4.6 HY 130

This is a high yield steel that was heat-treated at 980°C for 2 hours, quenched in oil, and
then tempered at 350°C for 1 hour. Composition and properties are the following:

Material Composition

Material C Mn Si S P Ni Cr Mo V
HY 130 0.14 0.76 0.22 0.007 0.008 4.90 0.56 0.53 0.05

Table 3.38: HY 130: material composition

The material properties are:

ν=0.3
E=200000 MPa

KIc=41.4 MPa
√
m

σy=1200 Mpa
σt=1450 Mpa

With these properties Rc = 0.32mm.
Unfortunately the authors of [36] registered a non-linear trend of the load versus time

EXPERIMENTAL RESULTS [36]

Me K1 K2 Pf dir
MPa

√
m MPa

√
m N ◦

1 41.7 0 10600 0
1 41.1 0 10100 0

0.837 35.1 9.2 20000 26.8
0.836 35.2 9.3 22900 25.2
0.670 31.9 18.2 42000 43.2
0.668 28.5 16.4 46200 42.8
0.48 / / 76200 53.8
0.50 / / 69900 53.80
0.33 / / 148500 60.20
0.34 / / 154700 59.00
0.19 / / 196300 69.50

Table 3.39: HY 130: experimental results

curve obtained while carrying out the experimental tests for mixed-mode combinations
corresponding to β > 45°. Even if there is not a complete table of experimental results
to compare with, FE simulations were carried out for all the scheduled value of β. As
it was foreseeable, the discrepancy between real and predicted failure loads is huge for
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ASED PREDICTIONS

Me K1 K2 Pf
MPa

√
m MPa

√
mm N

1 41.78 0.00 10435
0.85 38.99 9.57 24334
0.67 31.08 17.45 42012
0.52 22.95 21.83 53141
0.35 14.75 24.46 60031
0.19 8.00 25.67 63347
0 0.47 26.16 64923

Table 3.40: HY 130: ASED predictions

FAILURE LOADS

ASED EXP [36]

Me Pf Pf ∆%
N N

1.00 10435 10350 -0.82
0.85 24334 21450 -13.44
0.67 42012 44100 4.74
0.52 53141 73050 27.25
0.35 60031 151600 60.40
0.19 63347 196300 67.73
0.01 64923 / /

Table 3.41: HY 130: predicted and real failure loads

β > 45°, probably for the non-linear effect. Predictions were as usual accurate for mode
I and near it.

Even if there are few experimental points, fig. 3.79 shows good accordance between reality
and all the criteria, especially the G criterion. Instead, regarding the propagation angle
prediction, the better criterion is the GMTS (experimental tests were carried out for
β > 45° besides the non-linearity effects just to observe the direction along which the
crack grows, that is the reason why there are more experimental points in fig. 3.80 than
in fig. 3.79.
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Figure 3.78: HY 130: failure loads comparison. Experimental data were taken from Ref. [36]
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Figure 3.79: HY 130: normalized stress intensity factors comparison. Experimental data were
taken from Ref. [36]
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Figure 3.80: HY 130 initiation angles comparison. Experimental data were taken from Ref. [36]

3.4.7 The ASED Criterion Application at Room Temperature

This section presents some indications of how to deal with ductile materials. Two steels
are tested at room temperature. This means that they present ductile behavior. The first
one is HY 100 and the second one is HY 130. As it was expected, the ASED criterion and
the other criteria either, do not work properly. In this situation it is possible to apply
the EMC concept, to deal with an equivalent brittle material [18] [37] [38]. This attempt
is carried on, but with these specimens, it is not possible to show the power of the EMC
concept. Further details will be presented later.

HY 100 at 22°C
In the paper [39], by Bhattacharjee and Knott, asymmetric four-point bending tests

were carried out on specimens of HY 100 steel, at room temperature. It is expected that
the ASED criterion is not going to work.
The specimens underwent a heat treatment at 950°C for 2 hours to get an austenitic
microstructure, and they are then quenched in water and tempered at 450°C for 2 hours.
The composition of this high yield steel is:

Material Composition

Material C Mn Si S P Ni Cr Mo V
HY 100 0.15 0.35 0.17 0.005 0.009 3.25 1.69 0.40 0.32

Table 3.42: HY 100: material composition
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Figure 3.81: HY 100: loading configuration used in Ref. [39]

The material properties are:

ν=0.3
E=200000 MPa
KIc=137 MPa

√
m

σy=1050 Mpa
σt=1160 Mpa

With these properties Rc = 4.58mm. This is the larger radius ever obtained.
The fracture toughness was difficult to find, another paper was used [40]. Unfortunately,
the treatments on the specimens and the composition are different, that could affect KIc

and this add uncertainty to the results. Besides, not a lot of information was available in
the paper regarding the test’s results.
The configuration of the AFPB specimen is slightly different from the previous ones.

EXPERIMENTAL RESULTS [39]

Pf K1/K2

N /
137500 3.15
153500 2.2
173000 1.57
178800 1.57
186500 0.94
184300 0.94
192300 0.63
201500 0.31

Table 3.43: HY 100: experimental results

In tables 3.43 and 3.44, the comparison between predicted failure loads and experi-
mental failure loads is presented. It is astonishing how good is the ASED criteria in fitting
the experimental trend.
The other theoretical criteria were applied. It was not possible to compare the exper-
imental data. To perform the criteria was useful simply to see if they were in good
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FAILURE LOADS

ASED EXP

Me Pf Pf ∆%
N N

1 42292 – –
0.81 108103 137500 21.38
0.73 135546 153500 11.70
0.65 159505 175900 9.32
0.50 185575 185400 -0.09
0.37 197065 192300 -2.48
0.21 205432 201500 -1.95
0.01 209100 – –

Table 3.44: HY 100: predicted and real failure loads

accordance or if something strange was going on. In fig. 3.83a the ASED criterion gives
a trend that is particularly far from the other criteria. This is quite strange.
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Figure 3.82: HY 100: failure loads comparison. Experimental data were taken from Ref. [39]
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Figure 3.83: HY 100: normalized stress intensity factors and initiation angles comparison. Ex-
perimental data were taken from Ref. [39]

HY 130 at 20°C
This material has already been studied, but this time the ASED criterion is applied

at room temperature. The properties are:

ν=0.3
E=200000 MPa

KIc=210.47 MPa
√
m

σt=896 Mpa

With these properties, the control radius is calculated as Rc = 14.83mm. Being the spe-
cimens dimensions the same presented previously, it is impossible to perform the ASED
criterion: the width of the specimens is 20mm, it is not possible to sketch the circular
control volume. The reason why the radius has such a magnitude compared to the brittle
materials is related to the shape of the stress-strain curve. The material is ductile, the
curve shows the plastic deformation zone. The area subtended by the curve is huge, at it is
the strain energy. This is why to obtainW it is necessary to use a massive control volume.

The EMC application
The Equivalent Material Concept is used when dealing with ductile material on which

applying the ASED criterion. The ductile material is transformed into an equivalent
brittle material. The equivalence is based on the strain energy, the area subtended by the
strain-stress curve. A brittle material is creating maintaining the same strain energy. The
tensile strength obtained is an equivalent property and in fig. 3.84 is depicted as σt−eq
and is obtained with the following equation.

σt−eq =

√√√√σy +
2EK

n+ 1

((σUTS
K

)(n+1)/n

−0.002n+1

)
(3.8)
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Figure 3.84: Equivalence between a ductile material and a brittle one

where σy is the yielding stress of the material, σUTS the ultimate tensile strength, and
K and n are respectively the Hollomon constant and the Hollomon exponent. According
to Hollomon, for a ductile material, the strain-stress curve corresponding to the plastic
deformation is obtained as σ = Kεn. Eq. (3.8) comes from the following equivalence

(W )BRITTLE = (W )DUCTILE

where the two terms indicate respectively the blue area and the dashed one in fig. 3.84.
For both the terms general relations have been proposed in section 1.2.

The theory of EMC is used hereafter on both the materials presented, HY 100 and
HY 130. But in both cases, the ASED criterion was not appliable. Being the material
ductile, the σt−eq are incredibly high and as a consequence, the radius obtained were not
suitable.

HY 100:
σt−eq = 147281MPa

Rc = 0.000233mm

HY 130:
σt−eq = 65802.0682MPa

Rc = 0.002750mm
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Chapter 4

ZIRCONIA AFPB TESTS RESULTS

Due to the availability of Zirconia specimens, it was possible to carry out experimental
tests on this material, with an AFPB fixture available in the workshop of the univer-
sity NTNU. In the following section, the whole process is described: the specimen’s and
material’s characteristics, the procedure for the experimental tests, the simulation part
in Abaqus, and the comparison between experimented failure loads and predicted failure
loads.

4.1 Experimental Tests

4.1.1 The Specimen

The specimens available are Zirconia specimens of tiny dimensions. They were provided
by the American Superior Technical Ceramics Corp, St. Albans, VT.
The particular type of Zirconia under consideration is called YTZP: Yttria Stabilized
Zirconia. The addition of Yttria turns Zirconia in her tetragonal phase. The phase has a
significant impact on the strength and fracture toughness of the material.
Two different variations of YTZP were studied: the first one, denominated Zirconia 2000,
is characterized by the properties proposed in tab 4.1. The second one is called Zirconia
4000 and the properties are in tab 4.2.

Zirconia 2000

E 210 GPa
ν 0.3 \
σt 550 MPa

Table 4.1: Zirconia 2000: Material properties
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The specimen used in the test is shown in fig. 4.1. Shape and dimensions are the same

Zirconia 4000

E 210 GPa
ν 0.3 \
σt 690 MPa

Table 4.2: Zirconia 4000: Material properties

for both types of Zirconia. They are pre-cracked specimens, with the initial crack length
called a that is half of the specimen’s width. Dimensions are:

L = 50mm

w = 4mm

t = 3mm

a/W = 0.5

Figure 4.1: The specimen

4.1.2 The Fixture

The tests were carried out thanks to the AFPB fixture shown in fig. 4.2. The system
was fixed in a MTS Criterion, Model 42 machine, with a load cell of 5 kN . The fixture is
composed of two rails and four rollers which diameter is 4mm. The specimen is supported
by the rollers, which means, ideally, that the contact is punctual. The rollers are placed
in the fixture in designated slots. The slots are provided with mechanisms that enable
movement along the rail. Therefore, the positions of the four rollers are independent.
Upper rollers were fixed with rubber bands. In fig. 4.2 the Symmetric Four-Point Bend
configuration is shown, which allows performing the pure mode I fracture.
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(a)

(b)

Figure 4.2: The fixture

127



4.1.3 The Procedure

A strict procedure was followed, in order to obtain reliable results.
First of all, it was necessary to align the fixture in her location. Both the rails must be
perfectly horizontal, but they also have to be parallel to each other. To be sure of these
alignments, the fixture was observed from different angulations, especially when the two
halves of the fixture are close to each other. The rails centers should also be aligned.
While it is easy to find the center of the upper rail because there is a ruler on it (see fig.
4.2), for the lower rail it is necessary to find the center by measuring the block with a
digital calibre and marking it .
When the alignment is satisfactory, it is possible to move the rollers slots to create the
right loading configuration to lead the specimen to fracture under the required mixed-
mode conditions.
Also the specimen should be prepared by marking the points where the lower rollers
should touch it. In this way, it is easier to place it in the fixture. It is also important to
check that the specimen is in the middle of the rollers.
Before starting the tests, a warm-up of the machine is made with a piece of wood to see
if the force-displacement curve presents anomalies.
The machine is equipped with a data acquisition system. From the interface of the ded-
icated software, it is possible to set some parameters: first, the crosshead speed is set at
0.1mm/min. The tests are already quite fast.
Then, it is important to check if the initial load is zero or around zero. Indeed, the upper
rollers must be almost in contact with the specimen before starting the test. They have to
be close, but not touching themselves. If the initial load registered is different from zero,
a brittle specimen could break before the test starts. Once the right distance is found,
the displacement should be set equal to zero. At this point, it is possible to begin with
the test.
For both types of Zirconia, three tests were carried out for each configuration. Five differ-
ent configurations were used, in order to explore different possibilities between pure mode I
and pure mode II. The configurations were chosen using a FE software and they are charac-
terized byMe, the mixed-mode coefficient. The chosen sequence is: Me = 1 (puremode I);
Me = 0 (puremode II); Me = 0.25; 0.47; 0.8.
After every test, the fragments of the specimen were collected, taking care of not touching
the fracture surface, and marked.
In the following section, photographic documentation of the tests is presented.
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4.1.4 Photographic Reportage

4.1.4.1. Mode I
To perform mode I, the fixture must be set in the Symmetric Four-Point bending

(SFPB) configuration. A scheme of this configuration is shown in fig. 4.3.
The loading spans Sinn and Sout are chosen accurately observing what it is common to

Figure 4.3: Symmetric Four-Point bending Configuration (SFPB)

do when testing specimens with this configuration in other authors’ work. An appropri-
ate value for the outer span is Sout = 37mm. The inner span was chosen in order to
have a proper value for the parameter A, which should be long enough, otherwise, the
application point of the load will be too close to the constraint, for both sides of the
specimen, and this would affect the test. Being these rollers quite big compared to the
specimen’s dimensions, to set B = W , as it is common, was not enough. After some
attempts, Sinn = 27mm was chosen. To resume, loading distances are:

Sinn = 37mm

Sout = 27mm

A = 5mm

B = 6.5mm

A picture of the fixture in this configuration has been already proposed in fig. 4.2. In fig.
4.4 the cracked specimens of Zirconia 2000 and Zirconia 4000 are presented.
The crack is clearly propagated from the tip of the pre-crack which original length was a,
in a perpendicular direction to the specimen’s length.

4.1.4.2 Mode II
After pure mode I, the smartest thing is to perform pure mode II. That is because,
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(a) zirconia 2000.

(b) Zirconia 4000.

Figure 4.4: Mode I

from this position, it is easier to change the distance L2 to set the fixture in the mixed-
mode configurations. A scheme of the configuration is presented in fig. 4.5.
To perform pure mode II, distances should be L1 = L4 and L2 = L3. This is the classical

Figure 4.5: Asymmetric Four-Point bending Configuration (AFPB)

AFPB configuration. These values were chosen to guarantee Me = 0:

L1 = 5mm

L2 = 15mm

L3 = 15mm

L4 = 5mm

The picture of the fixture in this configuration and the broken specimens are presented
hereafter. From fig. 4.7 is interesting to notice the particular path of the crack.
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Figure 4.6: The fixture when Me=0

(a) Zirconia 2000. (b) Zirconia 4000.

Figure 4.7: Me=0; details of the crack

4.1.4.3 Me=0.25
To obtain mixed-mode configurations it’s sufficient to change the distance L2. This

concept is easy to understand observing fig. 4.8: decreasing L2 means to increase the
mode I component in the mixed-mode.
The following distances were set:

L1 = 5mm

L2 = 13mm

L3 = 15mm

L4 = 5mm

The picture of the fixture in this configuration and the broken specimens are presented
hereafter.
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Figure 4.8: Asymetric Four-Point bending Configuration (top) and a generical mixed-mode con-
figuration (bottom)

Figure 4.9: The fixture when Me=0.25
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(a) Zirconia 2000. (b) Zirconia 4000.

Figure 4.10: Me=0.25; details of the crack

4.1.4.4 Me=0.47
The following distances were set:

L1 = 5mm

L2 = 12mm

L3 = 15mm

L4 = 5mm

The picture of the fixture in this configuration and the broken specimens are presented
hereafter in fig. 4.11 and 4.12.

4.1.4.5 Me=0.80
The last mixed-mode proposed is the closest to pure mode I. The distances chosen are

the following:

L1 = 5mm

L2 = 8mm

L3 = 15mm

L4 = 5mm

The picture of the fixture in this configuration and the broken specimens are presented
in fig. 4.13 and 4.14.
It would be interesting to study the fracture surface with an SEM microscopy. It is the
only instrument that can take pictures of the grains in the fracture surface. Zirconia is
not a good conductor, and to use SEM, it would necessary to coat the specimens with a
thin layer of gold.
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Figure 4.11: The fixture when Me=0.47

(a) Zirconia 2000. (b) Zirconia 4000.

Figure 4.12: Me=0.47; details of the crack
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Figure 4.13: The fixture when Me=0.80

(a) Zirconia 2000. (b) Zirconia 4000.

Figure 4.14: Me=0.80; details of the crack
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4.1.5 Results and Discussion

In the following tables the failure loads, registered during the tests, are presented. As said
before, three tests were carried out for every configuration. Sometimes something in the
tests went wrong: Some specimens did not break at all and some others broke down when
the system had already stopped registering the load-displacement curve. That means
that the registered failure load is lower than the real one. These problems are highlighted
with colors in the tables: red for the specimens that did not break and orange for the
problematic tests.

Zirconia 2000

Specimen Pf
[N ]

1 − 1 − 1 408.5
1 − 1 − 2 423.5
1 − 1 − 3 390.54

1 − 5 − 1 1287.91
1 − 5 − 2 1630.98

1 − 5 − 3 4457.15
1 − 4 − 1 4457.48
1 − 4 − 2 1250.86
1 − 4 − 3 3422.96
1 − 3 − 1 3631.87
1 − 3 − 2 3799
1 − 3 − 3 3305.39
1 − 2 − 1 2828
1 − 2 − 2 4053
1 − 2 − 3 4163

(a)

Zirconia 4000

Specimen Pf
[N ]

2 − 1 − 1 398.31
2 − 1 − 2 384.45
2 − 1 − 3 397.67

2 − 5 − 1 4455.14
2 − 5 − 2 1643.33
2 − 5 − 3 1795.51
2 − 4 − 1 4462.47
2 − 4 − 2 4460.79
2 − 4 − 3 4054.22
2 − 3 − 1 3644.79

2 − 3 − 2 4450
2 − 3 − 3 4137.33
2 − 2 − 1 3968.29
2 − 2 − 2 3529.72
2 − 2 − 3 3956.38

(b)

Legenda
Specimen X-Y-Z
X= Zirconia’s type: 1=Zirconia 2000;

2=Zirconia 4000.
Y= Loading Mode: 1=Mode I;

2=Mode II;
3=Me = 0.25;
4=Me = 0.47;
5=Me = 0.80.

Z=n° of the specimen, from 1 to 3 tests for each configuration.
e.g. Specimen 1-3-2: Zirconia 2000, loading mode with Me = 0.25, 2nd test.

Table 4.3: Experimental failure loads for Zirconia 2000 and Zirconia 4000 specimens
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To show the difference between a normal test and a test where something went wrong,
fig. 4.15 is attached: the top-plot is the expected curve for a specimen that breaks after
reaching his failure load, and it is the curve of the specimen 1-1-1. The bottom-plot is
the curve of the specimen 1-5-3: this specimen did not fracture and actually the curve it
is different.
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Figure 4.15: Load-displacement curves for two different specimens
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4.2 ASED Predictions

4.2.1 Prediction and comparison with experimental results

The ASED criterion is applied in order to predict failure loads for the same loading con-
figurations in which the experimental tests were carried out. Specimens’ dimensions and
materials properties are well known and already presented in the previous sections. There-
fore, the model in the FE software Abaqus can be created. To apply ASED it is necessary
to create the circular control volume. The radius Rc is a function of the material. The
fracture toughness is almost the same for both types of Zirconia: KIc = 15MPa

√
m.

Hence, the control radius, with the hypothesis of plane strain, are:

Rc = 0.20mm (Zirconia 2000)
Rc = 0.13mm (Zirconia 4000)

In Abaqus, the total applied load is 1N . Then the force is properly split in two com-
ponents which points of application are at the same distances L1, L2, L3 and L4 used for
experimental tests. A typical mesh is shown in fig. 4.16
The predicted results are presented in the tables below for both type of materials.

Z

Y

X

X

Y

Z

Figure 4.16: Typical mesh

ASED PREDICTED FAILURE LOADS (Zirconia 2000)

L1 L2 L3 L4 P1 P2 Me Pf
[mm] [mm] [mm] [mm] [N ] [N ] [N ]

1 13.5 13.5 18.5 18.5 0.5 0.5 1 422
2 5 8 15 5 0.62 0.38 0.80 1339
3 5 12 15 5 0.71 0.29 0.47 2013
4 5 13 15 5 0.72 0.28 0.25 2156
5 5 15 15 5 0.75 0.25 0 2101

Table 4.4: Zirconia 2000: the ASED criterion predictions

The comparison between ASED predictions and experimental failure load is easier to un-
derstand graphically in the fig. 4.17 and 4.18.
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Figure 4.17: Zirconia 2000: failure loads comparison
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Figure 4.18: Zirconia 4000: failure loads comparison
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ASED PREDICTED FAILURE LOADS (Zirconia 4000)

L1 L2 L3 L4 P1 P2 Me Pf
[mm] [mm] [mm] [mm] [N ] [N ] [N ]

1 13.5 13.5 18.5 18.5 0.5 0.5 1 420
2 5 8 15 5 0.62 0.38 0.80 1336
3 5 12 15 5 0.71 0.29 0.47 2025
4 5 13 15 5 0.72 0.28 0.25 2174
5 5 15 15 5 0.75 0.25 0 2120

Table 4.5: Zirconia 4000: the ASED criterion predictions

Unfortunately, the comparison is not as good as expected for both cases. As usual, for
mode I and the first mixed-mode (Me = 0.80) results are not that bad. There are some
data decisively out of the scatter zone, probably something happened with those speci-
mens and the corresponding point should not be considered.
Problems are greater when Me = 0.47. For the first Zirconia, the three points are com-
pletely different. Checking the experimental results in tab. 4.3a we can notice that the
specimen 1 − 5 − 1 was problematic, but even the failure load for specimen 1 − 5 − 3 is
strangely low. For Zirconia 4000 instead, the three values found out for Me = 0.47 are
close to each other: this is a hint towards their correctness. But they are totally different
from the prediction.
In general, the same observation can be done for results of mode II and Me = 0.25, for
both types of Zirconia: experimental results are higher than the predicted ones. The only
analogy between the experimental curve and predicted curve is that in both cases for
mode II the failure load is lower than for Me = 0.25.

Observations
The comparison concludes that, in this case of study, ASED predictions do not fit

properly the experimental results. Observing the cracked specimens, it is easy to notice
that there are some anomalies in the way the fracture occurred. One possibility is that the
tests were not carried out correctly and for this reason, the comparison with the ASED
criterion does not work.
Taking under consideration fig. 4.4, 4.7, 4.10, 4.12 and 4.14 some observations can be done.

• The specimens cracked in three pieces instead of two. The only exceptions are the
mode I specimens. One possible explanation is that the upper rollers did not touch
the specimen at the same time. Under the roller which first touched the specimen,
the pressure could be high enough to provoke another fracture.

140



• Observing the specimen from the upper side, it is possible to see that sometimes
the crack is developed with a strange angle that suggests the presence of torsion.
If there is also a component of mode III in the mixed-mode, it is because of the
placement of the specimen. It was probably not correctly aligned in the fixture.

• The specimens are tiny but it is easy to notice that the crack has a radius not close
to zero. It is more similar to a U-notch then to an ideal crack. The fact that a crack
can be considered ideal or a U-notch depends on the relation between the averaged
grain size of the material and the radius of the notch. In any case, this aspect needs
further investigation. If it is a notch the equations to apply ASED Criterion change.

• It is not so clear if the crack starts from the tip of the pre-crack or from the side.
Ideally, the crack should propagate from the tip, along a direction that depends on
the mixed-mode. In fig.4.4 we can see that for mode I the crack was almost vertical,
as to say that the initiation angle was almost 0°. But for the other specimens, it is
difficult to distinguish mode II from mixed-modes. They look almost all like mode
II fracture propagation.

4.2.2 Theoretical criteria application

Other theoretical criteria are performed to predict the normalized values of the stress
intensity factors and the initiation angles of the cracks. The criteria used are as usual the
MTS, GMTS, SED, and G criteria. The inputs necessary to perform them are provided
thanks to the application of the ASED criterion and to the use of the FE software. In
the following plots, the results of this analysis are presented for both Zirconia 2000 and
Zirconia 4000.

For both types of Zirconia we can see that the closest criteria to ASED is the G cri-
terion.
For what concerns the directions, the four criteria are in good agreement. They are also
confirmed by the predictions obtained with Abaqus. It would be interesting to measure
also the real angles of initiation of the cracks in the fractured specimens. For this pur-
pose, it would be necessary at least a magnifying glass (or something more accurate) and
a goniometer.
Using equations (4.1) and (4.2), it was possible to calculate the stress intensity factors
using the experimental failure loads and the values for the adimensional geometry factors
Y1 and Y2 found in fig. 4.23.
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Figure 4.19: Zirconia 2000: normalized stress intensity factors comparison

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Me

0

10

20

30

40

50

60

70

80

90

d
ir
[°

]

CRACK INIZIALIZATION ANGLE

MTS

GMTS

SED

G

Figure 4.20: Zirconia 2000: initiation angle comparison
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Figure 4.21: Zirconia 4000: normalized stress intensity factors comparison
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Figure 4.22: Zirconia 4000: initiation angle comparison
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K1 =
P
√
πaY1

BW

(
1− L2

L4

)
(4.1)
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P
√
πaY2
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(
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(4.2)

(4.3)

Figure 4.23: Adimensional geometry factors

Studying table 4.3a and 4.3b, it appears that some data are out of the trend. Indeed,
the stress intensity factors obtained with these failure loads are out of the trend too. It
was considered easier to calculate averaged values for the stress intensity factors, but the
elements colored in red were not considered for the reason explained before. Even with
this precaution, the experimental trend is really different from the theoretical one, as
pictures 4.24 and 4.25 show. (These pictures content is the same as fig. 4.19 and 4.21,
but there is also the experimental curve.)
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Zirconia 2000

Me K1 K2
MPa

√
m MPa

√
m

1 15.13 0
1 15.68 0
1 14.46 0

0.8 17.23 4.79
0.8 21.82 6.06
0.8 59.63 16.56
0.47 32.64 20.27
0.47 9.16 5.69
0.47 25.06 15.56
0.25 20.67 17.13
0.25 21.62 17.92
0.25 18.81 15.59

0 9.96 14.42
0 14.28 20.66
0 14.67 21.22

(a)

Zirconia 2000

Me K1 K2
MPa

√
m MPa

√
m

1 15.09 0
0.8 19.52 5.42
0.47 28.85 17.92
0.25 20.37 16.88

0 12.97 18.76

(b)

Table 4.6: Zirconia 2000: stress intensity factors
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Figure 4.24: Zirconia 2000: normalized stress intensity factors with the experimental values
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Zirconia 4000

Me K1 K2
MPa

√
m MPa

√
m

1 14.75 0
1 14.24 0
1 14.72 0

0.8 59.6 16.56
0.8 21.98 6.11
0.8 24.02 6.67
0.47 32.67 20.29
0.47 32.66 20.28
0.47 29.68 18.44
0.25 20.74 17.19
0.25 25.33 20.99
0.25 23.55 19.51

0 13.98 19.75
0 12.44 17.57
0 13.94 19.69

(a)

Zirconia 4000

Me K1 K2
MPa ∗
m0.5

MPa ∗
m0.5

1 14.57 0
0.8 23 6.39
0.47 31.67 19.67
0.25 23.21 19.23

0 13.45 19

(b)

Table 4.7: Zirconia 4000: stress intensity factors
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Figure 4.25: Zirconia 4000: normalized stress intensity factors with the experimental values
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Chapter 5

Recommendations and conclusion

The ASED criterion and the other theoretical criteria were applied to a large number of
materials of different classes.
The first thing possible to conclude is that in the majority of the cases the ASED criterion
predictions are coherent with the experimental results. The ASED criterion is based on
the assumptions that the fracture toughness KIc is a given property. This is the reason
why the predictions of the pure mode I failure load are convincing, while the discrepancy
increases approaching mode II . When the discrepancy between mode I failure loads is
huge, there is probably a mistake in the definition of the fracture toughness. This is what
happens in section 3.2.3 where the second type of PMMA is tested. Indeed, the tough-
ness is not universally a material property: it depends on the temperature, the material
strength, and the thickness of the specimen. But sometimes other relations are found,
for example with the test’s speed. These are cases in which to apply the ASED criterion
could be difficult. Otherwise, if a big discrepancy for mode I failure load is observed, it
could be a matter of loading configuration.
For what concerns the normalized stress intensity factors, the ASED curve is in general
far from the experimental one compared to the other theoretical criteria. The MTS,
GMTS, SED, and G criteria are ancient and their validity is indisputable. The interest
of this work was to see how they work with several materials in order to classify their
performances for each class. In general, it is possible to conclude that the best for rock
and polymers is the GMTS criterion while the SED is the best one for steels and ceramics.
The G criterion is always the closest to the ASED for what concerns the normalized stress
intensity factors. This is probably because they are both energetic criteria.
The plots regarding the initiation angles of the crack show considerably good accordance
between all the criteria, and also with the experimental results, when available. This is
interesting. To obtain the plot with the normalized stress intensity factors, the predictions
of the toughness are needed. These plots show a relevant scatter zone. This means that
the discrepancy between the criteria is not negligible. On the contrary, in the initiation
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angle’s plots, the scatter zone is tiny. It seems that the mixed-mode coefficient has a
higher influence on the angle θ0 and even using different criteria, the results can not vary
largely. θ0 seems strongly dependent on the loading configuration and poorly dependent
on the material, the intensity of the load, or the stress intensity factors.

In general, even if the work gave a good result, some observations can be done.
It was particularly difficult to deal with experimental tests carried out by other research-
ers. There are several reasons: the main reason is that the ASED and the other criteria
are highly dependent on the material properties. It is always better to characterize the
material in loco, with proper tests on proper samples of the material. There are materials
for which the properties depend on variables as the microstructure, the processes, the
environment of the test, and so on. It is better to provide these characteristics without
looking for them in the literature, that is always a hazard. Besides, as already said, the
definition of the fracture toughness is extremely important to achieve good results.
The other aspect that needs to be focused on is related to the specimen shape and the
loading configuration. The AFPB test was used for all the materials. With this configur-
ation, it is easy to obtain mixed-mode fracture but it is strongly dependent on the loading
distances. It is really important to choose in a proper way the distances concerning the
specimen’s dimensions, this was already be seen with some materials, sections 3.1.5, 3.1.6.
And the specimens used are small. The average thickness is included between 5 or 10mm.
It is difficult to be precise in these conditions, but precision is fundamental to obtain the
right stress intensity factors.
To conclude the work it would be interesting to practice a method to deal with ductile
materials. Even if in the field of this work all the materials were considered brittle, the
influence of the plasticity was seen in different situations. The plasticity around the crack
tip affected the predictions of the criteria, but also the plasticity in the point of applica-
tion of the loads was a problem: when the loads involved are too intense, it is possible to
spot plastic deformation also in correspondence with the boundary conditions. Otherwise,
with a high load, a brittle material can show cracks, and this is a problem as well because
the specimen can fail at unexpected points.
Speaking about ductility, it would be really interesting to apply the EMC, Equivalent
Material Concept, to the steels at room temperature or other ductile materials, as some
polymers. This was not possible because of the dimensions of the specimens. At room
temperature, the toughness increases, and this affects the radius of the control volume. If
a huge control volume is required, the specimen should be big enough to host the crack
and the volume.
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